51
|
|
52
|
De Caroli M, Lenucci MS, Di Sansebastiano GP, Dalessandro G, De Lorenzo G, Piro G. Protein trafficking to the cell wall occurs through mechanisms distinguishable from default sorting in tobacco. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:295-308. [PMID: 21223393 DOI: 10.1111/j.1365-313x.2010.04421.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The secretory pathway in plants involves sustained traffic to the cell wall, as matrix components, polysaccharides and proteins reach the cell wall through the endomembrane system. We studied the secretion pattern of cell-wall proteins in tobacco protoplasts and leaf epidermal cells using fluorescent forms of a pectin methylesterase inhibitor protein (PMEI1) and a polygalacturonase inhibitor protein (PGIP2). The two most representative protein fusions, secGFP-PMEI1 and PGIP2-GFP, reached the cell wall by passing through ER and Golgi stacks but using distinct mechanisms. secGFP-PMEI1 was linked to a glycosylphosphatidylinositol (GPI) anchor and stably accumulated in the cell wall, regulating the activity of the endogenous pectin methylesterases (PMEs) that are constitutively present in this compartment. A mannosamine-induced non-GPI-anchored form of PMEI1 as well as a form (PMEI1-GFP) that was unable to bind membranes failed to reach the cell wall, and accumulated in the Golgi stacks. In contrast, PGIP2-GFP moved as a soluble cargo protein along the secretory pathway, but was not stably retained in the cell wall, due to internalization to an endosomal compartment and eventually the vacuole. Stable localization of PGIP2 in the wall was observed only in the presence of a specific fungal endopolygalacturonase ligand in the cell wall. Both secGFP-PMEI1 and PGIP2-GFP sorting were distinguishable from that of a secreted GFP, suggesting that rigorous and more complex controls than the simple mechanism of bulk flow are the basis of cell-wall growth and differentiation.
Collapse
Affiliation(s)
- Monica De Caroli
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy
| | | | | | | | | | | |
Collapse
|
53
|
Park M, Jürgens G. Membrane traffic and fusion at post-Golgi compartments. FRONTIERS IN PLANT SCIENCE 2011; 2:111. [PMID: 22645561 PMCID: PMC3355779 DOI: 10.3389/fpls.2011.00111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 12/19/2011] [Indexed: 05/18/2023]
Abstract
Complete sequencing of the Arabidopsis genome a decade ago has facilitated the functional analysis of various biological processes including membrane traffic by which many proteins are delivered to their sites of action and turnover. In particular, membrane traffic between post-Golgi compartments plays an important role in cell signaling, taking care of receptor-ligand interaction and inactivation, which requires secretion, endocytosis, and recycling or targeting to the vacuole for degradation. Here, we discuss recent studies that address the identity of post-Golgi compartments, the machinery involved in traffic and fusion or functionally characterized cargo proteins that are delivered to or pass through post-Golgi compartments. We also provide an outlook on future challenges in this area of research.
Collapse
Affiliation(s)
- Misoon Park
- Entwicklungsgenetik, Zentrum für Molekularbiologie der Pflanzen, University of TübingenTübingen, Germany
| | - Gerd Jürgens
- Entwicklungsgenetik, Zentrum für Molekularbiologie der Pflanzen, University of TübingenTübingen, Germany
- *Correspondence: Gerd Jürgens, Entwicklungsgenetik, Zentrum für Molekularbiologie der Pflanzen, University of Tübingen, Auf der Morgenstelle 3, 72076 Tübingen, Germany. e-mail:
| |
Collapse
|
54
|
Adaptin-like protein TPLATE and clathrin recruitment during plant somatic cytokinesis occurs via two distinct pathways. Proc Natl Acad Sci U S A 2010; 108:615-20. [PMID: 21187379 DOI: 10.1073/pnas.1017890108] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant cytokinesis deploys a transport system that centers cell plate-forming vesicles and fuses them to form a cell plate. Here we show that the adaptin-like protein TPLATE and clathrin light chain 2 (CLC2) are targeted to the expanding cell plate and to the equatorial subregion of the plasma membrane referred to as the cortical division zone (CDZ). Bimolecular fluorescence complementation and immunodetection indicates that TPLATE interacts with clathrin. Pharmacological tools as well as analysis of protein targeting in a mutant background affecting cell plate formation allowed to discriminate two recruitment pathways for TPLATE and CLC2. The cell plate recruitment pathway is dependent on phragmoplast microtubule organization and the formation and transport of secretory vesicles. The CDZ recruitment pathway, on the other hand, is activated at the end of cytokinesis and independent of trans-Golgi-derived vesicle trafficking. TPLATE and CLC2 do not accumulate at a narrow zone central of the CDZ. We have dubbed this subdomain the cortical division site and show that it corresponds precisely with the position where the cell plate merges with the parental wall. These data provide evidence that the plasma membrane is subject to localized endocytosis or membrane remodeling processes that are required for the fusion of the cell plate with a predefined region of the plasma membrane.
Collapse
|
55
|
Leborgne-Castel N, Adam T, Bouhidel K. Endocytosis in plant-microbe interactions. PROTOPLASMA 2010; 247:177-93. [PMID: 20814704 DOI: 10.1007/s00709-010-0195-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 08/04/2010] [Indexed: 05/10/2023]
Abstract
Plants encounter throughout their life all kinds of microorganisms, such as bacteria, fungi, or oomycetes, with either friendly or unfriendly intentions. During evolution, plants have developed a wide range of defense mechanisms against attackers. In return, adapted microbes have developed strategies to overcome the plant lines of defense, some of these microbes engaging in mutualistic or parasitic endosymbioses. By sensing microbe presence and activating signaling cascades, the plasma membrane through its dynamics plays a crucial role in the ongoing molecular dialogue between plants and microbes. This review describes the contribution of endocytosis to different aspects of plant-microbe interactions, microbe recognition and development of a basal immune response, and colonization of plant cells by endosymbionts. The putative endocytic routes for the entry of microbe molecules or microbes themselves are explored with a special emphasis on clathrin-mediated endocytosis. Finally, we evaluate recent findings that suggest a link between the compartmentalization of plant plasma membrane into microdomains and endocytosis.
Collapse
Affiliation(s)
- Nathalie Leborgne-Castel
- UMR Plante-Microbe-Environnement 1088 INRA/5184 CNRS/Université de Bourgogne, 17 Rue Sully, BP 86510, 21065 Dijon Cedex, France.
| | | | | |
Collapse
|
56
|
Robert S, Kleine-Vehn J, Barbez E, Sauer M, Paciorek T, Baster P, Vanneste S, Zhang J, Simon S, Čovanová M, Hayashi K, Dhonukshe P, Yang Z, Bednarek SY, Jones AM, Luschnig C, Aniento F, Zažímalová E, Friml J. ABP1 mediates auxin inhibition of clathrin-dependent endocytosis in Arabidopsis. Cell 2010; 143:111-21. [PMID: 20887896 DOI: 10.1016/j.cell.2010.09.027] [Citation(s) in RCA: 313] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 05/10/2010] [Accepted: 09/14/2010] [Indexed: 01/25/2023]
Abstract
Spatial distribution of the plant hormone auxin regulates multiple aspects of plant development. These self-regulating auxin gradients are established by the action of PIN auxin transporters, whose activity is regulated by their constitutive cycling between the plasma membrane and endosomes. Here, we show that auxin signaling by the auxin receptor AUXIN-BINDING PROTEIN 1 (ABP1) inhibits the clathrin-mediated internalization of PIN proteins. ABP1 acts as a positive factor in clathrin recruitment to the plasma membrane, thereby promoting endocytosis. Auxin binding to ABP1 interferes with this action and leads to the inhibition of clathrin-mediated endocytosis. Our study demonstrates that ABP1 mediates a nontranscriptional auxin signaling that regulates the evolutionarily conserved process of clathrin-mediated endocytosis and suggests that this signaling may be essential for the developmentally important feedback of auxin on its own transport.
Collapse
|
57
|
Saint-Jean B, Seveno-Carpentier E, Alcon C, Neuhaus JM, Paris N. The cytosolic tail dipeptide Ile-Met of the pea receptor BP80 is required for recycling from the prevacuole and for endocytosis. THE PLANT CELL 2010; 22:2825-37. [PMID: 20807880 PMCID: PMC2947187 DOI: 10.1105/tpc.109.072215] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 06/24/2010] [Accepted: 08/05/2010] [Indexed: 05/18/2023]
Abstract
Pea (Pisum sativum) BP80 is a vacuolar sorting receptor for soluble proteins and has a cytosolic domain essential for its intracellular trafficking between the trans-Golgi network and the prevacuole. Based on mammalian knowledge, we introduced point mutations in the cytosolic region of the receptor and produced chimeras of green fluorescent protein fused to the transmembrane domain of pea BP80 along with the modified cytosolic tails. By analyzing the subcellular location of these chimera, we found that mutating Glu-604, Asp-616, or Glu-620 had mild effects, whereas mutating the Tyr motif partially redistributed the chimera to the plasma membrane. Replacing both Ile-608 and Met-609 by Ala (IMAA) led to a massive redistribution of fluorescence to the vacuole, indicating that recycling is impaired. When the chimera uses the alternative route, the IMAA mutation led to a massive accumulation at the plasma membrane. Using Arabidopsis thaliana plants expressing a fluorescent reporter with the full-length sequence of At VSR4, we demonstrated that the receptor undergoes brefeldin A-sensitive endocytosis. We conclude that the receptors use two pathways, one leading directly to the lytic vacuole and the other going via the plasma membrane, and that the Ileu-608 Met-609 motif has a role in the retrieval step in both pathways.
Collapse
Affiliation(s)
- Bruno Saint-Jean
- Laboratoire de Physiologie et Biotechnologie des Algues, Institut Français de Recherche pour l'Exploitation de la Mer, 44311 Nantes Cedex 03, France
| | - Emilie Seveno-Carpentier
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386, Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 1, France
| | - Carine Alcon
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386, Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 1, France
| | - Jean-Marc Neuhaus
- Laboratoire de Biologie Moléculaire et Cellulaire, Université de Neuchâtel, CH-2009 Neuchâtel, Switzerland
| | - Nadine Paris
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386, Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 1, France
| |
Collapse
|
58
|
Boutté Y, Frescatada-Rosa M, Men S, Chow CM, Ebine K, Gustavsson A, Johansson L, Ueda T, Moore I, Jürgens G, Grebe M. Endocytosis restricts Arabidopsis KNOLLE syntaxin to the cell division plane during late cytokinesis. EMBO J 2010; 29:546-58. [PMID: 19959995 PMCID: PMC2789941 DOI: 10.1038/emboj.2009.363] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 11/06/2009] [Indexed: 12/20/2022] Open
Abstract
Cytokinesis represents the final stage of eukaryotic cell division during which the cytoplasm becomes partitioned between daughter cells. The process differs to some extent between animal and plant cells, but proteins of the syntaxin family mediate membrane fusion in the plane of cell division in diverse organisms. How syntaxin localization is kept in check remains elusive. Here, we report that localization of the Arabidopsis KNOLLE syntaxin in the plane of cell division is maintained by sterol-dependent endocytosis involving a clathrin- and DYNAMIN-RELATED PROTEIN1A-dependent mechanism. On genetic or pharmacological interference with endocytosis, KNOLLE mis-localizes to lateral plasma membranes after cell-plate fusion. Fluorescence-loss-in-photo-bleaching and fluorescence-recovery-after-photo-bleaching experiments reveal lateral diffusion of GFP-KNOLLE from the plane of division to lateral membranes. In an endocytosis-defective sterol biosynthesis mutant displaying lateral KNOLLE diffusion, KNOLLE secretory trafficking remains unaffected. Thus, restriction of lateral diffusion by endocytosis may serve to maintain specificity of syntaxin localization during late cytokinesis.
Collapse
Affiliation(s)
- Yohann Boutté
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, Umeå, Sweden
- Department of Forest Genetics and Plant Physiology, UPSC, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Márcia Frescatada-Rosa
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, Umeå, Sweden
| | - Shuzhen Men
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, Umeå, Sweden
- Department of Forest Genetics and Plant Physiology, UPSC, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Cheung-Ming Chow
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, UK
| | - Kazuo Ebine
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Anna Gustavsson
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, Umeå, Sweden
| | - Lenore Johansson
- Electron Microscopy Platform, Chemical and Biological Centre, Umeå University, Umeå, Sweden
| | - Takashi Ueda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ian Moore
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, UK
| | - Gerd Jürgens
- Centre for Plant Molecular Biology (ZMBP), Department of Developmental Genetics, University of Tübingen, Tübingen, Germany
| | - Markus Grebe
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, Umeå, Sweden
- Department of Forest Genetics and Plant Physiology, UPSC, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
59
|
Lam SK, Cai Y, Tse YC, Wang J, Law AHY, Pimpl P, Chan HYE, Xia J, Jiang L. BFA-induced compartments from the Golgi apparatus and trans-Golgi network/early endosome are distinct in plant cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:865-81. [PMID: 19709389 DOI: 10.1111/j.1365-313x.2009.04007.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Brefeldin A (BFA) is a useful tool for studying protein trafficking and identifying organelles in the plant secretory and endocytic pathways. At low concentrations (5-10 microg ml(-1)), BFA caused both the Golgi apparatus and trans-Golgi network (TGN), an early endosome (EE) equivalent in plant cells, to form visible aggregates in transgenic tobacco BY-2 cells. Here we show that these BFA-induced aggregates from the Golgi apparatus and TGN are morphologically and functionally distinct in plant cells. Confocal immunofluorescent and immunogold electron microscope (EM) studies demonstrated that BFA-induced Golgi- and TGN-derived aggregates are physically distinct from each other. In addition, the internalized endosomal marker FM4-64 co-localized with the TGN-derived aggregates but not with the Golgi aggregates. In the presence of the endocytosis inhibitor tyrphostin A23, which acts in a dose- and time-dependent manner, SCAMP1 (secretory carrier membrane protein 1) and FM4-64 are mostly excluded from the SYP61-positive BFA-induced TGN aggregates, indicating that homotypic fusion of the TGN rather than de novo endocytic trafficking is important for the formation of TGN/EE-derived BFA-induced aggregates. As the TGN also serves as an EE, continuously receiving materials from the plasma membrane, our data support the notion that the secretory Golgi organelle is distinct from the endocytic TGN/EE in terms of its response to BFA treatment in plant cells. Thus, the Golgi and TGN are probably functionally distinct organelles in plants.
Collapse
Affiliation(s)
- Sheung Kwan Lam
- Department of Biology and Molecular Biotechnology Program, Centre for Cell and Developmental Biology, State (China) Key Laboratory for Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Moscatelli A, Idilli AI. Pollen tube growth: a delicate equilibrium between secretory and endocytic pathways. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2009; 51:727-39. [PMID: 19686370 DOI: 10.1111/j.1744-7909.2009.00842.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Although pollen tube growth is a prerequisite for higher plant fertilization and seed production, the processes leading to pollen tube emission and elongation are crucial for understanding the basic mechanisms of tip growth. It was generally accepted that pollen tube elongation occurs by accumulation and fusion of Golgi-derived secretory vesicles (SVs) in the apical region, or clear zone, where they were thought to fuse with a restricted area of the apical plasma membrane (PM), defining the apical growth domain. Fusion of SVs at the tip reverses outside cell wall material and provides new segments of PM. However, electron microscopy studies have clearly shown that the PM incorporated at the tip greatly exceeds elongation and a mechanism of PM retrieval was already postulated in the mid-nineteenth century. Recent studies on endocytosis during pollen tube growth showed that different endocytic pathways occurred in distinct zones of the tube, including the apex, and led to a new hypothesis to explain vesicle accumulation at the tip; namely, that endocytic vesicles contribute substantially to V-shaped vesicle accumulation in addition to SVs and that exocytosis does not involve the entire apical domain. New insights suggested the intriguing hypothesis that modulation between exo- and endocytosis in the apex contributes to maintain PM polarity in terms of lipid/protein composition and showed distinct degradation pathways that could have different functions in the physiology of the cell. Pollen tube growth in vivo is closely regulated by interaction with style molecules. The study of endocytosis and membrane recycling in pollen tubes opens new perspectives to studying pollen tube-style interactions in vivo.
Collapse
Affiliation(s)
- Alessandra Moscatelli
- Dipartimento di Biologia L. Gorini, Università degli Studi di Milano, Milano, Italy.
| | | |
Collapse
|
61
|
Bar M, Avni A. EHD2 inhibits signaling of leucine rich repeat receptor-like proteins. PLANT SIGNALING & BEHAVIOR 2009; 4:682-4. [PMID: 19820301 PMCID: PMC2710575 DOI: 10.4161/psb.4.7.9078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Leucine-rich-repeat receptor protein (LRR-RLPs) and LRR-RLKs have been linked with signaling and defense responses in plants. EIX (ethylene-inducing xylanase) triggers a defense response via the LeEix2 receptor, while bacterial flagellin triggers plant innate immunity via the FLS2 receptor. Endocytosis has been suggested to be crucial for the process in both cases. Recently, we showed that the EIX elicitor triggers internalization of the LeEix2 receptor. Additionally, we demonstrate that plant EHD2 is an important factor in the internalization and regulation of the induction of plant immunity in the case of EIX/LeEix2 but does not appear to be involved in the flg/FLS2 system. Here we show that EHD2 is also involved in the signaling of the Cf4 and Cf9 receptors, causing inhibition of hypersensitive response (HR) and ethylene biosynthesis upon overexpression of EHD2. Our results suggest that different endocytosis pathways are involved in the induction of plant defense responses.
Collapse
Affiliation(s)
- Maya Bar
- Department of Plant Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | | |
Collapse
|
62
|
Ivanov R, Gaude T. Endocytosis and endosomal regulation of the S-receptor kinase during the self-incompatibility response in Brassica oleracea. THE PLANT CELL 2009; 21:2107-17. [PMID: 19622804 PMCID: PMC2729615 DOI: 10.1105/tpc.108.063479] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 07/06/2009] [Accepted: 07/10/2009] [Indexed: 05/17/2023]
Abstract
Intracellular trafficking of plant receptor kinases (PRKs) is a key step in regulation of cellular signaling. Our current knowledge in this field is based on systems that address signaling pathways affecting the whole cell. There are, however, signaling phenomena that add a further layer of complexity. In the Brassica self-incompatibility response, a single cell can adequately respond to two opposite stimuli: accepting cross-pollen and rejecting self-pollen simultaneously. To understand how PRK signaling can influence the coexistence of two seemingly exclusive states of the cell, we investigated the subcellular localization and internalization of the S-receptor kinase (SRK) involved in the self-incompatibility response of Brassica oleracea. Here, we describe the unusual subcellular distribution of SRK3, which localizes predominantly to intracellular compartments and to a much lesser extent to the plasma membrane. Using an anti-SRK antibody that fully substitutes for the natural ligand, we demonstrate that the interaction with the receptor takes place at the plasma membrane and is followed by SRK internalization in endosomes that are enriched in the SRK negative regulator Thioredoxin-h-like1.
Collapse
Affiliation(s)
- Rumen Ivanov
- Reproduction et Développement des Plantes, Institut Fédératif de Recherche 128, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Claude Bernard Lyon I, Ecole Normale Supérieure de Lyon, F-69364 Lyon, France
| | | |
Collapse
|
63
|
Abstract
Secretory and endocytic traffic through the post-Golgi endomembrane system regulates the abundance of plasma-membrane proteins such as receptors, transporters and ion channels, modulating the ability of a cell to communicate with its neighbours and to adapt to a changing environment. The major post-Golgi compartments are numerous and appear to be similar to their counterparts in animals. However, endosomes are rather ill defined morphologically but seem to be involved in specific trafficking pathways. Many plasma-membrane proteins cycle constitutively via endosomal compartments. The trans-Golgi network (TGN) appears to be an early endosome where secretory and endocytic traffic meet. Endocytosed proteins that are to be degraded are targeted to the vacuole via the multivesiculate prevacuolar compartment (PVC) whereas cycling proteins pass through recycling endosomes. The trafficking machinery involves the same classes of proteins as in other eukaryotes. However, there are modifications that match the specifics of post-Golgi traffic in plants. Although plants lack epithelia, some plasma-membrane proteins are located on specific faces of the cell which reflects polarized traffic and influences the physiological performance of the tissue. Plants also differentiate highly polarized tip-growing cells in which post-Golgi traffic is adapted to very high rates of targeted exocytosis, endocytosis and recycling.
Collapse
Affiliation(s)
- Sandra Richter
- ZMBP, Entwicklungsgenetik,Universität Tübingen, Auf der Morgenstelle 3, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
64
|
Kleine-Vehn J, Friml J. Polar targeting and endocytic recycling in auxin-dependent plant development. Annu Rev Cell Dev Biol 2008; 24:447-73. [PMID: 18837671 DOI: 10.1146/annurev.cellbio.24.110707.175254] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant development is characterized by a profound phenotypic plasticity that often involves redefining of the developmental fate and polarity of cells within differentiated tissues. The plant hormone auxin and its directional intercellular transport play a major role in these processes because they provide positional information and link cell polarity with tissue patterning. This plant-specific mechanism of transport-dependent auxin gradients depends on subcellular dynamics of auxin transport components, in particular on endocytic recycling and polar targeting. Recent insights into these cellular processes in plants have revealed important parallels to yeast and animal systems, including clathrin-dependent endocytosis, retromer function, and transcytosis, but have also emphasized unique features of plant cells such as diversity of polar targeting pathways; integration of environmental signals into subcellular trafficking; and the link between endocytosis, cell polarity, and cell fate specification. We review these advances and focus on the translation of the subcellular dynamics to the regulation of whole-plant development.
Collapse
Affiliation(s)
- Jürgen Kleine-Vehn
- Department of Plant Systems Biology, VIB, and Department of Molecular Genetics, Ghent University, 9052 Ghent, Belgium
| | | |
Collapse
|
65
|
Woollard AAD, Moore I. The functions of Rab GTPases in plant membrane traffic. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:610-9. [PMID: 18952493 DOI: 10.1016/j.pbi.2008.09.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 09/02/2008] [Accepted: 09/11/2008] [Indexed: 05/08/2023]
Abstract
Rab GTPases are important determinants of membrane identity and membrane targeting. Higher plants have evolved a unique set of Rab GTPases that presumably reflects the specific demands of plant cell trafficking. In recent years, significant progress has been made in identifying Rab GTPases involved in endosome organisation, cytokinesis and in post-Golgi traffic to the plasma membrane and vacuoles. These include members of the Rab-F1, Rab-F2, Rab-A1, Rab-A2 and Rab-A4 subclasses. Some important regulators or effectors have also been identified for Rab-F, Rab-A1 and Rab-A4 proteins. However, uncertainties remain about the trafficking pathways that connect the compartments in the trans-Golgi/prevacuolar/endosomal system and there is still little or no insight into the functions of several major subclasses within the Rab GTPase family.
Collapse
Affiliation(s)
- Astrid A D Woollard
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | |
Collapse
|
66
|
Bar M, Aharon M, Benjamin S, Rotblat B, Horowitz M, Avni A. AtEHDs, novel Arabidopsis EH-domain-containing proteins involved in endocytosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:1025-38. [PMID: 18547399 DOI: 10.1111/j.1365-313x.2008.03571.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
SUMMARY Endocytosis is an essential process by which the eukaryotic cell internalizes exogenous material. Studies in yeast and mammalian cells have revealed that endocytosis is a complex molecular process depending on regulated interactions between a variety of proteins and lipids through specific modules. One such module is the Eps15 homology (EH) domain, a conserved modular protein-interaction domain found in several endocytic proteins. The EH-domain-containing proteins function as regulators of endocytosis through their ability to interact with other proteins involved in this process. Here we describe the isolation and characterization of two Arabidopsis EH-domain-containing proteins (AtEHD1 and AtEHD2). We show that the two proteins are involved in endocytosis in plant systems and demonstrate that the Arabidopsis EHD proteins function similarly to mammalian EHDs. Similarly to hEHD2, over-expression of AtEHD2 has an inhibitory effect on endocytosis. While transgenic plants over-expressing AtEHD1 had no detectable phenotype, downregulation of AtEHD1 caused retardation of entry of endocytosed material into plant cells.
Collapse
Affiliation(s)
- Maya Bar
- Department of Plant Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
67
|
Affiliation(s)
- José Aker
- Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | | |
Collapse
|
68
|
Groen AJ, de Vries SC, Lilley KS. A proteomics approach to membrane trafficking. PLANT PHYSIOLOGY 2008; 147:1584-9. [PMID: 18678750 PMCID: PMC2492629 DOI: 10.1104/pp.108.123448] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 06/24/2008] [Indexed: 05/24/2023]
Affiliation(s)
- Arnoud J Groen
- Department of Biochemistry, Cambridge University, Cambridge CB2 1QR, United Kingdom
| | | | | |
Collapse
|
69
|
Robinson DG, Jiang L, Schumacher K. The endosomal system of plants: charting new and familiar territories. PLANT PHYSIOLOGY 2008; 147:1482-92. [PMID: 18678740 PMCID: PMC2492610 DOI: 10.1104/pp.108.120105] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 05/05/2008] [Indexed: 05/18/2023]
Affiliation(s)
- David G Robinson
- Heidelberg Institute of Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
70
|
Geldner N, Robatzek S. Plant receptors go endosomal: a moving view on signal transduction. PLANT PHYSIOLOGY 2008; 147:1565-74. [PMID: 18678748 PMCID: PMC2492600 DOI: 10.1104/pp.108.120287] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 05/07/2008] [Indexed: 05/17/2023]
Affiliation(s)
- Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland.
| | | |
Collapse
|
71
|
Leborgne-Castel N, Lherminier J, Der C, Fromentin J, Houot V, Simon-Plas F. The plant defense elicitor cryptogein stimulates clathrin-mediated endocytosis correlated with reactive oxygen species production in bright yellow-2 tobacco cells. PLANT PHYSIOLOGY 2008; 146:1255-66. [PMID: 18184734 PMCID: PMC2259092 DOI: 10.1104/pp.107.111716] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 12/21/2007] [Indexed: 05/18/2023]
Abstract
The plant defense elicitor cryptogein triggers well-known biochemical events of early signal transduction at the plasma membrane of tobacco (Nicotiana tabacum) cells, but microscopic observations of cell responses related to these early events were lacking. We determined that internalization of the lipophilic dye FM4-64, which is a marker of endocytosis, is stimulated a few minutes after addition of cryptogein to tobacco Bright Yellow-2 (BY-2) cells. This stimulation is specific to the signal transduction pathway elicited by cryptogein because a lipid transfer protein, which binds to the same receptor as cryptogein but without triggering signaling, does not increase endocytosis. To define the nature of the stimulated endocytosis, we quantified clathrin-coated pits (CCPs) forming on the plasma membrane of BY-2 cells. A transitory stimulation of this morphological event by cryptogein occurs within the first 15 min. In the presence of cryptogein, increases in both FM4-64 internalization and clathrin-mediated endocytosis are specifically blocked upon treatment with 5 microm tyrphostin A23, a receptor-mediated endocytosis inhibitor. The kinetics of the transient increase in CCPs at the plasma membrane coincides with that of transitory reactive oxygen species (ROS) production occurring within the first 15 min after elicitation. Moreover, in BY-2 cells expressing NtrbohD antisense cDNA, which are unable to produce ROS when treated with cryptogein, the CCP stimulation is inhibited. These results indicate that the very early endocytic process induced by cryptogein in tobacco is due, at least partly, to clathrin-mediated endocytosis and is dependent on ROS production by the NADPH oxidase NtrbohD.
Collapse
|
72
|
Lisboa S, Scherer GEF, Quader H. Localized endocytosis in tobacco pollen tubes: visualisation and dynamics of membrane retrieval by a fluorescent phospholipid. PLANT CELL REPORTS 2008; 27:21-8. [PMID: 17786450 DOI: 10.1007/s00299-007-0437-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 08/02/2007] [Accepted: 08/08/2007] [Indexed: 05/17/2023]
Abstract
Two modes of endocytosis are known to occur in eucaryotic cells: fluid phase and receptor-mediated endocytosis. Fluid-phase endocytosis in plant cells resembles the retrieval of excess plasma membrane material previously incorporated by exocytosis. Pollen tubes need to carry out strong membrane retrieval due to their fast polar tip growth. Plasma membrane labelling of pollen tubes, grown in suspension, was achieved by the incorporation of a fluorescently modified phospholipid, 1,2-bis-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-undecanoyl)-sn-glycero-3-phosphocholine (20 microM) and measured with a confocal laser-scanning microscope. Time course experiments revealed a highly localised and relatively fast plasma membrane retrieval below the tip within the first 5 min after phospholipid application. The retrieved fluorescent plasma membrane was quickly re-integrated into parts of the endomembrane pool and then redistributed to the pollen tube base and very tip of the apex, with the exception of the cortical endoplasmic reticulum (ER) and the mitochondria even after 1-h incubation period. Low temperature (10 degrees C) and the actin filament depolymerizing cytochalasin D (2 microM) completely abolished plasma membrane retrieval, whereas the microtubule destabilizing herbicide oryzalin (1 microM) had no effect. Our results provide strong support for a highly localised endocytotic pathway in tobacco pollen tubes. Passive uptake of bis-Bodipy FL C(11)-phosphocholine by mere penetration can be excluded. It is a valuable alternative to the styryl dyes often used in endocytotic studies, and may also be used to follow lipid turnover because membrane flow of labelled membranes occurs apparently not in a default manner as ascertained by its fast distribution.
Collapse
Affiliation(s)
- S Lisboa
- Biozentrum Klein Flottbek, University of Hamburg, Ohnhorst-Str. 18, 22609, Hamburg, Germany
| | | | | |
Collapse
|
73
|
Lam SK, Tse YC, Robinson DG, Jiang L. Tracking down the elusive early endosome. TRENDS IN PLANT SCIENCE 2007; 12:497-505. [PMID: 17920331 DOI: 10.1016/j.tplants.2007.09.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 08/14/2007] [Accepted: 09/25/2007] [Indexed: 05/25/2023]
Abstract
Despite significant progress in understanding protein trafficking and compartmentation in plants, the identification and protein compartmentalization for organelles that belong to both the secretory and endocytic pathways have been difficult because protein trafficking has generally been studied separately in these two pathways. However, recent data indicate that the trans-Golgi network serves as an early endosome merging the secretory and endocytic pathways in plant cells. Here, we discuss the proteins identified as markers for post-Golgi compartments in these two pathways and propose that the trans-Golgi network is a pivotal organelle with multiple sorting domains for post-Golgi protein trafficking in plant cells.
Collapse
Affiliation(s)
- Sheung Kwan Lam
- Department of Biology and Molecular Biotechnology Program, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yu Chung Tse
- Department of Biology and Molecular Biotechnology Program, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - David G Robinson
- Department of Cell Biology, Heidelberg Institute for Plant Sciences, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Liwen Jiang
- Department of Biology and Molecular Biotechnology Program, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
74
|
Abstract
Endocytosis occurs in plants, but the involvement of clathrin-coated vesicles has been unclear; a new study provides strong evidence that, as in animal cells, clathrin-coated vesicles are a major means of internalisation by plant cells.
Collapse
Affiliation(s)
- José Pérez-Gómez
- Department of Plant Sciences, South Parks Road, Oxford OX1 3RB, UK
| | | |
Collapse
|
75
|
Haas TJ, Sliwinski MK, Martínez DE, Preuss M, Ebine K, Ueda T, Nielsen E, Odorizzi G, Otegui MS. The Arabidopsis AAA ATPase SKD1 is involved in multivesicular endosome function and interacts with its positive regulator LYST-INTERACTING PROTEIN5. THE PLANT CELL 2007; 19:1295-312. [PMID: 17468262 PMCID: PMC1913750 DOI: 10.1105/tpc.106.049346] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In yeast and mammals, the AAA ATPase Vps4p/SKD1 (for Vacuolar protein sorting 4/SUPPRESSOR OF K(+) TRANSPORT GROWTH DEFECT1) is required for the endosomal sorting of secretory and endocytic cargo. We identified a VPS4/SKD1 homolog in Arabidopsis thaliana, which localizes to the cytoplasm and to multivesicular endosomes. In addition, green fluorescent protein-SKD1 colocalizes on multivesicular bodies with fluorescent fusion protein endosomal Rab GTPases, such as ARA6/RabF1, RHA1/RabF2a, and ARA7/RabF2b, and with the endocytic marker FM4-64. The expression of SKD1(E232Q), an ATPase-deficient version of SKD1, induces alterations in the endosomal system of tobacco (Nicotiana tabacum) Bright Yellow 2 cells and ultimately leads to cell death. The inducible expression of SKD1(E232Q) in Arabidopsis resulted in enlarged endosomes with a reduced number of internal vesicles. In a yeast two-hybrid screen using Arabidopsis SKD1 as bait, we isolated a putative homolog of mammalian LYST-INTERACTING PROTEIN5 (LIP5)/SKD1 BINDING PROTEIN1 and yeast Vta1p (for Vps twenty associated 1 protein). Arabidopsis LIP5 acts as a positive regulator of SKD1 by increasing fourfold to fivefold its in vitro ATPase activity. We isolated a knockout homozygous Arabidopsis mutant line with a T-DNA insertion in LIP5. lip5 plants are viable and show no phenotypic alterations under normal growth conditions, suggesting that basal SKD1 ATPase activity is sufficient for plant development and growth.
Collapse
Affiliation(s)
- Thomas J Haas
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Dhonukshe P, Aniento F, Hwang I, Robinson DG, Mravec J, Stierhof YD, Friml J. Clathrin-Mediated Constitutive Endocytosis of PIN Auxin Efflux Carriers in Arabidopsis. Curr Biol 2007; 17:520-7. [PMID: 17306539 DOI: 10.1016/j.cub.2007.01.052] [Citation(s) in RCA: 462] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 01/18/2007] [Accepted: 01/18/2007] [Indexed: 11/24/2022]
Abstract
Endocytosis is an essential process by which eukaryotic cells internalize exogenous material or regulate signaling at the cell surface [1]. Different endocytic pathways are well established in yeast and animals; prominent among them is clathrin-dependent endocytosis [2, 3]. In plants, endocytosis is poorly defined, and no molecular mechanism for cargo internalization has been demonstrated so far [4, 5], although the internalization of receptor-ligand complexes at the plant plasma membrane has recently been shown [6]. Here we demonstrate by means of a green-to-red photoconvertible fluorescent reporter, EosFP [7], the constitutive endocytosis of PIN auxin efflux carriers [8] and their recycling to the plasma membrane. Using a plant clathrin-specific antibody, we show the presence of clathrin at different stages of coated-vesicle formation at the plasma membrane in Arabidopsis. Genetic interference with clathrin function inhibits PIN internalization and endocytosis in general. Furthermore, pharmacological interference with cargo recruitment into the clathrin pathway blocks internalization of PINs and other plasma-membrane proteins. Our data demonstrate that clathrin-dependent endocytosis is operational in plants and constitutes the predominant pathway for the internalization of numerous plasma-membrane-resident proteins including PIN auxin efflux carriers.
Collapse
Affiliation(s)
- Pankaj Dhonukshe
- Center for Plant Molecular Biology (ZMBP), Auf der Morgenstelle 3, University of Tübingen, D-72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|