51
|
Merabet N, Lucassen PJ, Crielaard L, Stronks K, Quax R, Sloot PMA, la Fleur SE, Nicolaou M. How exposure to chronic stress contributes to the development of type 2 diabetes: A complexity science approach. Front Neuroendocrinol 2022; 65:100972. [PMID: 34929260 DOI: 10.1016/j.yfrne.2021.100972] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/24/2021] [Accepted: 12/12/2021] [Indexed: 11/18/2022]
Abstract
Chronic stress contributes to the onset of type 2 diabetes (T2D), yet the underlying etiological mechanisms are not fully understood. Responses to stress are influenced by earlier experiences, sex, emotions and cognition, and involve a complex network of neurotransmitters and hormones, that affect multiple biological systems. In addition, the systems activated by stress can be altered by behavioral, metabolic and environmental factors. The impact of stress on metabolic health can thus be considered an emergent process, involving different types of interactions between multiple variables, that are driven by non-linear dynamics at different spatiotemporal scales. To obtain a more comprehensive picture of the links between chronic stress and T2D, we followed a complexity science approach to build a causal loop diagram (CLD) connecting the various mediators and processes involved in stress responses relevant for T2D pathogenesis. This CLD could help develop novel computational models and formulate new hypotheses regarding disease etiology.
Collapse
Affiliation(s)
- Nadège Merabet
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health Research Institute, Meibergdreef 9, Amsterdam, the Netherlands; Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Centre for Urban Mental Health, University of Amsterdam, Amsterdam 1012 GC, the Netherlands
| | - Paul J Lucassen
- Centre for Urban Mental Health, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Brain Plasticity Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Loes Crielaard
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health Research Institute, Meibergdreef 9, Amsterdam, the Netherlands; Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands
| | - Karien Stronks
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health Research Institute, Meibergdreef 9, Amsterdam, the Netherlands; Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Centre for Urban Mental Health, University of Amsterdam, Amsterdam 1012 GC, the Netherlands
| | - Rick Quax
- Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Computational Science Lab, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Peter M A Sloot
- Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Centre for Urban Mental Health, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Computational Science Lab, University of Amsterdam, Amsterdam 1098 XH, the Netherlands; National Centre of Cognitive Research, ITMO University, St. Petersburg, Russian Federation
| | - Susanne E la Fleur
- Department of Endocrinology and Metabolism & Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, the Netherlands.
| | - Mary Nicolaou
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health Research Institute, Meibergdreef 9, Amsterdam, the Netherlands; Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Centre for Urban Mental Health, University of Amsterdam, Amsterdam 1012 GC, the Netherlands.
| |
Collapse
|
52
|
Godfrey J, Riscal R, Skuli N, Simon MC. Glucagon signaling via supraphysiologic GCGR can reduce cell viability without stimulating gluconeogenic gene expression in liver cancer cells. Cancer Metab 2022; 10:4. [PMID: 35123542 PMCID: PMC8817478 DOI: 10.1186/s40170-022-00280-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/23/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Deregulated glucose metabolism is a critical component of cancer growth and survival, clinically evident via FDG-PET imaging of enhanced glucose uptake in tumor nodules. Tumor cells utilize glucose in a variety of interconnected biochemical pathways to generate energy, anabolic precursors, and other metabolites necessary for growth. Glucagon-stimulated gluconeogenesis opposes glycolysis, potentially representing a pathway-specific strategy for targeting glucose metabolism in tumor cells. Here, we test the hypothesis of whether glucagon signaling can activate gluconeogenesis to reduce tumor proliferation in models of liver cancer.
Methods
The glucagon receptor, GCGR, was overexpressed in liver cancer cell lines consisting of a range of etiologies and genetic backgrounds. Glucagon signaling transduction was measured by cAMP ELISAs, western blots of phosphorylated PKA substrates, and qPCRs of relative mRNA expression of multiple gluconeogenic enzymes. Lastly, cell proliferation and apoptosis assays were performed to quantify the biological effect of glucagon/GCGR stimulation.
Results
Signaling analyses in SNU398 GCGR cells treated with glucagon revealed an increase in cAMP abundance and phosphorylation of downstream PKA substrates, including CREB. qPCR data indicated that none of the three major gluconeogenic genes, G6PC, FBP1, or PCK1, exhibit significantly higher mRNA levels in SNU398 GCGR cells when treated with glucagon; however, this could be partially increased with epigenetic inhibitors. In glucagon-treated SNU398 GCGR cells, flow cytometry analyses of apoptotic markers and growth assays reproducibly measured statistically significant reductions in cell viability. Finally, proliferation experiments employing siCREB inhibition showed no reversal of cell death in SNU398 GCGR cells treated with glucagon, indicating the effects of glucagon in this setting are independent of CREB.
Conclusions
For the first time, we report a potential tumor suppressive role for glucagon/GCGR in liver cancer. Specifically, we identified a novel cell line-specific phenotype, whereby glucagon signaling can induce apoptosis via an undetermined mechanism. Future studies should explore the potential effects of glucagon in diabetic liver cancer patients.
Collapse
|
53
|
Park BG, Kim GM, Lee HJ, Ryu JH, Kim DH, Seong JY, Kim S, Park ZY, Kim YJ, Lee J, Kim JI. Antiobesity therapeutics with complementary dual-agonist activities at glucagon and glucagon-like peptide 1 receptors. Diabetes Obes Metab 2022; 24:50-60. [PMID: 34491605 DOI: 10.1111/dom.14546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/17/2021] [Accepted: 09/01/2021] [Indexed: 12/21/2022]
Abstract
AIM To develop more effective and long-lasting antiobesity and antidiabetic therapeutics by employing novel chemical modifications of glucagon-like peptide-1 receptor (GLP-1R) agonists. METHODS We constructed novel unimolecular dual agonists of GLP-1R and glucagon receptor prepared by linking sEx-4 and native glucagon (GCG) via lysine or triazole [sEx4-GCG(K) and sEx4-GCG(T), respectively] and evaluated their antiobesity and antidiabetic efficacy in the diabetic and obese mouse model. RESULTS Both sEx4-GCG(K) and sEx4-GCG(T) showed the beneficial metabolic effects of GLP-1 and glucagon: they promoted weight loss and ameliorated insulin resistance and hepatic steatosis. They also increased thermogenesis in brown adipose tissue, and lipolysis and β-oxidation in white adipose tissue, with concomitant suppression of lipogenesis. Furthermore, both dual agonists activated the 5'-AMP-activated protein kinase signalling pathway and prevented palmitate-induced oxidative stress in skeletal muscle cells. CONCLUSION Through their complementary dual agonism, sEx4-GCG(T) and sEx4-GCG(K) induce more marked weight loss and metabolic improvements than conventional agonists, and could be developed as novel therapeutic agents for the treatment of obesity and associated metabolic disorders in humans.
Collapse
Affiliation(s)
- Bong Gyu Park
- Department of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Gyeong Min Kim
- Department of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Hye-Jin Lee
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jae Ha Ryu
- Pilot Plant, Anygen, Gwangju, Republic of Korea
| | - Dong-Hoon Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jae-Young Seong
- Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | - Soojeong Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Zee-Yong Park
- Department of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Young-Joon Kim
- Department of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jaemin Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Jae Il Kim
- Department of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
- Pilot Plant, Anygen, Gwangju, Republic of Korea
| |
Collapse
|
54
|
Hoffman EG, Jahangiriesmaili M, Mandel ER, Greenberg C, Aiken J, D’Souza NC, Pasieka A, Teich T, Chan O, Liggins R, Riddell MC. Somatostatin Receptor Antagonism Reverses Glucagon Counterregulatory Failure in Recurrently Hypoglycemic Male Rats. Endocrinology 2021; 162:6363563. [PMID: 34477204 PMCID: PMC8482965 DOI: 10.1210/endocr/bqab189] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Indexed: 12/12/2022]
Abstract
Recent antecedent hypoglycemia is a known source of defective glucose counter-regulation in diabetes; the mechanisms perpetuating the cycle of progressive α-cell failure and recurrent hypoglycemia remain unknown. Somatostatin has been shown to suppress the glucagon response to acute hypoglycemia in rodent models of type 1 diabetes. We hypothesized that somatostatin receptor 2 antagonism (SSTR2a) would restore glucagon counterregulation and delay the onset of insulin-induced hypoglycemia in recurrently hypoglycemic, nondiabetic male rats. Healthy, male, Sprague-Dawley rats (n = 39) received bolus injections of insulin (10 U/kg, 8 U/kg, 5 U/kg) on 3 consecutive days to induce hypoglycemia. On day 4, animals were then treated with SSTR2a (10 mg/kg; n = 17) or vehicle (n = 12) 1 hour prior to the induction of hypoglycemia using insulin (5 U/kg). Plasma glucagon level during hypoglycemia was ~30% lower on day 3 (150 ± 75 pg/mL; P < .01), and 68% lower on day 4 in the vehicle group (70 ± 52 pg/mL; P < .001) compared with day 1 (219 ± 99 pg/mL). On day 4, SSTR2a prolonged euglycemia by 25 ± 5 minutes (P < .05) and restored the plasma glucagon response to hypoglycemia. Hepatic glycogen content of SSTR2a-treated rats was 35% lower than vehicle controls after hypoglycemia induction on day 4 (vehicle: 20 ± 7.0 vs SSTR2a: 13 ± 4.4 µmol/g; P < .01). SSTR2a treatment reverses the cumulative glucagon deficit resulting from 3 days of antecedent hypoglycemia in healthy rats. This reversal is associated with decreased hepatic glycogen content and delayed time to hypoglycemic onset. We conclude that recurrent hypoglycemia produces glucagon counterregulatory deficiency in healthy male rats, which can be improved by SSTR2a.
Collapse
Affiliation(s)
- Emily G Hoffman
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
| | - Mahsa Jahangiriesmaili
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
| | - Erin R Mandel
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
| | - Caylee Greenberg
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
| | - Julian Aiken
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
| | - Ninoschka C D’Souza
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
| | - Aoibhe Pasieka
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
| | - Trevor Teich
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
| | - Owen Chan
- Department of Internal Medicine—Division of Endocrinology, Metabolism and Diabetes, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Michael C Riddell
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
- Correspondence: Michael C. Riddell, PhD, School of Kinesiology and Health Science, Muscle Health Research Centre, York University, 4700 Keele Street, Toronto, ON, Canada, M3J 1P3.
| |
Collapse
|
55
|
Glucagon is associated with NAFLD inflammatory progression in type 2 diabetes, not with NAFLD fibrotic progression. Eur J Gastroenterol Hepatol 2021; 33:e818-e823. [PMID: 34402473 PMCID: PMC8734619 DOI: 10.1097/meg.0000000000002269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Higher prevalence of progressive stages of nonalcoholic fatty liver disease (NAFLD) and hyperglucagonemia were observed in type 2 diabetes. We aim to investigate whether islet alpha cell dysfunction (evaluated by glucagon) associates with NAFLD progression in type 2 diabetic adults. METHODS A total of 4937 diabetic participants were enrolled from seven communities in Shanghai, China. Probable nonalcoholic steatohepatitis (NASH) was defined by the presence of NAFLD and metabolic syndrome. Probable NAFLD fibrosis score was used to identify patients with different risk stratification of bridging fibrosis (stage 3) or cirrhosis (stage 4). RESULTS After adjustment for age, sex, duration of diabetes, current smoking, waist circumference, C-peptide, HbA1c, dyslipidemia, hypertension and use of incretins and SGLT2 inhibitor, glucagon quartiles were negatively associated with probable NASH (Q4 vs. Q1 OR 0.71, 95% confidence interval, 0.53-0.96, P for trend=0.010), though they were not associated with simple NAFLD (P for trend=0.176). Furthermore, glucagon was not significantly associated with fibrotic progression of liver steatosis in diabetic patients with NAFLD (P for trend=0.889). CONCLUSIONS Significant associations were observed among glucagon and inflammatory progression of NAFLD, but not with fibrotic progression. Further understanding the association between islet alpha cell and liver may lead to development of treatment strategies for NAFLD patients with type 2 diabetes.
Collapse
|
56
|
Eckstein ML, Brockfeld A, Haupt S, Schierbauer JR, Zimmer RT, Wachsmuth N, Zunner B, Zimmermann P, Obermayer-Pietsch B, Moser O. Acute Metabolic Responses to Glucose and Fructose Supplementation in Healthy Individuals: A Double-Blind Randomized Crossover Placebo-Controlled Trial. Nutrients 2021; 13:nu13114095. [PMID: 34836350 PMCID: PMC8620063 DOI: 10.3390/nu13114095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 12/29/2022] Open
Abstract
The aim of this study was to investigate the impact of glucose (Glu), fructose (Fru), glucose and fructose (GluFru) and sucralose on blood glucose response in healthy individuals. Fifteen healthy individuals (five females, age of 25.4 ± 2.5 years, BMI of 23.7 ± 1.7 kg/m2 with a body mass (BM) of 76.3 ± 12.3 kg) participated in this double-blind randomized crossover placebo-controlled trial. Participants received a mixture of 300 mL of water with 1 g/kg BM of Glu, 1 g/kg BM of Fru, 0.5 g/kg BM of GluFru (each), and 0.2 g sucralose as a placebo. Peak BG values Glu were reached after 40 ± 13 min (peak BG: 141 ± 20 mg/dL), for Fru after 36 ± 22 min (peak BG: 98 ± 7 mg/dL), for GluFru after 29 ± 8 min (BG 128 ± 18 mg/dL), and sucralose after 34 ± 27 min (peak BG: 83 ± 5 mg/dL). Significant differences regarding the time until peak BG were found only between Glu and GluFru supplementation (p = 0.02). Peak blood glucose levels were significantly lower following the ingestion of Fru compared to the supplementation of Glu and GluFru (p < 0.0001) while Glu and GluFru supplementation showed no difference in peak values (p = 0.23). All conditions led to a significantly higher peak BG value compared to sucralose (p < 0.0001). Blood lactate increased in Glu (p = 0.002), Fru and GluFru (both p < 0.0001), whereas sucralose did not increase compared to the baseline (p = 0.051). Insulin levels were significantly higher in all conditions at peak compared to sucralose (p < 0.0001). The findings of this study prove the feasibility of combined carbohydrate supplementations for many applications in diabetic or healthy exercise cohorts.
Collapse
Affiliation(s)
- Max L. Eckstein
- Division of Exercise Physiology and Metabolism, Department of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany; (M.L.E.); (A.B.); (S.H.); (J.R.S.); (R.T.Z.); (N.W.); (B.Z.); (P.Z.)
| | - Antonia Brockfeld
- Division of Exercise Physiology and Metabolism, Department of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany; (M.L.E.); (A.B.); (S.H.); (J.R.S.); (R.T.Z.); (N.W.); (B.Z.); (P.Z.)
| | - Sandra Haupt
- Division of Exercise Physiology and Metabolism, Department of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany; (M.L.E.); (A.B.); (S.H.); (J.R.S.); (R.T.Z.); (N.W.); (B.Z.); (P.Z.)
| | - Janis R. Schierbauer
- Division of Exercise Physiology and Metabolism, Department of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany; (M.L.E.); (A.B.); (S.H.); (J.R.S.); (R.T.Z.); (N.W.); (B.Z.); (P.Z.)
| | - Rebecca T. Zimmer
- Division of Exercise Physiology and Metabolism, Department of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany; (M.L.E.); (A.B.); (S.H.); (J.R.S.); (R.T.Z.); (N.W.); (B.Z.); (P.Z.)
| | - Nadine Wachsmuth
- Division of Exercise Physiology and Metabolism, Department of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany; (M.L.E.); (A.B.); (S.H.); (J.R.S.); (R.T.Z.); (N.W.); (B.Z.); (P.Z.)
| | - Beate Zunner
- Division of Exercise Physiology and Metabolism, Department of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany; (M.L.E.); (A.B.); (S.H.); (J.R.S.); (R.T.Z.); (N.W.); (B.Z.); (P.Z.)
| | - Paul Zimmermann
- Division of Exercise Physiology and Metabolism, Department of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany; (M.L.E.); (A.B.); (S.H.); (J.R.S.); (R.T.Z.); (N.W.); (B.Z.); (P.Z.)
| | - Barbara Obermayer-Pietsch
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrinology Lab Platform, Medical University of Graz, 8036 Graz, Austria;
| | - Othmar Moser
- Division of Exercise Physiology and Metabolism, Department of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany; (M.L.E.); (A.B.); (S.H.); (J.R.S.); (R.T.Z.); (N.W.); (B.Z.); (P.Z.)
- Interdisciplinary Metabolic Medicine Trials Unit, Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria
- Correspondence: ; Tel.: +49-(0)921-55-3465
| |
Collapse
|
57
|
Mika K, Szafarz M, Bednarski M, Kuder K, Szczepańska K, Pociecha K, Pomierny B, Kieć-Kononowicz K, Sapa J, Kotańska M. Metabolic benefits of novel histamine H 3 receptor ligands in the model of excessive eating: The importance of intrinsic activity and pharmacokinetic properties. Biomed Pharmacother 2021; 142:111952. [PMID: 34325303 DOI: 10.1016/j.biopha.2021.111952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 01/02/2023] Open
Abstract
AIMS One of the therapeutic approaches in the treatment of obesity is the use of histamine H3 receptor ligands. Histamine plays a significant role in eating behavior because it causes a loss of appetite and is considered to be a satiety signal released during food intake. MATERIAL AND METHODS Histamine ligands were selected based on the preliminary studies which included determination of intrinsic activity and selected pharmacokinetic parameters. Female Wistar rats were fed palatable feed for 28 days and simultaneously the tested compounds were administered intraperitoneally at a dose of 10 mg/kg b.w./day. Rats' weight was evaluated daily and calories intake was evaluated once per week. At the end of experiment insulin and glucose tolerance tests was performed. Plasma levels of cholesterol, triglycerides, leptin, insulin, glucose, C-peptide and CRP were also determined. In order to rule out false-positive results the influence of tested compounds on spontaneous activity of rats was monitored. RESULTS Animals fed palatable feed and treated with KSK-61 or KSK-63 compounds showed the slowest weight gain which was comparable to the one observed in control animals. Both compounds with the highest pharmacological activity have also similar pharmacokinetic properties with quite long half-life and high volume of distribution indicating that they can freely cross most biological barriers. Some compounds, especially KSK-63, compensated for metabolic disorders. CONCLUSION The presented study proves that search among the active histamine H3 receptor ligands for the new therapeutic agents to treat obesity is justified. Compounds KSK-61 and KSK-63 can be considered as the leading structures.
Collapse
Affiliation(s)
- Kamil Mika
- Department of Pharmacological Screening, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Cracow, Poland
| | - Małgorzata Szafarz
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Marek Bednarski
- Department of Pharmacological Screening, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Cracow, Poland
| | - Kamil Kuder
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Katarzyna Szczepańska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; Department of Medicinal Chemistry, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| | - Krzysztof Pociecha
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Bartosz Pomierny
- Department of Biochemical Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Jacek Sapa
- Department of Pharmacological Screening, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Cracow, Poland
| | - Magdalena Kotańska
- Department of Pharmacological Screening, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Cracow, Poland.
| |
Collapse
|
58
|
Kuhre RE, Deacon CF, Wewer Albrechtsen NJ, Holst JJ. Do sodium-glucose co-transporter-2 inhibitors increase plasma glucagon by direct actions on the alpha cell? And does the increase matter for the associated increase in endogenous glucose production? Diabetes Obes Metab 2021; 23:2009-2019. [PMID: 33961344 DOI: 10.1111/dom.14422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/21/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
Sodium-glucose co-transporter-2 inhibitors (SGLT2is) lower blood glucose and are used for treatment of type 2 diabetes. However, SGLT2is have been associated with increases in endogenous glucose production (EGP) by mechanisms that have been proposed to result from SGLT2i-mediated increases in circulating glucagon concentrations, but the relative importance of this effect is debated, and mechanisms possibly coupling SGLT2is to increased plasma glucagon are unclear. A direct effect on alpha-cell activity has been proposed, but data on alpha-cell SGLT2 expression are inconsistent, and studies investigating the direct effects of SGLT2 inhibition on glucagon secretion are conflicting. By contrast, alpha-cell sodium-glucose co-transporter-1 (SGLT1) expression has been found more consistently and appears to be more prominent, pointing to an underappreciated role for this transporter. Nevertheless, the selectivity of most SGLT2is does not support interference with SGLT1 during therapy. Paracrine effects mediated by secretion of glucagonotropic/static molecules from beta and/or delta cells have also been suggested to be involved in SGLT2i-induced increase in plasma glucagon, but studies are few and arrive at different conclusions. It is also possible that the effect on glucagon is secondary to drug-induced increases in urinary glucose excretion and lowering of blood glucose, as shown in experiments with glucose clamping where SGLT2i-associated increases in plasma glucagon are prevented. However, regardless of the mechanisms involved, the current balance of evidence does not support that SGLT2 plays a crucial role for alpha-cell physiology or that SGLT2i-induced glucagon secretion is important for the associated increased EGP, particularly because the increase in EGP occurs before any rise in plasma glucagon.
Collapse
Affiliation(s)
- Rune E Kuhre
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Obesity Pharmacology, Novo Nordisk, Måløv, Denmark
| | - Carolyn F Deacon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
59
|
Rendell MS. Current and emerging gluconeogenesis inhibitors for the treatment of Type 2 diabetes. Expert Opin Pharmacother 2021; 22:2167-2179. [PMID: 34348528 DOI: 10.1080/14656566.2021.1958779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION In the last several decades, fueled by gene knockout and knockdown techniques, there has been substantial progress in detailing the pathways of gluconeogenesis. A host of molecules have been identified as potential targets for therapeutic intervention. A number of hormones, enzymes and transcription factors participate in gluconeogenesis. Many new agents have come into use to treat diabetes and several of these are in development to suppress gluconeogenesis. AREAS COVERED Herein, the author reviews agents that have been discovered and/or are in development, which control excess gluconeogenesis. The author has used multiple sources including PubMed, the preprint servers MedRxIv, BioRxIv, Research Gate, as well as Google Search and the database of the U.S. Patent and Trademarks Office to find appropriate literature. EXPERT OPINION It is now clear that lipid metabolism and hepatic lipogenesis play a major role in gluconeogenesis and resistance to insulin. Future efforts will focus on the duality of gluconeogenesis and adipose tissue metabolism. The exploration of therapeutic RNA agents will accelerate. The balance of clinical benefit and adverse effects will determine the future of new gluconeogenesis inhibitors.
Collapse
Affiliation(s)
- Marc S Rendell
- The Association of Diabetes Investigators, Newport Coast, California, United States.,The Rose Salter Medical Research Foundation, Newport Coast, California, United States
| |
Collapse
|
60
|
Effect of co-administration of metformin and extracts of Costus pictus D.Don leaves on alloxan-induced diabetes in rats. J Tradit Complement Med 2021; 12:269-280. [PMID: 35493313 PMCID: PMC9039101 DOI: 10.1016/j.jtcme.2021.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
Background and aim The present study evaluates the antidiabetic effects of aqueous (CPAQ) and methanolic (CPME) extract of Costus pictus D. Don singly and/or in combination with metformin in alloxan-induced diabetic rats. Experimental procedure CPAQ and CPME (400 mg/kg dose), metformin (120 mg/kg) and two different combinations of plant extracts and metformin (200 + 60 mg/kg and 400 mg/kg + 60 mg/kg) were orally given to alloxan-induced diabetic rats for 21 days. At 0, 7, 14, and 21 days, body weight and blood glucose levels were measured. Results and conclusion After 21 days of treatment, biochemical profiling and histopathology analysis were carried out. CPAQ and CPME, when administrated separately, could decrease blood glucose levels (P ≤ 0.05). CPME showed more promising results (P ≤ 0.05) compared to the diabetic control group. Extracts co-administrated with metformin showed dose-dependent significant recovery of hypoglycemic activity of metformin. Fasting blood glucose levels, body weight, protein, and lipid profile of the treatment group were compared to the diabetic and normal control groups. Animal groups co-administered with CPME and metformin showed more significant effects on the recovery of tissue damages. The synergistic effect of plant extracts with metformin has positive effects on all the parameters and enhanced the efficiency and reduction of blood glucose levels. Costus pictus D. Don. Leaves used traditionally in mulching also treats diabetes. Methanolic extract of the plant has potent antihyperglycaemic activity compared to aqueous extract. Simultaneous oral administration of the C. pictus methanolic extract with metformin positively affected the blood-glucose-lowering activity. There was a synergistic effect between standard drugs, Metformin and CPAQ and CPME. C. pictus and metformin have a great influence on the recovery of damaged tissues of the experimental animals.
Collapse
|
61
|
Scherer T, Sakamoto K, Buettner C. Brain insulin signalling in metabolic homeostasis and disease. Nat Rev Endocrinol 2021; 17:468-483. [PMID: 34108679 DOI: 10.1038/s41574-021-00498-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
Insulin signalling in the central nervous system regulates energy homeostasis by controlling metabolism in several organs and by coordinating organ crosstalk. Studies performed in rodents, non-human primates and humans over more than five decades using intracerebroventricular, direct hypothalamic or intranasal application of insulin provide evidence that brain insulin action might reduce food intake and, more importantly, regulates energy homeostasis by orchestrating nutrient partitioning. This Review discusses the metabolic pathways that are under the control of brain insulin action and explains how brain insulin resistance contributes to metabolic disease in obesity, the metabolic syndrome and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Thomas Scherer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
| | - Kenichi Sakamoto
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Christoph Buettner
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| |
Collapse
|
62
|
Palmer BF, Clegg DJ. Starvation Ketosis and the Kidney. Am J Nephrol 2021; 52:467-478. [PMID: 34350876 DOI: 10.1159/000517305] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND The remarkable ability of the body to adapt to long-term starvation has been critical for survival of primitive man. An appreciation of these processes can provide the clinician better insight into many clinical conditions characterized by ketoacidosis. SUMMARY The body adapts to long-term fasting by conserving nitrogen, as the brain increasingly utilizes keto acids, sparing the need for glucose. This shift in fuel utilization decreases the need for mobilization of amino acids from the muscle for purposes of gluconeogenesis. Loss of urinary nitrogen is initially in the form of urea when hepatic gluconeogenesis is dominant and later as ammonia reflecting increased glutamine uptake by the kidney. The carbon skeleton of glutamine is utilized for glucose production and regeneration of consumed HCO3-. The replacement of urea with NH4+ provides the osmoles needed for urine flow and waste product excretion. Over time, the urinary loss of nitrogen is minimized as kidney uptake of filtered ketone bodies becomes more complete. Adjustments in urine Na+ serve to minimize kidney K+ wasting and, along with changes in urine pH, minimize the likelihood of uric acid precipitation. There is a sexual dimorphism in response to starvation. Key Message: Ketoacidosis is a major feature of common clinical conditions to include diabetic ketoacidosis, alcoholic ketoacidosis, salicylate intoxication, SGLT2 inhibitor therapy, and calorie sufficient but carbohydrate-restricted diets. Familiarity with the pathophysiology and metabolic consequences of ketogenesis is critical, given the potential for the clinician to encounter one of these conditions.
Collapse
Affiliation(s)
- Biff F Palmer
- Division of Nephrology, Department of Medicine, University of Texas Southwestern Medical Center, El Paso, Texas, USA
| | | |
Collapse
|
63
|
McDonald TS, Kumar V, Fung JN, Woodruff TM, Lee JD. Glucose clearance and uptake is increased in the SOD1 G93A mouse model of amyotrophic lateral sclerosis through an insulin-independent mechanism. FASEB J 2021; 35:e21707. [PMID: 34118098 DOI: 10.1096/fj.202002450r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/27/2021] [Accepted: 05/17/2021] [Indexed: 12/25/2022]
Abstract
Metabolic disturbances are associated with the progression of the neurodegenerative disorder, amyotrophic lateral sclerosis (ALS). However, the molecular events that drive energy imbalances in ALS are not completely understood. In this study, we aimed to elucidate deficits in energy homeostasis in the SOD1G93A mouse model of ALS. SOD1G93A mice and their wild-type littermates underwent indirect calorimetry and intraperitoneal glucose/insulin tolerance tests at both the onset and mid-symptomatic stages of the disease. Glucose uptake and the plasma glucoregulatory hormone profiles were analyzed. Pancreatic islet cell mass and function were assessed by measuring hormone concentrations and secretion in isolated islets, and pancreatic α- and β-cell immunoreactive areas. Finally, we profiled liver glycogen metabolism by measuring glucagon concentrations and liver metabolic gene expressions. We identified that mid-symptomatic SOD1G93A mice have increased oxygen consumption and faster exogenous glucose uptake, despite presenting with normal insulin tolerance. The capacity for pancreatic islets to secrete insulin appears intact, however, islet cell insulin concentrations and β-cell mass were reduced. Fasting glucose homeostasis was also disturbed, along with increased liver glycogen stores, despite elevated circulating glucagon, suggesting that glucagon signaling is impaired. Metabolic gene expression profiling of livers indicated that glucose cannot be utilized efficiently in SOD1G93A mice. Overall, we demonstrate that glucose homeostasis and uptake are altered in SOD1G93A mice, which is linked to an increase in insulin-independent glucose uptake, and a loss of β-cells, insulin production, and glucagon sensitivity. This suggests that the hormonal regulation of glucose concentrations may contribute to the progression of disease in this ALS mouse model.
Collapse
Affiliation(s)
- Tanya S McDonald
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Vinod Kumar
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Jenny N Fung
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, Australia.,Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - John D Lee
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, Australia
| |
Collapse
|
64
|
Ma J, Cheng Y, Su Q, Ai W, Gong L, Wang Y, Li L, Ma Z, Pan Q, Qiao Z, Chen K. Effects of intermittent fasting on liver physiology and metabolism in mice. Exp Ther Med 2021; 22:950. [PMID: 34335892 PMCID: PMC8290466 DOI: 10.3892/etm.2021.10382] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
A broad spectrum of health benefits from intermittent fasting have been reported in studies on animal models and human subjects. However, the underlying mechanisms of these beneficial effects remain largely elusive. The present study aimed to explore the effects and potential mode of action of intermittent fasting in mouse models with a focus on the liver. C57BL/6 mice were subjected to intermittent fasting or ad libitum feeding as controls. It was determined that 12 h of daily intermittent fasting for 30 days significantly reduced the cumulative food intake compared with that in mice with ad libitum feeding. Fasting resulted in a significantly reduced liver mass but only had a minimal effect on bodyweight. The effects on the liver by 30 days of fasting were not reversed by subsequent ad libitum refeeding for 30 days. Among the measured blood biochemical parameters, the levels of blood glucose were decreased, while the levels of alkaline phosphatase were increased in fasting mice. Of note, targeted metabolic profiling revealed global elevation of metabolites in the livers of fasting mice. These metabolic molecules included adenosine triphosphate, nicotinamide adenine dinucleotide phosphate (NADP), reduced NADP and succinate, which are essentially involved in the citric acid cycle and oxidative phosphorylation. Thus, it was concluded that daily 12 h of intermittent fasting for one month significantly reduced the liver weight of mice, which is associated with enhanced liver metabolism.
Collapse
Affiliation(s)
- Jianbo Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Yan Cheng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China.,Experimental Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Qiang Su
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Wen Ai
- Department of Cardiology, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, Guangdong 518102, P.R. China
| | - Ling Gong
- Department of Liver Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Yueying Wang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Linhao Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Zhongren Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Qiuwei Pan
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Zilin Qiao
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Kan Chen
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China.,College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| |
Collapse
|
65
|
Ng XW, Chung YH, Piston DW. Intercellular Communication in the Islet of Langerhans in Health and Disease. Compr Physiol 2021; 11:2191-2225. [PMID: 34190340 PMCID: PMC8985231 DOI: 10.1002/cphy.c200026] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Blood glucose homeostasis requires proper function of pancreatic islets, which secrete insulin, glucagon, and somatostatin from the β-, α-, and δ-cells, respectively. Each islet cell type is equipped with intrinsic mechanisms for glucose sensing and secretory actions, but these intrinsic mechanisms alone cannot explain the observed secretory profiles from intact islets. Regulation of secretion involves interconnected mechanisms among and between islet cell types. Islet cells lose their normal functional signatures and secretory behaviors upon dispersal as compared to intact islets and in vivo. In dispersed islet cells, the glucose response of insulin secretion is attenuated from that seen from whole islets, coordinated oscillations in membrane potential and intracellular Ca2+ activity, as well as the two-phase insulin secretion profile, are missing, and glucagon secretion displays higher basal secretion profile and a reverse glucose-dependent response from that of intact islets. These observations highlight the critical roles of intercellular communication within the pancreatic islet, and how these communication pathways are crucial for proper hormonal and nonhormonal secretion and glucose homeostasis. Further, misregulated secretions of islet secretory products that arise from defective intercellular islet communication are implicated in diabetes. Intercellular communication within the islet environment comprises multiple mechanisms, including electrical synapses from gap junctional coupling, paracrine interactions among neighboring cells, and direct cell-to-cell contacts in the form of juxtacrine signaling. In this article, we describe the various mechanisms that contribute to proper islet function for each islet cell type and how intercellular islet communications are coordinated among the same and different islet cell types. © 2021 American Physiological Society. Compr Physiol 11:2191-2225, 2021.
Collapse
Affiliation(s)
- Xue W Ng
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri, USA
| | - Yong H Chung
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri, USA
| | - David W Piston
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri, USA
| |
Collapse
|
66
|
Vega RB, Whytock KL, Gassenhuber J, Goebel B, Tillner J, Agueusop I, Truax AD, Yu G, Carnero E, Kapoor N, Gardell S, Sparks LM, Smith SR. A Metabolomic Signature of Glucagon Action in Healthy Individuals With Overweight/Obesity. J Endocr Soc 2021; 5:bvab118. [PMID: 34337278 PMCID: PMC8317630 DOI: 10.1210/jendso/bvab118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Indexed: 11/19/2022] Open
Abstract
Context Glucagon is produced and released from the pancreatic alpha-cell to regulate glucose levels during periods of fasting. The main target for glucagon action is the liver, where it activates gluconeogenesis and glycogen breakdown; however, glucagon is postulated to have other roles within the body. Objective We sought to identify the circulating metabolites that would serve as markers of glucagon action in humans. Methods In this study (NCT03139305), we performed a continuous 72-hour glucagon infusion in healthy individuals with overweight/obesity. Participants were randomized to receive glucagon 12.5 ng/kg/min (GCG 12.5), glucagon 25 ng/kg/min (GCG 25), or a placebo control. A comprehensive metabolomics analysis was then performed from plasma isolated at several time points during the infusion to identify markers of glucagon activity. Results Glucagon (GCG 12.5 and GCG 25) resulted in significant changes in the plasma metabolome as soon as 4 hours following infusion. Pathways involved in amino acid metabolism were among the most affected. Rapid and sustained reduction of a broad panel of amino acids was observed. Additionally, time-dependent changes in free fatty acids and diacylglycerol and triglyceride species were observed. Conclusion These results define a distinct signature of glucagon action that is broader than the known changes in glucose levels. In particular, the robust changes in amino acid levels may prove useful to monitor changes induced by glucagon in the context of additional glucagon-like peptide-1 or gastric inhibitory polypeptide treatment, as these agents also elicit changes in glucose levels.
Collapse
Affiliation(s)
- Rick B Vega
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Katie L Whytock
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | | | | | | | | | | | - Gongxin Yu
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Elvis Carnero
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Nidhi Kapoor
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Stephen Gardell
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Steven R Smith
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| |
Collapse
|
67
|
Kraft G, Coate KC, Smith M, Farmer B, Scott M, Cherrington AD, Edgerton DS. The Importance of the Mechanisms by Which Insulin Regulates Meal-Associated Liver Glucose Uptake in the Dog. Diabetes 2021; 70:1292-1302. [PMID: 33757993 PMCID: PMC8275892 DOI: 10.2337/db20-1271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/18/2021] [Indexed: 12/17/2022]
Abstract
Hepatic glucose uptake (HGU) is critical for maintaining normal postprandial glucose metabolism. Insulin is clearly a key regulator of HGU, but the physiologic mechanisms by which it acts have yet to be established. This study sought to determine the mechanisms by which insulin regulates liver glucose uptake under postprandial-like conditions (hyperinsulinemia, hyperglycemia, and a positive portal vein-to-arterial glucose gradient). Portal vein insulin infusion increased hepatic insulin levels fivefold in healthy dogs. In one group (n = 7), the physiologic response was allowed to fully occur, while in another (n = 7), insulin's indirect hepatic effects, occurring secondary to its actions on adipose tissue, pancreas, and brain, were blocked. This was accomplished by infusing triglyceride (intravenous), glucagon (portal vein), and inhibitors of brain insulin action (intracerebroventricular) to prevent decreases in plasma free fatty acids or glucagon, while blocking increased hypothalamic insulin signaling for 4 h. In contrast to the indirect hepatic effects of insulin, which were previously shown capable of independently generating a half-maximal stimulation of HGU, direct hepatic insulin action was by itself able to fully stimulate HGU. This suggests that under hyperinsulinemic/hyperglycemic conditions insulin's indirect effects are redundant to direct engagement of hepatocyte insulin receptors.
Collapse
Affiliation(s)
- Guillaume Kraft
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Katie C Coate
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Marta Smith
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Ben Farmer
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Melanie Scott
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Alan D Cherrington
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Dale S Edgerton
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
68
|
Verlande A, Chun SK, Goodson MO, Fortin BM, Bae H, Jang C, Masri S. Glucagon regulates the stability of REV-ERBα to modulate hepatic glucose production in a model of lung cancer-associated cachexia. SCIENCE ADVANCES 2021; 7:eabf3885. [PMID: 34172439 PMCID: PMC8232919 DOI: 10.1126/sciadv.abf3885] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/13/2021] [Indexed: 05/14/2023]
Abstract
Lung adenocarcinoma is associated with cachexia, which manifests as an inflammatory response that causes wasting of adipose tissue and skeletal muscle. We previously reported that lung tumor-bearing (TB) mice exhibit alterations in inflammatory and hormonal signaling that deregulate circadian pathways governing glucose and lipid metabolism in the liver. Here, we define the molecular mechanism of how de novo glucose production in the liver is enhanced in a model of lung adenocarcinoma. We found that elevation of serum glucagon levels stimulates cyclic adenosine monophosphate production and activates hepatic protein kinase A (PKA) signaling in TB mice. In turn, we found that PKA targets and destabilizes the circadian protein REV-ERBα, a negative transcriptional regulator of gluconeogenic genes, resulting in heightened de novo glucose production. Together, we identified that glucagon-activated PKA signaling regulates REV-ERBα stability to control hepatic glucose production in a model of lung cancer-associated cachexia.
Collapse
Affiliation(s)
- Amandine Verlande
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Sung Kook Chun
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Maggie O Goodson
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Bridget M Fortin
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Hosung Bae
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Selma Masri
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine (UCI), Irvine, CA 92697, USA.
| |
Collapse
|
69
|
Honegger M, Lutz TA, Boyle CN. Hypoglycemia attenuates acute amylin-induced reduction of food intake in male rats. Physiol Behav 2021; 237:113435. [PMID: 33933418 DOI: 10.1016/j.physbeh.2021.113435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 12/17/2022]
Abstract
The ability of amylin to inhibit gastric emptying and glucagon secretion in rats is reduced under hypoglycemic conditions. These effects are considered part of a fail-safe mechanism that prevents amylin from further decreasing nutrient supply when blood glucose levels are low. Because these actions and amylin-induced satiation are mediated by the area postrema (AP), it is plausible that these phenomena are based on the co-sensitivity of AP neurons to amylin and glucose. Using hyperinsulinemic glucose clamps in unrestrained and freely-feeding rats, we investigated whether amylin's ability to inhibit food intake is also reduced by hypoglycemia (HYPO). Following an 18 h fast, rats were infused with insulin and glucose for 45 min to clamp blood glucose at baseline levels (between 90 and 100 mg/dL). HYPO (approximately 55 mg/dL) was induced between 45 and 60 min and then maintained for the remainder of the clamp. Rats were injected with amylin (20 µg/kg) or saline and offered normal chow at 85 min. Food intake was measured at 30 and 60 min after amylin. Control hyperinsulinemic/euglycemic (EU) rats were maintained at approximately 150 mg/dL (which is a physiological periprandial glucose level) before and after amylin injection. Terminal experiments tested the effect of amylin to induce the phosphorylation of ERK, a marker of amylin action in the AP, in EU and HYPO conditions. Amylin significantly reduced 30- and 60-min food intake in EU rats, but the effect at 60-min was attenuated in HYPO rats. Interestingly, glucose infusion rate had to be dramatically reduced at meal onset in saline-treated, but not in amylin-treated, EU or HYPO rats; this suggests that meal-related glucose appearance in the blood was inhibited by amylin under both EU and HYPO. Finally, amylin induced a similar pERK response in the AP in EU and HYPO rats. We conclude that amylin's action to decrease eating is blunted in hypoglycemia, and this effect seems to be downstream from amylin-induced pERK in AP neurons. These data allow us to extend the idea of a hypoglycemic brake on amylin's actions to its food intake-reducing effect, but also demonstrate that amylin can buffer meal-induced glucose appearance at EU and HYPO levels.
Collapse
Affiliation(s)
- Miriam Honegger
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich (UZH), 8057 Zurich, Switzerland
| | - Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich (UZH), 8057 Zurich, Switzerland; Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Christina N Boyle
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich (UZH), 8057 Zurich, Switzerland.
| |
Collapse
|
70
|
Glucagon transiently stimulates mTORC1 by activation of an EPAC/Rap1 signaling axis. Cell Signal 2021; 84:110010. [PMID: 33872697 PMCID: PMC8169602 DOI: 10.1016/j.cellsig.2021.110010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/22/2022]
Abstract
Activation of the protein kinase mechanistic target of rapamycin (mTOR) in both complexes 1 and 2 (mTORC1/2) in the liver is repressed during fasting and rapidly stimulated in response to a meal. The effect of feeding on hepatic mTORC1/2 is attributed to an increase in plasma levels of nutrients, such as amino acids, and insulin. By contrast, fasting is associated with elevated plasma levels of glucagon, which is conventionally viewed as having a counter-regulatory role to insulin. More recently an expanded role for glucagon action in post-prandial metabolism has been demonstrated. Herein we investigated the impact of insulin and glucagon on mTORC1/2 activation. In H4IIE and HepG2 cultures, insulin enhanced phosphorylation of the mTORC1 substrates S6K1 and 4E-BP1. Surprisingly, the effect of glucagon on mTORC1 was biphasic, wherein there was an acute increase in phosphorylation of S6K1 and 4E-BP1 over the first hour of exposure, followed by latent suppression. The transient stimulatory effect of glucagon on mTORC1 was not additive with insulin, suggesting convergent signaling. Glucagon enhanced cAMP levels and mTORC1 stimulation required activation of the glucagon receptor, PI3K/Akt, and exchange protein activated by cAMP (EPAC). EPAC acts as the guanine nucleotide exchange factor for the small GTPase Rap1. Rap1 expression enhanced S6K1 phosphorylation and glucagon addition to culture medium promoted Rap1-GTP loading. Signaling through mTORC1 acts to regulate protein synthesis and we found that glucagon promoted an EPAC-dependent increase in protein synthesis. Overall, the findings support that glucagon elicits acute activation of mTORC1/2 by an EPAC-dependent increase in Rap1-GTP.
Collapse
|
71
|
Zeigerer A, Sekar R, Kleinert M, Nason S, Habegger KM, Müller TD. Glucagon's Metabolic Action in Health and Disease. Compr Physiol 2021; 11:1759-1783. [PMID: 33792899 PMCID: PMC8513137 DOI: 10.1002/cphy.c200013] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Discovered almost simultaneously with insulin, glucagon is a pleiotropic hormone with metabolic action that goes far beyond its classical role to increase blood glucose. Albeit best known for its ability to directly act on the liver to increase de novo glucose production and to inhibit glycogen breakdown, glucagon lowers body weight by decreasing food intake and by increasing metabolic rate. Glucagon further promotes lipolysis and lipid oxidation and has positive chronotropic and inotropic effects in the heart. Interestingly, recent decades have witnessed a remarkable renaissance of glucagon's biology with the acknowledgment that glucagon has pharmacological value beyond its classical use as rescue medication to treat severe hypoglycemia. In this article, we summarize the multifaceted nature of glucagon with a special focus on its hepatic action and discuss the pharmacological potential of either agonizing or antagonizing the glucagon receptor for health and disease. © 2021 American Physiological Society. Compr Physiol 11:1759-1783, 2021.
Collapse
Affiliation(s)
- Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Revathi Sekar
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Maximilian Kleinert
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Shelly Nason
- Comprehensive Diabetes Center, Department of Medicine - Endocrinology, Diabetes & Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kirk M. Habegger
- Comprehensive Diabetes Center, Department of Medicine - Endocrinology, Diabetes & Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Timo D. Müller
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| |
Collapse
|
72
|
Barella LF, Jain S, Kimura T, Pydi SP. Metabolic roles of G protein-coupled receptor signaling in obesity and type 2 diabetes. FEBS J 2021; 288:2622-2644. [PMID: 33682344 DOI: 10.1111/febs.15800] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/31/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022]
Abstract
The incidence of obesity and type 2 diabetes (T2D) has been increasing steadily worldwide. It is estimated that by 2045 more than 800 million people will be suffering from diabetes. Despite the advancements in modern medicine, more effective therapies for treating obesity and T2D are needed. G protein-coupled receptors (GPCRs) have emerged as important drug targets for various chronic diseases, including obesity, T2D, and liver diseases. During the past two decades, many laboratories worldwide focused on understanding the role of GPCR signaling in regulating glucose metabolism and energy homeostasis. The information gained from these studies can guide the development of novel therapeutic agents. In this review, we summarize recent studies providing insights into the role of GPCR signaling in peripheral, metabolically important tissues such as pancreas, liver, skeletal muscle, and adipose tissue, focusing primarily on the use of mutant animal models and human data.
Collapse
Affiliation(s)
- Luiz F Barella
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.,Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Shanu Jain
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Takefumi Kimura
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Sai P Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.,Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| |
Collapse
|
73
|
Dai H, Fu Q, Chen H, Zhang M, Sun M, Gu Y, Zhou N, Yang T. A novel numerical model of combination levels of C-peptide and insulin in coronary artery disease risk prediction. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:2675-2687. [PMID: 33892566 DOI: 10.3934/mbe.2021136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Insulin resistance is a major risk factor for coronary artery disease (CAD). The C-peptide-to-insulin ratio (C/I) is associated with hepatic insulin clearance and insulin resistance. The current study was designed to establish a novel C/I index (CPIRI) model and provide early risk assessment of CAD. METHODS A total of 865 adults diagnosed with new-onset diabetes mellitus (DM) within one year and 54 healthy controls (HC) were recruited to develop a CPIRI model. The CPIRI model was established with fasting C/I as the independent variable and homeostasis model assessment of insulin resistance (HOMA-IR) as the dependent variable. Associations between the CPIRI model and the severity of CAD events were also assessed in 45 hyperglycemic patients with CAD documented via coronary arteriography (CAG) and whom underwent stress echocardiography (SE) and exercise electrocardiography test (EET). RESULTS Fasting C-peptide/insulin and HOMA-IR were hyperbolically correlated in DM patients and HC, and log(C/I) and log(HOMA-IR) were linearly and negatively correlated. The respective correlational coefficients were -0.83 (p < 0.001) and -0.76 (p < 0.001). The equations CPIRI(DM) = 670/(C/I)2.24 + 0.25 and CPIRI(HC) = 670/(C/I)2.24 - 1 (F = 1904.39, p < 0.001) were obtained. Patients with insulin resistance exhibited severe coronary artery impairment and myocardial ischemia. In CAD patients there was no significant correlation between insulin resistance and the number of vessels involved. CONCLUSIONS CPIRI can be used to effectively evaluate insulin resistance, and the combination of CPIRI and non-invasive cardiovascular examination is of great clinical value in the assessment of CAD.
Collapse
Affiliation(s)
- Hao Dai
- Department of Endocrinology and Metabolism, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Qi Fu
- Department of Endocrinology and Metabolism, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Heng Chen
- Department of Endocrinology and Metabolism, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Mei Zhang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Min Sun
- Department of Endocrinology and Metabolism, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Yong Gu
- Department of Endocrinology and Metabolism, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Ningtian Zhou
- Department of Cardiology, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Tao Yang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| |
Collapse
|
74
|
Mazur-Bialy AI. Asprosin-A Fasting-Induced, Glucogenic, and Orexigenic Adipokine as a New Promising Player. Will It Be a New Factor in the Treatment of Obesity, Diabetes, or Infertility? A Review of the Literature. Nutrients 2021; 13:nu13020620. [PMID: 33673009 PMCID: PMC7918151 DOI: 10.3390/nu13020620] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Asprosin is a recently discovered protein released during fasting conditions mainly by adipocytes from white adipose tissue. As a glucogenic peptide, it stimulates the release of glucose from hepatic cells by binding to the OLFR734 receptor and leading to the activation of the G protein-cAMP-PKA pathway. As it crosses the blood–brain barrier, it also acts as an orexigenic peptide that stimulates food intake through activation of AgRP neurons in the hypothalamus; thus, asprosin participates in maintaining the body’s energy homeostasis. Moreover, studies have shown that asprosin levels are pathologically elevated in obesity and related diseases. However, the administration of anti-asprosin antibodies can both normalize its concentration and reduce food intake in obese mice, which makes it an interesting factor to combat obesity and related diseases. Current research also draws attention to the relationship between asprosin and fertility, especially in men. Asprosin improves age- and obesity-related decrease in fertility potential by improving sperm motility. It should also be mentioned that plasma asprosin levels can be differentially modulated by physical activity; intense anaerobic exercise increases asprosin level, while aerobic exercise decreases it. However, further research is necessary to confirm the exact mechanisms of asprosin activity and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Agnieszka Irena Mazur-Bialy
- Department of Biomechanics and Kinesiology, Faculty of Health Science, Institute of Physiotherapy, Jagiellonian University Medical College, Skawińska 8, 31-066 Krakow, Poland
| |
Collapse
|
75
|
Heba S, Parveen U, Khanum SA, Gulnaaz M, Tabassum M, Safiyya S. Inhaled glucagon: A new hope for severe hypoglycemia in type 1 diabetes. JOURNAL OF DIABETOLOGY 2021. [DOI: 10.4103/jod.jod_26_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
76
|
Galsgaard KD. The Vicious Circle of Hepatic Glucagon Resistance in Non-Alcoholic Fatty Liver Disease. J Clin Med 2020; 9:jcm9124049. [PMID: 33333850 PMCID: PMC7765287 DOI: 10.3390/jcm9124049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023] Open
Abstract
A key criterion for the most common chronic liver disease—non-alcoholic fatty liver disease (NAFLD)—is an intrahepatic fat content above 5% in individuals who are not using steatogenic agents or having significant alcohol intake. Subjects with NAFLD have increased plasma concentrations of glucagon, and emerging evidence indicates that subjects with NAFLD may show hepatic glucagon resistance. For many years, glucagon has been thought of as the counterregulatory hormone to insulin with a primary function of increasing blood glucose concentrations and protecting against hypoglycemia. However, in recent years, glucagon has re-emerged as an important regulator of other metabolic processes including lipid and amino acid/protein metabolism. This review discusses the evidence that in NAFLD, hepatic glucagon resistance may result in a dysregulated lipid and amino acid/protein metabolism, leading to excess accumulation of fat, hyperglucagonemia, and increased oxidative stress contributing to the worsening/progression of NAFLD.
Collapse
Affiliation(s)
- Katrine D. Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; ; Tel.: +45-6044-6145
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
77
|
Bosch M, Parton RG, Pol A. Lipid droplets, bioenergetic fluxes, and metabolic flexibility. Semin Cell Dev Biol 2020; 108:33-46. [DOI: 10.1016/j.semcdb.2020.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/13/2020] [Accepted: 02/27/2020] [Indexed: 12/18/2022]
|
78
|
Kimura T, Pydi SP, Pham J, Tanaka N. Metabolic Functions of G Protein-Coupled Receptors in Hepatocytes-Potential Applications for Diabetes and NAFLD. Biomolecules 2020; 10:1445. [PMID: 33076386 PMCID: PMC7602561 DOI: 10.3390/biom10101445] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are cell surface receptors that mediate the function of extracellular ligands. Understanding how GPCRs work at the molecular level has important therapeutic implications, as 30-40% of the drugs currently in clinical use mediate therapeutic effects by acting on GPCRs. Like many other cell types, liver function is regulated by GPCRs. More than 50 different GPCRs are predicted to be expressed in the mouse liver. However, knowledge of how GPCRs regulate liver metabolism is limited. A better understanding of the metabolic role of GPCRs in hepatocytes, the dominant constituent cells of the liver, could lead to the development of novel drugs that are clinically useful for the treatment of various metabolic diseases, including type 2 diabetes, nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). In this review, we describe the functions of multiple GPCRs expressed in hepatocytes and their role in metabolic processes.
Collapse
Affiliation(s)
- Takefumi Kimura
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20894, USA; (S.P.P.); (J.P.)
- Department of Internal Medicine, Division of Gastroenterology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Sai P. Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20894, USA; (S.P.P.); (J.P.)
| | - Jonathan Pham
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20894, USA; (S.P.P.); (J.P.)
| | - Naoki Tanaka
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan;
- Research Center for Social Systems, Shinshu University, Matsumoto 390-8621, Japan
| |
Collapse
|
79
|
Kalita B, Bano S, Vavachan VM, Taunk K, Seshadri V, Rapole S. Application of mass spectrometry based proteomics to understand diabetes: A special focus on interactomics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140469. [DOI: 10.1016/j.bbapap.2020.140469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/07/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
|
80
|
Transcriptome-wide analysis of PGC-1α-binding RNAs identifies genes linked to glucagon metabolic action. Proc Natl Acad Sci U S A 2020; 117:22204-22213. [PMID: 32848060 DOI: 10.1073/pnas.2000643117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is a transcriptional coactivator that controls expression of metabolic/energetic genes, programming cellular responses to nutrient and environmental adaptations such as fasting, cold, or exercise. Unlike other coactivators, PGC-1α contains protein domains involved in RNA regulation such as serine/arginine (SR) and RNA recognition motifs (RRMs). However, the RNA targets of PGC-1α and how they pertain to metabolism are unknown. To address this, we performed enhanced ultraviolet (UV) cross-linking and immunoprecipitation followed by sequencing (eCLIP-seq) in primary hepatocytes induced with glucagon. A large fraction of RNAs bound to PGC-1α were intronic sequences of genes involved in transcriptional, signaling, or metabolic function linked to glucagon and fasting responses, but were not the canonical direct transcriptional PGC-1α targets such as OXPHOS or gluconeogenic genes. Among the top-scoring RNA sequences bound to PGC-1α were Foxo1, Camk1δ, Per1, Klf15, Pln4, Cluh, Trpc5, Gfra1, and Slc25a25 PGC-1α depletion decreased a fraction of these glucagon-induced messenger RNA (mRNA) transcript levels. Importantly, knockdown of several of these genes affected glucagon-dependent glucose production, a PGC-1α-regulated metabolic pathway. These studies show that PGC-1α binds to intronic RNA sequences, some of them controlling transcript levels associated with glucagon action.
Collapse
|
81
|
Nephrotoxic effects caused by co-exposure to noise and toluene in New Zealand white rabbits: A biochemical and histopathological study. Life Sci 2020; 259:118254. [PMID: 32800833 DOI: 10.1016/j.lfs.2020.118254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022]
Abstract
The biological and renal effects made by simultaneous and non-simultaneous exposure to toluene and noise were investigated. Twenty-four New Zealand white rabbits were exposed to 100 dB of white noise and 1000 ppm of toluene vapor for two weeks. The examined biochemical factors were urea, uric acid, creatinine, glucose, triglyceride, cholesterol, and albumin serum levels, measured on different days after the end of the exposure. Moreover, glutathione peroxidase activity (GPX), malondialdehyde dismutase activity (MDA), and superoxide dismutase (SOD) parameters were measured in the kidney tissue. The hematoxylin and eosin staining method was used for histopathological experiments. Overall, the noise increased albumin, uric acid, creatinine, and glucose levels, but it decreased urea, cholesterol, and triglyceride levels. Toluene decreased albumin, uric acid, and urea levels, while it increased creatinine, triglyceride, cholesterol, and glucose levels. Simultaneous exposure to noise and toluene decreased albumin, uric acid, cholesterol, and urea levels, whereas it increased creatinine, glucose, and triglyceride levels. GPX, MDA, and SOD levels increased by simultaneous and non-simultaneous exposure to noise and toluene. Furthermore, massive tubular degeneration, tubular cell vacuolization, glomerular disorganization, congestion, glomerular cell shrinkage, and unclear brush border were detected in the kidney tissue.
Collapse
|
82
|
Zaborska KE, Dadi PK, Dickerson MT, Nakhe AY, Thorson AS, Schaub CM, Graff SM, Stanley JE, Kondapavuluru RS, Denton JS, Jacobson DA. Lactate activation of α-cell K ATP channels inhibits glucagon secretion by hyperpolarizing the membrane potential and reducing Ca 2+ entry. Mol Metab 2020; 42:101056. [PMID: 32736089 PMCID: PMC7479281 DOI: 10.1016/j.molmet.2020.101056] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022] Open
Abstract
Objective Elevations in pancreatic α-cell intracellular Ca2+ ([Ca2+]i) lead to glucagon (GCG) secretion. Although glucose inhibits GCG secretion, how lactate and pyruvate control α-cell Ca2+ handling is unknown. Lactate enters cells through monocarboxylate transporters (MCTs) and is also produced during glycolysis by lactate dehydrogenase A (LDHA), an enzyme expressed in α-cells. As lactate activates ATP-sensitive K+ (KATP) channels in cardiomyocytes, lactate may also modulate α-cell KATP. Therefore, this study investigated how lactate signaling controls α-cell Ca2+ handling and GCG secretion. Methods Mouse and human islets were used in combination with confocal microscopy, electrophysiology, GCG immunoassays, and fluorescent thallium flux assays to assess α-cell Ca2+ handling, Vm, KATP currents, and GCG secretion. Results Lactate-inhibited mouse (75 ± 25%) and human (47 ± 9%) α-cell [Ca2+]i fluctuations only under low-glucose conditions (1 mM) but had no effect on β- or δ-cells [Ca2+]i. Glyburide inhibition of KATP channels restored α-cell [Ca2+]i fluctuations in the presence of lactate. Lactate transport into α-cells via MCTs hyperpolarized mouse (14 ± 1 mV) and human (12 ± 1 mV) α-cell Vm and activated KATP channels. Interestingly, pyruvate showed a similar KATP activation profile and α-cell [Ca2+]i inhibition as lactate. Lactate-induced inhibition of α-cell [Ca2+]i influx resulted in reduced GCG secretion in mouse (62 ± 6%) and human (43 ± 13%) islets. Conclusions These data demonstrate for the first time that lactate entry into α-cells through MCTs results in KATP activation, Vm hyperpolarization, reduced [Ca2+]i, and inhibition of GCG secretion. Thus, taken together, these data indicate that lactate either within α-cells and/or elevated in serum could serve as important modulators of α-cell function. Lactate reduces islet α-cell Ca2+ entry under low glucose conditions. Lactate does not alter β- or δ-cell Ca2+ handling under low glucose conditions. Lactate enters islet α-cells through monocarboxylate transporters. Lactate hyperpolarizes islet α-cell membrane potential by activating KATP channels. Lactate reduces mouse and human islet glucagon secretion.
Collapse
Affiliation(s)
- Karolina E Zaborska
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Matthew T Dickerson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Arya Y Nakhe
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Ariel S Thorson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Charles M Schaub
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Sarah M Graff
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Jade E Stanley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Roy S Kondapavuluru
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Jerod S Denton
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
83
|
Cong GZ, Ghosh KK, Mishra S, Gulyás M, Kovács T, Máthé D, Padmanabhan P, Gulyás B. Targeted pancreatic beta cell imaging for early diagnosis. Eur J Cell Biol 2020; 99:151110. [PMID: 33070042 DOI: 10.1016/j.ejcb.2020.151110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 06/29/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic beta cells are important in blood glucose level regulation. As type 1 and 2 diabetes are getting prevalent worldwide, we need to explore new methods for early detection of beta cell-related afflictions. Using bioimaging techniques to measure beta cell mass is crucial because a decrease in beta cell density is seen in diseases such as diabetes and thus can be a new way of diagnosis for such diseases. We also need to appraise beta cell purity in transplanted islets for type 1 diabetes patients. Sufficient amount of functional beta cells must also be determined before being transplanted to the patients. In this review, indirect imaging of beta cells will be discussed. This includes membrane protein on pancreatic beta cells whereby specific probes are designed for different imaging modalities mainly magnetic resonance imaging, positron emission tomography and fluorescence imaging. Direct imaging of insulin is also explored though probes synthesized for such function are relatively fewer. The path for successful pancreatic beta cell imaging is fraught with challenges like non-specific binding, lack of beta cell-restricted targets, the requirement of probes to cross multiple lipid layers to bind to intracellular insulin. Hence, there is an urgent need to develop new imaging techniques and innovative probing constructs in the entire imaging chain of bioengineering to provide early detection of beta cell-related pathology.
Collapse
Affiliation(s)
- Goh Zheng Cong
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Krishna Kanta Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Sachin Mishra
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Miklós Gulyás
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskölds väg 20, Uppsala Se-751 85, Sweden
| | - Tibor Kovács
- Institute of Radiochemistry and Radioecology, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary
| | - Domokos Máthé
- Department of Biophysics and Radiation Biology, Semmelweis University Faculty of Medicine, Tűzoltó u. 37-47, Budapest H-1094, Hungary
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| |
Collapse
|
84
|
Identification and Functional Annotation of Genes Related to Horses' Performance: From GWAS to Post-GWAS. Animals (Basel) 2020; 10:ani10071173. [PMID: 32664293 PMCID: PMC7401650 DOI: 10.3390/ani10071173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary It is assumed that the athletic performance of horses is influenced by a large number of genes; however, to date, not many genomic studies have been performed to identify candidate genes. In this study we performed a systematic review of genome-wide association studies followed by functional analyses aiming to identify the most candidate genes for horse performance. We were successful in identifying 669 candidate genes, from which we built biological process networks. Regulatory elements (transcription factors, TFs) of these genes were identified and used to build a gene–TF network. Genes and TFs presented in this study are suggested to play a role in the studied traits through biological processes related with exercise performance, for example, positive regulation of glucose metabolism, regulation of vascular endothelial growth factor production, skeletal system development, cellular response to fatty acids and cellular response to lipids. In general, this study may provide insights into the genetic architecture underlying horse performance in different breeds around the world. Abstract Integration of genomic data with gene network analysis can be a relevant strategy for unraveling genetic mechanisms. It can be used to explore shared biological processes between genes, as well as highlighting transcription factors (TFs) related to phenotypes of interest. Unlike other species, gene–TF network analyses have not yet been well applied to horse traits. We aimed to (1) identify candidate genes associated with horse performance via systematic review, and (2) build biological processes and gene–TF networks from the identified genes aiming to highlight the most candidate genes for horse performance. Our systematic review considered peer-reviewed articles using 20 combinations of keywords. Nine articles were selected and placed into groups for functional analysis via gene networks. A total of 669 candidate genes were identified. From that, gene networks of biological processes from each group were constructed, highlighting processes associated with horse performance (e.g., regulation of systemic arterial blood pressure by vasopressin and regulation of actin polymerization and depolymerization). Transcription factors associated with candidate genes were also identified. Based on their biological processes and evidence from the literature, we identified the main TFs related to horse performance traits, which allowed us to construct a gene–TF network highlighting TFs and the most candidate genes for horse performance.
Collapse
|
85
|
Basu A, Yadav Y, Carter RE, Basu R. Novel Insights Into Effects of Cortisol and Glucagon on Nocturnal Glucose Production in Type 2 Diabetes. J Clin Endocrinol Metab 2020; 105:5831336. [PMID: 32374825 PMCID: PMC7274493 DOI: 10.1210/clinem/dgaa241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/30/2020] [Indexed: 01/08/2023]
Abstract
CONTEXT The effect of physiological changes in night-time cortisol and glucagon on endogenous glucose production (EGP) and nocturnal glycemia are unknown. OBJECTIVE To determine the effects of changes in cortisol and glucagon on EGP during the night. DESIGN Two overnight protocols were conducted. In Protocol 1, endogenous cortisol was blocked with metyrapone and hydrocortisone infused either at constant (constant) or increasing (variable) rates to mimic basal or physiological nocturnal cortisol concentrations. In Protocol 2, endogenous glucagon was blocked with somatostatin and exogenous glucagon was infused at either basal or elevated rates to mimic nocturnal glucagon concentrations observed in nondiabetic (ND) and type 2 diabetes (T2D) individuals. EGP was measured using [3-3H] glucose and gluconeogenesis estimated with 2H2O in all studies. SETTING Mayo Clinic Clinical Research Trials Unit, Rochester, MN, US. PARTICIPANTS In Protocol 1, 34 subjects (17 ND and 17 T2D) and in Protocol 2, 39 subjects (21 ND and 18 T2D) were studied. MAIN OUTCOME MEASURES Endogenous glucose production. RESULTS EGP, gluconeogenesis, and glycogenolysis were higher with variable than with constant cortisol at 7 am in T2D subjects. In contrast, nocturnal EGP did not differ in ND subjects between variable and constant cortisol. While elevated glucagon increased EGP, glycogenolysis, and gluconeogenesis in ND, the data in T2D subjects indicated that EGP and gluconeogenesis but not glycogenolysis were higher during the early part of the night. CONCLUSION Nocturnal hyperglucagonemia, but not physiological rise in cortisol, contributes to nocturnal hyperglycemia in T2D due to increased gluconeogenesis.
Collapse
Affiliation(s)
- Ananda Basu
- Division of Endocrinology, University of Virginia School of Medicine, Charlottesville, VA, US
| | - Yogesh Yadav
- Division of Endocrinology, University of Virginia School of Medicine, Charlottesville, VA, US
| | - Rickey E Carter
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, US
| | - Rita Basu
- Division of Endocrinology, University of Virginia School of Medicine, Charlottesville, VA, US
- Correspondence and Reprint Requests: Rita Basu, MD, Professor of Medicine, Division of Endocrinology, Department of Medicine, Room 3108, 560 Ray C Hunt Drive, University of Virginia School of Medicine, Charlottesville, VA 22908. E-mail:
| |
Collapse
|
86
|
Matsuhisa M, Takita Y, Nasu R, Nagai Y, Ohwaki K, Nagashima H. Nasal glucagon as a viable alternative for treating insulin-induced hypoglycaemia in Japanese patients with type 1 or type 2 diabetes: A phase 3 randomized crossover study. Diabetes Obes Metab 2020; 22:1167-1175. [PMID: 32115879 PMCID: PMC7318639 DOI: 10.1111/dom.14019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/19/2022]
Abstract
AIM To compare nasal glucagon (NG) with intramuscular glucagon (IMG) for the treatment of insulin-induced hypoglycaemia in Japanese patients with type 1 (T1DM) or type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS This phase 3, randomized, open-label, two-treatment, two-period crossover non-inferiority study enrolled Japanese adults with T1DM or T2DM on insulin therapy, with glycated haemoglobin levels ≤86 mmol/mol (≤10%). After ≥8 hours of fasting, hypoglycaemia was induced with human regular insulin (intravenous infusion). Patients received NG 3 mg or IMG 1 mg approximately 5 minutes after insulin termination. The primary endpoint was the proportion of patients achieving treatment success [plasma glucose (PG) increase to ≥3.9 mmol/L (≥70 mg/dL) or ≥1.1 mmol/L (≥20 mg/dL) increase from the PG nadir within 30 minutes of receiving glucagon]. Non-inferiority was declared if the upper limit of the two-sided 95% confidence interval (CI) of the mean difference in the percentage of patients achieving treatment success (IMG minus NG) was <10%. RESULTS Seventy-five patients with T1DM (n = 34) or T2DM (n = 41) were enrolled; 72 patients (50 men, 22 women) received ≥1 study drug dose (T1DM, n = 33; T2DM, n = 39). Sixty-eight patients completed the study and were evaluable. All NG- and IMG-treated patients achieved treatment success (treatment arm difference: 0%; upper limit of two-sided 95% CI 1.47%); NG met prespecified conditions defining non-inferiority versus IMG. Glucagon was rapidly absorbed after both nasal and intramuscular administration; PG profiles were similar between administration routes during the first 60 minutes post dose. Study drug-related treatment-emergent adverse events affecting >2 patients were rhinalgia, increased blood pressure, nausea, ear pain and vomiting in the NG group, and nausea and vomiting in the IMG group. CONCLUSION Nasal glucagon was non-inferior to IMG for successful treatment of insulin-induced hypoglycaemia in Japanese patients with T1DM/T2DM, supporting use of NG as a rescue treatment for severe hypoglycaemia.
Collapse
Affiliation(s)
- Munehide Matsuhisa
- Diabetes Therapeutics and Research CentreInstitute of Advanced Medical Sciences, Tokushima UniversityTokushimaJapan
| | - Yasushi Takita
- Medicine Development Unit‐Japan and Medical Affairs, Eli Lilly Japan K.K.KobeJapan
| | - Risa Nasu
- Medicine Development Unit‐Japan and Medical Affairs, Eli Lilly Japan K.K.KobeJapan
| | - Yukiko Nagai
- Medicine Development Unit‐Japan and Medical Affairs, Eli Lilly Japan K.K.KobeJapan
| | - Kenji Ohwaki
- Medicine Development Unit‐Japan and Medical Affairs, Eli Lilly Japan K.K.KobeJapan
| | | |
Collapse
|
87
|
Cheng C, Jabri S, Taoka BM, Sinz CJ. Small molecule glucagon receptor antagonists: an updated patent review (2015–2019). Expert Opin Ther Pat 2020; 30:509-526. [DOI: 10.1080/13543776.2020.1769600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Chen Cheng
- Merck & Co., Inc, South San Francisco, California, USA (MSD)
| | - Salman Jabri
- Merck & Co., Inc, South San Francisco, California, USA (MSD)
| | - Brandon M Taoka
- Merck & Co., Inc, South San Francisco, California, USA (MSD)
| | - Christopher J Sinz
- Merck & Co., Inc, South San Francisco, California, USA (MSD)
- Current Address: Maze Therapeutics, South San Francisco, California, USA
| |
Collapse
|
88
|
The Glycosphingolipid GM3 Modulates Conformational Dynamics of the Glucagon Receptor. Biophys J 2020; 119:300-313. [PMID: 32610088 PMCID: PMC7376093 DOI: 10.1016/j.bpj.2020.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
The extracellular domain (ECD) of class B1 G-protein-coupled receptors (GPCRs) plays a central role in signal transduction and is uniquely positioned to sense both the extracellular and membrane environments. Although recent studies suggest a role for membrane lipids in the modulation of class A and class F GPCR signaling properties, little is known about the effect of lipids on class B1 receptors. In this study, we employed multiscale molecular dynamics simulations to access the dynamics of the glucagon receptor (GCGR) ECD in the presence of native-like membrane bilayers. Simulations showed that the ECD could move about a hinge region formed by residues Q122–E126 to adopt both closed and open conformations relative to the transmembrane domain. ECD movements were modulated by binding of the glycosphingolipid GM3. These large-scale fluctuations in ECD conformation may affect the ligand binding and receptor activation properties. We also identify a unique phosphatidylinositol (4,5)-bisphosphate (PIP2) interaction profile near intracellular loop (ICL) 2/TM3 at the G-protein-coupling interface, suggesting a mechanism of engaging G-proteins that may have a distinct dependence on PIP2 compared with class A GPCRs. Given the structural conservation of class B1 GPCRs, the modulatory effects of GM3 and PIP2 on GCGR may be conserved across these receptors, offering new insights into potential therapeutic targeting.
Collapse
|
89
|
Jiang S, Young JL, Wang K, Qian Y, Cai L. Diabetic‑induced alterations in hepatic glucose and lipid metabolism: The role of type 1 and type 2 diabetes mellitus (Review). Mol Med Rep 2020; 22:603-611. [PMID: 32468027 PMCID: PMC7339764 DOI: 10.3892/mmr.2020.11175] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) is a growing health concern in society. Type 1 and type 2 DM are the two main types of diabetes; both types are chronic diseases that affect glucose metabolism in the body and the impaired regulation of glucose and lipid metabolism promotes the development and progression of DM. During the physiological metabolism process, the liver serves a unique role in glucose and lipid metabolism. The present article aimed to review the association between DM and glucose metabolism in the liver and discuss the changes of the following hepatic glucose fluxes: Gluconeogenesis, glucose/glucose 6-phosphate cycling, glycogenolysis, glycogenesis and the pentose phosphate pathway. Moreover, the incidence of fatty liver in DM was also investigated.
Collapse
Affiliation(s)
- Saizhi Jiang
- Department of Paediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jamie L Young
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Kai Wang
- Department of Paediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yan Qian
- Department of Paediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lu Cai
- Department of Paediatrics, Paediatric Research Institute, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
90
|
Pedersen C, Kraft G, Edgerton DS, Scott M, Farmer B, Smith M, Laneve DC, Williams PE, Moore LM, Cherrington AD. The kinetics of glucagon action on the liver during insulin-induced hypoglycemia. Am J Physiol Endocrinol Metab 2020; 318:E779-E790. [PMID: 32208001 PMCID: PMC7272728 DOI: 10.1152/ajpendo.00466.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucagon's effect on hepatic glucose production (HGP), under hyperglycemic conditions, is time dependent such that after an initial burst of HGP, it slowly wanes. It is not known whether this is also the case under hypoglycemic conditions, where an increase in HGP is essential. This question was addressed using adrenalectomized dogs to avoid the confounding effects of other counterregulatory hormones. During the study, infusions of epinephrine and cortisol were given to maintain basal levels. Somatostatin and insulin (800 µU·kg-1·min-1) were infused to induce hypoglycemia. After 30 min, glucagon was infused at a basal rate (1 ng·kg-1·min-1, baGGN group, n = 5 dogs) or a rate eightfold basal (8 ng·kg-1·min-1, hiGGN group, n = 5 dogs) for 4 h. Glucose was infused to match the arterial glucose levels between groups (≈50 mg/dL). Our data showed that glucagon has a biphasic effect on the liver despite hypoglycemia. Hyperglucagonemia stimulated a rapid, transient peak in HGP (4-fold basal production) over ~60 min, which was followed by a slow reduction in HGP to a rate 1.5-fold basal. During the last 2 h of the experiment, hiGGN stimulated glucose production at a rate fivefold greater than baGGN (2.5 vs. 0.5 mg·kg-1·min-1, respectively), indicating a sustained effect of the hormone. Of note, the hypoglycemia-induced rises in norepinephrine and glycerol were smaller in hiGGN compared with the baGGN group despite identical hypoglycemia. This finding suggests that there is reciprocity between glucagon and the sympathetic nervous system such that when glucagon is increased, the sympathetic nervous response to hypoglycemia is downregulated.
Collapse
Affiliation(s)
| | - Guillaume Kraft
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Dale S Edgerton
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Melanie Scott
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Ben Farmer
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Marta Smith
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - David C Laneve
- Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Phillip E Williams
- Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - L Merkle Moore
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Alan D Cherrington
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
91
|
Effect of acrylamide on glucose homeostasis in female rats and its mechanisms. Food Chem Toxicol 2020; 135:110894. [DOI: 10.1016/j.fct.2019.110894] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022]
|
92
|
Wang C, Song D, Fu J, Wen X. SIK1 Regulates CRTC2-Mediated Gluconeogenesis Signaling Pathway in Human and Mouse Liver Cells. Front Endocrinol (Lausanne) 2020; 11:580. [PMID: 33013689 PMCID: PMC7493656 DOI: 10.3389/fendo.2020.00580] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/16/2020] [Indexed: 11/15/2022] Open
Abstract
The regulation of hepatic gluconeogenesis is of great significance to improve insulin resistance and benefit diabetes therapy. cAMP-Regulated Transcriptional Co-activator 2 (CRTC2) plays a key role in regulating hepatic gluconeogenesis through controlling the expression of gluconeogenic rate-limiting enzymes such as glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK). Recently, salt-inducible kinase 1 (SIK1) has been identified to play an important role in glucose metabolism disorders, but whether and how SIK1 regulates the CTRC2 signaling in liver cells under high glucose conditions has rarely been intensively elucidated. Here, we show that high glucose stimulation resulted in time-dependent down-regulated expression of SIK1, phosphorylated SIK1 at T182 site, and phosphorylated CRTC2 at S171 site, as well as upregulated expression of total CRTC2 and its downstream targets G6Pase and PEPCK in the human liver cell line HepG2. The nuclear expression levels of SIK1 and CRTC2 were time-dependently upregulated upon high glucose challenge, which was accompanied by enhanced cytoplasm-to-nucleus translocation of SIK1. Manipulation of SIK1 activity using plasmid-mediated SIK1 over-expression and the use of the SIKs inhibitor HG-9-91-01 confirmed that SIK1 regulated the CRTC2 signaling pathway in HepG2 cells. Furthermore, in mouse primary hepatocytes, high glucose exposure down-regulated SIK1 expression, and promoted SIK1 nuclear accumulation. While HG-9-91-01 treatment suppressed SIK1 expression and released the inhibitory effects of SIK1 on the expressions of key molecules involved in the CRTC2 signaling pathway, additional ectopic expression of SIK1 using adenovirus infection reversed the impacts of HG-9-91-01 on the expressions of these molecules in mouse hepatocytes. Therefore, SIK1 regulates CRTC2-mediated gluconeogenesis signaling pathway under both physiological and high glucose-induced pathological conditions. The modulation of the SIK1-CRTC2 signaling axis could provide an attractive means for treating diabetes.
Collapse
Affiliation(s)
- Chang Wang
- Department of Endocrinology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daofei Song
- Department of Endocrinology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, China
| | - Jiahui Fu
- Department of Endocrinology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiuying Wen
- Department of Endocrinology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Xiuying Wen
| |
Collapse
|
93
|
Grandl G, Novikoff A, DiMarchi R, Tschöp MH, Müller TD. Gut Peptide Agonism in the Treatment of Obesity and Diabetes. Compr Physiol 2019; 10:99-124. [PMID: 31853954 DOI: 10.1002/cphy.c180044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Obesity is a global healthcare challenge that gives rise to devastating diseases such as the metabolic syndrome, type-2 diabetes (T2D), and a variety of cardiovascular diseases. The escalating prevalence of obesity has led to an increased interest in pharmacological options to counteract excess weight gain. Gastrointestinal hormones such as glucagon, amylin, and glucagon-like peptide-1 (GLP-1) are well recognized for influencing food intake and satiety, but the therapeutic potential of these native peptides is overall limited by a short half-life and an often dose-dependent appearance of unwanted effects. Recent clinical success of chemically optimized GLP-1 mimetics with improved pharmacokinetics and sustained action has propelled pharmacological interest in using bioengineered gut hormones to treat obesity and diabetes. In this article, we summarize the basic biology and signaling mechanisms of selected gut peptides and discuss how they regulate systemic energy and glucose metabolism. Subsequently, we focus on the design and evaluation of unimolecular drugs that combine the beneficial effects of selected gut hormones into a single entity to optimize the beneficial impact on systems metabolism. © 2020 American Physiological Society. Compr Physiol 10:99-124, 2020.
Collapse
Affiliation(s)
- Gerald Grandl
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Richard DiMarchi
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Matthias H Tschöp
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| |
Collapse
|
94
|
Multi-omics analysis of multiple missions to space reveal a theme of lipid dysregulation in mouse liver. Sci Rep 2019; 9:19195. [PMID: 31844325 PMCID: PMC6915713 DOI: 10.1038/s41598-019-55869-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/30/2019] [Indexed: 12/13/2022] Open
Abstract
Spaceflight has several detrimental effects on the physiology of astronauts, many of which are recapitulated in rodent models. Mouse studies performed on the Space Shuttle showed disruption of lipid metabolism in liver. However, given that these animals were not sacrificed on-orbit and instead returned live to earth, it is unclear if these disruptions were solely induced by space stressors (e.g. microgravity, space radiation) or in part explained by the stress of return to Earth. In this work we analyzed three liver datasets from two different strains of mice (C57BL/6 (Jackson) & BALB/c (Taconic)) flown aboard the International Space Station (ISS). Notably, these animals were sacrificed on-orbit and exposed to varying spaceflight durations (i.e. 21, 37, and 42 days vs 13 days for the Shuttle mice). Oil Red O (ORO) staining showed abnormal lipid accumulation in all space-flown mice compared to ground controls regardless of strain or exposure duration. Similarly, transcriptomic analysis by RNA-sequencing revealed several pathways that were affected in both strains related to increased lipid metabolism, fatty acid metabolism, lipid and fatty acid processing, lipid catabolic processing, and lipid localization. In addition, key upstream regulators were predicted to be commonly regulated across all conditions including Glucagon (GCG) and Insulin (INS). Moreover, quantitative proteomic analysis showed that a number of lipid related proteins were changed in the livers during spaceflight. Taken together, these data indicate that activation of lipotoxic pathways are the result of space stressors alone and this activation occurs in various genetic backgrounds during spaceflight exposures of weeks to months. If similar responses occur in humans, a prolonged change of these pathways may result in the development of liver disease and should be investigated further.
Collapse
|
95
|
Li J, Chen T, Rao Y, Chen S, Wang B, Chen R, Ren C, Liu L, Yang Y, Yu H, Tang D, Yan A. Suppression of leptin-AI/AII transcripts by insulin in goldfish liver: A fish specific response of leptin under food deprivation. Gen Comp Endocrinol 2019; 283:113240. [PMID: 31394085 DOI: 10.1016/j.ygcen.2019.113240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/18/2019] [Accepted: 08/04/2019] [Indexed: 12/30/2022]
Abstract
Leptin is primarily considered a peripheral satiety hormone and is also found to perform important roles in energy homeostasis in vertebrates ranging from fish to mammals. The liver is a major source of leptin production in teleost fish. Using goldfish as a model, a previous report by our group illustrated the positive regulation of leptin mRNA levels by treatment with the hyperglycemic hormone glucagon, and our present study provided evidence for the negative regulation of hepatic leptin-AI and leptin-AII transcripts through the administration of the hypoglycemic hormone insulin. This study is the first to demonstrate changes in the hepatopancreatic insulin, glucagon, leptin-AI and leptin-AII mRNA levels in goldfish during fasting and refeeding. Insulin was found to be effective in suppressing leptin-AI and leptin-AII transcript levels in goldfish liver via both in vivo intraperitoneal injection and in vitro cell incubation approaches. Only the insulin receptor, not the IGF-I receptor, was involved in insulin-inhibited leptin mRNA level. The suppression of leptin levels by insulin was caused by the activation of MKK3/6/p38MAPK and MEK1/2/Erk1/2 cascades. Insulin treatment could eliminate the stimulation of glucagon on leptin mRNA level. Our study describes the regulation and signal transduction mechanism of insulin on leptin mRNA levels in the goldfish liver, suggesting that the leptin function in fish is speculated to be not only an anorexigenic factor but also a metabolic mediator. This also supports the hypothesis that the poikilothermal fish use a passive survival strategy during the periods of food deprivation, which is mediated by the fish-specifically high leptin levels induced by the cooperation of insulin and glucagon.
Collapse
Affiliation(s)
- Jiaxi Li
- School of Life Science and Engineering, School of Stomatology and Medicine, Foshan University, Foshan, China
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yingzhu Rao
- Institute of Applied Biotechnology, School of Life Science and Technology, Lingnan Normal University, Zhanjiang, China
| | - Shuang Chen
- The Beijing Genomics Institute (BGI), Shenzhen, China
| | - Bin Wang
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Rong Chen
- Institute of Applied Biotechnology, School of Life Science and Technology, Lingnan Normal University, Zhanjiang, China
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Lian Liu
- School of Life Science and Engineering, School of Stomatology and Medicine, Foshan University, Foshan, China
| | - Ying Yang
- School of Life Science and Engineering, School of Stomatology and Medicine, Foshan University, Foshan, China
| | - Hui Yu
- School of Life Science and Engineering, School of Stomatology and Medicine, Foshan University, Foshan, China
| | - Dongsheng Tang
- School of Life Science and Engineering, School of Stomatology and Medicine, Foshan University, Foshan, China
| | - Aifen Yan
- School of Life Science and Engineering, School of Stomatology and Medicine, Foshan University, Foshan, China.
| |
Collapse
|
96
|
Kleinert M, Sachs S, Habegger KM, Hofmann SM, Müller TD. Glucagon Regulation of Energy Expenditure. Int J Mol Sci 2019; 20:ijms20215407. [PMID: 31671603 PMCID: PMC6862306 DOI: 10.3390/ijms20215407] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Glucagon's ability to increase energy expenditure has been known for more than 60 years, yet the mechanisms underlining glucagon's thermogenic effect still remain largely elusive. Over the last years, significant efforts were directed to unravel the physiological and cellular underpinnings of how glucagon regulates energy expenditure. In this review, we summarize the current knowledge on how glucagon regulates systems metabolism with a special emphasis on its acute and chronic thermogenic effects.
Collapse
Affiliation(s)
- Maximilian Kleinert
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Centre Munich, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Germany.
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Stephan Sachs
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Centre Munich, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Germany.
- Division of Metabolic Diseases, Technische Universität München, 85740 Munich, Germany.
| | - Kirk M Habegger
- Department of Medicine-Endocrinology and Comprehensive Diabetes Center, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35899, USA.
| | - Susanna M Hofmann
- Institute for Diabetes and Regeneration, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
- Medizinische Klinik und Poliklinik IV, Klinikum der LMU, 80336 München, Germany.
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Centre Munich, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Germany.
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, 72076 Tübingen, Germany.
| |
Collapse
|
97
|
Spolitu S, Okamoto H, Dai W, Zadroga JA, Wittchen ES, Gromada J, Ozcan L. Hepatic Glucagon Signaling Regulates PCSK9 and Low-Density Lipoprotein Cholesterol. Circ Res 2019; 124:38-51. [PMID: 30582457 DOI: 10.1161/circresaha.118.313648] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RATIONALE Glucagon is a key hormone that regulates the adaptive metabolic responses to fasting. In addition to maintaining glucose homeostasis, glucagon participates in the regulation of cholesterol metabolism; however, the molecular pathways underlying this effect are incompletely understood. OBJECTIVE We sought to determine the role of hepatic Gcgr (glucagon receptor) signaling in plasma cholesterol regulation and identify its underlying molecular mechanisms. METHODS AND RESULTS We show that Gcgr signaling plays an essential role in LDL-C (low-density lipoprotein cholesterol) homeostasis through regulating the PCSK9 (proprotein convertase subtilisin/kexin type 9) levels. Silencing of hepatic Gcgr or inhibition of glucagon action increased hepatic and plasma PCSK9 and resulted in lower LDLR (LDL receptor) protein and increased plasma LDL-C. Conversely, treatment of wild-type (WT) mice with glucagon lowered LDL-C levels, whereas this response was abrogated in Pcsk9-/- and Ldlr-/- mice. Our gain- and loss-of-function studies identified Epac2 (exchange protein activated by cAMP-2) and Rap1 (Ras-related protein-1) as the downstream mediators of glucagon's action on PCSK9 homeostasis. Moreover, mechanistic studies revealed that glucagon affected the half-life of PCSK9 protein without changing the level of its mRNA, indicating that Gcgr signaling regulates PCSK9 degradation. CONCLUSIONS These findings provide novel insights into the molecular interplay between hepatic glucagon signaling and lipid metabolism and describe a new posttranscriptional mechanism of PCSK9 regulation.
Collapse
Affiliation(s)
- Stefano Spolitu
- From the Department of Medicine, Columbia University, New York (S.S., W.D., J.A.Z., L.O.)
| | - Haruka Okamoto
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY (H.O., J.G.)
| | - Wen Dai
- From the Department of Medicine, Columbia University, New York (S.S., W.D., J.A.Z., L.O.)
| | - John A Zadroga
- From the Department of Medicine, Columbia University, New York (S.S., W.D., J.A.Z., L.O.)
| | - Erika S Wittchen
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill (E.S.W.)
| | - Jesper Gromada
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY (H.O., J.G.)
| | - Lale Ozcan
- From the Department of Medicine, Columbia University, New York (S.S., W.D., J.A.Z., L.O.)
| |
Collapse
|
98
|
Xie Y, Matsumoto H, Kennedy S, Newberry EP, Moritz W, DeBosch BJ, Moley KH, Rubin DC, Warner BW, Kau AL, Tarr PI, Wylie TN, Wylie KM, Davidson NO. Impaired Chylomicron Assembly Modifies Hepatic Metabolism Through Bile Acid-Dependent and Transmissible Microbial Adaptations. Hepatology 2019; 70:1168-1184. [PMID: 31004524 PMCID: PMC6783349 DOI: 10.1002/hep.30669] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/15/2019] [Indexed: 01/05/2023]
Abstract
The mechanisms by which alterations in intestinal bile acid (BA) metabolism improve systemic glucose tolerance and hepatic metabolic homeostasis are incompletely understood. We examined metabolic adaptations in mice with conditional intestinal deletion of the abetalipoproteinemia (ABL) gene microsomal triglyceride transfer protein (Mttp-IKO), which blocks chylomicron assembly and impairs intestinal lipid transport. Mttp-IKO mice exhibit improved hepatic glucose metabolism and augmented insulin signaling, without weight loss. These adaptations included decreased BA excretion, increased pool size, altered BA composition, and increased fibroblast growth factor 15 production. Mttp-IKO mice absorb fructose normally but are protected against dietary fructose-induced hepatic steatosis, without weight loss or changes in energy expenditure. In addition, Mttp-IKO mice exhibit altered cecal microbial communities, both at baseline and following fructose feeding, including increased abundance of Bacteroides and Lactobacillus genera. Transplantation of cecal microbiota from chow-fed Mttp-IKO mice into antibiotic-treated wild-type recipients conferred transmissible protection against fructose-induced hepatic steatosis in association with a bloom in Akkermansia and increased Clostridium XIVa genera, whose abundance was positively correlated with fecal coprostanol and total neutral sterol excretion in recipient mice. However, antibiotic-treated Mttp-IKO mice were still protected against fructose-induced hepatic steatosis, suggesting that changes in microbiota are not required for this phenotype. Nevertheless, we found increased abundance of fecal Akkermansia from two adult ABL subjects with MTTP mutations compared to their heterozygous parents and within the range noted in six healthy control subjects. Furthermore, Akkermansia abundance across all subjects was positively correlated with fecal coprostanol excretion. Conclusion: The findings collectively suggest multiple adaptive pathways of metabolic regulation following blocked chylomicron assembly, including shifts in BA signaling and altered microbial composition that confer a transmissible phenotype.
Collapse
Affiliation(s)
- Yan Xie
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hitoshi Matsumoto
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susan Kennedy
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Elizabeth P. Newberry
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - William Moritz
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian J. DeBosch
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kelle H. Moley
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Deborah C. Rubin
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brad W. Warner
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew L. Kau
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Phillip I. Tarr
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Todd N. Wylie
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA,Department of McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kristine M. Wylie
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA,Department of McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicholas O. Davidson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA,Lead contact
| |
Collapse
|
99
|
Wewer Albrechtsen NJ, Pedersen J, Galsgaard KD, Winther-Sørensen M, Suppli MP, Janah L, Gromada J, Vilstrup H, Knop FK, Holst JJ. The Liver-α-Cell Axis and Type 2 Diabetes. Endocr Rev 2019; 40:1353-1366. [PMID: 30920583 DOI: 10.1210/er.2018-00251] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/19/2019] [Indexed: 02/08/2023]
Abstract
Both type 2 diabetes (T2D) and nonalcoholic fatty liver disease (NAFLD) strongly associate with increasing body mass index, and together these metabolic diseases affect millions of individuals. In patients with T2D, increased secretion of glucagon (hyperglucagonemia) contributes to diabetic hyperglycemia as proven by the significant lowering of fasting plasma glucose levels following glucagon receptor antagonist administration. Emerging data now indicate that the elevated plasma concentrations of glucagon may also be associated with hepatic steatosis and not necessarily with the presence or absence of T2D. Thus, fatty liver disease, most often secondary to overeating, may result in impaired amino acid turnover, leading to increased plasma concentrations of certain glucagonotropic amino acids (e.g., alanine). This, in turn, causes increased glucagon secretion that may help to restore amino acid turnover and ureagenesis, but it may eventually also lead to increased hepatic glucose production, a hallmark of T2D. Early experimental findings support the hypothesis that hepatic steatosis impairs glucagon's actions on amino acid turnover and ureagenesis. Hepatic steatosis also impairs hepatic insulin sensitivity and clearance that, together with hyperglycemia and hyperaminoacidemia, lead to peripheral hyperinsulinemia; systemic hyperinsulinemia may itself contribute to worsen peripheral insulin resistance. Additionally, obesity is accompanied by an impaired incretin effect, causing meal-related glucose intolerance. Lipid-induced impairment of hepatic sensitivity, not only to insulin but potentially also to glucagon, resulting in both hyperinsulinemia and hyperglucagonemia, may therefore contribute to the development of T2D at least in a subset of individuals with NAFLD.
Collapse
Affiliation(s)
- Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Cardiology, Nephrology and Endocrinology, Nordsjællands Hospital Hillerød, University of Copenhagen, Hillerød, Denmark
| | - Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Winther-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Malte P Suppli
- Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark
| | - Lina Janah
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Filip K Knop
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
100
|
Zhao W, Qin C, Yang G, Yan X, Meng X, Yang L, Lu R, Deng D, Niu M, Nie G. Expression of glut2 in response to glucose load, insulin and glucagon in grass carp (Ctenophcuyngodon idellus). Comp Biochem Physiol B Biochem Mol Biol 2019; 239:110351. [PMID: 31518684 DOI: 10.1016/j.cbpb.2019.110351] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022]
Abstract
Generally, fish are thought to have a limited ability to utilize carbohydrate. Postprandial blood glucose is cleared sluggishly in fish, resulting in prolonged hyperglycemia. Facilitative glucose transporters (GLUTs) play an important role in glucose utilization. In the present study, the expression levels of glut2 in different tissues were detected in grass carp. Furthermore, the effects of oral glucose administration on glut2 mRNA expression in the liver, intestine and kidney were investigated, and we also evaluated the response of glut2 mRNA to insulin and glucagon in the primary hepatocytes of grass carp. The expression level of glut2 mRNA was highest in the liver, followed by the intestine and kidney, but lower in other tissues. The result of glucose tolerance test (GTT) showed that serum glucose reached the highest level at 3 h after GTT and recovered to the basic level at 6 h. The glut2 mRNA in the intestine was up-regulated at 1 h after GTT. However, the glut2 mRNA expression in the liver of grass carp was unchanged after GTT for 1, 3, 6 h, and even decreased at 12 h after GTT. In addition, the expression of glut2 mRNA in the primary hepatocytes was enhanced by insulin and glucagon at 3 h post treatment. These results suggested that glut2 expression in the liver of grass carp was sensitive to insulin and glucagon, but not blood glucose. The up-regulation of glut2 by these hormones might be involved in the bi-directional transportation of glucose in the liver.
Collapse
Affiliation(s)
- Wenli Zhao
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China
| | - Chaobin Qin
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China.
| | - Guokun Yang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China
| | - Xiao Yan
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China
| | - Xiaolin Meng
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China
| | - Liping Yang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China
| | - Ronghua Lu
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China
| | - Dapeng Deng
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China
| | - Mingming Niu
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China
| | - Guoxing Nie
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China.
| |
Collapse
|