51
|
Marshall J, Rossez Y, Mainda G, Gally DL, Daniell TJ, Holden NJ. Alternate thermoregulation and functional binding ofEscherichia colitype 1 fimbriae in environmental and animal isolates. FEMS Microbiol Lett 2016; 363:fnw251. [DOI: 10.1093/femsle/fnw251] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/24/2016] [Accepted: 11/02/2016] [Indexed: 11/14/2022] Open
|
52
|
Santos MIS, Lima AI, Monteiro SAVS, Ferreira RMSB, Pedroso L, Sousa I, Ferreira MASS. Preliminary Study on the Effect of Fermented Cheese Whey on Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella Goldcoast Populations Inoculated onto Fresh Organic Lettuce. Foodborne Pathog Dis 2016; 13:423-7. [PMID: 27149657 DOI: 10.1089/fpd.2015.2079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cheese whey fermented by an industrial starter consortium of lactic acid bacteria was evaluated for its antibacterial capacity to control a selection of pathogenic bacteria. For their relevance on outbreak reports related to vegetable consumption, this selection included Listeria monocytogenes, serotype 4b, Escherichia coli O157:H7, and Salmonella Goldcoast. Organically grown lettuce was inoculated with an inoculum level of ∼10(7) colony-forming unit (CFU)/mL and was left for about 1 h in a safety cabinet before washing with a perceptual solution of 75:25 (v/v) fermented whey in water, for 1 and 10 min. Cells of pathogens recovered were then counted and their number compared with that obtained for a similar treatment, but using a chlorine solution at 110 ppm. Results show that both treatments, either with chlorine or fermented whey, were able to significantly reduce (p < 0.05) the number of bacteria, in a range of 1.15-2.00 and 1.59-2.34 CFU/g, respectively, regarding the bacteria tested. Results suggest that the use of fermented whey may be as effective as the solution of chlorine used in industrial processes in reducing the pathogens under study (best efficacy shown for Salmonella), with the advantage of avoiding health risks arising from the formation of carcinogenic toxic chlorine derivates.
Collapse
Affiliation(s)
- Maria I S Santos
- 1 Microbiology Laboratory, Department of Natural Resources, Environment and Territory, DRAT, LEAF, Instituto Superior de Agronomia, Universidade de Lisboa , Lisbon, Portugal
- 2 Eco-Processing of Food and Feed, CEE, LEAF, Instituto Superior de Agronomia, Universidade de Lisboa , Lisbon, Portugal
- 3 Faculty of Veterinary Medicine, Universidade Lusofona de Humanidades e Tecnologias , Lisbon, Portugal
- 4 Disease & Stress Biology, DRAT, LEAF, Instituto Superior de Agronomia, Universidade de Lisboa , Lisbon, Portugal
| | - Ana I Lima
- 4 Disease & Stress Biology, DRAT, LEAF, Instituto Superior de Agronomia, Universidade de Lisboa , Lisbon, Portugal
| | - Sara A V S Monteiro
- 4 Disease & Stress Biology, DRAT, LEAF, Instituto Superior de Agronomia, Universidade de Lisboa , Lisbon, Portugal
| | - Ricardo M S B Ferreira
- 4 Disease & Stress Biology, DRAT, LEAF, Instituto Superior de Agronomia, Universidade de Lisboa , Lisbon, Portugal
| | - Laurentina Pedroso
- 3 Faculty of Veterinary Medicine, Universidade Lusofona de Humanidades e Tecnologias , Lisbon, Portugal
| | - Isabel Sousa
- 2 Eco-Processing of Food and Feed, CEE, LEAF, Instituto Superior de Agronomia, Universidade de Lisboa , Lisbon, Portugal
| | - Maria A S S Ferreira
- 1 Microbiology Laboratory, Department of Natural Resources, Environment and Territory, DRAT, LEAF, Instituto Superior de Agronomia, Universidade de Lisboa , Lisbon, Portugal
| |
Collapse
|
53
|
Crozier L, Hedley PE, Morris J, Wagstaff C, Andrews SC, Toth I, Jackson RW, Holden NJ. Whole-Transcriptome Analysis of Verocytotoxigenic Escherichia coli O157:H7 (Sakai) Suggests Plant-Species-Specific Metabolic Responses on Exposure to Spinach and Lettuce Extracts. Front Microbiol 2016; 7:1088. [PMID: 27462311 PMCID: PMC4940412 DOI: 10.3389/fmicb.2016.01088] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/29/2016] [Indexed: 12/11/2022] Open
Abstract
Verocytotoxigenic Escherichia coli (VTEC) can contaminate crop plants, potentially using them as secondary hosts, which can lead to food-borne infection. Currently, little is known about the influence of the specific plant species on the success of bacterial colonization. As such, we compared the ability of the VTEC strain, E. coli O157:H7 'Sakai,' to colonize the roots and leaves of four leafy vegetables: spinach (Spinacia oleracea), lettuce (Lactuca sativa), vining green pea (Pisum sativum), and prickly lettuce (Lactuca serriola), a wild relative of domesticated lettuce. Also, to determine the drivers of the initial response on interaction with plant tissue, the whole transcriptome of E. coli O157:H7 Sakai was analyzed following exposure to plant extracts of varying complexity (spinach leaf lysates or root exudates, and leaf cell wall polysaccharides from spinach or lettuce). Plant extracts were used to reduce heterogeneity inherent in plant-microbe interactions and remove the effect of plant immunity. This dual approach provided information on the initial adaptive response of E. coli O157:H7 Sakai to the plant environment together with the influence of the living plant during bacterial establishment and colonization. Results showed that both the plant tissue type and the plant species strongly influence the short-term (1 h) transcriptional response to extracts as well as longer-term (10 days) plant colonization or persistence. We show that propagation temperature (37 vs. 18°C) has a major impact on the expression profile and therefore pre-adaptation of bacteria to a plant-relevant temperature is necessary to avoid misleading temperature-dependent wholescale gene-expression changes in response to plant material. For each of the plant extracts tested, the largest group of (annotated) differentially regulated genes were associated with metabolism. However, large-scale differences in the metabolic and biosynthetic pathways between treatment types indicate specificity in substrate utilization. Induction of stress-response genes reflected the apparent physiological status of the bacterial genes in each extract, as a result of glutamate-dependent acid resistance, nutrient stress, or translational stalling. A large proportion of differentially regulated genes are uncharacterized (annotated as hypothetical), which could indicate yet to be described functional roles associated with plant interaction for E. coli O157:H7 Sakai.
Collapse
Affiliation(s)
- Louise Crozier
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | - Pete E. Hedley
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | - Jenny Morris
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | - Carol Wagstaff
- School of Chemistry, Food and Pharmacy, The University of ReadingReading, UK
| | - Simon C. Andrews
- School of Biological Sciences, The University of ReadingReading, UK
| | - Ian Toth
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | | | - Nicola J. Holden
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| |
Collapse
|
54
|
Tan MSF, White AP, Rahman S, Dykes GA. Role of Fimbriae, Flagella and Cellulose on the Attachment of Salmonella Typhimurium ATCC 14028 to Plant Cell Wall Models. PLoS One 2016; 11:e0158311. [PMID: 27355584 PMCID: PMC4927157 DOI: 10.1371/journal.pone.0158311] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 06/14/2016] [Indexed: 12/29/2022] Open
Abstract
Cases of foodborne disease caused by Salmonella are frequently associated with the consumption of minimally processed produce. Bacterial cell surface components are known to be important for the attachment of bacterial pathogens to fresh produce. The role of these extracellular structures in Salmonella attachment to plant cell walls has not been investigated in detail. We investigated the role of flagella, fimbriae and cellulose on the attachment of Salmonella Typhimurium ATCC 14028 and a range of isogenic deletion mutants (ΔfliC fljB, ΔbcsA, ΔcsgA, ΔcsgA bcsA and ΔcsgD) to bacterial cellulose (BC)-based plant cell wall models [BC-Pectin (BCP), BC-Xyloglucan (BCX) and BC-Pectin-Xyloglucan (BCPX)] after growth at different temperatures (28°C and 37°C). We found that all three cell surface components were produced at 28°C but only the flagella was produced at 37°C. Flagella appeared to be most important for attachment (reduction of up to 1.5 log CFU/cm2) although both cellulose and fimbriae also aided in attachment. The csgD deletion mutant, which lacks both cellulose and fimbriae, showed significantly higher attachment as compared to wild type cells at 37°C. This may be due to the increased expression of flagella-related genes which are also indirectly regulated by the csgD gene. Our study suggests that bacterial attachment to plant cell walls is a complex process involving many factors. Although flagella, cellulose and fimbriae all aid in attachment, these structures are not the only mechanism as no strain was completely defective in its attachment.
Collapse
Affiliation(s)
| | - Aaron P. White
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sadequr Rahman
- School of Science, Monash University, Bandar Sunway, Selangor, Malaysia
| | - Gary A. Dykes
- School of Public Health, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
55
|
Martínez-García PM, López-Solanilla E, Ramos C, Rodríguez-Palenzuela P. Prediction of bacterial associations with plants using a supervised machine-learning approach. Environ Microbiol 2016; 18:4847-4861. [PMID: 27234490 DOI: 10.1111/1462-2920.13389] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 05/20/2016] [Accepted: 05/20/2016] [Indexed: 12/11/2022]
Abstract
Recent scenarios of fresh produce contamination by human enteric pathogens have resulted in severe food-borne outbreaks, and a new paradigm has emerged stating that some human-associated bacteria can use plants as secondary hosts. As a consequence, there has been growing concern in the scientific community about these interactions that have not yet been elucidated. Since this is a relatively new area, there is a lack of strategies to address the problem of food-borne illnesses due to the ingestion of fruits and vegetables. In the present study, we performed specific genome annotations to train a supervised machine-learning model that allows for the identification of plant-associated bacteria with a precision of ∼93%. The application of our method to approximately 9500 genomes predicted several unknown interactions between well-known human pathogens and plants, and it also confirmed several cases for which evidence has been reported. We observed that factors involved in adhesion, the deconstruction of the plant cell wall and detoxifying activities were highlighted as the most predictive features. The application of our strategy to sequenced strains that are involved in food poisoning can be used as a primary screening tool to determine the possible causes of contaminations.
Collapse
Affiliation(s)
- Pedro Manuel Martínez-García
- Área de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, E-29071, Spain.,Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid. Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Emilia López-Solanilla
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid. Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain.,Departamento de Biología Vegetal. Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Avenida Complutense, 3, Madrid, 28040, Spain
| | - Cayo Ramos
- Área de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, E-29071, Spain
| | - Pablo Rodríguez-Palenzuela
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid. Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain.,Departamento de Biología Vegetal. Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Avenida Complutense, 3, Madrid, 28040, Spain
| |
Collapse
|
56
|
Abstract
Most reviews of climate change are epidemiological, focusing on impact assessment and risk mapping. However, there are many reports of the effects of environmental stress factors on defense mechanisms in plants against pathogens. We review those representative of key climate change-related stresses to determine whether there are any patterns or trends in adaptation responses. We recognize the complexity of climate change itself and the multitrophic nature of the complex biological interactions of plants, microbes, soil, and the environment and, therefore, the difficulty of reductionist dissection approaches to resolving the problems. We review host defense genes, germplasm, and environmental interactions in different types of organisms but find no significant group-specific trends. Similarly, we review by host defense mechanism type and by host-pathogen trophic relationship but identify no dominating mechanism for stress response. However, we do identify core stress response mechanisms playing key roles in multiple response pathways whether to biotic or abiotic stress. We suggest that these should be central to mechanistic climate change plant defense research. We also recognize biodiversity, heterogeneity, and the need for understanding stress in a true systems biology approach as being essential components of progressing our understanding of and response to climate change.
Collapse
|
57
|
van Dyk BN, de Bruin W, du Plessis EM, Korsten L. Microbiological Food Safety Status of Commercially Produced Tomatoes from Production to Marketing. J Food Prot 2016; 79:392-406. [PMID: 26939649 DOI: 10.4315/0362-028x.jfp-15-300] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Tomatoes have been implicated in various microbial disease outbreaks and are considered a potential vehicle for foodborne pathogens. Traceback studies mostly implicate contamination during production and/or processing. The microbiological quality of commercially produced tomatoes was thus investigated from the farm to market, focusing on the impact of contaminated irrigation and washing water, facility sanitation, and personal hygiene. A total of 905 samples were collected from three largescale commercial farms from 2012 through 2014. The farms differed in water sources used (surface versus well) and production methods (open field versus tunnel). Levels of total coliforms and Escherichia coli and prevalence of E. coli O157:H7 and Salmonella Typhimurium were determined. Dominant coliforms were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. No pathogens or E. coli were detected on any of the tomatoes tested throughout the study despite the high levels of coliforms (4.2 to 6.2 log CFU/g) present on the tomatoes at the market. The dominant species associated with tomatoes belonged to the genera Enterobacter, Klebsiella, and Citrobacter. Water used on the farm for irrigation considered not fit for purpose according to national agricultural irrigation standards, with high E. coli levels resulting from either a highly contaminated source water (river water at 3.19 log most probable number [MPN]/100 ml) or improper storage of source water (stored well water at 1.72 log MPN/100 ml). Salmonella Typhimurium was detected on two occasions on a contact surface in the processing facility of the first farm in 2012. Contact surface coliform counts were 2.9 to 4.8 log CFU/cm(2). Risk areas identified in this study were water used for irrigation and poor sanitation practices in the processing facility. Implementation of effective food safety management systems in the fresh produce industry is of the utmost importance to ensure product safety for consumers.
Collapse
Affiliation(s)
- Brigitte N van Dyk
- Institute for Food, Nutrition and Well-being, Department of Plant Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Willeke de Bruin
- Institute for Food, Nutrition and Well-being, Department of Plant Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Erika M du Plessis
- Institute for Food, Nutrition and Well-being, Department of Plant Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Lise Korsten
- Institute for Food, Nutrition and Well-being, Department of Plant Sciences, University of Pretoria, Pretoria 0002, South Africa.
| |
Collapse
|
58
|
One Health and Food-Borne Disease: Salmonella Transmission between Humans, Animals, and Plants. Microbiol Spectr 2015; 2:OH-0020-2013. [PMID: 26082128 DOI: 10.1128/microbiolspec.oh-0020-2013] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
There are >2,600 recognized serovars of Salmonella enterica. Many of these Salmonella serovars have a broad host range and can infect a wide variety of animals, including mammals, birds, reptiles, amphibians, fish, and insects. In addition, Salmonella can grow in plants and can survive in protozoa, soil, and water. Hence, broad-host-range Salmonella can be transmitted via feces from wild animals, farm animals, and pets or by consumption of a wide variety of common foods: poultry, beef, pork, eggs, milk, fruit, vegetables, spices, and nuts. Broad-host-range Salmonella pathogens typically cause gastroenteritis in humans. Some Salmonella serovars have a more restricted host range that is associated with changes in the virulence plasmid pSV, accumulation of pseudogenes, and chromosome rearrangements. These changes in host-restricted Salmonella alter pathogen-host interactions such that host-restricted Salmonella organisms commonly cause systemic infections and are transmitted between host populations by asymptomatic carriers. The secondary consequences of efforts to eliminate host-restricted Salmonella serovars demonstrate that basic ecological principles govern the environmental niches occupied by these pathogens, making it impossible to thwart Salmonella infections without a clear understanding of the human, animal, and environmental reservoirs of these pathogens. Thus, transmission of S. enterica provides a compelling example of the One Health paradigm because reducing human infections will require the reduction of Salmonella in animals and limitation of transmission from the environment.
Collapse
|
59
|
Jiang C, An T, Wang S, Wang G, Si W, Tu Y, Liu Y, Wu J, Liu S, Cai X. Role of the ehxA gene from Escherichia coli serotype O82 in hemolysis, biofilm formation, and in vivo virulence. Can J Microbiol 2015; 61:335-41. [PMID: 25803149 DOI: 10.1139/cjm-2014-0824] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) strains cause serious gastrointestinal disease, which can lead to potentially life-threatening systemic complications such as hemolytic uremic syndrome. Although the ehx gene is established as a major virulence factor of EHEC, the role of this gene in colonization and biofilm formation remains to be elucidated. We constructed recombinant isogenic mutants of the ehxA locus of E. coli HLJ1122 (serotype O82) using the λ Red homologous recombination system. Significantly higher levels of adherence to human epithelial cells (HEp-2) cells were observed for strain HLJ1122 compared with the mutant strain HLJ1122-ΔehxA (P < 0.05). Strain HLJ1122 also exhibited significantly higher levels of biofilm formation than strain HLJ1122-ΔehxA (P < 0.05). Mice infected with strain HLJ1122 showed severe destruction of the intestinal and gastric mucosa; in contrast, mice infected with HLJ1122-ΔehxA showed limited intestinal pathology, displaying minimal inflammatory infiltrates compared with mock-infected mice. These results showed the multifunctional role of Ehx in E. coli virulence.
Collapse
Affiliation(s)
- Chenggang Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Harbin 150001, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Rossez Y, Wolfson EB, Holmes A, Gally DL, Holden NJ. Bacterial flagella: twist and stick, or dodge across the kingdoms. PLoS Pathog 2015; 11:e1004483. [PMID: 25590430 PMCID: PMC4295861 DOI: 10.1371/journal.ppat.1004483] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The flagellum organelle is an intricate multiprotein assembly best known for its rotational propulsion of bacteria. However, recent studies have expanded our knowledge of other functions in pathogenic contexts, particularly adherence and immune modulation, e.g., for Salmonella enterica, Campylobacter jejuni, Pseudomonas aeruginosa, and Escherichia coli. Flagella-mediated adherence is important in host colonisation for several plant and animal pathogens, but the specific interactions that promote flagella binding to such diverse host tissues has remained elusive. Recent work has shown that the organelles act like probes that find favourable surface topologies to initiate binding. An emerging theme is that more general properties, such as ionic charge of repetitive binding epitopes and rotational force, allow interactions with plasma membrane components. At the same time, flagellin monomers are important inducers of plant and animal innate immunity: variation in their recognition impacts the course and outcome of infections in hosts from both kingdoms. Bacteria have evolved different strategies to evade or even promote this specific recognition, with some important differences shown for phytopathogens. These studies have provided a wider appreciation of the functions of bacterial flagella in the context of both plant and animal reservoirs.
Collapse
Affiliation(s)
- Yannick Rossez
- Cellular and Molecular Sciences, James Hutton Institute, Dundee, United Kingdom
| | - Eliza B. Wolfson
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom
| | - Ashleigh Holmes
- Cellular and Molecular Sciences, James Hutton Institute, Dundee, United Kingdom
| | - David L. Gally
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom
| | - Nicola J. Holden
- Cellular and Molecular Sciences, James Hutton Institute, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
61
|
Sela Saldinger S, Manulis-Sasson S. What else can we do to mitigate contamination of fresh produce by foodborne pathogens? Microb Biotechnol 2014; 8:29-31. [PMID: 25546312 PMCID: PMC4321366 DOI: 10.1111/1751-7915.12231] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 10/07/2014] [Indexed: 11/29/2022] Open
Affiliation(s)
- Shlomo Sela Saldinger
- Department of Food Quality and Safety, Institute for Postharvest and Food Sciences, Bet Dagan, Israel
| | | |
Collapse
|
62
|
Chitarra W, Decastelli L, Garibaldi A, Gullino ML. Potential uptake of Escherichia coli O157:H7 and Listeria monocytogenes from growth substrate into leaves of salad plants and basil grown in soil irrigated with contaminated water. Int J Food Microbiol 2014; 189:139-45. [PMID: 25150671 DOI: 10.1016/j.ijfoodmicro.2014.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/21/2014] [Accepted: 08/02/2014] [Indexed: 11/23/2022]
Abstract
Outbreaks of foodborne illness, resulting from the consumption of fresh produce contaminated with human pathogens, are increasing. Potential uptake and persistence of human pathogens within edible parts of consumed fresh vegetables become an important issue in food safety. This study was conducted to assess the potential uptake and internalization of Escherichia coli O157:H7 and Listeria monocytogenes from an autoclaved substrate into edible parts of basil and baby salad plants (lettuce, cultivated rocket, wild rocket and corn salad) from 20 to 60-80days after inoculation, when plants are ready to be harvested and commercialized. Plants were grown in mesocosms under different temperature conditions (24°C and 30°C) and the growing substrate was inoculated using contaminated irrigation water (7logCFU/mL). E. coli O157:H7 could be internalized in the leaves of the tested leafy vegetables through the roots and persist up to the harvesting time with negligible differences between 24°C and 30°C. Significant decreases in pathogen titers were observed over time in the growing substrate on which the plants grew, until the last sampling time. In contrast, L. monocytogenes internalized and persisted only in lettuce mesocosms at 24°C. Neither pathogen was observed in basil leaves. Similarly, in basil growing substrates, enteric bacteria were undetectable at the end of the experiments, suggesting that basil plants may produce and release antimicrobial compounds active against both bacteria in root exudates. These results suggest that enteric bacteria are able to persist within baby salad leaves up to market representing a risk for consumer's health.
Collapse
Affiliation(s)
- Walter Chitarra
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-environmental Sector, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy.
| | - Lucia Decastelli
- Zooprophylactic Institute of Piemonte, Liguria and Valle d'Aosta, Via Bologna 148, 10154 Torino, Italy
| | - Angelo Garibaldi
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-environmental Sector, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Maria Lodovica Gullino
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-environmental Sector, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy; DISAFA - Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| |
Collapse
|
63
|
Neumann C, Fraiture M, Hernàndez-Reyes C, Akum FN, Virlogeux-Payant I, Chen Y, Pateyron S, Colcombet J, Kogel KH, Hirt H, Brunner F, Schikora A. The Salmonella effector protein SpvC, a phosphothreonine lyase is functional in plant cells. Front Microbiol 2014; 5:548. [PMID: 25368608 PMCID: PMC4201148 DOI: 10.3389/fmicb.2014.00548] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 10/01/2014] [Indexed: 11/13/2022] Open
Abstract
Salmonella is one of the most prominent causes of food poisoning and growing evidence indicates that contaminated fruits and vegetables are an increasing concern for human health. Successful infection demands the suppression of the host immune system, which is often achieved via injection of bacterial effector proteins into host cells. In this report we present the function of Salmonella effector protein in plant cell, supporting the new concept of trans-kingdom competence of this bacterium. We screened a range of Salmonella Typhimurium effector proteins for interference with plant immunity. Among these, the phosphothreonine lyase SpvC attenuated the induction of immunity-related genes when present in plant cells. Using in vitro and in vivo systems we show that this effector protein interacts with and dephosphorylates activated Arabidopsis Mitogen-activated Protein Kinase 6 (MPK6), thereby inhibiting defense signaling. Moreover, the requirement of Salmonella SpvC was shown by the decreased proliferation of the ΔspvC mutant in Arabidopsis plants. These results suggest that some Salmonella effector proteins could have a conserved function during proliferation in different hosts. The fact that Salmonella and other Enterobacteriaceae use plants as hosts strongly suggests that plants represent a much larger reservoir for animal pathogens than so far estimated.
Collapse
Affiliation(s)
- Christina Neumann
- Research Center for BioSystems, Land Use and Nutrition, Institute for Phytopathology and Applied Zoology, Justus-Liebig University Giessen Giessen, Germany
| | - Malou Fraiture
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Eberhard Karls University Tübingen Tübingen, Germany
| | - Casandra Hernàndez-Reyes
- Research Center for BioSystems, Land Use and Nutrition, Institute for Phytopathology and Applied Zoology, Justus-Liebig University Giessen Giessen, Germany
| | - Fidele N Akum
- Research Center for BioSystems, Land Use and Nutrition, Institute for Phytopathology and Applied Zoology, Justus-Liebig University Giessen Giessen, Germany
| | - Isabelle Virlogeux-Payant
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique Nouzilly, France ; Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique Tours, France
| | - Ying Chen
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Eberhard Karls University Tübingen Tübingen, Germany
| | | | - Jean Colcombet
- Unité de Recherche en Génomique Végétale, Plant Genomics Evry, France
| | - Karl-Heinz Kogel
- Research Center for BioSystems, Land Use and Nutrition, Institute for Phytopathology and Applied Zoology, Justus-Liebig University Giessen Giessen, Germany
| | - Heribert Hirt
- Unité de Recherche en Génomique Végétale, Plant Genomics Evry, France
| | - Frédéric Brunner
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Eberhard Karls University Tübingen Tübingen, Germany
| | - Adam Schikora
- Research Center for BioSystems, Land Use and Nutrition, Institute for Phytopathology and Applied Zoology, Justus-Liebig University Giessen Giessen, Germany
| |
Collapse
|
64
|
Rossez Y, Holmes A, Lodberg-Pedersen H, Birse L, Marshall J, Willats WGT, Toth IK, Holden NJ. Escherichia coli common pilus (ECP) targets arabinosyl residues in plant cell walls to mediate adhesion to fresh produce plants. J Biol Chem 2014; 289:34349-65. [PMID: 25320086 DOI: 10.1074/jbc.m114.587717] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Outbreaks of verotoxigenic Escherichia coli are often associated with fresh produce. However, the molecular basis to adherence is unknown beyond ionic lipid-flagellum interactions in plant cell membranes. We demonstrate that arabinans present in different constituents of plant cell walls are targeted for adherence by E. coli common pilus (ECP; or meningitis-associated and temperature-regulated (Mat) fimbriae) for E. coli serotypes O157:H7 and O18:K1:H7. l-Arabinose is a common constituent of plant cell wall that is rarely found in other organisms, whereas ECP is widespread in E. coli and other environmental enteric species. ECP bound to oligosaccharides of at least arabinotriose or longer in a glycan array, plant cell wall pectic polysaccharides, and plant glycoproteins. Recognition overlapped with the antibody LM13, which binds arabinanase-sensitive pectic epitopes, and showed a preferential affinity for (1→5)-α-linked l-arabinosyl residues and longer chains of arabinan as demonstrated with the use of arabinan-degrading enzymes. Functional adherence in planta was mediated by the adhesin EcpD in combination with the structural subunit, EcpA, and expression was demonstrated with an ecpR-GFP fusion and ECP antibodies. Spinach was found to be enriched for ECP/LM13 targets compared with lettuce. Specific recognition of arabinosyl residues may help explain the persistence of E. coli in the wider environment and association of verotoxigenic E. coli with some fresh produce plants by exploitation of a glycan found only in plant, not animal, cells.
Collapse
Affiliation(s)
- Yannick Rossez
- From the Cellular and Molecular Sciences, James Hutton Institute, Dundee DD2 5DA, Scotland, United Kingdom and
| | - Ashleigh Holmes
- From the Cellular and Molecular Sciences, James Hutton Institute, Dundee DD2 5DA, Scotland, United Kingdom and
| | - Henriette Lodberg-Pedersen
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg Copenhagen, Denmark
| | - Louise Birse
- From the Cellular and Molecular Sciences, James Hutton Institute, Dundee DD2 5DA, Scotland, United Kingdom and
| | - Jacqueline Marshall
- From the Cellular and Molecular Sciences, James Hutton Institute, Dundee DD2 5DA, Scotland, United Kingdom and
| | - William G T Willats
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg Copenhagen, Denmark
| | - Ian K Toth
- From the Cellular and Molecular Sciences, James Hutton Institute, Dundee DD2 5DA, Scotland, United Kingdom and
| | - Nicola J Holden
- From the Cellular and Molecular Sciences, James Hutton Institute, Dundee DD2 5DA, Scotland, United Kingdom and
| |
Collapse
|
65
|
Bruto M, Prigent-Combaret C, Muller D, Moënne-Loccoz Y. Analysis of genes contributing to plant-beneficial functions in Plant Growth-Promoting Rhizobacteria and related Proteobacteria. Sci Rep 2014; 4:6261. [PMID: 25179219 PMCID: PMC4151105 DOI: 10.1038/srep06261] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/11/2014] [Indexed: 01/22/2023] Open
Abstract
The positive effects of root-colonizing bacteria cooperating with plants lead to improved growth and/or health of their eukaryotic hosts. Some of these Plant Growth-Promoting Rhizobacteria (PGPR) display several plant-beneficial properties, suggesting that the accumulation of the corresponding genes could have been selected in these bacteria. Here, this issue was targeted using 23 genes contributing directly or indirectly to established PGPR effects, based on genome sequence analysis of 304 contrasted Alpha- Beta- and Gammaproteobacteria. Most of the 23 genes studied were also found in non-PGPR Proteobacteria and none of them were common to all 25 PGPR genomes studied. However, ancestral character reconstruction indicated that gene transfers -predominantly ancient- resulted in characteristic gene combinations according to taxonomic subgroups of PGPR strains. This suggests that the PGPR-plant cooperation could have established separately in various taxa, yielding PGPR strains that use different gene assortments. The number of genes contributing to plant-beneficial functions increased along the continuum -animal pathogens, phytopathogens, saprophytes, endophytes/symbionts, PGPR- indicating that the accumulation of these genes (and possibly of different plant-beneficial traits) might be an intrinsic PGPR feature. This work uncovered preferential associations occurring between certain genes contributing to phytobeneficial traits and provides new insights into the emergence of PGPR bacteria.
Collapse
Affiliation(s)
- Maxime Bruto
- 1] Université de Lyon, F-69622, Lyon, France [2] Université Lyon 1, Villeurbanne, France [3] CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France
| | - Claire Prigent-Combaret
- 1] Université de Lyon, F-69622, Lyon, France [2] Université Lyon 1, Villeurbanne, France [3] CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France
| | - Daniel Muller
- 1] Université de Lyon, F-69622, Lyon, France [2] Université Lyon 1, Villeurbanne, France [3] CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France
| | - Yvan Moënne-Loccoz
- 1] Université de Lyon, F-69622, Lyon, France [2] Université Lyon 1, Villeurbanne, France [3] CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France
| |
Collapse
|
66
|
Fraiture M, Brunner F. Killing two birds with one stone: trans-kingdom suppression of PAMP/MAMP-induced immunity by T3E from enteropathogenic bacteria. Front Microbiol 2014; 5:320. [PMID: 25101059 PMCID: PMC4105635 DOI: 10.3389/fmicb.2014.00320] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/11/2014] [Indexed: 01/07/2023] Open
Abstract
Within the past decade, remarkable similarities between the molecular organization of animal and plant systems for non-self discrimination were revealed. Obvious parallels exist between the molecular structures of the receptors mediating the recognition of pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs) with plant pattern recognition receptors strikingly resembling mammalian Toll-like receptors. Mitogen-activated protein kinase cascades, leading to the transcriptional activation of immunity-associated genes, illustrate the conservation of whole molecular building blocks of PAMP/MAMP-induced signaling. Enteropathogenic Salmonella and Escherichia coli use a type three secretion system (T3SS) to inject effector proteins into the mammalian host cell to subvert defense mechanisms and promote gut infection. Lately, disease occurrence was increasingly associated with bacteria-contaminated fruits and vegetables and common themes have emerged with regard to whether and how effectors target innate immune responses in a trans-kingdom manner. We propose that numerous Salmonella or E. coli effectors may be active in planta and tend to target central components (hubs) of immune signaling pathways.
Collapse
Affiliation(s)
- Malou Fraiture
- Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University Tübingen Tübingen, Germany
| | - Frédéric Brunner
- Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University Tübingen Tübingen, Germany
| |
Collapse
|
67
|
The Dynamic Interactions between Salmonella and the Microbiota, within the Challenging Niche of the Gastrointestinal Tract. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:846049. [PMID: 27437481 PMCID: PMC4897363 DOI: 10.1155/2014/846049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/14/2014] [Indexed: 12/25/2022]
Abstract
Understanding how Salmonella species establish successful infections remains a foremost research priority. This gastrointestinal pathogen not only faces the hostile defenses of the host's immune system, but also faces fierce competition from the large and diverse community of microbiota for space and nutrients. Salmonella have solved these challenges ingeniously. To jump-start growth, Salmonella steal hydrogen produced by the gastrointestinal microbiota. Type 3 effector proteins are subsequently secreted by Salmonella to trigger potent inflammatory responses, which generate the alternative terminal electron acceptors tetrathionate and nitrate. Salmonella exclusively utilize these electron acceptors for anaerobic respiration, permitting metabolic access to abundant substrates such as ethanolamine to power growth blooms. Chemotaxis and flagella-mediated motility enable the identification of nutritionally beneficial niches. The resulting growth blooms also promote horizontal gene transfer amongst the resident microbes. Within the gastrointestinal tract there are opportunities for chemical signaling between host cells, the microbiota, and Salmonella. Host produced catecholamines and bacterial autoinducers form components of this chemical dialogue leading to dynamic interactions. Thus, Salmonella have developed remarkable strategies to initially shield against host defenses and to transiently compete against the intestinal microbiota leading to successful infections. However, the immunocompetent host is subsequently able to reestablish control and clear the infection.
Collapse
|
68
|
Yousaf S, Bulgari D, Bergna A, Pancher M, Quaglino F, Casati P, Campisano A. Pyrosequencing detects human and animal pathogenic taxa in the grapevine endosphere. Front Microbiol 2014; 5:327. [PMID: 25071740 PMCID: PMC4085568 DOI: 10.3389/fmicb.2014.00327] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/14/2014] [Indexed: 01/26/2023] Open
Abstract
Generally, plants are not considered as hosts for human and animal pathogens (HAP). The recent produce-associated outbreaks of food-borne diseases have drawn attention toward significant deficiencies in our understanding of the ecology of HAP, and their potential for interkingdom transfer. To examine the association of microorganisms classified as HAP with plants, we surveyed the presence and distribution of HAP bacterial taxa (henceforth HAPT, for brevity's sake) in the endosphere of grapevine (Vitis vinifera L.) both in the plant stems and leaves. An enrichment protocol was used on leaves to detect taxa with very low abundance in undisturbed tissues. We used pyrosequencing and phylogenetic analyses of the 16S rDNA gene. We identified several HAPT, and focused on four genera (Propionibacterium, Staphylococcus, Clostridium, and Burkholderia). The majority of the bacterial sequences in the genus Propionibacterium, from grapevine leaf and stem, were identified as P. acnes. Clostridia were detected in leaves and stems, but their number was much higher in leaves after enrichment. HAPT were indentified both in leaves and wood of grapevines. This depicts the ability of these taxa to be internalized within plant tissues and maintain their population levels in a variety of environments. Our analysis highlighted the presence of HAPT in the grapevine endosphere and unexpected occurrence of these bacterial taxa in this atypical environment.
Collapse
Affiliation(s)
- Sohail Yousaf
- Sustainable Agro-Ecosystems and Bioresources Department, Research and Innovation Centre, Fondazione Edmund Mach San Michele all'Adige, Italy ; Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | - Daniela Bulgari
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano Milano, Italy
| | - Alessandro Bergna
- Sustainable Agro-Ecosystems and Bioresources Department, Research and Innovation Centre, Fondazione Edmund Mach San Michele all'Adige, Italy ; Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano Milano, Italy
| | - Michael Pancher
- Sustainable Agro-Ecosystems and Bioresources Department, Research and Innovation Centre, Fondazione Edmund Mach San Michele all'Adige, Italy
| | - Fabio Quaglino
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano Milano, Italy
| | - Paola Casati
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano Milano, Italy
| | - Andrea Campisano
- Sustainable Agro-Ecosystems and Bioresources Department, Research and Innovation Centre, Fondazione Edmund Mach San Michele all'Adige, Italy
| |
Collapse
|
69
|
Franz E, Schijven J, de Roda Husman AM, Blaak H. Meta-regression analysis of commensal and pathogenic Escherichia coli survival in soil and water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:6763-71. [PMID: 24839874 DOI: 10.1021/es501677c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The extent to which pathogenic and commensal E. coli (respectively PEC and CEC) can survive, and which factors predominantly determine the rate of decline, are crucial issues from a public health point of view. The goal of this study was to provide a quantitative summary of the variability in E. coli survival in soil and water over a broad range of individual studies and to identify the most important sources of variability. To that end, a meta-regression analysis on available literature data was conducted. The considerable variation in reported decline rates indicated that the persistence of E. coli is not easily predictable. The meta-analysis demonstrated that for soil and water, the type of experiment (laboratory or field), the matrix subtype (type of water and soil), and temperature were the main factors included in the regression analysis. A higher average decline rate in soil of PEC compared with CEC was observed. The regression models explained at best 57% of the variation in decline rate in soil and 41% of the variation in decline rate in water. This indicates that additional factors, not included in the current meta-regression analysis, are of importance but rarely reported. More complete reporting of experimental conditions may allow future inference on the global effects of these variables on the decline rate of E. coli.
Collapse
Affiliation(s)
- Eelco Franz
- National Institute for Public Health and the Environment (RIVM), Centre Infectious Disease Control, Bilthoven, The Netherlands
| | | | | | | |
Collapse
|
70
|
Holmes A, Birse L, Jackson RW, Holden NJ. An optimized method for the extraction of bacterial mRNA from plant roots infected with Escherichia coli O157:H7. Front Microbiol 2014; 5:286. [PMID: 25018749 PMCID: PMC4071639 DOI: 10.3389/fmicb.2014.00286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/23/2014] [Indexed: 01/08/2023] Open
Abstract
Analysis of microbial gene expression during host colonization provides valuable information on the nature of interaction, beneficial or pathogenic, and the adaptive processes involved. Isolation of bacterial mRNA for in planta analysis can be challenging where host nucleic acid may dominate the preparation, or inhibitory compounds affect downstream analysis, e.g., quantitative reverse transcriptase PCR (qPCR), microarray, or RNA-seq. The goal of this work was to optimize the isolation of bacterial mRNA of food-borne pathogens from living plants. Reported methods for recovery of phytopathogen-infected plant material, using hot phenol extraction and high concentration of bacterial inoculation or large amounts of infected tissues, were found to be inappropriate for plant roots inoculated with Escherichia coli O157:H7. The bacterial RNA yields were too low and increased plant material resulted in a dominance of plant RNA in the sample. To improve the yield of bacterial RNA and reduce the number of plants required, an optimized method was developed which combines bead beating with directed bacterial lysis using SDS and lysozyme. Inhibitory plant compounds, such as phenolics and polysaccharides, were counteracted with the addition of high-molecular-weight polyethylene glycol and hexadecyltrimethyl ammonium bromide. The new method increased the total yield of bacterial mRNA substantially and allowed assessment of gene expression by qPCR. This method can be applied to other bacterial species associated with plant roots, and also in the wider context of food safety.
Collapse
Affiliation(s)
- Ashleigh Holmes
- Cell and Molecular Sciences, The James Hutton Institute Invergowrie, Dundee, UK
| | - Louise Birse
- Cell and Molecular Sciences, The James Hutton Institute Invergowrie, Dundee, UK
| | - Robert W Jackson
- School of Biological Sciences, The University of Reading Knight Building, Whiteknights, Reading, UK
| | - Nicola J Holden
- Cell and Molecular Sciences, The James Hutton Institute Invergowrie, Dundee, UK
| |
Collapse
|
71
|
One Health and Food-Borne Disease: SalmonellaTransmission between Humans, Animals, and Plants. One Health 2014. [DOI: 10.1128/9781555818432.ch9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
|
72
|
van Overbeek LS, van Doorn J, Wichers JH, van Amerongen A, van Roermund HJW, Willemsen PTJ. The arable ecosystem as battleground for emergence of new human pathogens. Front Microbiol 2014; 5:104. [PMID: 24688484 PMCID: PMC3960585 DOI: 10.3389/fmicb.2014.00104] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/27/2014] [Indexed: 01/10/2023] Open
Abstract
Disease incidences related to Escherichia coli and Salmonella enterica infections by consumption of (fresh) vegetables, sprouts, and occasionally fruits made clear that these pathogens are not only transmitted to humans via the "classical" routes of meat, eggs, and dairy products, but also can be transmitted to humans via plants or products derived from plants. Nowadays, it is of major concern that these human pathogens, especially the ones belonging to the taxonomical family of Enterobacteriaceae, become adapted to environmental habitats without losing their virulence to humans. Adaptation to the plant environment would lead to longer persistence in plants, increasing their chances on transmission to humans via consumption of plant-derived food. One of the mechanisms of adaptation to the plant environment in human pathogens, proposed in this paper, is horizontal transfer of genes from different microbial communities present in the arable ecosystem, like the ones originating from soil, animal digestive track systems (manure), water and plants themselves. Genes that would confer better adaptation to the phytosphere might be genes involved in plant colonization, stress resistance and nutrient acquisition and utilization. Because human pathogenic enterics often were prone to genetic exchanges via phages and conjugative plasmids, it was postulated that these genetic elements may be hold key responsible for horizontal gene transfers between human pathogens and indigenous microbes in agroproduction systems. In analogy to zoonosis, we coin the term phytonosis for a human pathogen that is transmitted via plants and not exclusively via animals.
Collapse
Affiliation(s)
- Leonard S van Overbeek
- Plant Research International, Wageningen University and Research Centre Wageningen, Netherlands
| | - Joop van Doorn
- Applied Plant Research, Wageningen University and Research Centre Lisse, Netherlands
| | - Jan H Wichers
- Food and Biobased Research, Wageningen University and Research Centre Wageningen, Netherlands
| | - Aart van Amerongen
- Food and Biobased Research, Wageningen University and Research Centre Wageningen, Netherlands
| | - Herman J W van Roermund
- Central Veterinary Institute, Wageningen University and Research Centre Lelystad, Netherlands
| | - Peter T J Willemsen
- Central Veterinary Institute, Wageningen University and Research Centre Lelystad, Netherlands
| |
Collapse
|
73
|
Holden N, Wright F, MacKenzie K, Marshall J, Mitchell S, Mahajan A, Wheatley R, Daniell T. Prevalence and diversity of Escherichia coli
isolated from a barley trial supplemented with bulky organic soil amendments: green compost and bovine slurry. Lett Appl Microbiol 2013; 58:205-12. [DOI: 10.1111/lam.12180] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/10/2013] [Accepted: 10/10/2013] [Indexed: 11/29/2022]
Affiliation(s)
- N.J. Holden
- The James Hutton Institute; Invergowrie Dundee UK
| | - F. Wright
- Biomathematics & Statistics Scotland; BioSS Office; Invergowrie Dundee UK
| | - K. MacKenzie
- Biomathematics & Statistics Scotland; BioSS Office; Invergowrie Dundee UK
| | - J. Marshall
- The James Hutton Institute; Invergowrie Dundee UK
| | - S. Mitchell
- The James Hutton Institute; Invergowrie Dundee UK
| | - A. Mahajan
- The Roslin Institute; R(D)SVS; University of Edinburgh; Easter Bush Midlothian UK
| | - R. Wheatley
- The James Hutton Institute; Invergowrie Dundee UK
| | - T.J. Daniell
- The James Hutton Institute; Invergowrie Dundee UK
| |
Collapse
|
74
|
Rossez Y, Holmes A, Wolfson EB, Gally DL, Mahajan A, Pedersen HL, Willats WG, Toth IK, Holden NJ. Flagella interact with ionic plant lipids to mediate adherence of pathogenicEscherichia colito fresh produce plants. Environ Microbiol 2013; 16:2181-95. [DOI: 10.1111/1462-2920.12315] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/08/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Yannick Rossez
- Cellular and Molecular Sciences; James Hutton Institute; Dundee Scotland UK
| | - Ashleigh Holmes
- Cellular and Molecular Sciences; James Hutton Institute; Dundee Scotland UK
| | - Eliza B. Wolfson
- The Roslin Institute Division of Infection and Immunity; University of Edinburgh, R(D)SVS; Edinburgh EH25 9RG UK
| | - David L. Gally
- The Roslin Institute Division of Infection and Immunity; University of Edinburgh, R(D)SVS; Edinburgh EH25 9RG UK
| | - Arvind Mahajan
- The Roslin Institute Division of Infection and Immunity; University of Edinburgh, R(D)SVS; Edinburgh EH25 9RG UK
| | | | - William G.T. Willats
- Department of Plant Biology and Biotechnology; University of Copenhagen; Denmark
| | - Ian K. Toth
- Cellular and Molecular Sciences; James Hutton Institute; Dundee Scotland UK
| | - Nicola J. Holden
- Cellular and Molecular Sciences; James Hutton Institute; Dundee Scotland UK
| |
Collapse
|
75
|
Mendes R, Garbeva P, Raaijmakers JM. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 2013; 37:634-63. [DOI: 10.1111/1574-6976.12028] [Citation(s) in RCA: 1382] [Impact Index Per Article: 115.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 05/22/2013] [Accepted: 05/27/2013] [Indexed: 12/18/2022] Open
|
76
|
Hernández-Reyes C, Schikora A. Salmonella, a cross-kingdom pathogen infecting humans and plants. FEMS Microbiol Lett 2013; 343:1-7. [PMID: 23488473 DOI: 10.1111/1574-6968.12127] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 12/21/2022] Open
Abstract
Infections with non-typhoidal Salmonella strains are constant and are a non-negligible threat to the human population. In the last two decades, salmonellosis outbreaks have increasingly been associated with infected fruits and vegetables. For a long time, Salmonellae were assumed to survive on plants after a more or less accidental infection. However, this notion has recently been challenged. Studies on the infection mechanism in vegetal hosts, as well as on plant immune systems, revealed an active infection process resembling in certain features the infection in animals. On one hand, Salmonella requires the type III secretion systems to effectively infect plants and to suppress their resistance mechanisms. On the other hand, plants recognize these bacteria and react to the infection with an induced defense mechanism similar to the reaction to other plant pathogens. In this review, we present the newest reports on the interaction between Salmonellae and plants. We discuss the possible ways used by these bacteria to infect plants as well as the plant responses to the infection. The recent findings indicate that plants play a central role in the dissemination of Salmonella within the ecosystem.
Collapse
Affiliation(s)
- Casandra Hernández-Reyes
- Institute for Phytopathology and Applied Zoology (IPAZ), Research Center for BioSystems, Land Use and Nutrition, Justus-Liebig University Giessen, Giessen, Germany
| | | |
Collapse
|
77
|
Wei CL, Chao SH, Tsai WB, Lee PS, Tsau NH, Chen JS, Lai WL, Tu JCY, Tsai YC. Analysis of bacterial diversity during the fermentation of inyu, a high-temperature fermented soy sauce, using nested PCR-denaturing gradient gel electrophoresis and the plate count method. Food Microbiol 2013; 33:252-61. [PMID: 23200659 DOI: 10.1016/j.fm.2012.10.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 07/14/2012] [Accepted: 10/02/2012] [Indexed: 12/14/2022]
Abstract
The diversity of bacteria associated with the fermentation of inyu, also known as black soy sauce, was studied through the nested PCR-denaturing gradient gel electrophoresis (DGGE) of samples collected from the fermentation stages of the inyu production process. The DGGE profiles targeted the bacterial 16S rDNA and revealed the presence of Citrobacter farmeri, Enterobacter cloacae, Enterobacter hormaechei, Enterococcus faecium, Klebsiella pneumoniae, Pantoea agglomerans, Salmonella enterica, Serratia marcescens, Staphylococcus sciuri and Weissella confusa. The bacterial compositions of 4 fermented samples were further elucidated using the plate count method. The bacteria isolated from the koji-making stage exhibited the highest diversity; Brachybacterium rhamnosum, E. hormaechei, K. pneumoniae, Kurthia gibsonii, Pantoea dispersa, Staphylococcus gallinarum, Staphylococcus kloosii and S. sciuri were identified. Koji collected during the preincubation stage presented the largest cell counts, and E. hormaechei, K. pneumoniae, E. cloacae and Enterobacter pulveris were identified. In brine samples aged for 7 and 31 days, the majority of the bacteria isolated belonged to 4 Bacillus species, but 4 Staphylococcus species and Delftia tsuruhatensis were also detected. This study demonstrates the benefits of using a combined approach to obtain a more complete picture of microbial populations and provides useful information for the control or development of bacterial flora during inyu fermentation.
Collapse
Affiliation(s)
- Chia-Li Wei
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi City 60004, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Wright KM, Chapman S, McGeachy K, Humphris S, Campbell E, Toth IK, Holden NJ. The endophytic lifestyle of Escherichia coli O157:H7: quantification and internal localization in roots. PHYTOPATHOLOGY 2013; 103:333-40. [PMID: 23506361 DOI: 10.1094/phyto-08-12-0209-fi] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The foodborne pathogen Escherichia coli O157:H7 is increasingly associated with fresh produce (fruit and vegetables). Bacterial colonization of fresh produce plants can occur to high levels on the external tissue but bacteria have also been detected within plant tissue. However, questions remain about the extent of internalization, its molecular basis, and internal location of the bacteria. We have determined the extent of internalization of E. coli O157:H7 in live spinach and lettuce plants and used high-resolution microscopy to examine colony formation in roots and pathways to internalization. E. coli O157:H7 was found within internal tissue of both produce species. Colonization occurred within the apoplast between plant cells. Furthermore, colonies were detected inside the cell wall of epidermal and cortical cells of spinach and Nicotiana benthamiana roots. Internal colonization of epidermal cells resembled that of the phytopathogen Pectobacterium atrosepticum on potato. In contrast, only sporadic cells of the laboratory strain of E. coli K-12 were found on spinach, with no internal bacteria evident. The data extend previous findings that internal colonization of plants appears to be limited to a specific group of plant-interacting bacteria, including E. coli O157:H7, and demonstrates its ability to invade the cells of living plants.
Collapse
|
79
|
Van der Linden I, Cottyn B, Uyttendaele M, Vlaemynck G, Maes M, Heyndrickx M. Long-term survival of Escherichia coli O157:H7 and Salmonella enterica on butterhead lettuce seeds, and their subsequent survival and growth on the seedlings. Int J Food Microbiol 2013; 161:214-9. [PMID: 23334101 DOI: 10.1016/j.ijfoodmicro.2012.12.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/19/2012] [Accepted: 12/23/2012] [Indexed: 11/20/2022]
Abstract
The long-term survival of enteric pathogens on butterhead lettuce seeds, and their subsequent survival and growth on seedlings were investigated. Lettuce seeds were inoculated at a high level with two Salmonella enterica and two Escherichia coli O157:H7 strains each (±8 log₁₀ CFU/g seed) and the survival of the pathogens was monitored over two years using standard plating techniques on selective medium. The Salmonella strains (serovars Typhimurium and Thompson) survived significantly better on the seeds than the E. coli O157:H7 strains (MB3885 and NCTC12900). When individual seeds were tested two years after inoculation, Salmonella was recovered from each individual seed, whereas E. coli O157:H7 only from 4% to 14% of the seeds, depending on the recovery method. When contaminated stored seeds were germinated and the seedlings examined for presence of the pathogens, it was clear that both pathogens were able to proliferate on the seedlings. Pathogen counts up to 5.92 log₁₀ CFU and 4.41 log₁₀ CFU per positive seedling were observed for Salmonella and E. coli O157:H7, respectively. Our study not only confirms the long-term survival of enteric pathogens on seeds but also shows that the pathogens maintain their ability to resuscitate and proliferate on the seedlings. Seeds or seedlings should be considered as contamination sources for the cultivation of leafy vegetables such as butterhead lettuce grown in greenhouses.
Collapse
Affiliation(s)
- Inge Van der Linden
- Institute for Agricultural and Fisheries Research-ILVO, Technology and Food Science Unit-Food Safety, Brusselsesteenweg 370, B-9090 Melle, Belgium
| | | | | | | | | | | |
Collapse
|
80
|
Phukon M, Sahu P, Srinath R, Nithya A, Babu S. Unusual Occurrence of Staphylococcus warneri
as Endophyte in Fresh Fruits along with Usual Bacillus
spp. J Food Saf 2013. [DOI: 10.1111/jfs.12028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Madhurima Phukon
- School of Bio Sciences and Technology; VIT University; Vellore 632014 India
| | - Priyanka Sahu
- School of Bio Sciences and Technology; VIT University; Vellore 632014 India
| | - Rajaraman Srinath
- School of Bio Sciences and Technology; VIT University; Vellore 632014 India
| | - Angamuthu Nithya
- School of Bio Sciences and Technology; VIT University; Vellore 632014 India
| | - Subramanian Babu
- School of Bio Sciences and Technology; VIT University; Vellore 632014 India
| |
Collapse
|
81
|
Mitter B, Brader G, Afzal M, Compant S, Naveed M, Trognitz F, Sessitsch A. Advances in Elucidating Beneficial Interactions Between Plants, Soil, and Bacteria. ADVANCES IN AGRONOMY 2013:381-445. [PMID: 0 DOI: 10.1016/b978-0-12-407685-3.00007-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
|
82
|
Leimbach A, Hacker J, Dobrindt U. E. coli as an All-Rounder: The Thin Line Between Commensalism and Pathogenicity. Curr Top Microbiol Immunol 2013; 358:3-32. [PMID: 23340801 DOI: 10.1007/82_2012_303] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
83
|
Ramos-Morales F. Impact of Salmonella enterica Type III Secretion System Effectors on the Eukaryotic Host Cell. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/787934] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Type III secretion systems are molecular machines used by many Gram-negative bacterial pathogens to inject proteins, known as effectors, directly into eukaryotic host cells. These proteins manipulate host signal transduction pathways and cellular processes to the pathogen’s advantage. Salmonella enterica possesses two virulence-related type III secretion systems that deliver more than forty effectors. This paper reviews our current knowledge about the functions, biochemical activities, host targets, and impact on host cells of these effectors. First, the concerted action of effectors at the cellular level in relevant aspects of the interaction between Salmonella and its hosts is analyzed. Then, particular issues that will drive research in the field in the near future are discussed. Finally, detailed information about each individual effector is provided.
Collapse
Affiliation(s)
- Francisco Ramos-Morales
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012 Sevilla, Spain
| |
Collapse
|
84
|
Downie H, Holden N, Otten W, Spiers AJ, Valentine TA, Dupuy LX. Transparent soil for imaging the rhizosphere. PLoS One 2012; 7:e44276. [PMID: 22984484 PMCID: PMC3439476 DOI: 10.1371/journal.pone.0044276] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 07/31/2012] [Indexed: 11/21/2022] Open
Abstract
Understanding of soil processes is essential for addressing the global issues of food security, disease transmission and climate change. However, techniques for observing soil biology are lacking. We present a heterogeneous, porous, transparent substrate for in situ 3D imaging of living plants and root-associated microorganisms using particles of the transparent polymer, Nafion, and a solution with matching optical properties. Minerals and fluorescent dyes were adsorbed onto the Nafion particles for nutrient supply and imaging of pore size and geometry. Plant growth in transparent soil was similar to that in soil. We imaged colonization of lettuce roots by the human bacterial pathogen Escherichia coli O157:H7 showing micro-colony development. Micro-colonies may contribute to bacterial survival in soil. Transparent soil has applications in root biology, crop genetics and soil microbiology.
Collapse
Affiliation(s)
- Helen Downie
- The James Hutton Institute, Invergowrie, Dundee, United Kingdom
- The SIMBIOS Centre, University of Abertay Dundee, Bell Street, Dundee, United Kingdom
| | - Nicola Holden
- The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Wilfred Otten
- The SIMBIOS Centre, University of Abertay Dundee, Bell Street, Dundee, United Kingdom
| | - Andrew J. Spiers
- The SIMBIOS Centre, University of Abertay Dundee, Bell Street, Dundee, United Kingdom
| | | | - Lionel X. Dupuy
- The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| |
Collapse
|
85
|
Méric G, Kemsley EK, Falush D, Saggers EJ, Lucchini S. Phylogenetic distribution of traits associated with plant colonization in Escherichia coli. Environ Microbiol 2012; 15:487-501. [PMID: 22934605 DOI: 10.1111/j.1462-2920.2012.02852.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 05/13/2012] [Accepted: 07/15/2012] [Indexed: 02/01/2023]
Abstract
Plants are increasingly considered as secondary reservoirs for commensal and pathogenic Escherichia coli strains, but the ecological and functional factors involved in this association are not clear. To address this question, we undertook a comparative approach combining phenotypic and phylogenetic analyses of E. coli isolates from crops and mammalian hosts. Phenotypic profiling revealed significant differences according to the source of isolation. Notably, isolates from plants displayed higher biofilm and extracellular matrix production and higher frequency of utilization of sucrose and the aromatic compound p-hydroxyphenylacetic acid. However, when compared with mammalian-associated strains, they reached lower growth yields on many C-sources commonly used by E. coli. Strikingly, we observed a strong association between phenotypes and E. coli phylogenetic groups. Strains belonging to phylogroup B1 were more likely to harbour traits indicative of a higher ability to colonize plants, whereas phylogroup A and B2 isolates displayed phenotypes linked to an animal-associated lifestyle. This work provides clear indications that E. coli phylogroups are specifically affected by niche-specific selective pressures, and provides an explanation on why E. coli population structures vary in natural environments, implying that different lineages in E. coli have substantially different transmission ecology.
Collapse
Affiliation(s)
- Guillaume Méric
- Gut Health and Food Safety, Institute of Food Research, Norwich, NR4 7UA, UK
| | | | | | | | | |
Collapse
|
86
|
Schikora M, Neupane B, Madhogaria S, Koch W, Cremers D, Hirt H, Kogel KH, Schikora A. An image classification approach to analyze the suppression of plant immunity by the human pathogen Salmonella Typhimurium. BMC Bioinformatics 2012; 13:171. [PMID: 22812426 PMCID: PMC3519609 DOI: 10.1186/1471-2105-13-171] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/11/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The enteric pathogen Salmonella is the causative agent of the majority of food-borne bacterial poisonings. Resent research revealed that colonization of plants by Salmonella is an active infection process. Salmonella changes the metabolism and adjust the plant host by suppressing the defense mechanisms. In this report we developed an automatic algorithm to quantify the symptoms caused by Salmonella infection on Arabidopsis. RESULTS The algorithm is designed to attribute image pixels into one of the two classes: healthy and unhealthy. The task is solved in three steps. First, we perform segmentation to divide the image into foreground and background. In the second step, a support vector machine (SVM) is applied to predict the class of each pixel belonging to the foreground. And finally, we do refinement by a neighborhood-check in order to omit all falsely classified pixels from the second step. The developed algorithm was tested on infection with the non-pathogenic E. coli and the plant pathogen Pseudomonas syringae and used to study the interaction between plants and Salmonella wild type and T3SS mutants. We proved that T3SS mutants of Salmonella are unable to suppress the plant defenses. Results obtained through the automatic analyses were further verified on biochemical and transcriptome levels. CONCLUSION This report presents an automatic pixel-based classification method for detecting "unhealthy" regions in leaf images. The proposed method was compared to existing method and showed a higher accuracy. We used this algorithm to study the impact of the human pathogenic bacterium Salmonella Typhimurium on plants immune system. The comparison between wild type bacteria and T3SS mutants showed similarity in the infection process in animals and in plants. Plant epidemiology is only one possible application of the proposed algorithm, it can be easily extended to other detection tasks, which also rely on color information, or even extended to other features.
Collapse
Affiliation(s)
- Marek Schikora
- Department Sensor Data and Information Fusion, Fraunhofer FKIE, 53343 Wachtberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Schikora A, Garcia AV, Hirt H. Plants as alternative hosts for Salmonella. TRENDS IN PLANT SCIENCE 2012; 17:245-249. [PMID: 22513107 DOI: 10.1016/j.tplants.2012.03.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 03/09/2012] [Accepted: 03/19/2012] [Indexed: 05/31/2023]
Abstract
Recent findings show that many human pathogenic bacteria can use multiple host organisms. For example, Salmonella Typhimurium can use plants as alternative hosts to humans and other animals. These bacteria are able to adhere to plant surfaces and actively infect the interior of plants. Similarly to the infection of animal cells, S. Typhimurium suppresses plant defense responses by a type III secretion mechanism, indicating that these bacteria possess a dedicated multi-kingdom infection strategy, raising the question of host specificity. In addition, evidence is accumulating that the interaction of Salmonella with plants is an active process with different levels of specificity, because different Salmonella serovars show variations in pathogenicity, and different plant species reveal various levels of resistance towards these bacteria.
Collapse
Affiliation(s)
- Adam Schikora
- Institute for Plant Pathology and Applied Zoology, Research Centre for BioSystems, Land Use and Nutrition, JL University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | | | | |
Collapse
|
88
|
Pritchard L, Holden NJ, Bielaszewska M, Karch H, Toth IK. Alignment-free design of highly discriminatory diagnostic primer sets for Escherichia coli O104:H4 outbreak strains. PLoS One 2012; 7:e34498. [PMID: 22496820 PMCID: PMC3320637 DOI: 10.1371/journal.pone.0034498] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 03/01/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND An Escherichia coli O104:H4 outbreak in Germany in summer 2011 caused 53 deaths, over 4000 individual infections across Europe, and considerable economic, social and political impact. This outbreak was the first in a position to exploit rapid, benchtop high-throughput sequencing (HTS) technologies and crowdsourced data analysis early in its investigation, establishing a new paradigm for rapid response to disease threats. We describe a novel strategy for design of diagnostic PCR primers that exploited this rapid draft bacterial genome sequencing to distinguish between E. coli O104:H4 outbreak isolates and other pathogenic E. coli isolates, including the historical hæmolytic uræmic syndrome (HUSEC) E. coli HUSEC041 O104:H4 strain, which possesses the same serotype as the outbreak isolates. METHODOLOGY/PRINCIPAL FINDINGS Primers were designed using a novel alignment-free strategy against eleven draft whole genome assemblies of E. coli O104:H4 German outbreak isolates from the E. coli O104:H4 Genome Analysis Crowd-Sourcing Consortium website, and a negative sequence set containing 69 E. coli chromosome and plasmid sequences from public databases. Validation in vitro against 21 'positive' E. coli O104:H4 outbreak and 32 'negative' non-outbreak EHEC isolates indicated that individual primer sets exhibited 100% sensitivity for outbreak isolates, with false positive rates of between 9% and 22%. A minimal combination of two primers discriminated between outbreak and non-outbreak E. coli isolates with 100% sensitivity and 100% specificity. CONCLUSIONS/SIGNIFICANCE Draft genomes of isolates of disease outbreak bacteria enable high throughput primer design and enhanced diagnostic performance in comparison to traditional molecular assays. Future outbreak investigations will be able to harness HTS rapidly to generate draft genome sequences and diagnostic primer sets, greatly facilitating epidemiology and clinical diagnostics. We expect that high throughput primer design strategies will enable faster, more precise responses to future disease outbreaks of bacterial origin, and help to mitigate their societal impact.
Collapse
Affiliation(s)
- Leighton Pritchard
- Information and Computational Sciences, James Hutton Institute, Dundee, Scotland, United Kingdom.
| | | | | | | | | |
Collapse
|
89
|
Brankatschk K, Blom J, Goesmann A, Smits T, Duffy B. Comparative genomic analysis of Salmonella enterica subsp. enterica serovar Weltevreden foodborne strains with other serovars. Int J Food Microbiol 2012; 155:247-56. [DOI: 10.1016/j.ijfoodmicro.2012.01.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/14/2011] [Accepted: 01/29/2012] [Indexed: 11/24/2022]
|
90
|
|
91
|
Bezanson G, Delaquis P, Bach S, McKellar R, Topp E, Gill A, Blais B, Gilmour M. Comparative examination of Escherichia coli O157:H7 survival on romaine lettuce and in soil at two independent experimental sites. J Food Prot 2012; 75:480-7. [PMID: 22410221 DOI: 10.4315/0362-028x.jfp-11-306] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Little is known about the influence of abiotic factors such as climate and soil chemistry on the survival of Escherichia coli O157:H7 in field lettuce. We applied a nalidixic acid-resistant derivative of strain ATCC 700728 to field-grown romaine lettuce in two regions in Canada characterized by large variances in soil type and climate. Surviving populations in soil and on lettuce leaves were estimated on sorbitol MacConkey agar supplemented with nalidixic acid. Data were fitted with the Weibull decline function to permit comparison of decay rates in the two experimental sites. E. coli O157:H7 populations fell from 10⁵ to <10² CFU/g on leaves, and <10³ CFU/g in soil within 7 days after inoculation. Analysis revealed there was no significant difference between decay rates at the two experimental sites in either environment. The results of this study suggest that the inherent ecological fitness of E. coli O157:H7 ATCC 700728 determines the extent of survival in the production environment.
Collapse
Affiliation(s)
- Greg Bezanson
- Agriculture and Agri-Food Canada, Atlantic Food and Horticulture Research Centre, 32 Main Street, Kentville, Nova Scotia B4N 1J5, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Functional genomics studies shed light on the nutrition and gene expression of non-typhoidal Salmonella and enterovirulent E. coli in produce. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.06.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
93
|
Oliveira ABAD, Ritter AC, Tondo EC, Cardoso MI. Comparison of Different Washing and Disinfection Protocols Used by Food Services in Southern Brazil for Lettuce (<i>Lactuca sativa</i>). ACTA ACUST UNITED AC 2012. [DOI: 10.4236/fns.2012.31006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
94
|
Ilic S, Rajić A, Britton CJ, Grasso E, Wilkins W, Totton S, Wilhelm B, Waddell L, LeJeune JT. A scoping study characterizing prevalence, risk factor and intervention research, published between 1990 and 2010, for microbial hazards in leafy green vegetables. Food Control 2012. [DOI: 10.1016/j.foodcont.2011.06.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
95
|
|
96
|
Duclairoir Poc C, Groboillot A, Lesouhaitier O, Morin JP, Orange N, Feuilloley MJ. Caenorhabditis elegans: a model to monitor bacterial air quality. BMC Res Notes 2011; 4:503. [PMID: 22099854 PMCID: PMC3279514 DOI: 10.1186/1756-0500-4-503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 11/18/2011] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Low environmental air quality is a significant cause of mortality and morbidity and this question is now emerging as a main concern of governmental authorities. Airborne pollution results from the combination of chemicals, fine particles, and micro-organisms quantitatively or qualitatively dangerous for health or for the environment. Increasing regulations and limitations for outdoor air quality have been decreed in regards to chemicals and particles contrary to micro-organisms. Indeed, pertinent and reliable tests to evaluate this biohazard are scarce. In this work, our purpose was to evaluate the Caenorhaditis elegans killing test, a model considered as an equivalent to the mouse acute toxicity test in pharmaceutical industry, in order to monitor air bacterial quality. FINDINGS The present study investigates the bacterial population in dust clouds generated during crop ship loading in harbor installations (Rouen harbor, Normandy, France). With a biocollector, airborne bacteria were impacted onto the surface of agar medium. After incubation, a replicate of the colonies on a fresh agar medium was done using a velvet. All the replicated colonies were pooled creating the "Total Air Sample". Meanwhile, all the colonies on the original plate were isolated. Among which, five representative bacterial strains were chosen. The virulence of these representatives was compared to that of the "Total Air Sample" using the Caenorhaditis elegans killing test. The survival kinetic of nematodes fed with the "Total Air Sample" is consistent with the kinetics obtained using the five different representatives strains. CONCLUSIONS Bacterial air quality can now be monitored in a one shot test using the Caenorhaditis elegans killing test.
Collapse
Affiliation(s)
- Cécile Duclairoir Poc
- Laboratory of Microbiology-Signals and MicroEnvironment, Normandy University, University of Rouen, EA 4312, 55 rue Saint Germain, 27000 Evreux, France.
| | | | | | | | | | | |
Collapse
|
97
|
Yousaf S, Afzal M, Reichenauer TG, Brady CL, Sessitsch A. Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:2675-83. [PMID: 21700373 DOI: 10.1016/j.envpol.2011.05.031] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 05/17/2011] [Accepted: 05/28/2011] [Indexed: 05/06/2023]
Abstract
The genus Enterobacter comprises a range of beneficial plant-associated bacteria showing plant growth promotion. Enterobacter ludwigii belongs to the Enterobacter cloacae complex and has been reported to include human pathogens but also plant-associated strains with plant beneficial capacities. To assess the role of Enterobacter endophytes in hydrocarbon degradation, plant colonization, abundance and expression of CYP153 genes in different plant compartments, three plant species (Italian ryegrass, birdsfoot trefoil and alfalfa) were grown in sterile soil spiked with 1% diesel and inoculated with three endophytic E. ludwigii strains. Results showed that all strains were capable of hydrocarbon degradation and efficiently colonized the rhizosphere and plant interior. Two strains, ISI10-3 and BRI10-9, showed highest degradation rates of diesel fuel up to 68% and performed best in combination with Italian ryegrass and alfalfa. All strains expressed the CYP153 gene in all plant compartments, indicating an active role in degradation of diesel in association with plants.
Collapse
Affiliation(s)
- Sohail Yousaf
- AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf, Austria
| | | | | | | | | |
Collapse
|
98
|
Schikora A, Virlogeux-Payant I, Bueso E, Garcia AV, Nilau T, Charrier A, Pelletier S, Menanteau P, Baccarini M, Velge P, Hirt H. Conservation of Salmonella infection mechanisms in plants and animals. PLoS One 2011; 6:e24112. [PMID: 21915285 PMCID: PMC3167816 DOI: 10.1371/journal.pone.0024112] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 07/31/2011] [Indexed: 11/19/2022] Open
Abstract
Salmonella virulence in animals depends on effectors injected by Type III Secretion Systems (T3SSs). In this report we demonstrate that Salmonella mutants that are unable to deliver effectors are also compromised in infection of Arabidopsis thaliana plants. Transcriptome analysis revealed that in contrast to wild type bacteria, T3SS mutants of Salmonella are compromised in suppressing highly conserved Arabidopsis genes that play a prominent role during Salmonella infection of animals. We also found that Salmonella originating from infected plants are equally virulent for human cells and mice. These results indicate a high degree of conservation in the defense and infection mechanism of animal and plant hosts during Salmonella infection.
Collapse
Affiliation(s)
- Adam Schikora
- URGV Plant Genomics, INRA/University of Evry, Evry, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Oliveira M, Wijnands L, Abadias M, Aarts H, Franz E. Pathogenic potential of Salmonella Typhimurium DT104 following sequential passage through soil, packaged fresh-cut lettuce and a model gastrointestinal tract. Int J Food Microbiol 2011; 148:149-55. [PMID: 21665311 DOI: 10.1016/j.ijfoodmicro.2011.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 05/10/2011] [Accepted: 05/16/2011] [Indexed: 12/25/2022]
Abstract
From a quantitative microbial risk assessment perspective it is important to know whether certain food environments influence the pathogenic potential of pathogens and to what extent. The purpose of the present study was to examine the pathogenic potential of S. Typhimurium DT104, measured as the capability to survive a simulated gastrointestinal tract system and the capability of adhering to and invading differentiated Caco-2 cells, after sequential incubation (without intermediate culturing) into soil, lettuce and cut lettuce stored under modified atmosphere (MAP) conditions. Two S. Typhimurium DT104 strains were used, one isolated from a pig carcass and one isolated from lettuce. The most important result of the present study is that the sequential incubation of S. Typhimurium in soil and lettuce slightly increased the capability of surviving the simulated gastric fluid, increased the capability to grow in the simulated intestinal fluid but decreased the capability of epithelial attachment and invasion and decreased the overall survival probability of the gastrointestinal tract system. Some variation in responses between the strains was observed, with the lettuce strain maintaining higher epithelial attachment capability and the carcass strains maintaining higher epithelial invasion capability. This study provided quantitative data on the effect of environmental and food matrices on the pathogenic potential of S. Typhimurium DT104 using a realistic system of sequential incubations in environmental and food matrices, followed by simulated gastrointestinal tract passage without intermediate culturing. These results could aid the development of more realistic quantitative microbial risk assessments.
Collapse
Affiliation(s)
- Marcia Oliveira
- University of Lleida, UDL-IRTA Centre, XaRTA-Postharvest, Lleida, Spain
| | | | | | | | | |
Collapse
|
100
|
Noreen S, Ali B, Hasnain S. Growth promotion of Vigna mungo (L.) by Pseudomonas spp. exhibiting auxin production and ACC-deaminase activity. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0277-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|