51
|
Gales JP, Kubina J, Geldreich A, Dimitrova M. Strength in Diversity: Nuclear Export of Viral RNAs. Viruses 2020; 12:E1014. [PMID: 32932882 PMCID: PMC7551171 DOI: 10.3390/v12091014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
The nuclear export of cellular mRNAs is a complex process that requires the orchestrated participation of many proteins that are recruited during the early steps of mRNA synthesis and processing. This strategy allows the cell to guarantee the conformity of the messengers accessing the cytoplasm and the translation machinery. Most transcripts are exported by the exportin dimer Nuclear RNA export factor 1 (NXF1)-NTF2-related export protein 1 (NXT1) and the transcription-export complex 1 (TREX1). Some mRNAs that do not possess all the common messenger characteristics use either variants of the NXF1-NXT1 pathway or CRM1, a different exportin. Viruses whose mRNAs are synthesized in the nucleus (retroviruses, the vast majority of DNA viruses, and influenza viruses) exploit both these cellular export pathways. Viral mRNAs hijack the cellular export machinery via complex secondary structures recognized by cellular export factors and/or viral adapter proteins. This way, the viral transcripts succeed in escaping the host surveillance system and are efficiently exported for translation, allowing the infectious cycle to proceed. This review gives an overview of the cellular mRNA nuclear export mechanisms and presents detailed insights into the most important strategies that viruses use to export the different forms of their RNAs from the nucleus to the cytoplasm.
Collapse
Affiliation(s)
- Jón Pol Gales
- Institut de Biologie Moléculaire des Plantes, The French National Center for Scientific Research (CNRS) UPR2357, Université de Strasbourg, F-67084 Strasbourg, France; (J.P.G.); (J.K.); (A.G.)
| | - Julie Kubina
- Institut de Biologie Moléculaire des Plantes, The French National Center for Scientific Research (CNRS) UPR2357, Université de Strasbourg, F-67084 Strasbourg, France; (J.P.G.); (J.K.); (A.G.)
- SVQV UMR-A 1131, INRAE, Université de Strasbourg, F-68000 Colmar, France
| | - Angèle Geldreich
- Institut de Biologie Moléculaire des Plantes, The French National Center for Scientific Research (CNRS) UPR2357, Université de Strasbourg, F-67084 Strasbourg, France; (J.P.G.); (J.K.); (A.G.)
| | - Maria Dimitrova
- Institut de Biologie Moléculaire des Plantes, The French National Center for Scientific Research (CNRS) UPR2357, Université de Strasbourg, F-67084 Strasbourg, France; (J.P.G.); (J.K.); (A.G.)
| |
Collapse
|
52
|
Sendino M, Omaetxebarria MJ, Prieto G, Rodriguez JA. Using a Simple Cellular Assay to Map NES Motifs in Cancer-Related Proteins, Gain Insight into CRM1-Mediated NES Export, and Search for NES-Harboring Micropeptides. Int J Mol Sci 2020; 21:E6341. [PMID: 32882917 PMCID: PMC7503480 DOI: 10.3390/ijms21176341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/26/2022] Open
Abstract
The nuclear export receptor CRM1 (XPO1) recognizes and binds specific sequence motifs termed nuclear export signals (NESs) in cargo proteins. About 200 NES motifs have been identified, but over a thousand human proteins are potential CRM1 cargos, and most of their NESs remain to be identified. On the other hand, the interaction of NES peptides with the "NES-binding groove" of CRM1 was studied in detail using structural and biochemical analyses, but a better understanding of CRM1 function requires further investigation of how the results from these in vitro studies translate into actual NES export in a cellular context. Here we show that a simple cellular assay, based on a recently described reporter (SRVB/A), can be applied to identify novel potential NESs motifs, and to obtain relevant information on different aspects of CRM1-mediated NES export. Using cellular assays, we first map 19 new sequence motifs with nuclear export activity in 14 cancer-related proteins that are potential CRM1 cargos. Next, we investigate the effect of mutations in individual NES-binding groove residues, providing further insight into CRM1-mediated NES export. Finally, we extend the search for CRM1-dependent NESs to a recently uncovered, but potentially vast, set of small proteins called micropeptides. By doing so, we report the first NES-harboring human micropeptides.
Collapse
Affiliation(s)
- Maria Sendino
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Miren Josu Omaetxebarria
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Gorka Prieto
- Department of Communications Engineering, University of the Basque Country (UPV/EHU), 48013 Bilbao, Spain;
| | - Jose Antonio Rodriguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
| |
Collapse
|
53
|
López DJ, Rodríguez JA, Bañuelos S. Nucleophosmin, a multifunctional nucleolar organizer with a role in DNA repair. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140532. [PMID: 32853771 DOI: 10.1016/j.bbapap.2020.140532] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
Nucleophosmin (NPM1) is a mostly nucleolar protein with crucial functions in cell growth and homeostasis, including regulation of ribosome biogenesis and stress response. Such multiple activities rely on its ability to interact with nucleic acids and with hundreds of proteins, as well as on a dynamic subcellular distribution. NPM1 is thus regulated by a complex interplay between localization and interactions, further modulated by post-translational modifications. NPM1 is a homopentamer, with globular domains connected by long, intrinsically disordered linkers. This configuration allows NPM1 to engage in liquid-liquid phase separation phenomena, which could underlie a key role in nucleolar organization. Here, we will discuss NPM1 conformational and functional versatility, emphasizing its emerging, and still largely unexplored, role in DNA damage repair. Since NPM1 is altered in a subtype of acute myeloid leukaemia (AML), we will also present ongoing research on the molecular mechanisms underlying its pathogenic role and potential NPM1-targeting therapeutic strategies.
Collapse
Affiliation(s)
- David J López
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - José A Rodríguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Sonia Bañuelos
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
54
|
Chen C, Kim D, Yun HR, Lee YM, Yogendra B, Bo Z, Kim HE, Min JH, Lee YS, Rim YG, Kim HU, Sung S, Heo JB. Nuclear import of LIKE HETEROCHROMATIN PROTEIN1 is redundantly mediated by importins α-1, α-2 and α-3. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1205-1214. [PMID: 32365248 PMCID: PMC7810169 DOI: 10.1111/tpj.14796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 04/09/2020] [Accepted: 04/24/2020] [Indexed: 05/19/2023]
Abstract
LIKE HETEROCHROMATIN PROTEIN1 (LHP1) encodes the only plant homologue of the metazoan HETEROCHROMATIN PROTEIN1 (HP1) protein family. The LHP1 protein is necessary for proper epigenetic regulation of a range of developmental processes in plants. LHP1 is a transcriptional repressor of flowering-related genes, such as FLOWERING LOCUS T (FT), FLOWERING LOCUS C (FLC), AGAMOUS (AG) and APETALA 3 (AP3). We found that LHP1 interacts with importin α-1 (IMPα-1), importin α-2 (IMPα-2) and importin α-3 (IMPα-3) both in vitro and in vivo. A genetic approach revealed that triple mutation of impα-1, impα-2 and impα-3 resulted in Arabidopsis plants with a rapid flowering phenotype similar to that of plants with mutations in lhp1 due to the upregulation of FT expression. Nuclear targeting of LHP1 was severely impaired in the impα triple mutant, resulting in the de-repression of LHP1 target genes AG, AP3 and SHATTERPROOF 1 as well as FT. Therefore, the importin proteins IMPα-1, -2 and -3 are necessary for the nuclear import of LHP1.
Collapse
Affiliation(s)
- Chong Chen
- Department of Molecular Genetic Biotechnology, Dong-A University, Busan 604-714, Korea
| | - Daewon Kim
- Department of Biotechnology, Dong-A University, Busan 604-714, Korea
| | - Hee Rang Yun
- Department of Molecular Genetic Biotechnology, Dong-A University, Busan 604-714, Korea
| | - Yun Mi Lee
- Department of Molecular Genetic Biotechnology, Dong-A University, Busan 604-714, Korea
| | - Bordiya Yogendra
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA
| | - Zhao Bo
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA
| | - Hae Eun Kim
- Department of Molecular Genetic Biotechnology, Dong-A University, Busan 604-714, Korea
| | - Jun Hong Min
- Department of Molecular Genetic Biotechnology, Dong-A University, Busan 604-714, Korea
| | - Yong-Suk Lee
- Department of Biotechnology, Dong-A University, Busan 604-714, Korea
| | - Yeong Gil Rim
- Systems & Synthetic Agrobiotech Center, Gyeongsang National University, Jinju 660-701 Korea
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 05006 Korea
| | - Sibum Sung
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA
- International Scholar, Kyung-Hee University, Suwon, Korea
- Corresponding author: Tel: +82 51 200 7520; Fax: +82 51 200 7505. ;
| | - Jae Bok Heo
- Department of Molecular Genetic Biotechnology, Dong-A University, Busan 604-714, Korea
- Corresponding author: Tel: +82 51 200 7520; Fax: +82 51 200 7505. ;
| |
Collapse
|
55
|
He Z, Tao D, Xiong J, Lou F, Zhang J, Chen J, Dai W, Sun J, Wang Y. Phosphorylation of 5-LOX: The Potential Set-point of Inflammation. Neurochem Res 2020; 45:2245-2257. [PMID: 32671628 DOI: 10.1007/s11064-020-03090-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/11/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
Inflammation secondary to tissue injuries serves as a double-edged sword that determines the prognosis of tissue repair. As one of the most important enzymes controlling the inflammation process by producing leukotrienes, 5-lipoxygenase (5-LOX, also called 5-LO) has been one of the therapeutic targets in regulating inflammation for a long time. Although a large number of 5-LOX inhibitors have been explored, only a few of them can be applied clinically. Surprisingly, phosphorylation of 5-LOX reveals great significance in regulating the subcellular localization of 5-LOX, which has proven to be an important mechanism underlying the enzymatic activities of 5-LOX. There are at least three phosphorylation sites in 5-LOX jointly to determine the final inflammatory outcomes, and adjustment of phosphorylation of 5-LOX at different phosphorylation sites brings hope to provide an unrecognized means to regulate inflammation. The present review intends to shed more lights into the set-point-like mechanisms of phosphorylation of 5-LOX and its possible clinical application by summarizing the biological properties of 5-LOX, the relationship of 5-LOX with neurodegenerative diseases and brain injuries, the phosphorylation of 5-LOX at different sites, the regulatory effects and mechanisms of phosphorylated 5-LOX upon inflammation, as well as the potential anti-inflammatory application through balancing the phosphorylation-depended set-point.
Collapse
Affiliation(s)
- Zonglin He
- Department of Physiology, Basic Medical School, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China.,Faculty of Medicine, International school, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China
| | - Di Tao
- Department of Physiology, Basic Medical School, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China.,Faculty of Medicine, International school, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China
| | - Jiaming Xiong
- Department of Physiology, Basic Medical School, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China
| | - Fangfang Lou
- Department of Physiology, Basic Medical School, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China
| | - Jiayuan Zhang
- Department of Physiology, Basic Medical School, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China
| | - Jinxia Chen
- Department of Physiology, Basic Medical School, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China
| | - Weixi Dai
- Department of Physiology, Basic Medical School, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China.,Faculty of Medicine, International school, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China
| | - Jing Sun
- Department of Physiology, Basic Medical School, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China
| | - Yuechun Wang
- Department of Physiology, Basic Medical School, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China.
| |
Collapse
|
56
|
Characterization of the Importin-β binding domain in nuclear import receptor KPNA7. Biochem J 2020; 476:3413-3434. [PMID: 31642884 DOI: 10.1042/bcj20190717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022]
Abstract
The KPNA family of mammalian nuclear import receptors are encoded by seven genes that generate isoforms with 42-86% identity. KPNA isoforms have the same protein architecture and share the functional property of nuclear localization signal (NLS) recognition, however, the tissue and developmental expression patterns of these receptors raise the question of whether subtle differences in KPNA isoforms might be important in specific biological contexts. Here, we show that KPNA7, an isoform with expression mostly limited to early development, can bind Importin-β (Imp-β) in the absence of NLS cargo. This result contrasts with Imp-β interactions with other KPNA family members, where affinity is regulated by NLS cargo as part of a cooperative binding mechanism. The Imp-β binding (IBB) domain, which is highly conserved in all KPNA family members, generally serves to occlude the NLS binding groove and maintain the receptor in an auto-inhibited 'closed' state prior to NLS contact. Cooperative binding of NLS cargo and Imp-β to KPNA results in an 'open'state. Characterization of KPNA2-KPNA7 chimeric proteins suggests that features of both the IBB domain and the core structure of the receptor contribute to the extent of IBB domain accessibility for Imp-β binding, which likely reflects an 'open' state. We also provide evidence that KPNA7 maintains an open-state in the nucleus. We speculate that KPNA7 could function within the nucleus by interacting with NLS-containing proteins.
Collapse
|
57
|
Bitetto G, Di Fonzo A. Nucleo-cytoplasmic transport defects and protein aggregates in neurodegeneration. Transl Neurodegener 2020; 9:25. [PMID: 32616075 PMCID: PMC7333321 DOI: 10.1186/s40035-020-00205-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
In the ongoing process of uncovering molecular abnormalities in neurodegenerative diseases characterized by toxic protein aggregates, nucleo-cytoplasmic transport defects have an emerging role. Several pieces of evidence suggest a link between neuronal protein inclusions and nuclear pore complex (NPC) damage. These processes lead to oxidative stress, inefficient transcription, and aberrant DNA/RNA maintenance. The clinical and neuropathological spectrum of NPC defects is broad, ranging from physiological aging to a suite of neurodegenerative diseases. A better understanding of the shared pathways among these conditions may represent a significant step toward dissecting their underlying molecular mechanisms, opening the way to a real possibility of identifying common therapeutic targets.
Collapse
Affiliation(s)
- Giacomo Bitetto
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Alessio Di Fonzo
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
58
|
Sluzalska KD, Slawski J, Sochacka M, Lampart A, Otlewski J, Zakrzewska M. Intracellular partners of fibroblast growth factors 1 and 2 - implications for functions. Cytokine Growth Factor Rev 2020; 57:93-111. [PMID: 32475760 DOI: 10.1016/j.cytogfr.2020.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 01/01/2023]
Abstract
Fibroblast growth factors 1 and 2 (FGF1 and FGF2) are mainly considered as ligands of surface receptors through which they regulate a broad spectrum of biological processes. They are secreted in non-canonical way and, unlike other growth factors, they are able to translocate from the endosome to the cell interior. These unique features, as well as the role of the intracellular pool of FGF1 and FGF2, are far from being fully understood. An increasing number of reports address this problem, focusing on the intracellular interactions of FGF1 and 2. Here, we summarize the current state of knowledge of the FGF1 and FGF2 binding partners inside the cell and the possible role of these interactions. The partner proteins are grouped according to their function, including proteins involved in secretion, cell signaling, nucleocytoplasmic transport, binding and processing of nucleic acids, ATP binding, and cytoskeleton assembly. An in-depth analysis of the network of these binding partners could indicate novel, non-classical functions of FGF1 and FGF2 and uncover an additional level of a fine control of the well-known FGF-regulated cellular processes.
Collapse
Affiliation(s)
- Katarzyna Dominika Sluzalska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Jakub Slawski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Martyna Sochacka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Agata Lampart
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
59
|
Hu M, Bogoyevitch MA, Jans DA. Impact of Respiratory Syncytial Virus Infection on Host Functions: Implications for Antiviral Strategies. Physiol Rev 2020; 100:1527-1594. [PMID: 32216549 DOI: 10.1152/physrev.00030.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the leading causes of viral respiratory tract infection in infants, the elderly, and the immunocompromised worldwide, causing more deaths each year than influenza. Years of research into RSV since its discovery over 60 yr ago have elucidated detailed mechanisms of the host-pathogen interface. RSV infection elicits widespread transcriptomic and proteomic changes, which both mediate the host innate and adaptive immune responses to infection, and reflect RSV's ability to circumvent the host stress responses, including stress granule formation, endoplasmic reticulum stress, oxidative stress, and programmed cell death. The combination of these events can severely impact on human lungs, resulting in airway remodeling and pathophysiology. The RSV membrane envelope glycoproteins (fusion F and attachment G), matrix (M) and nonstructural (NS) 1 and 2 proteins play key roles in modulating host cell functions to promote the infectious cycle. This review presents a comprehensive overview of how RSV impacts the host response to infection and how detailed knowledge of the mechanisms thereof can inform the development of new approaches to develop RSV vaccines and therapeutics.
Collapse
Affiliation(s)
- MengJie Hu
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Marie A Bogoyevitch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - David A Jans
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
60
|
Oostdyk LT, Wang Z, Zang C, Li H, McConnell MJ, Paschal BM. An epilepsy-associated mutation in the nuclear import receptor KPNA7 reduces nuclear localization signal binding. Sci Rep 2020; 10:4844. [PMID: 32179771 PMCID: PMC7076015 DOI: 10.1038/s41598-020-61369-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/24/2019] [Indexed: 12/15/2022] Open
Abstract
KPNA7 is a member of the Importin-α family of nuclear import receptors. KPNA7 forms a complex with Importin-β and facilitates the translocation of signal-containing proteins from the cytoplasm to the nucleus. Exome sequencing of siblings with severe neurodevelopmental defects and clinical features of epilepsy identified two amino acid-altering mutations in KPNA7. Here, we show that the E344Q substitution reduces KPNA7 binding to nuclear localization signals, and that this limits KPNA7 nuclear import activity. The P339A substitution, by contrast, has little effect on KPNA7 binding to nuclear localization signals. Given the neuronal phenotype described in the two patients, we used SILAC labeling, affinity enrichment, and mass spectrometry to identify KPNA7-interacting proteins in human induced pluripotent stem cell-derived neurons. We identified heterogeneous nuclear ribonucleoproteins hnRNP R and hnRNP U as KPNA7-interacting proteins. The E344Q substitution reduced binding and KPNA7-mediated import of these cargoes. The c.1030G > C allele which generates E344Q is within a predicted CTCF binding site, and we found that it reduces CTCF binding by approximately 40-fold. Our data support a role for altered neuronal expression and activity of KPNA7 in a rare type of pediatric epilepsy.
Collapse
Affiliation(s)
- Luke T Oostdyk
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Zhenjia Wang
- Center for Public Health Genomics and Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Chongzhi Zang
- Center for Public Health Genomics and Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Hui Li
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Michael J McConnell
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Center for Public Health Genomics and Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Bryce M Paschal
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA. .,Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| |
Collapse
|
61
|
Jones BG, Sealy RE, Penkert RR, Surman SL, Maul RW, Neale G, Xu B, Gearhart PJ, Hurwitz JL. Complex sex-biased antibody responses: estrogen receptors bind estrogen response elements centered within immunoglobulin heavy chain gene enhancers. Int Immunol 2020; 31:141-156. [PMID: 30407507 DOI: 10.1093/intimm/dxy074] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 11/02/2018] [Indexed: 01/10/2023] Open
Abstract
Nuclear hormone receptors including the estrogen receptor (ERα) and the retinoic acid receptor regulate a plethora of biological functions including reproduction, circulation and immunity. To understand how estrogen and other nuclear hormones influence antibody production, we characterized total serum antibody isotypes in female and male mice of C57BL/6J, BALB/cJ and C3H/HeJ mouse strains. Antibody levels were higher in females compared to males in all strains and there was a female preference for IgG2b production. Sex-biased patterns were influenced by vitamin levels, and by antigen specificity toward influenza virus or pneumococcus antigens. To help explain sex biases, we examined the direct effects of estrogen on immunoglobulin heavy chain sterile transcript production among purified, lipopolysaccharide-stimulated B cells. Supplemental estrogen in B-cell cultures significantly increased immunoglobulin heavy chain sterile transcripts. Chromatin immunoprecipitation analyses of activated B cells identified significant ERα binding to estrogen response elements (EREs) centered within enhancer elements of the immunoglobulin heavy chain locus, including the Eµ enhancer and hypersensitive site 1,2 (HS1,2) in the 3' regulatory region. The ERE in HS1,2 was conserved across animal species, and in humans marked a site of polymorphism associated with the estrogen-augmented autoimmune disease, lupus. Taken together, the results highlight: (i) the important targets of ERα in regulatory regions of the immunoglobulin heavy chain locus that influence antibody production, and (ii) the complexity of mechanisms by which estrogen instructs sex-biased antibody production profiles.
Collapse
Affiliation(s)
- Bart G Jones
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Danny Thomas Place, Memphis, USA
| | - Robert E Sealy
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Danny Thomas Place, Memphis, USA
| | - Rhiannon R Penkert
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Danny Thomas Place, Memphis, USA
| | - Sherri L Surman
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Danny Thomas Place, Memphis, USA
| | - Robert W Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Geoff Neale
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children's Research Hospital, Memphis, USA
| | - Beisi Xu
- Computational Biology, St. Jude Children's Research Hospital, Memphis, USA
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Julia L Hurwitz
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Danny Thomas Place, Memphis, USA.,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, USA
| |
Collapse
|
62
|
Kitamura N, Shindo M, Ohtsuka J, Nakamura A, Tanokura M, Hiroi T, Kaminuma O. Identification of novel interacting regions involving calcineurin and nuclear factor of activated T cells. FASEB J 2020; 34:3197-3208. [PMID: 31909857 DOI: 10.1096/fj.201902229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/19/2019] [Indexed: 11/11/2022]
Abstract
Nuclear factor of activated T cells (NFAT) leads to the transcription of diverse inducible genes involved in many biological processes; therefore, aberrant NFAT expression is responsible for the development and exacerbation of various disorders. Since five isoforms of NFAT (NFATc1-c4, NFAT5) exhibit distinct and overlapping functions, selective control of a part, but not all, of NFAT family members is desirable. By comparing the binding activity of each NFATc1-c4 with its regulatory enzyme, calcineurin (CN), using a quantitative immunoprecipitation assay, we found a new CN-binding region (CNBR) selectively functioning in NFATc1 and NFATc4. This region, termed CNBR3, is located between two preexisting CNBR1 and CNBR2, within the Ca2+ regulatory domain. The nuclear translocation of NFATc1 but not NFATc2 in T cells was suppressed by ectopic expression of CNBR3 and, accordingly, NFATc1-dependent cytokine expression was downregulated. Through competition assays using NFATc1-derived partial peptides and mass spectrometry with photoaffinity technology, we identified 18 amino acids in NFATc1 (Arg258 to Pro275 ) and 13 amino acids in CN catalytic subunit (CNA) (Asn77 to Gly89 ) responsible for CNA/CNBR3 binding in which Cys263 and Asp82 , respectively, played crucial roles. The possible selective regulation of NFAT-mediated biological processes by targeting this new CN/NFAT-binding region is suggested.
Collapse
Affiliation(s)
- Noriko Kitamura
- Allergy and Immunology Project, The Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Mayumi Shindo
- Center for Basic Technology Research, The Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Jun Ohtsuka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Akira Nakamura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takachika Hiroi
- Allergy and Immunology Project, The Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Osamu Kaminuma
- Allergy and Immunology Project, The Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Disease Model, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
63
|
Sarno A, Lundbæk M, Liabakk NB, Aas PA, Mjelle R, Hagen L, Sousa MML, Krokan HE, Kavli B. Uracil-DNA glycosylase UNG1 isoform variant supports class switch recombination and repairs nuclear genomic uracil. Nucleic Acids Res 2019; 47:4569-4585. [PMID: 30838409 PMCID: PMC6511853 DOI: 10.1093/nar/gkz145] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/18/2019] [Accepted: 02/25/2019] [Indexed: 11/23/2022] Open
Abstract
UNG is the major uracil-DNA glycosylase in mammalian cells and is involved in both error-free base excision repair of genomic uracil and mutagenic uracil-processing at the antibody genes. However, the regulation of UNG in these different processes is currently not well understood. The UNG gene encodes two isoforms, UNG1 and UNG2, each possessing unique N-termini that mediate translocation to the mitochondria and the nucleus, respectively. A strict subcellular localization of each isoform has been widely accepted despite a lack of models to study them individually. To determine the roles of each isoform, we generated and characterized several UNG isoform-specific mouse and human cell lines. We identified a distinct UNG1 isoform variant that is targeted to the cell nucleus where it supports antibody class switching and repairs genomic uracil. We propose that the nuclear UNG1 variant, which in contrast to UNG2 lacks a PCNA-binding motif, may be specialized to act on ssDNA through its ability to bind RPA. RPA-coated ssDNA regions include both transcribed antibody genes that are targets for deamination by AID and regions in front of the moving replication forks. Our findings provide new insights into the function of UNG isoforms in adaptive immunity and DNA repair.
Collapse
Affiliation(s)
- Antonio Sarno
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway.,PROMEC Core Facility for Proteomics and Modomics at NTNU and the Central Norway Regional Health Authority
| | - Marie Lundbæk
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Nina Beate Liabakk
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Per Arne Aas
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Robin Mjelle
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,PROMEC Core Facility for Proteomics and Modomics at NTNU and the Central Norway Regional Health Authority
| | - Mirta M L Sousa
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway.,PROMEC Core Facility for Proteomics and Modomics at NTNU and the Central Norway Regional Health Authority
| | - Hans E Krokan
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Bodil Kavli
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| |
Collapse
|
64
|
Onuma A, Fujioka YA, Fujii W, Sugiura K, Naito K. Expression and function of exportin 6 in full-grown and growing porcine oocytes. J Reprod Dev 2019; 65:407-412. [PMID: 31204365 PMCID: PMC6815735 DOI: 10.1262/jrd.2019-040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Exportin 6, which functions specifically in the nuclear export of actin family proteins, has been reported to be absent in immature Xenopus oocytes, which have a huge
nucleus containing a large amount of actin. In mammalian oocytes, however, the presence and the function of exportin 6 remain uninvestigated. In this study, we assessed the expression and
effects of exportin 6 on meiotic resumption in porcine oocytes after cloning porcine exportin 6 cDNA and carrying out overexpression and expression inhibition by mRNA and antisense RNA
injection, respectively. We found for the first time that exportin 6 was expressed in mammalian full-grown germinal-vesicle-stage oocytes and was involved in the nuclear export of actin. In
contrast, exportin 6 was absent from the growing oocytes, which are meiotically incompetent and maintain the germinal-vesicle structure in the long term; the regulatory mechanism appeared to
be active degradation. We examined the effects of exportin 6 on meiotic resumption of porcine oocytes and noted that its expression did not affect the onset time but increased the rate of
germinal vesicle breakdown at 24 h via regulation of the nuclear actin level, which directly influences the physical strength of the germinal-vesicle membrane. Our results suggest that
exportin 6 affects the nuclear transport of actin and meiotic resumption in mammalian oocytes.
Collapse
Affiliation(s)
- Asuka Onuma
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yoshie A Fujioka
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Wataru Fujii
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Koji Sugiura
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kunihiko Naito
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
65
|
Zhang L, Becton MD, Liu N, Averett RD, Pidaparti RM, Wang X. Physiochemical Effects of Nanoparticles on Cell Nuclear Complex Pore Transport: A Coarse-Grained Computational Model. J Chem Theory Comput 2019; 15:6382-6392. [DOI: 10.1021/acs.jctc.9b00335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Liuyang Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Matthew D. Becton
- College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Ning Liu
- College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Rodney D. Averett
- College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Ramana M. Pidaparti
- College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Xianqiao Wang
- College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
66
|
Chen JH, Zhang RH, Lin SL, Li PF, Lan JJ, Gao JM, Xie ZJ, Li FC, Jiang SJ. Identification of a functional nuclear localization signal in 3D pol/3CD of duck hepatitis A virus 1. Virus Res 2019; 270:197670. [PMID: 31330206 DOI: 10.1016/j.virusres.2019.197670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 10/26/2022]
Abstract
The nuclear localization signals (NLS) were usually composed of basic residues (K and R) and played an important role in delivery of genomes and structural protein into nucleus. In this research, we identified that 3Dpol/3CD entered into nucleus during viral propagation of duck hepatitis A virus type 1 (DHAV-1). To investigate the reason that 3Dpol/3CD entered into nucleus, the amino acid sequence of 3CD was analyzed through NLS Mapper program. The basic region 17PRKTAYMRS25 was subsequently proved to be a functional NLS to guide 3Dpol/3CD into nucleus. 18R, 19K and 24R were found essential for maintaining the nuclear targeting activity, and exchange between 24R and 24K had no impact on cellular localization of 3Dpol. Since the entry of 3Dpol/3CD into nucleus was essential for shutoff of host cell transcription and maintaining the viral propagation of picornavirus numbers, our study provided new insights into the mechanism of DHAV-1 propagation.
Collapse
Affiliation(s)
- Jun-Hao Chen
- College of Veterinary Medicine, Shandong Agricultural University, Shandong Taian, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, 271018, China
| | - Rui-Hua Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Shandong Taian, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, 271018, China
| | - Shao-Li Lin
- College of Veterinary Medicine, Shandong Agricultural University, Shandong Taian, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, 271018, China
| | - Peng-Fei Li
- College of Veterinary Medicine, Shandong Agricultural University, Shandong Taian, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, 271018, China
| | - Jing-Jing Lan
- College of Veterinary Medicine, Shandong Agricultural University, Shandong Taian, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, 271018, China
| | - Ji-Ming Gao
- Department of Basic Medical Sciences, Taishan Medical College, Taian, 271000, China
| | - Zhi-Jing Xie
- College of Veterinary Medicine, Shandong Agricultural University, Shandong Taian, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, 271018, China
| | - Fu-Chang Li
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, China
| | - Shi-Jin Jiang
- College of Veterinary Medicine, Shandong Agricultural University, Shandong Taian, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, 271018, China.
| |
Collapse
|
67
|
Kobayashi W, Takizawa Y, Aihara M, Negishi L, Ishii H, Kurumizaka H. Structural and biochemical analyses of the nuclear pore complex component ELYS identify residues responsible for nucleosome binding. Commun Biol 2019; 2:163. [PMID: 31069272 PMCID: PMC6499780 DOI: 10.1038/s42003-019-0385-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/08/2019] [Indexed: 12/20/2022] Open
Abstract
The nuclear pore complex embedded within the nuclear envelope is the essential architecture for trafficking macromolecules, such as proteins and RNAs, between the cytoplasm and nucleus. The nuclear pore complex assembly occurs on chromatin in the post-mitotic phase of the cell cycle. ELYS (MEL-28/AHCTF1) binds to the nucleosome, which is the basic chromatin unit, and promotes assembly of the complex around the chromosomes in cells. Here we show that the Arg-Arg-Lys (RRK) stretch of the C-terminal ELYS region plays an essential role in the nucleosome binding. The cryo-EM structure and the crosslinking mass spectrometry reveal that the ELYS C-terminal region directly binds to the acidic patch of the nucleosome. These results provide mechanistic insight into the ELYS-nucleosome interaction, which promotes the post-mitotic nuclear pore complex formation around chromosomes in cells.
Collapse
Affiliation(s)
- Wataru Kobayashi
- 1Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032 Japan
- 2Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480 Japan
| | - Yoshimasa Takizawa
- 1Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032 Japan
| | - Maya Aihara
- 2Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480 Japan
| | - Lumi Negishi
- 1Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032 Japan
| | - Hajime Ishii
- 2Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480 Japan
| | - Hitoshi Kurumizaka
- 1Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032 Japan
- 2Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480 Japan
| |
Collapse
|
68
|
Inactivation of Cyclic AMP Response Element Transcription Caused by Constitutive p38 Activation Is Mediated by Hyperphosphorylation-Dependent CRTC2 Nucleocytoplasmic Transport. Mol Cell Biol 2019; 39:MCB.00554-18. [PMID: 30782776 DOI: 10.1128/mcb.00554-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/01/2019] [Indexed: 01/05/2023] Open
Abstract
The p38 signal transduction pathway can be activated transiently or constitutively, depending on the contexts in which the activation occurs. However, the biological consequence of constitutive activation of p38 is largely unknown. After screening 300 transcriptional cofactors, we identified CRTC2 as a downstream substrate of constitutively activated p38. Constitutive, rather than transient, activation of p38 led to hyperphosphorylation of CRTC2, resulting in CRTC2 cytosolic relocation and subsequent inactivation of cyclic AMP response element (CRE)-mediated transcription. Interestingly, the cytosolic translocation of CRTC2 depended on phosphorylation accumulation at multiple sites (≥11 phosphoserine/phosphothreonine residues) but not on specific sites. The hyperphosphorylation-driven nucleocytoplasmic transport of CRTC2 may not be a rare case of nuclear export of proteins, as we also observed that constitutively activated p38 promoted FOS nuclear export in a hyperphosphorylation-dependent manner. Collectively, our study uncovered a previously unknown mechanism of inactivation of selected transcription, which results from hyperphosphorylation-driven nucleocytoplasmic transport of cofactors or transcription factors mediated by constitutively active kinase.
Collapse
|
69
|
Quilis I, Taberner FJ, Martínez-Garay CA, Alepuz P, Igual JC. Karyopherin Msn5 is involved in a novel mechanism controlling the cellular level of cell cycle regulators Cln2 and Swi5. Cell Cycle 2019; 18:580-595. [PMID: 30739521 PMCID: PMC6464581 DOI: 10.1080/15384101.2019.1578148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The yeast β-karyopherin Msn5 controls the SBF cell-cycle transcription factor, responsible for the periodic expression of CLN2 cyclin gene at G1/S, and the nuclear export of Cln2 protein. Here we show that Msn5 regulates Cln2 by an additional mechanism. Inactivation of Msn5 causes a severe reduction in the cellular content of Cln2. This occurs by a post-transcriptional mechanism, since CLN2 mRNA level is not importantly affected in asynchronous cultures. Cln2 stability is not significantly altered in msn5 cells and inactivation of Msn5 causes a reduction in protein level even when Cln2 is stabilized. Therefore, the reduced amount of Cln2 in msn5 cells is mainly due not to a higher rate of protein degradation but to a defect in Cln2 synthesis. In fact, analysis of polysome profiles indicated that Msn5 inactivation causes a shift of CLN2 and SWI5 mRNAs from heavy-polysomal to light-polysomal and non-polysomal fractions, supporting a defect in Cln2 and Swi5 protein synthesis in the msn5 mutant. The analysis of truncated versions of Cln2 and of chimeric cyclins combining distinct domains from Cln2 and the related Cln1 cyclin identified an internal region in Cln2 from 181 to 225 residues that when fused to GFP is able to confer Msn5-dependent regulation of protein cellular content. Finally, we showed that a high level of Cln2 is toxic in the absence of Msn5. In summary, we described that Msn5 is required for the proper protein synthesis of specific proteins, introducing a new level of control of cell cycle regulators.
Collapse
Affiliation(s)
- Inma Quilis
- a Departament de Bioquímica i Biologia Molecular , Universitat de València , Valencia , Spain.,b Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) , Universitat de València , Valencia , Spain
| | - Francisco J Taberner
- a Departament de Bioquímica i Biologia Molecular , Universitat de València , Valencia , Spain.,b Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) , Universitat de València , Valencia , Spain
| | - Carlos A Martínez-Garay
- a Departament de Bioquímica i Biologia Molecular , Universitat de València , Valencia , Spain.,b Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) , Universitat de València , Valencia , Spain
| | - Paula Alepuz
- a Departament de Bioquímica i Biologia Molecular , Universitat de València , Valencia , Spain.,b Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) , Universitat de València , Valencia , Spain
| | - J Carlos Igual
- a Departament de Bioquímica i Biologia Molecular , Universitat de València , Valencia , Spain.,b Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) , Universitat de València , Valencia , Spain
| |
Collapse
|
70
|
Cassiano C, Esposito R, Tosco A, Casapullo A, Mozzicafreddo M, Tringali C, Riccio R, Monti MC. Chemical Proteomics-Guided Identification of a Novel Biological Target of the Bioactive Neolignan Magnolol. Front Chem 2019; 7:53. [PMID: 30800648 PMCID: PMC6375844 DOI: 10.3389/fchem.2019.00053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/21/2019] [Indexed: 01/27/2023] Open
Abstract
Understanding the recognition process between bioactive natural products and their specific cellular receptors is of key importance in the drug discovery process. In this outline, some potential targets of Magnolol, a natural bioactive compound, have been identified by proteomic approaches. Among them, Importin-β1 has been considered as the most relevant one. A direct binding between Magnolol and this nuclear chaperone has been confirmed by DARTS and molecular docking, while its influence on Importin-β1 translocation has been evaluated by in vitro assays.
Collapse
Affiliation(s)
- Chiara Cassiano
- Dipartimento di Farmacia, Università degli Studi di Salerno, Fisciano, Italy
| | - Roberta Esposito
- Dipartimento di Farmacia, Università degli Studi di Salerno, Fisciano, Italy
| | - Alessandra Tosco
- Dipartimento di Farmacia, Università degli Studi di Salerno, Fisciano, Italy
| | - Agostino Casapullo
- Dipartimento di Farmacia, Università degli Studi di Salerno, Fisciano, Italy
| | - Matteo Mozzicafreddo
- Scuola di Bioscienze e Medicina Veterinaria, Università degli Studi di Camerino, Camerino, Italy
| | - Corrado Tringali
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy
| | - Raffaele Riccio
- Dipartimento di Farmacia, Università degli Studi di Salerno, Fisciano, Italy
| | - Maria Chiara Monti
- Dipartimento di Farmacia, Università degli Studi di Salerno, Fisciano, Italy
| |
Collapse
|
71
|
Dworak N, Makosa D, Chatterjee M, Jividen K, Yang CS, Snow C, Simke WC, Johnson IG, Kelley JB, Paschal BM. A nuclear lamina-chromatin-Ran GTPase axis modulates nuclear import and DNA damage signaling. Aging Cell 2019; 18:e12851. [PMID: 30565836 PMCID: PMC6351833 DOI: 10.1111/acel.12851] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 08/16/2018] [Accepted: 09/09/2018] [Indexed: 12/25/2022] Open
Abstract
The Ran GTPase regulates nuclear import and export by controlling the assembly state of transport complexes. This involves the direct action of RanGTP, which is generated in the nucleus by the chromatin‐associated nucleotide exchange factor, RCC1. Ran interactions with RCC1 contribute to formation of a nuclear:cytoplasmic (N:C) Ran protein gradient in interphase cells. In previous work, we showed that the Ran protein gradient is disrupted in fibroblasts from Hutchinson–Gilford progeria syndrome (HGPS) patients. The Ran gradient disruption in these cells is caused by nuclear membrane association of a mutant form of Lamin A, which induces a global reduction in heterochromatin marked with Histone H3K9me3 and Histone H3K27me3. Here, we have tested the hypothesis that heterochromatin controls the Ran gradient. Chemical inhibition and depletion of the histone methyltransferases (HMTs) G9a and GLP in normal human fibroblasts reduced heterochromatin levels and caused disruption of the Ran gradient, comparable to that observed previously in HGPS fibroblasts. HMT inhibition caused a defect in nuclear localization of TPR, a high molecular weight protein that, owing to its large size, displays a Ran‐dependent import defect in HGPS. We reasoned that pathways dependent on nuclear import of large proteins might be compromised in HGPS. We found that nuclear import of ATM requires the Ran gradient, and disruption of the Ran gradient in HGPS causes a defect in generating nuclear γ‐H2AX in response to ionizing radiation. Our data suggest a lamina–chromatin–Ran axis is important for nuclear transport regulation and contributes to the DNA damage response.
Collapse
Affiliation(s)
- Natalia Dworak
- Center for Cell Signaling; University of Virginia; Charlottesville Virginia
| | - Dawid Makosa
- Center for Cell Signaling; University of Virginia; Charlottesville Virginia
| | - Mandovi Chatterjee
- Center for Cell Signaling; University of Virginia; Charlottesville Virginia
| | - Kasey Jividen
- Center for Cell Signaling; University of Virginia; Charlottesville Virginia
| | - Chun-Song Yang
- Center for Cell Signaling; University of Virginia; Charlottesville Virginia
| | - Chelsi Snow
- Center for Cell Signaling; University of Virginia; Charlottesville Virginia
- Department of Biochemistry and Molecular Genetics; University of Virginia; Charlottesville Virginia
| | - William C. Simke
- Department of Molecular and Biomedical Sciences; University of Maine; Orono Maine
| | - Isaac G. Johnson
- Department of Molecular and Biomedical Sciences; University of Maine; Orono Maine
| | - Joshua B. Kelley
- Department of Molecular and Biomedical Sciences; University of Maine; Orono Maine
| | - Bryce M. Paschal
- Center for Cell Signaling; University of Virginia; Charlottesville Virginia
- Department of Biochemistry and Molecular Genetics; University of Virginia; Charlottesville Virginia
| |
Collapse
|
72
|
Reisinger SN, Kong E, Molz B, Humberg T, Sideromenos S, Cicvaric A, Steinkellner T, Yang J, Cabatic M, Monje FJ, Sitte HH, Nichols BJ, Pollak DD. Flotillin-1 interacts with the serotonin transporter and modulates chronic corticosterone response. GENES, BRAIN, AND BEHAVIOR 2019; 18:e12482. [PMID: 29667320 PMCID: PMC6392109 DOI: 10.1111/gbb.12482] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/05/2018] [Accepted: 04/12/2018] [Indexed: 01/08/2023]
Abstract
Aberrant serotonergic neurotransmission in the brain is considered at the core of the pathophysiological mechanisms involved in neuropsychiatric disorders. Gene by environment interactions contribute to the development of depression and involve modulation of the availability and functional activity of the serotonin transporter (SERT). Using behavioral and in vivo electrophysiological approaches together with biochemical, molecular-biological and molecular imaging tools we establish Flotillin-1 (Flot1) as a novel protein interacting with SERT and demonstrate its involvement in the response to chronic corticosterone (CORT) treatment. We show that genetic Flot1 depletion augments chronic CORT-induced behavioral despair and describe concomitant alterations in the expression of SERT, activity of serotonergic neurons and alterations of the glucocorticoid receptor transport machinery. Hence, we propose a role for Flot1 as modulatory factor for the depressogenic consequences of chronic CORT exposure and suggest Flotillin-1-dependent regulation of SERT expression and activity of serotonergic neurotransmission at the core of the molecular mechanisms involved.
Collapse
Affiliation(s)
- S. N. Reisinger
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - E. Kong
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - B. Molz
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - T. Humberg
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - S. Sideromenos
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - A. Cicvaric
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - T. Steinkellner
- Department of PharmacologyCenter for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - J.‐W. Yang
- Department of PharmacologyCenter for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - M. Cabatic
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - F. J. Monje
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - H. H. Sitte
- Department of PharmacologyCenter for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | | | - D. D. Pollak
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| |
Collapse
|
73
|
Gautam M, Jara JH, Kocak N, Rylaarsdam LE, Kim KD, Bigio EH, Hande Özdinler P. Mitochondria, ER, and nuclear membrane defects reveal early mechanisms for upper motor neuron vulnerability with respect to TDP-43 pathology. Acta Neuropathol 2019; 137:47-69. [PMID: 30450515 DOI: 10.1007/s00401-018-1934-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/09/2018] [Accepted: 11/10/2018] [Indexed: 12/11/2022]
Abstract
Insoluble aggregates containing TDP-43 are widely observed in the diseased brain, and defined as "TDP-43 pathology" in a spectrum of neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease and ALS with frontotemporal dementia. Here we report that Betz cells of patients with TDP-43 pathology display a distinct set of intracellular defects especially at the site of nuclear membrane, mitochondria and endoplasmic reticulum (ER). Numerous TDP-43 mouse models have been generated to discern the cellular and molecular basis of the disease, but mechanisms of neuronal vulnerability remain unknown. In an effort to define the underlying causes of corticospinal motor neuron (CSMN) degeneration, we generated and characterized a novel CSMN reporter line with TDP-43 pathology, the prp-TDP-43A315T-UeGFP mice. We find that TDP-43 pathology related intracellular problems emerge very early in the disease. The Betz cells in humans and CSMN in mice both have impaired mitochondria, and display nuclear membrane and ER defects with respect to TDP-43 pathology.
Collapse
|
74
|
Cruz-Ramos E, Sandoval-Hernández A, Tecalco-Cruz AC. Differential expression and molecular interactions of chromosome region maintenance 1 and calreticulin exportins in breast cancer cells. J Steroid Biochem Mol Biol 2019; 185:7-16. [PMID: 29981820 DOI: 10.1016/j.jsbmb.2018.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 06/29/2018] [Accepted: 07/04/2018] [Indexed: 12/20/2022]
Abstract
Chromosome region maintenance 1 (CRM-1) and calreticulin (CALR) are two proteins that act as exportins for some nuclear receptors, in addition to other critical functions for cellular homeostasis. In several cancer types, CRM-1 and CALR are upregulated suggesting an imbalance in their functions. However, the regulation of CRM-1 and CALR, and their biological implications, are not completely known. Here, we evaluated the interplay between the levels of CRM-1 and CALR, and estrogen receptor alpha (ERα) status, in breast cancer cells. CRM-1 and CALR were upregulated in mammary tumors relative to normal mammary tissue. Furthermore, the mRNA and protein levels of CRM-1 and CALR were higher in breast cancer cells lacking ERα, in comparison with those that express ERα. Additionally, both proteins were distributed in the nucleus and cytoplasm in the two cell types. Importantly, we identified novel interactions for these exportins. First, we showed an interaction between CRM-1 and CALR, and then we identified that SUN1 and SUN2, two proteins localized in the nuclear envelop, were able to interact specifically with CRM-1, but not CALR. Interestingly, SUN1 and SUN2 expression seemed to be decreased in breast cancer, thereby affecting the interactions of these proteins with CRM-1, and possibly its actions as an exportin. Thus, our data suggest that expression levels for CRM-1 and CALR, the interaction between these exportins, and specific interactions of SUN1 and SUN2 with CRM-1 but not CALR, may be central elements in nucleo-cytoplasmic transport. Furthermore, deregulation of these elements may have serious implications in the progression of breast and other types of cancer.
Collapse
Affiliation(s)
- Eduardo Cruz-Ramos
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo Postal, México D.F. 04510, Mexico
| | - Antonio Sandoval-Hernández
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo Postal, México D.F. 04510, Mexico
| | - Angeles C Tecalco-Cruz
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo Postal, México D.F. 04510, Mexico.
| |
Collapse
|
75
|
Kelley JB, Paschal BM. Fluorescence-based quantification of nucleocytoplasmic transport. Methods 2018; 157:106-114. [PMID: 30419335 DOI: 10.1016/j.ymeth.2018.11.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/26/2018] [Accepted: 11/06/2018] [Indexed: 02/02/2023] Open
Abstract
The sequestration of DNA within the membrane-bound nucleus is a defining characteristic of eukaryotic cells. Replication and transcription are therefore restricted to the nucleus, however, the regulation of these events relies on cytoplasmic processes including protein synthesis and signal transduction pathways. Because a variety of cellular activities depend on nuclear transport, researchers from diverse fields have found it useful to examine the nuclear localization of proteins of interest. Here we present some important technical considerations for studying nuclear and cytoplasmic localization, and provide guidance for quantifying protein levels using fluorescence microscopy and ImageJ software. We include discussion of the use of regions of interest and image segmentation for quantification of protein localization. Nucleocytoplasmic transport is fundamentally important for controlling protein levels and activity in the nucleus or cytoplasm, and quantitative analysis can provide insight into how biological output is achieved.
Collapse
Affiliation(s)
- Joshua B Kelley
- Department of Molecular and Biomedical Sciences, University of Maine, United States.
| | - Bryce M Paschal
- Center for Cell Signaling, Department of Biochemistry and Molecular Genetics, University of Virginia, United States
| |
Collapse
|
76
|
Mechanism underlying the retarded nuclear translocation of androgen receptor splice variants. SCIENCE CHINA-LIFE SCIENCES 2018; 62:257-267. [PMID: 30267260 DOI: 10.1007/s11427-018-9379-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/14/2018] [Indexed: 12/25/2022]
Abstract
As shown in our previous study, two alternatively spliced androgen receptor (AR) variants, which are exclusively expressed in the granulosa cells of patients with polycystic ovary syndrome, exhibit retarded nuclear translocation compared with wild-type AR. However, researchers have not yet determined whether these abnormalities correlate with heat shock protein 90 (HSP90) and importin α (the former is a generally accepted co-chaperone of AR, and the latter is a component of classical nuclear import complexes). Here, these two variants were mainly retained in cytoplasm with HSP90 and importin α in the presence of dihydrotestosterone (DHT), and their levels in nucleus were significantly reduced, according to the immunofluorescence staining. The binding affinity of two AR variants for importin α was consistently decreased, while it was increased in WT-AR following DHT stimulation, leading to reduced nuclear import, particularly for the insertion-AR (Ins-AR). However, the binding affinities of two AR variants for HSP90 were increased in the absence of DHT compared with WT-AR, which functioned to maintain spatial structural stability, particularly for the deletion-AR (Del-AR). Therefore, the retarded nuclear translocation of two AR variants is associated with HSP90 and importin α, and the abnormal binding affinities for them play critical roles in this process.
Collapse
|
77
|
Identification of the Novel Nup188-brr7 Allele in a Screen for Cold-Sensitive mRNA Export Mutants in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2018; 8:2991-3003. [PMID: 30021831 PMCID: PMC6118305 DOI: 10.1534/g3.118.200447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The maturation and export of mRNA from the nucleus through the nuclear pore complex is critical for maintaining an appropriate proteome in all eukaryotic cells. Here we summarize a previously unpublished screen in S. cerevisiae that utilized an established dT50 in situ hybridization assay to identify cold-sensitive mutants that accumulated bulk poly A RNA in the nucleus. The screen identified seven mutants in six complementation groups, including the brr6-1 strain that we described previously. In addition to brr6-1, we identified novel alleles of the key transport gene GLE1 and NUP188, a component of the Nic96 nucleoporin complex. Notably, we show that the nup188-brr7 allele causes defects in select protein import pathways as well as mRNA export. Given recent structural and functional evidence linking the Nic96 complex to transport components, this mutant may be particularly useful to the transport community.
Collapse
|
78
|
Pellegrino M, Bellacchio E, Dhamo R, Frasca F, Betterle C, Fierabracci A. A Novel Homozygous Mutation of the AIRE Gene in an APECED Patient From Pakistan: Case Report and Review of the Literature. Front Immunol 2018; 9:1835. [PMID: 30150985 PMCID: PMC6099424 DOI: 10.3389/fimmu.2018.01835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/25/2018] [Indexed: 11/13/2022] Open
Abstract
Autoimmune-poly-endocrinopathy-candidiasis-ectodermal-dystrophy syndrome (APECED) is a rare monogenic recessive disorder caused by mutations in the autoimmune regulator (AIRE) gene. Criteria for the diagnosis of APECED are the presence of two of the following disorders: chronic mucocutaneous candidiasis (CMC), chronic hypoparathyroidism (CHP), and Addison's disease. APECED develops at high incidence in Finns, Sardinians, and Iranian Jews and presents with a wide range of clinical phenotypes and genotypes. In this manuscript, we report the clinical, endocrinological, and molecular features of a 16-year-old female patient from Pakistan living in Italy and presenting the major APECED clinical manifestations CMC, CHP, and primary adrenal insufficiency. Premature ovarian failure, chronic bronchopneumopathy, vitiligo, Hashimoto's thyroiditis emerged as associated diseases. In our patient, AIRE gene screening revealed the novel c.396G>C (p.Arg132Ser; p.R132S) mutation in homozygosity thus confirming APECED diagnosis. This is the first reported mutation within the nuclear localization signal (NLS) that is associated with APECED. The NLS mutation affects the nuclear import of classical transcription factors through nuclear pore by recognition of nuclear import receptors, the importin α molecules. By displaying crystal structures of the peptide containing the KRK basic residue cluster bound to α importins, we show that p.R132S replacement in 131-KRK-133 does not reproduce these interactions. Thus, we propose that the novel mutation exerts its pathogenetic effect by impairing the nuclear import of the Aire protein. The present case report is added to a limited series of Pakistani APECED patients who we reviewed from the scientific literature, mostly diagnosed on clinical findings.
Collapse
Affiliation(s)
- Marsha Pellegrino
- Infectivology and Clinical Trials Research Division, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Emanuele Bellacchio
- Molecular Genetics and Functional Genomics, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, Rome, Italy
| | | | - Federica Frasca
- Infectivology and Clinical Trials Research Division, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Corrado Betterle
- Endocrine Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Alessandra Fierabracci
- Infectivology and Clinical Trials Research Division, Bambino Gesù Children’s Hospital, Rome, Italy
| |
Collapse
|
79
|
Rodriguez-Bravo V, Pippa R, Song WM, Carceles-Cordon M, Dominguez-Andres A, Fujiwara N, Woo J, Koh AP, Ertel A, Lokareddy RK, Cuesta-Dominguez A, Kim RS, Rodriguez-Fernandez I, Li P, Gordon R, Hirschfield H, Prats JM, Reddy EP, Fatatis A, Petrylak DP, Gomella L, Kelly WK, Lowe SW, Knudsen KE, Galsky MD, Cingolani G, Lujambio A, Hoshida Y, Domingo-Domenech J. Nuclear Pores Promote Lethal Prostate Cancer by Increasing POM121-Driven E2F1, MYC, and AR Nuclear Import. Cell 2018; 174:1200-1215.e20. [PMID: 30100187 DOI: 10.1016/j.cell.2018.07.015] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/16/2018] [Accepted: 07/10/2018] [Indexed: 12/19/2022]
Abstract
Nuclear pore complexes (NPCs) regulate nuclear-cytoplasmic transport, transcription, and genome integrity in eukaryotic cells. However, their functional roles in cancer remain poorly understood. We interrogated the evolutionary transcriptomic landscape of NPC components, nucleoporins (Nups), from primary to advanced metastatic human prostate cancer (PC). Focused loss-of-function genetic screen of top-upregulated Nups in aggressive PC models identified POM121 as a key contributor to PC aggressiveness. Mechanistically, POM121 promoted PC progression by enhancing importin-dependent nuclear transport of key oncogenic (E2F1, MYC) and PC-specific (AR-GATA2) transcription factors, uncovering a pharmacologically targetable axis that, when inhibited, decreased tumor growth, restored standard therapy efficacy, and improved survival in patient-derived pre-clinical models. Our studies molecularly establish a role of NPCs in PC progression and give a rationale for NPC-regulated nuclear import targeting as a therapeutic strategy for lethal PC. These findings may have implications for understanding how NPC deregulation contributes to the pathogenesis of other tumor types.
Collapse
Affiliation(s)
- Veronica Rodriguez-Bravo
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Raffaella Pippa
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Won-Min Song
- Genetic and Genomic Sciences Department. Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marc Carceles-Cordon
- Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ana Dominguez-Andres
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Naoto Fujiwara
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jungreem Woo
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anna P Koh
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adam Ertel
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ravi K Lokareddy
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alvaro Cuesta-Dominguez
- Oncological Sciences Department. Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Liver Diseases, Medicine Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rosa S Kim
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Peiyao Li
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ronald Gordon
- Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hadassa Hirschfield
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Josep M Prats
- Urology Department, Hospital de Calella, Barcelona 08370, Spain
| | - E Premkumar Reddy
- Oncological Sciences Department. Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alessandro Fatatis
- Pharmacology and Physiology Department, Drexler University, Philadelphia, PA 19104, USA
| | - Daniel P Petrylak
- Medical Oncology Department, Yale Comprehensive Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Leonard Gomella
- Urology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - W Kevin Kelly
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Urology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Karen E Knudsen
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Urology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Matthew D Galsky
- Medical Oncology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Amaia Lujambio
- Oncological Sciences Department. Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Liver Diseases, Medicine Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yujin Hoshida
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Josep Domingo-Domenech
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
80
|
Abstract
Plant viruses cross the barrier of the plant cell wall by moving through intercellular channels, termed plasmodesmata, to invade their hosts. They accomplish this by encoding movement proteins (MPs), which act to alter plasmodesmal gating. How MPs target to plasmodesmata is not well understood. Our recent characterization of the first plasmodesmal localization signal (PLS) identified in a viral MP, namely, the MP encoded by the Tobamovirus Tobacco mosaic virus (TMV), now provides the opportunity to identify host proteins that recognize this PLS and may be important for its plasmodesmal targeting. One such candidate protein is Arabidopsis synaptotagmin A (SYTA), which is required to form endoplasmic reticulum (ER)-plasma membrane contact sites and regulates the MP-mediated trafficking of begomoviruses, tobamoviruses, and potyviruses. In particular, SYTA interacts with, and regulates the cell-to-cell transport of, both TMV MP and the MP encoded by the Tobamovirus Turnip vein clearing virus (TVCV). Using in planta bimolecular fluorescence complementation (BiFC) and yeast two-hybrid assays, we show here that the TMV PLS interacted with SYTA. This PLS sequence was both necessary and sufficient for interaction with SYTA, and the plasmodesmal targeting activity of the TMV PLS was substantially reduced in an Arabidopsis syta knockdown line. Our findings show that SYTA is one host factor that can recognize the TMV PLS and suggest that this interaction may stabilize the association of TMV MP with plasmodesmata.IMPORTANCE Plant viruses use their movement proteins (MPs) to move through host intercellular connections, plasmodesmata. Perhaps one of the most intriguing, yet least studied, aspects of this transport is the MP signal sequences and their host recognition factors. Recently, we have described the plasmodesmal localization signal (PLS) of the Tobacco mosaic virus (TMV) MP. Here, we identified the Arabidopsis synaptotagmin A (SYTA) as a host factor that recognizes TMV MP PLS and promotes its association with the plasmodesmal membrane. The significance of these findings is two-fold: (i) we identified the TMV MP association with the cell membrane at plasmodesmata as an important PLS-dependent step in plasmodesmal targeting, and (ii) we identified the plant SYTA protein that specifically recognizes PLS as a host factor involved in this step.
Collapse
|
81
|
Bo Q, Chen L, Liu Y, Chang C, Ying X, Li F, Cheng L. Analysis of Ran related to pesticide resistance in Drosophila Kc cells. Gene 2018; 663:131-137. [DOI: 10.1016/j.gene.2018.04.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 03/30/2018] [Accepted: 04/12/2018] [Indexed: 12/31/2022]
|
82
|
Hydrogen Sulfide Demonstrates Promising Antitumor Efficacy in Gastric Carcinoma by Targeting MGAT5. Transl Oncol 2018; 11:900-910. [PMID: 29800930 PMCID: PMC6041565 DOI: 10.1016/j.tranon.2018.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/16/2018] [Accepted: 04/16/2018] [Indexed: 12/29/2022] Open
Abstract
Mannosyl (alpha-1,6-)-Glycoprotein beta-1,6-N-acetyl-glucosaminyltransferase (MGAT5) is exclusively expressed in gastric carcinoma, and plays an essential role in cancer progression, but no targeted drug is available so far. The potential anti-cancer effect of Hydrogen Sulfide (H2S), has not been widely recognized. It intrigued broad interest to explore the clinical benefits of cancer therapy, with the current understanding of molecular mechanisms of H2S which remains very limited. In this study, we identify that H2S is an effective inhibitor of MGAT5, leading to reduce the expression of exclusively abnormal glycoprotein processes in gastric carcinoma. H2S specifically dissociation of karyopherin subunit alpha-2 (KPNA2) with Jun proto-oncogene (c-Jun) interaction, and blocking c-Jun nuclear translocation, and downregulation of MGAT5 expression at the level of gene and protein. Consequently, H2S impairs growth and metastasis in gastric carcinoma by targeting inhibits MGAT5 activity. In an animal tumor model study, H2S is well tolerated, inhibits gastric carcinoma growth and metastasis. Our preclinical work therefore supports that H2S acts as a novel inhibitor of MGAT5 that block tumorigenesis in gastric carcinoma. SIGNIFICANCE: This study shows that H2S can effective targeting inhibits MGAT5 activity, and demonstrates promising antitumor efficacy. These findings gain mechanistic insights into the anti-cancer capacity of H2S and may provide useful information for the clinical explorations of H2S in cancer treatment.
Collapse
|
83
|
Fu X, Liang C, Li F, Wang L, Wu X, Lu A, Xiao G, Zhang G. The Rules and Functions of Nucleocytoplasmic Shuttling Proteins. Int J Mol Sci 2018; 19:ijms19051445. [PMID: 29757215 PMCID: PMC5983729 DOI: 10.3390/ijms19051445] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 12/14/2022] Open
Abstract
Biological macromolecules are the basis of life activities. There is a separation of spatial dimension between DNA replication and RNA biogenesis, and protein synthesis, which is an interesting phenomenon. The former occurs in the cell nucleus, while the latter in the cytoplasm. The separation requires protein to transport across the nuclear envelope to realize a variety of biological functions. Nucleocytoplasmic transport of protein including import to the nucleus and export to the cytoplasm is a complicated process that requires involvement and interaction of many proteins. In recent years, many studies have found that proteins constantly shuttle between the cytoplasm and the nucleus. These shuttling proteins play a crucial role as transport carriers and signal transduction regulators within cells. In this review, we describe the mechanism of nucleocytoplasmic transport of shuttling proteins and summarize some important diseases related shuttling proteins.
Collapse
Affiliation(s)
- Xuekun Fu
- Department of Biology and Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China.
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Chao Liang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| | - Fangfei Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| | - Luyao Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| | - Xiaoqiu Wu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| | - Guozhi Xiao
- Department of Biology and Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China.
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| |
Collapse
|
84
|
The present and the future of motif-mediated protein-protein interactions. Curr Opin Struct Biol 2018; 50:162-170. [PMID: 29730529 DOI: 10.1016/j.sbi.2018.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/07/2018] [Accepted: 04/11/2018] [Indexed: 01/14/2023]
Abstract
Protein-protein interactions (PPIs) are essential to governing virtually all cellular processes. Of particular importance are the versatile motif-mediated interactions (MMIs), which are thus far underrepresented in available interaction data. This is largely due to technical difficulties inherent in the properties of MMIs, but due to the increasing recognition of the vital roles of MMIs in biology, several systematic approaches have recently been developed to detect novel MMIs. Consequently, rapidly growing numbers of motifs are being identified and pursued further for therapeutic applications. In this review, we discuss the current understanding on the diverse functions and disease-relevance of MMIs, the key methodologies for detection of MMIs, and the potential of MMIs for drug development.
Collapse
|
85
|
Kunchala P, Kuravi S, Jensen R, McGuirk J, Balusu R. When the good go bad: Mutant NPM1 in acute myeloid leukemia. Blood Rev 2018; 32:167-183. [DOI: 10.1016/j.blre.2017.11.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/19/2017] [Accepted: 11/02/2017] [Indexed: 12/26/2022]
|
86
|
Roles of the CSE1L-mediated nuclear import pathway in epigenetic silencing. Proc Natl Acad Sci U S A 2018; 115:E4013-E4022. [PMID: 29636421 DOI: 10.1073/pnas.1800505115] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Epigenetic silencing can be mediated by various mechanisms, and many regulators remain to be identified. Here, we report a genome-wide siRNA screening to identify regulators essential for maintaining gene repression of a CMV promoter silenced by DNA methylation. We identified CSE1L (chromosome segregation 1 like) as an essential factor for the silencing of the reporter gene and many endogenous methylated genes. CSE1L depletion did not cause DNA demethylation. On the other hand, the methylated genes derepressed by CSE1L depletion largely overlapped with methylated genes that were also reactivated by treatment with histone deacetylase inhibitors (HDACi). Gene silencing defects observed upon CSE1L depletion were linked to its nuclear import function for certain protein cargos because depletion of other factors involved in the same nuclear import pathway, including KPNAs and KPNB1 proteins, displayed similar derepression profiles at the genome-wide level. Therefore, CSE1L appears to be critical for the nuclear import of certain key repressive proteins. Indeed, NOVA1, HDAC1, HDAC2, and HDAC8, genes known as silencing factors, became delocalized into cytosol upon CSE1L depletion. This study suggests that the cargo specificity of the protein nuclear import system may impact the selectivity of gene silencing.
Collapse
|
87
|
Tecalco-Cruz AC. Molecular pathways involved in the transport of nuclear receptors from the nucleus to cytoplasm. J Steroid Biochem Mol Biol 2018; 178:36-44. [PMID: 29107180 DOI: 10.1016/j.jsbmb.2017.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/18/2017] [Accepted: 10/25/2017] [Indexed: 12/30/2022]
Abstract
Nuclear receptors (NRs) are transcription regulators that direct the expression of many genes linked to cellular processes, such as proliferation, differentiation, and apoptosis. Additionally, some cellular events are also modulated by signaling pathways induced by NRs outside of the nucleus. Hence, the subcellular transport of NRs is dynamic and is modulated by several signals, protein-protein interactions, and posttranslational modifications. Particularly, the exit of NRs from the nucleus to cytoplasm and/or other compartments is transcendental, as it is this export event, which determines their abundance in the cells' compartments, the activation or attenuation of nuclear or extranuclear pathways, and the magnitude and duration of their effects inside or outside of the nucleus. Consequently, an adequate control of the distribution of NRs is critical for homeostasis, because a deregulation in the nucleo-cytoplasmic transport of NRs could be involved in diseases including cancer as well as metabolic and vascular alterations. In this review, we investigated the pathways and molecular and biological aspects that have been described for the nuclear export of NRs so far and their functional relevance in some diseases. This information suggests that the transport of NRs out of the nucleus is a key mechanism for the identification of new therapeutic targets for alterations associated with the deregulation of the function of NRs.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo Postal, D.F. 04510, Mexico.
| |
Collapse
|
88
|
Onuma A, Fujioka YA, Fujii W, Sugiura K, Naito K. Effects of exportin 1 on nuclear transport and meiotic resumption in porcine full-grown and growing oocytes. Biol Reprod 2018; 98:501-509. [PMID: 29228114 DOI: 10.1093/biolre/iox168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/07/2017] [Indexed: 12/17/2023] Open
Abstract
Exportin 1 (XPO1) is a nuclear transport receptor involved in the nuclear export of majority proteins in somatic cells. In mammalian oocytes, however, only the presence of XPO1 has been reported at mRNA and protein levels, and the definitive functions of XPO1 and its effects on the meiotic maturation of oocytes have never been directly examined. In the present study, the expression state and the nuclear-export function of porcine XPO1 were analyzed in porcine oocytes. In addition, we investigated the effects of the overexpression and inhibition of XPO1 on meiotic regulation in full-grown and growing oocytes by mRNA injection and inhibitor treatment. Endogenous XPO1 was stably expressed in porcine oocytes during the germinal vesicle (GV) stage, and the expression of exogenous XPO1 significantly decreased the nuclear localization of XPO1 cargos, snurportin 1, and WEE1B. Inhibition of XPO1 by a specific inhibitor, leptomycin B, delayed the GV breakdown (GVBD), whereas the overexpression of XPO1 by mRNA injection accelerated the GVBD. XPO1 overexpression overcame the meiotic arrest induced by WEE1B expression in full-grown oocytes. Surprisingly, the GVBD of porcine growing oocytes, which could not resume meiosis by the maturation culture in vitro, was induced by the expression of exogenous XPO1. These results showed the presence of XPO1 and its function as a nuclear export receptor in mammalian oocytes, including growing oocytes, and they suggest that the regulation of nuclear transport has a large influence on the GV maintenance and meiotic resumption of oocytes.
Collapse
Affiliation(s)
- Asuka Onuma
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshie A Fujioka
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Wataru Fujii
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Sugiura
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kunihiko Naito
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
89
|
Abstract
Entamoeba histolytica is the protozoan parasite that causes human amoebiasis. It is one of the leading parasitic disease burdens in tropical regions and developing countries, with spread to developed countries through migrants from and travellers to endemic regions.Understanding E. histolytica's invasion mechanisms requires an understanding of how it interacts with external cell components and how it engulfs and kills cells (phagocytosis). Recent research suggests that optimal phagocytosis requires signalling events from the cell surface to the nucleus via the cytoplasm, and the induction of several factors that are transported to the plasma membrane. Current research in other protozoans suggests the presence of proteins with nuclear localization signals, nuclear export signals and Ran proteins; however, there is limited literature on their functionality and their functional similarity to higher eukaryotes.Based on learnings from the development of antivirals, nuclear transport elements in E. histolytica may present viable, specific, therapeutic targets.In this review, we aim to summarize our limited knowledge of the eukaryotic nuclear transport mechanisms that are conserved and may function in E. histolytica.
Collapse
|
90
|
Kumeta M, Konishi HA, Zhang W, Sakagami S, Yoshimura SH. Prolines in the α-helix confer the structural flexibility and functional integrity of importin-β. J Cell Sci 2018; 131:jcs.206326. [PMID: 29142102 DOI: 10.1242/jcs.206326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 11/06/2017] [Indexed: 01/09/2023] Open
Abstract
The karyopherin family of nuclear transport receptors is composed of a long array of amphiphilic α-helices and undergoes flexible conformational changes to pass through the hydrophobic crowding barrier of the nuclear pore. Here, we focused on the characteristic enrichment of prolines in the middle of the outer α-helices of importin-β. When these prolines were substituted with alanine, nuclear transport activity was reduced drastically in vivo and in vitro, and caused a severe defect in mitotic progression. These mutations did not alter the overall folding of the helical repeat or affect its interaction with cargo or the regulatory factor Ran. However, in vitro and in silico analyses revealed that the mutant lost structural flexibility and could not undergo rapid conformational changes when transferring from a hydrophilic to hydrophobic environment or vice versa. These findings reveal the essential roles of prolines in ensuring the structural flexibility and functional integrity of karyopherins.
Collapse
Affiliation(s)
- Masahiro Kumeta
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hide A Konishi
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Wanzhen Zhang
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Sayuri Sakagami
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shige H Yoshimura
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
91
|
Piano Mortari E, Folgiero V, Marcellini V, Romania P, Bellacchio E, D'Alicandro V, Bocci C, Carrozzo R, Martinelli D, Petrini S, Axiotis E, Farroni C, Locatelli F, Schara U, Pilz D, Jungbluth H, Dionisi-Vici C, Carsetti R. The Vici syndrome protein EPG5 regulates intracellular nucleic acid trafficking linking autophagy to innate and adaptive immunity. Autophagy 2018; 14:22-37. [PMID: 29130391 PMCID: PMC5846549 DOI: 10.1080/15548627.2017.1389356] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 09/19/2017] [Accepted: 10/03/2017] [Indexed: 10/18/2022] Open
Abstract
Vici syndrome is a human inherited multi-system disorder caused by recessive mutations in EPG5, encoding the EPG5 protein that mediates the fusion of autophagosomes with lysosomes. Immunodeficiency characterized by lack of memory B cells and increased susceptibility to infection is an integral part of the condition, but the role of EPG5 in the immune system remains unknown. Here we show that EPG5 is indispensable for the transport of the TLR9 ligand CpG to the late endosomal-lysosomal compartment, and for TLR9-initiated signaling, a step essential for the survival of human memory B cells and their ultimate differentiation into plasma cells. Moreover, the predicted structure of EPG5 includes a membrane remodeling domain and a karyopherin-like domain, thus explaining its function as a carrier between separate vesicular compartments. Our findings indicate that EPG5, by controlling nucleic acids intracellular trafficking, links macroautophagy/autophagy to innate and adaptive immunity.
Collapse
Affiliation(s)
- E. Piano Mortari
- B cell Physiopathology Unit, Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - V. Folgiero
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - V. Marcellini
- B cell Physiopathology Unit, Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - P. Romania
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - E. Bellacchio
- Division of Metabolism, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - V. D'Alicandro
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - C. Bocci
- B cell Physiopathology Unit, Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - R. Carrozzo
- Unit for Neuromuscular and Neurodegenerative Diseases, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - D. Martinelli
- Division of Metabolism, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - S. Petrini
- Confocal Microscopy core facility, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - E. Axiotis
- B cell Physiopathology Unit, Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - C. Farroni
- B cell Physiopathology Unit, Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - F. Locatelli
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Pediatric Science, University of Pavia, Pavia, Italy
| | - U. Schara
- 41 Pediatric Neurology, University Childrens Hospital, University of Duisburg-Essen, Essen, Germany
| | - D.T. Pilz
- West of Scotland Genetics Service, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - H. Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's and St. Thomas' Hospital NHS Foundation Trust, London, UK
- Randall Division for Cell and Molecular Biophysics, Muscle Signalling Section, King's College, London, UK
- Department of Basic and Clinical Neuroscience, IoPPN, King's College, London, UK
| | - C. Dionisi-Vici
- Division of Metabolism, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - R. Carsetti
- B cell Physiopathology Unit, Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
92
|
Jans DA, Martin AJ. Nucleocytoplasmic Trafficking of Dengue Non-structural Protein 5 as a Target for Antivirals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1062:199-213. [DOI: 10.1007/978-981-10-8727-1_15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
93
|
Structural analysis of the complex between influenza B nucleoprotein and human importin-α. Sci Rep 2017; 7:17164. [PMID: 29215074 PMCID: PMC5719345 DOI: 10.1038/s41598-017-17458-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/27/2017] [Indexed: 12/29/2022] Open
Abstract
Influenza viruses are negative strand RNA viruses that replicate in the nucleus of the cell. The viral nucleoprotein (NP) is the major component of the viral ribonucleoprotein. In this paper we show that the NP of influenza B has a long N-terminal tail of 70 residues with intrinsic flexibility. This tail contains the Nuclear Location Signal (NLS). The nuclear trafficking of the viral components mobilizes cellular import factors at different stages, making these host-pathogen interactions promising targets for new therapeutics. NP is imported into the nucleus by the importin-α/β pathway, through a direct interaction with importin-α isoforms. Here we provide a combined nuclear magnetic resonance and small-angle X-ray scattering (NMR/SAXS) analysis to describe the dynamics of the interaction between influenza B NP and the human importin-α. The NP of influenza B does not have a single NLS nor a bipartite NLS but our results suggest that the tail harbors several adjacent NLS sequences, located between residues 30 and 71.
Collapse
|
94
|
Mirallas O, Ballega E, Samper-Martín B, García-Márquez S, Carballar R, Ricco N, Jiménez J, Clotet J. Intertwined control of the cell cycle and nucleocytoplasmic transport by the cyclin-dependent kinase Pho85 and RanGTPase Gsp1 in Saccharomyces cerevisiae. Microbiol Res 2017; 206:168-176. [PMID: 29146254 DOI: 10.1016/j.micres.2017.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/09/2017] [Accepted: 10/17/2017] [Indexed: 10/18/2022]
Abstract
Deciphering the molecular mechanisms that connect cell cycle progression and nucleocytoplasmic transport is of particular interest: this intertwined relationship, once understood, may provide useful insight on the diseases resulting from the malfunction of these processes. In the present study we report on findings that indicate a biochemical connection between the cell cycle regulator CDK Pho85 and Ran-GTPase Gsp1, an essential nucleocytoplasmic transport component. When Gsp1 cannot be phosphorylated by Pho85, the cell cycle progression is impaired. Accordingly, a nonphosphorylatable version of Gsp1 abnormally localizes to the nucleus, which impairs the nuclear transport of molecules, including key components of cell cycle progression. Furthermore, our results suggest that the physical interaction of Gsp1 and the Kap95 karyopherin, essential to the release of nuclear cargoes, is altered. Altogether, the present findings point to the involvement of a biochemical mechanism in the interlocked regulation of the cell cycle and nuclear transport.
Collapse
Affiliation(s)
- Oriol Mirallas
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Elisabet Ballega
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Bàrbara Samper-Martín
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Sergio García-Márquez
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Reyes Carballar
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Natalia Ricco
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Javier Jiménez
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain.
| | - Josep Clotet
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain.
| |
Collapse
|
95
|
Samuels AL, Louw A, Zareie R, Ingley E. Control of nuclear-cytoplasmic shuttling of Ankrd54 by PKCδ. World J Biol Chem 2017; 8:163-174. [PMID: 28924458 PMCID: PMC5579962 DOI: 10.4331/wjbc.v8.i3.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/28/2017] [Accepted: 05/15/2017] [Indexed: 02/05/2023] Open
Abstract
AIM To identify and characterize the effect of phosphorylation on the subcellular localization of Ankrd54.
METHODS HEK293T cells were treated with calyculin A, staurosporin or phorbol 12-myristate 13-acetate (PMA). Cells were transfected with eGFP-tagged Ankrd54 with or without Lyn tyrosine kinase (wild-type, Y397F mutant, or Y508F mutant). The subcellular localization was assessed by immunofluorescence imaging of cells, immunoblotting of subcellular fractionations. The phosphorylation of Ankrd54 was monitored using Phos-tagTM gel retardation. Phosphorylated peptides were analysed by multiple-reaction-monitoring (MRM) proteomic analysis.
RESULTS Activation of PKC kinases using PMA promoted nuclear export of Ankrd54 and correlated with increased Ankrd54 phosphorylation, assayed using Phos-tagTM gel retardation. Co-expression of an active form of the PKCδ isoform specifically promoted both phosphorylation and cytoplasmic localization of Ankrd54, while PKCδ, Akt and PKA did not. Alanine mutation of several serine residues in the amino-terminal region of Ankrd54 (Ser14, Ser17, Ser18, Ser19) reduced both PMA induced cytoplasmic localization and phosphorylation of Ankrd54. Using MRM proteomic analysis, phosphorylation of the Ser18 residue of Ankrd54 was readily detectable in response to PMA stimulation. PMA stimulation of cells co-expressing Ankrd54 and Lyn tyrosine kinase displayed increased co-immunoprecipitation and enhanced co-localization in the cytoplasm.
CONCLUSION We identify phosphorylation by PKCδ as a major regulator of nuclear-cytoplasmic shuttling of Ankrd54, and its interaction with the tyrosine kinase Lyn.
Collapse
Affiliation(s)
- Amy L Samuels
- Cell Signalling Group, Harry Perkins Institute of Medical Research and Centre for Medical Research, the University of Western Australia, Nedlands, WA 6009, Australia
| | - Alison Louw
- Cell Signalling Group, Harry Perkins Institute of Medical Research and Centre for Medical Research, the University of Western Australia, Nedlands, WA 6009, Australia
| | - Reza Zareie
- Proteomics International Laboratories Ltd, Nedlands, WA 6009, Australia
- Proteowa Pty Ltd, SABC, Murdoch University, Murdoch, WA 6150, Australia
| | - Evan Ingley
- Cell Signalling Group, Harry Perkins Institute of Medical Research and Centre for Medical Research, the University of Western Australia, Nedlands, WA 6009, Australia
- Cell Signalling Group, School of Veterinary and Health Sciences, Murdoch University, Murdoch, WA 6150, Australia.
| |
Collapse
|
96
|
Calpain-Dependent Degradation of Nucleoporins Contributes to Motor Neuron Death in a Mouse Model of Chronic Excitotoxicity. J Neurosci 2017; 37:8830-8844. [PMID: 28821644 DOI: 10.1523/jneurosci.0730-17.2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/02/2017] [Accepted: 08/09/2017] [Indexed: 01/07/2023] Open
Abstract
Glutamate-mediated excitotoxicity induces neuronal death by altering various intracellular signaling pathways and is implicated as a common pathogenic pathway in many neurodegenerative diseases. In the case of motor neuron disease, there is significant evidence to suggest that the overactivation of AMPA receptors due to deficiencies in the expression and function of glial glutamate transporters GLT1 and GLAST plays an important role in the mechanisms of neuronal death. However, a causal role for glial glutamate transporter dysfunction in motor neuron death remains unknown. Here, we developed a new animal model of excitotoxicity by conditionally deleting astroglial glutamate transporters GLT1 and GLAST in the spinal cords of mice (GLAST+/-/GLT1-cKO). GLAST+/-/GLT1-cKO mice (both sexes) exhibited nuclear irregularity and calpain-mediated degradation of nuclear pore complexes (NPCs), which are responsible for nucleocytoplasmic transport. These abnormalities were associated with progressive motor neuron loss, severe paralysis, and shortened lifespan. The nuclear export inhibitor KPT-350 slowed but did not prevent motor neuron death, whereas long-term treatment of the AMPA receptor antagonist perampanel and the calpain inhibitor SNJ-1945 had more persistent beneficial effects. Thus, NPC degradation contributes to AMPA receptor-mediated excitotoxic motor neuronal death, and preventing NPC degradation has robust protective effects. Normalization of NPC function could be a novel therapeutic strategy for neurodegenerative disorders in which AMPA receptor-mediated excitotoxicity is a contributory factor.SIGNIFICANCE STATEMENT Despite glial glutamate transporter dysfunction leading to excitotoxicity has been documented in many neurological diseases, it remains unclear whether its dysfunction is a primary cause or secondary outcome of neuronal death at disease state. Here we show the combined loss of glial glutamate transporters GLT1 and GLAST in spinal cord caused motor neuronal death and hindlimb paralysis. Further, our novel mutant exhibits the nuclear irregularities and calpain-mediated progressive nuclear pore complex degradation. Our study reveals that glial glutamate transporter dysfunction is sufficient to cause motor neuronal death in vivo.
Collapse
|
97
|
Shang J, Yamashita T, Nakano Y, Morihara R, Li X, Feng T, Liu X, Huang Y, Fukui Y, Hishikawa N, Ohta Y, Abe K. Aberrant distributions of nuclear pore complex proteins in ALS mice and ALS patients. Neuroscience 2017; 350:158-168. [DOI: 10.1016/j.neuroscience.2017.03.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/12/2017] [Accepted: 03/14/2017] [Indexed: 12/14/2022]
|
98
|
Nucleo-cytoplasmic transport of estrogen receptor alpha in breast cancer cells. Cell Signal 2017; 34:121-132. [PMID: 28341599 DOI: 10.1016/j.cellsig.2017.03.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/19/2017] [Accepted: 03/21/2017] [Indexed: 02/07/2023]
Abstract
Approximately 70% cases of breast cancers exhibit high expression and activity levels of estrogen receptor alpha (ERα), a transcription regulator that induces the expression of genes associated with cellular proliferation and survival. These nuclear functions of the receptor are associated with the development of breast cancer. However, ERα localization is not static, but rather, dynamic with continuous shuttling between the nucleus and the cytoplasm. Interestingly, both the nuclear import and export of ERα are modulated by several stimuli that include estradiol, antiestrogens, and growth factors. As ERα nuclear accumulation is critical to the regulation of gene expression, nuclear export of this receptor modulates the intensity and duration of its transcriptional activity. Thus, the subcellular spatial distribution of ERα ensures tight modulation of its concentration in cellular compartments, as well as of its nuclear and extranuclear functions. In this review, we will discuss current findings regarding the biological importance of molecular mechanisms of, and proteins responsible for, the nuclear import and export of ERα in breast cancer cells.
Collapse
|
99
|
Widespread pre-translational regulation of the inclusion of signal peptides in human proteins. Genomics 2017; 109:113-122. [DOI: 10.1016/j.ygeno.2017.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 11/23/2022]
|
100
|
Shakyawar DK, Dayma K, Ramadhas A, Varalakshmi C, Radha V. C3G shows regulated nucleocytoplasmic exchange and represses histone modifications associated with euchromatin. Mol Biol Cell 2017; 28:984-995. [PMID: 28148649 PMCID: PMC5385946 DOI: 10.1091/mbc.e16-09-0660] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 12/20/2022] Open
Abstract
C3G (RapGEF1), essential for mammalian embryonic development, shows dynamic nucleocytoplasmic exchange. Nuclear localization is regulated by NLSs, NES, and phosphorylation. C3G translocates to the nucleus in response to physiological stimuli and regulates chromatin modifications and gene expression. C3G (RapGEF1) is a ubiquitously expressed guanine nucleotide exchange factor that functions in signaling pathways regulating cell proliferation, apoptosis, and actin reorganization. It is essential for differentiation and early embryonic development in mice. Overexpressed C3G shows predominant cytoplasmic localization, but endogenous C3G is a component of nuclear fractions in a variety of cell types. Coexpression of importin-α and inhibition of nuclear export by leptomycin B resulted in predominant nuclear localization of C3G. Functional NLSs, NES, and GSK3-β–dependent phosphorylation regulate its dynamic nuclear localization. C3G translocates to the nucleus in response to myogenic differentiation and sublethal dose of cisplatin. C3G is associated with chromatin and nuclear matrix fractions. Cells with C3G localized in the nucleus showed peripheralization of heterochromatin and reduced histone modifications associated with euchromatin. Short hairpin RNA–mediated depletion of C3G in epithelial cells resulted in reduced expression of CDK inhibitors and the histone demethylase KDM5A. Myoblast clones with CRISPR/Cas9-mediated knockout of C3G failed to show repression of histone marks and did not show up-regulation of myosin heavy chain and myotube formation when grown in differentiation medium. Our results document regulated nucleocytoplasmic exchange of C3G in response to physiological stimuli and provide insights into nuclear functions for C3G.
Collapse
Affiliation(s)
| | - Kunal Dayma
- Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | - Anesh Ramadhas
- Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | | | - Vegesna Radha
- Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| |
Collapse
|