51
|
Abstract
Promoter analysis is the most basics in the analysis of gene regulation. Luciferase gene is the most commonly used reporter gene in promoter analysis. Luciferase is an enzyme that is used when firefly and Renilla reniformis (sea pansy) emit light. The first experimental step in this reporter gene assay is to connect a particular DNA segment to a luciferase gene. The second step is to transfect the reporter construct into the cells. Thereafter, stable luciferase will be produced with the help of transcriptional machinery, mRNA transporters, and translational machinery in the cells. Luciferase assay measures the quantity of light that is emitted by luciferin-luciferase reaction. Consistent with the fact that CCN2 expression has been shown to be altered by a variety of stimuli, the CCN2 promoter region also haa been shown to be bound and regulated by multiple transcription factors such as Smad, MMP3, NF-κB, AP1, TCF/LEF, and Sox9.
Collapse
|
52
|
Recombinant CCN1 prevents hyperoxia-induced lung injury in neonatal rats. Pediatr Res 2017; 82:863-871. [PMID: 28700567 PMCID: PMC5874130 DOI: 10.1038/pr.2017.160] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 05/20/2017] [Indexed: 01/19/2023]
Abstract
BackgroundCystein-rich protein 61 (Cyr61/CCN1) is a member of the CCN family of matricellular proteins that has an important role in tissue development and remodeling. However, the role of CCN1 in the pathogenesis of bronchopulmonary dysplasia (BPD) is unknown. Accordingly, we have investigated the effects of CCN1 on a hyperoxia-induced lung injury model in neonatal rats.MethodsIn experiment 1, newborn rats were randomized to room air (RA) or 85% oxygen (O2) for 7 or 14 days, and we assessed the expression of CCN1. In experiment 2, rat pups were exposed to RA or O2 and received placebo or recombinant CCN1 by daily intraperitoneal injection for 10 days. The effects of CCN1 on hyperoxia-induced lung inflammation, alveolar and vascular development, vascular remodeling, and right ventricular hypertrophy (RVH) were observed.ResultsIn experiment 1, hyperoxia downregulated CCN1 expression. In experiment 2, treatment with recombinant CCN1 significantly decreased macrophage and neutrophil infiltration, reduced inflammasome activation, increased alveolar and vascular development, and reduced vascular remodeling and RVH in the hyperoxic animals.ConclusionThese results demonstrate that hyperoxia-induced lung injury is associated with downregulated basal CCN1 expression, and treatment with CCN1 can largely reverse hyperoxic injury.
Collapse
|
53
|
Duan X, Ji M, Deng F, Sun Z, Lin Z. Effects of connective tissue growth factor on human periodontal ligament fibroblasts. Arch Oral Biol 2017; 84:37-44. [PMID: 28941713 DOI: 10.1016/j.archoralbio.2017.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 08/28/2017] [Accepted: 09/16/2017] [Indexed: 12/01/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the effects of different concentrations of connective tissue growth factor (CTGF) on human periodontal ligament fibroblasts(HPLFs). DESIGN HPLFs were cultured and identified. Then, different concentrations of CTGF (1, 5, 10, 50, 100ng/ml) were added to the HPLF culture. Next, CCK-8 assays, alkaline phosphatase (ALP) assays, hydroxyproline determination, alizarin red staining methods, Transwell chambers and real-time PCR methods were applied to observe the effects of CTGF on the proliferation, ALP activity, synthesis of collagen, formation of mineralized nodules and migration. We also studied expression of ALP, fiber link protein (FN), integrin-binding sialoprotein (IBSP), osteocalcin (OC), and integrin beta 1 (ITGB1) mRNA by HPLFs. Statistical significance was assumed if P<0.05 or P<0.01. RESULTS The addition of CTGF (1, 5, 10ng/ml) remarkably promoted the proliferation and collagen synthesis of HPLFs compared with controls. CTGF (1, 5, 10, 50ng/ml) improved ALP activity of HPLFs, and at all concentrations, CTGF (1, 5, 10, 50, 100ng/ml) improved the expression of ALP, FN, IBSP and ITGB1 mRNA. In addition, CTGF (1, 5, 10, 50, 100ng/ml) promoted the migration of HPLFs, which was dose-dependent, with maximal promotion in the 10ng/ml group (P<0.05 or P<0.01). CONCLUSIONS Thus, in a certain range of concentrations, CTGF can promote the biological effects, including proliferation, migration and collagen synthesis of HPLFs, to promote the differentiation of HPLFs in the process of osteogenesis.
Collapse
Affiliation(s)
- Xuejing Duan
- School of Stomatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Mei Ji
- School of Stomatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Fengying Deng
- School of Stomatology, Shandong University, Jinan, Shandong Province, China
| | - Zhe Sun
- School of Stomatology, Shandong University, Jinan, Shandong Province, China
| | - Zhiyong Lin
- School of Stomatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
54
|
Nakajima H, Mochizuki N. Flow pattern-dependent endothelial cell responses through transcriptional regulation. Cell Cycle 2017; 16:1893-1901. [PMID: 28820314 DOI: 10.1080/15384101.2017.1364324] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Blood flow provides endothelial cells (ECs) lining the inside of blood vessels with mechanical stimuli as well as humoral stimuli. Fluid shear stress, the frictional force between flowing blood and ECs, is recognized as an essential mechanical cue for vascular growth, remodeling, and homeostasis. ECs differentially respond to distinct flow patterns. High laminar shear flow leads to inhibition of cell cycle progression and stabilizes vessels, whereas low shear flow or disturbed flow leads to increased turnover of ECs and inflammatory responses of ECs prone to atherogenic. These differences of EC responses dependent on flow pattern are mainly ascribed to distinct patterns of gene expression. In this review, we highlight flow pattern-dependent transcriptional regulation in ECs by focusing on KLF2 and NFκB, major transcription factors responding to laminar flow and disturbed flow, respectively. Moreover, we introduce roles of a new flow-responsive transcriptional co-regulator, YAP, in blood vessel maintenance and discuss how these transcriptional regulators are spatiotemporally regulated by flow and then regulate EC functions in normal and pathological conditions.
Collapse
Affiliation(s)
- Hiroyuki Nakajima
- a Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute , Suita , Osaka , Japan
| | - Naoki Mochizuki
- a Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute , Suita , Osaka , Japan.,b AMED-CREST. National Cerebral and Cardiovascular Center , Suita , Osaka , Japan
| |
Collapse
|
55
|
Lee S, Elaskandrany M, Lau LF, Lazzaro D, Grant MB, Chaqour B. Interplay between CCN1 and Wnt5a in endothelial cells and pericytes determines the angiogenic outcome in a model of ischemic retinopathy. Sci Rep 2017; 7:1405. [PMID: 28469167 PMCID: PMC5431199 DOI: 10.1038/s41598-017-01585-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/31/2017] [Indexed: 02/06/2023] Open
Abstract
CYR61-CTGF-NOV (CCN)1 is a dynamically expressed extracellular matrix (ECM) protein with critical functions in cardiovascular development and tissue repair. Angiogenic endothelial cells (ECs) are a major cellular source of CCN1 which, once secreted, associates with the ECM and the cell surface and tightly controls the bidirectional flow of information between cells and the surrounding matrix. Endothelium-specific CCN1 deletion in mice using a cre/lox strategy induces EC hyperplasia and causes blood vessels to coalesce into large flat hyperplastic sinuses with no distinctive hierarchical organization. This is consistent with the role of CCN1 as a negative feedback regulator of vascular endothelial growth factor (VEGF) receptor activation. In the mouse model of oxygen-induced retinopathy (OIR), pericytes become the predominant CCN1 producing cells. Pericyte-specific deletion of CCN1 significantly decreases pathological retinal neovascularization following OIR. CCN1 induces the expression of the non-canonical Wnt5a in pericyte but not in EC cultures. In turn, exogenous Wnt5a inhibits CCN1 gene expression, induces EC proliferation and increases hypersprouting. Concordantly, treatment of mice with TNP470, a non-canonical Wnt5a inhibitor, reestablishes endothelial expression of CCN1 and significantly decreases pathological neovascular growth in OIR. Our data highlight the significance of CCN1-EC and CCN1-pericyte communication signals in driving physiological and pathological angiogenesis.
Collapse
Affiliation(s)
- Sangmi Lee
- Department of Cell Biology, State University of New York (SUNY), Downstate Medical Center, College of Medicine, Brooklyn, NY, 11203, USA
| | - Menna Elaskandrany
- Department of Cell Biology, State University of New York (SUNY), Downstate Medical Center, College of Medicine, Brooklyn, NY, 11203, USA
| | - Lester F Lau
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, IL, 60607, USA
| | - Douglas Lazzaro
- Department of Ophthalmology, Downstate Medical Center, Brooklyn, NY, 11203, USA
| | - Maria B Grant
- Departments of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Brahim Chaqour
- Department of Cell Biology, State University of New York (SUNY), Downstate Medical Center, College of Medicine, Brooklyn, NY, 11203, USA.
- Department of Ophthalmology, Downstate Medical Center, Brooklyn, NY, 11203, USA.
| |
Collapse
|
56
|
Ikegame M, Tabuchi Y, Furusawa Y, Kawai M, Hattori A, Kondo T, Yamamoto T. Tensile stress stimulates the expression of osteogenic cytokines/growth factors and matricellular proteins in the mouse cranial suture at the site of osteoblast differentiation. Biomed Res 2017; 37:117-26. [PMID: 27108881 DOI: 10.2220/biomedres.37.117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mechanical stress promotes osteoblast proliferation and differentiation from mesenchymal stem cells (MSCs). Although numerous growth factors and cytokines are known to regulate this process, information regarding the differentiation of mechanically stimulated osteoblasts from MSCs in in vivo microenvironment is limited. To determine the significant factors involved in this process, we performed a global analysis of differentially expressed genes, in response to tensile stress, in the mouse cranial suture wherein osteoblasts differentiate from MSCs. We found that the gene expression levels of several components involved in bone morphogenetic protein, Wnt, and epithelial growth factor signalings were elevated with tensile stress. Moreover gene expression of some extracellular matrices (ECMs), such as cysteine rich protein 61 (Cyr61)/CCN1 and galectin-9, were upregulated. These ECMs have the ability to modulate the activities of cytokines and are known as matricellular proteins. Cyr61/CCN1 expression was prominently increased in the fibroblastic cells and preosteoblasts in the suture. Thus, for the first time we demonstrated the mechanical stimulation of Cyr61/CCN1 expression in osteogenic cells in an ex vivo system. These results suggest the importance of matricellular proteins along with the cytokine-mediated signaling for the mechanical regulation of MSC proliferation and differentiation into osteoblastic cell lineage in vivo.
Collapse
Affiliation(s)
- Mika Ikegame
- Department of Oral Morphology, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | | | | | | | | | | | | |
Collapse
|
57
|
Takeshita N, Hasegawa M, Sasaki K, Seki D, Seiryu M, Miyashita S, Takano I, Oyanagi T, Miyajima Y, Takano-Yamamoto T. In vivo expression and regulation of genes associated with vascularization during early response of sutures to tensile force. J Bone Miner Metab 2017; 35:40-51. [PMID: 26825658 DOI: 10.1007/s00774-016-0737-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 01/04/2016] [Indexed: 12/14/2022]
Abstract
Sutures are fibrous tissues that connect bones in craniofacial skeletal complexes. Cranio- and dentofacial skeletal deformities in infant and adolescent patients can be treated by applying tensile force to sutures to induce sutural bone formation. The early gene expression induced by mechanical stress is essential for bone formation in long bones; however, early gene expression during sutural bone formation induced by tensile force is poorly characterized. In vivo studies are essential to evaluate molecular responses to mechanical stresses in heterogeneous cell populations, such as sutures. In this paper we examined in vivo early gene expression and the underlying regulatory mechanism for this expression in tensile-force-applied cranial sutures, focusing on genes involved in vascularization. Tensile force upregulated expression of vascular factors, such as vascular endothelial growth factor (Vegf) and endothelial cell markers, in sutures within 3 h. The expression of connective tissue growth factor (Ctgf) and Rho-associated coiled-coil containing protein kinase 2 (Rock2) was also upregulated by tensile force. A CTGF-neutralizing antibody and the ROCK inhibitor, Y-27632, abolished tensile-force-induced Vegf expression. Moreover, tensile force activated extracellular signal-related kinase 1/2 (ERK1/2) signaling in sagittal sutures, and the ERK1/2 inhibitor, U0126, partially inhibited tensile-force-induced Ctgf expression. These results indicate that tensile force induces in vivo gene expression associated with vascularization early in tensile-force-induced sutural bone formation. Moreover, the early induction of Vegf gene expression is regulated by CTGF and ROCK2.
Collapse
Affiliation(s)
- Nobuo Takeshita
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Masakazu Hasegawa
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Kiyo Sasaki
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Daisuke Seki
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Masahiro Seiryu
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Shunro Miyashita
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Ikuko Takano
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Toshihito Oyanagi
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yuki Miyajima
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Teruko Takano-Yamamoto
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
58
|
Wang L, Luo JY, Li B, Tian XY, Chen LJ, Huang Y, Liu J, Deng D, Lau CW, Wan S, Ai D, Mak KLK, Tong KK, Kwan KM, Wang N, Chiu JJ, Zhu Y, Huang Y. Integrin-YAP/TAZ-JNK cascade mediates atheroprotective effect of unidirectional shear flow. Nature 2016; 540:579-582. [DOI: 10.1038/nature20602] [Citation(s) in RCA: 334] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 11/03/2016] [Indexed: 12/31/2022]
|
59
|
|
60
|
Puts R, Rikeit P, Ruschke K, Kadow-Romacker A, Hwang S, Jenderka KV, Knaus P, Raum K. Activation of Mechanosensitive Transcription Factors in Murine C2C12 Mesenchymal Precursors by Focused Low-Intensity Pulsed Ultrasound (FLIPUS). IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:1505-1513. [PMID: 27392348 DOI: 10.1109/tuffc.2016.2586972] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this paper, we investigated the mechanoresponse of C2C12 mesenchymal precursor cells to focused low-intensity pulsed ultrasound (FLIPUS). The setup has been developed for in vitro stimulation of adherent cells in the defocused far field of the ultrasound propagating through the bottom of the well plate. Twenty-four-well tissue culture plates, carrying the cell monolayers, were incubated in a temperature-controlled water tank. The ultrasound was applied at 3.6-MHz frequency, pulsed at 100-Hz repetition frequency with a 27.8% duty cycle, and calibrated at an output intensity of ISATA = 44.5 ±7.1 mW/cm2. Numerical sound propagation simulations showed no generation of standing waves in the well plate. The response of murine C2C12 cells to FLIPUS was evaluated by measuring activation of mechanosensitive transcription factors, i.e., activator protein-1 (AP-1), specificity protein 1 (Sp1), and transcriptional enhancer factor (TEAD), and expression of mechanosensitive genes, i.e., c-fos, c-jun, heparin binding growth associated molecule (HB-GAM), and Cyr-61. FLIPUS induced 50% ( p ≤ 0.05 ) and 70% ( p ≤ 0.05 ) increases in AP-1 and TEAD promoter activities, respectively, when stimulated for 5 min. The Sp1 activity was enhanced by about 20% ( p ≤ 0.05 ) after 5-min FLIPUS exposure and the trend persisted for 30-min ( p ≤ 0.05 ) and 1-h ( p ≤ 0.05 ) stimulation times. Expressions of mechanosensitive genes c-fos ( p ≤ 0.05 ), c-jun ( p ≤ 0.05 ), HB-GAM ( p ≤ 0.05 ), and cystein-rich protein 61 ( p ≤ 0.05 ) were enhanced in response to 5-min FLIPUS stimulation. The increase in proliferation of C2C12s occurred after the FLIPUS stimulation ( p ≤ 0.05 ), with AP-1, Sp1, and TEAD possibly regulating the observed cellular activities.
Collapse
|
61
|
Xu S, Koroleva M, Yin M, Jin ZG. Atheroprotective laminar flow inhibits Hippo pathway effector YAP in endothelial cells. Transl Res 2016; 176:18-28.e2. [PMID: 27295628 PMCID: PMC5116386 DOI: 10.1016/j.trsl.2016.05.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 04/25/2016] [Accepted: 05/18/2016] [Indexed: 12/22/2022]
Abstract
Atherosclerosis is a mechanobiology-related disease that preferentially develops in the aortic arch and arterial branches, which are exposed to disturbed/turbulent blood flow but less in thoracic aorta where the flow pattern is steady laminar flow (LF). Increasing evidence supports that steady LF with high shear stress is protective against atherosclerosis. However, the molecular mechanisms of LF-mediated atheroprotection remain incompletely understood. Hippo/YAP (yes-associated protein) pathway senses and effects mechanical cues and has been reported to be a master regulator of cell proliferation, differentiation, and tissue homeostasis. Here, we show that LF inhibits YAP activity in endothelial cells (ECs). We observed that YAP is highly expressed in mouse EC-enriched tissues (lung and aorta) and in human ECs. Furthermore, we found in apolipoprotein E deficient (ApoE(-/-)) mice and human ECs, LF decreased the level of nuclear YAP protein and YAP target gene expression (connective tissue growth factor and cysteine-rich protein 61) through promoting Hippo kinases LATS1/2-dependent YAP (Serine 127) phosphorylation. Functionally, we revealed that YAP depletion in ECs phenocopying LF responses, reduced the expression of cell cycle gene cyclin A1 (CCNA1) and proinflammatory gene CCL2 (MCP-1). Taken together, we demonstrate that atheroprotective LF inhibits endothelial YAP activation, which may contribute to LF-mediated ECs quiescence and anti-inflammation.
Collapse
Affiliation(s)
- Suowen Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Marina Koroleva
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Meimei Yin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Zheng Gen Jin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY.
| |
Collapse
|
62
|
Cardoso J, Mesquita M, Dias Pereira A, Bettencourt-Dias M, Chaves P, Pereira-Leal JB. CYR61 and TAZ Upregulation and Focal Epithelial to Mesenchymal Transition May Be Early Predictors of Barrett's Esophagus Malignant Progression. PLoS One 2016; 11:e0161967. [PMID: 27583562 PMCID: PMC5008832 DOI: 10.1371/journal.pone.0161967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/15/2016] [Indexed: 12/25/2022] Open
Abstract
Barrett's esophagus is the major risk factor for esophageal adenocarcinoma. It has a low but non-neglectable risk, high surveillance costs and no reliable risk stratification markers. We sought to identify early biomarkers, predictive of Barrett's malignant progression, using a meta-analysis approach on gene expression data. This in silico strategy was followed by experimental validation in a cohort of patients with extended follow up from the Instituto Português de Oncologia de Lisboa de Francisco Gentil EPE (Portugal). Bioinformatics and systems biology approaches singled out two candidate predictive markers for Barrett's progression, CYR61 and TAZ. Although previously implicated in other malignancies and in epithelial-to-mesenchymal transition phenotypes, our experimental validation shows for the first time that CYR61 and TAZ have the potential to be predictive biomarkers for cancer progression. Experimental validation by reverse transcriptase quantitative PCR and immunohistochemistry confirmed the up-regulation of both genes in Barrett's samples associated with high-grade dysplasia/adenocarcinoma. In our cohort CYR61 and TAZ up-regulation ranged from one to ten years prior to progression to adenocarcinoma in Barrett's esophagus index samples. Finally, we found that CYR61 and TAZ over-expression is correlated with early focal signs of epithelial to mesenchymal transition. Our results highlight both CYR61 and TAZ genes as potential predictive biomarkers for stratification of the risk for development of adenocarcinoma and suggest a potential mechanistic route for Barrett's esophagus neoplastic progression.
Collapse
Affiliation(s)
- Joana Cardoso
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Ophiomics—Precision Medicine, Lisboa, Portugal
- * E-mail:
| | - Marta Mesquita
- Serviço de Anatomia Patológica, Instituto Português de Oncologia de Lisboa Francisco Gentil, E.P.E., Lisboa, Portugal
- Faculdade de Ciências da Saúde–Universidade da Beira Interior, Covilhã, Portugal
| | - António Dias Pereira
- Faculdade de Ciências da Saúde–Universidade da Beira Interior, Covilhã, Portugal
- Serviço de Gastrenterologia, Instituto Português de Oncologia de Lisboa Francisco Gentil, E.P.E., Lisboa, Portugal
| | | | - Paula Chaves
- Serviço de Anatomia Patológica, Instituto Português de Oncologia de Lisboa Francisco Gentil, E.P.E., Lisboa, Portugal
- Faculdade de Ciências da Saúde–Universidade da Beira Interior, Covilhã, Portugal
| | - José B. Pereira-Leal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Ophiomics—Precision Medicine, Lisboa, Portugal
| |
Collapse
|
63
|
Kwon EJ, Park EJ, Choi S, Kim SR, Cho M, Kim J. PPARγ agonist rosiglitazone inhibits migration and invasion by downregulating Cyr61 in rheumatoid arthritis fibroblast-like synoviocytes. Int J Rheum Dis 2016; 20:1499-1509. [PMID: 27456070 DOI: 10.1111/1756-185x.12913] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AIM Peroxisome proliferator-activated receptor gamma (PPARγ) agonists have anti-inflammatory properties that reduce inflammatory cytokine production in rheumatoid arthritis (RA). Cysteine-rich angiogenic inducer 61 (Cyr61) is associated with diseases related to chronic inflammation. The aim of this study was to investigate the mechanisms underlying the effects of PPARγ agonists on tumor necrosis factor (TNF)-α-induced fibroblast-like synoviocyte (FLS) invasion and migration, as well as Cyr61 production, in RA-FLS. METHODS FLS were cultured with TNF-α and Cyr61 in the presence or absence of PPARγ agonists. Matrix metalloproteinase and Cyr61 expression levels in RA-FLS and culture supernatants were measured by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting. The migration and invasion phenotypes of RA-FLS were determined by wound healing and Boyden chamber assays. RESULTS Cyr61 protein was expressed in RA-FLS, and its intracellular expression and secretion levels were increased by TNF-α. Moreover, Cyr61 directly promoted RA-FLS migration and invasion. Rosiglitazone (RSG) significantly decreased TNF-α-induced Cyr61 expression. RSG decreased TNF-α-induced nuclear factor (NF)-κB activation and inhibitor of κBα degradation. Furthermore, RSG inhibited TNF-α-induced RA-FLS migration and invasion and decreased Cyr61 treatment-induced RA-FLS invasion. Finally, blocking Cyr61 significantly attenuated TNF-α-induced migration. CONCLUSIONS Our results demonstrate for the first time that PPARγ agonists may have beneficial effects on the migration and invasion of RA-FLS via the downregulation of Cyr61. Therefore, PPARγ agonists could be potential treatment targets for RA.
Collapse
Affiliation(s)
- Eun-Jeong Kwon
- Department of Medicine, Jeju National University School of Medicine, Jeju, Republic of Korea
| | - Eun-Jung Park
- Department of Internal Medicine, Jeju National University Hospital, Jeju, Republic of Korea
| | - Sungwook Choi
- Department of Orthopedic Surgery, Jeju National University School of Medicine, Jeju, Republic of Korea
| | - Sang-Rim Kim
- Department of Orthopedic Surgery, Jeju National University School of Medicine, Jeju, Republic of Korea
| | - Moonjae Cho
- Department of Biochemistry, Jeju National University School of Medicine, Jeju, Republic of Korea
| | - Jinseok Kim
- Department of Medicine, Jeju National University School of Medicine, Jeju, Republic of Korea.,Department of Internal Medicine, Jeju National University Hospital, Jeju, Republic of Korea
| |
Collapse
|
64
|
Taskin MB, Xu R, Gregersen H, Nygaard JV, Besenbacher F, Chen M. Three-Dimensional Polydopamine Functionalized Coiled Microfibrous Scaffolds Enhance Human Mesenchymal Stem Cells Colonization and Mild Myofibroblastic Differentiation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:15864-15873. [PMID: 27265317 DOI: 10.1021/acsami.6b02994] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Electrospinning has been widely applied for tissue engineering due to its versatility of fabricating extracellular matrix (ECM) mimicking fibrillar scaffolds. Yet there are still challenges such as that these two-dimensional (2D) tightly packed, hydrophobic fibers often hinder cell infiltration and cell-scaffold integration. In this study, polycaprolactone (PCL) was electrospun into a grounded coagulation bath collector, resulting in 3D coiled microfibers with in situ surface functionalization with hydrophilic, catecholic polydopamine (pDA). The 3D scaffolds showed biocompatibility and were well-integrated with human bone marrow derived human mesenchymal stem cells (hMSCs), with significantly higher cell penetration depth compared to that of the 2D PCL microfibers from traditional electrospinning. Further differentiation of human mesenchymal stem cells (hMSCs) into fibroblast phenotype in vitro indicates that, compared to the stiff, tightly packed, 2D scaffolds which aggravated myofibroblasts related activities, such as upregulated gene and protein expression of α-smooth muscle actin (α-SMA), 3D scaffolds induced milder myofibroblastic differentiation. The flexible 3D fibers further allowed contraction with the well-integrated, mechanically active myofibroblasts, monitored under live-cell imaging, whereas the stiff 2D scaffolds restricted that.
Collapse
Affiliation(s)
- Mehmet Berat Taskin
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University , Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Ruodan Xu
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University , Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Hans Gregersen
- Department of Engineering, Aarhus University , DK-8000 Aarhus C, Denmark
| | - Jens Vinge Nygaard
- Department of Engineering, Aarhus University , DK-8000 Aarhus C, Denmark
| | - Flemming Besenbacher
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University , Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Menglin Chen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University , Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
- Department of Engineering, Aarhus University , DK-8000 Aarhus C, Denmark
| |
Collapse
|
65
|
New molecular insights in diabetic nephropathy. Int Urol Nephrol 2016; 48:373-87. [PMID: 26759327 DOI: 10.1007/s11255-015-1203-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 12/25/2015] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus represents one of the major causes of functional kidney impairment. The review highlights the most significant steps made over the last decades in understanding the molecular basis of diabetic nephropathy (DN), which may provide reliable biomarkers for early diagnosis and prognosis, along with new molecular targets for personalized medicine. There is an increased interest in developing new therapeutic strategies to slow DN progression for improving patients' quality of life and reducing all-cause morbidity and disease-associated mortality. It is highly important to have a science-based medical attitude when facing diabetic patients with associated comorbidities and risk of rapid evolution toward end-stage renal disease. The data discussed herein were mainly from MEDLINE and PubMed articles published in English from 1990 to 2015 and from up-to-date. The search term was "diabetic nephropathy and oxidative stress".
Collapse
|
66
|
Dalum A, Tangen R, Falk K, Hordvik I, Rosenlund G, Torstensen B, Koppang EO. Coronary changes in the Atlantic salmon Salmo salar L: characterization and impact of dietary fatty acid compositions. JOURNAL OF FISH DISEASES 2016; 39:41-54. [PMID: 25413740 DOI: 10.1111/jfd.12321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 06/04/2023]
Abstract
Consumption of fatty acids from fishes is widely regarded as beneficial for preventing cardiovascular disorders. Nevertheless, salmonids themselves are victims of vascular diseases. As the pathogenesis and nature of these changes are elusive, they are here addressed using novel morphological and transcriptional approaches. Coronary arteries of wild Atlantic salmon Salmo salar L., (n = 12) were investigated using histological and immunohistochemical techniques, and RT-qPCR was employed to investigate expression of stretch-induced genes. In an experimental trial, fish were fed diets with different fatty acids composition, and histological features of the coronary arteries (n = 36) were investigated. In addition, the heart fatty acid profile (n = 60) was analysed. There were no differences in morphological or immunological features between wild fish and groups of experimental fish. Arteriosclerotic lesions consisted of smooth muscle cells in dissimilar differential stages embedded in considerable amounts of extracellular matrix in a similar fashion to what is seen in early stages of human atherosclerosis. No fat accumulations were observed, and very few inflammatory cells were present. In affected arteries, there was an induction of stretch-related genes, pointing to a stress-related response. We suggest that salmon may have a natural resistance to developing atherosclerosis, which corresponds well with their high investment in lipid metabolism.
Collapse
Affiliation(s)
- A Dalum
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - R Tangen
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - K Falk
- Norwegian Veterinary Institute, Norway
| | - I Hordvik
- Institute of Biology, University of Bergen, Norway
| | | | - B Torstensen
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
| | - E O Koppang
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
67
|
Di Y, Zhang Y, Nie Q, Chen X. CCN1/Cyr61-PI3K/AKT signaling promotes retinal neovascularization in oxygen-induced retinopathy. Int J Mol Med 2015; 36:1507-18. [PMID: 26459773 PMCID: PMC4678165 DOI: 10.3892/ijmm.2015.2371] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 10/06/2015] [Indexed: 01/30/2023] Open
Abstract
Retinal neovascularization (RNV) is a characteristic pathological finding of retinopathy of prematurity (ROP). Cysteine-rich 61 [Cyr61, also known as CCN family member 1 (CCN1)] has been reported to mediate angiogenesis. The aim of the present study was to investigate the mechanisms of CCN1/Cyr61-phosphoinositide 3-kinase (PI3K)/AKT signaling in ROP. The contribution of CCN1 to human umbilical vein endothelial cell (HUVEC) proliferation and apoptosis under hypoxic conditions was determined using a cell counting kit-8 (CCK-8) and Annexin V/propidium iodide (PI) staining, respectively, as well as using siRNA targeting CCN1 (CCN1 siRNA). The cells exposed to hypoxia were also treated with the PI3K/AKT inhibitor, LY294002. In addition, mouse pups with oxygen-induced retinopathy (OIR) were administered an intravitreal injection of CCN1 siRNA. RNV was assessed by magnesium-activated adenosine diphosphatease (ADPase) staining. RT-qPCR, western blot analysis, immunofluorescence staining and immunohistochemistry were used to detect the distribution and expression of CCN1, PI3K and AKT. Exposure to hypoxia increased the neovascularization clock hour scores (from 1.23±0.49 to 5.60±0.73, P<0.05) and the number of preretinal neovascular cells, as well as the mRNA and protein expression levels of CCN1, PI3K and AKT (all P<0.05). The injection of CCN1 siRNA decreased the neovascularization clock hour scores and the number of preretinal neovascular cells (1.53±0.72 vs. 4.76±1.04; 12.0±2.8 vs. 31.4±2.6, respectively, both P<0.05), as well as the mRNA and protein expression levels of CCN1, PI3K and AKT (protein, −45.3, −22.5 and −28.4%; mRNA, −43.7, −58.7 and −42.9%, respectively, all P<0.05) compared to the administration of scrambled siRNA under hypoxic conditions. Treatment with LY294002 decreased the mRNA and protein expression levels of CCN1 in the cells exposed to hypoxia (both P<0.05). The administration of CCN1 siRNA resulted in less severe neovascularization in the eyes of the the mouse pups with OIR. Thus, out data suggest that CCN1 plays an important role in RNV in ROP, and may thus be a potential target for the prevention and treatment of ROP.
Collapse
Affiliation(s)
- Yu Di
- Department of Ophthalmology, Shengjing Affiliated Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yiou Zhang
- Graduate School, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Qingzhu Nie
- Department of Ophthalmology, Shengjing Affiliated Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xiaolong Chen
- Department of Ophthalmology, Shengjing Affiliated Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
68
|
Krupska I, Bruford EA, Chaqour B. Eyeing the Cyr61/CTGF/NOV (CCN) group of genes in development and diseases: highlights of their structural likenesses and functional dissimilarities. Hum Genomics 2015; 9:24. [PMID: 26395334 PMCID: PMC4579636 DOI: 10.1186/s40246-015-0046-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/16/2015] [Indexed: 01/03/2023] Open
Abstract
“CCN” is an acronym referring to the first letter of each of the first three members of this original group of mammalian functionally and phylogenetically distinct extracellular matrix (ECM) proteins [i.e., cysteine-rich 61 (CYR61), connective tissue growth factor (CTGF), and nephroblastoma-overexpressed (NOV)]. Although “CCN” genes are unlikely to have arisen from a common ancestral gene, their encoded proteins share multimodular structures in which most cysteine residues are strictly conserved in their positions within several structural motifs. The CCN genes can be subdivided into members developmentally indispensable for embryonic viability (e.g., CCN1, 2 and 5), each assuming unique tissue-specific functions, and members not essential for embryonic development (e.g., CCN3, 4 and 6), probably due to a balance of functional redundancy and specialization during evolution. The temporo-spatial regulation of the CCN genes and the structural information contained within the sequences of their encoded proteins reflect diversity in their context and tissue-specific functions. Genetic association studies and experimental anomalies, replicated in various animal models, have shown that altered CCN gene structure or expression is associated with “injury” stimuli—whether mechanical (e.g., trauma, shear stress) or chemical (e.g., ischemia, hyperglycemia, hyperlipidemia, inflammation). Consequently, increased organ-specific susceptibility to structural damages ensues. These data underscore the critical functions of CCN proteins in the dynamics of tissue repair and regeneration and in the compensatory responses preceding organ failure. A better understanding of the regulation and mode of action of each CCN member will be useful in developing specific gain- or loss-of-function strategies for therapeutic purposes.
Collapse
Affiliation(s)
- Izabela Krupska
- Department of Cell Biology, Downstate Medical Center, Brooklyn, NY, 11203, USA.,Department of Ophthalmology, Downstate Medical Center, Brooklyn, NY, 11203, USA
| | - Elspeth A Bruford
- HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Brahim Chaqour
- Department of Cell Biology, Downstate Medical Center, Brooklyn, NY, 11203, USA. .,Department of Ophthalmology, Downstate Medical Center, Brooklyn, NY, 11203, USA. .,State University of New York (SUNY) Eye Institute Downstate Medical Center, 450 Clarkson Avenue, MSC 5, Brooklyn, NY, 11203, USA.
| |
Collapse
|
69
|
Raghunathan VK, Morgan JT, Park SA, Weber D, Phinney BS, Murphy CJ, Russell P. Dexamethasone Stiffens Trabecular Meshwork, Trabecular Meshwork Cells, and Matrix. Invest Ophthalmol Vis Sci 2015; 56:4447-59. [PMID: 26193921 PMCID: PMC4509060 DOI: 10.1167/iovs.15-16739] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/22/2015] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Treatment with corticosteroids can result in ocular hypertension and may lead to the development of steroid-induced glaucoma. The extent to which biomechanical changes in trabecular meshwork (TM) cells and extracellular matrix (ECM) contribute toward this dysfunction is poorly understood. METHODS Primary human TM (HTM) cells were cultured for either 3 days or 4 weeks in the presence or absence of dexamethasone (DEX), and cell mechanics, matrix mechanics and proteomics were determined, respectively. Adult rabbits were treated topically with either 0.1% DEX or vehicle over 3 weeks, and mechanics of the TM were determined. RESULTS Treatment with DEX for 3 days resulted in a 2-fold increase in HTM cell stiffness, and this correlated with activation of extracellular signal-related kinase 1/2 (ERK1/2) and overexpression of α-smooth muscle actin (αSMA). Further, the matrix deposited by HTM cells chronically treated with DEX is approximately 4-fold stiffer, more organized, and has elevated expression of matrix proteins commonly implicated in glaucoma (decorin, myocilin, fibrillin, secreted frizzle-related protein [SFRP1], matrix-gla). Also, DEX treatment resulted in a 3.5-fold increase in stiffness of the rabbit TM. DISCUSSION This integrated approach clearly demonstrates that DEX treatment increases TM cell stiffness concurrent with elevated αSMA expression and activation of the mitogen-activated protein kinase (MAPK) pathway, stiffens the ECM in vitro along with upregulation of Wnt antagonists and fibrotic markers embedded in a more organized matrix, and increases the stiffness of TM tissues in vivo. These results demonstrate glucocorticoid treatment can initiate the biophysical alteration associated with increased resistance to aqueous humor outflow and the resultant increase in IOP.
Collapse
Affiliation(s)
- Vijay Krishna Raghunathan
- Department of Surgical and Radiological Sciences School of Veterinary Medicine, University of California Davis, Davis, California, United States
| | - Joshua T. Morgan
- Department of Surgical and Radiological Sciences School of Veterinary Medicine, University of California Davis, Davis, California, United States
| | - Shin Ae Park
- Department of Surgical and Radiological Sciences School of Veterinary Medicine, University of California Davis, Davis, California, United States
| | - Darren Weber
- University of California Davis Genome Center Proteomics Core Facility, University of California Davis, Davis, California, United States
| | - Brett S. Phinney
- University of California Davis Genome Center Proteomics Core Facility, University of California Davis, Davis, California, United States
| | - Christopher J. Murphy
- Department of Surgical and Radiological Sciences School of Veterinary Medicine, University of California Davis, Davis, California, United States
- Department of Ophthalmology and Vision Sciences, School of Medicine, University of California Davis, Davis, California, United States
| | - Paul Russell
- Department of Surgical and Radiological Sciences School of Veterinary Medicine, University of California Davis, Davis, California, United States
| |
Collapse
|
70
|
Li CH, Li CZ. The role of Hippo signaling in tooth development. J Formos Med Assoc 2015; 115:295-7. [PMID: 25890496 DOI: 10.1016/j.jfma.2015.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/04/2015] [Accepted: 03/17/2015] [Indexed: 11/17/2022] Open
Affiliation(s)
- Chun-Hui Li
- Department of Oral Medicine, School of Stomatology, Luzhou Medical College, Luzhou, Sichuan Province, China
| | - Chang-Zhao Li
- Department of Dermatology and Skin Disease Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
71
|
Giehl K, Keller C, Muehlich S, Goppelt-Struebe M. Actin-mediated gene expression depends on RhoA and Rac1 signaling in proximal tubular epithelial cells. PLoS One 2015; 10:e0121589. [PMID: 25816094 PMCID: PMC4376694 DOI: 10.1371/journal.pone.0121589] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 02/14/2015] [Indexed: 12/29/2022] Open
Abstract
Morphological alterations of cells can lead to modulation of gene expression. An essential link is the MKL1-dependent activation of serum response factor (SRF), which translates changes in the ratio of G- and F-actin into mRNA transcription. SRF activation is only partially characterized in non-transformed epithelial cells. Therefore, the impact of GTPases of the Rho family and changes in F-actin structures were analyzed in renal proximal tubular epithelial cells. Activation of SRF signaling was compared to the regulation of a known MKL1/SRF target gene, connective tissue growth factor (CTGF). In the human proximal tubular cell line HKC-8 overexpression of two actin mutants either favoring or preventing the formation of F-actin fibers regulated SRF-mediated transcription as well as CTGF expression. Only overexpression of constitutively active RhoA activated SRF-dependent gene expression whereas no effect was detected upon overexpression of Rac1 mutants. To elucidate the functional role of Rho kinases as downstream mediators of RhoA, pharmacological inhibition and genetic inhibition by transient siRNA knock down were compared. Upon stimulation with lysophosphatidic acid (LPA) Rho kinase inhibitors partially suppressed SRF-mediated transcription, whereas interference with Rho kinase expression by siRNA reduced activation of SRF, but barely affected CTGF expression. Together with the partial inhibition of CTGF expression by the pharmacological inhibitors Y27432 and H1154, Rho kinases seem to be less important in mediating RhoA signaling related to CTGF expression in HKC-8 epithelial cells. Short term pharmacological inhibition of Rac1 activity by EHT1864 reduced SRF-dependent CTGF expression in HKC-8 cells, but was overcome by a stimulatory effect after prolonged incubation after 4-6 h. Similarly, human primary cells of proximal but not of distal tubular origin showed inhibitory as well as stimulatory effects of Rac1 inhibition. Thus, RhoA signaling activates MKL1-SRF-mediated CTGF expression in proximal tubular cells, whereas Rac1 signaling is more complex with adaptive cellular responses.
Collapse
Affiliation(s)
- Klaudia Giehl
- Signal Transduction of Cellular Motility, Internal Medicine V, Justus-Liebig-University Giessen, Giessen, Germany
| | - Christof Keller
- Department of Nephrology and Hypertension, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Susanne Muehlich
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Margarete Goppelt-Struebe
- Department of Nephrology and Hypertension, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
72
|
Kuespert S, Junglas B, Braunger BM, Tamm ER, Fuchshofer R. The regulation of connective tissue growth factor expression influences the viability of human trabecular meshwork cells. J Cell Mol Med 2015; 19:1010-20. [PMID: 25704370 PMCID: PMC4420603 DOI: 10.1111/jcmm.12492] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/13/2014] [Indexed: 11/30/2022] Open
Abstract
Connective tissue growth factor (CTGF) induces extracellular matrix (ECM) synthesis and contractility in human trabecular meshwork (HTM) cells. Both processes are involved in the pathogenesis of primary open-angle glaucoma. To date, little is known about regulation and function of CTGF expression in the trabecular meshwork (TM). Therefore, we analysed the effects of different aqueous humour proteins and stressors on CTGF expression in HTM cells. HTM cells from three different donors were treated with endothelin-1, insulin-like growth factor (IGF)-1, angiotensin-II, H2O2 and heat shock and were analysed by immunohistochemistry, real-time RT-PCR and Western blotting. Viability after H2O2 treatment was measured in CTGF silenced HTM-N cells and their controls. Latrunculin A reduced expression of CTGF by about 50% compared to untreated HTM cells, whereas endothelin-1, IGF-1, angiotensin-II, heat shock and oxidative stress led to a significant increase. Silencing of CTGF resulted in a delayed expression of αB-crystallin and in reduced cell viability in comparison to the controls after oxidative stress. Conversely, CTGF treatment led to a higher cell viability rate after H2O2 treatment. CTGF expression is induced by factors that have been linked to glaucoma. An increased level of CTGF appears to protect TM cells against damage induced by stress. The beneficial effect of CTGF for viability of TM cells is likely associated with the effects on increased ECM synthesis and higher contractility of the TM, thereby contributing to reduced aqueous humour outflow facility causing increased intraocular pressure.
Collapse
Affiliation(s)
- Sabrina Kuespert
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | | | | | | | | |
Collapse
|
73
|
Duggirala A, Kimura TE, Sala-Newby GB, Johnson JL, Wu YJ, Newby AC, Bond M. cAMP-induced actin cytoskeleton remodelling inhibits MKL1-dependent expression of the chemotactic and pro-proliferative factor, CCN1. J Mol Cell Cardiol 2015; 79:157-68. [PMID: 25446180 PMCID: PMC4312355 DOI: 10.1016/j.yjmcc.2014.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/24/2014] [Accepted: 11/12/2014] [Indexed: 12/17/2022]
Abstract
Elevation of intracellular cAMP concentration has numerous vascular protective effects that are in part mediated via actin cytoskeleton-remodelling and subsequent regulation of gene expression. However, the mechanisms are incompletely understood. Here we investigated whether cAMP-induced actin-cytoskeleton remodelling modulates VSMC behaviour by inhibiting expression of CCN1. In cultured rat VSMC, CCN1-silencing significantly inhibited BrdU incorporation and migration in a wound healing assay. Recombinant CCN1 enhanced chemotaxis in a Boyden chamber. Adding db-cAMP, or elevating cAMP using forskolin, significantly inhibited CCN1 mRNA and protein expression in vitro; transcriptional regulation was demonstrated by measuring pre-spliced CCN1 mRNA and CCN1-promoter activity. Forskolin also inhibited CCN1 expression in balloon injured rat carotid arteries in vivo. Inhibiting RhoA activity, which regulates actin-polymerisation, by cAMP-elevation or pharmacologically with C3-transferase, or inhibiting its downstream kinase, ROCK, with Y27632, significantly inhibited CCN1 expression. Conversely, expression of constitutively active RhoA reversed the inhibitory effects of forskolin on CCN1 mRNA. Furthermore, CCN1 mRNA levels were significantly decreased by inhibiting actin-polymerisation with latrunculin B or increased by stimulating actin-polymerisation with Jasplakinolide. We next tested the role of the actin-dependent SRF co-factor, MKL1, in CCN1 expression. Forskolin inhibited nuclear translocation of MKL1 and binding of MKL1 to the CCN1 promoter. Constitutively-active MKL1 enhanced basal promoter activity of wild-type but not SRE-mutated CCN1; and prevented forskolin inhibition. Furthermore, pharmacological MKL-inhibition with CCG-1423 significantly inhibited CCN1 promoter activity as well as mRNA and protein expression. Our data demonstrates that cAMP-induced actin-cytoskeleton remodelling regulates expression of CCN1 through MKL1: it highlights a novel cAMP-dependent mechanism controlling VSMC behaviour.
Collapse
Affiliation(s)
- Aparna Duggirala
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, BS2 8HW, UK
| | - Tomomi E Kimura
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, BS2 8HW, UK
| | - Graciela B Sala-Newby
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, BS2 8HW, UK
| | - Jason L Johnson
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, BS2 8HW, UK
| | - Yih-Jer Wu
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan; Cardiovascular Division, Department of Internal Medicine, MacKay Memorial Hospital, New Taipei, Taiwan
| | - Andrew C Newby
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, BS2 8HW, UK
| | - Mark Bond
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, BS2 8HW, UK.
| |
Collapse
|
74
|
Ahluwalia N, Shea BS, Tager AM. New therapeutic targets in idiopathic pulmonary fibrosis. Aiming to rein in runaway wound-healing responses. Am J Respir Crit Care Med 2014; 190:867-78. [PMID: 25090037 DOI: 10.1164/rccm.201403-0509pp] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating disease, with a median survival as short as 3 years from the time of diagnosis and no pharmacological therapies yet approved by the U.S. Food and Drug Administration. To address the great unmet need for effective IPF therapy, a number of new drugs have recently been, or are now being, evaluated in clinical trials. The rationales for most of these therapeutic candidates are based on the current paradigm of IPF pathogenesis, in which recurrent injury to the alveolar epithelium is believed to drive aberrant wound healing responses, resulting in fibrosis rather than repair. Here we discuss drugs in recently completed or currently ongoing phase II and III IPF clinical trials in the context of their putative mechanisms of action and the aberrant repair processes they are believed to target: innate immune activation and polarization, fibroblast accumulation and myofibroblast differentiation, or extracellular matrix deposition and stiffening. Placed in this context, the positive results of recently completed trials of pirfenidone and nintedanib, and results that will come from ongoing trials of other agents, should provide valuable insights into the still-enigmatic pathogenesis of this disease, in addition to providing benefits to patients with IPF.
Collapse
Affiliation(s)
- Neil Ahluwalia
- Pulmonary and Critical Care Unit and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | |
Collapse
|
75
|
Cheng G, Zhang H, Zhang L, Zhang J. Cyr61 promotes growth of glioblastoma in vitro and in vivo. Tumour Biol 2014; 36:2869-73. [DOI: 10.1007/s13277-014-2915-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 11/27/2014] [Indexed: 01/09/2023] Open
|
76
|
Falke LL, Goldschmeding R, Nguyen TQ. A perspective on anti-CCN2 therapy for chronic kidney disease. Nephrol Dial Transplant 2014; 29 Suppl 1:i30-i37. [PMID: 24493868 DOI: 10.1093/ndt/gft430] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Kidney fibrosis is the common end point of chronic kidney disease independent of aetiology. Currently, no effective therapy exists to reduce kidney fibrosis. CCN2 appears to be an interesting candidate for anti-fibrotic drug targeting, because it holds a central position in the development of kidney fibrosis and interacts with a variety of factors that are involved in the fibrotic response, including transforming growth factor (TGF) β and Bone morphogenetic proteins. Although CCN2 modifies many pathways, it does not appear to have a membrane receptor of its own. Numerous experimental and clinical studies lowering CCN2 bioavailability have shown promising results with minimal adverse side effects. This review aims to provide an overview of the current state of CCN2 research with a focus on anti-fibrotic therapy.
Collapse
Affiliation(s)
- Lucas L Falke
- Department of Pathology, UMC Utrecht, Utrecht, Netherlands
| | | | | |
Collapse
|
77
|
Peters AS, Brunner G, Krieg T, Eckes B. Cyclic mechanical strain induces TGFβ1-signalling in dermal fibroblasts embedded in a 3D collagen lattice. Arch Dermatol Res 2014; 307:191-7. [PMID: 25348252 DOI: 10.1007/s00403-014-1514-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 09/30/2014] [Accepted: 10/07/2014] [Indexed: 12/01/2022]
Abstract
Many tissues are constantly exposed to mechanical stress, e.g. shear stress in vascular endothelium, compression forces in cartilage or tensile strain in the skin. Dermal fibroblasts can differentiate into contractile myofibroblasts in a process requiring the presence of TGFβ1 in addition to mechanical load. We aimed at investigating the effect of cyclic mechanical strain on dermal fibroblasts grown in a three-dimensional environment. Therefore, murine dermal fibroblasts were cultured in collagen gels and subjected to cyclic tension at a frequency of 0.1 Hz (6 cycles/min) with a maximal increase in surface area of 10 % for 24 h. This treatment resulted in a significant increase in active TGFβ1 levels, leaving the amount of total TGFβ1 unaffected. TGFβ1 activation led to pSMAD2-mediated transcriptional elevation of downstream mediators, such as CTGF, and an auto-induction of TGFβ1, respectively.
Collapse
Affiliation(s)
- Andreas S Peters
- Department of Vascular and Endovascular Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany,
| | | | | | | |
Collapse
|
78
|
Shi W, Yin J, Chen Z, Chen H, Liu L, Meng Z. Cyr61 promotes growth of pancreatic carcinoma via nuclear exclusion of p27. Tumour Biol 2014; 35:11147-51. [PMID: 25104090 DOI: 10.1007/s13277-014-2423-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 07/29/2014] [Indexed: 12/27/2022] Open
Abstract
The molecular regulation of the growth of pancreatic carcinoma (PCC) is complicated and not defined yet. Here we show that the cysteine-rich protein 61 (Cyr61) levels were significantly higher in PCC than in the adjacent nontumor tissues from the same human patient. Overexpression of Cyr61 enhanced the proliferation of PCC cells, while inhibition of Cyr61 decreased the proliferation of PCC cells. Further analysis showed that Cyr61 seemed to activate phosphatidylinositol 3-kinase (PI3K) but not extracellular-related kinase/mitogen-activated protein kinase (ERK/MAPK) signaling pathway in PCC cells, which subsequently induced nuclear exclusion of a major cell cycle inhibitor, p27, to increase cell proliferation. Taken together, these findings reveal the molecular basis underlying Cyr61-regulated PCC proliferation, suggest a potential role of Cyr61 in PCC growth, and highlight Cyr61 as a novel target for PCC therapy.
Collapse
Affiliation(s)
- Weidong Shi
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, 200032, Shanghai, China
| | | | | | | | | | | |
Collapse
|
79
|
Dotterweich J, Ebert R, Kraus S, Tower RJ, Jakob F, Schütze N. Mesenchymal stem cell contact promotes CCN1 splicing and transcription in myeloma cells. Cell Commun Signal 2014; 12:36. [PMID: 24965524 PMCID: PMC4081546 DOI: 10.1186/1478-811x-12-36] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/06/2014] [Indexed: 12/31/2022] Open
Abstract
CCN family member 1 (CCN1), also known as cysteine-rich angiogenic inducer 61 (CYR61), belongs to the extracellular matrix-associated CCN protein family. The diverse functions of these proteins include regulation of cell migration, adhesion, proliferation, differentiation and survival/apoptosis, induction of angiogenesis and cellular senescence. Their functions are partly overlapping, largely non-redundant, cell-type specific, and depend on the local microenvironment. To elucidate the role of CCN1 in the crosstalk between stromal cells and myeloma cells, we performed co-culture experiments with primary mesenchymal stem cells (MSC) and the interleukin-6 (IL-6)-dependent myeloma cell line INA-6. Here we show that INA-6 cells display increased transcription and induction of splicing of intron-retaining CCN1 pre-mRNA when cultured in contact with MSC. Protein analyses confirmed that INA-6 cells co-cultured with MSC show increased levels of CCN1 protein consistent with the existence of a pre-mature stop codon in intron 1 that abolishes translation of unspliced mRNA. Addition of recombinant CCN1-Fc protein to INA-6 cells was also found to induce splicing of CCN1 pre-mRNA in a concentration-dependent manner. Only full length CCN1-Fc was able to induce mRNA splicing of all introns, whereas truncated recombinant isoforms lacking domain 4 failed to induce intron splicing. Blocking RGD-dependent integrins on INA-6 cells resulted in an inhibition of these splicing events. These findings expand knowledge on splicing of the proangiogenic, matricellular factor CCN1 in the tumor microenvironment. We propose that contact with MSC-derived CCN1 leads to splicing and enhanced transcription of CCN1 which further contributes to the translation of angiogenic factor CCN1 in myeloma cells, supporting tumor viability and myeloma bone disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Norbert Schütze
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Brettreichstrasse 11, 97074 Würzburg, Germany.
| |
Collapse
|
80
|
Haak AJ, Tsou PS, Amin MA, Ruth JH, Campbell P, Fox DA, Khanna D, Larsen SD, Neubig RR. Targeting the myofibroblast genetic switch: inhibitors of myocardin-related transcription factor/serum response factor-regulated gene transcription prevent fibrosis in a murine model of skin injury. J Pharmacol Exp Ther 2014; 349:480-6. [PMID: 24706986 PMCID: PMC4019321 DOI: 10.1124/jpet.114.213520] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/31/2014] [Indexed: 01/09/2023] Open
Abstract
Systemic sclerosis (SSc), or scleroderma, similar to many fibrotic disorders, lacks effective therapies. Current trials focus on anti-inflammatory drugs or targeted approaches aimed at one of the many receptor mechanisms initiating fibrosis. In light of evidence that a myocardin-related transcription factor (MRTF)-and serum response factor (SRF)-regulated gene transcriptional program induced by Rho GTPases is essential for myofibroblast activation, we explored the hypothesis that inhibitors of this pathway may represent novel antifibrotics. MRTF/SRF-regulated genes show spontaneously increased expression in primary dermal fibroblasts from patients with diffuse cutaneous SSc. A novel small-molecule inhibitor of MRTF/SRF-regulated transcription (CCG-203971) inhibits expression of connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), and collagen 1 (COL1A2) in both SSc fibroblasts and in lysophosphatidic acid (LPA)-and transforming growth factor β (TGFβ)-stimulated fibroblasts. In vivo treatment with CCG-203971 also prevented bleomycin-induced skin thickening and collagen deposition. Thus, targeting the MRTF/SRF gene transcription pathway could provide an efficacious new approach to therapy for SSc and other fibrotic disorders.
Collapse
Affiliation(s)
- Andrew J Haak
- Department of Pharmacology (A.J.H.) and Department of Internal Medicine, Division of Rheumatology (P.T., M.A.A., J.H.R., P.C., D.A.F., D.K.), University of Michigan Medical Center, Ann Arbor, Michigan; Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (S.D.L.); and Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (R.R.N.)
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Takano-Yamamoto T. Osteocyte function under compressive mechanical force. JAPANESE DENTAL SCIENCE REVIEW 2014. [DOI: 10.1016/j.jdsr.2013.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
82
|
Takano M, Kawabata S, Komaki Y, Shibata S, Hikishima K, Toyama Y, Okano H, Nakamura M. Inflammatory cascades mediate synapse elimination in spinal cord compression. J Neuroinflammation 2014; 11:40. [PMID: 24589419 PMCID: PMC3975877 DOI: 10.1186/1742-2094-11-40] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 02/17/2014] [Indexed: 01/15/2023] Open
Abstract
Background Cervical compressive myelopathy (CCM) is caused by chronic spinal cord compression due to spondylosis, a degenerative disc disease, and ossification of the ligaments. Tip-toe walking Yoshimura (twy) mice are reported to be an ideal animal model for CCM-related neuronal dysfunction, because they develop spontaneous spinal cord compression without any artificial manipulation. Previous histological studies showed that neurons are lost due to apoptosis in CCM, but the mechanism underlying this neurodegeneration was not fully elucidated. The purpose of this study was to investigate the pathophysiology of CCM by evaluating the global gene expression of the compressed spinal cord and comparing the transcriptome analysis with the physical and histological findings in twy mice. Methods Twenty-week-old twy mice were divided into two groups according to the magnetic resonance imaging (MRI) findings: a severe compression (S) group and a mild compression (M) group. The transcriptome was analyzed by microarray and RT-PCR. The cellular pathophysiology was examined by immunohistological analysis and immuno-electron microscopy. Motor function was assessed by Rotarod treadmill latency and stride-length tests. Results Severe cervical calcification caused spinal canal stenosis and low functional capacity in twy mice. The microarray analysis revealed 215 genes that showed significantly different expression levels between the S and the M groups. Pathway analysis revealed that genes expressed at higher levels in the S group were enriched for terms related to the regulation of inflammation in the compressed spinal cord. M1 macrophage-dominant inflammation was present in the S group, and cysteine-rich protein 61 (Cyr61), an inducer of M1 macrophages, was markedly upregulated in these spinal cords. Furthermore, C1q, which initiates the classical complement cascade, was more upregulated in the S group than in the M group. The confocal and electron microscopy observations indicated that classically activated microglia/macrophages had migrated to the compressed spinal cord and eliminated synaptic terminals. Conclusions We revealed the detailed pathophysiology of the inflammatory response in an animal model of chronic spinal cord compression. Our findings suggest that complement-mediated synapse elimination is a central mechanism underlying the neurodegeneration in CCM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hideyuki Okano
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | |
Collapse
|
83
|
PKCδ as a regulator for TGF-β-stimulated connective tissue growth factor production in human hepatocarcinoma (HepG2) cells. Biochem J 2013; 456:109-18. [PMID: 23988089 DOI: 10.1042/bj20130744] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
CTGF (connective tissue growth factor) is widely regarded as an important amplifier of the profibrogenic action of TGF-β (transforming growth factor β) in a variety of tissues, although the precise mechanism of how the TGF-β signalling pathways modulate CTGF expression remains unclear. In the present study, the role of PKCδ (protein kinase Cδ) in TGF-β1-mediated CTGF expression was investigated using HepG2 cells. TGF-β1 treatment specifically elevated PKCδ activation and CTGF expression. In contrast, blockade of PKCδ by the selective inhibitor Rottlerin or by siRNA knockdown significantly reduced TGF-β1-induced CTGF production. The regulatory mechanism was further demonstrated in HepG2 cells whereby TGF-β1-induced PKCδ activation negatively regulated the nuclear levels of PPM1A (protein phosphatase, Mg2+/Mn2+ dependent, 1A) through the RhoA/ROCK (Rho-associated kinase) pathway. Moreover, we showed that both Smad signalling and the PKCδ pathway appeared to be stimulated by TGF-β1 in parallel. Time course assessments indicated that PKCδ signalling may have a function in maintaining nuclear phospho-Smads at a maximal level. The collective results of the present study demonstrated that PKCδ-stimulated RhoA/ROCK activation resulted in a reduction in PPM1A, thereby up-regulating Smad-dependent gene induction for extended periods. These findings indicated that PKCδ plays a critical role in TGF-β1-induced CTGF production in HepG2 cells.
Collapse
|
84
|
Guan T, Gao B, Chen G, Chen X, Janssen M, Uttarwar L, Ingram AJ, Krepinsky JC. Colchicine attenuates renal injury in a model of hypertensive chronic kidney disease. Am J Physiol Renal Physiol 2013; 305:F1466-76. [DOI: 10.1152/ajprenal.00057.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hypertension is a risk factor for chronic kidney disease, particularly when associated with impaired renal autoregulation and thereby increased intraglomerular pressure (Pgc). Elevated Pgc can be modeled in vitro by exposing glomerular mesangial cells to mechanical strain. We previously showed that RhoA mediates strain-induced matrix production. Here, we show that RhoA activation is dependent on an intact microtubule network. Upregulation of the profibrotic cytokine connective tissue growth factor (CTGF) by mechanical strain is dependent on RhoA activation and inhibited by microtubule disruption. We tested the effects of the microtubule depolymerizing agent colchicine in 5/6 nephrectomized rats, a model of chronic kidney disease driven by elevated Pgc. Colchicine inhibited glomerular RhoA activation and attenuated both glomerular sclerosis and interstitial fibrosis without affecting systemic blood pressure. Upregulation of the matrix proteins collagen I and fibronectin, as well as CTGF, was attenuated by colchicine. Activity of the profibrotic cytokine TGF-β, as assessed by Smad3 phosphorylation, was also inhibited by colchicine. Microtubule disruption significantly decreased renal infiltration of lymphocytes and macrophages. Our studies thus indicate that colchicine modifies hypertensive renal fibrosis. Its protective effects are likely mediated by inhibition of RhoA signaling and renal infiltration of inflammatory cells. Already well-established in clinical practice for other indications, prevention of hypertension-associated renal fibrosis may represent a new potential use for colchicine.
Collapse
Affiliation(s)
- Tianxiu Guan
- Division of Nephrology, McMaster University, Hamilton, Canada
| | - Bo Gao
- Division of Nephrology, McMaster University, Hamilton, Canada
| | - Guang Chen
- Division of Nephrology, McMaster University, Hamilton, Canada
| | - Xing Chen
- Division of Nephrology, McMaster University, Hamilton, Canada
| | - Melissa Janssen
- Division of Nephrology, McMaster University, Hamilton, Canada
| | - Lalita Uttarwar
- Division of Nephrology, McMaster University, Hamilton, Canada
| | | | | |
Collapse
|
85
|
Effects of Ganfukang on expression of connective tissue growth factor and focal adhesion kinase/protein kinase B signal pathway in hepatic fibrosis rats. Chin J Integr Med 2013; 20:438-44. [PMID: 23990393 DOI: 10.1007/s11655-013-1597-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To investigate the effect of Ganfukang (GFK) on connective tissue growth factor (CTGF) and focal adhesion kinase (FAK)/protein kinase B (PKB or Akt) signal pathway in a hepatic fibrosis rat model and to explore the underlying therapeutic molecular mechanisms of GFK. METHODS Fifty SD rats were randomly divided into five groups as follows: the control group, the model group (repeated subcutaneous injection of CCl4), and the three GFK treatment groups (31.25, 312.5, and 3125 mg/kg, intragastric administration). Reverse transcriptase-polymerase chain reaction (RT-PCR), Western blotting, and immunohistochemistry were used to examine the expression of CTGF, integrin α5, integrin β1, FAK/Akt signal pathway, cyclinD1, and collagen in the different-treated rats. RESULTS GFK attenuated the up-regulation of CTGF, integrin α5, and integrin β1 in hepatic fibrosis rats and suppressed both the phosphorylation of FAK and the phosphorylation of Akt simultaneously (P<0.01). At the same time, the expression of cyclinD1, collagen I, and collagen III was decreased by GFK significantly (P<0.01). CONCLUSIONS CTGF and FAK/Akt signal pathway were activated in the CCl4-induced hepatic fibrosis rats, which contribute to increased expression of cyclinD1 and collagen genes. The mechanisms of the anti-fibrosis activity of GFK may be due to its effects against CTGF and FAk/Akt signal pathway.
Collapse
|
86
|
Chen G, Chen X, Sukumar A, Gao B, Curley J, Schnaper HW, Ingram AJ, Krepinsky JC. TGFβ receptor I transactivation mediates stretch-induced Pak1 activation and CTGF upregulation in mesangial cells. J Cell Sci 2013; 126:3697-712. [PMID: 23781022 DOI: 10.1242/jcs.126714] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Increased intraglomerular pressure is an important pathogenic determinant of kidney fibrosis in the progression of chronic kidney disease, and can be modeled by exposing glomerular mesangial cells (MC) to mechanical stretch. MC produce extracellular matrix and profibrotic cytokines, including connective tissue growth factor (CTGF) when stretched. We show that p21-activated kinase 1 (Pak1) is activated by stretch in MC in culture and in vivo in a process marked by elevated intraglomerular pressures. Its activation is essential for CTGF upregulation. Rac1 is an upstream regulator of Pak1 activation. Stretch induces transactivation of the type I transforming growth factor β1 receptor (TβRI) independently of ligand binding. TβRI transactivation is required not only for Rac1/Pak1 activation, but also for activation of the canonical TGFβ signaling intermediate Smad3. We show that Smad3 activation is an essential requirement for CTGF upregulation in MC under mechanical stress. Pak1 regulates Smad3 C-terminal phosphorylation and transcriptional activation. However, a second signaling pathway, that of RhoA/Rho-kinase and downstream Erk activation, is also required for stretch-induced CTGF upregulation in MC. Importantly, this is also regulated by Pak1. Thus, Pak1 serves as a novel central mediator in the stretch-induced upregulation of CTGF in MC.
Collapse
Affiliation(s)
- Guang Chen
- Division of Nephrology, St. Joseph's Hospital, McMaster University, Hamilton, ON L8N 4A6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Correlations Between CCN1 Immunoexpression and Myocardial Histologic Lesions in Sudden Cardiac Death. Am J Forensic Med Pathol 2013; 34:169-76. [DOI: 10.1097/paf.0b013e31828d69b5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
88
|
Peters AS, Brunner G, Blumbach K, Abraham DJ, Krieg T, Eckes B. Cyclic mechanical stress downregulates endothelin-1 and its responsive genes independently of TGFβ1 in dermal fibroblasts. Exp Dermatol 2013; 21:765-70. [PMID: 23078398 DOI: 10.1111/exd.12010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mechanical forces are highly variable ranging from the ubiquitous gravity force to compression, fluid shear, torsion, tension and other forms. Mechanical forces act on cells and modulate their biological responses by regulating gene transcription, enzyme and growth factor activity. In soft connective tissues, formation of myofibroblasts strictly requires a mechanically loaded environment in addition to local transforming growth factor (TGF)-β activity, which itself can be modulated by the mechanical status of the environment. The aim of this study was to monitor the adaptive responses of primary dermal fibroblasts towards cyclic mechanical stress under conditions of high force to better understand the regulation of gene expression in normal skin and mechanisms of gene regulation in mechanically altered fibrotic skin. Primary murine dermal fibroblasts were exposed to equi-biaxial tensile strain. Cyclic mechanical tension was applied at a frequency of 0.1 Hz (6× /min) for 24 h with a maximal increase in surface area of 15%. This treatment resulted in downregulation of alpha smooth muscle actin (αSMA) and connective tissue growth factor (CTGF) but not of TGFβ1 expression. Cyclic strain also strongly reduced endothelin-1 (ET-1) expression and supplementing strained cultures with exogenous ET-1 rescued αSMA and CTGF levels. Of note, no biologically significant levels of TGFβ1 activity were detected in strained cultures. We provide evidence for a novel, TGFβ1-independent mechanism regulating ET-1 expression in dermal fibroblasts by biomechanical forces. Modulation of ET-1-dependent activities regulates downstream fibrotic marker genes; this pathway might therefore provide an approach to attenuate myofibroblast differentiation.
Collapse
Affiliation(s)
- Andreas S Peters
- Department of Dermatology, University of Cologne, Cologne, Germany
| | | | | | | | | | | |
Collapse
|
89
|
Ponticos M. Connective tissue growth factor (CCN2) in blood vessels. Vascul Pharmacol 2013; 58:189-93. [DOI: 10.1016/j.vph.2013.01.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 12/31/2022]
|
90
|
Perbal B. CCN proteins: A centralized communication network. J Cell Commun Signal 2013; 7:169-77. [PMID: 23420091 DOI: 10.1007/s12079-013-0193-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 01/29/2013] [Indexed: 12/19/2022] Open
Abstract
The CCN family of proteins includes six members presently known as CCN1, CCN2, CCN3, CCN4, CCN5 and CCN6. These proteins were originally designated CYR61, CTGF, NOV, and WISP-1, WISP-2, WISP-3. Although these proteins share a significant amount of structural features and a partial identity with other large families of regulatory proteins, they exhibit different biological functions. A critical examination of the progress made over the past two decades, since the first CCN proteins were discovered brings me to the conclusion that most of our present knowledge regarding the functions of these proteins was predicted very early after their discovery. In an effort to point out some of the gaps that prevent us to reach a comprehensive view of the functional interactions between CCN proteins, it is necessary to reconsider carefully data that was already published and put aside, either because the scientific community was not ready to accept them, or because they were not fitting with the « consensus » when they were published. This review article points to avenues that were not attracting the attention that they deserved. However, it is quite obvious that the six members of this unique family of tetra-modular proteins must act in concert, either simultaneously or sequentially, on the same sites or at different times in the life of living organisms. A better understanding of the spatio-temporal regulation of CCN proteins expression requires considering the family as such, not as a set of single proteins related only by their name. As proposed in this review, there is enough convincing pieces of evidence, at the present time, in favor of these proteins playing a role in the coordination of multiple signaling pathways, and constituting a Centralized Communication Network. Deciphering the hierarchy of regulatory circuits involved in this complex system is an important challenge for the near future. In this article, I would like to briefly review the concept of a CCN family of proteins and critically examine the progress made over the past 10 years in the understanding of their biological functions and involvement in both normal and pathological processes.
Collapse
|
91
|
Zhu J, Nguyen D, Ouyang H, Zhang XH, Chen XM, Zhang K. Inhibition of RhoA/Rho-kinase pathway suppresses the expression of extracellular matrix induced by CTGF or TGF-β in ARPE-19. Int J Ophthalmol 2013; 6:8-14. [PMID: 23550216 PMCID: PMC3580241 DOI: 10.3980/j.issn.2222-3959.2013.01.02] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 01/28/2013] [Indexed: 02/05/2023] Open
Abstract
AIM To investigate the role of Rho-associated protein kinase (ROCK) inhibitor, Y27632, in mediating the production of extracellular matrix (ECM) components including fibronectin, matrix metallo-proteinase-2 (MMP-2) and type I collagen as induced by connective tissue growth factor (CTGF) or transforming growth factor-β (TGF-β) in a human retinal pigment epithelial cell line, ARPE-19. METHODS The effect of Y27632 on the CTGF or TGF-β induced phenotype in ARPE-19 cells was measured with immunocytochemistry as the change in F-actin. ARPE-19 cells were treated with CTGF (1, 10, 100ng/mL) and TGF-β (10ng/mL) in serum free media, and analyzed for fibronectin, laminin, and MMP-2 and type I collagen by RT-qPCR and immunocytochemistry. Cells were also pretreated with an ROCK inhibitor, Y27632, to analyze the signaling contributing to ECM production. RESULTS Treatment of ARPE-19 cells in culture with TGF-β or CTGF induced an ECM change from a cobblestone morphology to a more elongated swirl pattern indicating a mesenchymal phenotype. RT-qPCR analysis and different gene expression analysis demonstrated an upregulation in expression of genes associated with cytoskeletal structure and motility. CTGF or TGF-β significantly increased expression of fibronectin mRNA (P=0.006, P=0.003 respectively), laminin mRNA (P=0.006, P=0.005), MMP-2 mRNA (P= 0.006, P= 0.001), COL1A1 mRNA (P=0.001, P=0.001), COL1A2 mRNA (P=0.001, P=0.001). Preincubation of ARPE-19 with Y27632 (10mmol/L) significantly prevented CTGF or TGF- β induced fibronectin (P=0.005, P=0.003 respectively), MMP-2 (P= 0.003, P=0.002), COL1A1 (P=0.006, P=0.003), and COL1A2 (P=0.006, P=0.004) gene expression, but not laminin (P=0.375, P=0.516). CONCLUSION Our study demonstrated that both TGF-β and CTGF upregulate the expression of ECM components including fibronectin, laminin, MMP-2 and type I collagen by activating the RhoA/ROCK signaling pathway. During this process, ARPE-19 cells were shown to change from an epithelial to a mesenchymal phenotype in vitro. Y27632, a ROCK inhibitor, inhibited the transcription of fibronectin, MMP-2 and type I collagen, but not laminin. The data from our work suggest a role for CTGF as a profibrotic mediator. Inhibiting the RhoA/ROCK pathway represents a potential target to prevent the fibrosis of RPE cells. This might lead to a novel therapeutic approach to preventing the onset of early PVR.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Ophthalmology and Shiley Eye Center, and Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Duy Nguyen
- Department of Ophthalmology and Shiley Eye Center, and Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Hong Ouyang
- Department of Ophthalmology and Shiley Eye Center, and Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Xiao-Hui Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Capital Medical University, Beijing 100005, China
| | - Xiao-Ming Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Kang Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Ophthalmology and Shiley Eye Center, and Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
92
|
Di Tommaso S, Massari S, Malvasi A, Bozzetti MP, Tinelli A. Gene expression analysis reveals an angiogenic profile in uterine leiomyoma pseudocapsule. Mol Hum Reprod 2013; 19:380-7. [PMID: 23355533 DOI: 10.1093/molehr/gat007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The pseudocapsule (PC) of the uterine leiomyoma (UL) is an anatomic entity that surrounds the myoma separating it from the myometrium (UM). Although a number of microarray experiments have identified differences in gene expression profile in the UL when compared with the UM, there is a lack of systematic studies on the PC. In this study, quantitative RT-PCR analysis was performed on 18 matched PC, UL and UM specimens and results showed that the PC displays a specific gene expression profile. The low expression level of insulin-like growth factor (IGF-2), a fibroid specific marker, that we found in the PC and the UM when compared with the UL, clearly indicates that the PC is in structural continuity with the UM. However, the significant increase in endoglin expression level in PC with respect to the UL and UM indicates that an active neoangiogenesis is present in PC. Conversely, other angiogenic factors such as von Willebrand factor (vWF) and vascular endothelial growth factor A (VEGF-A) seem to have little influence on the PC angiogenesis. Because the endoglin is preferentially expressed in proliferating endothelial cells, whereas the vWF and VEGF-A are preferentially expressed in preexisting endothelial cells, our idea is that the angiogenic activity in the PC is linked to wound healing. The angiogenic activity is also sustained by intermediate expression level of cystein-rich angiogenesis inducer 61, connective tissue growth factor and collagen 4α2 genes all involved in the neoangiogenesis, that we detected in the PC. Taken together our data demonstrate that the specific expression pattern observed in the PC could be the response of the uterine wall's smooth cells to the tension imposed by the tumor. As a consequence, a neovascular structure is generated involving regenerative processes. For these reasons, we suggest that the laparoscopic intracapsular myomectomy (LIM), a new surgical technique that preserves the PC during the UL removal, should always be preferred, to favor a faster and proper uterine healing.
Collapse
Affiliation(s)
- S Di Tommaso
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy.
| | | | | | | | | |
Collapse
|
93
|
Frey SP, Doht S, Eden L, Dannigkeit S, Schuetze N, Meffert RH, Jansen H. Cysteine-rich matricellular protein improves callus regenerate in a rabbit trauma model. INTERNATIONAL ORTHOPAEDICS 2012; 36:2387-93. [PMID: 23001194 DOI: 10.1007/s00264-012-1659-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 08/28/2012] [Indexed: 01/05/2023]
Abstract
PURPOSE Open fractures with severe soft-tissue trauma are predisposed to poor bone healing. The vital coupling between osteo- and angiogenesis is disturbed. Cysteine-rich protein 61 (CYR61) is an angiogenic inducer promoting vascularisation. However, little is known about the effect of CYR61 on the callus regenerate after acute musculoskeletal trauma. Therefore, our aim was to determine whether local administration of CYR61: (1) has an influence on callus formation and remodelling, (2) increases bone volume and (3) partially restores callus stability. METHODS A musculoskeletal trauma was created in 20 rabbits. To simulate fracture-site debridement, the limb was shortened. In the test group, a CYR61-coated collagen matrix was locally applied around the osteotomy. After ten days, gradual distraction was commenced (0.5 mm/12 h) to restore the original length. New bone formation was evaluated histomorphometrically, radiographically and biomechanically. RESULTS Osseus consolidation occured in all animals. Average maximum callus diameter was higher in the test group [1.39 mm; standard deviation (SD) = 0.078 vs 1.26 mm (SD = 0.14); p = 0.096]. In addition, bone volume was higher (p = 0.11) in the test group, with a mean value of 49.73 % (SD = 13.68) compared with 37.6 % (SD = 5.91). Torsional strength was significantly higher (p = 0.005) in the test group [105.43 % (SD = 31.68 %) vs. 52.57 % (SD = 24.39)]. Instead, stiffness of the newly reconstructed callus decreased (64.21 % (SD = 11.52) vs. 71.30 % (SD = 32.25) (p = 0.81)). CONCLUSIONS CYR61 positively influences callus regenerate after acute trauma, not only histologically and radiographically but also biomechanically, most probably by a CYR61-associated pathway.
Collapse
Affiliation(s)
- Soenke Percy Frey
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Wuerzburg, Oberduerrbacher Str 6, 97080 Wuerzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
94
|
Zuehlke J, Ebenau A, Krueger B, Goppelt-Struebe M. Vectorial secretion of CTGF as a cell-type specific response to LPA and TGF-β in human tubular epithelial cells. Cell Commun Signal 2012; 10:25. [PMID: 22938209 PMCID: PMC3503564 DOI: 10.1186/1478-811x-10-25] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/16/2012] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED BACKGROUND Increased expression of the pro-fibrotic protein connective tissue growth factor (CTGF) has been detected in injured kidneys and elevated urinary levels of CTGF are discussed as prognostic marker of chronic kidney disease. There is evidence that epithelial cells lining the renal tubular system contribute to uptake and secretion of CTGF. However, the role of different types of tubular epithelial cells in these processes so far has not been addressed in primary cultures of human cells. RESULTS Tubular epithelial cells of proximal and distal origin were isolated from human kidneys and cultured as polarized cells in insert wells. The pro-fibrotic stimuli lysophosphatidic acid (LPA) and transforming growth factor β (TGF-β) were used to induce CTGF secretion.LPA activated CTGF secretion in proximal tubular cells when applied from either the apical or the basolateral side as shown by immunocytochemistry. CTGF was secreted exclusively to the apical side. Signaling pathways activated by LPA included MAP kinase and Rho kinase signaling. TGF-β applied from either side also stimulated CTGF secretion primarily to the apical side with little basolateral release.Interestingly, TGF-β activation induced different signaling pathways depending on the side of TGF-β application. Smad signaling was almost exclusively activated from the basolateral side most prominently in cells of distal origin. Only part of these cells also synthesized CTGF indicating that Smad activation alone was not sufficient for CTGF induction. MAP kinases were involved in apical TGF-β-mediated activation of CTGF synthesis in proximal cells and a subset of epithelial cells of distal origin. This subpopulation of distal tubular cells was also able to internalize recombinant apical CTGF, in addition to proximal cells which were the main cells to take up exogenous CTGF. CONCLUSIONS Analysis of polarized human primary renal epithelial cells in a transwell system shows that vectorial secretion of the pro-fibrotic protein CTGF depends on the cell type, the stimulus and the signaling pathway activated. In all conditions, CTGF was secreted mainly to the apical side upon TGF-β and LPA treatment and therefore, likely contributes to increased urinary CTGF levels in vivo. Moreover, CTGF secreted basolaterally may be active as paracrine pro-fibrotic mediator.
Collapse
Affiliation(s)
- Jonathan Zuehlke
- Department of Nephrology and Hypertension, Friedrich-Alexander Universität Erlangen-Nürnberg, Loschgestrasse 8, Erlangen 91054, Germany
| | - Astrid Ebenau
- Department of Nephrology and Hypertension, Friedrich-Alexander Universität Erlangen-Nürnberg, Loschgestrasse 8, Erlangen 91054, Germany
| | - Bettina Krueger
- Department of Cellular and Molecular Physiology, Friedrich-Alexander Universität Erlangen-Nürnberg, Waldstrasse 6, Erlangen, 91054, Germany
| | - Margarete Goppelt-Struebe
- Department of Nephrology and Hypertension, Friedrich-Alexander Universität Erlangen-Nürnberg, Loschgestrasse 8, Erlangen 91054, Germany
| |
Collapse
|
95
|
Iyer P, Maddala R, Pattabiraman PP, Rao PV. Connective tissue growth factor-mediated upregulation of neuromedin U expression in trabecular meshwork cells and its role in homeostasis of aqueous humor outflow. Invest Ophthalmol Vis Sci 2012; 53:4952-62. [PMID: 22761259 DOI: 10.1167/iovs.12-9681] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
PURPOSE Connective tissue growth factor (CTGF) is a matricellular protein presumed to be involved in the pathobiology of various fibrotic diseases, including glaucoma. We investigated the effects of Rho GTPase-dependent actin cytoskeletal integrity on CTGF expression and CTGF-induced changes in gene expression profile in human trabecular meshwork (HTM) cells. METHODS CTGF levels were quantified by immunoblotting and ELISA. CTGF-induced changes in gene expression, actin cytoskeleton, myosin light chain (MLC) phosphorylation, and extracellular matrix (ECM) proteins were evaluated in trabecular meshwork (TM) cells by cDNA microarray, q-PCR, fluorescence microscopy, and immunoblot analyses. The effects of neuromedin U (NMU) on aqueous humor (AH) outflow were determined in enucleated porcine eyes. RESULTS Expression of a constitutively active form of RhoA (RhoAV14), activation of Rho GTPase by bacterial toxin, or inhibition of Rho kinase by Y-27632 in HTM cells led to significant but contrasting changes in CTGF protein levels that were detectable in cell lysates and cell culture medium. Stimulation of HTM cells with CTGF for 24 hours induced actin stress fiber formation, and increased MLC phosphorylation, fibronectin, and laminin levels, and NMU expression. NMU independently induced actin stress fibers and MLC phosphorylation in TM cells, and decreased AH outflow facility in perfused porcine eyes. CONCLUSIONS These data revealed that CTGF influences ECM synthesis, actin cytoskeletal dynamics, and contractile properties in TM cells, and that the expression of CTGF is regulated closely by Rho GTPase. Moreover, NMU, whose expression is induced in response to CTGF, partially mimics the effects of CTGF on actomyosin organization in TM cells, and decreases AH outflow facility, revealing a potentially important role for this neuropeptide in the homeostasis of AH drainage.
Collapse
Affiliation(s)
- Padma Iyer
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
96
|
Mammoto A, Mammoto T, Ingber DE. Mechanosensitive mechanisms in transcriptional regulation. J Cell Sci 2012; 125:3061-73. [PMID: 22797927 DOI: 10.1242/jcs.093005] [Citation(s) in RCA: 287] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Transcriptional regulation contributes to the maintenance of pluripotency, self-renewal and differentiation in embryonic cells and in stem cells. Therefore, control of gene expression at the level of transcription is crucial for embryonic development, as well as for organogenesis, functional adaptation, and regeneration in adult tissues and organs. In the past, most work has focused on how transcriptional regulation results from the complex interplay between chemical cues, adhesion signals, transcription factors and their co-regulators during development. However, chemical signaling alone is not sufficient to explain how three-dimensional (3D) tissues and organs are constructed and maintained through the spatiotemporal control of transcriptional activities. Accumulated evidence indicates that mechanical cues, which include physical forces (e.g. tension, compression or shear stress), alterations in extracellular matrix (ECM) mechanics and changes in cell shape, are transmitted to the nucleus directly or indirectly to orchestrate transcriptional activities that are crucial for embryogenesis and organogenesis. In this Commentary, we review how the mechanical control of gene transcription contributes to the maintenance of pluripotency, determination of cell fate, pattern formation and organogenesis, as well as how it is involved in the control of cell and tissue function throughout embryogenesis and adult life. A deeper understanding of these mechanosensitive transcriptional control mechanisms should lead to new approaches to tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Akiko Mammoto
- Vascular Biology Program, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
97
|
Lipson KE, Wong C, Teng Y, Spong S. CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis. FIBROGENESIS & TISSUE REPAIR 2012; 5:S24. [PMID: 23259531 PMCID: PMC3368796 DOI: 10.1186/1755-1536-5-s1-s24] [Citation(s) in RCA: 446] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CTGF is a secreted matricellular protein with very complex biology. It has been shown to modulate many signaling pathways leading to cell adhesion and migration, angiogenesis, myofibroblast activation, and extracellular matrix deposition and remodeling, which together lead to tissue remodeling and fibrosis. It has been reported in the literature that inhibition of CTGF expression by siRNA prevents CCl4-induced liver fibrosis and can reverse fibrosis when administered after significant collagen deposition is observed. A monoclonal antibody to CTGF that is currently in clinical development (FG-3019) has demonstrated the ability to reverse vascular stiffening and improve cardiac function in a rat model of diabetic complications. FG-3019 has also exhibited activity in a murine radiation-induced pulmonary fibrosis model. When FG-3019 was administered to mice after a significant radiation-induced increase in lung density could be observed by CT imaging, the density of the lungs was observed to decrease over the period during which the antibody was administered and to remain stable after therapy had ceased. When considered together, these data indicate that inhibition of CTGF can prevent and reverse the process of fibrosis.
Collapse
Affiliation(s)
| | - Carol Wong
- FibroGen, Inc., 409 Illinois St., San Francisco, CA 94158, USA
| | - Yuchin Teng
- FibroGen, Inc., 409 Illinois St., San Francisco, CA 94158, USA
| | - Suzanne Spong
- FibroGen, Inc., 409 Illinois St., San Francisco, CA 94158, USA
| |
Collapse
|
98
|
Breyer J, Samarin J, Rehm M, Lautscham L, Fabry B, Goppelt-Struebe M. Inhibition of Rho kinases increases directional motility of microvascular endothelial cells. Biochem Pharmacol 2011; 83:616-26. [PMID: 22192821 DOI: 10.1016/j.bcp.2011.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 12/06/2011] [Accepted: 12/08/2011] [Indexed: 01/21/2023]
Abstract
Rho kinases are major regulators of actin cytoskeletal organization and cell motility. Depending on the model system, inhibitors of Rho kinases (ROCK) have been reported to increase or decrease endothelial cell migration. In the present study we investigated the effect of Rho kinase inhibitors on microvascular endothelial cell migration with a special focus on the isoform ROCK2. Migration of microvascular endothelial cells was analyzed in a wound-healing, a spheroid-on-collagen migration assay and in cells embedded in collagen-1 gels. The non-selective Rho kinase inhibitor H1152 was compared to the selective ROCK2 inhibitor SLX2119 and to siRNA knock down. Non-selective inhibition of Rho kinases decreased cell-spanning F-actin fibers, loosened cell-cell contacts visualized by VE cadherin staining, and reduced cell-matrix interactions as shown by reduced Hic-5 expression in focal contacts. Rho kinase inhibitors facilitated directed migration of endothelial cells away from spheroids on fibronectin-coated plates and in collagen-1 gels. By contrast, migration of firmly attached endothelial cells, resembling intact vessels, was not promoted by Rho kinase inhibition. Selective inhibition of ROCK2 mimicked the cytoskeletal effects of H1152 and also increased cell motility, although to a lesser extent. In summary, Rho kinase inhibition enhanced the migration and cytoskeletal restructuring preferentially in freshly attached endothelial cells. ROCK2 may be a potential target to manipulate endothelial cell migration after vessel injury.
Collapse
Affiliation(s)
- Johannes Breyer
- Department of Nephrology and Hypertension, Universität Erlangen-Nürnberg, Loschgestrasse 8, 91054 Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
99
|
Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat Rev Drug Discov 2011; 10:945-63. [PMID: 22129992 DOI: 10.1038/nrd3599] [Citation(s) in RCA: 513] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Members of the CCN family of matricellular proteins are crucial for embryonic development and have important roles in inflammation, wound healing and injury repair in adulthood. Deregulation of CCN protein expression or activities contributes to the pathobiology of various diseases - many of which may arise when inflammation or tissue injury becomes chronic - including fibrosis, atherosclerosis, arthritis and cancer, as well as diabetic nephropathy and retinopathy. Emerging studies indicate that targeting CCN protein expression or signalling pathways holds promise in the development of diagnostics and therapeutics for such diseases. This Review summarizes the biology of CCN proteins, their roles in various pathologies and their potential as therapeutic targets.
Collapse
|
100
|
Wong VW, Akaishi S, Longaker MT, Gurtner GC. Pushing Back: Wound Mechanotransduction in Repair and Regeneration. J Invest Dermatol 2011; 131:2186-96. [DOI: 10.1038/jid.2011.212] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|