51
|
Combined Toxicity of Insecticides and Fungicides Applied to California Almond Orchards to Honey Bee Larvae and Adults. INSECTS 2019; 10:insects10010020. [PMID: 30626043 PMCID: PMC6359038 DOI: 10.3390/insects10010020] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 11/30/2018] [Accepted: 12/12/2018] [Indexed: 12/18/2022]
Abstract
Beekeepers providing pollination services for California almond orchards have reported observing dead or malformed brood during and immediately after almond bloom—effects that they attribute to pesticide exposure. The objective of this study was to test commonly used insecticides and fungicides during almond bloom on honey bee larval development in a laboratory bioassay. In vitro rearing of worker honey bee larvae was performed to test the effect of three insecticides (chlorantraniliprole, diflubenzuron, and methoxyfenozide) and three fungicides (propiconazole, iprodione, and a mixture of boscalid-pyraclostrobin), applied alone or in insecticide-fungicide combinations, on larval development. Young worker larvae were fed diets contaminated with active ingredients at concentration ratios simulating a tank-mix at the maximum label rate. Overall, larvae receiving insecticide and insecticide-fungicide combinations were less likely to survive to adulthood when compared to the control or fungicide-only treatments. The insecticide chlorantraniliprole increased larval mortality when combined with the fungicides propiconazole or iprodione, but not alone; the chlorantraniliprole-propiconazole combination was also found to be highly toxic to adult workers treated topically. Diflubenzuron generally increased larval mortality, but no synergistic effect was observed when combined with fungicides. Neither methoxyfenozide nor any methoxyfenozide-fungicide combination increased mortality. Exposure to insecticides applied during almond bloom has the potential to harm honey bees and this effect may, in certain instances, be more damaging when insecticides are applied in combination with fungicides.
Collapse
|
52
|
Lepesheva GI, Friggeri L, Waterman MR. CYP51 as drug targets for fungi and protozoan parasites: past, present and future. Parasitology 2018; 145:1820-1836. [PMID: 29642960 PMCID: PMC6185833 DOI: 10.1017/s0031182018000562] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The efficiency of treatment of human infections with the unicellular eukaryotic pathogens such as fungi and protozoa remains deeply unsatisfactory. For example, the mortality rates from nosocomial fungemia in critically ill, immunosuppressed or post-cancer patients often exceed 50%. A set of six systemic clinical azoles [sterol 14α-demethylase (CYP51) inhibitors] represents the first-line antifungal treatment. All these drugs were discovered empirically, by monitoring their effects on fungal cell growth, though it had been proven that they kill fungal cells by blocking the biosynthesis of ergosterol in fungi at the stage of 14α-demethylation of the sterol nucleus. This review briefs the history of antifungal azoles, outlines the situation with the current clinical azole-based drugs, describes the attempts of their repurposing for treatment of human infections with the protozoan parasites that, similar to fungi, also produce endogenous sterols, and discusses the most recently acquired knowledge on the CYP51 structure/function and inhibition. It is our belief that this information should be helpful in shifting from the traditional phenotypic screening to the actual target-driven drug discovery paradigm, which will rationalize and substantially accelerate the development of new, more efficient and pathogen-oriented CYP51 inhibitors.
Collapse
Affiliation(s)
- Galina I. Lepesheva
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Laura Friggeri
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Michael R. Waterman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| |
Collapse
|
53
|
Latacz G, Hogendorf AS, Hogendorf A, Lubelska A, Wierońska JM, Woźniak M, Cieślik P, Kieć-Kononowicz K, Handzlik J, Bojarski AJ. Search for a 5-CT alternative. In vitro and in vivo evaluation of novel pharmacological tools: 3-(1-alkyl-1 H-imidazol-5-yl)-1 H-indole-5-carboxamides, low-basicity 5-HT 7 receptor agonists. MEDCHEMCOMM 2018; 9:1882-1890. [PMID: 30568756 PMCID: PMC6256855 DOI: 10.1039/c8md00313k] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 09/21/2018] [Indexed: 01/25/2023]
Abstract
Close structural analogues of 5-carboxamidotryptamine (5-CT) based on the newly discovered indole-imidazole scaffold were synthesized and evaluated to search for a 5-HT7 receptor agonist of higher selectivity. In vitro drug-likeness studies and in vivo pharmacological evaluation of potent and selective low-basicity 5-HT7 receptor agonists, previously published 7 (3-(1-ethyl-1H-imidazol-5-yl)-1H-indole-5-carboxamide, AH-494) and 13 (3-(1-methyl-1H-imidazol-5-yl)-1H-indole-5-carboxamide), have supported their usefulness as pharmacological tools. Comprehensive in vitro comparison studies between 7, 13 and the commonly used 5-CT showed their very similar ADMET properties. Compound 7 at 1 mg kg-1 reversed MK-801-induced disruption in novel object recognition in mice and alleviated stress-induced hyperthermia (SIH) at high doses. Taking into account both in vitro and in vivo data, 7 and 13 may be considered as alternatives to 5-CT as pharmacological tools with important additional benefit associated with their low-basicity: high selectivity over 5-HT1AR.
Collapse
Affiliation(s)
- Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs , Jagiellonian University Medical College , Medyczna 9 , 30-688 Kraków , Poland . ; Tel: +48126205579
| | - Adam S Hogendorf
- Institute of Pharmacology , Polish Academy of Sciences , 12 Smętna Street , 31-343 Kraków , Poland
| | - Agata Hogendorf
- Institute of Pharmacology , Polish Academy of Sciences , 12 Smętna Street , 31-343 Kraków , Poland
| | - Annamaria Lubelska
- Department of Technology and Biotechnology of Drugs , Jagiellonian University Medical College , Medyczna 9 , 30-688 Kraków , Poland . ; Tel: +48126205579
| | - Joanna M Wierońska
- Institute of Pharmacology , Polish Academy of Sciences , 12 Smętna Street , 31-343 Kraków , Poland
| | - Monika Woźniak
- Institute of Pharmacology , Polish Academy of Sciences , 12 Smętna Street , 31-343 Kraków , Poland
- Institute of Nuclear Physics , Polish Academy of Sciences Department of Experimental Physics of Complex Systems (NZ52) , Radzikowskiego 152 Street , 31-342 Krakow , Poland
| | - Paulina Cieślik
- Institute of Pharmacology , Polish Academy of Sciences , 12 Smętna Street , 31-343 Kraków , Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs , Jagiellonian University Medical College , Medyczna 9 , 30-688 Kraków , Poland . ; Tel: +48126205579
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs , Jagiellonian University Medical College , Medyczna 9 , 30-688 Kraków , Poland . ; Tel: +48126205579
| | - Andrzej J Bojarski
- Institute of Pharmacology , Polish Academy of Sciences , 12 Smętna Street , 31-343 Kraków , Poland
| |
Collapse
|
54
|
Oguro A, Inoue T, Kudoh SN, Imaoka S. 14,15-epoxyeicosatrienoic acid produced by cytochrome P450s enhances neurite outgrowth of PC12 and rat hippocampal neuronal cells. Pharmacol Res Perspect 2018; 6:e00428. [PMID: 30237892 PMCID: PMC6141511 DOI: 10.1002/prp2.428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/13/2018] [Indexed: 01/07/2023] Open
Abstract
Polyunsaturated fatty acids, such as arachidonic acid, are accumulated in brain and induce neuronal differentiation. Arachidonic acid is metabolized to epoxyeicosatrienoic acids (EETs) and hydroxyeicosatetraenoic acids (HETEs) by cytochrome P450s. In this study, we found that 14,15-EET and 20-HETE-enhanced NGF-induced rat pheochromocytoma PC12 cell neurite outgrowth even at the concentration of 100 nmol L-1. LC-MS analysis revealed that 14,15-EET was effectively produced from arachidonic acid by rat CYP2C11, 2C13, and 2C23, and these P450s were expressed in PC12 cells. An inhibitor of these P450s, ketoconazole, inhibited neurite outgrowth, whereas inhibition of soluble epoxide hydrolase, which hydrolyzes EETs to their corresponding diols enhanced neurite outgrowth. To determine the mechanism of neurite formation enhancement by arachidonic acid metabolites, we focused on transient receptor potential (TRP) channels expressed in PC12 cells. The TRPV4 inhibitor HC067047, but not the TRPV1 inhibitor capsazepine, inhibited the effects of 14,15-EET on neurite outgrowth of PC12. Furthermore, 14,15-EET increased the cytosolic calcium ion concentration and this increase was inhibited by HC067047. 14,15-EET also enhanced neurite outgrowth of primary cultured neuron from rat hippocampus. This study suggests that arachidonic acid metabolites produced by P450 contribute to neurite outgrowth through calcium influx.
Collapse
Affiliation(s)
- Ami Oguro
- Department of Biomedical ChemistrySchool of Science and TechnologyKwansei Gakuin UniversitySandaJapan
| | - Takumi Inoue
- Department of Human‐System InteractionSchool of Science and TechnologyKwansei Gakuin UniversitySandaJapan
| | - Suguru N. Kudoh
- Department of Human‐System InteractionSchool of Science and TechnologyKwansei Gakuin UniversitySandaJapan
| | - Susumu Imaoka
- Department of Biomedical ChemistrySchool of Science and TechnologyKwansei Gakuin UniversitySandaJapan
| |
Collapse
|
55
|
Parashar A, Gideon DA, Manoj KM. Murburn Concept: A Molecular Explanation for Hormetic and Idiosyncratic Dose Responses. Dose Response 2018; 16:1559325818774421. [PMID: 29770107 PMCID: PMC5946624 DOI: 10.1177/1559325818774421] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/21/2018] [Accepted: 03/27/2018] [Indexed: 12/28/2022] Open
Abstract
Recently, electron transfers and catalyses in a bevy of redox reactions mediated by hemeproteins were explained by murburn concept. The term “murburn” is abstracted from “muredburning” or “mildunrestrictedburning” and connotes a novel “molecule-unbound ion–radical” interaction paradigm. Quite unlike the genetic regulations and protein-level affinity-based controls that govern order and specificity/selectivity in conventional treatments, murburn concept is based on stochastic/thermodynamic regulatory principles. The novel insight necessitates a “reactivity outside the active-site” perspective, because select redox enzymatic activity is obligatorily mediated via diffusible radical/species. Herein, reactions employing key hemeproteins (as exemplified by CYP2E1) establish direct experimental connection between “additive-influenced redox catalysis” and “unusual dose responses” in reductionist and physiological milieu. Thus, direct and conclusive molecular-level experimental evidence is presented, supporting the mechanistic relevance of murburn concept in “maverick” concentration-based effects brought about by additives. Therefore, murburn concept could potentially explain several physiological hormetic and idiosyncratic dose responses.
Collapse
Affiliation(s)
- Abhinav Parashar
- Department of Biotechnology, Vignan's University, Vadlamudi, Guntur, Andhra Pradesh, India
| | | | | |
Collapse
|
56
|
Belrose JC, Jackson MF. TRPM2: a candidate therapeutic target for treating neurological diseases. Acta Pharmacol Sin 2018; 39:722-732. [PMID: 29671419 PMCID: PMC5943913 DOI: 10.1038/aps.2018.31] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/24/2018] [Indexed: 12/25/2022]
Abstract
Transient receptor potential melastatin 2 (TRPM2) is a calcium (Ca2+)-permeable non-selective cation channel belonging to the TRP ion channel family. Oxidative stress-induced TRPM2 activation provokes aberrant intracellular Ca2+ accumulation and cell death in a variety of cell types, including neurons. Aberrant TRPM2 function has been implicated in several neurological disorders including ischemia/stroke, Alzheimer's disease, neuropathic pain, Parkinson's disease and bipolar disorder. In addition to research identifying a role for TRPM2 in disease, progress has been made in the identification of physiological functions of TRPM2 in the brain, including recent evidence that TRPM2 is necessary for the induction of N-methyl-D-aspartate (NMDA) receptor-dependent long-term depression, an important form of synaptic plasticity at glutamate synapses. Here, we summarize recent evidence on the role of TRPM2 in the central nervous system (CNS) in health and disease and discuss the potential therapeutic implications of targeting TRPM2. Collectively, these studies suggest that TRPM2 represents a prospective novel therapeutic target for neurological disorders.
Collapse
Affiliation(s)
- Jillian Corinne Belrose
- Department of Anesthesia & Perioperative Medicine, Schulich Medicine & Dentistry, Western University, London, Ontario, N6A 5A5, Canada
- E-mail
| | - Michael Frederick Jackson
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, R3E 0T6, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Manitoba, R3E 3J7, Canada
| |
Collapse
|
57
|
Biomimetic trapping cocktail to screen reactive metabolites: use of an amino acid and DNA motif mixture as light/heavy isotope pairs differing in mass shift. Anal Bioanal Chem 2018; 410:3847-3857. [PMID: 29654341 DOI: 10.1007/s00216-018-1057-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 10/17/2022]
Abstract
Candidate drugs that can be metabolically transformed into reactive electrophilic products, such as epoxides, quinones, and nitroso compounds, are of special concern because subsequent covalent binding to bio-macromolecules can cause adverse drug reactions, such as allergic reactions, hepatotoxicity, and genotoxicity. Several strategies have been reported for screening reactive metabolites, such as a covalent binding assay with radioisotope-labeled drugs and a trapping method followed by LC-MS/MS analyses. Of these, a trapping method using glutathione is the most common, especially at the early stage of drug development. However, the cysteine of glutathione is not the only nucleophilic site in vivo; lysine, histidine, arginine, and DNA bases are also nucleophilic. Indeed, the glutathione trapping method tends to overlook several types of reactive metabolites, such as aldehydes, acylglucuronides, and nitroso compounds. Here, we introduce an alternate way for screening reactive metabolites as follows: A mixture of the light and heavy isotopes of simplified amino acid motifs and a DNA motif is used as a biomimetic trapping cocktail. This mixture consists of [2H0]/[2H3]-1-methylguanidine (arginine motif, Δ 3 Da), [2H0]/[2H4]-2-mercaptoethanol (cysteine motif, Δ 4 Da), [2H0]/[2H5]-4-methylimidazole (histidine motif, Δ 5 Da), [2H0]/[2H9]-n-butylamine (lysine motif, Δ 9 Da), and [13C0,15N0]/[13C1,15N2]-2'-deoxyguanosine (DNA motif, Δ 3 Da). Mass tag triggered data-dependent acquisition is used to find the characteristic doublet peaks, followed by specific identification of the light isotope peak using MS/MS. Forty-two model drugs were examined using an in vitro microsome experiment to validate the strategy. Graphical abstract Biomimetic trapping cocktail to screen reactive metabolites.
Collapse
|
58
|
Synthesis and Anticandidal Activity of New Imidazole-Chalcones. Molecules 2018; 23:molecules23040831. [PMID: 29617329 PMCID: PMC6017838 DOI: 10.3390/molecules23040831] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 11/16/2022] Open
Abstract
In the present work, 15 new 1-(4-(1H-imidazol-1-yl)phenyl)-3-(4-substituedphenyl)prop-2-en-1-one derivatives (3a–3o) were synthesized to evaluate their antifungal activity. Structures of newly synthesized imidazole derivatives (3a–3o) were characterized by IR, 1H-NMR, 13C-NMR, and LCMSMS spectroscopic methods. The anticandidal activity of compounds (3a–3o) against C. albicans (ATCC 24433), C. krusei (ATCC 6258), C. parapsilosis (ATCC 22019), and C. glabrata (ATCC 90030) was elucidated according to the EUCAST definitive (EDef 7.1) method. Consistent with the activity studies, 3a–3d were found to be more potent derivatives with their MIC50 values (0.78 µg/mL–3.125 µg/mL) against Candida strains. Compound 3c indicated similar antifungal activity to ketoconazole against all Candida species and was evaluated as the most active derivative in the series. Effects of the most potent derivatives 3a–3d on ergosterol biosynthesis were observed by LC-MS-MS method, which is based on quantification of the ergosterol level in C. krusei. Moreover, these compounds were subjected to a cytotoxicity test for the preliminary toxicological profiles and were found as non-cytotoxic. Furthermore, docking studies for the most active derivative 3c were performed to evaluate its binding modes on lanosterol 14-α-demethylase. In addition to in vitro tests, docking studies also revealed that Compound 3c is a potential ergosterol biosynthesis inhibitor.
Collapse
|
59
|
Effects of concurrent vaginal miconazole treatment on the absorption and exposure of Nestorone® (segesterone acetate) and ethinyl estradiol delivered from a contraceptive vaginal ring: a randomized, crossover drug–drug interaction study. Contraception 2018; 97:270-276. [DOI: 10.1016/j.contraception.2017.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/17/2017] [Accepted: 10/22/2017] [Indexed: 11/17/2022]
|
60
|
McGrath M, Ma C, Raines DE. Dimethoxy-etomidate: A Nonhypnotic Etomidate Analog that Potently Inhibits Steroidogenesis. J Pharmacol Exp Ther 2018; 364:229-237. [PMID: 29203576 PMCID: PMC5783534 DOI: 10.1124/jpet.117.245332] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/01/2017] [Indexed: 01/02/2023] Open
Abstract
Cushing's syndrome is characterized by the overproduction of adrenocortical steroids. Steroidogenesis inhibitors are mainstays of medical therapy for Cushing's syndrome; unfortunately, adverse side effects and treatment failures are common with currently available drugs. The general anesthetic induction agent etomidate is among the most potent inhibitors of adrenocortical steroidogenesis. However, its use as a treatment of Cushing's syndrome is complicated by its sedative-hypnotic activity and ability to produce myoclonus, central nervous system actions thought to be mediated by the GABAA receptor. Here, we describe the pharmacology of the novel etomidate analog (R)-ethyl 1-(1-(3,5-dimethoxyphenyl)ethyl)-1H-imidazole-5-carboxylate (dimethoxy-etomidate). In contrast to etomidate, dimethoxy-etomidate minimally enhanced GABA-evoked GABAA receptor-mediated currents even at a near-saturating aqueous concentration. In Sprague-Dawley rats, dimethoxy-etomidate's potency for producing loss of righting reflexes-an animal model of sedation/hypnosis-was 2 orders of magnitude lower than that of etomidate, and it did not produce myoclonus. However, similar to etomidate, dimethoxy-etomidate potently suppressed adrenocortical steroid synthesis primarily by inhibiting 11β-hydroxylase. [3H]etomidate binding to rat adrenocortical membranes was inhibited by dimethoxy-etomidate in a biphasic manner with IC50 values of 8.2 and 3970 nM, whereas that by etomidate was monophasic with an IC50 of 22 nM. Our results demonstrate that, similar to etomidate, dimethoxy-etomidate potently and dose-dependently suppresses adrenocortical steroid synthesis by inhibiting 11β-hydroxylase. However, it is essentially devoid of etomidate's GABAA receptor positive modulatory and sedative-hypnotic activities and produces no myoclonus, providing proof of concept for the design of etomidate analogs without important central nervous system actions for the pharmacologic treatment of Cushing's syndrome.
Collapse
Affiliation(s)
- Megan McGrath
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Celena Ma
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Douglas E Raines
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
61
|
Liu PF, Tsai KL, Hsu CJ, Tsai WL, Cheng JS, Chang HW, Shiau CW, Goan YG, Tseng HH, Wu CH, Reed JC, Yang LW, Shu CW. Drug Repurposing Screening Identifies Tioconazole as an ATG4 Inhibitor that Suppresses Autophagy and Sensitizes Cancer Cells to Chemotherapy. Am J Cancer Res 2018; 8:830-845. [PMID: 29344310 PMCID: PMC5771097 DOI: 10.7150/thno.22012] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/31/2017] [Indexed: 11/12/2022] Open
Abstract
Background: Tumor cells require proficient autophagy to meet high metabolic demands and resist chemotherapy, which suggests that reducing autophagic flux might be an attractive route for cancer therapy. However, this theory in clinical cancer research remains controversial due to the limited number of drugs that specifically inhibit autophagy-related (ATG) proteins. Methods: We screened FDA-approved drugs using a novel platform that integrates computational docking and simulations as well as biochemical and cellular reporter assays to identify potential drugs that inhibit autophagy-required cysteine proteases of the ATG4 family. The effects of ATG4 inhibitors on autophagy and tumor suppression were examined using cell culture and a tumor xenograft mouse model. Results: Tioconazole was found to inhibit activities of ATG4A and ATG4B with an IC50 of 1.3 µM and 1.8 µM, respectively. Further studies based on docking and molecular dynamics (MD) simulations supported that tioconazole can stably occupy the active site of ATG4 in its open form and transiently interact with the allosteric regulation site in LC3, which explained the experimentally observed obstruction of substrate binding and reduced autophagic flux in cells in the presence of tioconazole. Moreover, tioconazole diminished tumor cell viability and sensitized cancer cells to autophagy-inducing conditions, including starvation and treatment with chemotherapeutic agents. Conclusion: Tioconazole inhibited ATG4 and autophagy to enhance chemotherapeutic drug-induced cytotoxicity in cancer cell culture and tumor xenografts. These results suggest that the antifungal drug tioconazole might be repositioned as an anticancer drug or chemosensitizer.
Collapse
|
62
|
Romero PJ, Hernández-Chinea C. The Action of Red Cell Calcium Ions on Human Erythrophagocytosis in Vitro. Front Physiol 2017; 8:1008. [PMID: 29255426 PMCID: PMC5722851 DOI: 10.3389/fphys.2017.01008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 11/21/2017] [Indexed: 01/13/2023] Open
Abstract
In the present work we have studied in vitro the effect of increasing red cell Ca2+ ions on human erythrophagocytosis by peripheral monocyte-derived autologous macrophages. In addition, the relative contribution to phagocytosis of phosphatidylserine exposure, autologous IgG binding, complement deposition and Gárdos channel activity was also investigated. Monocytes were obtained after ficoll-hypaque fractionation and induced to transform by adherence to glass coverslips, for 24 h at 37°C in a RPMI medium, containing 10% fetal calf serum. Red blood cells (RBC) were loaded with Ca2+ using 10 μM A23187 and 1 mM Ca-EGTA buffers, in the absence of Mg2+. Ca2+-loaded cells were transferred to above coverslips and incubated for 2 h at 37°C under various experimental conditions, after which phagocytosis was assessed by light microscopy. Confirming earlier findings, phagocytosis depended on internal Ca2+. Accordingly; it was linearly raised from about 2–15% by increasing the free Ca2+ content of the loading solution from 0.5 to 20 μM, respectively. Such a linear increase was virtually doubled by the presence of 40% autologous serum. At 7 μM Ca2+, the phagocytosis degree attained with serum was practically equal to that obtained with either 2 mg/ml affinity-purified IgG or 40% IgG-depleted serum. However, phagocytosis was reduced to levels found with Ca2+ alone when IgG-depleted serum was inactivated by heat, implying an involvement of complement. On the other hand, phagocytosis in the absence of serum was markedly reduced by preincubating macrophages with phosphatidylserine-containing liposomes. In contrast, a similar incubation in the presence of serum affected it partially whereas employing liposomes made only of phosphatidylcholine essentially had no effect. Significantly, the Gárdos channel inhibitors clotrimazole (2 μM) and TRAM-34 (100 nM) fully blocked serum-dependent phagocytosis. These findings show that a raised internal Ca2+ promotes erythrophagocytosis by independently triggering phosphatidylserine externalization, complement deposition and IgG binding. Serum appeared to stimulate phagocytosis in a way dependent on Gárdos activity. It seems likely that Ca2+ promoted IgG-binding to erythrocytes via Gárdos channel activation. This can be an important signal for clearance of senescent human erythrocytes under physiological conditions.
Collapse
Affiliation(s)
- Pedro J Romero
- Laboratory of Membrane Physiology, Faculty of Sciences, Institute of Experimental Biology, Central University of Venezuela, Caracas, Venezuela
| | - Concepción Hernández-Chinea
- Laboratory of Membrane Physiology, Faculty of Sciences, Institute of Experimental Biology, Central University of Venezuela, Caracas, Venezuela
| |
Collapse
|
63
|
Tanner JA, Tyndale RF. Variation in CYP2A6 Activity and Personalized Medicine. J Pers Med 2017; 7:jpm7040018. [PMID: 29194389 PMCID: PMC5748630 DOI: 10.3390/jpm7040018] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/17/2017] [Accepted: 11/27/2017] [Indexed: 12/16/2022] Open
Abstract
The cytochrome P450 2A6 (CYP2A6) enzyme metabolizes several clinically relevant substrates, including nicotine-the primary psychoactive component in cigarette smoke. The gene that encodes the CYP2A6 enzyme is highly polymorphic, resulting in extensive interindividual variation in CYP2A6 enzyme activity and the rate of metabolism of nicotine and other CYP2A6 substrates including cotinine, tegafur, letrozole, efavirenz, valproic acid, pilocarpine, artemisinin, artesunate, SM-12502, caffeine, and tyrosol. CYP2A6 expression and activity are also impacted by non-genetic factors, including induction or inhibition by pharmacological, endogenous, and dietary substances, as well as age-related changes, or interactions with other hepatic enzymes, co-enzymes, and co-factors. As variation in CYP2A6 activity is associated with smoking behavior, smoking cessation, tobacco-related lung cancer risk, and with altered metabolism and resulting clinical responses for several therapeutics, CYP2A6 expression and enzyme activity is an important clinical consideration. This review will discuss sources of variation in CYP2A6 enzyme activity, with a focus on the impact of CYP2A6 genetic variation on metabolism of the CYP2A6 substrates.
Collapse
Affiliation(s)
- Julie-Anne Tanner
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Rachel F Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada.
| |
Collapse
|
64
|
Prediction of regioselectivity and preferred order of metabolisms on CYP1A2-mediated reactions. Part 2: Solving substrate interactions of CYP1A2 with non-PAH substrates on the template system. Drug Metab Pharmacokinet 2017; 32:229-247. [DOI: 10.1016/j.dmpk.2017.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/19/2017] [Accepted: 05/17/2017] [Indexed: 01/02/2023]
|
65
|
Burns KE, Shepherd P, Finlay G, Tingle MD, Helsby NA. Indirect regulation of CYP2C19 gene expression via DNA methylation. Xenobiotica 2017; 48:781-792. [PMID: 28840784 DOI: 10.1080/00498254.2017.1372648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kathryn Elisa Burns
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand,
| | - Phillip Shepherd
- School of Medical Sciences, University of Auckland, Auckland, New Zealand, and
| | - Graeme Finlay
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand,
| | - Malcolm Drummond Tingle
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
| | - Nuala Ann Helsby
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand,
| |
Collapse
|
66
|
Staal RGW, Weinstein JR, Nattini M, Cajina M, Chandresana G, Möller T. Senicapoc: Repurposing a Drug to Target Microglia K Ca3.1 in Stroke. Neurochem Res 2017; 42:2639-2645. [PMID: 28364331 PMCID: PMC8979772 DOI: 10.1007/s11064-017-2223-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/14/2022]
Abstract
Stroke is the leading cause of serious long-term disability and the fifth leading cause of death in the United States. Treatment options for stroke are few in number and limited in efficacy. Neuroinflammation mediated by microglia and infiltrating peripheral immune cells is a major component of stroke pathophysiology. Interfering with the inflammation cascade after stroke holds the promise to modulate stroke outcome. The calcium activated potassium channel KCa3.1 is expressed selectively in the injured CNS by microglia. KCa3.1 function has been implicated in pro-inflammatory activation of microglia and there is recent literature suggesting that this channel is important in the pathophysiology of ischemia/reperfusion (stroke) related brain injury. Here we describe the potential of repurposing Senicapoc, a KCa3.1 inhibitor, to intervene in the inflammation cascade that follows ischemia/reperfusion.
Collapse
Affiliation(s)
- Roland G W Staal
- Alentis Pharma LLC, 72 Hillside Avenue, Metuchen, NJ, 08840, USA
| | - Jonathan R Weinstein
- Department of Neurology, School of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Megan Nattini
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA Inc., 215 College Rd, Paramus, NJ, 07652, USA
| | - Manuel Cajina
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA Inc., 215 College Rd, Paramus, NJ, 07652, USA
| | - Gamini Chandresana
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA Inc., 215 College Rd, Paramus, NJ, 07652, USA
| | - Thomas Möller
- Abbvie, Foundational Neuroscience Center, Cambridge, MA, 02139, USA.
| |
Collapse
|
67
|
Mordvinov VA, Shilov AG, Pakharukova MY. Anthelmintic activity of cytochrome P450 inhibitors miconazole and clotrimazole: in-vitro effect on the liver fluke Opisthorchis felineus. Int J Antimicrob Agents 2017; 50:97-100. [DOI: 10.1016/j.ijantimicag.2017.01.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/16/2016] [Accepted: 01/31/2017] [Indexed: 10/19/2022]
|
68
|
Han X, Zhu X, Hong Z, Wei L, Ren Y, Wan F, Zhu S, Peng H, Guo L, Rao L, Feng L, Wan J. Structure-Based Rational Design of Novel Inhibitors Against Fructose-1,6-Bisphosphate Aldolase from Candida albicans. J Chem Inf Model 2017; 57:1426-1438. [DOI: 10.1021/acs.jcim.6b00763] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Xinya Han
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiuyun Zhu
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Zongqin Hong
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lin Wei
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yanliang Ren
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Fen Wan
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Shuaihua Zhu
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Hao Peng
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Li Guo
- Hubei Environmental
Monitoring Central Station, Wuhan 430072, Hubei China
| | - Li Rao
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lingling Feng
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jian Wan
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
69
|
Hargrove TY, Friggeri L, Wawrzak Z, Qi A, Hoekstra WJ, Schotzinger RJ, York JD, Guengerich FP, Lepesheva GI. Structural analyses of Candida albicans sterol 14α-demethylase complexed with azole drugs address the molecular basis of azole-mediated inhibition of fungal sterol biosynthesis. J Biol Chem 2017; 292:6728-6743. [PMID: 28258218 DOI: 10.1074/jbc.m117.778308] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/20/2017] [Indexed: 12/27/2022] Open
Abstract
With some advances in modern medicine (such as cancer chemotherapy, broad exposure to antibiotics, and immunosuppression), the incidence of opportunistic fungal pathogens such as Candida albicans has increased. Cases of drug resistance among these pathogens have become more frequent, requiring the development of new drugs and a better understanding of the targeted enzymes. Sterol 14α-demethylase (CYP51) is a cytochrome P450 enzyme required for biosynthesis of sterols in eukaryotic cells and is the major target of clinical drugs for managing fungal pathogens, but some of the CYP51 key features important for rational drug design have remained obscure. We report the catalytic properties, ligand-binding profiles, and inhibition of enzymatic activity of C. albicans CYP51 by clinical antifungal drugs that are used systemically (fluconazole, voriconazole, ketoconazole, itraconazole, and posaconazole) and topically (miconazole and clotrimazole) and by a tetrazole-based drug candidate, VT-1161 (oteseconazole: (R)-2-(2,4-difluorophenyl)-1,1-difluoro-3-(1H-tetrazol-1-yl)-1-(5-(4-(2,2,2-trifluoroethoxy)phenyl)pyridin-2-yl)propan-2-ol). Among the compounds tested, the first-line drug fluconazole was the weakest inhibitor, whereas posaconazole and VT-1161 were the strongest CYP51 inhibitors. We determined the X-ray structures of C. albicans CYP51 complexes with posaconazole and VT-1161, providing a molecular mechanism for the potencies of these drugs, including the activity of VT-1161 against Candida krusei and Candida glabrata, pathogens that are intrinsically resistant to fluconazole. Our comparative structural analysis outlines phylum-specific CYP51 features that could direct future rational development of more efficient broad-spectrum antifungals.
Collapse
Affiliation(s)
- Tatiana Y Hargrove
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Laura Friggeri
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Zdzislaw Wawrzak
- the Synchrotron Research Center, Life Science Collaborative Access Team, Northwestern University, Argonne, Illinois 60439
| | - Aidong Qi
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | | | | | - John D York
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - F Peter Guengerich
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Galina I Lepesheva
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, .,the Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|
70
|
Okamatsu G, Kawakami K, Komatsu T, Kitazawa T, Uno Y, Teraoka H. Functional expression and comparative characterization of four feline P450 cytochromes using fluorescent substrates. Xenobiotica 2016; 47:951-961. [DOI: 10.1080/00498254.2016.1257172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Gaku Okamatsu
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan and
| | - Kei Kawakami
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan and
| | - Tetsuya Komatsu
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan and
| | - Takio Kitazawa
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan and
| | - Yasuhiro Uno
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories Ltd., Kainan, Japan
| | - Hiroki Teraoka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan and
| |
Collapse
|
71
|
El-Sherbeni AA, El-Kadi AOS. Microsomal cytochrome P450 as a target for drug discovery and repurposing. Drug Metab Rev 2016; 49:1-17. [DOI: 10.1080/03602532.2016.1257021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ahmed A. El-Sherbeni
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O. S. El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
72
|
Fatima N, Kondratyuk TP, Park EJ, Marler LE, Jadoon M, Qazi MA, Mehboob Mirza H, Khan I, Atiq N, Chang LC, Ahmed S, Pezzuto JM. Endophytic fungi associated with Taxus fuana (West Himalayan Yew) of Pakistan: potential bio-resources for cancer chemopreventive agents. PHARMACEUTICAL BIOLOGY 2016; 54:2547-2554. [PMID: 27159021 DOI: 10.3109/13880209.2016.1170154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
CONTEXT Endophytic fungi, being a prolific source of bioactive secondary metabolites, are of great interest for natural product discovery. OBJECTIVE Isolation and partial characterization of endophytic fungi inhabiting the leaves and woody parts of Taxus fuana Nan Li & R.R. Mill. (Taxaceae) and evaluation of biological activity. MATERIALS AND METHODS Endophytic fungal isolates were identified by molecular analysis of internal transcribed spacer (ITS) regions of 18S rDNA. Extracts of the endophytic fungi cultured on potato dextrose agar and modified medium were evaluated using cancer chemoprevention bioassays [inhibition of TNF-α-induced NFκB, aromatase and inducible nitric oxide synthase (iNOS); induction of quinone reductase 1 (QR1)] and growth inhibition with MCF-7 cells. RESULTS Nine of 15 fungal isolates were identified as belonging to Epicoccum, Mucor, Penicillium, Chaetomium, Paraconiothriym, Plectania or Trichoderma. Five of the 15 extracts inhibited NFκB activity (IC50 values ranging between 0.18 and 17 μg/mL) and five inhibited iNOS (IC50 values ranging between 0.32 and 12.9 μg/mL). In the aromatase assay, only two isolates mediated inhibition (IC50 values 12.2 and 10.5 μg/mL). With QR1 induction, three extracts exhibited significant activity (concentrations to double activity values ranging between 0.20 and 5.5 μg/mL), and five extracts inhibited the growth of MCF-7 cells (IC50 values ranging from 0.56 to 17.5 μg/mL). Six active cultures were derived from woody parts of the plant material. CONCLUSION The endophytic fungi studied are capable of producing pharmacologically active natural compounds. In particular, isolates derived from the wood of Taxus fuana should be prioritized for the isolation and characterization of bioactive constituents.
Collapse
Affiliation(s)
- Nighat Fatima
- a Department of Biotechnology , Quaid-i-Azam University , Islamabad , Pakistan
- b Department of Microbiology , Quaid-i-Azam University , Islamabad , Pakistan
- c Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy , University of Hawaii at Hilo , Hilo , HI , USA
| | - Tamara P Kondratyuk
- c Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy , University of Hawaii at Hilo , Hilo , HI , USA
| | - Eun-Jung Park
- c Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy , University of Hawaii at Hilo , Hilo , HI , USA
| | - Laura E Marler
- c Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy , University of Hawaii at Hilo , Hilo , HI , USA
| | - Muniba Jadoon
- b Department of Microbiology , Quaid-i-Azam University , Islamabad , Pakistan
| | - Muneer Ahmed Qazi
- b Department of Microbiology , Quaid-i-Azam University , Islamabad , Pakistan
| | - Hira Mehboob Mirza
- b Department of Microbiology , Quaid-i-Azam University , Islamabad , Pakistan
| | - Ibrar Khan
- b Department of Microbiology , Quaid-i-Azam University , Islamabad , Pakistan
| | - Naima Atiq
- b Department of Microbiology , Quaid-i-Azam University , Islamabad , Pakistan
| | - Leng Chee Chang
- c Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy , University of Hawaii at Hilo , Hilo , HI , USA
| | - Safia Ahmed
- b Department of Microbiology , Quaid-i-Azam University , Islamabad , Pakistan
| | - John M Pezzuto
- c Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy , University of Hawaii at Hilo , Hilo , HI , USA
| |
Collapse
|
73
|
Pérez LO, González-José R, García PP. Prediction of Non-Genotoxic Carcinogenicity Based on Genetic Profiles of Short Term Exposure Assays. Toxicol Res 2016; 32:289-300. [PMID: 27818731 PMCID: PMC5080858 DOI: 10.5487/tr.2016.32.4.289] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/22/2016] [Indexed: 01/12/2023] Open
Abstract
Non-genotoxic carcinogens are substances that induce tumorigenesis by non-mutagenic mechanisms and long term rodent bioassays are required to identify them. Recent studies have shown that transcription profiling can be applied to develop early identifiers for long term phenotypes. In this study, we used rat liver expression profiles from the NTP (National Toxicology Program, Research Triangle Park, USA) DrugMatrix Database to construct a gene classifier that can distinguish between non-genotoxic carcinogens and other chemicals. The model was based on short term exposure assays (3 days) and the training was limited to oxidative stressors, peroxisome proliferators and hormone modulators. Validation of the predictor was performed on independent toxicogenomic data (TG-GATEs, Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System, Osaka, Japan). To build our model we performed Random Forests together with a recursive elimination algorithm (VarSelRF). Gene set enrichment analysis was employed for functional interpretation. A total of 770 microarrays comprising 96 different compounds were analyzed and a predictor of 54 genes was built. Prediction accuracy was 0.85 in the training set, 0.87 in the test set and increased with increasing concentration in the validation set: 0.6 at low dose, 0.7 at medium doses and 0.81 at high doses. Pathway analysis revealed gene prominence of cellular respiration, energy production and lipoprotein metabolism. The biggest target of toxicogenomics is accurately predict the toxicity of unknown drugs. In this analysis, we presented a classifier that can predict non-genotoxic carcinogenicity by using short term exposure assays. In this approach, dose level is critical when evaluating chemicals at early time points.
Collapse
Affiliation(s)
- Luis Orlando Pérez
- Instituto Patagónico de Ciencias Sociales y Humanas (IPCSH), Centro Nacional Patagónico (CENPAT), Boulevard Brown 2915, Puerto Madryn, PC 9120, Provincia de Chubut,
Argentina
| | - Rolando González-José
- Instituto Patagónico de Ciencias Sociales y Humanas (IPCSH), Centro Nacional Patagónico (CENPAT), Boulevard Brown 2915, Puerto Madryn, PC 9120, Provincia de Chubut,
Argentina
| | - Pilar Peral García
- Instituto de Genética Veterinaria “Fernando Noel Dulout”-CONICET, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118 S/N, PC 1900, La Plata, Provincia de Buenos Aires,
Argentina
| |
Collapse
|
74
|
Dale E, Staal RGW, Eder C, Möller T. KCa 3.1-a microglial target ready for drug repurposing? Glia 2016; 64:1733-41. [PMID: 27121595 DOI: 10.1002/glia.22992] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/29/2016] [Accepted: 04/03/2016] [Indexed: 01/25/2023]
Abstract
Over the past decade, glial cells have attracted attention for harboring unexploited targets for drug discovery. Several glial targets have attracted de novo drug discovery programs, as highlighted in this GLIA Special Issue. Drug repurposing, which has the objective of utilizing existing drugs as well as abandoned, failed, or not yet pursued clinical development candidates for new indications, might provide a faster opportunity to bring drugs for glial targets to patients with unmet needs. Here, we review the potential of the intermediate-conductance calcium-activated potassium channels KCa 3.1 as the target for such a repurposing effort. We discuss the data on KCa 3.1 expression on microglia in vitro and in vivo and review the relevant literature on the two KCa 3.1 inhibitors TRAM-34 and Senicapoc. Finally, we provide an outlook of what it might take to harness the potential of KCa 3.1 as a bona fide microglial drug target. GLIA 2016;64:1733-1741.
Collapse
Affiliation(s)
- Elena Dale
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA, Paramus, New Jersey
| | - Roland G W Staal
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA, Paramus, New Jersey
| | - Claudia Eder
- Institute for Infection and Immunity, St. George's, University of London, United Kingdom
| | - Thomas Möller
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA, Paramus, New Jersey
| |
Collapse
|
75
|
Burkina V, Zamaratskaia G, Oliveira R, Fedorova G, Grabicova K, Schmidt-Posthaus H, Steinbach C, Domingues I, Golovko O, Sakalli S, Grabic R, Randak T, Zlabek V. Sub-lethal effects and bioconcentration of the human pharmaceutical clotrimazole in rainbow trout (Oncorhynchus mykiss). CHEMOSPHERE 2016; 159:10-22. [PMID: 27268790 DOI: 10.1016/j.chemosphere.2016.05.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/03/2016] [Accepted: 05/13/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to characterize biomarker responses, haematological profiles, structural changes and uptake in juvenile rainbow trout exposed to clotrimazole (CLO) at three concentrations (0.01 - [lowest environmentally relevant concentration], 1.0 [highest environmentally relevant concentration] and 10 μg L(-1)) in a semi-static system over a period of 42 days. Antioxidant defence enzymes, which responded to CLO exposure, changed the oxidative stress status of cells, but no differences were observed in lipid peroxidation. Clotrimazole triggered a biphasic response of CYP3A-like activity in liver microsomes, which may indicate a detoxification process in the liver. Histopathological alterations were most pronounced in kidneys and testes in the group exposed to 10 μg L(-1). Structural changes in the kidney included tubulonephrosis and hyaline droplet degeneration in the tubular epithelial cells. The relative proportions of germ cells in testes were changed: The number of spermatozoa was reduced, and the spermatogonia and spermatocytes were increased. The highest CLO concentration was detected in fish liver (3710 ng per gram wet tissue) and kidney (4280 ng per gram wet tissue). Depuration half-life was estimated to be 72, 159, and 682 h in liver, muscle, and kidney, respectively. Taken together, these results provide valuable toxicological data on the effects of CLO on aquatic non-target organisms, which could be useful for further understanding of the potential risks in the real aquatic environment.
Collapse
Affiliation(s)
- Viktoriia Burkina
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Galia Zamaratskaia
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic; Swedish University of Agricultural Sciences, Uppsala BioCenter, Department of Food Science, P.O. Box 7051, SE-750 07 Uppsala, Sweden.
| | - Rhaul Oliveira
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Ganna Fedorova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Katerina Grabicova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Heike Schmidt-Posthaus
- Centre for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, University of Bern, Vetsuisse Faculty, Laenggassstrasse 122, Bern 3001, Switzerland.
| | - Christoph Steinbach
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Inês Domingues
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Oksana Golovko
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Sidika Sakalli
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Roman Grabic
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Tomas Randak
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Vladimir Zlabek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| |
Collapse
|
76
|
Ishiwata Y, Nagata M, Arai T, Makiishi M, Yoshikawa M, Takahashi H, Kohsaka H, Yasuhara M. Effects of Miconazole Oral Gel on Blood Concentrations of Tacrolimus and Cyclosporine: A Retrospective Observational Study. Ther Drug Monit 2016; 38:717-721. [PMID: 27559841 DOI: 10.1097/ftd.0000000000000335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Although azole antifungal agents have been shown to affect the pharmacokinetics of calcineurin inhibitors such as tacrolimus (TAC) and cyclosporine (CyA) by inhibiting drug metabolism, there are few clinical reports on drug interactions between miconazole (MCZ) oral gel and calcineurin inhibitors. In this study, the effects of MCZ oral gel on the blood concentrations of TAC and CyA were investigated. METHODS In this retrospective study, 18 patients concomitantly administered MCZ oral gel and TAC (9 for dermatomyositis, 3 for myasthenia gravis, 2 for systemic lupus erythematosus, 2 for rheumatoid arthritis, 1 for polymyositis, 1 for prevention of graft-versus-host disease after bone marrow transplantation), and 15 patients concomitantly administered MCZ oral gel and CyA (11 for interstitial pneumonia, 2 for pemphigus, 1 for eosinophilic granulomatosis with polyangiitis, 1 for systemic lupus erythematosus) were evaluated. The dose-adjusted blood concentrations of TAC or CyA were compared before and after the initiation of MCZ oral gel. RESULTS The trough blood concentration/dose (C/D) ratios of TAC and CyA increased significantly with the administration of MCZ oral gel. The median C/D ratios of TAC and CyA increased by 108% (range: -44% to 216%) and 44% (range: -34% to 195%), respectively. CONCLUSIONS These results suggest that MCZ oral gel affects the pharmacokinetics of TAC and CyA. Detailed monitoring of the blood concentrations of these drugs, followed by dose adjustments, is needed for each patient because of the difficulties associated with accurately predicting the degree of the effects of MCZ oral gel.
Collapse
Affiliation(s)
- Yasuyoshi Ishiwata
- *Department of Pharmacy, Medical Hospital, Tokyo Medical and Dental University (TMDU); Departments of †Rheumatology and ‡Pharmacokinetics and Pharmacodynamics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Desai N, Trivedi A, Khedkar VM. Preparation, biological evaluation and molecular docking study of imidazolyl dihydropyrimidines as potential Mycobacterium tuberculosis dihydrofolate reductase inhibitors. Bioorg Med Chem Lett 2016; 26:4030-5. [DOI: 10.1016/j.bmcl.2016.06.082] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/11/2016] [Accepted: 06/28/2016] [Indexed: 01/28/2023]
|
78
|
Warrilow AGS, Parker JE, Price CL, Nes WD, Garvey EP, Hoekstra WJ, Schotzinger RJ, Kelly DE, Kelly SL. The Investigational Drug VT-1129 Is a Highly Potent Inhibitor of Cryptococcus Species CYP51 but Only Weakly Inhibits the Human Enzyme. Antimicrob Agents Chemother 2016; 60:4530-8. [PMID: 27161631 PMCID: PMC4958158 DOI: 10.1128/aac.00349-16] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/04/2016] [Indexed: 01/07/2023] Open
Abstract
Cryptococcosis is a life-threatening disease often associated with HIV infection. Three Cryptococcus species CYP51 enzymes were purified and catalyzed the 14α-demethylation of lanosterol, eburicol, and obtusifoliol. The investigational agent VT-1129 bound tightly to all three CYP51 proteins (dissociation constant [Kd] range, 14 to 25 nM) with affinities similar to those of fluconazole, voriconazole, itraconazole, clotrimazole, and ketoconazole (Kd range, 4 to 52 nM), whereas VT-1129 bound weakly to human CYP51 (Kd, 4.53 μM). VT-1129 was as effective as conventional triazole antifungal drugs at inhibiting cryptococcal CYP51 activity (50% inhibitory concentration [IC50] range, 0.14 to 0.20 μM), while it only weakly inhibited human CYP51 activity (IC50, ∼600 μM). Furthermore, VT-1129 weakly inhibited human CYP2C9, CYP2C19, and CYP3A4, suggesting a low drug-drug interaction potential. Finally, the cellular mode of action for VT-1129 was confirmed to be CYP51 inhibition, resulting in the depletion of ergosterol and ergosta-7-enol and the accumulation of eburicol, obtusifolione, and lanosterol/obtusifoliol in the cell membranes.
Collapse
Affiliation(s)
- Andrew G S Warrilow
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea, Wales, United Kingdom
| | - Josie E Parker
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea, Wales, United Kingdom
| | - Claire L Price
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea, Wales, United Kingdom
| | - W David Nes
- Center for Chemical Biology, Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | | | | | | | - Diane E Kelly
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea, Wales, United Kingdom
| | - Steven L Kelly
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea, Wales, United Kingdom
| |
Collapse
|
79
|
Wolf DC, Allen JW, George MH, Hester SD, Sun G, Moore T, Thai SF, Delker D, Winkfield E, Leavitt S, Nelson G, Roop BC, Jones C, Thibodeaux J, Nesnow S. Toxicity Profiles in Rats Treated with Tumorigenic and Nontumorigenic Triazole Conazole Fungicides: Propiconazole, Triadimefon, and Myclobutanil. Toxicol Pathol 2016; 34:895-902. [PMID: 17178690 DOI: 10.1080/01926230601047808] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Conazoles are a class of azole based fungicides used in agriculture and as pharmaceutical products. They have a common mode of antifungal action through inhibition of ergosterol biosynthesis. Some members of this class have been shown to be hepatotoxic and will induce mouse hepatocellular tumors and/or rat thyroid follicular cell tumors. The particular mode of toxic and tumorigenic action for these compounds is not known, however it has been proposed that triadimefon-induced rat thyroid tumors arise through the specific mechanism of increased TSH. The present study was designed to identify commonalities of effects across the different conazoles and to determine unique features of the tissue responses that suggest a toxicity pathway and a mode of action for the observed thyroid response for triadimefon. Male Wistar/Han rats were treated with triadimefon (100, 500, 1800 ppm), propiconazole (100, 500, 2500 ppm), or myclobutanil (100, 500, 2000 ppm) in feed for 4, 30, or 90 days. The rats were evaluated for clinical signs, body and liver weight, histopathology of thyroid and liver, hepatic metabolizing enzyme activity, and serum T3, T4, TSH, and cholesterol levels. There was a dose-dependent increase in liver weight but not body weight for all treatments. The indication of cytochrome induction, pentoxyresorufin O-dealkylation (PROD) activity, had a dose-related increase at all time points for all conazoles. Uridine diphopho-glucuronosyl transferase (UDPGT), the T4 metabolizing enzyme measured as glucuronidation of 1-naphthol, was induced to the same extent after 30 and 90 days for all three conazoles. Livers from all high dose treated rats had centrilobular hepatocyte hypertrophy after 4 days, while only triadimefon and propiconazole treated rats had hepatocyte hypertrophy after 30 days, and only triadimefon treated rats had hepatocyte hypertrophy after 90 days. Thyroid follicular cell hypertrophy, increased follicular cell proliferation, and colloid depletion were present only after 30 days in rats treated with the high dose of triadimefon. A dose-dependent decrease in T4 was present after 4 days with all 3 compounds but only the high doses of propiconazole and triadimefon produced decreased T4 after 30 days. T3 was decreased after high-dose triadimefon after 4 days and in a dose-dependent manner for all compounds after 30 days. Thyroid hormone levels did not differ from control values after 90 days and TSH was not increased in any exposure group. A unique pattern of toxic responses was not identified for each conazole and the hypothesized mode of action for triadimefon-induced thyroid gland tumors was not supported by the data.
Collapse
Affiliation(s)
- Douglas C Wolf
- Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, ORD, USEPA, Research Triangle Park, North Carolina 27711, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Ward WO, Delker DA, Hester SD, Thai SF, Wolf DC, Allen JW, Nesnow S. Transcriptional Profiles in Liver from Mice Treated with Hepatotumorigenic and Nonhepatotumorigenic Triazole Conazole Fungicides: Propiconazole, Triadimefon, and Myclobutanil. Toxicol Pathol 2016; 34:863-78. [PMID: 17178688 DOI: 10.1080/01926230601047832] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Conazoles are environmental and pharmaceutical fungicides. The present study relates the toxicological effects of conazoles to alterations of gene and pathway transcription and identifies potential modes of tumorigenic action. In a companion study employing conventional toxicological bioassays ( Allen et al., 2006 ), male CD-1 mice were fed triadimefon, propiconazole, or myclobutanil in a continuous oral-dose regimen for 4, 30, or 90 days. These conazoles were found to induce hepatomegaly, to induce high levels of hepatic pentoxyresorufin-O-dealkylase activity, to increase hepatic cell proliferation, to decrease serum cholesterol, and to increase serum triglycerides. Differentially expressed genes and pathways were identified using Affymetrix GeneChips. Gene-pathway associations were obtained from the Kyoto Encyclopedia of Genes and Genomes, Biocarta, and MetaCore compendia. The pathway profiles of each conazole were different at each time point. In general, the number of altered metabolism, signaling, and growth pathways increased with time and dose and were greatest with propiconazole. All conazoles had effects on nuclear receptors as evidenced by increased expression and enzymatic activities of a series of related cytochrome P450s (CYP). A subset of altered genes and pathways distinguished the three conazoles from each other. Triadimefon and propiconazole both altered apoptosis, cell cycle, adherens junction, calcium signaling, and EGFR signaling pathways. Triadimefon produced greater changes in cholesterol biosynthesis and retinoic acid metabolism genes and in selected signaling pathways. Propiconazole had greater effects on genes responding to oxidative stress and on the IGF/P13K/AKt/PTEN/mTor and Wnt-β-catenin pathways. In conclusion, while triadimefon, propiconazole, and myclobutanil had similar effects in mouse liver on hepatomegaly, histology, CYP activities, cell proliferation, and serum cholesterol, genomic analyses revealed major differences in their gene expression profiles.
Collapse
Affiliation(s)
- William O Ward
- Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
| | | | | | | | | | | | | |
Collapse
|
81
|
Zundler S, Caioni M, Müller M, Strauch U, Kunst C, Woelfel G. K+ Channel Inhibition Differentially Regulates Migration of Intestinal Epithelial Cells in Inflamed vs. Non-Inflamed Conditions in a PI3K/Akt-Mediated Manner. PLoS One 2016; 11:e0147736. [PMID: 26824610 PMCID: PMC4732808 DOI: 10.1371/journal.pone.0147736] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 01/07/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Potassium channels have been shown to determine wound healing in different tissues, but their role in intestinal epithelial restitution--the rapid closure of superficial wounds by intestinal epithelial cells (IEC)--remains unclear. METHODS In this study, the regulation of IEC migration by potassium channel modulation was explored with and without additional epidermal growth factor (EGF) under baseline and interferon-γ (IFN-γ)-pretreated conditions in scratch assays and Boyden chamber assays using the intestinal epithelial cell lines IEC-18 and HT-29. To identify possibly involved subcellular pathways, Western Blot (WB)-analysis of ERK and Akt phosphorylation was conducted and PI3K and ERK inhibitors were used in scratch assays. Furthermore, mRNA-levels of the potassium channel KCNN4 were determined in IEC from patients suffering from inflammatory bowel diseases (IBD). RESULTS Inhibition of Ca(2+)-dependent potassium channels significantly increased intestinal epithelial restitution, which could not be further promoted by additional EGF. In contrast, inhibition of KCNN4 after pretreatment with IFN-γ led to decreased or unaffected migration. This effect was abolished by EGF. Changes in Akt, but not in ERK phosphorylation strongly correlated with these findings and PI3K but not ERK inhibition abrogated the effect of KCNN4 inhibition. Levels of KCNN4 mRNA were higher in samples from IBD patients compared with controls. CONCLUSIONS Taken together, we demonstrate that inhibition of KCNN4 differentially regulates IEC migration in IFN-γ-pretreated vs. non pretreated conditions. Moreover, our data propose that the PI3K signaling cascade is responsible for this differential regulation. Therefore, we present a cellular model that contributes new aspects to epithelial barrier dysfunction in chronic intestinal inflammation, resulting in propagation of inflammation and symptoms like ulcers or diarrhea.
Collapse
Affiliation(s)
- Sebastian Zundler
- Department of Internal Medicine I, Regensburg University Medical Center, Regensburg, Germany
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research & Translational Research Center, Erlangen, Germany
| | - Massimiliano Caioni
- Department of Internal Medicine I, Regensburg University Medical Center, Regensburg, Germany
| | - Martina Müller
- Department of Internal Medicine I, Regensburg University Medical Center, Regensburg, Germany
| | - Ulrike Strauch
- Department of Internal Medicine I, Regensburg University Medical Center, Regensburg, Germany
| | - Claudia Kunst
- Department of Internal Medicine I, Regensburg University Medical Center, Regensburg, Germany
| | - Gisela Woelfel
- Department of Internal Medicine I, Regensburg University Medical Center, Regensburg, Germany
- * E-mail:
| |
Collapse
|
82
|
Abstract
Modulation of protein-protein interactions (PPIs) is becoming increasingly important in drug discovery and chemical biology. While a few years ago this 'target class' was deemed to be largely undruggable an impressing number of publications and success stories now show that targeting PPIs with small, drug-like molecules indeed is a feasible approach. Here, we summarize the current state of small-molecule inhibition and stabilization of PPIs and review the active molecules from a structural and medicinal chemistry angle, especially focusing on the key examples of iNOS, LFA-1 and 14-3-3.
Collapse
|
83
|
Functional analysis and crystallographic structure of clotrimazole bound OleP, a cytochrome P450 epoxidase from Streptomyces antibioticus involved in oleandomycin biosynthesis. Biochim Biophys Acta Gen Subj 2015; 1860:465-75. [PMID: 26475642 DOI: 10.1016/j.bbagen.2015.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/05/2015] [Accepted: 10/12/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND OleP is a cyt P450 from Streptomyces antibioticus carrying out epoxigenation of the antibiotic oleandomycin during its biosynthesis. The timing of its reaction has not been fully clarified, doubts remain regarding its substrate and catalytic mechanism. METHODS The crystal structure of OleP in complex with clotrimazole, an inhibitor of P450s used in therapy, was solved and the complex formation dynamics was characterized by equilibrium and kinetic binding studies and compared to ketoconazole, another azole differing for the N1-substituent. RESULTS Clotrimazole coordinates the heme and occupies the active site. Most of the residues interacting with clotrimazole are conserved and involved in substrate binding in MycG, the P450 epoxigenase with the highest homology with OleP. Kinetic characterization of inhibitor binding revealed OleP to follow a simple bimolecular reaction, without detectable intermediates. CONCLUSIONS Clotrimazole-bound OleP adopts an open form, held by a π-π stacking chain that fastens helices F and G and the FG loop. Affinity is affected by the interactions of the N1 substituent within the active site, given the one order of magnitude difference of the off-rate constants between clotrimazole and ketoconazole. Based on structural similarities with MycG, we propose a binding mode for both oleandomycin intermediates, that are the candidate substrates of OleP. GENERAL SIGNIFICANCE Among P450 epoxigenases OleP is the only one that introduces an epoxide on a non-activated C–C bond. The data here presented are necessary to understand the rare chemistry carried out by OleP, to engineer it and to design more selective and potent P450-targeted drugs.
Collapse
|
84
|
Burkina V, Zlabek V, Zamaratskaia G. Effects of pharmaceuticals present in aquatic environment on Phase I metabolism in fish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:430-44. [PMID: 26278678 DOI: 10.1016/j.etap.2015.07.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/18/2015] [Accepted: 07/23/2015] [Indexed: 05/18/2023]
Abstract
The fate of pharmaceuticals in aquatic environments is an issue of concern. Current evidence indicates that the risks to fish greatly depend on the nature and concentrations of the pharmaceuticals and might be species-specific. Assessment of risks associated with the presence of pharmaceuticals in water is hindered by an incomplete understanding of the metabolism of these pharmaceuticals in aquatic species. In mammals and fish, pharmaceuticals are primarily metabolized by cytochrome P450 enzymes (CYP450). Thus, CYP450 activity is a crucial factor determining the detoxification abilities of organisms. Massive numbers of toxicological studies have investigated the interactions of human pharmaceuticals with detoxification systems in various fish species. In this paper, we review the effects of pharmaceuticals found in aquatic environments on fish hepatic CYP450. Moreover, we discuss the roles of nuclear receptors in cellular regulation and the effects of various groups of chemicals on fish, presented in the recent literature.
Collapse
Affiliation(s)
- Viktoriia Burkina
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Vladimir Zlabek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Galia Zamaratskaia
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic; Swedish University of Agricultural Sciences, Uppsala BioCenter, Department of Food Science, P.O. Box 7051, SE-750 07 Uppsala, Sweden.
| |
Collapse
|
85
|
Shirakawa M, Sekine S, Tanaka A, Horie T, Ito K. Metabolic activation of hepatotoxic drug (benzbromarone) induced mitochondrial membrane permeability transition. Toxicol Appl Pharmacol 2015; 288:12-8. [PMID: 26148448 DOI: 10.1016/j.taap.2015.06.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 06/22/2015] [Accepted: 06/26/2015] [Indexed: 12/23/2022]
Abstract
The risk of drug-induced liver injury (DILI) is of great concern to the pharmaceutical industry. It is well-known that metabolic activation of drugs to form toxic metabolites (TMs) is strongly associated with DILI onset. Drug-induced mitochondrial dysfunction is also strongly associated with increased risk of DILI. However, it is difficult to determine the target of TMs associated with exacerbation of DILI because of difficulties in identifying and purifying TMs. In this study, we propose a sequential in vitro assay system to assess TM formation and their ability to induce mitochondrial permeability transition (MPT) in a one-pot process. In this assay system, freshly-isolated rat liver mitochondria were incubated with reaction solutions of 44 test drugs preincubated with liver microsomes in the presence or absence of NADPH; then, NADPH-dependent MPT pore opening was assessed as mitochondrial swelling. In this assay system, several hepatotoxic drugs, including benzbromarone (BBR), significantly induced MPT in a NADPH-dependent manner. We investigated the rationality of using BBR as a model drug, since it showed the most prominent MPT in our assay system. Both the production of a candidate toxic metabolite of BBR (1',6-(OH)2 BBR) and NADPH-dependent MPT were inhibited by several cytochrome P450 (CYP) inhibitors (clotrimazole and SKF-525A, 100μM). In summary, this assay system can be used to evaluate comprehensive metabolite-dependent MPT without identification or purification of metabolites.
Collapse
Affiliation(s)
- Maho Shirakawa
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Shuichi Sekine
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Ayaka Tanaka
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Toshiharu Horie
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Tokyo, Japan
| | - Kousei Ito
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| |
Collapse
|
86
|
Marcondes MC, Fernandes ACS, Itabaiana I, de Souza ROMA, Sola-Penna M, Zancan P. Nanomicellar Formulation of Clotrimazole Improves Its Antitumor Action toward Human Breast Cancer Cells. PLoS One 2015; 10:e0130555. [PMID: 26098874 PMCID: PMC4476588 DOI: 10.1371/journal.pone.0130555] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/21/2015] [Indexed: 02/04/2023] Open
Abstract
Background Although demonstrated as a selective anticancer drug, the clinical use of clotrimazole (CTZ) is limited due to its low solubility in hydrophilic fluids. Thus, we prepared a water-soluble nanomicellar formulation of CTZ (nCTZ) and tested on the human breast cancer cell line MCF-7 biology. Methodology/Principal Findings CTZ was nanoencapsulated in tween 80 micelles, which generated nanomicelles of, approximately, 17 nm of diameter. MCF-7 cells were treated with nCTZ and unencapsulated DMSO-solubilized drug (sCTZ) was used for comparison. After treatment, the cells were evaluated in terms of metabolism, proliferation, survival and structure. We found that nCTZ was more efficient than sCTZ at inhibiting glycolytic and other cytosolic and mitochondrial enzymes. Moreover, this increased activity was also observed for lactate production, intracellular ATP content, ROS production and antioxidant potential. As a consequence, nCTZ-treated MCF-7 cells displayed alterations to the plasma membrane, mitochondria and the nucleus. Finally, nCTZ induced both apoptosis and necrosis in MCF-7 cells. Conclusions/Significance MCF-7 cells are more sensible to nCTZ than to sCTZ. This was especially evident on regard to antioxidant potential, which is an important cell defense against drugs that affect cell metabolism. Moreover, this water-soluble formulation of CTZ strengths its potential use as an anticancer medicine.
Collapse
Affiliation(s)
- Mariah C. Marcondes
- Laboratório de Oncobiologia Molecular (LabOMol), Departamento de Biotecnologia Farmacêutica (BioTecFar), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Anne C. S. Fernandes
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Ivaldo Itabaiana
- Laboratório de Biocatálise e Síntese Orgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Rodrigo O. M. A. de Souza
- Laboratório de Biocatálise e Síntese Orgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Mauro Sola-Penna
- Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), Departamento de Biotecnologia Farmacêutica (BioTecFar), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Patricia Zancan
- Laboratório de Oncobiologia Molecular (LabOMol), Departamento de Biotecnologia Farmacêutica (BioTecFar), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- * E-mail:
| |
Collapse
|
87
|
Lee KG, Jennifer DL. Increased Bleeding Tendency from Interaction between Rivaroxaban and Topical Miconazole: Case Report. PROCEEDINGS OF SINGAPORE HEALTHCARE 2015. [DOI: 10.1177/201010581502400209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Novel oral anticoagulants (OAC) are being increasingly used. We describe a case of increased bleeding tendency resulting from probable drug interaction between rivaroxaban and topical miconazole. Recognition of this possible interaction is important during concomitant use to prevent adverse outcome arising from over-anticoagulation.
Collapse
Affiliation(s)
- Kian-Guan Lee
- Department of Renal Medicine, Singapore General Hospital, Singapore
| | | |
Collapse
|
88
|
Targeting key dioxygenases in tryptophan–kynurenine metabolism for immunomodulation and cancer chemotherapy. Drug Discov Today 2015; 20:609-17. [DOI: 10.1016/j.drudis.2014.11.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/23/2014] [Accepted: 11/13/2014] [Indexed: 11/19/2022]
|
89
|
Moody DE, Liu F, Fang WB. Azole Antifungal Inhibition of Buprenorphine, Methadone and Oxycodone In Vitro Metabolism. J Anal Toxicol 2015; 39:374-86. [DOI: 10.1093/jat/bkv030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
90
|
Ohya S, Nakamura E, Horiba S, Kito H, Matsui M, Yamamura H, Imaizumi Y. Role of the K(Ca)3.1 K+ channel in auricular lymph node CD4+ T-lymphocyte function of the delayed-type hypersensitivity model. Br J Pharmacol 2015; 169:1011-23. [PMID: 23594188 DOI: 10.1111/bph.12215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 02/18/2013] [Accepted: 03/01/2013] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND AND PURPOSE The intermediate-conductance Ca(2+)-activated K(+) channel (K(Ca)3.1) modulates the Ca(2+) response through the control of the membrane potential in the immune system. We investigated the role of K(Ca)3.1 on the pathogenesis of delayed-type hypersensitivity (DTH) in auricular lymph node (ALN) CD4(+) T-lymphocytes of oxazolone (Ox)-induced DTH model mice. EXPERIMENTAL APPROACH The expression patterns of K(Ca)3.1 and its possible transcriptional regulators were compared among ALN T-lymphocytes of three groups [non-sensitized (Ox-/-), Ox-sensitized, but non-challenged (Ox+/-) and Ox-sensitized and -challenged (Ox+/+)] using real-time polymerase chain reaction, Western blotting and flow cytometry. KCa 3.1 activity was measured by whole-cell patch clamp and the voltage-sensitive dye imaging. The effects of K(Ca)3.1 blockade were examined by the administration of selective K(Ca)3.1 blockers. KEY RESULTS Significant up-regulation of K(Ca)3.1a was observed in CD4(+) T-lymphocytes of Ox+/- and Ox+/+, without any evident changes in the expression of the dominant-negative form, K(Ca)3.1b. Negatively correlated with this, the repressor element-1 silencing transcription factor (REST) was significantly down-regulated. Pharmacological blockade of K(Ca)3.1 resulted in an accumulation of the CD4(+) T-lymphocytes of Ox+/+ at the G0/G1 phase of the cell cycle, and also significantly recovered not only the pathogenesis of DTH, but also the changes in the K(Ca)3.1 expression and activity in the CD4(+) T-lymphocytes of Ox+/- and Ox+/+. CONCLUSIONS AND IMPLICATIONS The up-regulation of K(Ca)3.1a in conjunction with the down-regulation of REST may be involved in CD4(+) T-lymphocyte proliferation in the ALNs of DTH model mice; and K(Ca)3.1 may be an important target for therapeutic intervention in allergy diseases such as DTH.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
91
|
Functionalized α-oximinoketones as building blocks for the construction of imidazoline-based potential chiral auxiliaries. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.tetasy.2015.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
92
|
Imaizumi N, Kwang Lee K, Zhang C, Boelsterli UA. Mechanisms of cell death pathway activation following drug-induced inhibition of mitochondrial complex I. Redox Biol 2015; 4:279-88. [PMID: 25625582 PMCID: PMC4315936 DOI: 10.1016/j.redox.2015.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/03/2015] [Accepted: 01/07/2015] [Indexed: 11/02/2022] Open
Abstract
Respiratory complex I inhibition by drugs and other chemicals has been implicated as a frequent mode of mitochondria-mediated cell injury. However, the exact mechanisms leading to the activation of cell death pathways are incompletely understood. This study was designed to explore the relative contributions to cell injury of three distinct consequences of complex I inhibition, i.e., impairment of ATP biosynthesis, increased formation of superoxide and, hence, peroxynitrite, and inhibition of the mitochondrial protein deacetylase, Sirt3, due to imbalance of the NADH/NAD(+) ratio. We used the antiviral drug efavirenz (EFV) to model drug-induced complex I inhibition. Exposure of cultured mouse hepatocytes to EFV resulted in a rapid onset of cell injury, featuring a no-effect level at 30µM EFV and submaximal effects at 50µM EFV. EFV caused a concentration-dependent decrease in cellular ATP levels. Furthermore, EFV resulted in increased formation of peroxynitrite and oxidation of mitochondrial protein thiols, including cyclophilin D (CypD). This was prevented by the superoxide scavenger, Fe-TCP, or the peroxynitrite decomposition catalyst, Fe-TMPyP. Both ferroporphyrins completely protected from EFV-induced cell injury, suggesting that peroxynitrite contributed to the cell injury. Finally, EFV increased the NADH/NAD(+) ratio, inhibited Sirt3 activity, and led to hyperacetylated lysine residues, including those in CypD. However, hepatocytes isolated from Sirt3-null mice were protected against 40µM EFV as compared to their wild-type controls. In conclusion, these data are compatible with the concept that chemical inhibition of complex I activates multiple pathways leading to cell injury; among these, peroxynitrite formation may be the most critical.
Collapse
Affiliation(s)
- Naoki Imaizumi
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA; Laboratory of Molecular Genetics, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan.
| | - Kang Kwang Lee
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Carmen Zhang
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Urs A Boelsterli
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
93
|
Desai NC, Trivedi AR, Somani HC, Bhatt KA. Design, Synthesis, and Biological Evaluation of 1,4-dihydropyridine Derivatives as Potent Antitubercular Agents. Chem Biol Drug Des 2015; 86:370-7. [DOI: 10.1111/cbdd.12502] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Nisheeth C. Desai
- Division of Medicinal Chemistry; Department of Chemistry, (UGC NON-SAP & DST-FIST Sponsored); Maharaja Krishnakumarsinhji Bhavnagar University; Mahatma Gandhi Campus Bhavnagar Gujarat 364 002 India
| | - Amit R. Trivedi
- Division of Medicinal Chemistry; Department of Chemistry, (UGC NON-SAP & DST-FIST Sponsored); Maharaja Krishnakumarsinhji Bhavnagar University; Mahatma Gandhi Campus Bhavnagar Gujarat 364 002 India
| | - Hardik C. Somani
- Division of Medicinal Chemistry; Department of Chemistry, (UGC NON-SAP & DST-FIST Sponsored); Maharaja Krishnakumarsinhji Bhavnagar University; Mahatma Gandhi Campus Bhavnagar Gujarat 364 002 India
| | - Kandarp A. Bhatt
- Division of Medicinal Chemistry; Department of Chemistry, (UGC NON-SAP & DST-FIST Sponsored); Maharaja Krishnakumarsinhji Bhavnagar University; Mahatma Gandhi Campus Bhavnagar Gujarat 364 002 India
| |
Collapse
|
94
|
Liu W, Liu C, Zhang Y, Sun Y, Abdukadera A, Wang B, Li H, Ma X, Zhang Z. Reusable ionic liquid-catalyzed oxidative coupling of azoles and benzylic compounds via sp3 C–N bond formation under metal-free conditions. Org Biomol Chem 2015; 13:7154-8. [DOI: 10.1039/c5ob00781j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The heterocyclic ionic liquid-catalyzed direct oxidative amination of benzylic sp3 C–H bonds via intermolecular sp3 C–N bond formation for the synthesis of N-alkylated azoles under metal-free conditions is reported for the first time.
Collapse
Affiliation(s)
- Wenbo Liu
- The Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education & Xinjiang Uygur Autonomous Region
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology
- School of Chemistry and Chemical Engineering
- Physics and Chemistry Detecting Center
| | - Chenjiang Liu
- The Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education & Xinjiang Uygur Autonomous Region
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology
- School of Chemistry and Chemical Engineering
- Physics and Chemistry Detecting Center
| | - Yonghong Zhang
- The Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education & Xinjiang Uygur Autonomous Region
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology
- School of Chemistry and Chemical Engineering
- Physics and Chemistry Detecting Center
| | - Yadong Sun
- The Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education & Xinjiang Uygur Autonomous Region
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology
- School of Chemistry and Chemical Engineering
- Physics and Chemistry Detecting Center
| | - Ablimit Abdukadera
- The Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education & Xinjiang Uygur Autonomous Region
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology
- School of Chemistry and Chemical Engineering
- Physics and Chemistry Detecting Center
| | - Bin Wang
- The Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education & Xinjiang Uygur Autonomous Region
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology
- School of Chemistry and Chemical Engineering
- Physics and Chemistry Detecting Center
| | - He Li
- The Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education & Xinjiang Uygur Autonomous Region
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology
- School of Chemistry and Chemical Engineering
- Physics and Chemistry Detecting Center
| | - Xuecheng Ma
- The Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education & Xinjiang Uygur Autonomous Region
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology
- School of Chemistry and Chemical Engineering
- Physics and Chemistry Detecting Center
| | - Zengpeng Zhang
- The Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education & Xinjiang Uygur Autonomous Region
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology
- School of Chemistry and Chemical Engineering
- Physics and Chemistry Detecting Center
| |
Collapse
|
95
|
Brown RW, Hyland CJT. Medicinal organometallic chemistry – an emerging strategy for the treatment of neglected tropical diseases. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00174a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This review summarises recent developments in the search for novel organometallic drug compounds for the treatment of neglected tropical diseases.
Collapse
|
96
|
Zhuang SL, Bao LL, Wang HF, Zhang M, Yang C, Zhou XY, Wu Y, Rehman K, Naranmandura H. The Involvement of ER-stress and ROS Generation in Difenoconazole-Induced Hepatocellular Toxicity. Toxicol Res (Camb) 2015. [DOI: 10.1039/c5tx00093a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Difenoconazole is one of the triazole compounds, and is widely used as an environmental fungicide.
Collapse
Affiliation(s)
- Shu Lin Zhuang
- College of Environmental and Resource Sciences
- Hangzhou 310058
- China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control
- Hangzhou 310058
| | - Ling Ling Bao
- College of Environmental and Resource Sciences
- Hangzhou 310058
- China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control
- Hangzhou 310058
| | - Hai Fei Wang
- College of Environmental and Resource Sciences
- Hangzhou 310058
- China
| | - Min Zhang
- Department of Toxicology and Pharmacology
- College of Pharmaceutical Sciences
- Hangzhou 310058
- China
| | - Chang Yang
- Department of Toxicology and Pharmacology
- College of Pharmaceutical Sciences
- Hangzhou 310058
- China
| | - Xin Yi Zhou
- Department of Toxicology and Pharmacology
- College of Pharmaceutical Sciences
- Hangzhou 310058
- China
| | - Yuan Wu
- Department of Toxicology and Pharmacology
- College of Pharmaceutical Sciences
- Hangzhou 310058
- China
| | - Kanwal Rehman
- Department of Toxicology and Pharmacology
- College of Pharmaceutical Sciences
- Hangzhou 310058
- China
| | - Hua Naranmandura
- Department of Toxicology and Pharmacology
- College of Pharmaceutical Sciences
- Hangzhou 310058
- China
- Department of Toxicology
| |
Collapse
|
97
|
van Breemen RB, Yuan Y, Banuvar S, Shulman LP, Qiu X, Alvarenga RFR, Chen SN, Dietz BM, Bolton JL, Pauli GF, Krause E, Viana M, Nikolic D. Pharmacokinetics of prenylated hop phenols in women following oral administration of a standardized extract of hops. Mol Nutr Food Res 2014; 58:1962-9. [PMID: 25045111 PMCID: PMC4265473 DOI: 10.1002/mnfr.201400245] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/06/2014] [Accepted: 06/13/2014] [Indexed: 02/02/2023]
Abstract
SCOPE Women seeking alternatives to hormone-replacement therapy for menopausal symptoms often try botanical dietary supplements containing extracts of hops (Humulus lupulus L.). Hops contain 8-prenylnaringenin (8-PN), a potent phytoestrogen, the related flavanones 6-prenylnaringenin and isoxanthohumol (IX), and the prenylated chalcone xanthohumol (XN). METHODS AND RESULTS After chemically and biologically standardizing an extract of spent hops to these marker compounds, an escalating dose study was carried out in menopausal women to evaluate safety and pharmacokinetics. 8-PN, 6-prenylnaringenin, IX, and XN, sex hormones, and prothrombin time were determined in blood samples and/or 24 h urine samples. There was no effect on sex hormones or blood clotting. The maximum serum concentrations of the prenylated phenols were dose-dependent and were reached from 2 to 7 h, indicating slow absorption. The marker compounds formed glucuronides that were found in serum and urine. Secondary peaks at 5 h in the serum concentration-time curves indicated enterohepatic recirculation. The serum concentration-time curves indicated demethylation of IX to form 8-PN and cyclization of XN to IX. Slow absorption and enterohepatic recirculation contributed to half-lives exceeding 20 h. CONCLUSION This human study indicated long half-lives of the estrogenic and proestrogenic prenylated phenols in hops but no acute toxicity.
Collapse
Affiliation(s)
- Richard B. van Breemen
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois College of Pharmacy, 833 South Wood Street, Chicago, IL 60612
| | - Yang Yuan
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois College of Pharmacy, 833 South Wood Street, Chicago, IL 60612
| | | | | | - Xi Qiu
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois College of Pharmacy, 833 South Wood Street, Chicago, IL 60612
| | - René F. Ramos Alvarenga
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois College of Pharmacy, 833 South Wood Street, Chicago, IL 60612
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois College of Pharmacy, 833 South Wood Street, Chicago, IL 60612
| | - Birgit M. Dietz
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois College of Pharmacy, 833 South Wood Street, Chicago, IL 60612
| | - Judy L. Bolton
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois College of Pharmacy, 833 South Wood Street, Chicago, IL 60612
| | - Guido F. Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois College of Pharmacy, 833 South Wood Street, Chicago, IL 60612
| | - Elizabeth Krause
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois College of Pharmacy, 833 South Wood Street, Chicago, IL 60612
| | | | - Dejan Nikolic
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois College of Pharmacy, 833 South Wood Street, Chicago, IL 60612
| |
Collapse
|
98
|
The clinical candidate VT-1161 is a highly potent inhibitor of Candida albicans CYP51 but fails to bind the human enzyme. Antimicrob Agents Chemother 2014; 58:7121-7. [PMID: 25224009 DOI: 10.1128/aac.03707-14] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The binding and cytochrome P45051 (CYP51) inhibition properties of a novel antifungal compound, VT-1161, against purified recombinant Candida albicans CYP51 (ERG11) and Homo sapiens CYP51 were compared with those of clotrimazole, fluconazole, itraconazole, and voriconazole. VT-1161 produced a type II binding spectrum with Candida albicans CYP51, characteristic of heme iron coordination. The binding affinity of VT-1161 for Candida albicans CYP51 was high (dissociation constant [Kd], ≤ 39 nM) and similar to that of the pharmaceutical azole antifungals (Kd, ≤ 50 nM). In stark contrast, VT-1161 at concentrations up to 86 μM did not perturb the spectrum of recombinant human CYP51, whereas all the pharmaceutical azoles bound to human CYP51. In reconstitution assays, VT-1161 inhibited Candida albicans CYP51 activity in a tight-binding fashion with a potency similar to that of the pharmaceutical azoles but failed to inhibit the human enzyme at the highest concentration tested (50 μM). In addition, VT-1161 (MIC = 0.002 μg ml(-1)) had a more pronounced fungal sterol disruption profile (increased levels of methylated sterols and decreased levels of ergosterol) than the known CYP51 inhibitor voriconazole (MIC = 0.004 μg ml(-1)). Furthermore, VT-1161 weakly inhibited human CYP2C9, CYP2C19, and CYP3A4, suggesting a low drug-drug interaction potential. In summary, VT-1161 potently inhibited Candida albicans CYP51 and culture growth but did not inhibit human CYP51, demonstrating a >2,000-fold selectivity. This degree of potency and selectivity strongly supports the potential utility of VT-1161 in the treatment of Candida infections.
Collapse
|
99
|
Corcoran J, Lange A, Cumming RI, Owen SF, Ball JS, Tyler CR, Winter MJ. Bioavailability of the imidazole antifungal agent clotrimazole and its effects on key biotransformation genes in the common carp (Cyprinus carpio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 152:57-65. [PMID: 24727216 DOI: 10.1016/j.aquatox.2014.03.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/19/2014] [Accepted: 03/20/2014] [Indexed: 06/03/2023]
Abstract
Clotrimazole (CTZ) is a persistent imidazole antifungal agent which is frequently detected in the aquatic environment and predicted to bio-concentrate in fish. Common carp (Cyprinus carpio) were exposed to mean measured concentrations of either 1.02 or 14.63μgl(-1) CTZ for 4 and 10 days, followed by a depuration period of 4 days in a further group of animals. Following each exposure regimen, plasma and liver CTZ concentrations were measured. Mean measured plasma concentrations of CTZ in animals exposed to the lower concentration of CTZ were 30 and 44μgl(-1) on days 4 and 10, respectively, and in the higher concentration were 318 and 336μgl(-1). Mean measured liver levels in the same animals were 514, 1725, 2111 and 7017μgl(-1) suggesting progressive hepatic accumulation. Measurement of CTZ in plasma after depuration suggested efficient elimination within 4 days, but appreciable levels of CTZ remained in the liver after depuration suggesting a degree of persistence in this tissue. In addition we measured responses of a number of key hepatic detoxification gene targets in the liver associated with the transcription factor pregnane X receptor (PXR); namely cyp450s 2k and 3a, glutathione-S-transferases a and p (gsta and p), and drug transporters multidrug resistance protein1 (mdr1), and MDR-related protein2 (mrp2). CTZ is a potent ligand of the PXR in humans and there is some evidence of PXR activation following exposure to CTZ in fish. The highest concentration of CTZ was adopted to explore the potential for alterations to detoxification gene expression in fish at a pharmacologically relevant dose level, and the lower concentration is within the range reported in effluents from waste water treatment works (WWTW). The genes for all biotransformation enzymes were up-regulated after exposure to the higher concentration of CTZ for 10 days, and alterations in expression occurred for the drug transporter genes mdr1 and mrp2 following exposure to the lower concentration of 1.02μgl(-1) CTZ (mean measured concentration). These data support the potential for CTZ to induce alterations in biotransformation and drug transporter genes associated with PXR in fish at concentrations measured in some WWTW effluents.
Collapse
Affiliation(s)
- Jenna Corcoran
- University of Exeter, Biosciences, College of Life & Environmental Sciences, Exeter, UK.
| | - Anke Lange
- University of Exeter, Biosciences, College of Life & Environmental Sciences, Exeter, UK
| | - Rob I Cumming
- AstraZeneca Safety, Health and Environment, Brixham Environmental Laboratory, Freshwater Quarry, Brixham, UK
| | - Stewart F Owen
- AstraZeneca Safety, Health and Environment, Brixham Environmental Laboratory, Freshwater Quarry, Brixham, UK
| | - Jonathan S Ball
- AstraZeneca Safety, Health and Environment, Brixham Environmental Laboratory, Freshwater Quarry, Brixham, UK
| | - Charles R Tyler
- University of Exeter, Biosciences, College of Life & Environmental Sciences, Exeter, UK
| | - Matthew J Winter
- AstraZeneca Safety, Health and Environment, Brixham Environmental Laboratory, Freshwater Quarry, Brixham, UK
| |
Collapse
|
100
|
Wong SSW, Samaranayake LP, Seneviratne CJ. In pursuit of the ideal antifungal agent for Candida infections: high-throughput screening of small molecules. Drug Discov Today 2014; 19:1721-1730. [PMID: 24952336 DOI: 10.1016/j.drudis.2014.06.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/23/2014] [Accepted: 06/12/2014] [Indexed: 01/22/2023]
Abstract
Candida infections have created a great burden on the public healthcare sector. The situation is worsened by recent epidemiological changes. Furthermore, the current arsenal of antifungal agents is limited and associated with undesirable drawbacks. Therefore, new antifungal agents that surpass the existing ones are urgently needed. High-throughput screening of small molecule libraries enables rapid hit identification and, possibly, increases hit rate. Moreover, the identified hits could be associated with unrecognized or multiple drug targets, which would provide novel insights into the biological processes of the pathogen. Hence, it is proposed that high-throughput screening of small molecules is particularly important in the pursuit of the ideal antifungal agents for Candida infections.
Collapse
Affiliation(s)
- Sarah S W Wong
- Faculty of Dentistry, University of Hong Kong, Hong Kong
| | | | - Chaminda J Seneviratne
- Faculty of Dentistry, University of Hong Kong, Hong Kong; Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore.
| |
Collapse
|