51
|
Reichert MC, Brown HE, Evans TA. In vivo functional analysis of Drosophila Robo1 immunoglobulin-like domains. Neural Dev 2016; 11:15. [PMID: 27539083 PMCID: PMC4991095 DOI: 10.1186/s13064-016-0071-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/15/2016] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND In animals with bilateral symmetry, midline crossing of axons in the developing central nervous system is regulated by Slit ligands and their neuronal Roundabout (Robo) receptors. Multiple structural domains are present in an evolutionarily conserved arrangement in Robo family proteins, but our understanding of the functional importance of individual domains for midline repulsive signaling is limited. METHODS We have examined the functional importance of each of the five conserved immunoglobulin-like (Ig) domains within the Drosophila Robo1 receptor. We generated a series of Robo1 variants, each lacking one of the five Ig domains (Ig1-5), and tested each for their ability to bind Slit when expressed in cultured Drosophila cells. We used a transgenic approach to express each variant in robo1's normal expression pattern in wild-type and robo1 mutant embryos, and examined the effects of deleting each domain on receptor expression, axonal localization, regulation, and midline repulsive signaling in vivo. RESULTS We show that individual deletion of Ig domains 2-5 does not interfere with Robo1's ability to bind Slit, while deletion of Ig1 strongly disrupts Slit binding. None of the five Ig domains (Ig1-5) are individually required for proper expression of Robo1 in embryonic neurons, for exclusion from commissural axon segments in wild-type embryos, or for downregulation by Commissureless (Comm), a negative regulator of Slit-Robo repulsion in Drosophila. Each of the Robo1 Ig deletion variants (with the exception of Robo1∆Ig1) were able to restore midline crossing in robo1 mutant embryos to nearly the same extent as full-length Robo1, indicating that Ig domains 2-5 are individually dispensable for midline repulsive signaling in vivo. CONCLUSIONS Our findings indicate that four of the five Ig domains within Drosophila Robo1 are dispensable for its role in midline repulsion, despite their strong evolutionary conservation, and highlight a unique requirement for the Slit-binding Ig1 domain in the regulation of midline crossing.
Collapse
Affiliation(s)
- Marie C Reichert
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
- Present address: Intramural Research Training Program, National Human Genome Research Institute, Bethesda, MD, 20892, USA
| | - Haley E Brown
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Timothy A Evans
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
52
|
Soler C, Laddada L, Jagla K. Coordinated Development of Muscles and Tendon-Like Structures: Early Interactions in the Drosophila Leg. Front Physiol 2016; 7:22. [PMID: 26869938 PMCID: PMC4740448 DOI: 10.3389/fphys.2016.00022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/15/2016] [Indexed: 11/13/2022] Open
Abstract
The formation of the musculoskeletal system is a remarkable example of tissue assembly. In both vertebrates and invertebrates, precise connectivity between muscles and skeleton (or exoskeleton) via tendons or equivalent structures is fundamental for movement and stability of the body. The molecular and cellular processes underpinning muscle formation are well-established and significant advances have been made in understanding tendon development. However, the mechanisms contributing to proper connection between these two tissues have received less attention. Observations of coordinated development of tendons and muscles suggest these tissues may interact during the different steps in their development. There is growing evidence that, depending on animal model and muscle type, these interactions can take place from progenitor induction to the final step of the formation of the musculoskeletal system. Here, we briefly review and compare the mechanisms behind muscle and tendon interaction throughout the development of vertebrates and Drosophila before going on to discuss our recent findings on the coordinated development of muscles and tendon-like structures in Drosophila leg. By altering apodeme formation (the functional Drosophila equivalent of tendons in vertebrates) during the early steps of leg development, we affect the spatial localization of subsequent myoblasts. These findings provide the first evidence of the developmental impact of early interactions between muscle and tendon-like precursors, and confirm the appendicular Drosophila muscle system as a valuable model for studying these processes.
Collapse
Affiliation(s)
- Cedric Soler
- Genetics, Reproduction and Development Laboratory (GReD) Genetics, Reproduction and Development Laboratory, Institut National de la Santé et de la Recherche Médicale U1103, Centre National de la Recherche Scientifique UMR6293, Clermont University Clermont-Ferrand, France
| | - Lilia Laddada
- Genetics, Reproduction and Development Laboratory (GReD) Genetics, Reproduction and Development Laboratory, Institut National de la Santé et de la Recherche Médicale U1103, Centre National de la Recherche Scientifique UMR6293, Clermont University Clermont-Ferrand, France
| | - Krzysztof Jagla
- Genetics, Reproduction and Development Laboratory (GReD) Genetics, Reproduction and Development Laboratory, Institut National de la Santé et de la Recherche Médicale U1103, Centre National de la Recherche Scientifique UMR6293, Clermont University Clermont-Ferrand, France
| |
Collapse
|
53
|
Huang T, Kang W, Cheng ASL, Yu J, To KF. The emerging role of Slit-Robo pathway in gastric and other gastro intestinal cancers. BMC Cancer 2015; 15:950. [PMID: 26674478 PMCID: PMC4682238 DOI: 10.1186/s12885-015-1984-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/08/2015] [Indexed: 01/12/2023] Open
Abstract
Gastric cancer remains one of the most common cancers worldwide and one of the leading cause for cancer-related deaths. Due to the high frequency of metastasis, it is still one of the most lethal malignancies in which kinds of signaling pathways are involved in. The Roundabout (ROBO) receptors and their secreted SLIT glycoprotein ligands, which were originally identified as important axon guidance molecules, have implication in the regulation of neurons and glia, leukocytes, and endothelial cells migration. Recent researches also put high emphasis on the important roles of the Slit-Robo pathway in tumorigenesis, cancer progression and metastasis. Herein we provide a comprehensive review on the role of these molecules and their associated signaling pathway in gastric and other gastrointestinal cancers. Improved knowledge of the Slit-Robo signaling pathway in gastric carcinoma will be useful for deep understanding the mechanisms of tumor development and identifying ideal targets of anticancer therapy in gastric carcinoma.
Collapse
Affiliation(s)
- Tingting Huang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China.
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China.
| | - Alfred S L Cheng
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China.
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, PR China.
| | - Jun Yu
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China.
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, PR China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China.
| |
Collapse
|
54
|
Chang J, Lan T, Li C, Ji X, Zheng L, Gou H, Ou Y, Wu T, Qi C, Zhang Q, Li J, Gu Q, Wen D, Cao L, Qiao L, Ding Y, Wang L. Activation of Slit2-Robo1 signaling promotes liver fibrosis. J Hepatol 2015; 63:1413-1420. [PMID: 26264936 DOI: 10.1016/j.jhep.2015.07.033] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 07/20/2015] [Accepted: 07/31/2015] [Indexed: 01/21/2023]
Abstract
BACKGROUND & AIMS The secretory protein Slit2 and its receptor Robo1 are believed to regulate cell growth and migration. Here, we aimed to determine whether Slit2-Robo1 signaling mediates the pathogenesis of liver fibrosis. METHODS Serum levels of Slit2 in patients with liver fibrosis were determined by ELISA. Liver fibrosis was induced in wild-type (WT), Slit2 transgenic (Slit2-Tg) and Robo1(+/-)Robo2(+/-) double heterozygotes (Robo1/2(+/-)) mice by carbon tetrachloride (CCl4). The functional contributions of Slit2-Robo1 signaling in liver fibrosis and activation of hepatic stellate cells (HSCs) were investigated using primary mouse HSCs and human HSC cell line LX-2. RESULTS Significantly increased serum Slit2 levels and hepatic expression of Slit2 and Robo1 were observed in patients with liver fibrosis. Compared to WT mice, Slit2-Tg mice were much more vulnerable to CCl4-induced liver injury and more readily develop liver fibrosis. Development of hepatic fibrosis in Slit2-Tg mice was associated with a stronger hepatic expression of collagen I and α-smooth muscle actin (α-SMA). However, liver injury and hepatic expression of collagen I and α-SMA were attenuated in CCl4-treated Robo1/2(+/-) mice in response to CCl4 exposure. In vitro, Robo1 neutralizing antibody R5 and Robo1 siRNA downregulated phosphorylation of Smad2, Smad3, PI3K, and AKT in HSCs independent of TGF-β1. R5 and Robo1 siRNA also inhibited the expression of α-SMA by HSCs. Finally, the protective effect of R5 on the CCl4-induced liver injury and fibrosis was further verified in mice. CONCLUSIONS Slit2-Robo1 signaling promotes liver injury and fibrosis through activation of HSCs.
Collapse
MESH Headings
- Animals
- Carbon Tetrachloride/toxicity
- Case-Control Studies
- Cell Line
- Cells, Cultured
- Female
- Hepatic Stellate Cells/metabolism
- Hepatic Stellate Cells/pathology
- Humans
- Intercellular Signaling Peptides and Proteins/deficiency
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Liver Cirrhosis/etiology
- Liver Cirrhosis/metabolism
- Liver Cirrhosis/pathology
- Liver Cirrhosis, Experimental/etiology
- Liver Cirrhosis, Experimental/metabolism
- Liver Cirrhosis, Experimental/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Receptors, Immunologic/deficiency
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Signal Transduction
- Roundabout Proteins
- Slit Homolog 2 Protein
Collapse
Affiliation(s)
- Jianlan Chang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Oncology, Affiliated Heping Hospital of Changzhi Medical College, Changzhi, China
| | - Tian Lan
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Changzheng Li
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaoqian Ji
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lingyun Zheng
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hongju Gou
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yitao Ou
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Teng Wu
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Cuiling Qi
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qianqian Zhang
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiangchao Li
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Quliang Gu
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dingwen Wen
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Liu Cao
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110001, China
| | - Liang Qiao
- Storr Liver Centre, the Westmead Millennium Institute for Medical Research, the University of Sydney, NSW 2145, Australia.
| | - Yanqing Ding
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Lijing Wang
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
55
|
Functional Conservation of the Glide/Gcm Regulatory Network Controlling Glia, Hemocyte, and Tendon Cell Differentiation in Drosophila. Genetics 2015; 202:191-219. [PMID: 26567182 PMCID: PMC4701085 DOI: 10.1534/genetics.115.182154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/03/2015] [Indexed: 12/21/2022] Open
Abstract
High-throughput screens allow us to understand how transcription factors trigger developmental processes, including cell specification. A major challenge is identification of their binding sites because feedback loops and homeostatic interactions may mask the direct impact of those factors in transcriptome analyses. Moreover, this approach dissects the downstream signaling cascades and facilitates identification of conserved transcriptional programs. Here we show the results and the validation of a DNA adenine methyltransferase identification (DamID) genome-wide screen that identifies the direct targets of Glide/Gcm, a potent transcription factor that controls glia, hemocyte, and tendon cell differentiation in Drosophila. The screen identifies many genes that had not been previously associated with Glide/Gcm and highlights three major signaling pathways interacting with Glide/Gcm: Notch, Hedgehog, and JAK/STAT, which all involve feedback loops. Furthermore, the screen identifies effector molecules that are necessary for cell-cell interactions during late developmental processes and/or in ontogeny. Typically, immunoglobulin (Ig) domain-containing proteins control cell adhesion and axonal navigation. This shows that early and transiently expressed fate determinants not only control other transcription factors that, in turn, implement a specific developmental program but also directly affect late developmental events and cell function. Finally, while the mammalian genome contains two orthologous Gcm genes, their function has been demonstrated in vertebrate-specific tissues, placenta, and parathyroid glands, begging questions on the evolutionary conservation of the Gcm cascade in higher organisms. Here we provide the first evidence for the conservation of Gcm direct targets in humans. In sum, this work uncovers novel aspects of cell specification and sets the basis for further understanding of the role of conserved Gcm gene regulatory cascades.
Collapse
|
56
|
Abstract
The formation of functional musculoskeletal system relies on proper connectivity between muscles and their corresponding tendon cells. In Drosophila, larval muscles are born during early embryonic stages, and elongate toward tendons that are embedded within the ectoderm in later. The Slit/Robo signaling pathway had been implicated in the process of muscle elongation toward tendons. Here we discuss our recent findings regarding the critical contribution of Slit cleavage for immobilization and stabilization of the Slit signal on the tendon cells. Slit cleavage produces 2 polypeptides, the N-terminal Slit-N, which is extremely stable, undergoes oligomerization, and associates with the tendon cell surfaces, and the C-terminal Slit-C, which rapidly degrades. Slit cleavage leads to immobilization of Slit signaling on tendons, leading to a short-range repulsion, which eventually arrest further muscle elongation. Robo2, which is co-expressed with Slit by the tendon cells facilitates Slit cleavage. This activity does not require the cytoplasmic signaling domain of Robo2. We suggest that Robo2-dependent Slit cleavage, and the formation of Slit-N oligomers on the tendon cell surfaces direct muscle elongation, and provide a stop signal for the approaching muscle, through binding to Robo and Robo3 receptors expressed by the muscles.
Collapse
Affiliation(s)
- Elly Ordan
- a Department of Molecular Genetics ; Weizmann Institute of Science ; Rehovot , Israel
| | - Talila Volk
- a Department of Molecular Genetics ; Weizmann Institute of Science ; Rehovot , Israel
| |
Collapse
|
57
|
Ordan E, Volk T. A non-signaling role of Robo2 in tendons is essential for Slit processing and muscle patterning. Development 2015; 142:3512-8. [PMID: 26400093 DOI: 10.1242/dev.128157] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 09/01/2015] [Indexed: 12/21/2022]
Abstract
Coordinated locomotion of an organism relies on the development of proper musculoskeletal connections. In Drosophila, the Slit-Robo signaling pathway guides muscles to tendons. Here, we show that the Slit receptor Roundabout 2 (Robo2) plays a non-cell-autonomous role in directing muscles to their corresponding tendons. Robo2 is expressed by tendons, and its non-signaling activity in these cells promotes Slit cleavage, producing a cleaved Slit N-terminal guidance signal that provides short-range signaling into muscles. Consistently, robo2 mutant embryos exhibited a muscle phenotype similar to that of slit, which could not be rescued by muscle-specific Robo2 expression but rather by ectodermally derived Robo2. Alternatively, this muscle phenotype could be induced by tendon-specific robo2 RNAi. We further show that membrane immobilization of Slit or its N-terminal cleaved form (Slit-N) on tendons bypasses the functional requirement for Robo2 in tendons, verifying that the major role of Robo2 is to promote the association of Slit with the tendon cell membrane. Slit-N tends to oligomerize whereas full-length uncleavable Slit does not. It is therefore proposed that Slit-N oligomers, produced at the tendon membrane by Robo2, signal to the approaching muscle by combined Robo1 and Robo3 activity. These findings establish a Robo2-mediated mechanism, independent of signaling, that is essential to limiting Slit distribution and which might be relevant to the regulation of Slit-mediated short-range signaling in additional systems.
Collapse
Affiliation(s)
- Elly Ordan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Talila Volk
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
58
|
Li P, Peng H, Lu WH, Shuai HL, Zha QB, Yeung CK, Li H, Wang LJ, Ho Lee KK, Zhu WJ, Yang X. Role of Slit2/Robo1 in trophoblast invasion and vascular remodeling during ectopic tubal pregnancy. Placenta 2015; 36:1087-94. [PMID: 26282852 DOI: 10.1016/j.placenta.2015.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/22/2015] [Accepted: 08/03/2015] [Indexed: 02/03/2023]
Abstract
INTRODUCTION For ectopic tubal pregnancy to be viable, it requires a supporting vascular network and functioning trophoblast. Slit2/Robo1 signaling plays an important role in placental angiogenesis during normal pregnancy. Hence, we here investigated whether or not Slit2/Robo1 signaling also had an impact in ectopic tubal pregnancy. METHODS The Slit2 and Robo1 expression pattern relevant to trophoblast invasive behavior and vascular remodeling was studied in human tubal placenta obtained from patients with ectopic pregnancy (5-8weeks gestation), The trophoblast development, vascular architecture and Robo1 expression pattern were observed in Slit2 overexpression (Slit2-Tg) and C57BL mice placenta (E13.5 and E15.5). RESULTS Marked with CK-7 and Vimentin, the vessel profiles of fallopian tube were classified into four stages. In the presence of extravillous trophoblast (EVT), stellate-shaped and polygonal-shaped EVTs were observed, and the stellate-shaped EVT showed the higher Slit2 expression (P < 0.01) but lower Robo1 expression (P < 0.05) than polygonal-shaped cells. By contrast, a temporary Slit2 up-regulation in remodeling vessel and Slit2 down-regulation in remodeled vessel of polygonal-shape extravillous trophoblast cells occurred in tubal pregnancies. In Slit2-Tg mice E13.5 and E15.5 placenta, Slit2 overexpression promoted vascular remodeling by increasing in the diameter of the maternal blood sinusoids and fetal capillaries, but enhanced the thickness of trophoblast and vasculature at E15.5 Slit2-Tg mice. CONCLUSIONS The varying Slit2 and Robo1 expression in EVTs was associated with trophoblast invasion and probably plays an important role in the events of blood vessel remodeling of the fallopian tube tissues.
Collapse
Affiliation(s)
- Ping Li
- Department of Nursing Science, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Hui Peng
- Department of Pathology, Guangdong Provincial Hospital of TCM, Guangzhou 510120, China
| | - Wen-Hui Lu
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Han-Lin Shuai
- Department of Gynecology & Obstetrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Qing-Bin Zha
- Department of Gynecology & Obstetrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Cheung-Kwan Yeung
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632, China; Stem Cell and Regeneration Thematic Research Programme, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
| | - He Li
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Li-Jing Wang
- Institute of Vascular Biological Science, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Kenneth Ka Ho Lee
- Stem Cell and Regeneration Thematic Research Programme, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wei-Jie Zhu
- Department of Developmental and Regenerative Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Xuesong Yang
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
59
|
Qin F, Zhang H, Ma L, Liu X, Dai K, Li W, Gu F, Fu L, Ma Y. Low Expression of Slit2 and Robo1 is Associated with Poor Prognosis and Brain-specific Metastasis of Breast Cancer Patients. Sci Rep 2015; 5:14430. [PMID: 26400100 PMCID: PMC4585856 DOI: 10.1038/srep14430] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/28/2015] [Indexed: 01/30/2023] Open
Abstract
Brain metastasis is a significant unmet clinical problem in breast cancer treatment. It is always associated with poor prognosis and high morbidity. Recently, Slit2/Robo1 pathway has been demonstrated to be involved in the progression of breast carcinoma. However, until present, there are no convincing reports that suggest whether the Slit2/Robo1 axis has any role in brain metastasis of breast cancer. In this study, we investigated the correlation between Slit2/Robo1 signaling and breast cancer brain metastasis for the first time. Our results demonstrated that (1) Invasive ductal carcinoma patients with low expression of Slit2 or Robo1 exhibited worse prognosis and brain-specific metastasis, but not liver, bone or lung. (2) Lower expression of Slit2 and Robo1 were observed in patients with brain metastasis, especially in their brain metastasis tumors, compared with patients without brain metastasis. (3) The interval from diagnosis of breast cancer to brain metastasis and brain metastasis to death were both much shorter in patients with low expression of Slit2 or Robo1 compared with the high expression group. Overall, our findings indicated that Slit2/Robo1 axis possibly be regarded as a significant clinical parameter for predicting brain metastasis in breast cancer patients.
Collapse
Affiliation(s)
- Fengxia Qin
- Department of Breast Cancer Pathology and Research Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education)
| | - Huikun Zhang
- Department of Breast Cancer Pathology and Research Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education)
| | - Li Ma
- Department of Neuro-oncology and Neurosurgery, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiaoli Liu
- Department of tumor cell biology, Key Laboratory of Cancer Prevention and Therapy of Tianjin; Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, PR China, 300060
| | - Kun Dai
- Department of Breast Cancer Pathology and Research Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education)
| | - Wenliang Li
- Department of Neuro-oncology and Neurosurgery, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Feng Gu
- Department of Breast Cancer Pathology and Research Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education)
| | - Li Fu
- Department of Breast Cancer Pathology and Research Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education)
| | - Yongjie Ma
- Department of tumor cell biology, Key Laboratory of Cancer Prevention and Therapy of Tianjin; Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, PR China, 300060
| |
Collapse
|
60
|
Brown HE, Reichert MC, Evans TA. Slit Binding via the Ig1 Domain Is Essential for Midline Repulsion by Drosophila Robo1 but Dispensable for Receptor Expression, Localization, and Regulation in Vivo. G3 (BETHESDA, MD.) 2015; 5:2429-39. [PMID: 26362767 PMCID: PMC4632062 DOI: 10.1534/g3.115.022327] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 09/09/2015] [Indexed: 12/11/2022]
Abstract
The midline repellant ligand Slit and its Roundabout (Robo) family receptors constitute the major midline repulsive pathway in bilaterians. Slit proteins produced at the midline of the central nervous system (CNS) signal through Robo receptors expressed on axons to prevent them from crossing the midline, and thus regulate connectivity between the two sides of the nervous system. Biochemical structure and interaction studies support a model in which Slit binding to the first immunoglobulin-like (Ig1) domain of Robo receptors activates a repulsive signaling pathway in axonal growth cones. Here, we examine the in vivo functional importance of the Ig1 domain of the Drosophila Robo1 receptor, which controls midline crossing of axons in response to Slit during development of the embryonic CNS. We show that deleting Ig1 from Robo1 disrupts Slit binding in cultured Drosophila cells, and that a Robo1 variant lacking Ig1 (Robo1(∆Ig1)) is unable to promote ectopic midline repulsion in gain-of-function studies in the Drosophila embryonic CNS. We show that the Ig1 domain is not required for proper expression, axonal localization, or Commissureless (Comm)-dependent regulation of Robo1 in vivo, and we use a genetic rescue assay to show that Robo1(∆Ig1) is unable to substitute for full-length Robo1 to properly regulate midline crossing of axons. These results establish a direct link between in vitro biochemical studies of Slit-Robo interactions and in vivo genetic studies of Slit-Robo signaling during midline axon guidance, and distinguish Slit-dependent from Slit-independent aspects of Robo1 expression, regulation, and activity during embryonic development.
Collapse
Affiliation(s)
- Haley E Brown
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701
| | - Marie C Reichert
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701
| | - Timothy A Evans
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701
| |
Collapse
|
61
|
Payne S, Burney MJ, McCue K, Popal N, Davidson SM, Anderson RH, Scambler PJ. A critical role for the chromatin remodeller CHD7 in anterior mesoderm during cardiovascular development. Dev Biol 2015; 405:82-95. [PMID: 26102480 PMCID: PMC4534312 DOI: 10.1016/j.ydbio.2015.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 05/19/2015] [Accepted: 06/17/2015] [Indexed: 12/17/2022]
Abstract
CHARGE syndrome is caused by spontaneous loss-of-function mutations to the ATP-dependant chromatin remodeller chromodomain-helicase-DNA-binding protein 7 (CHD7). It is characterised by a distinct pattern of congenital anomalies, including cardiovascular malformations. Disruption to the neural crest lineage has previously been emphasised in the aetiology of this developmental disorder. We present evidence for an additional requirement for CHD7 activity in the Mesp1-expressing anterior mesoderm during heart development. Conditional ablation of Chd7 in this lineage results in major structural cardiovascular defects akin to those seen in CHARGE patients, as well as a striking loss of cardiac innervation and embryonic lethality. Genome-wide transcriptional analysis identified aberrant expression of key components of the Class 3 Semaphorin and Slit-Robo signalling pathways in Chd7(fl/fl);Mesp1-Cre mutant hearts. CHD7 localises at the Sema3c promoter in vivo, with alteration of the local chromatin structure seen following Chd7 ablation, suggestive of direct transcriptional regulation. Furthermore, we uncover a novel role for CHD7 activity upstream of critical calcium handling genes, and demonstrate an associated functional defect in the ability of cardiomyocytes to undergo excitation-contraction coupling. This work therefore reveals the importance of CHD7 in the cardiogenic mesoderm for multiple processes during cardiovascular development.
Collapse
Affiliation(s)
- Sophie Payne
- Developmental Biology of Birth Defects Section, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Matthew J Burney
- Developmental Biology of Birth Defects Section, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Karen McCue
- Developmental Biology of Birth Defects Section, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Nelo Popal
- Developmental Biology of Birth Defects Section, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK
| | - Robert H Anderson
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Peter J Scambler
- Developmental Biology of Birth Defects Section, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|
62
|
Olsson M, Tengvall K, Frankowiack M, Kierczak M, Bergvall K, Axelsson E, Tintle L, Marti E, Roosje P, Leeb T, Hedhammar Å, Hammarström L, Lindblad-Toh K. Genome-Wide Analyses Suggest Mechanisms Involving Early B-Cell Development in Canine IgA Deficiency. PLoS One 2015. [PMID: 26225558 PMCID: PMC4520476 DOI: 10.1371/journal.pone.0133844] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Immunoglobulin A deficiency (IgAD) is the most common primary immune deficiency disorder in both humans and dogs, characterized by recurrent mucosal tract infections and a predisposition for allergic and other immune mediated diseases. In several dog breeds, low IgA levels have been observed at a high frequency and with a clinical resemblance to human IgAD. In this study, we used genome-wide association studies (GWAS) to identify genomic regions associated with low IgA levels in dogs as a comparative model for human IgAD. We used a novel percentile groups-approach to establish breed-specific cut-offs and to perform analyses in a close to continuous manner. GWAS performed in four breeds prone to low IgA levels (German shepherd, Golden retriever, Labrador retriever and Shar-Pei) identified 35 genomic loci suggestively associated (p <0.0005) to IgA levels. In German shepherd, three genomic regions (candidate genes include KIRREL3 and SERPINA9) were genome-wide significantly associated (p <0.0002) with IgA levels. A ~20kb long haplotype on CFA28, significantly associated (p = 0.0005) to IgA levels in Shar-Pei, was positioned within the first intron of the gene SLIT1. Both KIRREL3 and SLIT1 are highly expressed in the central nervous system and in bone marrow and are potentially important during B-cell development. SERPINA9 expression is restricted to B-cells and peaks at the time-point when B-cells proliferate into antibody-producing plasma cells. The suggestively associated regions were enriched for genes in Gene Ontology gene sets involving inflammation and early immune cell development.
Collapse
Affiliation(s)
- Mia Olsson
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institute at Karolinska University Hospital, Huddinge, Sweden
- * E-mail: (KT); (MO); (KLT)
| | - Katarina Tengvall
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- * E-mail: (KT); (MO); (KLT)
| | - Marcel Frankowiack
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institute at Karolinska University Hospital, Huddinge, Sweden
| | - Marcin Kierczak
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Kerstin Bergvall
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Erik Axelsson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Linda Tintle
- Wurtsboro Veterinary Clinic, Wurtsboro, New York, United States of America
| | - Eliane Marti
- Department of Clinical Veterinary Medicine, Division of Clinical Dermatology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern Switzerland
| | - Petra Roosje
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern Switzerland
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tosso Leeb
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern Switzerland
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Åke Hedhammar
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Lennart Hammarström
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institute at Karolinska University Hospital, Huddinge, Sweden
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail: (KT); (MO); (KLT)
| |
Collapse
|
63
|
Evans TA, Santiago C, Arbeille E, Bashaw GJ. Robo2 acts in trans to inhibit Slit-Robo1 repulsion in pre-crossing commissural axons. eLife 2015; 4:e08407. [PMID: 26186094 PMCID: PMC4505356 DOI: 10.7554/elife.08407] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/26/2015] [Indexed: 11/13/2022] Open
Abstract
During nervous system development, commissural axons cross the midline despite the presence of repellant ligands. In Drosophila, commissural axons avoid premature responsiveness to the midline repellant Slit by expressing the endosomal sorting receptor Commissureless, which reduces surface expression of the Slit receptor Roundabout1 (Robo1). In this study, we describe a distinct mechanism to inhibit Robo1 repulsion and promote midline crossing, in which Roundabout2 (Robo2) binds to and prevents Robo1 signaling. Unexpectedly, we find that Robo2 is expressed in midline cells during the early stages of commissural axon guidance, and that over-expression of Robo2 can rescue robo2-dependent midline crossing defects non-cell autonomously. We show that the extracellular domains required for binding to Robo1 are also required for Robo2's ability to promote midline crossing, in both gain-of-function and rescue assays. These findings indicate that at least two independent mechanisms to overcome Slit-Robo1 repulsion in pre-crossing commissural axons have evolved in Drosophila.
Collapse
Affiliation(s)
- Timothy A Evans
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
- Department of Biological Sciences, University of Arkansas, Fayetteville, United States
| | - Celine Santiago
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Elise Arbeille
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
64
|
Wainwright EN, Wilhelm D, Combes AN, Little MH, Koopman P. ROBO2 restricts the nephrogenic field and regulates Wolffian duct-nephrogenic cord separation. Dev Biol 2015; 404:88-102. [PMID: 26116176 DOI: 10.1016/j.ydbio.2015.05.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/28/2015] [Accepted: 05/30/2015] [Indexed: 01/03/2023]
Abstract
ROBO2 plays a key role in regulating ureteric bud (UB) formation in the embryo, with mutations in humans and mice leading to supernumerary kidneys. Previous studies have established that the number and position of UB outgrowths is determined by the domain of metanephric mesenchymal Gdnf expression, which is expanded anteriorly in Robo2 mouse mutants. To clarify how this phenotype arises, we used high-resolution 3D imaging to reveal an increase in the number of nephrogenic cord cells, leading to extension of the metanephric mesenchyme field in Robo2-null mouse embryos. Ex vivo experiments suggested a dependence of this effect on proliferative signals from the Wolffian duct. Loss of Robo2 resulted in a failure of the normal separation of the mesenchyme from the Wolffian duct/ureteric epithelium, suggesting that aberrant juxtaposition of these two compartments in Robo2-null mice exposes the mesenchyme to abnormally high levels of proliferative stimuli. Our data suggest a new model in which SLIT-ROBO signalling acts not by attenuating Gdnf expression or activity, but instead by limiting epithelial/mesenchymal interactions in the nascent metanephros and restricting the extent of the nephrogenic field. These insights illuminate the aetiology of multiplex kidney formation in human individuals with ROBO2 mutations.
Collapse
Affiliation(s)
- Elanor N Wainwright
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Dagmar Wilhelm
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alexander N Combes
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Melissa H Little
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
65
|
Maartens AP, Brown NH. The many faces of cell adhesion during Drosophila muscle development. Dev Biol 2015; 401:62-74. [DOI: 10.1016/j.ydbio.2014.12.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
|
66
|
Li Z, Moniz H, Wang S, Ramiah A, Zhang F, Moremen KW, Linhardt RJ, Sharp JS. High structural resolution hydroxyl radical protein footprinting reveals an extended Robo1-heparin binding interface. J Biol Chem 2015; 290:10729-40. [PMID: 25752613 PMCID: PMC4409239 DOI: 10.1074/jbc.m115.648410] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 03/05/2015] [Indexed: 11/06/2022] Open
Abstract
Interaction of transmembrane receptors of the Robo family and the secreted protein Slit provides important signals in the development of the central nervous system and regulation of axonal midline crossing. Heparan sulfate, a sulfated linear polysaccharide modified in a complex variety of ways, serves as an essential co-receptor in Slit-Robo signaling. Previous studies have shown that closely related heparin octasaccharides bind to Drosophila Robo directly, and surface plasmon resonance analysis revealed that Robo1 binds more tightly to full-length unfractionated heparin. For the first time, we utilized electron transfer dissociation-based high spatial resolution hydroxyl radical protein footprinting to identify two separate binding sites for heparin interaction with Robo1: one binding site at the previously identified site for heparin dp8 and a second binding site at the N terminus of Robo1 that is disordered in the x-ray crystal structure. Mutagenesis of the identified N-terminal binding site exhibited a decrease in binding affinity as measured by surface plasmon resonance and heparin affinity chromatography. Footprinting also indicated that heparin binding induces a minor change in the conformation and/or dynamics of the Ig2 domain, but no major conformational changes were detected. These results indicate a second low affinity binding site in the Robo-Slit complex as well as suggesting the role of the Ig2 domain of Robo1 in heparin-mediated signal transduction. This study also marks the first use of electron transfer dissociation-based high spatial resolution hydroxyl radical protein footprinting, which shows great utility for the characterization of protein-carbohydrate complexes.
Collapse
Affiliation(s)
- Zixuan Li
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602 and
| | - Heather Moniz
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602 and
| | - Shuo Wang
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602 and
| | - Annapoorani Ramiah
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602 and
| | - Fuming Zhang
- the Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Kelley W Moremen
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602 and
| | - Robert J Linhardt
- the Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Joshua S Sharp
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602 and
| |
Collapse
|
67
|
Ceber M, Mihmanli A, Kilic U, Sener U, Yuksek A, Durak M, Tulubas F. Changes in expression of Slit1 and its receptor Robo2 in trigeminal ganglion and inferior alveolar nerve following inferior alveolar nerve axotomy in adult rats: a pilot study. Int J Oral Maxillofac Surg 2015; 44:518-27. [DOI: 10.1016/j.ijom.2014.09.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 09/23/2014] [Accepted: 09/30/2014] [Indexed: 11/29/2022]
|
68
|
Ordan E, Brankatschk M, Dickson B, Schnorrer F, Volk T. Slit cleavage is essential for producing an active, stable, non-diffusible short-range signal that guides muscle migration. Development 2015; 142:1431-6. [PMID: 25813540 DOI: 10.1242/dev.119131] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 03/03/2015] [Indexed: 11/20/2022]
Abstract
During organogenesis, secreted signaling proteins direct cell migration towards their target tissue. In Drosophila embryos, developing muscles are guided by signals produced by tendons to promote the proper attachment of muscles to tendons, essential for proper locomotion. Previously, the repulsive protein Slit, secreted by tendon cells, has been proposed to be an attractant for muscle migration. However, our findings demonstrate that through tight control of its distribution, Slit repulsion is used for both directing and arresting muscle migration. We show that Slit cleavage restricts its distribution to tendon cells, allowing it to function as a short-range repellent that directs muscle migration and patterning, and promotes their halt upon reaching the target site. Mechanistically, we show that Slit processing produces a rapidly degraded C-terminal fragment and an active, stable N-terminal polypeptide that is tethered to the tendon cell membrane, which further protects it from degradation. Consistently, the requirement for Slit processing can be bypassed by providing an uncleavable, membrane-bound form of Slit that is stable and is retained on expressing tendon cells. Moreover, muscle elongation appears to be extremely sensitive to Slit levels, as replacing the entire full-length Slit with the stable Slit-N-polypeptide results in excessive repulsion, which leads to a defective muscle pattern. These findings reveal a novel cleavage-dependent regulatory mechanism controlling Slit spatial distribution, which may operate in other Slit-dependent processes.
Collapse
Affiliation(s)
- Elly Ordan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Barry Dickson
- Institute of Molecular Pathology (IMP), Vienna A-1030, Austria
| | - Frank Schnorrer
- Institute of Molecular Pathology (IMP), Vienna A-1030, Austria
| | - Talila Volk
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
69
|
Schulman VK, Dobi KC, Baylies MK. Morphogenesis of the somatic musculature in Drosophila melanogaster. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:313-34. [PMID: 25758712 DOI: 10.1002/wdev.180] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 12/22/2022]
Abstract
In Drosophila melanogaster, the somatic muscle system is first formed during embryogenesis, giving rise to the larval musculature. Later during metamorphosis, this system is destroyed and replaced by an entirely new set of muscles in the adult fly. Proper formation of the larval and adult muscles is critical for basic survival functions such as hatching and crawling (in the larva), walking and flying (in the adult), and feeding (at both larval and adult stages). Myogenesis, from mononucleated muscle precursor cells to multinucleated functional muscles, is driven by a number of cellular processes that have begun to be mechanistically defined. Once the mesodermal cells destined for the myogenic lineage have been specified, individual myoblasts fuse together iteratively to form syncytial myofibers. Combining cytoplasmic contents demands a level of intracellular reorganization that, most notably, leads to redistribution of the myonuclei to maximize internuclear distance. Signaling from extending myofibers induces terminal tendon cell differentiation in the ectoderm, which results in secure muscle-tendon attachments that are critical for muscle contraction. Simultaneously, muscles become innervated and undergo sarcomerogenesis to establish the contractile apparatus that will facilitate movement. The cellular mechanisms governing these morphogenetic events share numerous parallels to mammalian development, and the basic unit of all muscle, the myofiber, is conserved from flies to mammals. Thus, studies of Drosophila myogenesis and comparisons to muscle development in other systems highlight conserved regulatory programs of biomedical relevance to general muscle biology and studies of muscle disease.
Collapse
Affiliation(s)
- Victoria K Schulman
- Cell and Developmental Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA.,Program in Developmental Biology, Sloan Kettering Institute, New York, NY, USA
| | - Krista C Dobi
- Program in Developmental Biology, Sloan Kettering Institute, New York, NY, USA
| | - Mary K Baylies
- Cell and Developmental Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA.,Program in Developmental Biology, Sloan Kettering Institute, New York, NY, USA
| |
Collapse
|
70
|
Li Y, Fu S, Chen H, Feng Q, Gao Y, Xue H, Ge Z, Fang J, Xiao S. Inhibition of endothelial Slit2/Robo1 signaling by thalidomide restrains angiogenesis by blocking the PI3K/Akt pathway. Dig Dis Sci 2014; 59:2958-66. [PMID: 25326112 DOI: 10.1007/s10620-014-3257-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 06/16/2014] [Indexed: 12/09/2022]
Abstract
BACKGROUND Thalidomide is effective in the treatment of angiodysplasia. The mechanisms underlying its activity may be associated with inhibition of angiogenic factors. It was recently shown that Slit2/Robo1 signaling plays a role in angiogenesis. PURPOSE The aim of this study was to explore the expression and effects of Robo1 and Slit2 in angiodysplasia and to identify the possible therapeutic mechanisms of thalidomide. METHOD Slit2 and Robo1 expression were analyzed in tissue samples and human umbilical vein endothelial cells (HUVECs) treated with thalidomide using a combination of laboratory assays that were able to detect functional activity. RESULTS Slit2, Robo1 and vascular endothelial growth factor (VEGF) were strongly expressed in five angiodysplasia lesions out of seven cases, while expression was low in one out of seven normal tissues. Exposure of HUVECs to recombinant N-Slit2 resulted in an increase in VEGF levels and stimulated proliferation, migration and tube formation. These effects were blocked by an inhibitor of PI3K and thalidomide. CONCLUSIONS Robo1 and Slit2 may have important roles in the formation of gastrointestinal vascular malformation. High concentrations of Slit2 increased the levels of VEGF in HUVECs via signaling through the PI3K/Akt pathway-an effect that could be inhibited by thalidomide.
Collapse
Affiliation(s)
- Yinan Li
- Shanghai Institution of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Rd. GI Division, Shanghai, 200001, China
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Yu Q, Li XT, Liu C, Cui WZ, Mu ZM, Zhao X, Liu QX. Evolutionarily conserved repulsive guidance role of slit in the silkworm Bombyx mori. PLoS One 2014; 9:e109377. [PMID: 25285792 PMCID: PMC4186835 DOI: 10.1371/journal.pone.0109377] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 09/05/2014] [Indexed: 01/25/2023] Open
Abstract
Axon guidance molecule Slit is critical for the axon repulsion in neural tissues, which is evolutionarily conserved from planarians to humans. However, the function of Slit in the silkworm Bombyx mori was unknown. Here we showed that the structure of Bombyx mori Slit (BmSlit) was different from that in most other species in its C-terminal sequence. BmSlit was localized in the midline glial cell, the neuropil, the tendon cell, the muscle and the silk gland and colocalized with BmRobo1 in the neuropil, the muscle and the silk gland. Knock-down of Bmslit by RNA interference (RNAi) resulted in abnormal development of axons and muscles. Our results suggest that BmSlit has a repulsive role in axon guidance and muscle migration. Moreover, the localization of BmSlit in the silk gland argues for its important function in the development of the silk gland.
Collapse
Affiliation(s)
- Qi Yu
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xiao-Tong Li
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong, China
| | - Chun Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Wei-Zheng Cui
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zhi-Mei Mu
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xiao Zhao
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong, China
| | - Qing-Xin Liu
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong, China
- * E-mail:
| |
Collapse
|
72
|
Barthold JS, Robbins A, Wang Y, Pugarelli J, Mateson A, Anand-Ivell R, Ivell R, McCahan SM, Akins RE. Cryptorchidism in the orl rat is associated with muscle patterning defects in the fetal gubernaculum and altered hormonal signaling. Biol Reprod 2014; 91:41. [PMID: 24966393 DOI: 10.1095/biolreprod.114.119560] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cryptorchidism, or undescended testis, is a common male genital anomaly of unclear etiology. Hormonal stimulation of the developing fetal gubernaculum by testicular androgens and insulin-like 3 (INSL3) is required for testicular descent. In studies of the orl fetal rat, one of several reported strains with inherited cryptorchidism, we studied hormone levels, gene expression in intact and hormone-stimulated gubernaculum, and imaging of the developing cremaster muscle facilitated by a tissue clearing protocol to further characterize development of the orl gubernaculum. Abnormal localization of the inverted gubernaculum was visible soon after birth. In the orl fetus, testicular testosterone, gubernacular androgen-responsive transcript levels, and muscle-specific gene expression were reduced. However, the in vitro transcriptional response of the orl gubernaculum to androgen was largely comparable to wild type (wt). In contrast, increases in serum INSL3, gubernacular INSL3-responsive transcript levels, expression of the INSL3 receptor, Rxfp2, and the response of the orl gubernaculum to INSL3 in vitro all suggest enhanced activation of INSL3/RXFP2 signaling in the orl rat. However, DNA sequence analysis did not identify functional variants in orl Insl3. Finally, combined analysis of the present and previous studies of the orl transcriptome confirmed altered expression of muscle and cellular motility genes, and whole mount imaging revealed aberrant muscle pattern formation in the orl fetal gubernaculum. The nature and prevalence of developmental muscle defects in the orl gubernaculum are consistent with the cryptorchid phenotype in this strain. These data suggest impaired androgen and enhanced INSL3 signaling in the orl fetus accompanied by defective cremaster muscle development.
Collapse
Affiliation(s)
- Julia S Barthold
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Alan Robbins
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Yanping Wang
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Joan Pugarelli
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Abigail Mateson
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Ravinder Anand-Ivell
- Division of Animal Sciences, University of Nottingham, Leicestershire, United Kingdom
| | - Richard Ivell
- Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Suzanne M McCahan
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Robert E Akins
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| |
Collapse
|
73
|
Diogo R, Nacu E, Tanaka E. Is Salamander Limb Regeneration Really Perfect? Anatomical and Morphogenetic Analysis of Forelimb Muscle Regeneration in GFP-Transgenic Axolotls as a Basis for Regenerative, Developmental, and Evolutionary Studies. Anat Rec (Hoboken) 2014; 297:1076-89. [DOI: 10.1002/ar.22906] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 10/08/2013] [Indexed: 11/12/2022]
Affiliation(s)
- R. Diogo
- Department of Anatomy; Howard University College of Medicine; Washington DC
| | - E. Nacu
- CRTD-Center for Regenerative Therapies Dresden; 01307 Dresden Germany
| | - E.M. Tanaka
- CRTD-Center for Regenerative Therapies Dresden; 01307 Dresden Germany
| |
Collapse
|
74
|
Santiago C, Labrador JP, Bashaw GJ. The homeodomain transcription factor Hb9 controls axon guidance in Drosophila through the regulation of Robo receptors. Cell Rep 2014; 7:153-65. [PMID: 24685136 DOI: 10.1016/j.celrep.2014.02.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/06/2014] [Accepted: 02/25/2014] [Indexed: 02/05/2023] Open
Abstract
Transcription factors establish neural diversity and wiring specificity; however, how they orchestrate changes in cell morphology remains poorly understood. The Drosophila Roundabout (Robo) receptors regulate connectivity in the CNS, but how their precise expression domains are established is unknown. Here, we show that the homeodomain transcription factor Hb9 acts upstream of Robo2 and Robo3 to regulate axon guidance in the Drosophila embryo. In ventrally projecting motor neurons, hb9 is required for robo2 expression, and restoring Robo2 activity in hb9 mutants rescues motor axon defects. Hb9 requires its conserved repressor domain and functions in parallel with Nkx6 to regulate robo2. Moreover, hb9 can regulate the medio-lateral position of axons through robo2 and robo3, and restoring robo3 expression in hb9 mutants rescues the lateral position defects of a subset of neurons. Altogether, these data identify Robo2 and Robo3 as key effectors of Hb9 in regulating nervous system development.
Collapse
Affiliation(s)
- Celine Santiago
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
75
|
Role of ROBO4 signalling in developmental and pathological angiogenesis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:683025. [PMID: 24689049 PMCID: PMC3933320 DOI: 10.1155/2014/683025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 11/29/2013] [Accepted: 12/12/2013] [Indexed: 01/13/2023]
Abstract
Transmembrane roundabout receptor family members (ROBO1-ROBO4) principally orchestrate the neuronal guidance mechanism of the nervous system. Secreted glycoprotein SLITs are the most appreciated ligands for ROBOs. Recently identified ROBO4 is the key mediator of SLIT-ROBO mediated developmental and pathological angiogenesis. Although SLIT2 has been shown to interact with ROBO4 as ligand, it remains an open question whether this protein is the physiologic partner of ROBO4. The purpose of this review is to summarise how reliable SLIT2 as ligand for ROBO4 is, if not what the other possible mechanisms demonstrated till date for ROBO4 mediated developmental and pathological angiogenesis are. We conclude that ROBO4 is expressed specially in vascular endothelial cells and maintains the vascular integrity via either SLIT2 dependent or SLIT2 independent manner. On the contrary, it promotes the pathological angiogenesis by involving different signalling arm(s)/unknown ligand(s). This review explores the interactions SLIT2/ROBO1, SLIT2/ROBO1-ROBO4, ROBO1/ROBO4, and ROBO4/UNC5B which can be promising and potential therapeutic targets for developmental angiogenesis defects and pathological angiogenesis. Finally we have reviewed the ROBO4 signalling pathways and made an effort to elaborate the insight of this signalling as therapeutic target of pathological angiogenesis.
Collapse
|
76
|
Zhang F, Moniz HA, Walcott B, Moremen KW, Linhardt RJ, Wang L. Characterization of the interaction between Robo1 and heparin and other glycosaminoglycans. Biochimie 2013; 95:2345-53. [PMID: 23994753 PMCID: PMC3871176 DOI: 10.1016/j.biochi.2013.08.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/18/2013] [Indexed: 11/19/2022]
Abstract
Roundabout 1 (Robo1) is the cognate receptor for secreted axon guidance molecule, Slits, which function to direct cellular migration during neuronal development and angiogenesis. The Slit2-Robo1 signaling is modulated by heparan sulfate, a sulfated linear polysaccharide that is abundantly expressed on the cell surface and in the extracellular matrix. Biochemical studies have further shown that heparan sulfate binds to both Slit2 and Robo1 facilitating the ligand-receptor interaction. The structural requirements for heparan sulfate interaction with Robo1 remain unknown. In this report, surface plasmon resonance (SPR) spectroscopy was used to examine the interaction between Robo1 and heparin and other GAGs and determined that heparin binds to Robo1 with an affinity of ~650 nM. SPR solution competition studies with chemically modified heparins further determined that although all sulfo groups on heparin are important for the Robo1-heparin interaction, the N-sulfo and 6-O-sulfo groups are essential for the Robo1-heparin binding. Examination of differently sized heparin oligosaccharides and different GAGs also demonstrated that Robo1 prefers to bind full-length heparin chains and that GAGs with higher sulfation levels show increased Robo1 binding affinities.
Collapse
Affiliation(s)
- Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Heather A. Moniz
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Benjamin Walcott
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Kelley W. Moremen
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Robert J. Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Lianchun Wang
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
77
|
Johnson AN, Mokalled MH, Valera JM, Poss KD, Olson EN. Post-transcriptional regulation of myotube elongation and myogenesis by Hoi Polloi. Development 2013; 140:3645-56. [PMID: 23942517 DOI: 10.1242/dev.095596] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Striated muscle development requires the coordinated expression of genes involved in sarcomere formation and contractility, as well as genes that determine muscle morphology. However, relatively little is known about the molecular mechanisms that control the early stages of muscle morphogenesis. To explore this facet of myogenesis, we performed a genetic screen for regulators of somatic muscle morphology in Drosophila, and identified the putative RNA-binding protein (RBP) Hoi Polloi (Hoip). Hoip is expressed in striated muscle precursors within the muscle lineage and controls two genetically separable events: myotube elongation and sarcomeric protein expression. Myotubes fail to elongate in hoip mutant embryos, even though the known regulators of somatic muscle elongation, target recognition and muscle attachment are expressed normally. In addition, a majority of sarcomeric proteins, including Myosin Heavy Chain (MHC) and Tropomyosin, require Hoip for their expression. A transgenic MHC construct that contains the endogenous MHC promoter and a spliced open reading frame rescues MHC protein expression in hoip embryos, demonstrating the involvement of Hoip in pre-mRNA splicing, but not in transcription, of muscle structural genes. In addition, the human Hoip ortholog NHP2L1 rescues muscle defects in hoip embryos, and knockdown of endogenous nhp2l1 in zebrafish disrupts skeletal muscle development. We conclude that Hoip is a conserved, post-transcriptional regulator of muscle morphogenesis and structural gene expression.
Collapse
Affiliation(s)
- Aaron N Johnson
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, TX 75390-9148, USA.
| | | | | | | | | |
Collapse
|
78
|
Borrell V, Cárdenas A, Ciceri G, Galcerán J, Flames N, Pla R, Nóbrega-Pereira S, García-Frigola C, Peregrín S, Zhao Z, Ma L, Tessier-Lavigne M, Marín O. Slit/Robo signaling modulates the proliferation of central nervous system progenitors. Neuron 2012; 76:338-52. [PMID: 23083737 PMCID: PMC4443924 DOI: 10.1016/j.neuron.2012.08.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2012] [Indexed: 11/23/2022]
Abstract
Neurogenesis relies on a delicate balance between progenitor maintenance and neuronal production. Progenitors divide symmetrically to increase the pool of dividing cells. Subsequently, they divide asymmetrically to self-renew and produce new neurons or, in some brain regions, intermediate progenitor cells (IPCs). Here we report that central nervous system progenitors express Robo1 and Robo2, receptors for Slit proteins that regulate axon guidance, and that absence of these receptors or their ligands leads to loss of ventricular mitoses. Conversely, production of IPCs is enhanced in Robo1/2 and Slit1/2 mutants, suggesting that Slit/Robo signaling modulates the transition between primary and intermediate progenitors. Unexpectedly, these defects do not lead to transient overproduction of neurons, probably because supernumerary IPCs fail to detach from the ventricular lining and cycle very slowly. At the molecular level, the role of Slit/Robo in progenitor cells involves transcriptional activation of the Notch effector Hes1. These findings demonstrate that Robo signaling modulates progenitor cell dynamics in the developing brain.
Collapse
Affiliation(s)
- Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Adrián Cárdenas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Gabriele Ciceri
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Joan Galcerán
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Nuria Flames
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Ramón Pla
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Sandrina Nóbrega-Pereira
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Cristina García-Frigola
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Sandra Peregrín
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Zhen Zhao
- Department of Cell and Neurobiology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Le Ma
- Department of Cell and Neurobiology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Marc Tessier-Lavigne
- Laboratory of Brain Development and Repair, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Oscar Marín
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| |
Collapse
|
79
|
Liu ZC, Geisbrecht ER. "Importin" signaling roles for import proteins: the function of Drosophila importin-7 (DIM-7) in muscle-tendon signaling. Cell Adh Migr 2012; 6:4-12. [PMID: 22647935 DOI: 10.4161/cam.19774] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The formation of a mature myotendinous junction (MTJ) between a muscle and its site of attachment is a highly regulated process that involves myofiber migration, cell-cell signaling, and culminates with the stable adhesion between the adjacent muscle-tendon cells. Improper establishment or maintenance of muscle-tendon attachment sites results in a decrease in force generation during muscle contraction and progressive muscular dystrophies in vertebrate models. Many studies have demonstrated the important role of the integrins and integrin-associated proteins in the formation and maintenance of the MTJ. We recently demonstrated that moleskin (msk), the gene that encodes for Drosophila importin-7 (DIM-7), is required for the proper formation of muscle-tendon adhesion sites in the developing embryo. Further studies demonstrated an enrichment of DIM-7 to the ends of muscles where the muscles attach to their target tendon cells. Genetic analysis supports a model whereby msk is required in the muscle and signals via the secreted epidermal growth factor receptor (Egfr) ligand Vein to regulate tendon cell maturation. These data demonstrate a novel role for the canonical nuclear import protein DIM-7 in establishment of the MTJ.
Collapse
Affiliation(s)
- Ze Cindy Liu
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, MO, USA
| | | |
Collapse
|
80
|
Geutskens SB, Andrews WD, van Stalborch AMD, Brussen K, Holtrop-de Haan SE, Parnavelas JG, Hordijk PL, van Hennik PB. Control of human hematopoietic stem/progenitor cell migration by the extracellular matrix protein Slit3. J Transl Med 2012; 92:1129-39. [PMID: 22614124 DOI: 10.1038/labinvest.2012.81] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Patients whose hematopoietic system is compromised by chemo- and/or radiotherapy require transplantation of hematopoietic stem and progenitor cells (HSPCs) to restore hematopoiesis. Successful homing of transplanted HSPCs to the bone marrow (BM) largely depends on their migratory potential, which is critically regulated by the chemokine CXCL12. In this study, we have investigated the expression and function of Slit proteins and their corresponding Roundabout (Robo) receptors in human HSPC migration. Slit proteins are extracellular matrix proteins that can modulate the (chemoattractant-induced) migration of mature leukocytes. We show that mRNAs for all Slits (Slit1-3) are expressed in primary BM stroma and BM-derived endothelial and stromal cell lines, but not in CD34⁺ HSPCs. Human CD34⁺ HSPCs expressed mRNAs for all Robos (Robo1-4), but only the Robo1 protein was detected on their cell surface. Functionally, Slit3 treatment increased the in vivo homing efficiency of CD34⁺ HSPCs to the BM in NOD/SCID mice, whereas Slit3-exposed HSPC migration in vitro was inhibited. These effects do not appear to result from modulated CXCL12 responsiveness as CXCR4 expression, CXCL12-induced actin polymerization or the basal and CXCL12-induced adhesion to fibronectin or BM-derived endothelial cells of CD34⁺ HSPC were not altered by Slit3 exposure. However, we show that Slit3 rapidly reduced the levels of active RhoA in HL60 cells and primary CD34⁺ HSPC, directly affecting a pathway involved in actin cytoskeleton remodeling and HSPC migration. Together, our results support a role for Slit3 in human HSPC migration in vitro and homing in vivo and might contribute to the design of future approaches aimed at improving transplantation efficiency of human CD34⁺ HSPCs.
Collapse
Affiliation(s)
- Sacha B Geutskens
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Liao WX, Laurent LC, Agent S, Hodges J, Chen DB. Human placental expression of SLIT/ROBO signaling cues: effects of preeclampsia and hypoxia. Biol Reprod 2012; 86:111. [PMID: 22262697 DOI: 10.1095/biolreprod.110.088138] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Preeclampsia is characterized by dysfunctional endothelium and impaired angiogenesis. Recent studies suggest that the neuronal guidance SLIT/ROBO system regulates tumor angiogenesis. This study investigated if SLIT and ROBO are differentially expressed in healthy term and preeclamptic placentas and if hypoxia regulates SLIT and ROBO expression in placental trophoblast and endothelial cells. Total RNA and protein were extracted from placental tissues of healthy term (n = 5) and preeclamptic (n = 6) pregnancies and used for SLIT/ROBO expression analyses with reverse transcription-polymerase chain reaction (RT-PCR), real-time quantitative-PCR, and immunoblotting. Paraffin-embedded tissues were processed to localize SLIT/ROBO proteins in placental villi by immunohistochemistry. BeWo choriocarcinoma cells and human umbilical vein endothelial cells (HUVEC) were treated with 2% or 10% oxygen or the hypoxia mimetic deferoxamine mesylate (100 μM) to test if hypoxia regulates SLIT/ROBO expression. SLIT2, SLIT3, ROBO1, and ROBO4 mRNA and proteins were detected in the placenta. SLIT2 and ROBO1 proteins localized in the syncytiotrophoblast, and SLIT3, ROBO1, and ROBO4 in capillary endothelium of the placental villi. Levels of ROBO1 and ROBO4 as well as sFLT1 (soluble fms-like tyrosine kinase-1) proteins were significantly greater in preeclamptic placentas compared to normal controls. Hypoxia significantly increased both mRNA and protein levels of SLIT2 in BeWo cells and of SLIT3, ROBO1, and ROBB4 in HUVEC. Thus, trophoblast and endothelial coexpression of SLIT/ROBO suggests an autocrine/paracrine regulatory system for regulating placental function. Differential expression of SLITs and ROBOs in healthy term and preeclamptic placentas and hypoxia regulation of their expressions in placental cells implicate a potential pathophysiological role for this system in preeclampsia.
Collapse
Affiliation(s)
- Wu-Xiang Liao
- Department of Obstetrics & Gynecology, University of California Irvine, Irvine, California 92697, USA
| | | | | | | | | |
Collapse
|
82
|
Bravo-Ambrosio A, Mastick G, Kaprielian Z. Motor axon exit from the mammalian spinal cord is controlled by the homeodomain protein Nkx2.9 via Robo-Slit signaling. Development 2012; 139:1435-46. [PMID: 22399681 PMCID: PMC3308178 DOI: 10.1242/dev.072256] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2012] [Indexed: 01/11/2023]
Abstract
Mammalian motor circuits control voluntary movements by transmitting signals from the central nervous system (CNS) to muscle targets. To form these circuits, motor neurons (MNs) must extend their axons out of the CNS. Although exit from the CNS is an indispensable phase of motor axon pathfinding, the underlying molecular mechanisms remain obscure. Here, we present the first identification of a genetic pathway that regulates motor axon exit from the vertebrate spinal cord, utilizing spinal accessory motor neurons (SACMNs) as a model system. SACMNs are a homogeneous population of spinal MNs with axons that leave the CNS through a discrete lateral exit point (LEP) and can be visualized by the expression of the cell surface protein BEN. We show that the homeodomain transcription factor Nkx2.9 is selectively required for SACMN axon exit and identify the Robo2 guidance receptor as a likely downstream effector of Nkx2.9; loss of Nkx2.9 leads to a reduction in Robo2 mRNA and protein within SACMNs and SACMN axons fail to exit the spinal cord in Robo2-deficient mice. Consistent with short-range interactions between Robo2 and Slit ligands regulating SACMN axon exit, Robo2-expressing SACMN axons normally navigate through LEP-associated Slits as they emerge from the spinal cord, and fail to exit in Slit-deficient mice. Our studies support the view that Nkx2.9 controls SACMN axon exit from the mammalian spinal cord by regulating Robo-Slit signaling.
Collapse
Affiliation(s)
- Arlene Bravo-Ambrosio
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Grant Mastick
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Zaven Kaprielian
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
83
|
Lahaye LL, Wouda RR, de Jong AWM, Fradkin LG, Noordermeer JN. WNT5 interacts with the Ryk receptors doughnut and derailed to mediate muscle attachment site selection in Drosophila melanogaster. PLoS One 2012; 7:e32297. [PMID: 22403643 PMCID: PMC3293800 DOI: 10.1371/journal.pone.0032297] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 01/24/2012] [Indexed: 01/12/2023] Open
Abstract
In recent years a number of the genes that regulate muscle formation and maintenance in higher organisms have been identified. Studies employing invertebrate and vertebrate model organisms have revealed that many of the genes required for early mesoderm specification are highly conserved throughout evolution. Less is known about the molecules that mediate the steps subsequent to myogenesis, e. g. myotube guidance and attachment to tendon cells. We use the stereotypic pattern of the Drosophila embryonic body wall musculature in genetic approaches to identify novel factors required for muscle attachment site selection. Here, we show that Wnt5 is needed in this process. The lateral transverse muscles frequently overshoot their target attachment sites and stably attach at novel epidermal sites in Wnt5 mutant embryos. Restoration of WNT5 expression in either the muscle or the tendon cell rescues the mutant phenotype. Surprisingly, the novel attachment sites in Wnt5 mutants frequently do not express the Stripe (SR) protein which has been shown to be required for terminal tendon cell differentiation. A muscle bypass phenotype was previously reported for embryos lacking the WNT5 receptor Derailed (DRL). drl and Wnt5 mutant embryos also exhibit axon path finding errors. DRL belongs to the conserved Ryk receptor tyrosine kinase family which includes two other Drosophila orthologs, the Doughnut on 2 (DNT) and Derailed-2 (DRL-2) proteins. We generated a mutant allele of dnt and find that dnt, but not Drl-2, mutant embryos also show a muscle bypass phenotype. Genetic interaction experiments indicate that drl and dnt act together, likely as WNT5 receptors, to control muscle attachment site selection. These results extend previous findings that at least some of the molecular pathways that guide axons towards their targets are also employed for guidance of muscle fibers to their appropriate attachment sites.
Collapse
Affiliation(s)
| | | | | | - Lee G. Fradkin
- Laboratory of Developmental Neurobiology, Department of Molecular and Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail: (JNN); (LGF)
| | - Jasprina N. Noordermeer
- Laboratory of Developmental Neurobiology, Department of Molecular and Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail: (JNN); (LGF)
| |
Collapse
|
84
|
Soplop NH, Cheng YS, Kramer SG. Roundabout is required in the visceral mesoderm for proper microvillus length in the hindgut epithelium. Dev Dyn 2012; 241:759-69. [PMID: 22334475 DOI: 10.1002/dvdy.23749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2012] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION In this study we examined Roundabout signaling in the Drosophila embryonic hindgut. RESULTS Slit and its receptors Roundabout (Robo) and Roundabout 2 (Robo2) localize to discrete regions in the hindgut epithelium and surrounding visceral mesoderm. Loss of robo, robo2 or slit did not disrupt overall hindgut patterning. However, slit and robo mutants showed a decrease in microvillus length on the boundary cells of the hindgut epithelium. Rescue and overexpression analysis revealed that robo is specifically required in the visceral mesoderm for correct microvillus length in the underlying hindgut epithelium. Expression of robo in the visceral mesoderm of robo mutant embryos restored normal microvillus length, while overexpression of robo resulted in an increase in microvillus length. Microvillus length was also increased in robo2 mutants suggesting that robo2 may antagonize robo function in the hindgut. CONCLUSION Together, these results establish a novel, dose-dependent role for Robo in regulating microvilli growth and provide in vivo evidence for the role of the visceral mesoderm in controlling morphological changes in the underlying intestinal epithelium.
Collapse
Affiliation(s)
- Nadine H Soplop
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854-8020, USA
| | | | | |
Collapse
|
85
|
Marcus-Gueret N, Schmidt KL, Stringham EG. Distinct cell guidance pathways controlled by the Rac and Rho GEF domains of UNC-73/TRIO in Caenorhabditis elegans. Genetics 2012; 190:129-42. [PMID: 21996675 PMCID: PMC3249371 DOI: 10.1534/genetics.111.134429] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 09/27/2011] [Indexed: 11/18/2022] Open
Abstract
The cytoskeleton regulator UNC-53/NAV2 is required for both the anterior and posterior outgrowth of several neurons as well as that of the excretory cell while the kinesin-like motor VAB-8 is essential for most posteriorly directed migrations in Caenorhabditis elegans. Null mutations in either unc-53 or vab-8 result in reduced posterior excretory canal outgrowth, while double null mutants display an enhanced canal extension defect, suggesting the genes act in separate pathways to control this posteriorly directed outgrowth. Genetic analysis of putative interactors of UNC-53 or VAB-8, and cell-specific rescue experiments suggest that VAB-8, SAX-3/ROBO, SLT-1/Slit, and EVA-1 are functioning together in the outgrowth of the excretory canals, while UNC-53 appears to function in a parallel pathway with UNC-71/ADAM. The known VAB-8 interactor, the Rac/Rho GEF UNC-73/TRIO operates in both pathways, as isoform specific alleles exhibit enhancement of the phenotype in double-mutant combination with either unc-53 or vab-8. On the basis of these results, we propose a bipartite model for UNC-73/TRIO activity in excretory canal extension: a cell autonomous function that is mediated by the Rho-specific GEF domain of the UNC-73E isoform in conjunction with UNC-53 and UNC-71 and a cell nonautonomous function that is mediated by the Rac-specific GEF domain of the UNC-73B isoform, through partnering with VAB-8 and the receptors SAX-3 and EVA-1.
Collapse
Affiliation(s)
- Nancy Marcus-Gueret
- Department of Biology, Trinity Western University, Langley, BC V2Y 1Y1, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Kristopher L. Schmidt
- Department of Biology, Trinity Western University, Langley, BC V2Y 1Y1, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Eve G. Stringham
- Department of Biology, Trinity Western University, Langley, BC V2Y 1Y1, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
86
|
Abstract
The Slit family of secreted proteins and their transmembrane receptor, Robo, were originally identified in the nervous system where they function as axon guidance cues and branching factors during development. Since their discovery, a great number of additional roles have been attributed to Slit/Robo signaling, including regulating the critical processes of cell proliferation and cell motility in a variety of cell and tissue types. These processes are often deregulated during cancer progression, allowing tumor cells to bypass safeguarding mechanisms in the cell and the environment in order to grow and escape to new tissues. In the past decade, it has been shown that the expression of Slit and Robo is altered in a wide variety of cancer types, identifying them as potential therapeutic targets. Further, studies have demonstrated dual roles for Slits and Robos in cancer, acting as both oncogenes and tumor suppressors. This bifunctionality is also observed in their roles as axon guidance cues in the developing nervous system, where they both attract and repel neuronal migration. The fact that this signaling axis can have opposite functions depending on the cellular circumstance make its actions challenging to define. Here, we summarize our current understanding of the dual roles that Slit/Robo signaling play in development, epithelial tumor progression, and tumor angiogenesis.
Collapse
Affiliation(s)
- Mimmi S. Ballard
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz CA 95064
| | - Lindsay Hinck
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz CA 95064
| |
Collapse
|
87
|
de Joussineau C, Bataillé L, Jagla T, Jagla K. Diversification of muscle types in Drosophila: upstream and downstream of identity genes. Curr Top Dev Biol 2012; 98:277-301. [PMID: 22305167 DOI: 10.1016/b978-0-12-386499-4.00011-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Understanding gene regulatory pathways underlying diversification of cell types during development is one of the major challenges in developmental biology. Progressive specification of mesodermal lineages that are at the origin of body wall muscles in Drosophila embryos has been extensively studied during past years, providing an attractive framework for dissecting cell type diversification processes. In particular, it has been found that muscle founder cells that are at the origin of individual muscles display specific expression of transcription factors that control diversification of muscle types. These factors, encoded by genes collectively called muscle identity genes, are activated in discrete subsets of muscle founders. As a result, each founder cell is thought to carry a unique combinatorial code of identity gene expression. Considering this, to define temporally and spatially restricted expression of identity genes, a set of coordinated upstream regulatory inputs is required. But also, to realize the identity program and to form specific muscle types with distinct properties, an efficient battery of downstream identity gene targets needs to be activated. Here we review how the specificity of expression and action of muscle identity genes is acquired.
Collapse
Affiliation(s)
- Cyrille de Joussineau
- GReD INSERM UMR1103, CNRS UMR6293, University of Clermont-Ferrand, Clermont-Ferrand, France
| | | | | | | |
Collapse
|
88
|
Lee S, Kim JH, Kim JH, Seo JW, Han HS, Lee WH, Mori K, Nakao K, Barasch J, Suk K. Lipocalin-2 Is a chemokine inducer in the central nervous system: role of chemokine ligand 10 (CXCL10) in lipocalin-2-induced cell migration. J Biol Chem 2011; 286:43855-43870. [PMID: 22030398 DOI: 10.1074/jbc.m111.299248] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The secreted protein lipocalin-2 (LCN2) has been implicated in diverse cellular processes, including cell morphology and migration. Little is known, however, about the role of LCN2 in the CNS. Here, we show that LCN2 promotes cell migration through up-regulation of chemokines in brain. Studies using cultured glial cells, microvascular endothelial cells, and neuronal cells suggest that LCN2 may act as a chemokine inducer on the multiple cell types in the CNS. In particular, up-regulation of CXCL10 by JAK2/STAT3 and IKK/NF-κB pathways in astrocytes played a pivotal role in LCN2-induced cell migration. The cell migration-promoting activity of LCN2 in the CNS was verified in vivo using mouse models. The expression of LCN2 was notably increased in brain following LPS injection or focal injury. Mice lacking LCN2 showed the impaired migration of astrocytes to injury sites with a reduced CXCL10 expression in the neuroinflammation or injury models. Thus, the LCN2 proteins, secreted under inflammatory conditions, may amplify neuroinflammation by inducing CNS cells to secrete chemokines such as CXCL10, which recruit additional inflammatory cells.
Collapse
Affiliation(s)
- Shinrye Lee
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Jong-Heon Kim
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Jae-Hong Kim
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Jung-Wan Seo
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Hyung-Soo Han
- Department of Physiology, Brain Science & Engineering Institute, Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Won-Ha Lee
- Departments of School of Life Sciences and Biotechnology, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Kiyoshi Mori
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kazuwa Nakao
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Jonathan Barasch
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York 10027
| | - Kyoungho Suk
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 700-422, Korea.
| |
Collapse
|
89
|
Immunohistochemical staining of slit2 in primary and metastatic prostatic adenocarcinoma. Transl Oncol 2011; 4:314-20. [PMID: 21966548 DOI: 10.1593/tlo.11151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/03/2011] [Accepted: 06/06/2011] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Conflicting roles for Slit2, a protein involved in mediating the processes of cell migration and chemotactic response, have been previously described in prostate cancer. Here we use immunohistochemistry to evaluate the expression of Slit2 in normal donor prostate (NDP), benign prostatic hyperplasia (BPH), high-grade prostatic intraepithelial neoplasia (HGPIN), normal tissue adjacent to prostatic adenocarcinoma (NAC), primary prostatic adenocarcinoma (PCa), and metastatic prostatic adenocarcinoma (Mets). METHODS Tissue microarrays were immunostained for Slit2. The staining intensities were quantified using automated image analysis software. The data was statistically analyzed using one-way analysis of variance with subsequent Tukey tests for multiple comparisons or a nonparametric equivalent. Eleven cases of NDP, 35 cases of NAC, 15 cases of BPH, 35 cases of HGPIN, 106 cases of PCa, and 37 cases of Mets were analyzed. RESULTS Specimens of PCa and HGPIN had the highest absolute staining for Slit2. Significant differences were seen between PCa and NDP (P < .05), PCa and NAC (P < .05), HGPIN and NDP (P < .05), and HGPIN and NAC (P < .05). Whereas the average Mets staining was not significantly different from NDP or NAC, several individual Mets cases featured intense staining. CONCLUSIONS To our knowledge, this represents the first study comparing the immunohistochemical profiles of Slit2 in PCa and Mets to specimens of HGPIN, BPH, NDP, and NAC. These findings suggest that Slit2 expression can be increased in HGPIN, PCa, and Mets, making it a potentially important biomarker for prostate cancer.
Collapse
|
90
|
Schulz JG, Ceulemans H, Caussinus E, Baietti MF, Affolter M, Hassan BA, David G. Drosophila syndecan regulates tracheal cell migration by stabilizing Robo levels. EMBO Rep 2011; 12:1039-46. [PMID: 21836636 PMCID: PMC3185339 DOI: 10.1038/embor.2011.153] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 06/14/2011] [Accepted: 06/27/2011] [Indexed: 01/12/2023] Open
Abstract
Here we identify a new role for Syndecan (Sdc), the only transmembrane heparan sulphate proteoglycan in Drosophila, in tracheal development. Sdc is required cell autonomously for efficient directed migration and fusion of dorsal branch cells, but not for dorsal branch formation per se. The cytoplasmic domain of Sdc is dispensable, indicating that Sdc does not transduce a signal by itself. Although the branch-specific phenotype of sdc mutants resembles those seen in the absence of Slit/Robo2 signalling, genetic interaction experiments indicate that Sdc also helps to suppress Slit/Robo2 signalling. We conclude that Sdc cell autonomously regulates Slit/Robo2 signalling in tracheal cells to guarantee ordered directional migration and branch fusion.
Collapse
Affiliation(s)
- Joachim G Schulz
- Laboratory of Glycobiology and Developmental Genetics, Katholieke Universiteit Leuven, Herestraat 49 bus 602, KU Leuven, Leuven 3000, Belgium
- Laboratory of Neurogenetics, Flanders Institute for Biotechnology (VIB), Katholieke Universiteit Leuven, Herestraat 49 bus 602, KU Leuven, Leuven 3000, Belgium
- Department of Human Genetics, Center for Human Genetics, Katholieke Universiteit Leuven, Herestraat 49 bus 602, KU Leuven, Leuven 3000, Belgium
| | - Helga Ceulemans
- Laboratory of Glycobiology and Developmental Genetics, Katholieke Universiteit Leuven, Herestraat 49 bus 602, KU Leuven, Leuven 3000, Belgium
- Department of Human Genetics, Center for Human Genetics, Katholieke Universiteit Leuven, Herestraat 49 bus 602, KU Leuven, Leuven 3000, Belgium
| | - Emmanuel Caussinus
- Growth and Development, Biozentrum der Universität Basel, Basel 4056, Switzerland
| | - Maria F Baietti
- Laboratory of Glycobiology and Developmental Genetics, Katholieke Universiteit Leuven, Herestraat 49 bus 602, KU Leuven, Leuven 3000, Belgium
- Department of Human Genetics, Center for Human Genetics, Katholieke Universiteit Leuven, Herestraat 49 bus 602, KU Leuven, Leuven 3000, Belgium
| | - Markus Affolter
- Growth and Development, Biozentrum der Universität Basel, Basel 4056, Switzerland
| | - Bassem A Hassan
- Laboratory of Neurogenetics, Flanders Institute for Biotechnology (VIB), Katholieke Universiteit Leuven, Herestraat 49 bus 602, KU Leuven, Leuven 3000, Belgium
- Department of Human Genetics, Center for Human Genetics, Katholieke Universiteit Leuven, Herestraat 49 bus 602, KU Leuven, Leuven 3000, Belgium
| | - Guido David
- Laboratory of Glycobiology and Developmental Genetics, Katholieke Universiteit Leuven, Herestraat 49 bus 602, KU Leuven, Leuven 3000, Belgium
- Department of Human Genetics, Center for Human Genetics, Katholieke Universiteit Leuven, Herestraat 49 bus 602, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
91
|
Moleskin is essential for the formation of the myotendinous junction in Drosophila. Dev Biol 2011; 359:176-89. [PMID: 21925492 DOI: 10.1016/j.ydbio.2011.08.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 07/07/2011] [Accepted: 08/02/2011] [Indexed: 02/04/2023]
Abstract
It is the precise connectivity between skeletal muscles and their corresponding tendon cells to form a functional myotendinous junction (MTJ) that allows for the force generation required for muscle contraction and organismal movement. The Drosophila MTJ is composed of secreted extracellular matrix (ECM) proteins deposited between integrin-mediated hemi-adherens junctions on the surface of muscle and tendon cells. In this paper, we have identified a novel, cytoplasmic role for the canonical nuclear import protein Moleskin (Msk) in Drosophila embryonic somatic muscle attachment. Msk protein is enriched at muscle attachment sites in late embryogenesis and msk mutant embryos exhibit a failure in muscle-tendon cell attachment. Although the muscle-tendon attachment sites are reduced in size, components of the integrin complexes and ECM proteins are properly localized in msk mutant embryos. However, msk mutants fail to localize phosphorylated focal adhesion kinase (pFAK) to the sites of muscle-tendon cell junctions. In addition, the tendon cell specific proteins Stripe (Sr) and activated mitogen-activated protein kinase (MAPK) are reduced in msk mutant embryos. Our rescue experiments demonstrate that Msk is required in the muscle cell, but not in the tendon cells. Moreover, muscle attachment defects due to loss of Msk are rescued by an activated form of MAPK or the secreted epidermal growth factor receptor (Egfr) ligand Vein. Taken together, these findings provide strong evidence that Msk signals non-autonomously through the Vein-Egfr signaling pathway for late tendon cell late differentiation and/or maintenance.
Collapse
|
92
|
Halperin-Barlev O, Kalcheim C. Sclerotome-derived Slit1 drives directional migration and differentiation of Robo2-expressing pioneer myoblasts. Development 2011; 138:2935-45. [PMID: 21653616 DOI: 10.1242/dev.065714] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pioneer myoblasts generate the first myotomal fibers and act as a scaffold to pattern further myotome development. From their origin in the medial epithelial somite, they dissociate and migrate towards the rostral edge of each somite, from which differentiation proceeds in both rostral-to-caudal and medial-to-lateral directions. The mechanisms underlying formation of this unique wave of pioneer myofibers remain unknown. We show that rostrocaudal or mediolateral somite inversions in avian embryos do not alter the original directions of pioneer myoblast migration and differentiation into fibers, demonstrating that regulation of pioneer patterning is somite-intrinsic. Furthermore, pioneer myoblasts express Robo2 downstream of MyoD and Myf5, whereas the dermomyotome and caudal sclerotome express Slit1. Loss of Robo2 or of sclerotome-derived Slit1 function perturbed both directional cell migration and fiber formation, and their effects were mediated through RhoA. Although myoblast specification was not affected, expression of the intermediate filament desmin was reduced. Hence, Slit1 and Robo2, via RhoA, act to pattern formation of the pioneer myotome through the regulation of cytoskeletal assembly.
Collapse
Affiliation(s)
- Osnat Halperin-Barlev
- Department of Medical Neurobiology, IMRIC and ELSC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
93
|
Weyers JJ, Milutinovich AB, Takeda Y, Jemc JC, Van Doren M. A genetic screen for mutations affecting gonad formation in Drosophila reveals a role for the slit/robo pathway. Dev Biol 2011; 353:217-28. [PMID: 21377458 PMCID: PMC3635084 DOI: 10.1016/j.ydbio.2011.02.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 02/24/2011] [Accepted: 02/24/2011] [Indexed: 12/19/2022]
Abstract
Organogenesis is a complex process requiring multiple cell types to associate with one another through correct cell contacts and in the correct location to achieve proper organ morphology and function. To better understand the mechanisms underlying gonad formation, we performed a mutagenesis screen in Drosophila and identified twenty-four genes required for gonadogenesis. These genes affect all different aspects of gonad formation and provide a framework for understanding the molecular mechanisms that control these processes. We find that gonad formation is regulated by multiple, independent pathways; some of these regulate the key cell adhesion molecule DE-cadherin, while others act through distinct mechanisms. In addition, we discover that the Slit/Roundabout pathway, best known for its role in regulating axonal guidance, is essential for proper gonad formation. Our findings shed light on the complexities of gonadogenesis and the genetic regulation required for proper organ formation.
Collapse
Affiliation(s)
- Jill J Weyers
- Department of Biology, Johns Hopkins University, 3400 N Charles St., Baltimore, MD, USA.
| | | | | | | | | |
Collapse
|
94
|
Schejter ED, Baylies MK. Born to run: creating the muscle fiber. Curr Opin Cell Biol 2011; 22:566-74. [PMID: 20817426 DOI: 10.1016/j.ceb.2010.08.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 08/03/2010] [Accepted: 08/06/2010] [Indexed: 11/27/2022]
Abstract
From the muscles that control the blink of your eye to those that allow you to walk, the basic architecture of muscle is the same: muscles consist of bundles of the unit muscle cell, the muscle fiber. The unique morphology of the individual muscle fiber is dictated by the functional demands necessary to generate and withstand the forces of contraction, which in turn leads to movement. Contractile muscle fibers are elongated, syncytial cells, which interact with both the nervous and skeletal systems to govern body motion. In this review, we focus on three key cell-cell and cell-matrix contact processes, that are necessary to create this exquisitely specialized cell: cell fusion, cell elongation, and establishment of a myotendinous junction. We address these processes by highlighting recent findings from the Drosophila model system.
Collapse
Affiliation(s)
- Eyal D Schejter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| | | |
Collapse
|
95
|
Geutskens SB, Hordijk PL, van Hennik PB. The chemorepellent Slit3 promotes monocyte migration. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:7691-8. [PMID: 21078908 DOI: 10.4049/jimmunol.0903898] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Directional migration is an essential step for monocytes to infiltrate sites of inflammation, a process primarily regulated by chemoattractants. Slits are large matrix proteins that are secreted by endothelial cells; they were reported to inhibit the chemoattractant-induced migration of different cell types, including leukocytes. The aim of this study was to determine the effect of Slit3 on primary monocyte migration and to address the underlying mechanisms. We show that Roundabout (Robo)1, one of the Robo receptors that recognize Slit3, is the only Robo homolog expressed by CD14(+) monocytes. Interestingly, we found that stimulation with Slit3 increased the spontaneous and chemoattractant-induced migration of primary monocytes in vitro and increased the myeloid cell recruitment during peritoneal inflammation in vivo. In addition, Slit3 did not seem to act as a chemoattractant itself; it promoted directed migration triggered by chemoattractants, such as CXCL12, by inducing a chemokinetic effect. We further show that Slit3 prevented monocyte spreading and induced rounding of spread monocytes without affecting monocyte adhesion. Stimulation with Slit3 was not associated with changes in the levels of phosphorylated p38, p42/p44, or Src, known regulators of monocyte migration, but it directly acts on molecular pathways involved in basal leukocyte migration by activating RhoA. These findings show an unexpected response of monocytes to Slit3 and add insights into the possible role of Slit proteins during inflammatory cell recruitment.
Collapse
Affiliation(s)
- Sacha B Geutskens
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
96
|
Takahashi KF, Kiyoshima T, Kobayashi I, Xie M, Yamaza H, Fujiwara H, Ookuma Y, Nagata K, Wada H, Sakai T, Terada Y, Sakai H. Protogenin, a new member of the immunoglobulin superfamily, is implicated in the development of the mouse lower first molar. BMC DEVELOPMENTAL BIOLOGY 2010; 10:115. [PMID: 21108791 PMCID: PMC3014897 DOI: 10.1186/1471-213x-10-115] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 11/25/2010] [Indexed: 01/21/2023]
Abstract
Background Protogenin (Prtg) has been identified as a gene which is highly expressed in the mouse mandible at embryonic day 10.5 (E10.5) by a cDNA subtraction method between mandibles at E10.5 and E12.0. Prtg is a new member of the deleted in colorectal carcinoma (DCC) family, which is composed of DCC, Neogenin, Punc and Nope. Although these members play an important role in the development of the embryonic central nervous system, recent research has also shed on the non-neuronal organization. However, very little is known regarding the fetal requirement of the non-neuronal organization for Prtg and how this may be associated with the tooth germ development. This study examined the functional implications of Prtg in the developing tooth germ of the mouse lower first molar. Results Ptrg is preferentially expressed in the early stage of organogenesis. Prtg mRNA and protein were widely expressed in the mesenchymal cells in the mandible at E10.5. The oral epithelial cells were also positive for Prtg. The expression intensity of Prtg after E12.0 was markedly reduced in the mesenchymal cells of the mandible, and was restricted to the area where the tooth bud was likely to be formed. Signals were also observed in the epithelial cells of the tooth germ. Weak signals were observed in the inner enamel epithelial cells at E16.0 and E18.0. An inhibition assay using a hemagglutinating virus of Japan-liposome containing Prtg antisense-phosphorothioated-oligodeoxynucleotide (AS-S-ODN) in cultured mandibles at E10.5 showed a significant growth inhibition in the tooth germ. The relationship between Prtg and the odontogenesis-related genes was examined in mouse E10.5 mandible, and we verified that the Bmp-4 expression had significantly been decreased in the mouse E10.5 mandible 24 hr after treatment with Prtg AS-S-ODN. Conclusion These results indicated that the Prtg might be related to the initial morphogenesis of the tooth germ leading to the differentiation of the inner enamel epithelial cells in the mouse lower first molar. A better understanding of the Prtg function might thus play a critical role in revealing a precious mechanism in tooth germ development.
Collapse
Affiliation(s)
- Keiko F Takahashi
- Laboratory of Oral Pathology and Medicine, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Schweitzer R, Zelzer E, Volk T. Connecting muscles to tendons: tendons and musculoskeletal development in flies and vertebrates. Development 2010; 137:2807-17. [PMID: 20699295 DOI: 10.1242/dev.047498] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The formation of the musculoskeletal system represents an intricate process of tissue assembly involving heterotypic inductive interactions between tendons, muscles and cartilage. An essential component of all musculoskeletal systems is the anchoring of the force-generating muscles to the solid support of the organism: the skeleton in vertebrates and the exoskeleton in invertebrates. Here, we discuss recent findings that illuminate musculoskeletal assembly in the vertebrate embryo, findings that emphasize the reciprocal interactions between the forming tendons, muscle and cartilage tissues. We also compare these events with those of the corresponding system in the Drosophila embryo, highlighting distinct and common pathways that promote efficient locomotion while preserving the form of the organism.
Collapse
Affiliation(s)
- Ronen Schweitzer
- Shriners Hospital for Children, Research Division, Portland, OR 97239, USA.
| | | | | |
Collapse
|
98
|
Deng H, Bell JB, Simmonds AJ. Vestigial is required during late-stage muscle differentiation in Drosophila melanogaster embryos. Mol Biol Cell 2010; 21:3304-16. [PMID: 20685961 PMCID: PMC2947467 DOI: 10.1091/mbc.e10-04-0364] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The Drosophila member of the vestigial-like gene family (vestigial) is known primarily as a transcriptional activator that defines cell identity during Drosophila wing differentiation. We show that during embryo development Vestigial also has a role during specification of muscle–muscle attachments in ventral longitudinal muscles. The somatic muscles of Drosophila develop in a complex pattern that is repeated in each embryonic hemi-segment. During early development, progenitor cells fuse to form a syncytial muscle, which further differentiates via expression of muscle-specific factors that induce specific responses to external signals to regulate late-stage processes such as migration and attachment. Initial communication between somatic muscles and the epidermal tendon cells is critical for both of these processes. However, later establishment of attachments between longitudinal muscles at the segmental borders is largely independent of the muscle–epidermal attachment signals, and relatively little is known about how this event is regulated. Using a combination of null mutations and a truncated version of Sd that binds Vg but not DNA, we show that Vestigial (Vg) is required in ventral longitudinal muscles to induce formation of stable intermuscular attachments. In several muscles, this activity may be independent of Sd. Furthermore, the cell-specific differentiation events induced by Vg in two cells fated to form attachments are coordinated by Drosophila epidermal growth factor signaling. Thus, Vg is a key factor to induce specific changes in ventral longitudinal muscles 1–4 identity and is required for these cells to be competent to form stable intermuscular attachments with each other.
Collapse
Affiliation(s)
- Hua Deng
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H8, Canada
| | | | | |
Collapse
|
99
|
Gilsohn E, Volk T. Fine tuning cellular recognition: The function of the leucine rich repeat (LRR) trans-membrane protein, LRT, in muscle targeting to tendon cells. Cell Adh Migr 2010; 4:368-71. [PMID: 20404543 DOI: 10.4161/cam.4.3.11606] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The formation of complex tissues during embryonic development is often accompanied by directed cellular migration towards a target tissue. Specific mutual recognition between the migrating cell and its target tissue leads to the arrest of the cell migratory behavior and subsequent contact formation between the two interacting cell types. Recent studies implicated a novel family of surface proteins containing a trans-membrane domain and single leucine-rich repeat (LRR) domain in inter-cellular recognition and the arrest of cell migration. Here, we describe the involvement of a novel LRR surface protein, LRT, in targeting migrating muscles towards their corresponding tendon cells in the Drosophila embryo. LRT is specifically expressed by the target tendon cells and is essential for arresting the migratory behavior of the muscle cells. Additional studies in Drosophila S2 cultured cells suggest that LRT forms a protein complex with the Roundabout (Robo) receptor, essential for guiding muscles towards their tendon partners. Genetic analysis supports a model in which LRT performs its activity non-autonomously through its interaction with the Robo receptors expressed on the muscle surfaces. These results suggest a novel mechanism of intercellular recognition through interactions between LRR family members and Robo receptors.
Collapse
Affiliation(s)
- Eli Gilsohn
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
100
|
Coleman HA, Labrador JP, Chance RK, Bashaw GJ. The Adam family metalloprotease Kuzbanian regulates the cleavage of the roundabout receptor to control axon repulsion at the midline. Development 2010; 137:2417-26. [PMID: 20570941 PMCID: PMC2889607 DOI: 10.1242/dev.047993] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2010] [Indexed: 11/20/2022]
Abstract
Slits and their Roundabout (Robo) receptors mediate repulsive axon guidance at the Drosophila ventral midline and in the vertebrate spinal cord. Slit is cleaved to produce fragments with distinct signaling properties. In a screen for genes involved in Slit-Robo repulsion, we have identified the Adam family metalloprotease Kuzbanian (Kuz). Kuz does not regulate midline repulsion through cleavage of Slit, nor is Slit cleavage essential for repulsion. Instead, Kuz acts in neurons to regulate repulsion and Kuz can cleave the Robo extracellular domain in Drosophila cells. Genetic rescue experiments using an uncleavable form of Robo show that this receptor does not maintain normal repellent activity. Finally, Kuz activity is required for Robo to recruit its downstream signaling partner, Son of sevenless (Sos). These observations support the model that Kuz-directed cleavage is important for Robo receptor activation.
Collapse
Affiliation(s)
- Hope A Coleman
- Department of Neuroscience, University of Pennsylvania School of Medicine, 1113 BRB2/3, 421 Curie Boulevard, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|