51
|
Cecchini P, Nitta T, Sena E, Du ZY. Saving coral reefs: significance and biotechnological approaches for coral conservation. ADVANCED BIOTECHNOLOGY 2024; 2:42. [PMID: 39883363 PMCID: PMC11740877 DOI: 10.1007/s44307-024-00049-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 01/31/2025]
Abstract
Coral reefs are highly productive ecosystems that provide valuable services to coastal communities worldwide. However, both local and global anthropogenic stressors, threaten the coral-algal symbiosis that enables reef formation. This breakdown of the symbiotic relationship, known as bleaching, is often triggered by cumulative cell damage. UV and heat stress are commonly implicated in bleaching, but other anthropogenic factors may also play a role. To address coral loss, active restoration is already underway in many critical regions. Additionally, coral researchers are exploring assisted evolution methods for greater coral resilience to projected climate change. This review provides an overview of the symbiotic relationship, the mechanisms underlying coral bleaching in response to stressors, and the strategies being pursued to address coral loss. Despite the necessity of ongoing research in all aspects of this field, action on global climate change remains crucial for the long-term survival of coral reefs.
Collapse
Affiliation(s)
- Pansa Cecchini
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Thomas Nitta
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Edoardo Sena
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Zhi-Yan Du
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
52
|
Jury CP, Bahr KD, Cros A, Dobson KL, Freel EB, Graham AT, McLachlan RH, Nelson CE, Price JT, Rocha de Souza M, Shizuru L, Smith CM, Sparagon WJ, Squair CA, Timmers MA, Vicente J, Webb MK, Yamase NH, Grottoli AG, Toonen RJ. Experimental coral reef communities transform yet persist under mitigated future ocean warming and acidification. Proc Natl Acad Sci U S A 2024; 121:e2407112121. [PMID: 39471225 PMCID: PMC11551444 DOI: 10.1073/pnas.2407112121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/20/2024] [Indexed: 11/01/2024] Open
Abstract
Coral reefs are among the most sensitive ecosystems affected by ocean warming and acidification, and are predicted to collapse over the next few decades. Reefs are predicted to shift from net accreting calcifier-dominated systems with exceptionally high biodiversity to net eroding algal-dominated systems with dramatically reduced biodiversity. Here, we present a two-year experimental study examining the responses of entire mesocosm coral reef communities to warming (+2 °C), acidification (-0.2 pH units), and combined future ocean (+2 °C, -0.2 pH) treatments. Contrary to modeled projections, we show that under future ocean conditions, these communities shift structure and composition yet persist as novel calcifying ecosystems with high biodiversity. Our results suggest that if climate change is limited to Paris Climate Agreement targets, coral reefs could persist in an altered state rather than collapse.
Collapse
Affiliation(s)
- Christopher P. Jury
- Hawai’i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI96744
| | - Keisha D. Bahr
- Department of Life Sciences, Texas A&M University—Corpus Christi, Corpus Christi, TX78412
| | | | - Kerri L. Dobson
- Marine Biology and Ecology Research Group, School of Ocean and Earth Sciences, University of Southampton, SouthamptonSO14 3ZH, UK
- School of Earth Sciences, College of Arts and Sciences, The Ohio State University, Columbus, OH43210
| | - Evan B. Freel
- Hawai’i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI96744
| | - Andrew T. Graham
- Hawai’i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI96744
| | - Rowan H. McLachlan
- School of Earth Sciences, College of Arts and Sciences, The Ohio State University, Columbus, OH43210
- Department of Microbiology, Oregon State University, Corvallis, OR97331
| | - Craig E. Nelson
- Daniel K. Inouye Center for Microbial Oceanography, Research and Education, Department of Oceanography and Sea Grant College Program, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI96822
| | - James T. Price
- School of Earth Sciences, College of Arts and Sciences, The Ohio State University, Columbus, OH43210
| | - Mariana Rocha de Souza
- Hawai’i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI96744
| | - Leah Shizuru
- Hawai’i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI96744
| | - Celia M. Smith
- Department of Biology, School of Life Sciences, College of Natural Sciences, University of Hawai’i at Mānoa, Honolulu, HI96822
- Department of Marine Biology, College of Natural Sciences and School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI96822
| | - Wesley J. Sparagon
- Daniel K. Inouye Center for Microbial Oceanography, Research and Education, Department of Oceanography and Sea Grant College Program, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI96822
| | - Cheryl A. Squair
- Department of Biology, School of Life Sciences, College of Natural Sciences, University of Hawai’i at Mānoa, Honolulu, HI96822
| | - Molly A. Timmers
- Hawai’i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI96744
- Pristine Seas, National Geographic Society, Washington, DC20036
| | - Jan Vicente
- Hawai’i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI96744
| | - Maryann K. Webb
- Hawai’i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI96744
| | - Nicole H. Yamase
- Department of Marine Biology, College of Natural Sciences and School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI96822
| | - Andréa G. Grottoli
- Marine Biology and Ecology Research Group, School of Ocean and Earth Sciences, University of Southampton, SouthamptonSO14 3ZH, UK
| | - Robert J. Toonen
- Hawai’i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI96744
| |
Collapse
|
53
|
Sajid S, Zhang G, Zhang Z, Chen L, Lu Y, Fang JKH, Cai L. Comparative analysis of biofilm bacterial communities developed on different artificial reef materials. J Appl Microbiol 2024; 135:lxae268. [PMID: 39439203 DOI: 10.1093/jambio/lxae268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
AIMS Artificial reefs play a vital role in restoring and creating new habitats for marine species by providing suitable substrates, especially in areas where natural substrates have been degraded or lost due to declining water quality, destructive fishing practices, and coral diseases. Artificial reef restoration aimed at coral larval settlement is gaining prominence and initially depends on the development of biofilms on reef surfaces. In this study, we hypothesized that different artificial reef materials selectively influence the composition of biofilm bacterial communities, which in turn affected coral larval settlement and the overall success of coral rehabilitation efforts. To test this hypothesis, we evaluated the impact of six different reef-made materials (porcelain, granite, coral skeleton, calcium carbonate, shell cement, and cement) on the development of biofilm bacterial communities and their potential to support coral larval settlement. METHODS AND RESULTS The biofilm bacterial communities were developed on different artificial reef materials and studied using 16S rRNA gene amplicon sequencing and analysis. The bacterial species richness and evenness were significantly (P < 0.05) low in the seawater, while these values were high in the reef materials. At the phylum level, the biofilm bacterial composition of all materials and seawater was majorly composed of Pseudomonadota, Cyanobacteria, and Bacteroidetes; however, significantly (P < 0.05) low Bacteroidetes were found in the seawater. At the genus level, Thalassomonas, Glaciecola, Halomicronema, Lewinella, Hyphomonas, Thalassospira, Polaribacter, and Tenacibaculum were significantly (P < 0.05) low in the coral skeleton and seawater, compared to the other reef materials. The genera Pseudoaltermonas and Thalassomonas (considered potential inducers of coral larval settlement) were highly abundant in the shell-cement biofilm, while low values were found in the biofilm of the other materials. CONCLUSION The biofilm bacterial community composition can be selective for different substrate materials, such as shell cement exhibited higher abundances of bacteria known to facilitate coral larval settlement, highlighting their potential in enhancing restoration outcomes.
Collapse
Affiliation(s)
- Sumbal Sajid
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen 518120, China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guoqiang Zhang
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen 518120, China
| | - Zongyao Zhang
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen 518120, China
| | - Lianguo Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yishan Lu
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen 518120, China
| | - James Kar-Hei Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Lin Cai
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen 518120, China
| |
Collapse
|
54
|
Otjacques E, Paula JR, Ruby EG, Xavier JC, McFall-Ngai MJ, Rosa R, Schunter C. Developmental and transcriptomic responses of Hawaiian bobtail squid early stages to ocean warming and acidification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621237. [PMID: 39553969 PMCID: PMC11565970 DOI: 10.1101/2024.10.31.621237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Cephalopods play a central ecological role across all oceans and realms. However, under the current climate crisis, their physiology and behaviour are impacted, and we are beginning to comprehend the effects of environmental stressors at a molecular level. Here, we study the Hawaiian bobtail squid (Euprymna scolopes), known for its specific binary symbiosis with the bioluminescent bacterium Vibrio fischeri acquired post-hatching. We aim to understand the response (i.e., developmental and molecular) of E. scolopes after the embryogenetic exposure to different conditions: i) standard conditions (control), ii) increased CO2 (ΔpH 0.4 units), iii) warming (+3°C), or iv) a combination of the two treatments. We observed a decrease in hatching success across all treatments relative to the control. Using transcriptomics, we identified a potential trade-off in favour of metabolism and energy production, at the expense of development under increased CO2. In contrast, elevated temperature shortened the developmental time and, at a molecular level, showed signs of alternative splicing and the potential for RNA editing. The data also suggest that the initiation of the symbiosis may be negatively affected by these environmental drivers of change in the biosphere, although coping mechanisms by the animal may occur.
Collapse
Affiliation(s)
- E Otjacques
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Cascais, Portugal
- Carnegie Science, Division of Biosphere Sciences and Engineering, Church Laboratory, California Institute of Technology, 1200 Pasadena, CA, United States
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - J R Paula
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Cascais, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i, 46-007 Lilipuna Road, Kaneohe, HI 96744, USA
| | - E G Ruby
- Carnegie Science, Division of Biosphere Sciences and Engineering, Church Laboratory, California Institute of Technology, 1200 Pasadena, CA, United States
| | - J C Xavier
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- British Antarctic Survey (BAS), Natural Environment Research Council (NERC), Cambridge, United Kingdom
| | - M J McFall-Ngai
- Carnegie Science, Division of Biosphere Sciences and Engineering, Church Laboratory, California Institute of Technology, 1200 Pasadena, CA, United States
| | - R Rosa
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Cascais, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - C Schunter
- Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR
| |
Collapse
|
55
|
Walker NS, Isma L, García N, True A, Walker T, Watkins J. The Young and the Resilient: Investigating Coral Thermal Resilience in Early Life Stages. Integr Comp Biol 2024; 64:1141-1153. [PMID: 39054304 DOI: 10.1093/icb/icae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Global ocean warming is affecting keystone species distributions and fitness, resulting in the degradation of marine ecosystems. Coral reefs are one of the most diverse and productive marine ecosystems. However, reef-building corals, the foundational taxa of coral reef ecosystems, are severely threatened by thermal stress. Models predict 40-80% of global coral cover will be lost by 2100, which highlights the urgent need for widespread interventions to preserve coral reef functionality. There has been extensive research on coral thermal stress and resilience, but 95% of studies have focused on adult corals. It is necessary to understand stress during early life stages (larvae, recruits, and juveniles), which will better inform selective breeding programs that aim to replenish reefs with resilient stock. In this review, we surveyed the literature on coral thermal resilience in early life stages, and we highlight that studies have been conducted on relatively few species (commonly Acropora spp.) and in limited regions (mainly Australia). Reef-building coral management will be improved by comprehensively understanding coral thermal resilience and fitness across life stages, as well as in diverse species and regions.
Collapse
Affiliation(s)
- Nia S Walker
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Mānoa, HI, USA 96744
| | - Lys Isma
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA 33149
| | - Nepsis García
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA 48109
| | - Aliyah True
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA 33149
| | - Taylor Walker
- Department of BioSciences, Rice University, Houston, TX, USA 77005
- Department of Environmental Science, Policy, & Management, University of California, Berkeley, Berkeley, CA, USA 94720
| | - Joyah Watkins
- Department of BioSciences, Rice University, Houston, TX, USA 77005
| |
Collapse
|
56
|
Belford SG. Combining Morphological Characteristics and DNA Barcoding Techniques Confirm Sea Urchins of the Genus Echinometra (Echinodermata: Echinoidea) in Marine Habitat Located at Extreme Regions of the Caribbean Sea. Integr Comp Biol 2024; 64:1078-1086. [PMID: 38918059 DOI: 10.1093/icb/icae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024] Open
Abstract
Echinometra spp. are pantropical echinoids found in benthic marine habitat throughout the Caribbean, Atlantic, and Indo-West Pacific oceanic regions. Currently, morphology and molecular data are sparse for echinoids observed along the northeastern coast of Toco, Trinidad, where they are relatively common. Additionally, accurate species identity for Echinometra spp. remains dynamic at both northernmost and southernmost parts of the Caribbean Sea. Although distribution of sea urchins in the genus Echinometra have extensively been studied throughout the Atlantic and Indo-West Pacific, information on its range of distribution at the edge of the Caribbean Sea is lacking. In this study, the mitochondrial Cytochrome c Oxidase subunit I (mt COI) gene was amplified using polymerase chain reaction, then sequenced. Based on successfully obtained gene sequences for 581 base pairs, the echinoid species Echinometra lucunter and Echinometra viridis were identified for black and red color morphotypes from Trinidad (n = 23) and Key Largo, Florida (n = 6), respectively. Furthermore, these specimens were genetically identical to species identified in other studies for Puerto Rico, Panamá, Honduras, and Belize. Although morphological variations, such as spine and test color occur throughout Echinometra spp., molecular identification using the barcoding technique confirmed E. lucunter color morphs for the first time in Trinidad. Since the status of E. lucunter populations, specifically at the most northern and southern regions of the Caribbean Sea is dynamic, further studies using gene markers are essential in determining species distribution, in light of current trends in climate change.
Collapse
Affiliation(s)
- Stanton G Belford
- School of Mathematics and Sciences, University of Tennessee Southern, 433 West Madison Street, Pulaski, Tennessee 38478, USA
- Black in Marine Science, 522 W Riverside Dr., Spokane, WA 99201, USA
| |
Collapse
|
57
|
Boscarino-Gaetano R, Vernes K, Nordberg EJ. Creating wildlife habitat using artificial structures: a review of their efficacy and potential use in solar farms. Biol Rev Camb Philos Soc 2024; 99:1848-1867. [PMID: 38735646 DOI: 10.1111/brv.13095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
The biodiversity crisis is exacerbated by a growing human population modifying nearly three-quarters of the Earth's land surface area for anthropogenic uses. Habitat loss and modification represent the largest threat to biodiversity and finding ways to offset species decline has been a significant undertaking for conservation. Landscape planning and conservation strategies can enhance habitat suitability for biodiversity in human-modified landscapes. Artificial habitat structures such as artificial reefs, nest boxes, chainsaw hollows, artificial burrows, and artificial hibernacula have all been successfully implemented to improve species survival in human-modified and fragmented landscapes. As the global shift towards renewable energy sources continues to rise, the development of photovoltaic systems is growing exponentially. Large-scale renewable projects, such as photovoltaic solar farms have large space requirements and thus have the potential to displace local wildlife. We discuss the feasibility of 'conservoltaic systems' - photovoltaic systems that incorporate elements tailored specifically to enhance wildlife habitat suitability and species conservation. Artificial habitat structures can potentially lessen the impacts of industrial development (e.g., photovoltaic solar farms) through strategic landscape planning and an understanding of local biodiversity requirements to facilitate recolonization.
Collapse
Affiliation(s)
- Remo Boscarino-Gaetano
- Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, 2351, Australia
| | - Karl Vernes
- Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, 2351, Australia
| | - Eric J Nordberg
- Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, 2351, Australia
| |
Collapse
|
58
|
Li J, Li W, Huang Y, Bu H, Zhang K, Lin S. Phosphorus limitation intensifies heat-stress effects on the potential mutualistic capacity in the coral-derived Symbiodinium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173912. [PMID: 38871329 DOI: 10.1016/j.scitotenv.2024.173912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/08/2024] [Accepted: 06/08/2024] [Indexed: 06/15/2024]
Abstract
Coral reef ecosystems have been severely ravaged by global warming and eutrophication. Eutrophication often originates from nitrogen (N) overloading that creates stoichiometric phosphorus (P) limitation, which can be aggravated by sea surface temperature rises that enhances stratification. However, how P-limitation interacts with thermal stress to impact coral-Symbiodiniaceae mutualism is poorly understood and underexplored. Here, we investigated the effect of P-limitation (P-depleted vs. P-replete) superimposed on heat stress (31 °C vs. 25 °C) on a Symbiodinium strain newly isolated from the coral host by a 14-day incubation experiment. The heat and P-limitation co-stress induced an increase in alkaline phosphatase activity and reppressed cell division, photosynthetic efficiency, and expression of N uptake and assimilation genes. Moreover, P limitation intensified downregulation of carbon fixation (light and dark reaction) and metabolism (glycolysis) pathways in heat stressed Symbiodinium. Notably, co-stress elicited a marked transcriptional downregulation of genes encoding photosynthates transporters and microbe-associated molecular patterns, potentially undermining the mutualism potential. This work sheds light on the interactive effects of P-limitation and heat stress on coral symbionts, indicating that nutrient imbalance in the coral reef ecosystem can intensify heat-stress effects on the mutualistic capacity of Symbiodiniaceae.
Collapse
Affiliation(s)
- Jiashun Li
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, State Key Laboratory of Marine Environmental Science, and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Wenzhe Li
- State Key Laboratory of Marine Resource Utilization in the South China Sea and School of Marine Biology and Fisheries, Hainan University, Haikou, China
| | - Yulin Huang
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, State Key Laboratory of Marine Environmental Science, and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Hailu Bu
- State Key Laboratory of Marine Resource Utilization in the South China Sea and School of Marine Biology and Fisheries, Hainan University, Haikou, China
| | - Kaidian Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea and School of Marine Biology and Fisheries, Hainan University, Haikou, China.
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA.
| |
Collapse
|
59
|
Sun Z, Wang H, Fan M. Stoichiometric theory in aquatic carbon sequestration under elevated carbon dioxide. Math Biosci 2024; 376:109285. [PMID: 39179022 DOI: 10.1016/j.mbs.2024.109285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/16/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Global climate change projections indicate that the atmospheric concentration of carbon dioxide will increase twofold by the end of this century. However, how the elevated carbon dioxide affects aquatic carbon sequestration and species composition within aquatic microbial communities remains inconclusive. To address this knowledge gap, we formulate a bacteria-algae interaction model to characterize the effects of elevated carbon dioxide on aquatic ecosystems and rigorously derive the thresholds determining the persistence and extinction of algae or bacteria. We explore the impacts of abiotic factors, such as light intensity, nutrient concentration, inorganic carbon concentration and water depth, on algae and bacteria dynamics. The main findings indicate that the elevated atmospheric carbon dioxide will increase algae biomass and thus facilitate carbon sequestration. On the other hand, the elevated atmospheric carbon dioxide will reduce bacterial biomass, and excessive carbon dioxide concentrations can even destroy bacterial communities. Numerical simulations indicate that eutrophication and intensified light intensity can reduce aquatic carbon sequestration, while elevated atmospheric carbon dioxide levels can mitigate eutrophication. Furthermore, higher algae respiration and death rates are detrimental to carbon sequestration, whereas the increased bacterial respiration rates promote carbon sequestration.
Collapse
Affiliation(s)
- Zhenyao Sun
- School of Mathematics and Statistics, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin, 130024, PR China; Interdisciplinary Lab for Mathematical Ecology and Epidemiology, Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton T6G 2G1, Canada
| | - Hao Wang
- Interdisciplinary Lab for Mathematical Ecology and Epidemiology, Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton T6G 2G1, Canada
| | - Meng Fan
- School of Mathematics and Statistics, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin, 130024, PR China.
| |
Collapse
|
60
|
Fernández PA, Amsler CD, Hurd CL, Díaz PA, Gaitán-Espitia JD, Macaya EC, Schmider-Martínez A, Garrido I, Murúa P, Buschmann AH. Diverse inorganic carbon uptake strategies in Antarctic seaweeds: Revealing species-specific responses and implications for Ocean Acidification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174006. [PMID: 38889822 DOI: 10.1016/j.scitotenv.2024.174006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/09/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Seaweeds are important components of coastal benthic ecosystems along the Western Antarctic Peninsula (WAP), providing refuge, food, and habitat for numerous associated species. Despite their crucial role, the WAP is among the regions most affected by global climate change, potentially impacting the ecology and physiology of seaweeds. Elevated atmospheric CO2 concentrations have led to increased dissolved inorganic carbon (Ci) with consequent declines in oceanic pH and alterations in seawater carbonate chemistry, known as Ocean Acidification (OA). Seaweeds possess diverse strategies for Ci uptake, including CO2 concentrating mechanisms (CCMs), which may distinctly respond to changes in Ci concentrations. Conversely, some seaweeds do not operate CCMs (non-CCM species) and rely solely on CO2. Nevertheless, our understanding of the status and functionality of Ci uptake strategies in Antarctic seaweeds remains limited. Here, we investigated the Ci uptake strategies of seaweeds along a depth gradient in the WAP. Carbon isotope signatures (δ13C) and pH drift assays were used as indicators of the presence or absence of CCMs. Our results reveal variability in CCM occurrence among algal phyla and depths ranging from 0 to 20 m. However, this response was species specific. Among red seaweeds, the majority relied solely on CO2 as an exogenous Ci source, with a high percentage of non-CCM species. Green seaweeds exhibited depth-dependent variations in CCM status, with the proportion of non-CCM species increasing at greater depths. Conversely, brown seaweeds exhibited a higher prevalence of CCM species, even in deep waters, indicating the use of CO2 and HCO3-. Our results are similar to those observed in temperate and tropical regions, indicating that the potential impacts of OA on Antarctic seaweeds will be species specific. Additionally, OA may potentially increase the abundance of non-CCM species relative to those with CCMs.
Collapse
Affiliation(s)
- Pamela A Fernández
- Centro i∼mar, CeBiB & MASH, Universidad de Los Lagos, Camino a Chinquihue km6, Puerto Montt 580000, Chile.
| | - Charles D Amsler
- University of Alabama at Birmingham, Department of Biology, Birmingham, AL 35233, USA
| | - Catriona L Hurd
- Institute for marine and Antarctic Studies (IMAS), University of Tasmania, TAS 7001, Australia
| | - Patricio A Díaz
- Centro i∼mar, Universidad de Los Lagos, Camino a Chinquihue km6, Puerto Montt 580000, Chile
| | - Juan Diego Gaitán-Espitia
- The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong
| | - Erasmo C Macaya
- Departamento de Oceanografía, Universidad de Concepción, Concepción, Chile; Centro FONDAP de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia 5090000, Chile
| | | | - Ignacio Garrido
- Centro FONDAP de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia 5090000, Chile; Laboratorio Costero de Recursos Acuáticos de Calfuco (LCRAC), Instituto Ciencias Marinas y Limnológicas (ICML), Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile; Department of Biology and Québec-Océan, Laval University, Québec, QC G1V 0A6, Canada
| | - Pedro Murúa
- Laboratorio de Macroalgas y Ficopatologia, Instituto de Acuicultura, Universidad Austral de Chile, Sede Puerto Montt, Puerto Montt, Chile
| | - Alejandro H Buschmann
- Centro i∼mar, CeBiB & MASH, Universidad de Los Lagos, Camino a Chinquihue km6, Puerto Montt 580000, Chile
| |
Collapse
|
61
|
Mellin C, Stuart-Smith RD, Heather F, Oh E, Turak E, Edgar GJ. Coral responses to a catastrophic marine heatwave are decoupled from changes in total coral cover at a continental scale. Proc Biol Sci 2024; 291:20241538. [PMID: 39378994 PMCID: PMC11461067 DOI: 10.1098/rspb.2024.1538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 10/10/2024] Open
Abstract
The services provided by the world's coral reefs are threatened by increasingly frequent and severe marine heatwaves. Heatwave-induced degradation of reefs has often been inferred from the extent of the decline in total coral cover, which overlooks extreme variation among coral taxa in their susceptibility and responses to thermal stress. Here, we provide a continental-scale assessment of coral cover changes at 262 shallow tropical reef sites around Australia, using ecological survey data on 404 coral taxa before and after the 2016 mass bleaching event. A strong spatial structure in coral community composition along large-scale environmental gradients largely dictated how coral communities responded to heat stress. While heat stress variables were the best predictors of change in total coral cover, the pre-heatwave community composition best predicted the temporal beta-diversity index (an indicator of change in community composition over time). Indicator taxa in each coral community differed before and after the heatwave, highlighting potential winners and losers of climate-driven coral bleaching. Our results demonstrate how assessment of change in total cover alone may conceal very different responses in community structure, some of which showed strong regional consistency, and may provide a telling outlook of how coral reefs may reorganize in a warmer future.
Collapse
Affiliation(s)
- Camille Mellin
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, South Australia5005, Australia
| | - Rick D. Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Freddie Heather
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Elizabeth Oh
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Emre Turak
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Graham J. Edgar
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
62
|
Gapper JJ, Maharjan S, Li W, Linstead E, Tiwari SP, Qurban MA, El-Askary H. A generalized machine learning model for long-term coral reef monitoring in the Red Sea. Heliyon 2024; 10:e38249. [PMID: 39381212 PMCID: PMC11458965 DOI: 10.1016/j.heliyon.2024.e38249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/03/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
Coral reefs, despite covering less than 0.2 % of the ocean floor, harbor approximately 35 % of all known marine species, making their conservation critical. However, coral bleaching, exacerbated by climate change and phenomena such as El Niño, poses a significant threat to these ecosystems. This study focuses on the Red Sea, proposing a generalized machine learning approach to detect and monitor changes in coral reef cover over an 18-year period (2000-2018). Using Landsat 7 and 8 data, a Support Vector Machine (SVM) classifier was trained on depth-invariant indices (DII) derived from the Gulf of Aqaba and validated against ground truth data from Umluj. The classifier was then applied to Al Wajh, demonstrating its robustness across different sites and times. Results indicated a significant decline in coral cover: 11.4 % in the Gulf of Aqaba, 3.4 % in Umluj, and 13.6 % in Al Wajh. This study highlights the importance of continuous monitoring using generalized classifiers to mitigate the impacts of environmental changes on coral reefs.
Collapse
Affiliation(s)
- Justin J. Gapper
- Earth Systems Science and Data Solutions Lab, Chapman University, Orange, CA, 92866, USA
| | - Surendra Maharjan
- Earth Systems Science and Data Solutions Lab, Chapman University, Orange, CA, 92866, USA
| | - Wenzhao Li
- Earth Systems Science and Data Solutions Lab, Chapman University, Orange, CA, 92866, USA
- Schmid College of Science and Technology, Chapman University, Orange, CA, 92866, USA
| | - Erik Linstead
- Fowler School of Engineering, Chapman University, Orange, CA, 92866, USA
| | - Surya P. Tiwari
- Center for Environment and Water, The Research Institute, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | | | - Hesham El-Askary
- Earth Systems Science and Data Solutions Lab, Chapman University, Orange, CA, 92866, USA
- Schmid College of Science and Technology, Chapman University, Orange, CA, 92866, USA
- Department of Environmental Sciences, Faculty of Science, Alexandria University, Moharem Bek, Alexandria, 21522, Egypt
| |
Collapse
|
63
|
Zhang H, Wang X, Qu M, Yu H, Yin J, Liu X, Liu Y, Zhang B, Zhang Y, Wei Z, Yang F, Wang J, Shi C, Fan G, Sun J, Long L, Hutchins DA, Bowler C, Lin S, Wang D, Lin Q. Genome of Halimeda opuntia reveals differentiation of subgenomes and molecular bases of multinucleation and calcification in algae. Proc Natl Acad Sci U S A 2024; 121:e2403222121. [PMID: 39302967 PMCID: PMC11441479 DOI: 10.1073/pnas.2403222121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/16/2024] [Indexed: 09/22/2024] Open
Abstract
Algae mostly occur either as unicellular (microalgae) or multicellular (macroalgae) species, both being uninucleate. There are important exceptions, however, as some unicellular algae are multinucleate and macroscopic, some of which inhabit tropical seas and contribute to biocalcification and coral reef robustness. The evolutionary mechanisms and ecological significance of multinucleation and associated traits (e.g., rapid wound healing) are poorly understood. Here, we report the genome of Halimeda opuntia, a giant multinucleate unicellular chlorophyte characterized by interutricular calcification. We achieve a high-quality genome assembly that shows segregation into four subgenomes, with evidence for polyploidization concomitant with historical sea level and climate changes. We further find myosin VIII missing in H. opuntia and three other unicellular multinucleate chlorophytes, suggesting a potential mechanism that may underpin multinucleation. Genome analysis provides clues about how the unicellular alga could survive fragmentation and regenerate, as well as potential signatures for extracellular calcification and the coupling of calcification with photosynthesis. In addition, proteomic alkalinity shifts were found to potentially confer plasticity of H. opuntia to ocean acidification (OA). Our study provides crucial genetic information necessary for understanding multinucleation, cell regeneration, plasticity to OA, and different modes of calcification in algae and other organisms, which has important implications in reef conservation and bioengineering.
Collapse
Affiliation(s)
- Hao Zhang
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- Marine Biodiversity and Ecological Evolution Research Center, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen361102, China
| | - Xin Wang
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- Marine Biodiversity and Ecological Evolution Research Center, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | - Meng Qu
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- Marine Biodiversity and Ecological Evolution Research Center, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | - Haiyan Yu
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen361102, China
| | - Jianping Yin
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | | | - Yuhong Liu
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | - Bo Zhang
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | - Yanhong Zhang
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | - Zhangliang Wei
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | - Fangfang Yang
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | - Jingtian Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen361102, China
| | | | | | - Jun Sun
- College of Marine Science and Technology, China University of Geosciences, Wuhan430074, China
| | - Lijuan Long
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | - David A. Hutchins
- Department of Biological Sciences, Marine and Environmental Biology, University of Southern California, Los Angeles, CA90007
| | - Chris Bowler
- Institut de Biologie de l’Ecole Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, Paris Sciences et Lettres Research University, Paris75005, France
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen361102, China
- Department of Marine Sciences, University of Connecticut, Groton, CT06340
| | - Dazhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen361102, China
| | - Qiang Lin
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- Marine Biodiversity and Ecological Evolution Research Center, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
64
|
Rosic N, Delamare-Deboutteville J, Dove S. Heat stress in symbiotic dinoflagellates: Implications on oxidative stress and cellular changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173916. [PMID: 38866148 DOI: 10.1016/j.scitotenv.2024.173916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/18/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Global warming has been shown to harmfully affect symbiosis between Symbiodiniaceae and other marine invertebrates. When symbiotic dinoflagellates (the genus Breviolum) were in vitro exposed to acute heat stress of +7 °C for a period of 5 days, the results revealed the negative impact on all physiological and other cellular parameters measured. Elevated temperatures resulted in a severe reduction in algal density of up to 9.5-fold, as well as pigment concentrations, indicating the status of the physiological stress and early signs of photo-bleaching. Reactive oxygen species (ROS) were increased in all heated dinoflagellate cells, while the antioxidant-reduced glutathione levels initially dropped on day one but increased under prolonged temperature stress. The cell viability parameters were reduced by 97 % over the heating period, with an increased proportion of apoptotic and necrotic cells. Autofluorescence (AF) for Cy5-PE 660-20 was reduced from 1.7-fold at day 1 to up to 50-fold drop at the end of heating time, indicating that the AF changes were highly sensitive to heat stress and that it could be an extremely sensitive tool for assessing the functionality of algal photosynthetic machinery. The addition of the drug 5-AZA-2'-deoxycytidine (5-AZA), which inhibits DNA methylation processes, was assessed in parallel and contributed to some alterations in algal cellular stress response. The presence of drug 5-AZA combined with the temperature stress had an additional impact on Symbiodiniaceae density and cell complexity, including the AF levels. These variations in cellular stress response under heat stress and compromised DNA methylation conditions may indicate the importance of this epigenetic mechanism for symbiotic dinoflagellate thermal tolerance adaptability over a longer period, which needs further exploration. Consequently, the increased ROS levels and changes in AF signals reported during ongoing heat stress in dinoflagellate cells could be used as early stress biomarkers in these microalgae and potentially other photosynthetic species.
Collapse
Affiliation(s)
- Nedeljka Rosic
- Faculty of Health, Southern Cross University, Gold Coast, QLD, Australia; Marine Ecology Research Centre, Southern Cross University, Lismore, NSW, Australia.
| | | | - Sophie Dove
- School of Biological Sciences, The University of Queensland, St. Lucia, Qld, Australia
| |
Collapse
|
65
|
Wang Z, Cao Z, Liu Z, Zhai W, Luo Y, Lin Y, Roberts E, Gan J, Dai M. Pacific Ocean-originated anthropogenic carbon and its long-term variations in the South China Sea. SCIENCE ADVANCES 2024; 10:eadn9171. [PMID: 39270023 PMCID: PMC11397484 DOI: 10.1126/sciadv.adn9171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024]
Abstract
Coastal oceans, traditionally seen as a conduit for transporting atmospheric carbon dioxide (CO2)-derived anthropogenic carbon (CANT) to open oceans, exhibit complex carbon exchanges at their interface. South China Sea (SCS) exemplifies this complexity, where interactions with the Pacific, particularly through Kuroshio intrusion, challenge the understanding of CANT source and variability in a coastal ocean. Contrary to prevailing paradigm expectations, our high-resolution, long-term data reveal that CANT in the SCS primarily originates from Pacific water injection across the Luzon Strait rather than atmospheric CO2 invasion. Over the past two decades, the SCS has experienced increasing CANT levels, with notable interannual fluctuations driven by El Niño and La Niña events influencing Kuroshio intrusion, generating anomalously high and low CANT inventories, respectively. This highlights an overlooked CANT transport pathway from open to coastal oceans, responsible for cumulative ocean acidification that has already affected coral reefs enriched in the SCS located west of the Coral Triangle.
Collapse
Affiliation(s)
- Zhixuan Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Zhimian Cao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Zhiqiang Liu
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Weidong Zhai
- Frontier Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Yaohua Luo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yuxin Lin
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Elliott Roberts
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Jianping Gan
- Department of Ocean Science and Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong, China
| | - Minhan Dai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
66
|
Zhang Y, Zhang Y, Tang X, Guo X, Yang Q, Sun H, Wang H, Ling J, Dong J. A transcriptome-wide analysis provides novel insights into how Metabacillus indicus promotes coral larvae metamorphosis and settlement. BMC Genomics 2024; 25:840. [PMID: 39242500 PMCID: PMC11380378 DOI: 10.1186/s12864-024-10742-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Coral reefs experience frequent and severe disturbances that can overwhelm their natural resilience. In such cases, ecological restoration is essential for coral reef recovery. Sexual reproduction has been reported to present the simplest and most cost-effective means for coral reef restoration. However, larval settlement and post-settlement survival represent bottlenecks for coral recruitment in sexual reproduction. While bacteria play a significant role in triggering coral metamorphosis and settlement in many coral species, the underlying molecular mechanisms remain largely unknown. In this study, we employed a transcriptome-level analysis to elucidate the intricate interactions between bacteria and coral larvae that are crucial for the settlement process. RESULTS High Metabacillus indicus strain cB07 inoculation densities resulted in the successful induction of metamorphosis and settlement of coral Pocillopora damicoris larvae. Compared with controls, inoculated coral larvae exhibited a pronounced increase in the abundance of strain cB07 during metamorphosis and settlement, followed by a significant decrease in total lipid contents during the settled stage. The differentially expressed genes (DEGs) during metamorphosis were significantly enriched in amino acid, protein, fatty acid, and glucose related metabolic pathways. In settled coral larvae induced by strain cB07, there was a significant enrichment of DEGs with essential roles in the establishment of a symbiotic relationship between coral larvae and their symbiotic partners. The photosynthetic efficiency of strain cB07 induced primary polyp holobionts was improved compared to those of the negative controls. In addition, coral primary polyps induced by strain cB07 showed significant improvements in energy storage and survival. CONCLUSIONS Our findings revealed that strain cB07 can promote coral larval settlement and enhance post-settlement survival and fitness. Manipulating coral sexual reproduction with strain cB07 can overcome the current recruitment bottleneck. This innovative approach holds promise for future coral reef restoration efforts.
Collapse
Affiliation(s)
- Yanying Zhang
- Ocean School, Yantai University, Yantai, 264005, China.
| | - Ying Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xiaoyu Tang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xiangrui Guo
- Ocean School, Yantai University, Yantai, 264005, China
| | - Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou, 515041, PR China
| | - Hao Sun
- Ocean School, Yantai University, Yantai, 264005, China
| | - Hanzhang Wang
- Ocean School, Yantai University, Yantai, 264005, China
| | - Juan Ling
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou, 515041, PR China
| | - Junde Dong
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China.
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou, 515041, PR China.
| |
Collapse
|
67
|
Millican HR, Byrne M, Keesing J, Foo SA. Feeding biology of crown-of-thorns seastars across sites differing in Acropora availability. MARINE ENVIRONMENTAL RESEARCH 2024; 200:106655. [PMID: 39088888 DOI: 10.1016/j.marenvres.2024.106655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
Crown-of-thorns seastars (COTS, Acanthaster spp.) are a major contributor to coral mortality across the Indo-Pacific and can cause extensive reef degradation. The diet preferences of COTS can influence coral community structure by predation on fast-growing genera such as Acropora and avoidance of rare coral genera. In non-outbreaking populations, this preference can increase species diversity. The feeding biology of Acanthaster cf. solaris was compared at two sites (Shark Alley and Second Lagoon) on One Tree Island reef, located in the southern Great Barrier Reef, to determine whether the availability of Acropora influences differences in COTS movement, feeding preference and feeding rates within the same reef system. Acanthaster cf. solaris were tracked daily for five days across both sites, with measurements of movement, feeding scars and coral composition recorded over this time. While Shark Alley and Second Lagoon have similar live coral cover (40 and 44 % respectively), Shark Alley has significantly lower Acropora availability than Second Lagoon (2 vs 32 %). The feeding rate of COTS was significantly different between Shark Alley and Second Lagoon (259.8 and 733.8 cm2 of coral per day, respectively), but did not differ between seastar size (25-40 cm and >40 cm). Acanthaster cf. solaris showed preference for Pocillopora, Seriatopora, Acropora and Isopora and an avoidance of Porites at both sites. The results suggest that for coral reef sites where Acropora is not dominant, COTS outbreaks may be less likely to initiate, with comparatively low feeding rates found in comparison to coral reefs where Acropora is dominant.
Collapse
Affiliation(s)
- Hayden R Millican
- School of Life and Environmental Science, The University of Sydney, NSW, 2006, Australia.
| | - Maria Byrne
- School of Life and Environmental Science, The University of Sydney, NSW, 2006, Australia
| | - John Keesing
- CSIRO Oceans and Atmosphere Research, Crawley, WA, 6009, Australia; School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Shawna A Foo
- School of Life and Environmental Science, The University of Sydney, NSW, 2006, Australia
| |
Collapse
|
68
|
Luza AL, Bender MG, Ferreira CEL, Floeter SR, Francini-Filho RB, Longo GO, Pinheiro HT, Quimbayo JP, Bastazini VAG. Coping with collapse: Functional robustness of coral-reef fish network to simulated cascade extinction. GLOBAL CHANGE BIOLOGY 2024; 30:e17513. [PMID: 39319475 DOI: 10.1111/gcb.17513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/13/2024] [Accepted: 08/17/2024] [Indexed: 09/26/2024]
Abstract
Human activities and climate change have accelerated species losses and degradation of ecosystems to unprecedented levels. Both theoretical and empirical evidence suggest that extinction cascades contribute substantially to global species loss. The effects of extinction cascades can ripple across levels of ecological organization, causing not only the secondary loss of taxonomic diversity but also functional diversity erosion. Here, we take a step forward in coextinction analysis by estimating the functional robustness of reef fish communities to species loss. We built a tripartite network with nodes and links based on a model output predicting reef fish occupancy (113 species) as a function of coral and turf algae cover in Southwestern Atlantic reefs. This network comprised coral species, coral-associated fish (site occupancy directly related to coral cover), and co-occurring fish (occupancy indirectly related to coral cover). We used attack-tolerance curves and estimated network robustness (R) to quantify the cascading loss of reef fish taxonomic and functional diversity along three scenarios of coral species loss: degree centrality (removing first corals with more coral-associated fish), bleaching vulnerability and post-bleaching mortality (most vulnerable removed first), and random removal. Degree centrality produced the greatest losses (lowest R) in comparison with other scenarios. In this scenario, while functional diversity was robust to the direct loss of coral-associated fish (R = 0.85), the taxonomic diversity was not robust to coral loss (R = 0.54). Both taxonomic and functional diversity showed low robustness to indirect fish extinctions (R = 0.31 and R = 0.57, respectively). Projections of 100% coral species loss caused a reduction of 69% of the regional trait space area. The effects of coral loss in Southwestern Atlantic reefs went beyond the direct coral-fish relationships. Ever-growing human impacts on reef ecosystems can cause extinction cascades with detrimental consequences for fish assemblages that benefit from corals.
Collapse
Affiliation(s)
- André L Luza
- Department of Ecology and Evolution, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Université de Bordeaux, INRAE, BIOGECO, Pessac, France
| | - Mariana G Bender
- Department of Ecology and Evolution, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Carlos E L Ferreira
- Department of Marine Biology, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Sergio R Floeter
- Department of Ecology and Zoology, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Ronaldo B Francini-Filho
- Centre for Marine Biology (CEBIMar), Universidade de São Paulo, São Sebastião, São Paulo, Brazil
| | - Guilherme O Longo
- Department of Oceanography and Limnology, Universidade Federal Do Rio Grande Do Norte, Natal, Rio Grande do Norte, Brazil
| | - Hudson T Pinheiro
- Centre for Marine Biology (CEBIMar), Universidade de São Paulo, São Sebastião, São Paulo, Brazil
| | - Juan P Quimbayo
- Department of Biology, University of Miami, Coral Gables, Florida, USA
| | - Vinicius A G Bastazini
- Mediterranean Institute for Agriculture, Environment and Development (MED), Global Change and Sustainability Institute (CHANGE), Institute for Advanced Studies and Research (IIFA), University of Evora, Evora, Portugal
- Rui Nabeiro' Biodiversity Chair, University of Evora, Evora, Portugal
| |
Collapse
|
69
|
Zhou J, Zheng Y, Hou L, Qi L, Mao T, Yin G, Liu M. Nitrogen input modulates the effects of coastal acidification on nitrification and associated N 2O emission. WATER RESEARCH 2024; 261:122041. [PMID: 38972235 DOI: 10.1016/j.watres.2024.122041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Acidification of coastal waters, synergistically driven by increasing atmospheric carbon dioxide (CO2) and intensive land-derived nutrient inputs, exerts significant stresses on the biogeochemical cycles of coastal ecosystem. However, the combined effects of anthropogenic nitrogen (N) inputs and aquatic acidification on nitrification, a critical process of N cycling, remains unclear in estuarine and coastal ecosystems. Here, we showed that increased loading of ammonium (NH4+) in estuarine and coastal waters alleviated the inhibitory effect of acidification on nitrification rates but intensified the production of the potent greenhouse gas nitrous oxide (N2O), thus accelerating global climate change. Metatranscriptomes and natural N2O isotopic signatures further suggested that the enhanced emission of N2O may mainly source from hydroxylamine (NH2OH) oxidation rather than from nitrite (NO2-) reduction pathway of nitrifying microbes. This study elucidates how anthropogenic N inputs regulate the effects of coastal acidification on nitrification and associated N2O emissions, thereby enhancing our ability to predict the feedbacks of estuarine and coastal ecosystems to climate change and human perturbations.
Collapse
Affiliation(s)
- Jie Zhou
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Yanling Zheng
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China.
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China.
| | - Lin Qi
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Tieqiang Mao
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| |
Collapse
|
70
|
Innangi S, Di Febbraro M, Innangi M, Grasselli F, Belfiore AM, Costantini F, Romagnoli C, Tonielli R. Habitat suitability modelling to predict the distribution of deep coral ecosystems: The case of Linosa Island (southern Mediterranean Sea, Italy). MARINE ENVIRONMENTAL RESEARCH 2024; 200:106656. [PMID: 39067207 DOI: 10.1016/j.marenvres.2024.106656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
In areas with limited field data, predictive habitat mapping is a valuable method for elucidating species-environment relationships and enhancing our knowledge of the spatial distribution and complexity of benthic habitats. Species distribution models (SDMs) can be an important tool to support in science-based ecosystem management. The availability of direct observations of mesophotic species, including gorgonians and black corals, during costly surveys is generally limited. Therefore, predicting the distribution of mesophotic species in relation to key physical parameters of the seafloor would help improving conservation strategies in existing and new Marine Protected Areas (MPAs). This study aims to assess the distribution of gorgonians and black corals off Linosa Island, in the Strait of Sicily, a biogeographic boundary area between the western and eastern Mediterranean. The volcanic island of Linosa represents a small, naturally preserved area, with very limited human pressure, hosting rich marine benthic biodiversity on its wide submarine portions. Distribution of the most common coral species off Linosa Island was modelled under an SDM framework, relying on direct observations collected during two research cruises in 2016 and 2017 and a series of terrain parameters acquired through geophysical techniques. We used the so-called "ensemble of small models" approach to calibrate SDMs, which achieved fair-to-excellent results (AUC >0.7). In addition to identifying depth as the primary factor influencing coral distribution, our study also highlighted ruggedness as a significant terrain variable. Specifically, the depth range of 110-230 m emerged as the critical parameter determining habitat suitability for all modelled species, also highlighting peculiar and specie-specific habitat requirements.
Collapse
Affiliation(s)
- S Innangi
- Institute of Marine Sciences of the National Research Council (CNR-ISMAR), Napoli, Italy
| | - M Di Febbraro
- EnviXLab, Department of Biosciences and Territory, University of Molise, Pesche Isernia, Italy
| | - M Innangi
- EnviXLab, Department of Biosciences and Territory, University of Molise, Pesche Isernia, Italy.
| | - F Grasselli
- Hydrobiological Station of Chioggia "Umberto D'Ancona, " Department of Biology, University of Padova, Chioggia Venezia, Italy; Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy
| | - A M Belfiore
- EnviXLab, Department of Biosciences and Territory, University of Molise, Pesche Isernia, Italy
| | - F Costantini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy; National Interuniversity Consortium for Marine Sciences, Roma, Italy
| | - C Romagnoli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy
| | - R Tonielli
- Institute of Marine Sciences of the National Research Council (CNR-ISMAR), Napoli, Italy
| |
Collapse
|
71
|
He X, Liao Y, Shen Y, Shao J, Wang S, Bao Y. Transcriptomic analysis of mRNA and miRNA reveals new insights into the regulatory mechanisms of Anadara granosa responses to heat stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101311. [PMID: 39154435 DOI: 10.1016/j.cbd.2024.101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Temperature fluctuations resulting from climate change and global warming pose significant threats to various species. The blood clam, Anadara granosa, a commercially important marine bivalve, predominantly inhabits intertidal mudflats that are especially susceptible to elevated temperatures. This vulnerability has led to noticeable declines in the survival rates of A. granosa larvae, accompanied by an increase in malformations. Despite these observable trends, there is a lack of comprehensive research on the regulatory mechanisms underlying A. granosa's responses to heat stress. In this study, we examined the survival rates of A. granosa under varying high temperature conditions, selecting 34 °C as heat stress temperature. Enzyme activity assays have shed light on A. granosa's adaptive response to heat stress, revealing its ability to maintain redox balance and transition from aerobic to anaerobic metabolic pathways. Subsequently, mRNA and miRNA transcriptome analyses were conducted, elucidating several key responses of A. granosa to heat stress. These responses include the upregulation of transcription and protein synthesis, downregulation of proteasome activity, and metabolic pattern adjustments. Furthermore, we identified miRNA-mRNA networks implicated in heat stress responses, potentially serving as valuable candidate markers for A. granosa's heat stress response. Notably, we validated the involvement of agr-miR-3199 in A. granosa's heat stress response through its regulation of the target gene Foxj1. These findings not only deepen our understanding of the molecular mechanisms underlying the blood clam's response to heat stress but also offer valuable insights for enhancing heat stress resilience in the blood clam aquaculture industry. Moreover, they contribute to improved cultivation strategies for molluscs in the face of global warming and have significant implications for the conservation of marine resources and the preservation of ecological balance.
Collapse
Affiliation(s)
- Xin He
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai 315604, China; Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China; Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China
| | - Yushan Liao
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Yiping Shen
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Junfa Shao
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Shi Wang
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China
| | - Yongbo Bao
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai 315604, China; Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China.
| |
Collapse
|
72
|
Abe H, Hayashi S, Sakuma A, Yamano H. Priority sites for coral aquaculture in Kume Island based on numerical simulation. ESTUARINE, COASTAL AND SHELF SCIENCE 2024; 303:108797. [DOI: 10.1016/j.ecss.2024.108797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
73
|
Kim KT, Henkelman G, Katz LE, Werth CJ. New Insights into Calcite Dissolution Mechanisms under Water, Proton, or Carbonic Acid-Dominated Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11331-11341. [PMID: 38907708 DOI: 10.1021/acs.est.4c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Carbonate minerals are ubiquitous in nature, and their dissolution impacts many environmentally relevant processes including preferential flow during geological carbon sequestration, pH buffering with climate-change induced ocean acidification, and organic carbon bioavailability in melting permafrost. In this study, we advance the atomic level understanding of calcite dissolution mechanisms to improve our ability to predict this complex process. We performed high pressure and temperature (1300 psi and 50 °C) batch experiments to measure transient dissolution of freshly cleaved calcite under H2O, H+, and H2CO3-dominated conditions, without and with an inhibitory anionic surfactant present. Before and after dissolution experiments, we measured dissolution etch-pit geometries using laser profilometry, and we used density functional theory to investigate relative adsorption energies of competing species that affect dissolution. Our results support the hypothesis that calcite dissolution is controlled by the ability of H2O to preferentially adsorb to surface Ca atoms over competing species, even when dissolution is dominated by H+ or H2CO3. More importantly, we identify for the first time that adsorbed H+ enhances the role of water by weakening surface Ca-O bonds. We also identify that H2CO3 undergoes dissociative adsorption resulting in adsorbed HCO3- and H+. Adsorbed HCO3- that competes with H2O for Ca acute edge sites inhibits dissolution, while adsorbed H+ at the neighboring surface of CO3 enhances dissolution. The net effect of the dissociative adsorption of H2CO3 is enhanced dissolution. These results will impact future efforts to more accurately model the impact of solutes in complex water matrices on carbonate mineral dissolution.
Collapse
Affiliation(s)
- Kyung Tae Kim
- Department of Civil, Architecture & Environmental Engineering, The University of Texas at Austin, Austin, Texas 78721, Unites States
| | - Graeme Henkelman
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78721, United States
| | - Lynn E Katz
- Department of Civil, Architecture & Environmental Engineering, The University of Texas at Austin, Austin, Texas 78721, Unites States
| | - Charles J Werth
- Department of Civil, Architecture & Environmental Engineering, The University of Texas at Austin, Austin, Texas 78721, Unites States
| |
Collapse
|
74
|
Graham BA, Hipfner JM, Wellband KW, Ito M, Burg TM. Genetic-environment associations explain genetic differentiation and variation between western and eastern North Pacific rhinoceros auklet ( Cerorhinca monocerata) breeding colonies. Ecol Evol 2024; 14:e11534. [PMID: 38994218 PMCID: PMC11237344 DOI: 10.1002/ece3.11534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 07/13/2024] Open
Abstract
Animals are strongly connected to the environments they live in and may become adapted to local environments. Examining genetic-environment associations of key indicator species, like seabirds, provides greater insights into the forces that drive evolution in marine systems. Here we examined a RADseq dataset of 19,213 SNPs for 99 rhinoceros auklets (Cerorhinca monocerata) from five western Pacific and 10 eastern Pacific breeding colonies. We used partial redundancy analyses to identify candidate adaptive loci and to quantify the effects of environmental variation on population genetic structure. We identified 262 candidate adaptive loci, which accounted for 3.0% of the observed genetic variation among western Pacific and eastern Pacific breeding colonies. Genetic variation was more strongly associated with pH and maximum current velocity, than maximum sea surface temperature. Genetic-environment associations explain genetic differences between western and eastern Pacific populations; however, genetic variation within the western and eastern Pacific Ocean populations appears to follow a pattern of isolation-by-distance. This study represents a first to quantify the relationship between environmental and genetic variation for this widely distributed marine species and provides greater insights into the evolutionary forces that act on marine species.
Collapse
Affiliation(s)
- Brendan A Graham
- Department of Biological Sciences University of Lethbridge Lethbridge Alberta Canada
- Institute of Arctic Biology University of Alaska Fairbanks Fairbanks Alaska USA
| | - J Mark Hipfner
- Wildlife Research Division Environment and Climate Change Canada Delta British Columbia Canada
| | - Kyle W Wellband
- Fisheries and Oceans Canada West Vancouver British Columbia Canada
| | - Motohiro Ito
- Faculty of Life Sciences Toyo University Bunkyō-ku Japan
| | - Theresa M Burg
- Department of Biological Sciences University of Lethbridge Lethbridge Alberta Canada
| |
Collapse
|
75
|
Raimundo I, Rosado PM, Barno AR, Antony CP, Peixoto RS. Unlocking the genomic potential of Red Sea coral probiotics. Sci Rep 2024; 14:14514. [PMID: 38914624 PMCID: PMC11196684 DOI: 10.1038/s41598-024-65152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
The application of beneficial microorganisms for corals (BMC) decreases the bleaching susceptibility and mortality rate of corals. BMC selection is typically performed via molecular and biochemical assays, followed by genomic screening for BMC traits. Herein, we present a comprehensive in silico framework to explore a set of six putative BMC strains. We extracted high-quality DNA from coral samples collected from the Red Sea and performed PacBio sequencing. We identified BMC traits and mechanisms associated with each strain as well as proposed new traits and mechanisms, such as chemotaxis and the presence of phages and bioactive secondary metabolites. The presence of prophages in two of the six studied BMC strains suggests their possible distribution within beneficial bacteria. We also detected various secondary metabolites, such as terpenes, ectoines, lanthipeptides, and lasso peptides. These metabolites possess antimicrobial, antifungal, antiviral, anti-inflammatory, and antioxidant activities and play key roles in coral health by reducing the effects of heat stress, high salinity, reactive oxygen species, and radiation. Corals are currently facing unprecedented challenges, and our revised framework can help select more efficient BMC for use in studies on coral microbiome rehabilitation, coral resilience, and coral restoration.
Collapse
Affiliation(s)
- Inês Raimundo
- Biological and Environmental Science and Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia
| | - Phillipe M Rosado
- Biological and Environmental Science and Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia
| | - Adam R Barno
- Biological and Environmental Science and Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia
| | - Chakkiath P Antony
- Biological and Environmental Science and Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia
| | - Raquel S Peixoto
- Biological and Environmental Science and Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia.
| |
Collapse
|
76
|
Liu Y, Wu H, Shu Y, Hua Y, Fu P. Symbiodiniaceae and Ruegeria sp. Co-Cultivation to Enhance Nutrient Exchanges in Coral Holobiont. Microorganisms 2024; 12:1217. [PMID: 38930599 PMCID: PMC11205819 DOI: 10.3390/microorganisms12061217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
The symbiotic relationship between corals and their associated microorganisms is crucial for the health of coral reef eco-environmental systems. Recently, there has been a growing interest in unraveling how the manipulation of symbiont nutrient cycling affects the stress tolerance in the holobiont of coral reefs. However, most studies have primarily focused on coral-Symbiodiniaceae-bacterial interactions as a whole, neglecting the interactions between Symbiodiniaceae and bacteria, which remain largely unexplored. In this study, we proposed a hypothesis that there exists an inner symbiotic loop of Symbiodiniaceae and bacteria within the coral symbiotic loop. We conducted experiments to demonstrate how metabolic exchanges between Symbiodiniaceae and bacteria facilitate the nutritional supply necessary for cellular growth. It was seen that the beneficial bacterium, Ruegeria sp., supplied a nitrogen source to the Symbiodiniaceae strain Durusdinium sp., allowing this dinoflagellate to thrive in a nitrogen-free medium. The Ruegeria sp.-Durusdinium sp. interaction was confirmed through 15N-stable isotope probing-single cell Raman spectroscopy, in which 15N infiltrated into the bacterial cells for intracellular metabolism, and eventually the labeled nitrogen source was traced within the macromolecules of Symbiodiniaceae cells. The investigation into Symbiodiniaceae loop interactions validates our hypothesis and contributes to a comprehensive understanding of the intricate coral holobiont. These findings have the potential to enhance the health of coral reefs in the face of global climate change.
Collapse
Affiliation(s)
| | | | | | | | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; (Y.L.); (H.W.); (Y.S.); (Y.H.)
| |
Collapse
|
77
|
Roth L, Eviatar G, Schmidt LM, Bonomo M, Feldstein-Farkash T, Schubert P, Ziegler M, Al-Sawalmih A, Abdallah IS, Quod JP, Bronstein O. Mass mortality of diadematoid sea urchins in the Red Sea and Western Indian Ocean. Curr Biol 2024; 34:2693-2701.e4. [PMID: 38788707 DOI: 10.1016/j.cub.2024.04.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 04/07/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
Sea urchins are primary herbivores on coral reefs, regulating algal biomass and facilitating coral settlement and growth.1,2,3,4,5,6,7,8,9,10,11,12 Recurring mass mortality events (MMEs) of Diadema species Gray, 1825 have been recorded globally,13,14,15,16,17,18,19,20,21,22,23 the most notorious and ecologically significant of which occurred in the Caribbean in 1983,14,17,19,20 contributing to the shift from coral to algal-dominated ecosystems.17,24,25 Recently, first evidence of Diadema setosum mass mortality was reported from the eastern Mediterranean Sea.23 Here, we report extensive mass mortalities of several diadematoid species inhabiting the Red Sea and Western Indian Ocean (WIO)26,27,28 including first evidence of mortalities in the genus Echinothrix Peters, 1853. Mortalities initiated in the Gulf of Aqaba on December 2022 and span the Red Sea, the Gulf of Oman, and the Western Indian Ocean (Réunion Island), with population declines reaching 100% at some sites. Infected individuals are characterized by spine loss and tissue necrosis, resulting in exposed skeletons (i.e., tests) and mortality. Molecular diagnostics of the 18S rRNA gene confirm the presence of a waterborne scuticociliate protozoan most closely related to Philaster apodigitiformis in infected specimens-identical to the pathogen found in the 2022 Caribbean mass mortality of Diadema antillarum.13,15,18 Collapse of these key benthic grazers in the Red Sea and Western Indian Ocean may lead to algal dominance over corals, threatening the stability of coral reefs on a regional scale.29,30,31,32 We issue a warning regarding the further expansion of mortalities and call for immediate monitoring and conservation efforts for these key ecological species.
Collapse
Affiliation(s)
- Lachan Roth
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv 69978, Israel; The Inter-University Institute for Marine Sciences in Eilat, Eilat 8810302, Israel
| | - Gal Eviatar
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv 69978, Israel; The Inter-University Institute for Marine Sciences in Eilat, Eilat 8810302, Israel
| | - Lisa-Maria Schmidt
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv 69978, Israel; The Inter-University Institute for Marine Sciences in Eilat, Eilat 8810302, Israel
| | - Mai Bonomo
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv 69978, Israel
| | | | - Patrick Schubert
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Maren Ziegler
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Ali Al-Sawalmih
- Marine Science Station, University of Jordan, Aqaba 77110, Jordan
| | | | - Jean-Pascal Quod
- Arvam, Technopole de la Réunion, le Kub, 6 rue Albert Lougnon, 97438 Réunion Island, France
| | - Omri Bronstein
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
78
|
Huang YY, Chen TR, Lai KP, Kuo CY, Ho MJ, Hsieh HJ, Hsin YC, Chen CA. Poleward migration of tropical corals inhibited by future trends of seawater temperature and calcium carbonate (CaCO 3) saturation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172562. [PMID: 38641098 DOI: 10.1016/j.scitotenv.2024.172562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Poleward range expansion of marine organisms is commonly attributed to anthropogenic ocean warming. However, the extent to which a single species can migrate poleward remains unclear. In this study, we used molecular data to examine the current distribution of the Pocillopora damicornis species complex in Taiwan waters and applied niche modeling to predict its potential range through the end of the 21st Century. The P. damicornis species complex is widespread across shallow, tropical and subtropical waters of the Indo-Pacific regions. Our results revealed that populations from subtropical nonreefal coral communities are P. damicornis, whose native geographical ranges are approximately between 23°N and 35°N. In contrast, those from tropical reefs are P. acuta. Our analysis of 50 environmental data layers demonstrated that the concentrations of CaCO3 polymorphs had the greatest contributions to the distributions of the two species. Future projections under intermediate shared socioeconomic pathways (SSP) 2-4.5 and very high (SSP5-8.5) scenarios of greenhouse gas emissions showed that while sea surface temperature (SST) isotherms would shift northwards, saturation isolines of two CaCO3 polymorphs, calcite (Ωcal) and aragonite (Ωarag), would shift southwards by 2100. Subsequent predictions of future suitable habitats under those conditions indicated that distinct delimitation of geographical ranges for the two species would persist, and neither would extend beyond its native geographical zones, indicating that tropical Taiwan waters are the northern limit for P. acuta. In contrast, subtropical waters are the southern limit for P. damicornis. We concluded that the decline in CaCO3 saturation would make high latitudes less inhabitable, which could be one of the boundary elements that limit poleward range expansion driven by rising SSTs and preserve the latitudinal diversity gradient (LDG) on Earth. Consequently, poleward migration of tropical reef corals to cope with warming oceans should be reevaluated.
Collapse
Affiliation(s)
- Ya-Yi Huang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Ting-Ru Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Kim Phuong Lai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan; Faculty of Biology and Biotechnology, University of Science, Vietnam National University, Ho Chi Minh, Viet Nam
| | - Chao-Yang Kuo
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming-Jay Ho
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan; Marine Science Center-Green Island Marine Research Station, Biodiversity Research Center, Academia Sinica, Taitung, Taiwan
| | - Hernyi Justin Hsieh
- Penghu Marine Biology Research Center, Fisheries Research Institute, Penghu, Taiwan
| | - Yi-Chia Hsin
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan.
| | - Chaolun A Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan; Department of Life Science, National Taiwan Normal University, Taipei, Taiwan; Department of Life Science, Tunghai University, Taichung, Taiwan.
| |
Collapse
|
79
|
Liu C, Zhang Y, Botana MT, Fu Y, Huang L, Jiang L, Yu X, Luo Y, Huang H. The bioenergetics response of the coral Pocillopora damicornis to temperature changes during its reproduction stage. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106557. [PMID: 38823094 DOI: 10.1016/j.marenvres.2024.106557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/21/2024] [Accepted: 05/14/2024] [Indexed: 06/03/2024]
Abstract
Sexual reproduction of reef-building corals is vital for coral reef ecosystem recovery. Corals allocate limited energy to growth and reproduction, when being under environmental disturbance, which ultimately shapes the community population dynamics. In the present study, energetic and physiological parameters of both parental colonies and larvae of the coral Pocillopora damicornis were measured during their reproduction stage under four temperatures; 28 °C (low-temperature acclimation, LA), 29 °C (control temperature, CT), 31 °C (high-temperature acclimation, HA), and 32 °C (heat stress, HS). The results showed temperature changes altered the larvae release timing and fecundity in P. damicornis. Parental colonies exposed to the LA treatment exhibited reduced investment in reproduction and released fewer larvae, while retaining more energy for their development. However, each larva acquired higher energy and symbiont densities enabling survival through longer planktonic periods before settlement. In contrast, parental colonies exposed to the HA treatment had increased investment for reproduction and larvae output, while per larva gained less energy to mitigate the threat of higher temperature. Furthermore, the energy allocation processes restructured fatty acids concentration and composition in both parental colonies and larvae as indicated by shifts in membrane fluidity under adaptable temperature changes. Notably, parental colonies from the HS treatment expended more energy in response to heat stress, resulting in adverse effects, especially after larval release. Our study expands the current knowledge on the energy allocation strategies of P. damicornis and how it is impacted by temperature. Parental colonies employed different energy allocation strategies under distinct temperature regimes to optimize their development and offspring success, but under heat stress, both were compromised. Lipid metabolism is essential for the success of coral reproduction and further understanding their response to heat stress can improve intervention strategies for coral reef conservation in warmer future oceans.
Collapse
Affiliation(s)
- Chengyue Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Department of Ocean Science and Hong Kong Branch (HKB) of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology (HKUST), Hong Kong, China.
| | - Yuyang Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Marina Tonetti Botana
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Yousi Fu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, USA
| | - Lintao Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Lei Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Department of Ocean Science and Hong Kong Branch (HKB) of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology (HKUST), Hong Kong, China
| | - Xiaolei Yu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yong Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, USA; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, China
| | - Hui Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, China; Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China.
| |
Collapse
|
80
|
Cui L, Cheng C, Li X, Gao X, Lv X, Wang Y, Zhang H, Lei K. Comprehensive assessment of copper's effect on marine organisms under ocean acidification and warming in the 21st century. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172145. [PMID: 38569974 DOI: 10.1016/j.scitotenv.2024.172145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/05/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Copper (Cu) has sparked widespread global concern as one of the most hazardous metals to aquatic animals. Ocean acidification (OA) and warming (OW) are expected to alter copper's bioavailability based on pH and temperature-sensitive effects; research on their effects on copper on marine organisms is still in its infancy. Therefore, under representative concentration pathways (RCP) 2.6, 4.5, and 8.5, we used the multiple linear regression-water quality criteria (MLR-WQC) method to assess the effects of OA and OW on the ecological risk posed by copper in the Ocean of East China (OEC), which includes the Bohai Sea, Yellow Sea, and East China Sea. The results showed that there was a positive correlation between temperature and copper toxicity, while there was a negative correlation between pH and copper toxicity. The short-term water quality criteria (WQC) values were 1.53, 1.41, 1.30 and 1.13 μg·L-1, while the long-term WQC values were 0.58, 0.48, 0.40 and 0.29 μg·L-1 for 2020, 2099-RCP2.6, 2099-RCP4.5 and 2099-RCP8.5, respectively. Cu in the OEC poses a moderate ecological risk. Under the current copper exposure situation, strict intervention (RCP2.6) only increases the ecological risk of copper exposure by 20 %, and no intervention (RCP8.5) will increase the ecological risk of copper exposure by nearly double. The results indicate that intervention on carbon emissions can slow down the rate at which OA and OW worsen the damage copper poses to marine creatures. This study can provide valuable information for a comprehensive understanding of the combined impacts of climate change and copper on marine organisms.
Collapse
Affiliation(s)
- Liang Cui
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Chen Cheng
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Xiaoguang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Xiangyun Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Xubo Lv
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Yan Wang
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Hua Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Kun Lei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environment Sciences, Beijing 100012, China.
| |
Collapse
|
81
|
Helgoe J, Davy SK, Weis VM, Rodriguez-Lanetty M. Triggers, cascades, and endpoints: connecting the dots of coral bleaching mechanisms. Biol Rev Camb Philos Soc 2024; 99:715-752. [PMID: 38217089 DOI: 10.1111/brv.13042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/15/2024]
Abstract
The intracellular coral-dinoflagellate symbiosis is the engine that underpins the success of coral reefs, one of the most diverse ecosystems on the planet. However, the breakdown of the symbiosis and the loss of the microalgal symbiont (i.e. coral bleaching) due to environmental changes are resulting in the rapid degradation of coral reefs globally. There is an urgent need to understand the cellular physiology of coral bleaching at the mechanistic level to help develop solutions to mitigate the coral reef crisis. Here, at an unprecedented scope, we present novel models that integrate putative mechanisms of coral bleaching within a common framework according to the triggers (initiators of bleaching, e.g. heat, cold, light stress, hypoxia, hyposalinity), cascades (cellular pathways, e.g. photoinhibition, unfolded protein response, nitric oxide), and endpoints (mechanisms of symbiont loss, e.g. apoptosis, necrosis, exocytosis/vomocytosis). The models are supported by direct evidence from cnidarian systems, and indirectly through comparative evolutionary analyses from non-cnidarian systems. With this approach, new putative mechanisms have been established within and between cascades initiated by different bleaching triggers. In particular, the models provide new insights into the poorly understood connections between bleaching cascades and endpoints and highlight the role of a new mechanism of symbiont loss, i.e. 'symbiolysosomal digestion', which is different from symbiophagy. This review also increases the approachability of bleaching physiology for specialists and non-specialists by mapping the vast landscape of bleaching mechanisms in an atlas of comprehensible and detailed mechanistic models. We then discuss major knowledge gaps and how future research may improve the understanding of the connections between the diverse cascade of cellular pathways and the mechanisms of symbiont loss (endpoints).
Collapse
Affiliation(s)
- Joshua Helgoe
- Department of Biological Sciences, Institute of Environment, Florida International University, 11200 SW 8th Street, OE 167, Miami, FL, USA
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, 2701 SW Campus Way, 2403 Cordley Hall, Corvallis, OR, USA
| | - Mauricio Rodriguez-Lanetty
- Department of Biological Sciences, Institute of Environment, Florida International University, 11200 SW 8th Street, OE 167, Miami, FL, USA
- Department of Biological Sciences, Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL, USA
| |
Collapse
|
82
|
Wang M, Fang X, Zhang K. Exploring a pathway to optimise the carbon tax policy in terms of the economy, the environment and health: A scenario-based system dynamics approach. Heliyon 2024; 10:e31093. [PMID: 38803911 PMCID: PMC11128905 DOI: 10.1016/j.heliyon.2024.e31093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/18/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
The carbon tax, a pivotal policy instrument in tackling climate change, holds the potential to significantly influence the development of society. To comprehensively analyse the effectiveness of the policy on carbon taxation and explore its possible optimisation path, this study utilizes system dynamics theory to establish a simulation model. A detailed analysis and evaluation of this policy is then conducted from the perspectives of the economy, the environment, and health. To guarantee the precision of the simulation model, a new, comprehensive evaluation method is proposed, which can test the degree of fit of the relative trend and absolute data of the simulation model with reality. The findings reveal that, despite its negative economic implications, a carbon tax policy has positive ramifications for the environment, energy, health, industrial structure, and carbon intensity targets. Furthermore, the synergistic reinforcement effect of R&D and new energy support policies on carbon taxation surpasses the impact of any individual policy alone. Notably, the influence of auxiliary policies has a temporal difference on this policy. Based on these insights, the study concludes with practical policy recommendations.
Collapse
Affiliation(s)
- Minfei Wang
- School of Economics and Management, Anyang University, Anyang, 455000, China
| | - Xianquan Fang
- School of Economics and Management, Anyang University, Anyang, 455000, China
| | - Kanghui Zhang
- School of Information Management, Wuhan University, Wuhan, 430064, China
| |
Collapse
|
83
|
Marinov GK, Chen X, Swaffer MP, Xiang T, Grossman AR, Greenleaf WJ. Genome-wide distribution of 5-hydroxymethyluracil and chromatin accessibility in the Breviolum minutum genome. Genome Biol 2024; 25:115. [PMID: 38711126 PMCID: PMC11071213 DOI: 10.1186/s13059-024-03261-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/28/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND In dinoflagellates, a unique and extremely divergent genomic and nuclear organization has evolved. The highly unusual features of dinoflagellate nuclei and genomes include permanently condensed liquid crystalline chromosomes, primarily packaged by proteins other than histones, genes organized in very long unidirectional gene arrays, a general absence of transcriptional regulation, high abundance of the otherwise very rare DNA modification 5-hydroxymethyluracil (5-hmU), and many others. While most of these fascinating properties are originally identified in the 1970s and 1980s, they have not yet been investigated using modern genomic tools. RESULTS In this work, we address some of the outstanding questions regarding dinoflagellate genome organization by mapping the genome-wide distribution of 5-hmU (using both immunoprecipitation-based and basepair-resolution chemical mapping approaches) and of chromatin accessibility in the genome of the Symbiodiniaceae dinoflagellate Breviolum minutum. We find that the 5-hmU modification is preferentially enriched over certain classes of repetitive elements, often coincides with the boundaries between gene arrays, and is generally correlated with decreased chromatin accessibility, the latter otherwise being largely uniform along the genome. We discuss the potential roles of 5-hmU in the functional organization of dinoflagellate genomes and its relationship to the transcriptional landscape of gene arrays. CONCLUSIONS Our results provide the first window into the 5-hmU and chromatin accessibility landscapes in dinoflagellates.
Collapse
Affiliation(s)
- Georgi K Marinov
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA.
| | - Xinyi Chen
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Matthew P Swaffer
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Tingting Xiang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA.
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, 94305, USA.
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
84
|
Vuleta S, Nakagawa S, Ainsworth TD. The global significance of Scleractinian corals without photoendosymbiosis. Sci Rep 2024; 14:10161. [PMID: 38698199 PMCID: PMC11066124 DOI: 10.1038/s41598-024-60794-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
Globally tropical Scleractinian corals have been a focal point for discussions on the impact of a changing climate on marine ecosystems and biodiversity. Research into tropical Scleractinian corals, particularly the role and breakdown of photoendosymbiosis in response to warming, has been prolific in recent decades. However, research into their subtropical, temperate, cold- and deep-water counterparts, whose number is dominated by corals without photoendosymbiosis, has not been as prolific. Approximately 50% of Scleractinian corals (> 700 species) do not maintain photoendosymbiosis and as such, do not rely upon the products of photosynthesis for homeostasis. Some species also have variable partnerships with photendosymbionts depending on life history and ecological niche. Here we undertake a systematic map of literature on Scleractinian corals without, or with variable, photoendosymbiosis. In doing so we identify 482 publications spanning 5 decades. In mapping research effort, we find publications have been sporadic over time, predominately focusing on a limited number of species, with greater research effort directed towards deep-water species. We find only 141 species have been studied, with approximately 30% of the total identified research effort directed toward a single species, Desmophyllum pertusum, highlighting significant knowledge gaps into Scleractinian diversity. We find similar limitations to studied locations, with 78 identified from the global data, of which only few represent most research outputs. We also identified inconsistencies with terminology used to describe Scleractinia without photoendosymbiosis, likely contributing to difficulties in accounting for their role and contribution to marine ecosystems. We propose that the terminology requires re-evaluation to allow further systematic assessment of literature, and to ensure it's consistent with changes implemented for photoendosymbiotic corals. Finally, we find that knowledge gaps identified over 20 years ago are still present for most aphotoendosymbiotic Scleractinian species, and we show data deficiencies remain regarding their function, biodiversity and the impacts of anthropogenic stressors.
Collapse
Affiliation(s)
- S Vuleta
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences (BEES), The University of New South Wales, Sydney, NSW, 2033, Australia.
| | - S Nakagawa
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences (BEES), The University of New South Wales, Sydney, NSW, 2033, Australia
| | - T D Ainsworth
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences (BEES), The University of New South Wales, Sydney, NSW, 2033, Australia
| |
Collapse
|
85
|
Simantiris N. The impact of climate change on sea turtles: Current knowledge, scientometrics, and mitigation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171354. [PMID: 38460688 DOI: 10.1016/j.scitotenv.2024.171354] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/11/2024]
Abstract
Sea turtles are one of the most significant groups of marine species, playing a key role in the sustainability and conservation of marine ecosystems and the food chain. These emblematic species are threatened by several natural and anthropogenic pressures, and climate change is increasingly reported as one of the most important threats to sea turtles, affecting sea turtles at all stages of their life cycle and at both their marine and coastal habitats. The effect of climate change is expressed as global warming, sea-level rise, extreme storms, and alterations in predation and diseases' patterns, posing a potentially negative impact on sea turtles. In this systematic review, the author presented the current knowledge and research outcomes on the impact of climate change on sea turtles. Moreover, this study determined trends and hotspots in keywords, country collaborations, authors, and publications in the field through a scientometric analysis. Finally, this article reviewed proposed mitigation strategies by researchers, marine protected area (MPA) managers, and non-governmental organizations (NGOs) to reduce the impact of climate change on the conservation of sea turtles.
Collapse
Affiliation(s)
- Nikolaos Simantiris
- MEDASSET (Mediterranean Association to Save the Sea Turtles), Likavittou 1C, Athens, 10632, Greece; Ionian University, Department of Informatics, Corfu, 49132, Greece.
| |
Collapse
|
86
|
Hu N, Bourdeau PE, Hollander J. Responses of marine trophic levels to the combined effects of ocean acidification and warming. Nat Commun 2024; 15:3400. [PMID: 38649374 PMCID: PMC11035698 DOI: 10.1038/s41467-024-47563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
Marine organisms are simultaneously exposed to anthropogenic stressors associated with ocean acidification and ocean warming, with expected interactive effects. Species from different trophic levels with dissimilar characteristics and evolutionary histories are likely to respond differently. Here, we perform a meta-analysis of controlled experiments including both ocean acidification and ocean warming factors to investigate single and interactive effects of these stressors on marine species. Contrary to expectations, we find that synergistic interactions are less common (16%) than additive (40%) and antagonistic (44%) interactions overall and their proportion decreases with increasing trophic level. Predators are the most tolerant trophic level to both individual and combined effects. For interactive effects, calcifying and non-calcifying species show similar patterns. We also identify climate region-specific patterns, with interactive effects ranging from synergistic in temperate regions to compensatory in subtropical regions, to positive in tropical regions. Our findings improve understanding of how ocean warming, and acidification affect marine trophic levels and highlight the need for deeper consideration of multiple stressors in conservation efforts.
Collapse
Affiliation(s)
- Nan Hu
- Department of Biology- Aquatic Ecology, Lund University, Lund, Sweden
| | - Paul E Bourdeau
- Department of Biological Sciences, California State Polytechnic University, Humboldt, Arcata, CA, USA
| | - Johan Hollander
- World Maritime University, Ocean Sustainability, Governance & Management Unit, 211 18, Malmö, Sweden.
| |
Collapse
|
87
|
Qin B, Yu K, Fu Y, Zhou Y, Wu Y, Zhang W, Chen X. Responses in reef-building corals to wildfire emissions: Heterotrophic plasticity and calcification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171271. [PMID: 38428592 DOI: 10.1016/j.scitotenv.2024.171271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/04/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
Extreme wildfire events are on the rise globally, and although substantial wildfire emissions may find their way into the ocean, their impact on coral reefs remains uncertain. In a five-week laboratory experiment, we observed a significant reduction in photosynthesis in coral symbionts (Porites lutea) when exposed to fine particulate matter (PM2.5) from wildfires. At low PM2.5 level (2 mg L-1), the changes in δ13C and δ15N values in the host and symbiotic algae suggest reduced autotrophy and the utilization of wildfire particulates as a source of heterotrophic nutrients. This adaptive strategy, characterized by an increase in heterotrophy, sustained some aspects of coral growth (total biomass, proteins and lipids) under wildfire stress. Nevertheless, at high PM2.5 level (5 mg L-1), both autotrophy and heterotrophy significantly decreased, resulting in an imbalanced coral-algal nutritional relationship. These changes were related to light attenuation in seawater and particulate accumulation on the coral surface during PM2.5 deposition, ultimately rendering the coral growth unsustainable. Further, the calcification rates decreased by 1.5 to 1.85 times under both low and high levels of PM2.5, primarily affected by photosynthetic autotrophy rather than heterotrophy. Our study highlights a constrained heterotrophic plasticity of corals under wildfire stress. This limitation may restrict wildfire emissions as an alternative nutrient source to support coral growth and calcification, especially when oceanic food availability or autotrophy declines, as seen during bleaching induced by the warming ocean.
Collapse
Affiliation(s)
- Bo Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| | - Yichen Fu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yu Zhou
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yanliu Wu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Wenqian Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Xiaoyan Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| |
Collapse
|
88
|
Poquita-Du RC, Huang D, Todd PA. Genome-wide analysis to uncover how Pocillopora acuta survives the challenging intertidal environment. Sci Rep 2024; 14:8538. [PMID: 38609456 PMCID: PMC11015029 DOI: 10.1038/s41598-024-59268-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
Characterisation of genomic variation among corals can help uncover variants underlying trait differences and contribute towards genotype prioritisation in coastal restoration projects. For example, there is growing interest in identifying resilient genotypes for transplantation, and to better understand the genetic processes that allow some individuals to survive in specific conditions better than others. The coral species Pocillopora acuta is known to survive in a wide range of habitats, from reefs artificial coastal defences, suggesting its potential use as a starter species for ecological engineering efforts involving coral transplantation onto intertidal seawalls. However, the intertidal section of coastal armour is a challenging environment for corals, with conditions during periods of emersion being particularly stressful. Here, we scanned the entire genome of P. acuta corals to identify the regions harbouring single nucleotide polymorphisms (SNPs) and copy number variations (CNVs) that separate intertidal colonies (n = 18) from those found in subtidal areas (n = 21). Findings revealed 74,391 high quality SNPs distributed across 386 regions of the P. acuta genome. While the majority of the detected SNPs were in non-coding regions, 12% were identified in exons (i.e. coding regions). Functional SNPs that were significantly associated with intertidal colonies were found in overrepresented genomic regions linked to cellular homeostasis, metabolism, and signalling processes, which may represent local environmental adaptation in the intertidal. Interestingly, regions that exhibited CNVs were also associated with metabolic and signalling processes, suggesting P. acuta corals living in the intertidal have a high capacity to perform biological functions critical for survival in extreme environments.
Collapse
Affiliation(s)
- Rosa Celia Poquita-Du
- Experimental Marine Ecology Laboratory, S3 Level 2, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore.
| | - Danwei Huang
- Lee Kong Chian Natural History Museum and Tropical Marine Science Institute, National University of Singapore, 2 Conservatory Drive, Singapore, 117377, Singapore
| | - Peter A Todd
- Experimental Marine Ecology Laboratory, S3 Level 2, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| |
Collapse
|
89
|
Thomas L, Şahin D, Adam AS, Grimaldi CM, Ryan NM, Duffy SL, Underwood JN, Kennington WJ, Gilmour JP. Resilience to periodic disturbances and the long-term genetic stability in Acropora coral. Commun Biol 2024; 7:410. [PMID: 38575730 PMCID: PMC10995172 DOI: 10.1038/s42003-024-06100-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/22/2024] [Indexed: 04/06/2024] Open
Abstract
Climate change is restructuring natural ecosystems. The direct impacts of these events on biodiversity and community structure are widely documented, but the impacts on the genetic variation of populations remains largely unknown. We monitored populations of Acropora coral on a remote coral reef system in northwest Australia for two decades and through multiple cycles of impact and recovery. We combined these demographic data with a temporal genetic dataset of a common broadcast spawning corymbose Acropora to explore the spatial and temporal patterns of connectivity underlying recovery. Our data show that broad-scale dispersal and post-recruitment survival drive recovery from recurrent disturbances, including mass bleaching and mortality. Consequently, genetic diversity and associated patterns of connectivity are maintained through time in the broader metapopulation. The results highlight an inherent resilience in these globally threatened species of coral and showcase their ability to cope with multiple disturbances, given enough time to recover is permitted.
Collapse
Affiliation(s)
- L Thomas
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, Australia.
- UWA Oceans Institute, The University of Western Australia, Crawley, Australia.
| | - D Şahin
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, Australia
- UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| | - A S Adam
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, Australia
| | - C M Grimaldi
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, Australia
- UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| | - N M Ryan
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, Australia
| | - S L Duffy
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, Australia
- UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| | - J N Underwood
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, Australia
| | - W J Kennington
- UWA Oceans Institute, The University of Western Australia, Crawley, Australia
- Centre for Evolutionary Biology, School of Animal Biology, The University of Western Australia, Perth, Australia
| | - J P Gilmour
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, Australia
- UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| |
Collapse
|
90
|
Garrido AG, Carlos-Júnior LA, Casares FA, Calderon EN, Oigman-Pszczol SS, Zilberberg C. Temporal and spatial dynamics of coral symbiont assemblages are affected by local and global impacts. MARINE POLLUTION BULLETIN 2024; 201:116272. [PMID: 38522337 DOI: 10.1016/j.marpolbul.2024.116272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 03/26/2024]
Abstract
The influence of abiotic variables and anthropogenic pressure on symbiodiniaceans associated with the scleractinian corals Mussismilia hispida and Siderastrea stellata were assessed quarterly at Armação dos Búzios, Brazil, for over 18 months. Thirty-eight Symbiodiniaceae ITS2 rDNA phylotypes were found by metabarcoding, with eight comprising new phylotypes. Both hosts maintained their generalist pattern, with 1-3 dominant lineages. An environmental pressure index and changes in seawater temperature explained the variations in the structure and diversity of Symbiodiniaceae assemblages over time and space. A mild bleaching event affected the photosymbiotic assemblage structure, even in non-bleached colonies. The highly dynamic and diverse photosymbiont assemblages were constantly driven by the influence of environmental variables and human-induced impacts. Furthermore, new strains of Symbiodiniaceae might be associated with lower temperatures caused by upwelling, which is characteristic of this subtropical coral community, highlighting the region's idiosyncrasy and the need for further studies of this coral system.
Collapse
Affiliation(s)
- Amana Guedes Garrido
- Programa de Pós-Graduação em Biodiversidade e Biologia Evolutiva, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil; Centro de Biologia Marinha, Universidade de São Paulo (CEBIMar-USP), São Sebastião, São Paulo, Brazil; Instituto Coral Vivo, Santa Cruz Cabrália, Bahia, Brazil.
| | - Lélis Antonio Carlos-Júnior
- Departamento de Biologia, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil; Instituto Brasileiro de Biodiversidade (BrBio), Rio de Janeiro, Brazil
| | - Fernanda Araújo Casares
- Instituto Brasileiro de Biodiversidade (BrBio), Rio de Janeiro, Brazil; Departamento de Ecologia, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Emiliano Nicolas Calderon
- Instituto Coral Vivo, Santa Cruz Cabrália, Bahia, Brazil; Instituto de Biodiversidade e Sustentabilidade - NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Macaé, Rio de Janeiro, Brazil
| | | | - Carla Zilberberg
- Instituto Coral Vivo, Santa Cruz Cabrália, Bahia, Brazil; Instituto de Biodiversidade e Sustentabilidade - NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Macaé, Rio de Janeiro, Brazil
| |
Collapse
|
91
|
Isa V, Seveso D, Diamante L, Montalbetti E, Montano S, Gobbato J, Lavorano S, Galli P, Louis YD. Physical and cellular impact of environmentally relevant microplastic exposure on thermally challenged Pocillopora damicornis (Cnidaria, Scleractinia). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170651. [PMID: 38320710 DOI: 10.1016/j.scitotenv.2024.170651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/18/2024] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
Microplastic pollution is an increasing threat to coral reefs, which are already strongly challenged by climate change-related heat stress. Although it is known that scleractinian corals can ingest microplastic, little is known about their egestion and how microplastic exposure may impair corals at physiological and cellular levels. In addition, the effects of microplastic pollution at current environmental concentration have been little investigated to date, particularly in corals already impacted by heat stress. In this study, the combined effects of these environmental threats on Pocillopora damicornis were investigated from a physical and cellular perspective. Colonies were exposed to three concentrations of polyethylene microplastic beads (no microplastic beads: [No MP], 1 mg/L: [Low MP]; 10 mg/L: [High MP]), and two different temperatures (25 °C and 30 °C) for 72 h. No visual signs of stress in corals, such as abnormal mucus production and polyp extroflection, were recorded. At [Low MP], beads adhered to colonies were ingested but were also egested. Moreover, thermally stressed colonies showed a lower adhesion and higher egestion of microplastic beads. Coral bleaching was observed with an increase in temperature and microplastic bead concentration, as indicated by a general decrease in chlorophyll concentration and Symbiodiniaceae density. An increase in lipid peroxidation was measured in colonies exposed to [Low MP] and [High MP] and an up-regulation of stress response gene hsp70 was observed due to the synergistic interaction of both stressors. Overall, our findings showed that heat stress still represents the main threat to P. damicornis, while the effect of microplastics on coral health and physiology may be minor, especially at control temperature. However, microplastics could exacerbate the effect of thermal stress on cellular homeostasis, even at [Low MP]. While reducing ocean warming is critical for preserving coral reefs, effective management of emerging threats like microplastic pollution is equally essential.
Collapse
Affiliation(s)
- Valerio Isa
- Department of Earth and Environmental Science, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Maldives; Costa Edutainment SpA - Acquario di Genova, Area Porto Antico, Ponte Spinola, 16128 Genoa, Italy
| | - Davide Seveso
- Department of Earth and Environmental Science, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Maldives
| | - Luca Diamante
- Department of Earth and Environmental Science, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Enrico Montalbetti
- Department of Earth and Environmental Science, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Maldives.
| | - Simone Montano
- Department of Earth and Environmental Science, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Maldives
| | - Jacopo Gobbato
- Department of Earth and Environmental Science, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Maldives
| | - Silvia Lavorano
- Costa Edutainment SpA - Acquario di Genova, Area Porto Antico, Ponte Spinola, 16128 Genoa, Italy
| | - Paolo Galli
- Department of Earth and Environmental Science, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Maldives; University of Dubai, Dubai, P.O. Box 14143, United Arab Emirates
| | - Yohan Didier Louis
- Department of Earth and Environmental Science, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Maldives
| |
Collapse
|
92
|
Mills MS, Ungermann M, Rigot G, den Haan J, Leon JX, Schils T. Coral reefs in transition: Temporal photoquadrat analyses and validation of underwater hyperspectral imaging for resource-efficient monitoring in Guam. PLoS One 2024; 19:e0299523. [PMID: 38502667 PMCID: PMC10950215 DOI: 10.1371/journal.pone.0299523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/13/2024] [Indexed: 03/21/2024] Open
Abstract
The island of Guam in the west Pacific has seen a significant decrease in coral cover since 2013. Lafac Bay, a marine protected area in northeast Guam, served as a reference site for benthic communities typical of forereefs on the windward side of the island. The staghorn coral Acropora abrotanoides is a dominant and characteristic ecosystem engineer of forereef communities on exposed shorelines. Photoquadrat surveys were conducted in 2015, 2017, and 2019, and a diver-operated hyperspectral imager (i.e., DiveRay) was used to survey the same transects in 2019. Machine learning algorithms were used to develop an automated pipeline to assess the benthic cover of 10 biotic and abiotic categories in 2019 based on hyperspectral imagery. The cover of scleractinian corals did not differ between 2015 and 2017 despite being subjected to a series of environmental disturbances in these years. Surveys in 2019 documented the almost complete decline of the habitat-defining staghorn coral Acropora abrotanoides (a practically complete disappearance from about 10% cover), a significant decrease (~75%) in the cover of other scleractinian corals, and a significant increase (~55%) in the combined cover of bare substrate, turf algae, and cyanobacteria. The drastic change in community composition suggests that the reef at Lafac Bay is transitioning to a turf algae-dominated community. However, the capacity of this reef to recover from previous disturbances suggests that this transition could be reversed, making Lafac Bay an excellent candidate for long-term monitoring. Community analyses showed no significant difference between automatically classified benthic cover estimates derived from the hyperspectral scans in 2019 and those derived from photoquadrats. These findings suggest that underwater hyperspectral imagers can be efficient and effective tools for fast, frequent, and accurate monitoring of dynamic reef communities.
Collapse
Affiliation(s)
- Matthew S. Mills
- Marine Laboratory, University of Guam, Mangilao, Guam
- School of Science, Technology, and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | | | | | | | - Javier X. Leon
- School of Science, Technology, and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Tom Schils
- Marine Laboratory, University of Guam, Mangilao, Guam
| |
Collapse
|
93
|
Talukdar A, Kundu P, Bhattacharya S, Dutta N. Microplastic contamination in wastewater: Sources, distribution, detection and remediation through physical and chemical-biological methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170254. [PMID: 38253100 DOI: 10.1016/j.scitotenv.2024.170254] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Microplastics are tiny plastic particles smaller than 5 mm. that have been widely detected in the environment, including in wastewater. They originate from various sources including breakdown of larger plastic debris, release of plastic fibres from textiles, and microbeads commonly used in personal care products. In wastewater, microplastics can pass through the treatment process and enter the environment, causing harm to biodiversity by potentially entering the food chain. Additionally, microplastics can act as a vector for harmful pollutants, increasing their transport and distribution in the environment. To address this issue, there is a growing need for effective wastewater treatment methods that can effectively remove microplastics. Currently, several physical and chemical methods are available, including filtration, sedimentation, and chemical degradation. However, these methods are costly, low efficiency and generate secondary pollutants. Furthermore, lack of standardization in the measurement and reporting of microplastics in wastewater, makes it difficult to accurately assess microplastic impact on the environment. In order to effectively manage these issues, further research and development of effective and efficient methods for removing microplastics from wastewater, as well as standardization in measurement and reporting, are necessary to effectively manage these detrimental contaminants.
Collapse
Affiliation(s)
- Avishek Talukdar
- Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Pritha Kundu
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar 803116, India
| | - Sayan Bhattacharya
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar 803116, India.
| | - Nalok Dutta
- Biochemical Engineering Department, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
94
|
Xiao Y, Gao L, Li Z. Unique high-temperature tolerance mechanisms of zoochlorellae Symbiochlorum hainanensis derived from scleractinian coral Porites lutea. mBio 2024; 15:e0278023. [PMID: 38385710 PMCID: PMC11326117 DOI: 10.1128/mbio.02780-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Global warming is a key issue that causes coral bleaching mainly because of the thermosensitivity of zooxanthellae. Compared with the well-studied zooxanthellae Symbiodiniaceae in coral holobionts, we rarely know about other coral symbiotic algae, let alone their thermal tolerance. In this study, a zoochlorellae, Symbiochlorum hainanensis, isolated from the coral Porites lutea, was proven to have a threshold temperature of 38°C. Meanwhile, unique high-temperature tolerance mechanisms were suggested by integrated transcriptomics and real-time quantitative PCR, physiological and biochemical analyses, and electron microscopy observation. Under heat stress, S. hainanensis shared some similar response strategies with zooxanthellae Effrenium sp., such as increased ascorbate peroxidase, glutathione peroxidase, superoxide dismutase activities and chlorophyll a, thiamine, and thiamine phosphate contents. In particular, more chloroplast internal layered structure, increased CAT activity, enhanced selenate reduction, and thylakoid assembly pathways were highlighted for S. hainanensis's high-temperature tolerance. Notably, it is the first time to reveal a whole selenate reduction pathway from SeO42- to Se2- and its contribution to the high-temperature tolerance of S. hainanensis. These unique mechanisms, including antioxidation and maintaining photosynthesis homeostasis, efficiently ensure the high-temperature tolerance of S. hainanensis than Effrenium sp. Compared with the thermosensitivity of coral symbiotic zooxanthellae Symbiodiniaceae, this study provides novel insights into the high-temperature tolerance mechanisms of coral symbiotic zoochlorellae S. hainanensis, which will contribute to corals' survival in the warming oceans caused by global climate change. IMPORTANCE The increasing ocean temperature above 31°C-32°C might trigger a breakdown of the coral-Symbiodiniaceae symbioses or coral bleaching because of the thermosensitivity of Symbiodiniaceae; therefore, the exploration of alternative coral symbiotic algae with high-temperature tolerance is important for the corals' protection under warming oceans. This study proves that zoochlorellae Symbiochlorum hainanensis can tolerate 38°C, which is the highest temperature tolerance known for coral symbiotic algae to date, with unique high-temperature tolerance mechanisms. Particularly, for the first time, an internal selenium antioxidant mechanism of coral symbiotic S. hainanensis to high temperature was suggested.
Collapse
Affiliation(s)
- Yilin Xiao
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Luyao Gao
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiyong Li
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
95
|
Klein SG, Roch C, Duarte CM. Systematic review of the uncertainty of coral reef futures under climate change. Nat Commun 2024; 15:2224. [PMID: 38472196 DOI: 10.1038/s41467-024-46255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Climate change impact syntheses, such as those by the Intergovernmental Panel on Climate Change, consistently assert that limiting global warming to 1.5 °C is unlikely to safeguard most of the world's coral reefs. This prognosis is primarily based on a small subset of available models that apply similar 'excess heat' threshold methodologies. Our systematic review of 79 articles projecting coral reef responses to climate change revealed five main methods. 'Excess heat' models constituted one third (32%) of all studies but attracted a disproportionate share (68%) of citations in the field. Most methods relied on deterministic cause-and-effect rules rather than probabilistic relationships, impeding the field's ability to estimate uncertainty. To synthesize the available projections, we aimed to identify models with comparable outputs. However, divergent choices in model outputs and scenarios limited the analysis to a fraction of available studies. We found substantial discrepancies in the projected impacts, indicating that the subset of articles serving as a basis for climate change syntheses may project more severe consequences than other studies and methodologies. Drawing on insights from other fields, we propose methods to incorporate uncertainty into deterministic modeling approaches and propose a multi-model ensemble approach to generating probabilistic projections for coral reef futures.
Collapse
Affiliation(s)
- Shannon G Klein
- Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | - Cassandra Roch
- Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Carlos M Duarte
- Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
96
|
Burt AJ, Vogt-Vincent N, Johnson H, Sendell-Price A, Kelly S, Clegg SM, Head C, Bunbury N, Fleischer-Dogley F, Jeremie MM, Khan N, Baxter R, Gendron G, Mason-Parker C, Walton R, Turnbull LA. Integration of population genetics with oceanographic models reveals strong connectivity among coral reefs across Seychelles. Sci Rep 2024; 14:4936. [PMID: 38472289 PMCID: PMC10933301 DOI: 10.1038/s41598-024-55459-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Many countries with tropical reef systems face hard choices preserving coral reefs in the face of climate change on limited budgets. One approach to maximising regional reef resilience is targeting management efforts and resources at reefs that export large numbers of larvae to other reefs. However, this requires reef connectivity to be quantified. To map coral connectivity in the Seychelles reef system we carried out a population genomic study of the Porites lutea species complex using 241 sequenced colonies from multiple islands. To identify oceanographic drivers of this connectivity and quantify variability, we further used a 2 km resolution regional ocean simulation coupled with a larval dispersal model to predict the flow of coral larvae between reef sites. Patterns of admixture and gene flow are broadly supported by model predictions, but the realised connectivity is greater than that predicted from model simulations. Both methods detected a biogeographic dispersal barrier between the Inner and Outer Islands of Seychelles. However, this barrier is permeable and substantial larval transport is possible across Seychelles, particularly for one of two putative species found in our genomic study. The broad agreement between predicted connectivity and observed genetic patterns supports the use of such larval dispersal simulations in reef system management in Seychelles and the wider region.
Collapse
Affiliation(s)
- April J Burt
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK.
- Seychelles Islands Foundation, Mont Fleuri, Mahé, Seychelles.
| | - Noam Vogt-Vincent
- Department of Earth Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3AN, UK
| | - Helen Johnson
- Department of Earth Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3AN, UK
| | | | - Steve Kelly
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Sonya M Clegg
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Catherine Head
- Institute of Zoology, Zoological Society of London, London, NW1 4RY, UK
| | - Nancy Bunbury
- Seychelles Islands Foundation, Mont Fleuri, Mahé, Seychelles
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, TR10 9FE, UK
| | | | - Marie-May Jeremie
- Ministry of Agriculture, Climate Change and Environment, Victoria, Seychelles
| | - Nasreen Khan
- Island Conservation Society Seychelles, Pointe Larue, Mahé, Seychelles
| | - Richard Baxter
- Island Biodiversity and Conservation Centre, University of Seychelles, Victoria, Seychelles
| | - Gilberte Gendron
- Island Biodiversity and Conservation Centre, University of Seychelles, Victoria, Seychelles
| | | | | | | |
Collapse
|
97
|
Iguchi A, Iijima M, Mizusawa N, Ohno Y, Yasumoto K, Suzuki A, Suga S, Tanaka K, Zaitsu K. Single-polyp metabolomics for coral health assessment. Sci Rep 2024; 14:3369. [PMID: 38443414 PMCID: PMC10914721 DOI: 10.1038/s41598-024-53294-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/30/2024] [Indexed: 03/07/2024] Open
Abstract
Coral reef ecosystems supported by environmentally sensitive reef-building corals face serious threats from human activities. Our understanding of these reef threats is hampered by the lack of sufficiently sensitive coral environmental impact assessment systems. In this study, we established a platform for metabolomic analysis at the single-coral-polyp level using state-of-the-art mass spectrometry (probe electrospray ionization/tandem mass spectrometry; PESI/MS/MS) capable of fine-scale analysis. We analyzed the impact of the organic UV filter, benzophenone (BP), which has a negative impact on corals. We also analyzed ammonium and nitrate samples, which affect the environmental sensitivity of coral-zooxanthella (Symbiodiniaceae) holobionts, to provide new insights into coral biology with a focus on metabolites. The method established in this study breaks new ground by combining PESI/MS/MS with a technique for coral polyps that can control the presence or absence of zooxanthellae in corals, enabling functions of zooxanthellae to be assessed on a polyp-by-polyp basis for the first time. This system will clarify biological mechanisms of corals and will become an important model system for environmental impact assessment using marine organisms.
Collapse
Affiliation(s)
- Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan.
- Research Laboratory on Environmentally-Conscious Developments and Technologies [E-Code], National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8567, Japan.
| | - Mariko Iijima
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan
| | - Nanami Mizusawa
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0373, Japan
| | - Yoshikazu Ohno
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0373, Japan
| | - Ko Yasumoto
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0373, Japan
| | - Atsushi Suzuki
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan
- Research Laboratory on Environmentally-Conscious Developments and Technologies [E-Code], National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8567, Japan
| | - Shunichi Suga
- Research Laboratories, KOSÉ Corporation, 48-18, Sakae-cho, Kita-ku, Tokyo, 114-0005, Japan
| | - Ken Tanaka
- Research Laboratories, KOSÉ Corporation, 48-18, Sakae-cho, Kita-ku, Tokyo, 114-0005, Japan
| | - Kei Zaitsu
- Multimodal Informatics and Wide-Data Analytics Laboratory (MiWA-Lab.), Faculty of Biology-Oriented Science and Technology, Kindai University, Nishimitani, Kinokawa, Wakayama, 649-6493, Japan.
| |
Collapse
|
98
|
Afdal, Bengen DG, Wahyudi AJ, Rastina, Prayitno HB, Hamzah F, Koropitan AF. Spatial variability of aragonite saturation state (Ωarag) in Indonesian coastal waters. MARINE ENVIRONMENTAL RESEARCH 2024; 195:106377. [PMID: 38280302 DOI: 10.1016/j.marenvres.2024.106377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 12/28/2023] [Accepted: 01/19/2024] [Indexed: 01/29/2024]
Abstract
The effects of Ocean acidification (OA) on the coastal waters of small islands in Indonesia have yet to be extensively studied. This research aims to investigate the process of OA in the coastal waters of small Indonesian islands and examine how land-sea interactions impact carbonate mineral saturation. We collected seawater samples from seven locations on small islands in Indonesia between 2015 and 2021 to analyze the aragonite saturation state. The result shows that most of Indonesia's coastal waters are accompanied by supersaturation of aragonite saturation state (Ωarag>1). Selayar Island's waters had the highest aragonite saturation, averaging 4.96 ± 0.48, while Pari Island's coastal waters had the lowest, averaging 2.49 ± 0.50. Salinity had the greatest effect on Ωarag in all of the sampling sites, ranging from 24.13% to 52.92%, except Aceh Island, where temperature had a greater impact (34.35%) than salinity (26.99%). By the end of this century, Ωarag is predicted to decline based on projections related to climate change. Small island coastal waters are expected to experience a more substantial decline compared to those near the mainland, ranging from 4.71% to 79.58%. The coastal waters of Weh and Selayar Island are probably going to decline the greatest, while the coastal waters of Sorong (mainland) are probably going to decline the least. All seven sampling locations are expected to observe the decrease. This decline will be observed at all seven sampling locations, with Ωarag values ranging from 1.91 to 3.35.
Collapse
Affiliation(s)
- Afdal
- Research Center for Oceanography, National Research and Innovation Agency, Indonesia; Department of Marine Science and Technology, IPB University, Indonesia.
| | | | - A'an Johan Wahyudi
- Research Center for Oceanography, National Research and Innovation Agency, Indonesia; Asian School of the Environment, Nanyang Technological University, Singapore
| | - Rastina
- Department of Marine Science and Technology, IPB University, Indonesia
| | - Hanif Budi Prayitno
- Research Center for Oceanography, National Research and Innovation Agency, Indonesia
| | - Faisal Hamzah
- Research Center for Oceanography, National Research and Innovation Agency, Indonesia
| | - Alan F Koropitan
- Department of Marine Science and Technology, IPB University, Indonesia
| |
Collapse
|
99
|
Lilkendey J, Barrelet C, Zhang J, Meares M, Larbi H, Subsol G, Chaumont M, Sabetian A. Herbivorous fish feeding dynamics and energy expenditure on a coral reef: Insights from stereo-video and AI-driven 3D tracking. Ecol Evol 2024; 14:e11070. [PMID: 38435013 PMCID: PMC10909578 DOI: 10.1002/ece3.11070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
Unveiling the intricate relationships between animal movement ecology, feeding behavior, and internal energy budgeting is crucial for a comprehensive understanding of ecosystem functioning, especially on coral reefs under significant anthropogenic stress. Here, herbivorous fishes play a vital role as mediators between algae growth and coral recruitment. Our research examines the feeding preferences, bite rates, inter-bite distances, and foraging energy expenditure of the Brown surgeonfish (Acanthurus nigrofuscus) and the Yellowtail tang (Zebrasoma xanthurum) within the fish community on a Red Sea coral reef. To this end, we used advanced methods such as remote underwater stereo-video, AI-driven object recognition, species classification, and 3D tracking. Despite their comparatively low biomass, the two surgeonfish species significantly influence grazing pressure on the studied coral reef. A. nigrofuscus exhibits specialized feeding preferences and Z. xanthurum a more generalist approach, highlighting niche differentiation and their importance in maintaining reef ecosystem balance. Despite these differences in their foraging strategies, on a population level, both species achieve a similar level of energy efficiency. This study highlights the transformative potential of cutting-edge technologies in revealing the functional feeding traits and energy utilization of keystone species. It facilitates the detailed mapping of energy seascapes, guiding targeted conservation efforts to enhance ecosystem health and biodiversity.
Collapse
Affiliation(s)
- Julian Lilkendey
- School of ScienceAuckland University of Technology (AUT)AucklandNew Zealand
- Leibniz Centre for Tropical Marine Research (ZMT)BremenGermany
| | - Cyril Barrelet
- Research‐Team ICAR, Laboratoire d'informatique, de robotique et de microélectronique de Montpellier (LIRMM), CNRSUniversity of MontpellierMontpellierFrance
| | - Jingjing Zhang
- School of ScienceAuckland University of Technology (AUT)AucklandNew Zealand
- The New Zealand Institute for Plant and Food Research LimitedAucklandNew Zealand
| | - Michael Meares
- School of ScienceAuckland University of Technology (AUT)AucklandNew Zealand
| | - Houssam Larbi
- Research‐Team ICAR, Laboratoire d'informatique, de robotique et de microélectronique de Montpellier (LIRMM), CNRSUniversity of MontpellierMontpellierFrance
| | - Gérard Subsol
- Research‐Team ICAR, Laboratoire d'informatique, de robotique et de microélectronique de Montpellier (LIRMM), CNRSUniversity of MontpellierMontpellierFrance
| | - Marc Chaumont
- Research‐Team ICAR, Laboratoire d'informatique, de robotique et de microélectronique de Montpellier (LIRMM), CNRSUniversity of MontpellierMontpellierFrance
- University of NîmesNîmesFrance
| | - Armagan Sabetian
- School of ScienceAuckland University of Technology (AUT)AucklandNew Zealand
| |
Collapse
|
100
|
Toullec G, Rädecker N, Pogoreutz C, Banc-Prandi G, Escrig S, Genoud C, Olmos CM, Spangenberg J, Meibom A. Host starvation and in hospite degradation of algal symbionts shape the heat stress response of the Cassiopea-Symbiodiniaceae symbiosis. MICROBIOME 2024; 12:42. [PMID: 38424629 PMCID: PMC10902967 DOI: 10.1186/s40168-023-01738-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/11/2023] [Indexed: 03/02/2024]
Abstract
BACKGROUND Global warming is causing large-scale disruption of cnidarian-Symbiodiniaceae symbioses fundamental to major marine ecosystems, such as coral reefs. However, the mechanisms by which heat stress perturbs these symbiotic partnerships remain poorly understood. In this context, the upside-down jellyfish Cassiopea has emerged as a powerful experimental model system. RESULTS We combined a controlled heat stress experiment with isotope labeling and correlative SEM-NanoSIMS imaging to show that host starvation is a central component in the chain of events that ultimately leads to the collapse of the Cassiopea holobiont. Heat stress caused an increase in catabolic activity and a depletion of carbon reserves in the unfed host, concurrent with a reduction in the supply of photosynthates from its algal symbionts. This state of host starvation was accompanied by pronounced in hospite degradation of algal symbionts, which may be a distinct feature of the heat stress response of Cassiopea. Interestingly, this loss of symbionts by degradation was concealed by body shrinkage of the starving animals, resulting in what could be referred to as "invisible" bleaching. CONCLUSIONS Overall, our study highlights the importance of the nutritional status in the heat stress response of the Cassiopea holobiont. Compared with other symbiotic cnidarians, the large mesoglea of Cassiopea, with its structural sugar and protein content, may constitute an energy reservoir capable of delaying starvation. It seems plausible that this anatomical feature at least partly contributes to the relatively high stress tolerance of these animals in rapidly warming oceans. Video Abstract.
Collapse
Affiliation(s)
- Gaëlle Toullec
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland.
| | - Nils Rädecker
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Claudia Pogoreutz
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, Perpignan Cedex, 66860, France
| | - Guilhem Banc-Prandi
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Stéphane Escrig
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Christel Genoud
- Electron Microscopy Facility, University of Lausanne, Lausanne, 1015, Switzerland
| | - Cristina Martin Olmos
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
- Center for Advanced Surface Analysis, Institute of Earth Science, University of Lausanne, Lausanne, 1015, Switzerland
| | - Jorge Spangenberg
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, 1015, Switzerland
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland.
- Center for Advanced Surface Analysis, Institute of Earth Science, University of Lausanne, Lausanne, 1015, Switzerland.
| |
Collapse
|