51
|
Nightingale K, Lin KM, Ravenhill BJ, Davies C, Nobre L, Fielding CA, Ruckova E, Fletcher-Etherington A, Soday L, Nichols H, Sugrue D, Wang ECY, Moreno P, Umrania Y, Huttlin EL, Antrobus R, Davison AJ, Wilkinson GWG, Stanton RJ, Tomasec P, Weekes MP. High-Definition Analysis of Host Protein Stability during Human Cytomegalovirus Infection Reveals Antiviral Factors and Viral Evasion Mechanisms. Cell Host Microbe 2018; 24:447-460.e11. [PMID: 30122656 PMCID: PMC6146656 DOI: 10.1016/j.chom.2018.07.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/01/2018] [Accepted: 06/25/2018] [Indexed: 12/03/2022]
Abstract
Human cytomegalovirus (HCMV) is an important pathogen with multiple immune evasion strategies, including virally facilitated degradation of host antiviral restriction factors. Here, we describe a multiplexed approach to discover proteins with innate immune function on the basis of active degradation by the proteasome or lysosome during early-phase HCMV infection. Using three orthogonal proteomic/transcriptomic screens to quantify protein degradation, with high confidence we identified 35 proteins enriched in antiviral restriction factors. A final screen employed a comprehensive panel of viral mutants to predict viral genes that target >250 human proteins. This approach revealed that helicase-like transcription factor (HLTF), a DNA helicase important in DNA repair, potently inhibits early viral gene expression but is rapidly degraded during infection. The functionally unknown HCMV protein UL145 facilitates HLTF degradation by recruiting the Cullin4 E3 ligase complex. Our approach and data will enable further identifications of innate pathways targeted by HCMV and other viruses. Multiplexed viral screens uncover host proteins targeted by early HCMV infection Finding host proteins targeted for degradation by HCMV reveals immune evasion strategies A screen of HCMV deletion mutants discovers viral factors that target >250 host proteins HLTF is an antiviral restriction factor that is targeted for degradation by HCMV UL145
Collapse
Affiliation(s)
- Katie Nightingale
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Kai-Min Lin
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Benjamin J Ravenhill
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Colin Davies
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Luis Nobre
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Ceri A Fielding
- Cardiff University School of Medicine, Division of Infection and Immunity, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK
| | - Eva Ruckova
- Regional Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Zluty Kopec 7, 65653 Brno, Czech Republic
| | | | - Lior Soday
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Hester Nichols
- Cardiff University School of Medicine, Division of Infection and Immunity, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK
| | - Daniel Sugrue
- Cardiff University School of Medicine, Division of Infection and Immunity, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK
| | - Eddie C Y Wang
- Cardiff University School of Medicine, Division of Infection and Immunity, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK
| | - Pablo Moreno
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Yagnesh Umrania
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Edward L Huttlin
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Gavin W G Wilkinson
- Cardiff University School of Medicine, Division of Infection and Immunity, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK
| | - Richard J Stanton
- Cardiff University School of Medicine, Division of Infection and Immunity, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK
| | - Peter Tomasec
- Cardiff University School of Medicine, Division of Infection and Immunity, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
52
|
Erythrocytes lacking the Langereis blood group protein ABCB6 are resistant to the malaria parasite Plasmodium falciparum. Commun Biol 2018; 1:45. [PMID: 30271928 PMCID: PMC6123700 DOI: 10.1038/s42003-018-0046-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/04/2018] [Indexed: 12/17/2022] Open
Abstract
The ATP-binding cassette transporter ABCB6 was recently discovered to encode the Langereis (Lan) blood group antigen. Lan null individuals are asymptomatic, and the function of ABCB6 in mature erythrocytes is not understood. Here, we assessed ABCB6 as a host factor for Plasmodium falciparum malaria parasites during erythrocyte invasion. We show that Lan null erythrocytes are highly resistant to invasion by P. falciparum, in a strain-transcendent manner. Although both Lan null and Jr(a-) erythrocytes harbor excess porphyrin, only Lan null erythrocytes exhibit a P. falciparum invasion defect. Further, the zoonotic parasite P. knowlesi invades Lan null and control cells with similar efficiency, suggesting that ABCB6 may mediate P. falciparum invasion through species-specific molecular interactions. Using tandem mass tag-based proteomics, we find that the only consistent difference in membrane proteins between Lan null and control cells is absence of ABCB6. Our results demonstrate that a newly identified naturally occurring blood group variant is associated with resistance to Plasmodium falciparum. Elizabeth Egan and colleagues demonstrate that host ATP binding cassette transporter ABCB6, which encodes the Langereis blood group antigen, promotes erythrocyte invasion by the malaria parasite Plasmodium falciparum. This study suggests that asymptomatic Langereis null individuals may be better protected from malaria.
Collapse
|
53
|
Rhodes DA, Chen HC, Williamson JC, Hill A, Yuan J, Smith S, Rhodes H, Trowsdale J, Lehner PJ, Herrmann T, Eberl M. Regulation of Human γδ T Cells by BTN3A1 Protein Stability and ATP-Binding Cassette Transporters. Front Immunol 2018; 9:662. [PMID: 29670629 PMCID: PMC5893821 DOI: 10.3389/fimmu.2018.00662] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/19/2018] [Indexed: 11/13/2022] Open
Abstract
Activation of human Vγ9/Vδ2 T cells by "phosphoantigens" (pAg), the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP) and the endogenous isoprenoid intermediate isopentenyl pyrophosphate, requires expression of butyrophilin BTN3A molecules by presenting cells. However, the precise mechanism of activation of Vγ9/Vδ2 T cells by BTN3A molecules remains elusive. It is not clear what conformation of the three BTN3A isoforms transmits activation signals nor how externally delivered pAg accesses the cytosolic B30.2 domain of BTN3A1. To approach these problems, we studied two HLA haplo-identical HeLa cell lines, termed HeLa-L and HeLa-M, which showed marked differences in pAg-dependent stimulation of Vγ9/Vδ2 T cells. Levels of IFN-γ secretion by Vγ9/Vδ2 T cells were profoundly increased by pAg loading, or by binding of the pan-BTN3A specific agonist antibody CD277 20.1, in HeLa-M compared to HeLa-L cells. IL-2 production from a murine hybridoma T cell line expressing human Vγ9/Vδ2 T cell receptor (TCR) transgenes confirmed that the differential responsiveness to HeLa-L and HeLa-M was TCR dependent. By tissue typing, both HeLa lines were shown to be genetically identical and full-length transcripts of the three BTN3A isoforms were detected in equal abundance with no sequence variation. Expression of BTN3A and interacting molecules, such as periplakin or RhoB, did not account for the functional variation between HeLa-L and HeLa-M cells. Instead, the data implicate a checkpoint controlling BTN3A1 stability and protein trafficking, acting at an early time point in its maturation. In addition, plasma membrane profiling was used to identify proteins upregulated in HMB-PP-treated HeLa-M. ABCG2, a member of the ATP-binding cassette (ABC) transporter family was the most significant candidate, which crucially showed reduced expression in HeLa-L. Expression of a subset of ABC transporters, including ABCA1 and ABCG1, correlated with efficiency of T cell activation by cytokine secretion, although direct evidence of a functional role was not obtained by knockdown experiments. Our findings indicate a link between members of the ABC protein superfamily and the BTN3A-dependent activation of γδ T cells by endogenous and exogenous pAg.
Collapse
Affiliation(s)
- David A. Rhodes
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom,*Correspondence: David A. Rhodes,
| | - Hung-Chang Chen
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - James C. Williamson
- Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Alfred Hill
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Jack Yuan
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Sam Smith
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Harriet Rhodes
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - John Trowsdale
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Paul J. Lehner
- Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Thomas Herrmann
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom,Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
54
|
Human cytomegalovirus reprogrammes haematopoietic progenitor cells into immunosuppressive monocytes to achieve latency. Nat Microbiol 2018; 3:503-513. [PMID: 29588542 DOI: 10.1038/s41564-018-0131-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 02/16/2018] [Indexed: 12/25/2022]
Abstract
The precise cell type hosting latent human cytomegalovirus (HCMV) remains elusive. Here, we report that HCMV reprogrammes human haematopoietic progenitor cells (HPCs) into a unique monocyte subset to achieve latency. Unlike conventional monocytes, this monocyte subset possesses higher levels of B7-H4, IL-10 and inducible nitric oxide synthase (iNOS), a longer lifespan and strong immunosuppressive capacity. Cell sorting of peripheral blood from latently infected human donors confirms that only this monocyte subset, representing less than 0.1% of peripheral mononuclear cells, is HCMV genome-positive but immediate-early-negative. Mechanistic studies demonstrate that HCMV promotes the differentiation of HPCs into this monocyte subset by activating cellular signal transducer and activator of transcription 3 (STAT3). In turn, this monocyte subset generates a high level of nitric oxide (NO) to silence HCMV immediate-early transcription and promote viral latency. By contrast, the US28-knockout HCMV mutant, which is incapable of activating STAT3, fails to reprogramme the HPCs and achieve latency. Our findings reveal that via activating the STAT3-iNOS-NO axis, HCMV differentiates human HPCs into a longevous, immunosuppressive monocyte subset for viral latency.
Collapse
|
55
|
Murray MJ, Peters NE, Reeves MB. Navigating the Host Cell Response during Entry into Sites of Latent Cytomegalovirus Infection. Pathogens 2018; 7:pathogens7010030. [PMID: 29547547 PMCID: PMC5874756 DOI: 10.3390/pathogens7010030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 02/07/2023] Open
Abstract
The host cell represents a hostile environment that viruses must counter in order to establish infection. Human cytomegalovirus (HCMV) is no different and encodes a multitude of functions aimed at disabling, re-directing or hijacking cellular functions to promulgate infection. However, during the very early stages of infection the virus relies on the outcome of interactions between virion components, cell surface receptors and host signalling pathways to promote an environment that supports infection. In the context of latent infection—where the virus establishes an infection in an absence of many gene products specific for lytic infection—these initial interactions are crucial events. In this review, we will discuss key host responses triggered by viral infection and how, in turn, the virus ameliorates the impact on the establishment of non-lytic infections of cells. We will focus on strategies to evade intrinsic antiviral and innate immune responses and consider their impact on viral infection. Finally, we will consider the hypothesis that the very early events upon viral infection are important for dictating the outcome of infection and consider the possibility that events that occur during entry into non-permissive cells are unique and thus contribute to the establishment of latency.
Collapse
Affiliation(s)
- Matthew J Murray
- Institute of Immunity & Transplantation, University College London, Royal Free Campus, London NW3 2PF, UK.
| | - Nicholas E Peters
- Institute of Immunity & Transplantation, University College London, Royal Free Campus, London NW3 2PF, UK.
| | | |
Collapse
|
56
|
Latency-Associated Expression of Human Cytomegalovirus US28 Attenuates Cell Signaling Pathways To Maintain Latent Infection. mBio 2017; 8:mBio.01754-17. [PMID: 29208743 PMCID: PMC5717388 DOI: 10.1128/mbio.01754-17] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Reactivation of human cytomegalovirus (HCMV) latent infection from early myeloid lineage cells constitutes a threat to immunocompromised or immune-suppressed individuals. Consequently, understanding the control of latency and reactivation to allow targeting and killing of latently infected cells could have far-reaching clinical benefits. US28 is one of the few viral genes that is expressed during latency and encodes a cell surface G protein-coupled receptor (GPCR), which, during lytic infection, is a constitutive cell-signaling activator. Here we now show that in monocytes, which are recognized sites of HCMV latency in vivo, US28 attenuates multiple cell signaling pathways, including mitogen-activated protein (MAP) kinase and NF-κB, and that this is required to establish a latent infection; viruses deleted for US28 initiate a lytic infection in infected monocytes. We also show that these monocytes then become potent targets for the HCMV-specific host immune response and that latently infected cells treated with an inverse agonist of US28 also reactivate lytic infection and similarly become immune targets. Consequently, we suggest that the use of inhibitors of US28 could be a novel immunotherapeutic strategy to reactivate the latent viral reservoir, allowing it to be targeted by preexisting HCMV-specific T cells. Human cytomegalovirus (HCMV) is a betaherpesvirus and a leading cause of morbidity and mortality among immunosuppressed individuals. HCMV can establish latent infection, where the viral genome is maintained in an infected cell, without production of infectious virus. A number of genes, including US28, are expressed by HCMV during latent infection. US28 has been shown to activate many cellular signaling pathways during lytic infection, promoting lytic gene expression and virus production. As such, the role of US28 remains unclear and seems at odds with latency. Here, we show that US28 has the opposite phenotype in cells that support latent infection—it attenuates cellular signaling, thereby maintaining latency. Inhibition of US28 with a small-molecule inhibitor causes HCMV latent infection to reactivate, allowing latently infected cells to be detected and killed by the immune system. This approach could be used to treat latent HCMV to clear it from human transplants.
Collapse
|
57
|
CRISPR/Cas9 knockouts reveal genetic interaction between strain-transcendent erythrocyte determinants of Plasmodium falciparum invasion. Proc Natl Acad Sci U S A 2017; 114:E9356-E9365. [PMID: 29078358 DOI: 10.1073/pnas.1711310114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
During malaria blood-stage infections, Plasmodium parasites interact with the RBC surface to enable invasion followed by intracellular proliferation. Critical factors involved in invasion have been identified using biochemical and genetic approaches including specific knockdowns of genes of interest from primary CD34+ hematopoietic stem cells (cRBCs). Here we report the development of a robust in vitro culture system to produce RBCs that allow the generation of gene knockouts via CRISPR/Cas9 using the immortal JK-1 erythroleukemia line. JK-1 cells spontaneously differentiate, generating cells at different stages of erythropoiesis, including terminally differentiated nucleated RBCs that we term "jkRBCs." A screen of small-molecule epigenetic regulators identified several bromodomain-specific inhibitors that promote differentiation and enable production of synchronous populations of jkRBCs. Global surface proteomic profiling revealed that jkRBCs express all known Pfalciparum host receptors in a similar fashion to cRBCs and that multiple Pfalciparum strains invade jkRBCs at comparable levels to cRBCs and RBCs. Using CRISPR/Cas9, we deleted two host factors, basigin (BSG) and CD44, for which no natural nulls exist. BSG interacts with the parasite ligand Rh5, a prominent vaccine candidate. A BSG knockout was completely refractory to parasite invasion in a strain-transcendent manner, confirming the essential role for BSG during invasion. CD44 was recently identified in an RNAi screen of blood group genes as a host factor for invasion, and we show that CD44 knockout results in strain-transcendent reduction in invasion. Furthermore, we demonstrate a functional interaction between these two determinants in mediating Pfalciparum erythrocyte invasion.
Collapse
|
58
|
Abstract
Viral latency can be considered a metastable, nonproductive infection state that is capable of subsequent reactivation to repeat the infection cycle. Viral latent infections have numerous associated pathologies, including cancer, birth defects, neuropathy, cardiovascular disease, chronic inflammation, and immunological dysfunctions. The mechanisms controlling the establishment, maintenance, and reactivation from latency are complex and diversified among virus families, species, and strains. Yet, as examined in this review, common properties of latent viral infections can be defined. Eradicating latent virus has become an important but elusive challenge and will require a more complete understanding of the mechanisms controlling these processes.
Collapse
|
59
|
Genetic Evidence for Erythrocyte Receptor Glycophorin B Expression Levels Defining a Dominant Plasmodium falciparum Invasion Pathway into Human Erythrocytes. Infect Immun 2017; 85:IAI.00074-17. [PMID: 28760933 PMCID: PMC5607420 DOI: 10.1128/iai.00074-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/17/2017] [Indexed: 01/18/2023] Open
Abstract
Plasmodium falciparum, the parasite that causes the deadliest form of malaria, has evolved multiple proteins known as invasion ligands that bind to specific erythrocyte receptors to facilitate invasion of human erythrocytes. The EBA-175/glycophorin A (GPA) and Rh5/basigin ligand-receptor interactions, referred to as invasion pathways, have been the subject of intense study. In this study, we focused on the less-characterized sialic acid-containing receptors glycophorin B (GPB) and glycophorin C (GPC). Through bioinformatic analysis, we identified extensive variation in glycophorin B (GYPB) transcript levels in individuals from Benin, suggesting selection from malaria pressure. To elucidate the importance of the GPB and GPC receptors relative to the well-described EBA-175/GPA invasion pathway, we used an ex vivo erythrocyte culture system to decrease expression of GPA, GPB, or GPC via lentiviral short hairpin RNA transduction of erythroid progenitor cells, with global surface proteomic profiling. We assessed the efficiency of parasite invasion into knockdown cells using a panel of wild-type P. falciparum laboratory strains and invasion ligand knockout lines, as well as P. falciparum Senegalese clinical isolates and a short-term-culture-adapted strain. For this, we optimized an invasion assay suitable for use with small numbers of erythrocytes. We found that all laboratory strains and the majority of field strains tested were dependent on GPB expression level for invasion. The collective data suggest that the GPA and GPB receptors are of greater importance than the GPC receptor, supporting a hierarchy of erythrocyte receptor usage in P. falciparum.
Collapse
|
60
|
Burr ML, Sparbier CE, Chan YC, Williamson JC, Woods K, Beavis PA, Lam EYN, Henderson MA, Bell CC, Stolzenburg S, Gilan O, Bloor S, Noori T, Morgens DW, Bassik MC, Neeson PJ, Behren A, Darcy PK, Dawson SJ, Voskoboinik I, Trapani JA, Cebon J, Lehner PJ, Dawson MA. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature 2017; 549:101-105. [PMID: 28813417 PMCID: PMC5706633 DOI: 10.1038/nature23643] [Citation(s) in RCA: 674] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/17/2017] [Indexed: 12/13/2022]
Abstract
Cancer cells exploit the expression of the programmed death-1 (PD-1) ligand 1 (PD-L1) to subvert T-cell-mediated immunosurveillance. The success of therapies that disrupt PD-L1-mediated tumour tolerance has highlighted the need to understand the molecular regulation of PD-L1 expression. Here we identify the uncharacterized protein CMTM6 as a critical regulator of PD-L1 in a broad range of cancer cells, by using a genome-wide CRISPR-Cas9 screen. CMTM6 is a ubiquitously expressed protein that binds PD-L1 and maintains its cell surface expression. CMTM6 is not required for PD-L1 maturation but co-localizes with PD-L1 at the plasma membrane and in recycling endosomes, where it prevents PD-L1 from being targeted for lysosome-mediated degradation. Using a quantitative approach to profile the entire plasma membrane proteome, we find that CMTM6 displays specificity for PD-L1. Notably, CMTM6 depletion decreases PD-L1 without compromising cell surface expression of MHC class I. CMTM6 depletion, via the reduction of PD-L1, significantly alleviates the suppression of tumour-specific T cell activity in vitro and in vivo. These findings provide insights into the biology of PD-L1 regulation, identify a previously unrecognized master regulator of this critical immune checkpoint and highlight a potential therapeutic target to overcome immune evasion by tumour cells.
Collapse
Affiliation(s)
- Marian L. Burr
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3052, Australia
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Rd, Cambridge CB2 0XY, UK
| | - Christina E. Sparbier
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne Victoria 3000, Australia
| | - Yih-Chih Chan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne Victoria 3000, Australia
| | - James C. Williamson
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Rd, Cambridge CB2 0XY, UK
| | - Katherine Woods
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia
| | - Paul A. Beavis
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3052, Australia
| | - Enid Y. N. Lam
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3052, Australia
| | - Melissa A. Henderson
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3052, Australia
| | - Charles C. Bell
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3052, Australia
| | - Sabine Stolzenburg
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne Victoria 3000, Australia
| | - Omer Gilan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3052, Australia
| | - Stuart Bloor
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Rd, Cambridge CB2 0XY, UK
| | - Tahereh Noori
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne Victoria 3000, Australia
| | - David W. Morgens
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Michael C. Bassik
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Paul J. Neeson
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3052, Australia
| | - Andreas Behren
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia
| | - Phillip K. Darcy
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3052, Australia
| | - Sarah-Jane Dawson
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3052, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, Australia
| | - Ilia Voskoboinik
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3052, Australia
| | - Joseph A. Trapani
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3052, Australia
| | - Jonathan Cebon
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia
| | - Paul J Lehner
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Rd, Cambridge CB2 0XY, UK
| | - Mark A. Dawson
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3052, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, Australia
- Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
61
|
Han L, Ma Y, Liu Z, Liu C, Lu Y, Qi Y, Huang Y, Sun Z, Ruan Q. Transcriptional regulation and influence on replication of the human cytomegalovirus UL138 1.4 kb transcript. Mol Med Rep 2017; 16:5649-5658. [PMID: 28849016 DOI: 10.3892/mmr.2017.7237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 06/08/2017] [Indexed: 11/06/2022] Open
Abstract
Human cytomegalovirus (HCMV) exists in a latent form in hematopoietic progenitors and undifferentiated cells of myeloid lineage. Protein UL138, encoded by the UL/b' region of the viral genome, serves an important role in the establishment and/or persistence of HCMV latency. However, little information about transcriptional regulation of the UL138 gene has been reported thus far. In the present study, the transcriptional regulation element (TRE) of the 1.4 kb UL138 region was identified using a series of dual‑luciferase constructs that contain 5' truncated deletion fragments located upstream of the transcription start site of the gene. The results demonstrated that the region from nucleotide 188995‑188962 of the Han strain genome exhibits promoter activity and harbors the functional binding motif for transcription factor AP‑1 (Ap‑1). Using electrophoretic mobility shift assays the physical interaction of the transcription factor to a minimal essential core sequence was demonstrated. Northern blotting revealed that deletion of the TRE in a HCMV bacterial artificial chromosome or inhibition of Ap‑1 using RNA interference eliminated or reduced the production of the UL138 1.4 kb mRNA transcript in infected human embryonic lung fibroblast cells (HELF). Deletion of the UL138 1.4 kb transcript resulted in acceleration of HCMV replication in HELF cells. To the best of the authors' knowledge, the present study is the first to analyze the transcriptional regulation of the UL138 1.4 kb transcript. Knowledge of the transcriptional regulation of the UL138 gene will enhance understanding of its mechanism in HCMV latency.
Collapse
Affiliation(s)
- Liying Han
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yanping Ma
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Zhongyang Liu
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Chang Liu
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Ying Lu
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Ying Qi
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yujing Huang
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Zhengrong Sun
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Qiang Ruan
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
62
|
Fielding CA, Weekes MP, Nobre LV, Ruckova E, Wilkie GS, Paulo JA, Chang C, Suárez NM, Davies JA, Antrobus R, Stanton RJ, Aicheler RJ, Nichols H, Vojtesek B, Trowsdale J, Davison AJ, Gygi SP, Tomasec P, Lehner PJ, Wilkinson GWG. Control of immune ligands by members of a cytomegalovirus gene expansion suppresses natural killer cell activation. eLife 2017; 6:e22206. [PMID: 28186488 PMCID: PMC5367895 DOI: 10.7554/elife.22206] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 02/09/2017] [Indexed: 01/31/2023] Open
Abstract
The human cytomegalovirus (HCMV) US12 family consists of ten sequentially arranged genes (US12-21) with poorly characterized function. We now identify novel natural killer (NK) cell evasion functions for four members: US12, US14, US18 and US20. Using a systematic multiplexed proteomics approach to quantify ~1300 cell surface and ~7200 whole cell proteins, we demonstrate that the US12 family selectively targets plasma membrane proteins and plays key roles in regulating NK ligands, adhesion molecules and cytokine receptors. US18 and US20 work in concert to suppress cell surface expression of the critical NKp30 ligand B7-H6 thus inhibiting NK cell activation. The US12 family is therefore identified as a major new hub of immune regulation.
Collapse
Affiliation(s)
- Ceri A Fielding
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Luis V Nobre
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Eva Ruckova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Gavin S Wilkie
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Chiwen Chang
- Immunology Division, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Nicolás M Suárez
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - James A Davies
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Richard J Stanton
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Rebecca J Aicheler
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Hester Nichols
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Borek Vojtesek
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - John Trowsdale
- Immunology Division, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Peter Tomasec
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Paul J Lehner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Gavin W G Wilkinson
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
63
|
Krishna BA, Spiess K, Poole EL, Lau B, Voigt S, Kledal TN, Rosenkilde MM, Sinclair JH. Targeting the latent cytomegalovirus reservoir with an antiviral fusion toxin protein. Nat Commun 2017; 8:14321. [PMID: 28148951 PMCID: PMC5296658 DOI: 10.1038/ncomms14321] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/16/2016] [Indexed: 12/26/2022] Open
Abstract
Reactivation of human cytomegalovirus (HCMV) in transplant recipients can cause life-threatening disease. Consequently, for transplant recipients, killing latently infected cells could have far-reaching clinical benefits. In vivo, myeloid cells and their progenitors are an important site of HCMV latency, and one viral gene expressed by latently infected myeloid cells is US28. This viral gene encodes a cell surface G protein-coupled receptor (GPCR) that binds chemokines, triggering its endocytosis. We show that the expression of US28 on the surface of latently infected cells allows monocytes and their progenitor CD34+ cells to be targeted and killed by F49A-FTP, a highly specific fusion toxin protein that binds this viral GPCR. As expected, this specific targeting of latently infected cells by F49A-FTP also robustly reduces virus reactivation in vitro. Consequently, such specific fusion toxin proteins could form the basis of a therapeutic strategy for eliminating latently infected cells before haematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- B A Krishna
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB20QQ, UK
| | - K Spiess
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - E L Poole
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB20QQ, UK
| | - B Lau
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB20QQ, UK
| | - S Voigt
- Department of Infectious Diseases, Robert Koch Institute, Nordufer 20, Berlin 13353, Germany.,Department of Pediatric Oncology/Hematology/SCT, Charité-Universitätsmedizin, Berlin 13353, Germany
| | - T N Kledal
- Section for Virology, The National Veterinary Institute, Technical University of Denmark, Frederiksberg DK-1870, Denmark
| | - M M Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - J H Sinclair
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB20QQ, UK
| |
Collapse
|
64
|
Latent human cytomegalovirus enhances HIV-1 infection in CD34 + progenitor cells. Blood Adv 2017; 1:306-318. [PMID: 29296946 DOI: 10.1182/bloodadvances.2016000638] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/15/2016] [Indexed: 01/12/2023] Open
Abstract
Individuals who have been preinfected by human cytomegalovirus (HCMV) are more prone to AIDS disease progression after subsequent HIV-1 infection but the underlying mechanism remains elusive. HCMV is a ubiquitous DNA virus that commonly establishes lifelong latent infection in CD34+ progenitor cells, where latency-specific HCMV genes may modulate host restriction to HIV-1 infection. To test this hypothesis, we studied progenitor cells that are known to resist replicative HIV-1 infection because of the intrinsic expression of host restriction factors. Interestingly, in primary CD34+ cells undergoing latent HCMV infection, an enhanced level of HIV-1 proviral DNA and replication was observed as measured by digital polymerase chain reaction, quantitative polymerase chain reaction, and Gag expression, and confirmed using dual-reporter pseudovirus encoding X4- or R5-tropic envelope and T-cell transfer. This phenomenon may be partially explained by the upregulation of HIV-1 entry coreceptors, including chemokine receptors CXCR4 and CCR5, but not of the primary receptor CD4. Furthermore, latent HCMV infection downregulated the expression of HIV-1 restriction factors SAMHD1, APOBEC3G, tetherin, and Mx2 in CD34+ progenitor cells, which may confer to enhanced HIV-1 infection. However, this enhancement was abrogated when ultraviolet-inactivated HCMV was used for comparison, suggesting that expression of latent HCMV genes is essential for this effect. Importantly, HCMV gB and HIV-1 p24 can be detected in the same cell by immunofluorescence and flow cytometry; therefore, the establishment of HCMV latency in CD34+ cells likely leads to host cell gene modulation that favors HIV-1 infection.
Collapse
|
65
|
The cytomegalovirus protein UL138 induces apoptosis of gastric cancer cells by binding to heat shock protein 70. Oncotarget 2016; 7:5630-45. [PMID: 26735338 PMCID: PMC4868710 DOI: 10.18632/oncotarget.6800] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 12/05/2015] [Indexed: 01/16/2023] Open
Abstract
It has been hypothesized that human cytomegalovirus (HCMV) could act as a tumor promoter and play an “oncomodulatory” role in the neoplastic process of several human malignancies. However, we demonstrate for the first time that UL138, a HCMV latency-associated gene, could act as a tumor inhibitor in gastric cancer (GC). The expression of UL138 is down-regulated in HCMV positive gastric adenocarcinoma tissues, especially in poorly or none differentiated tumors. Overexpression of UL138 in several human GC cell lines inhibits cell viability and induces apoptosis, in association with the reduction of an anti-apoptotic Bcl-2 protein and the induction of cleaved caspase-3 and caspase-9. Moreover, protein array analysis reveals that UL138 interacts with a chaperone protein, heat shock protein 70 (HSP70). This interaction is confirmed by immunoprecipitation and immunostaining in situ in GC cell lines. In addition, this UL138-mediated cancer cell death could efficiently lead to suppression of human tumor growth in a xenograft animal model of GC. In conclusion, these results uncover a previously unknown role of the cytomegalovirus protein UL138 in inducing GC cells apoptosis, which might imply a general mechanism that viral proteins inhibit cancer growth in interactions with both chaperones and apoptosis-related proteins. Our findings might provide a potential target for new therapeutic strategies of GC treatment.
Collapse
|
66
|
Abstract
Herpesviruses have evolved exquisite virus-host interactions that co-opt or evade a number of host pathways to enable the viruses to persist. Persistence of human cytomegalovirus (CMV), the prototypical betaherpesvirus, is particularly complex in the host organism. Depending on host physiology and the cell types infected, CMV persistence comprises latent, chronic, and productive states that may occur concurrently. Viral latency is a central strategy by which herpesviruses ensure their lifelong persistence. Although much remains to be defined about the virus-host interactions important to CMV latency, it is clear that checkpoints composed of viral and cellular factors exist to either maintain a latent state or initiate productive replication in response to host cues. CMV offers a rich platform for defining the virus-host interactions and understanding the host biology important to viral latency. This review describes current understanding of the virus-host interactions that contribute to viral latency and reactivation.
Collapse
Affiliation(s)
- Felicia Goodrum
- Department of Immunobiology, BIO5 Institute, University of Arizona, Tucson, Arizona 85721;
| |
Collapse
|
67
|
Long and Short Isoforms of the Human Cytomegalovirus UL138 Protein Silence IE Transcription and Promote Latency. J Virol 2016; 90:9483-94. [PMID: 27512069 DOI: 10.1128/jvi.01547-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED The UL133-138 locus present in clinical strains of human cytomegalovirus (HCMV) encodes proteins required for latency and reactivation in CD34(+) hematopoietic progenitor cells and virion maturation in endothelial cells. The encoded proteins form multiple homo- and hetero-interactions and localize within secretory membranes. One of these genes, UL136 gene, is expressed as at least five different protein isoforms with overlapping and unique functions. Here we show that another gene from this locus, the UL138 gene, also generates more than one protein isoform. A long form of UL138 (pUL138-L) initiates translation from codon 1, possesses an amino-terminal signal sequence, and is a type one integral membrane protein. Here we identify a short protein isoform (pUL138-S) initiating from codon 16 that displays a subcellular localization similar to that of pUL138-L. Reporter, short-term transcription, and long-term virus production assays revealed that both pUL138-L and pUL138-S are able to suppress major immediate early (IE) gene transcription and the generation of infectious virions in cells in which HCMV latency is studied. The long form appears to be more potent at silencing IE transcription shortly after infection, while the short form seems more potent at restricting progeny virion production at later times, indicating that both isoforms of UL138 likely cooperate to promote HCMV latency. IMPORTANCE Latency allows herpesviruses to persist for the lives of their hosts in the face of effective immune control measures for productively infected cells. Controlling latent reservoirs is an attractive antiviral approach complicated by knowledge deficits for how latently infected cells are established, maintained, and reactivated. This is especially true for betaherpesviruses. The functional consequences of HCMV UL138 protein expression during latency include repression of viral IE1 transcription and suppression of virus replication. Here we show that short and long isoforms of UL138 exist and can themselves support latency but may do so in temporally distinct manners. Understanding the complexity of gene expression and its impact on latency is important for considering potential antivirals targeting latent reservoirs.
Collapse
|
68
|
Hoare M, Ito Y, Kang TW, Weekes MP, Matheson NJ, Patten DA, Shetty S, Parry AJ, Menon S, Salama R, Antrobus R, Tomimatsu K, Howat W, Lehner PJ, Zender L, Narita M. NOTCH1 mediates a switch between two distinct secretomes during senescence. Nat Cell Biol 2016; 18:979-92. [PMID: 27525720 PMCID: PMC5008465 DOI: 10.1038/ncb3397] [Citation(s) in RCA: 366] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 07/12/2016] [Indexed: 12/15/2022]
Abstract
Senescence, a persistent form of cell-cycle arrest, is often associated with a diverse secretome, which provides complex functionality for senescent cells within the tissue microenvironment. We show that oncogene-induced senescence is accompanied by a dynamic fluctuation of NOTCH1 activity, which drives a TGF-β-rich secretome, while suppressing the senescence-associated pro-inflammatory secretome through inhibition of C/EBPβ. NOTCH1 and NOTCH1-driven TGF-β contribute to 'lateral induction of senescence' through a juxtacrine NOTCH-JAG1 pathway. In addition, NOTCH1 inhibition during senescence facilitates upregulation of pro-inflammatory cytokines, promoting lymphocyte recruitment and senescence surveillance in vivo. As enforced activation of NOTCH1 signalling confers a near mutually exclusive secretory profile compared with typical senescence, our data collectively indicate that the dynamic alteration of NOTCH1 activity during senescence dictates a functional balance between these two distinct secretomes: one representing TGF-β and the other pro-inflammatory cytokines, highlighting that NOTCH1 is a temporospatial controller of secretome composition.
Collapse
Affiliation(s)
- Matthew Hoare
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
- University of Cambridge, Department of Medicine, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| | - Yoko Ito
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Tae-Won Kang
- Division of Translational Gastrointestinal Oncology, Dept. of Internal Medicine I, University Hospital Tuebingen, Otfried-Mueller-Strasse 12, 72076 Tuebingen, Germany & Translational Gastrointestinal Oncology Group within the German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael P. Weekes
- University of Cambridge, Department of Medicine, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
- University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, CB2 0XY, UK
| | - Nicholas J. Matheson
- University of Cambridge, Department of Medicine, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
- University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, CB2 0XY, UK
| | - Daniel A. Patten
- National Institute of Health Research (NIHR) Birmingham Liver Biomedical Research Unit (BRU), Centre for Liver Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Shishir Shetty
- National Institute of Health Research (NIHR) Birmingham Liver Biomedical Research Unit (BRU), Centre for Liver Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Aled J. Parry
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Suraj Menon
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Rafik Salama
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Robin Antrobus
- University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, CB2 0XY, UK
| | - Kosuke Tomimatsu
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - William Howat
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Paul J. Lehner
- University of Cambridge, Department of Medicine, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
- University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, CB2 0XY, UK
| | - Lars Zender
- Division of Translational Gastrointestinal Oncology, Dept. of Internal Medicine I, University Hospital Tuebingen, Otfried-Mueller-Strasse 12, 72076 Tuebingen, Germany & Translational Gastrointestinal Oncology Group within the German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Masashi Narita
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| |
Collapse
|
69
|
Richter C, Schneider C, Quick MT, Volz P, Mahrwald R, Hughes J, Dick B, Alexiev U, Ernsting NP. Dual-fluorescence pH probe for bio-labelling. Phys Chem Chem Phys 2016; 17:30590-7. [PMID: 26524563 DOI: 10.1039/c5cp05454k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Although seminaphtorhodafluor (SNARF) dyes are already widely used to measure pH in cells and at biofilms, their synthesis has low yield and results in an unspecific position of a carboxy-group. The separation of 5'- and 6'-carboxy-SNARF reveals a pKa difference of 0.15, calling into question pH measurements with the (commercially available) mixture. Here we replace the bulky external dicarboxyphenyl ring with a propionate group and evaluate the spectral properties of the new derivative. Proceeding to the ethyl-iodoacetamide, covalent linkage to cysteine protein sites is achieved efficiently as shown with a cyanobacterial phytochrome, extending the scarce application of SNARF in bio-labelling in the current literature. Application in fluorescence lifetime imaging is demonstrated both with the lifetime-based and ratiometric-yield method.
Collapse
Affiliation(s)
- C Richter
- Department of Chemistry, Humboldt-Universität zu Berlin, 12489 Berlin, Germany.
| | - C Schneider
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany.
| | - M T Quick
- Department of Chemistry, Humboldt-Universität zu Berlin, 12489 Berlin, Germany.
| | - P Volz
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany.
| | - R Mahrwald
- Department of Chemistry, Humboldt-Universität zu Berlin, 12489 Berlin, Germany.
| | - J Hughes
- Institute for Plantphysiology, Justus-Liebig Universität, 35390 Giessen, Germany
| | - B Dick
- Institute for Physical and Theoretical Chemistry, Universität Regensburg, 93053 Regensburg, Germany
| | - U Alexiev
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany.
| | - N P Ernsting
- Department of Chemistry, Humboldt-Universität zu Berlin, 12489 Berlin, Germany.
| |
Collapse
|
70
|
The Expression of Human Cytomegalovirus MicroRNA MiR-UL148D during Latent Infection in Primary Myeloid Cells Inhibits Activin A-triggered Secretion of IL-6. Sci Rep 2016; 6:31205. [PMID: 27491954 PMCID: PMC4974560 DOI: 10.1038/srep31205] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/06/2016] [Indexed: 12/28/2022] Open
Abstract
The successful establishment and maintenance of human cytomegalovirus (HCMV) latency is dependent on the expression of a subset of viral genes. Whilst the exact spectrum and functions of these genes are far from clear, inroads have been made for protein-coding genes. In contrast, little is known about the expression of non-coding RNAs. Here we show that HCMV encoded miRNAs are expressed de novo during latent infection of primary myeloid cells. Furthermore, we demonstrate that miR-UL148D, one of the most highly expressed viral miRNAs during latent infection, directly targets the cellular receptor ACVR1B of the activin signalling axis. Consistent with this, we observed upregulation of ACVR1B expression during latent infection with a miR-UL148D deletion virus (ΔmiR-UL148D). Importantly, we observed that monocytes latently infected with ΔmiR-UL148D are more responsive to activin A stimulation, as demonstrated by their increased secretion of IL-6. Collectively, our data indicates miR-UL148D inhibits ACVR1B expression in latently infected cells to limit proinflammatory cytokine secretion, perhaps as an immune evasion strategy or to postpone cytokine-induced reactivation until conditions are more favourable. This is the first demonstration of an HCMV miRNA function during latency in primary myeloid cells, implicating that small RNA species may contribute significantly to latent infection.
Collapse
|
71
|
Lau B, Poole E, Van Damme E, Bunkens L, Sowash M, King H, Murphy E, Wills M, Van Loock M, Sinclair J. Human cytomegalovirus miR-UL112-1 promotes the down-regulation of viral immediate early-gene expression during latency to prevent T-cell recognition of latently infected cells. J Gen Virol 2016; 97:2387-2398. [PMID: 27411311 DOI: 10.1099/jgv.0.000546] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human cytomegalovirus, a member of the herpesvirus family, can cause significant morbidity and mortality in immune compromised patients resulting from either primary lytic infection or reactivation from latency. Latent infection is associated with a restricted viral transcription programme compared to lytic infection which consists of defined protein coding RNAs but also includes a number of virally encoded microRNAs (miRNAs). One of these, miR-UL112-1, is known to target the major lytic IE72 transcript but, to date, a functional role for miR-UL112-1 during latent infection has not been shown. To address this, we have analysed latent infection in myeloid cells using a virus in which the target site for miR-UL112-1 in the 3' UTR of IE72 was removed such that any IE72 RNA present during latent infection would no longer be subject to regulation by miR-UL112-1 through the RNAi pathway. Our data show that removal of the miR-UL112-1 target site in IE72 results in increased levels of IE72 RNA in experimentally latent primary monocytes. Furthermore, this resulted in induction of immediate early (IE) gene expression that is detectable by IE-specific cytotoxic T-cells (CTLs); no such CTL recognition of monocytes latently infected with wild-type virus was observed. We also recapitulated these findings in the more tractable THP-1 cell line model of latency. These observations argue that an important role for miR-UL112-1 during latency is to ensure tight control of lytic viral immediate early (IE) gene expression thereby preventing recognition of latently infected cells by the host's potent pre-existing anti-viral CTL response.
Collapse
Affiliation(s)
- Betty Lau
- Department of Medicine, University of Cambridge, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Emma Poole
- Department of Medicine, University of Cambridge, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Ellen Van Damme
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Lieve Bunkens
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Madeleine Sowash
- Department of Medicine, University of Cambridge, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Harry King
- Department of Medicine, University of Cambridge, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Eain Murphy
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Mark Wills
- Department of Medicine, University of Cambridge, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Marnix Van Loock
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - John Sinclair
- Department of Medicine, University of Cambridge, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| |
Collapse
|
72
|
Long J, Basu Roy R, Zhang YJ, Antrobus R, Du Y, Smith DL, Weekes MP, Javid B. Plasma Membrane Profiling Reveals Upregulation of ABCA1 by Infected Macrophages Leading to Restriction of Mycobacterial Growth. Front Microbiol 2016; 7:1086. [PMID: 27462310 PMCID: PMC4940386 DOI: 10.3389/fmicb.2016.01086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 06/29/2016] [Indexed: 01/01/2023] Open
Abstract
The plasma membrane represents a critical interface between the internal and extracellular environments, and harbors multiple proteins key receptors and transporters that play important roles in restriction of intracellular infection. We applied plasma membrane profiling, a technique that combines quantitative mass spectrometry with selective cell surface aminooxy-biotinylation, to Bacille Calmette–Guérin (BCG)-infected THP-1 macrophages. We quantified 559 PM proteins in BCG-infected THP-1 cells. One significantly upregulated cell-surface protein was the cholesterol transporter ABCA1. We showed that ABCA1 was upregulated on the macrophage cell-surface following infection with pathogenic mycobacteria and knockdown of ABCA1 resulted in increased mycobacterial survival within macrophages, suggesting that it may be a novel mycobacterial host-restriction factor.
Collapse
Affiliation(s)
- Jing Long
- Collaboration Innovation Centre for the Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University Beijing, China
| | | | | | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge Cambridge, UK
| | - Yuxian Du
- Collaboration Innovation Centre for the Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University Beijing, China
| | - Duncan L Smith
- Cancer Research UK Manchester Institute, University of Manchester Manchester, UK
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge Cambridge, UK
| | - Babak Javid
- Collaboration Innovation Centre for the Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua UniversityBeijing, China; Harvard TH Chan School of Public Health, BostonMA, USA
| |
Collapse
|
73
|
Li Z, Liu X, Wang L, Wang Y, Du C, Xu S, Zhang Y, Wang C, Yang C. The role of PGC-1α and MRP1 in lead-induced mitochondrial toxicity in testicular Sertoli cells. Toxicology 2016; 355-356:39-48. [PMID: 27236077 DOI: 10.1016/j.tox.2016.05.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/12/2016] [Accepted: 05/19/2016] [Indexed: 12/12/2022]
Abstract
The lead-induced toxic effect on mitochondria in Sertoli cells is not well studied and the underlying mechanism is poorly understood. Here we reported the potential role of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) and multidrug resistance protein 1 (MRP1) in lead acetate-induced mitochondrial toxicity in mouse testicular Sertoli cells TM4 line. We found that lead acetate treatment significantly reduced the expression level of PGC-1α, but increased the level of MRP1 in mitochondria of TM4 cells. To determine the role of PGC-1α and MRP1 in lead acetate-induced mitochondrial toxicity, we then generated PGC-1α stable overexpression and MRP1 stable knockdown TM4 cells, respectively. The lead acetate treatment caused TM4 cell mitochondrial ultrastructure damages, a decrease in ATP synthesis, an increase in ROS levels, and apoptotic cell death. In contrast, stably overexpressing PGC-1α significantly ameliorated the lead acetate treatment-caused mitochondrial toxicity and apoptosis. Moreover, it was also found that stably knocking down the level of MRP1 increased the TM4 cell mitochondrial lead-accumulation by 4-6 folds. Together, the findings from this study suggest that PGC-1α and MRP1 plays important roles in protecting TM4 cells against lead-induced mitochondrial toxicity, providing a better understanding of lead-induced mitochondrial toxicity.
Collapse
Affiliation(s)
- Zhen Li
- Department of Toxicology, School of Public Health, Wuhan University, Donghu Road 115, Wuhan 430071, PR China
| | - Xi Liu
- Department of Toxicology, School of Public Health, Wuhan University, Donghu Road 115, Wuhan 430071, PR China
| | - Lu Wang
- Department of Toxicology, School of Public Health, Wuhan University, Donghu Road 115, Wuhan 430071, PR China
| | - Yan Wang
- Department of Preventive Medicine, College of Basic Medical Sciences, Hubei University of Chineses Medicine, Wuhan 430065, PR China
| | - Chuang Du
- Department of Toxicology, School of Public Health, Wuhan University, Donghu Road 115, Wuhan 430071, PR China
| | - Siyuan Xu
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Academy for Preventive Medicine, Wuhan 430079, PR China
| | - Yucheng Zhang
- Department of Toxicology, School of Public Health, Wuhan University, Donghu Road 115, Wuhan 430071, PR China
| | - Chunhong Wang
- Department of Toxicology, School of Public Health, Wuhan University, Donghu Road 115, Wuhan 430071, PR China.
| | - Chengfeng Yang
- Department of Physiology, Michigan State University East Lansing, MI 48824, USA.
| |
Collapse
|
74
|
Buehler J, Zeltzer S, Reitsma J, Petrucelli A, Umashankar M, Rak M, Zagallo P, Schroeder J, Terhune S, Goodrum F. Opposing Regulation of the EGF Receptor: A Molecular Switch Controlling Cytomegalovirus Latency and Replication. PLoS Pathog 2016; 12:e1005655. [PMID: 27218650 PMCID: PMC4878804 DOI: 10.1371/journal.ppat.1005655] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/02/2016] [Indexed: 12/15/2022] Open
Abstract
Herpesviruses persist indefinitely in their host through complex and poorly defined interactions that mediate latent, chronic or productive states of infection. Human cytomegalovirus (CMV or HCMV), a ubiquitous β-herpesvirus, coordinates the expression of two viral genes, UL135 and UL138, which have opposing roles in regulating viral replication. UL135 promotes reactivation from latency and virus replication, in part, by overcoming replication-suppressive effects of UL138. The mechanism by which UL135 and UL138 oppose one another is not known. We identified viral and host proteins interacting with UL138 protein (pUL138) to begin to define the mechanisms by which pUL135 and pUL138 function. We show that pUL135 and pUL138 regulate the viral cycle by targeting that same receptor tyrosine kinase (RTK) epidermal growth factor receptor (EGFR). EGFR is a major homeostatic regulator involved in cellular proliferation, differentiation, and survival, making it an ideal target for viral manipulation during infection. pUL135 promotes internalization and turnover of EGFR from the cell surface, whereas pUL138 preserves surface expression and activation of EGFR. We show that activated EGFR is sequestered within the infection-induced, juxtanuclear viral assembly compartment and is unresponsive to stress. Intriguingly, these findings suggest that CMV insulates active EGFR in the cell and that pUL135 and pUL138 function to fine-tune EGFR levels at the cell surface to allow the infected cell to respond to extracellular cues. Consistent with the role of pUL135 in promoting replication, inhibition of EGFR or the downstream phosphoinositide 3-kinase (PI3K) favors reactivation from latency and replication. We propose a model whereby pUL135 and pUL138 together with EGFR comprise a molecular switch that regulates states of latency and replication in HCMV infection by regulating EGFR trafficking to fine tune EGFR signaling. Cytomegalovirus, a herpesvirus, persists in its host through complex interactions that mediate latent, chronic or productive states of infection. Defining the mechanistic basis viral persistence is important for defining the costs and possible benefits of viral persistence and to mitigate pathologies associated with reactivation. We have identified two genes, UL135 and UL138, with opposing roles in regulating states of latency and replication. UL135 promotes replication and reactivation from latency, in part, by overcoming suppressive effects of UL138. Intriguingly, pUL135 and pUL138 regulate the viral cycle by targeting the same receptor tyrosine kinase, epidermal growth factor receptor (EGFR). EGFR is a major homeostatic regulator controlling cellular proliferation, differentiation, and survival, making it an ideal target for viruses to manipulate during infection. We show that CMV insulates and regulates EGFR levels and activity by modulating its trafficking. This work defines a molecular switch that regulates latent and replicative states of infection through the modulation of host trafficking and signaling pathways. The regulation of EGFR at the cell surface provides a novel means by which the virus may sense and respond to changes in the host environment to enter into or exit the latent state.
Collapse
Affiliation(s)
- Jason Buehler
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Sebastian Zeltzer
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Justin Reitsma
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Alex Petrucelli
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | | | - Mike Rak
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Patricia Zagallo
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Joyce Schroeder
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, United States of America
| | - Scott Terhune
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Felicia Goodrum
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
75
|
Krishna BA, Lau B, Jackson SE, Wills MR, Sinclair JH, Poole E. Transient activation of human cytomegalovirus lytic gene expression during latency allows cytotoxic T cell killing of latently infected cells. Sci Rep 2016; 6:24674. [PMID: 27091512 PMCID: PMC4835774 DOI: 10.1038/srep24674] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/04/2016] [Indexed: 12/15/2022] Open
Abstract
Human cytomegalovirus (HCMV) latency in the myeloid lineage is maintained by repressive histone modifications around the major immediate early promoter (MIEP), which results in inhibition of the lytic viral life cycle. We now show that pharmacological inhibition of histone deacetylases (HDACs) relieves this repression of the MIEP and induces transient expression of the viral lytic immediate early (IE) antigens but, importantly, not full virus reactivation. In turn, these latently infected cells now become targets for IE-specific cytotoxic T cells (CTLs) which are present at high frequency in all normal healthy HCMV positive carriers but would normally be unable to target latent (lytic antigen-negative) cells. This approach of transiently inducing viral lytic gene expression by HDAC inhibition, in otherwise latently infected cells, offers a window of opportunity to target and purge the latent myeloid cell reservoir by making these normally immunologically undetectable cells visible to pre-existing host immune responses to viral lytic antigens.
Collapse
Affiliation(s)
- B. A. Krishna
- Department of Medicine, University of Cambridge, Level 5 Laboratories Block, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ
| | - B. Lau
- Department of Medicine, University of Cambridge, Level 5 Laboratories Block, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ
| | - S. E. Jackson
- Department of Medicine, University of Cambridge, Level 5 Laboratories Block, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ
| | - M. R. Wills
- Department of Medicine, University of Cambridge, Level 5 Laboratories Block, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ
| | - J. H. Sinclair
- Department of Medicine, University of Cambridge, Level 5 Laboratories Block, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ
| | - E. Poole
- Department of Medicine, University of Cambridge, Level 5 Laboratories Block, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ
| |
Collapse
|
76
|
Gökirmak T, Campanale JP, Reitzel AM, Shipp LE, Moy GW, Hamdoun A. Functional diversification of sea urchin ABCC1 (MRP1) by alternative splicing. Am J Physiol Cell Physiol 2016; 310:C911-20. [PMID: 27053522 DOI: 10.1152/ajpcell.00029.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/01/2016] [Indexed: 11/22/2022]
Abstract
The multidrug resistance protein (MRP) family encodes a diverse repertoire of ATP-binding cassette (ABC) transporters with multiple roles in development, disease, and homeostasis. Understanding MRP evolution is central to unraveling their roles in these diverse processes. Sea urchins occupy an important phylogenetic position for understanding the evolution of vertebrate proteins and have been an important invertebrate model system for study of ABC transporters. We used phylogenetic analyses to examine the evolution of MRP transporters and functional approaches to identify functional forms of sea urchin MRP1 (also known as SpABCC1). SpABCC1, the only MRP homolog in sea urchins, is co-orthologous to human MRP1, MRP3, and MRP6 (ABCC1, ABCC3, and ABCC6) transporters. However, efflux assays revealed that alternative splicing of exon 22, a region critical for substrate interactions, could diversify functions of sea urchin MRP1. Phylogenetic comparisons also indicate that while MRP1, MRP3, and MRP6 transporters potentially arose from a single transporter in basal deuterostomes, alternative splicing appears to have been the major mode of functional diversification in invertebrates, while duplication may have served a more important role in vertebrates. These results provide a deeper understanding of the evolutionary origins of MRP transporters and the potential mechanisms used to diversify their functions in different groups of animals.
Collapse
Affiliation(s)
- Tufan Gökirmak
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California; and
| | - Joseph P Campanale
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California; and
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Lauren E Shipp
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California; and
| | - Gary W Moy
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California; and
| | - Amro Hamdoun
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California; and
| |
Collapse
|
77
|
Daguzan C, Moulin M, Kulyk-Barbier H, Davrinche C, Peyrottes S, Champagne E. Aminobisphosphonates Synergize with Human Cytomegalovirus To Activate the Antiviral Activity of Vγ9Vδ2 Cells. THE JOURNAL OF IMMUNOLOGY 2016; 196:2219-29. [PMID: 26819204 DOI: 10.4049/jimmunol.1501661] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/18/2015] [Indexed: 01/13/2023]
Abstract
Human Vγ9Vδ2 T cells are activated through their TCR by neighboring cells producing phosphoantigens. Zoledronate (ZOL) treatment induces intracellular accumulation of the phosphoantigens isopentenyl pyrophosphate and ApppI. Few attempts have been made to use immunomanipulation of Vγ9Vδ2 lymphocytes in chronic viral infections. Although Vγ9Vδ2 T cells seem to ignore human CMV (HCMV)-infected cells, we examined whether they can sense HCMV when a TCR stimulus is provided with ZOL. Fibroblasts treated with ZOL activate Vγ9Vδ2 T cells to produce IFN-γ but not TNF. Following the same treatment, HCMV-infected fibroblasts stimulate TNF secretion and an increased production of IFN-γ, indicating that Vγ9Vδ2 cells can sense HCMV infection. Increased lymphokine production was observed with most clinical isolates and laboratory HCMV strains, HCMV-permissive astrocytoma, or dendritic cells, as well as "naive" and activated Vγ9Vδ2 cells. Quantification of intracellular isopentenyl pyrophosphate/ApppI following ZOL treatment showed that HCMV infection boosts their accumulation. This was explained by an increased capture of ZOL and by upregulation of HMG-CoA synthase and reductase transcription. Using an experimental setting where infected fibroblasts were cocultured with γδ cells in submicromolar concentrations of ZOL, we show that Vγ9Vδ2 cells suppressed substantially the release of infectious particles while preserving uninfected cells. Vγ9Vδ2 cytotoxicity was decreased by HCMV infection of targets whereas anti-IFN-γ and anti-TNF Abs significantly blocked the antiviral effect. Our experiments indicate that cytokines produced by Vγ9Vδ2 T cells have an antiviral potential in HCMV infection. This should lead to in vivo studies to explore the possible antiviral effect of immunostimulation with ZOL in this context.
Collapse
Affiliation(s)
- Charline Daguzan
- Centre de Physiopathologie de Toulouse Purpan, 31024 Toulouse, France; INSERM, U1043, 31024 Toulouse, France; CNRS, UMR5282, 31024 Toulouse, France; Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Morgane Moulin
- Centre de Physiopathologie de Toulouse Purpan, 31024 Toulouse, France; INSERM, U1043, 31024 Toulouse, France; CNRS, UMR5282, 31024 Toulouse, France; Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Hanna Kulyk-Barbier
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Institut National des Sciences Appliquées, Plateforme MetaToul, UMR Institut National des Sciences Appliquées/CNRS 5504-UMR INSA/Institut National de la Recherche Agronomique 792, 31400 Toulouse, France; and
| | - Christian Davrinche
- Centre de Physiopathologie de Toulouse Purpan, 31024 Toulouse, France; INSERM, U1043, 31024 Toulouse, France; CNRS, UMR5282, 31024 Toulouse, France; Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Suzanne Peyrottes
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier 2-Ecole Nationale Supérieure de Chimie de Montpellier, 34095 Montpellier, France
| | - Eric Champagne
- Centre de Physiopathologie de Toulouse Purpan, 31024 Toulouse, France; INSERM, U1043, 31024 Toulouse, France; CNRS, UMR5282, 31024 Toulouse, France; Université Toulouse III Paul-Sabatier, 31062 Toulouse, France;
| |
Collapse
|
78
|
Human Cytomegalovirus US28 Is Important for Latent Infection of Hematopoietic Progenitor Cells. J Virol 2015; 90:2959-70. [PMID: 26719258 DOI: 10.1128/jvi.02507-15] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/22/2015] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Human cytomegalovirus (HCMV) resides latently in hematopoietic progenitor cells (HPCs). During latency, only a subset of HCMV genes is transcribed, including one of the four virus-encoded G protein-coupled receptors (GPCRs), US28. Although US28 is a multifunctional lytic protein, its function during latency has remained undefined. We generated a panel of US28 recombinant viruses in the bacterial artificial chromosome (BAC)-derived clinical HCMV strain TB40/E-mCherry. We deleted the entire US28 open reading frame (ORF), deleted all four of the viral GPCR ORFs, or deleted three of the HCMV GPCRs but not the US28 wild-type protein. Using these recombinant viruses, we assessed the requirement for US28 during latency in the Kasumi-3 in vitro latency model system and in primary ex vivo-cultured CD34(+) HPCs. Our data suggest that US28 is required for latency as infection with viruses lacking the US28 ORF alone or in combination with the remaining HCMV-encoded GPCR results in transcription from the major immediate early promoter, the production of extracellular virions, and the production of infectious virus capable of infecting naive fibroblasts. The other HCMV GPCRs are not required for this phenotype as a virus expressing only US28 but not the remaining virus-encoded GPCRs is phenotypically similar to that of wild-type latent infection. Finally, we found that US28 copurifies with mature virions and is expressed in HPCs upon virus entry although its expression at the time of infection does not complement the US28 deletion latency phenotype. This work suggests that US28 protein functions to promote a latent state within hematopoietic progenitor cells. IMPORTANCE Human cytomegalovirus (HCMV) is a widespread pathogen that, once acquired, remains with its host for life. HCMV remains latent, or quiescent, in cells of the hematopoietic compartment and upon immune challenge can reactivate to cause disease. HCMV-encoded US28 is one of several genes expressed during latency although its biological function during this phase of infection has remained undefined. Here, we show that US28 aids in promoting experimental latency in tissue culture.
Collapse
|
79
|
Dupont L, Reeves MB. Cytomegalovirus latency and reactivation: recent insights into an age old problem. Rev Med Virol 2015; 26:75-89. [PMID: 26572645 DOI: 10.1002/rmv.1862] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 12/25/2022]
Abstract
Human cytomegalovirus (HCMV) infection remains a major cause of morbidity in patient populations. In certain clinical settings, it is the reactivation of the pre-existing latent infection in the host that poses the health risk. The prevailing view of HCMV latency was that the virus was essentially quiescent in myeloid progenitor cells and that terminal differentiation resulted in the initiation of the lytic lifecycle and reactivation of infectious virus. However, our understanding of HCMV latency and reactivation at the molecular level has been greatly enhanced through recent advancements in systems biology approaches to perform global analyses of both experimental and natural latency. These approaches, in concert with more classical reductionist experimentation, are furnishing researchers with new concepts in cytomegalovirus latency and suggest that latent infection is far more active than first thought. In this review, we will focus on new studies that suggest that distinct sites of cellular latency could exist in the human host, which, when coupled with recent observations that report different transcriptional programmes within cells of the myeloid lineage, argues for multiple latent phenotypes that could impact differently on the biology of this virus in vivo. Finally, we will also consider how the biology of the host cell where the latent infection persists further contributes to the concept of a spectrum of latent phenotypes in multiple cell types that can be exploited by the virus.
Collapse
Affiliation(s)
- Liane Dupont
- Institute of Immunity and Transplantation, University College London, London, UK
| | - Matthew B Reeves
- Institute of Immunity and Transplantation, University College London, London, UK
| |
Collapse
|
80
|
Lee SH, Albright ER, Lee JH, Jacobs D, Kalejta RF. Cellular defense against latent colonization foiled by human cytomegalovirus UL138 protein. SCIENCE ADVANCES 2015; 1:e1501164. [PMID: 26702450 PMCID: PMC4681346 DOI: 10.1126/sciadv.1501164] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/08/2015] [Indexed: 05/10/2023]
Abstract
Intrinsic immune defenses mediated by restriction factors inhibit productive viral infections. Select viruses rapidly establish latent infections and, with gene expression profiles that imply cell-autonomous intrinsic defenses, may be the most effective immune control measure against latent reservoirs. We illustrate that lysine-specific demethylases (KDMs) are restriction factors that prevent human cytomegalovirus from establishing latency by removing repressive epigenetic modifications from histones associated with the viral major immediate early promoter (MIEP), stimulating the expression of a viral lytic phase target of cell-mediated adaptive immunity. The viral UL138 protein negates this defense by preventing KDM association with the MIEP. The presence of an intrinsic defense against latency and the emergence of a cognate neutralizing viral factor indicate that "arms races" between hosts and viruses over lifelong colonization exist at the cellular level.
Collapse
|
81
|
Matheson NJ, Sumner J, Wals K, Rapiteanu R, Weekes MP, Vigan R, Weinelt J, Schindler M, Antrobus R, Costa ASH, Frezza C, Clish CB, Neil SJD, Lehner PJ. Cell Surface Proteomic Map of HIV Infection Reveals Antagonism of Amino Acid Metabolism by Vpu and Nef. Cell Host Microbe 2015; 18:409-23. [PMID: 26439863 PMCID: PMC4608997 DOI: 10.1016/j.chom.2015.09.003] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/30/2015] [Accepted: 09/10/2015] [Indexed: 11/24/2022]
Abstract
Critical cell surface immunoreceptors downregulated during HIV infection have previously been identified using non-systematic, candidate approaches. To gain a comprehensive, unbiased overview of how HIV infection remodels the T cell surface, we took a distinct, systems-level, quantitative proteomic approach. >100 plasma membrane proteins, many without characterized immune functions, were downregulated during HIV infection. Host factors targeted by the viral accessory proteins Vpu or Nef included the amino acid transporter SNAT1 and the serine carriers SERINC3/5. We focused on SNAT1, a β-TrCP-dependent Vpu substrate. SNAT1 antagonism was acquired by Vpu variants from the lineage of SIVcpz/HIV-1 viruses responsible for pandemic AIDS. We found marked SNAT1 induction in activated primary human CD4+ T cells, and used Consumption and Release (CoRe) metabolomics to identify alanine as an endogenous SNAT1 substrate required for T cell mitogenesis. Downregulation of SNAT1 therefore defines a unique paradigm of HIV interference with immunometabolism. Unbiased global analysis of T cell surface proteome remodeling during HIV infection >100 proteins downregulated, including Nef targets SERINC3/5 and Vpu target SNAT1 β-TrCP-dependent SNAT1 downregulation acquired by pandemic SIVcpz/HIV-1 viruses Uptake of exogenous alanine by SNAT1 critical for primary CD4+ T cell mitogenesis
Collapse
Affiliation(s)
- Nicholas J Matheson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK.
| | - Jonathan Sumner
- Department of Infectious Diseases, King's College London School of Medicine, Guy's Hospital, London SE1 9RT, UK
| | - Kim Wals
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Radu Rapiteanu
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Raphael Vigan
- Department of Infectious Diseases, King's College London School of Medicine, Guy's Hospital, London SE1 9RT, UK
| | - Julia Weinelt
- Department of Infectious Diseases, King's College London School of Medicine, Guy's Hospital, London SE1 9RT, UK
| | - Michael Schindler
- Helmholtz Center Munich, Institute of Virology, 85764 Neuherberg, Germany; Institute of Medical Virology and Epidemiology of Viral Diseases, University Clinic Tübingen, 72076 Tübingen, Germany
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Ana S H Costa
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Christian Frezza
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Clary B Clish
- The Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Stuart J D Neil
- Department of Infectious Diseases, King's College London School of Medicine, Guy's Hospital, London SE1 9RT, UK
| | - Paul J Lehner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK.
| |
Collapse
|
82
|
Meshesha MK, Bentwich Z, Solomon SA, Avni YS. In vivo expression of human cytomegalovirus (HCMV) microRNAs during latency. Gene 2015; 575:101-7. [PMID: 26302752 DOI: 10.1016/j.gene.2015.08.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 12/21/2022]
Abstract
Viral encoded microRNAs play key roles in regulating gene expression and the life cycle of human herpes viruses. Latency is one of the hallmarks of the human cytomegalovirus (HCMV or HHV5) life cycle, and its control may have immense practical applications. The present study aims to identify HCMV encoded microRNAs during the latency phase of the virus. We used a highly sensitive real time PCR (RTPCR) assay that involves a pre-amplification step before RTPCR. It can detect HCMV encoded microRNAs (miRNAs) during latency in purified monocytes and PBMCs from HCMV IgG positive donors and in latently infected monocytic THP-1 cell lines. During the latency phase, only eight HCMV encoded microRNAs were detected in PBMCs, monocytes and in the THP-1 cells. Five originated from the UL region of the virus genome and three from the US region. Reactivation of the virus from latency, in monocytes obtained from the same donor, using dexamethasone restored the expression of all known HCMV encoded miRNAs including those that were absent during latency. We observed a shift in the abundance of the two arms of mir-US29 between the productive and latency stages of the viral life cycle, suggesting that the star "passenger" form of this microRNA is preferentially expressed during latency. As a whole, our study demonstrates that HCMV expresses during the latency phase, both in vivo and in vitro, only a subset of its microRNAs, which may indicate that they play an important role in maintenance and reactivation of latency.
Collapse
Affiliation(s)
- Mesfin K Meshesha
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Zvi Bentwich
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Semaria A Solomon
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Yonat Shemer Avni
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel; Laboratory for Clinical Virology, Soroka University Medical Center, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
83
|
Subcellular quantitative proteomic analysis reveals host proteins involved in human cytomegalovirus infection. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:967-78. [DOI: 10.1016/j.bbapap.2015.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/19/2015] [Accepted: 04/15/2015] [Indexed: 12/17/2022]
|
84
|
Kumar A, Herbein G. Epigenetic regulation of human cytomegalovirus latency: an update. Epigenomics 2015; 6:533-46. [PMID: 25431945 DOI: 10.2217/epi.14.41] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous virus which infects 50-90% of the population worldwide. In immunocompetent hosts, HCMV either remains unnoticed or causes mild symptoms. Upon primary infection it establishes latent infection in a few cells. However, in certain situations where immunity is either immature or compromised, HCMV may reactivate and cause mortality and morbidity. Therefore, it is utmost important to understand how HCMV establishes latent infection and associated mechanisms responsible for its reactivation. Several mechanisms are involved in the regulation of latency including chromatin remodeling by an array of enzymes and microRNAs. Here we will describe the epigenetic regulation of HCMV latency. Further we will discuss the unique HCMV latency signature and patho-physiological relevance of latent HCMV infection.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Virology, University of Franche-Comte, CHRU Besançon, UPRES EA4266 Pathogens & Inflammation Department, SFR FED 4234, F-25030 Besançon, France
| | | |
Collapse
|
85
|
Egan ES, Jiang RHY, Moechtar MA, Barteneva NS, Weekes MP, Nobre LV, Gygi SP, Paulo JA, Frantzreb C, Tani Y, Takahashi J, Watanabe S, Goldberg J, Paul AS, Brugnara C, Root DE, Wiegand RC, Doench JG, Duraisingh MT. Malaria. A forward genetic screen identifies erythrocyte CD55 as essential for Plasmodium falciparum invasion. Science 2015; 348:711-4. [PMID: 25954012 DOI: 10.1126/science.aaa3526] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Efforts to identify host determinants for malaria have been hindered by the absence of a nucleus in erythrocytes, which precludes genetic manipulation in the cell in which the parasite replicates. We used cultured red blood cells derived from hematopoietic stem cells to carry out a forward genetic screen for Plasmodium falciparum host determinants. We found that CD55 is an essential host factor for P. falciparum invasion. CD55-null erythrocytes were refractory to invasion by all isolates of P. falciparum because parasites failed to attach properly to the erythrocyte surface. Thus, CD55 is an attractive target for the development of malaria therapeutics. Hematopoietic stem cell-based forward genetic screens may be valuable for the identification of additional host determinants of malaria pathogenesis.
Collapse
Affiliation(s)
- Elizabeth S Egan
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA. Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Rays H Y Jiang
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA. Department of Global Health and Center for Drug Discovery and Innovation, University of South Florida, Tampa, FL, USA
| | - Mischka A Moechtar
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Natasha S Barteneva
- Department of Pediatrics, Harvard Medical School and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Luis V Nobre
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Charles Frantzreb
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Yoshihiko Tani
- Japanese Red Cross Kinki Block Blood Center, Osaka, Japan
| | | | - Seishi Watanabe
- Japanese Red Cross Kyushu Block Blood Center, Fukuoka, Japan
| | - Jonathan Goldberg
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Aditya S Paul
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Carlo Brugnara
- Department of Laboratory Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - David E Root
- The Broad Institute of Harvard and Massachussetts Insititute of Technology, Cambridge, MA, USAA
| | - Roger C Wiegand
- The Broad Institute of Harvard and Massachussetts Insititute of Technology, Cambridge, MA, USAA
| | - John G Doench
- The Broad Institute of Harvard and Massachussetts Insititute of Technology, Cambridge, MA, USAA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA. The Broad Institute of Harvard and Massachussetts Insititute of Technology, Cambridge, MA, USAA.
| |
Collapse
|
86
|
Poole E, Juss JK, Krishna B, Herre J, Chilvers ER, Sinclair J. Alveolar Macrophages Isolated Directly From Human Cytomegalovirus (HCMV)-Seropositive Individuals Are Sites of HCMV Reactivation In Vivo. J Infect Dis 2015; 211:1936-42. [PMID: 25552371 PMCID: PMC4442624 DOI: 10.1093/infdis/jiu837] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/15/2014] [Indexed: 12/27/2022] Open
Abstract
Human cytomegalovirus (HCMV) causes significant morbidity in the immunocompromised host. Following primary infection, the virus establishes latent infection in progenitor cells of the myeloid lineage. These cells exhibit limited viral gene transcription and no evidence of de novo virion production. It is well recognized that differentiation of latently infected myeloid progenitor cells to dendritic or macrophage-like cells permits viral reactivation in vitro. This has been used to support the concept that viral reactivation in HCMV carriers routinely occurs from such terminally differentiated myeloid cells in vivo. However, to date this has not been shown for in vivo-differentiated macrophages. This study is the first to demonstrate that alveolar macrophages from HCMV carriers express immediate early lytic genes and produce infectious virus. This supports the view, until now based on in vitro data, that terminally differentiated myeloid cells in vivo are sites of HCMV reactivation and potential centers of viral dissemination in latently infected individuals with no evidence of virus disease or dissemination.
Collapse
Affiliation(s)
| | | | | | - Jurgen Herre
- Department of Medicine,University of Cambridge,United Kingdom
| | | | - John Sinclair
- Department of Medicine,University of Cambridge,United Kingdom
| |
Collapse
|
87
|
Abstract
As with all human herpesviruses, human cytomegalovirus (HCMV) persists for the lifetime of the host by establishing a latent infection, which is broken by periodic reactivation events. One site of HCMV latency is in the progenitor cells of the myeloid lineage such as CD34+ cells and their CD14+ derivatives. The development of experimental techniques to isolate and culture these primary cells in vitro is enabling detailed analysis of the events that occur during virus latency and reactivation. Ex vivo differentiation of latently infected primary myeloid cells to dendritic cells and macrophages results in the reactivation of latent virus and provides model systems in which to analyse the viral and cellular functions involved in latent carriage and reactivation. Such analyses have shown that, in contrast to primary lytic infection or reactivation which is characterised by a regulated cascade of expression of all viral genes, latent infection is associated with a much more restricted viral transcription programme with expression of only a small number of viral genes. Additionally, concomitant changes in the expression of cellular miRNAs and cellular proteins occur, and this includes changes in the expression of a number of secreted cellular proteins and intracellular anti-apoptotic proteins, which all have profound effects on the latently infected cells. In this review, we concentrate on the effects of one of the latency-associated viral proteins, LAcmvIL-10, and describe how it causes a decrease in the cellular miRNA, hsa-miR-92a, and a concomitant upregulation of the GATA2 myeloid transcription factor, which, in turn, drives the expression of cellular IL-10. Taken together, we argue that HCMV latency, rather than a period of viral quiescence, is associated with the virally driven manipulation of host cell functions, perhaps every bit as complex as lytic infection. A full understanding of these changes in cellular and viral gene expression during latent infection could have far-reaching implications for therapeutic intervention.
Collapse
Affiliation(s)
- Emma Poole
- Department of Medicine, Box 157, University of Cambridge, Addenbrooke’s Hospital, Level 5 Laboratories Block, Hills Road, Cambridge, CB2 0QQ UK
| | - John Sinclair
- Department of Medicine, Box 157, University of Cambridge, Addenbrooke’s Hospital, Level 5 Laboratories Block, Hills Road, Cambridge, CB2 0QQ UK
| |
Collapse
|
88
|
Sissons JGP, Wills MR. How understanding immunology contributes to managing CMV disease in immunosuppressed patients: now and in future. Med Microbiol Immunol 2015; 204:307-16. [PMID: 25896527 DOI: 10.1007/s00430-015-0415-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 03/28/2015] [Indexed: 01/19/2023]
Abstract
Several decades of research on human cytomegalovirus (HCMV) and the principal mammalian cytomegaloviruses which to varying degrees act as models of HCMV infection, particularly murine, guinea pig and rhesus CMV, have led to the recognition of the CMVs as interesting models of persistent infection with a large and complex DNA virus, which have been highly informative of the immunology and molecular pathogenesis of the virus-host relationship in the normal host. However, it is appropriate to ask how this relative wealth of knowledge has influenced the understanding and management of clinical disease due to HCMV. This article considers the immunology of cytomegalovirus in the normal human host, and the interrelated issue of the sites of HCMV latency and mechanisms of reactivation in the myeloid cell lineage, and in related in vitro model systems. The way in which this site of latency conditions the immune response, and emerging information on the special features of the adaptive immune response to HCMV during latency are also considered. Examples of HCMV disease associated with acquired immunosuppression, principally in the context of transplantation, but also as a consequence of HIV/AIDS and immune reconstitution inflammatory syndrome, are then discussed, with a particular emphasis on how understanding the immunology of persistent infection may contribute to managing CMV disease now and in future.
Collapse
Affiliation(s)
- J G Patrick Sissons
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK,
| | | |
Collapse
|
89
|
Poole E, Lau JCH, Sinclair J. Latent infection of myeloid progenitors by human cytomegalovirus protects cells from FAS-mediated apoptosis through the cellular IL-10/PEA-15 pathway. J Gen Virol 2015; 96:2355-2359. [PMID: 25957098 PMCID: PMC4681070 DOI: 10.1099/vir.0.000180] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Latent infection of primary CD34+ progenitor cells by human cytomegalovirus (HCMV) results in their increased survival in the face of pro-apoptotic signals. For instance, we have shown previously that primary myeloid cells are refractory to FAS-mediated killing and that cellular IL-10 (cIL-10) is an important survival factor for this effect. However, how cIL-10 mediates this protection is unclear. Here, we have shown that cIL-10 signalling leading to upregulation of the cellular factor PEA-15 mediates latency-associated protection of CD34+ progenitor cells from the extrinsic death pathway.
Collapse
Affiliation(s)
- Emma Poole
- University of Cambridge, Department of Medicine, Box 157, Level 5 Laboratories Block, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Jonathan C H Lau
- University of Cambridge, Department of Medicine, Box 157, Level 5 Laboratories Block, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - John Sinclair
- University of Cambridge, Department of Medicine, Box 157, Level 5 Laboratories Block, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| |
Collapse
|
90
|
Abstract
In celebrating the 60th anniversary of the first isolation of human cytomegalovirus (HCMV), we reflect on the merits and limitations of the viral strains currently being used to develop urgently needed treatments. HCMV research has been dependent for decades on the high-passage strains AD169 and Towne, heavily exploiting their capacity to replicate efficiently in fibroblasts. However, the genetic integrity of these strains is so severely compromised that great caution needs to be exercised when considering their past and future use. It is now evident that wild-type HCMV strains are not readily propagated in vitro. HCMV mutants are rapidly selected during isolation in fibroblasts, reproducibly affecting gene RL13, the UL128 locus (which includes genes UL128, UL130 and UL131A) and often the UL/b′ region. As a result, the virus becomes less cell associated, altered in tropism and less pathogenic. This problem is not restricted to high-passage strains, as even low-passage strains can harbour biologically significant mutations. Cloning and manipulation of the HCMV genome as a bacterial artificial chromosome (BAC) offers a means of working with stable, genetically defined strains. To this end, the low-passage strain Merlin genome was cloned as a BAC and sequentially repaired to match the viral sequence in the original clinical sample from which Merlin was derived. Restoration of UL128L to wild type was detrimental to growth in fibroblasts, whereas restoration of RL13 impaired growth in all cell types tested. Stable propagation of phenotypically wild-type virus could be achieved only by placing both regions under conditional expression. In addition to the development of these tools, the Merlin transcriptome and proteome have been characterized in unparalleled detail. Although Merlin may be representative of the clinical agent, high-throughput whole-genome deep sequencing studies have highlighted the remarkable high level of interstrain variation present in circulating virus. There is a need to develop systems capable of addressing the significance of this diversity, free from the confounding effects of genetic changes associated with in vitro adaptation. The generation of a set of BAC clones, each containing the genome of a different HCMV strain repaired to match the sequence in the clinical sample, would provide a pathway to address the biological and clinical effects of natural variation in wild-type HCMV.
Collapse
|
91
|
Hsu JL, van den Boomen DJH, Tomasec P, Weekes MP, Antrobus R, Stanton RJ, Ruckova E, Sugrue D, Wilkie GS, Davison AJ, Wilkinson GWG, Lehner PJ. Plasma membrane profiling defines an expanded class of cell surface proteins selectively targeted for degradation by HCMV US2 in cooperation with UL141. PLoS Pathog 2015; 11:e1004811. [PMID: 25875600 PMCID: PMC4397069 DOI: 10.1371/journal.ppat.1004811] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 03/13/2015] [Indexed: 11/24/2022] Open
Abstract
Human cytomegalovirus (HCMV) US2, US3, US6 and US11 act in concert to prevent immune recognition of virally infected cells by CD8+ T-lymphocytes through downregulation of MHC class I molecules (MHC-I). Here we show that US2 function goes far beyond MHC-I degradation. A systematic proteomic study using Plasma Membrane Profiling revealed US2 was unique in downregulating additional cellular targets, including: five distinct integrin α-chains, CD112, the interleukin-12 receptor, PTPRJ and thrombomodulin. US2 recruited the cellular E3 ligase TRC8 to direct the proteasomal degradation of all its targets, reminiscent of its degradation of MHC-I. Whereas integrin α-chains were selectively degraded, their integrin β1 binding partner accumulated in the ER. Consequently integrin signaling, cell adhesion and migration were strongly suppressed. US2 was necessary and sufficient for degradation of the majority of its substrates, but remarkably, the HCMV NK cell evasion function UL141 requisitioned US2 to enhance downregulation of the NK cell ligand CD112. UL141 retained CD112 in the ER from where US2 promoted its TRC8-dependent retrotranslocation and degradation. These findings redefine US2 as a multifunctional degradation hub which, through recruitment of the cellular E3 ligase TRC8, modulates diverse immune pathways involved in antigen presentation, NK cell activation, migration and coagulation; and highlight US2’s impact on HCMV pathogenesis. As the largest human herpesvirus, HCMV is a paradigm of viral immune evasion and has evolved multiple mechanisms to evade immune detection and enable survival. The HCMV genes US2, US3, US6 and US11 promote virus persistence by their ability to downregulate cell surface MHC. We developed ‘Plasma Membrane Profiling’ (PMP), an unbiased SILAC-based proteomics technique to ask whether MHC molecules are the only focus of these genes, or whether additional cellular immunoreceptors are also targeted. PMP compares the relative abundance of cell surface receptors between control and viral gene expressing cells. We found that whereas US3, US6 and US11 were remarkably MHC specific, US2 modulated expression of a wide variety of cell surface immunoreceptors. US2-mediated proteasomal degradation of integrin α-chains blocked integrin signaling and suppressed cell adhesion and migration. All US2 substrates were degraded via the cellular E3 ligase TRC8, and in a remarkable example of cooperativity between HCMV immune-evasins, UL141 requisitioned US2 to target the NK cell ligand CD112 for proteasomal degradation. HCMV US2 and UL141 are therefore modulators of multiple immune-related pathways and act as a multifunctional degradation hub that inhibits the migration, immune recognition and killing of HCMV-infected cells.
Collapse
Affiliation(s)
- Jye-Lin Hsu
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | | | - Peter Tomasec
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Michael P. Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | | | - Eva Ruckova
- Regional Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Daniel Sugrue
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Gavin S. Wilkie
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Andrew J. Davison
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | | | - Paul J. Lehner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
92
|
Rauwel B, Jang SM, Cassano M, Kapopoulou A, Barde I, Trono D. Release of human cytomegalovirus from latency by a KAP1/TRIM28 phosphorylation switch. eLife 2015; 4. [PMID: 25846574 PMCID: PMC4384640 DOI: 10.7554/elife.06068] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/16/2015] [Indexed: 12/19/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a highly prevalent pathogen that induces life-long infections notably through the establishment of latency in hematopoietic stem cells (HSC). Bouts of reactivation are normally controlled by the immune system, but can be fatal in immuno-compromised individuals such as organ transplant recipients. Here, we reveal that HCMV latency in human CD34+ HSC reflects the recruitment on the viral genome of KAP1, a master co-repressor, together with HP1 and the SETDB1 histone methyltransferase, which results in transcriptional silencing. During lytic infection, KAP1 is still associated with the viral genome, but its heterochromatin-inducing activity is suppressed by mTOR-mediated phosphorylation. Correspondingly, HCMV can be forced out of latency by KAP1 knockdown or pharmacological induction of KAP1 phosphorylation, and this process can be potentiated by activating NFkB with TNF-α. These results suggest new approaches both to curtail CMV infection and to purge the virus from organ transplants. DOI:http://dx.doi.org/10.7554/eLife.06068.001 Human cytomegalovirus (HCMV) is an extremely common virus that causes life-long infections in humans. Most individuals are exposed to HCMV during childhood, and the infection rarely causes any symptoms of disease in healthy individuals. However, in people with weaker immune systems—for example, newborn babies, people with AIDS, or individuals who have received an organ transplant—HCMV can cause life-threatening illnesses. It is difficult for the immune system to fight the infection because HCMV is able to hide in cells within the bone marrow called hematopoietic stem cells. Inside these cells, the virus can survive in a ‘dormant’ state for many years, before being reactivated and starting to multiply again. In most people, the immune system manages to control this new outbreak of HCMV, and the virus becomes dormant again, but reactivation of the virus in individuals with weakened immune systems is much more likely to cause serious illness. The results of previous studies suggest that when HCMV infects the hematopoietic stem cells, human proteins switch off the expression of many virus genes, which makes the virus inactive. The virus can be reactivated when infected stem cells change into a type of immune cell called dendritic cells, but it is not clear how this is controlled. Here, Rauwel et al. reveal that a human protein called KAP1 is responsible for switching off the virus genes in the stem cells. It does so by interacting with two other proteins to alter the structure of the DNA in these genes. However, if the stem cells are stimulated to change into dendritic cells, KAP1 becomes inactive, which allows the virus genes to be switched on. Rauwel et al. also show that it is possible to force HCMV out of its dormant state by using drugs to block the activity of KAP1. This may aid the development of treatments that prevent the virus from causing serious illness in patients with weakened immune systems. For example, it could be used to remove dormant HCMV infections from bone marrow before it is transplanted into a new individual. DOI:http://dx.doi.org/10.7554/eLife.06068.002
Collapse
Affiliation(s)
- Benjamin Rauwel
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Suk Min Jang
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marco Cassano
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Adamandia Kapopoulou
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Isabelle Barde
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
93
|
Li Z, Wang H, Huang S, Zhou L, Wang L, Du C, Wang C. Establishment of stable MRP1 knockdown by lentivirus-delivered shRNA in the mouse testis Sertoli TM4 cell line. Toxicol Mech Methods 2015; 25:81-90. [DOI: 10.3109/15376516.2014.989350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
94
|
Griffiths P, Baraniak I, Reeves M. The pathogenesis of human cytomegalovirus. J Pathol 2015; 235:288-97. [PMID: 25205255 DOI: 10.1002/path.4437] [Citation(s) in RCA: 416] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 12/18/2022]
Abstract
Human cytomegalovirus (HCMV) is a recognized cause of disease in the fetus, the allograft recipient and AIDS patients. More recently, it has been recognized as a pathogen for those admitted to intensive care units, for the elderly and for the general population. The epidemiology and molecular and cellular pathology of this virus are summarized to provide an overarching model of pathogenesis, able to account for these varying clinical presentations. In brief, HCMV has the potential to spread in the bloodstream to all organs, but only produces overt disease if the viral load increases to high levels. This is normally prevented by a robust immune response, so that the infected individual usually remains asymptomatic. However, this benefit comes at the cost of committing more and more immunological resources to controlling HCMV with time, so that the overall function of the immune system is impaired. Fortunately, recent progress in developing novel antiviral drugs and vaccines suggests the possibility that the diverse effects of HCMV may soon become controllable at the individual and population level, respectively.
Collapse
Affiliation(s)
- Paul Griffiths
- Centre for Virology, University College London Medical School, London, UK
| | | | | |
Collapse
|
95
|
Gable J, Acker TM, Craik CS. Current and potential treatments for ubiquitous but neglected herpesvirus infections. Chem Rev 2014; 114:11382-412. [PMID: 25275644 PMCID: PMC4254030 DOI: 10.1021/cr500255e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Indexed: 02/07/2023]
Affiliation(s)
- Jonathan
E. Gable
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94158-2280, United States
- Graduate
Group in Biophysics, University of California,
San Francisco, 600 16th
Street, San Francisco, California 94158-2280, United States
| | - Timothy M. Acker
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94158-2280, United States
| | - Charles S. Craik
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94158-2280, United States
| |
Collapse
|
96
|
Jean Beltran PM, Cristea IM. The life cycle and pathogenesis of human cytomegalovirus infection: lessons from proteomics. Expert Rev Proteomics 2014; 11:697-711. [PMID: 25327590 DOI: 10.1586/14789450.2014.971116] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Viruses have coevolved with their hosts, acquiring strategies to subvert host cellular pathways for effective viral replication and spread. Human cytomegalovirus (HCMV), a widely-spread β-herpesvirus, is a major cause of birth defects and opportunistic infections in HIV-1/AIDS patients. HCMV displays an intricate system-wide modulation of the human cell proteome. An impressive array of virus-host protein interactions occurs throughout the infection. To investigate the virus life cycle, proteomics has recently become a significant component of virology studies. Here, we review the mass spectrometry-based proteomics approaches used in HCMV studies, as well as their contribution to understanding the HCMV life cycle and the virus-induced changes to host cells. The importance of the biological insights gained from these studies clearly demonstrate the impact that proteomics has had and can continue to have on understanding HCMV biology and identifying new therapeutic targets.
Collapse
Affiliation(s)
- Pierre M Jean Beltran
- Department of Molecular Biology, 210 Lewis Thomas Laboratory, Princeton University, Princeton, New Jersey, NJ 08544, USA
| | | |
Collapse
|
97
|
Complex expression of the UL136 gene of human cytomegalovirus results in multiple protein isoforms with unique roles in replication. J Virol 2014; 88:14412-25. [PMID: 25297993 DOI: 10.1128/jvi.02711-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED Human cytomegalovirus (HCMV) is a complex DNA virus with a 230-kb genome encoding 170 and up to 750 proteins. The upper limit of this coding capacity suggests the evolution of complex mechanisms to substantially increase the coding potential from the 230-kb genome. Our work examines the complexity of one gene, UL136, encoded within the ULb' region of the genome that is lost during serial passage of HCMV in cultured fibroblasts. UL136 is expressed as five protein isoforms. We mapped these isoforms and demonstrate that they originate from both a complex transcriptional profile and, possibly, the usage of multiple translation initiation sites. Intriguingly, the pUL136 isoforms exhibited distinct subcellular distributions with varying association with the Golgi apparatus. The subcellular localization of membrane-bound isoforms of UL136 differed between when they were expressed exogenously and when they were expressed in the context of viral infection, suggesting that the trafficking of these isoforms is mediated by infection-specific factors. While UL136, like most ULb' genes, was dispensable for replication in fibroblasts, the soluble 23- and 19-kDa isoforms suppressed virus replication. In CD34(+) hematopoietic progenitor cells (HPCs) infected in vitro, disruption of the 23- and 19-kDa isoforms resulted in increased replication and a loss of the latency phenotype, similar to the effects of the UL138 latency determinant encoded within the same genetic locus. Our work suggests a complex interplay between the UL136 isoforms which balances viral replication in multiple cell types and likely contributes to the cell type-dependent phenotypes of the UL133/8 locus and the outcome of HCMV infection. IMPORTANCE HCMV is a significant cause of morbidity in immunocompromised individuals, including transplant patients. The lifelong persistence of the virus results in a high seroprevalence worldwide and may contribute to age-related pathologies, such as atherosclerosis. The mechanisms of viral persistence are poorly understood; however, understanding the molecular basis of persistence is imperative for the development of new treatments. In this work, we characterize a complex HCMV gene, UL136, which is expressed as five protein isoforms. These isoforms arise predominantly from complex transcriptional mechanisms, which contribute to an increased coding capacity of the virus. Further, the UL136 isoforms oppose the activity of one another to balance HCMV replication in multiple cell types. We identify soluble isoforms of UL136 that function to suppress virus replication in fibroblasts and in CD34(+) HPCs for latency.
Collapse
|
98
|
Manipulation of host pathways by human cytomegalovirus: insights from genome-wide studies. Semin Immunopathol 2014; 36:651-8. [PMID: 25260940 DOI: 10.1007/s00281-014-0443-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/03/2014] [Indexed: 10/24/2022]
Abstract
The herpesvirus human cytomegalovirus (HCMV) infects the majority of the world's population, leading to severe diseases in millions of newborns and immunocompromised adults annually. During infection, HCMV extensively manipulates cellular gene expression to maintain conditions favorable for efficient viral propagation. Identifying the pathways that the virus relies on or subverts is of great interest as they have the potential to provide new therapeutic targets and to reveal novel principles in cell biology. Over the past years, high-throughput analyses have profoundly broadened our understanding of the processes that occur during HCMV infection. In this review, we will discuss these new findings and how they impact our understanding of the biology of HCMV.
Collapse
|
99
|
Latency-associated viral interleukin-10 (IL-10) encoded by human cytomegalovirus modulates cellular IL-10 and CCL8 Secretion during latent infection through changes in the cellular microRNA hsa-miR-92a. J Virol 2014; 88:13947-55. [PMID: 25253336 PMCID: PMC4249158 DOI: 10.1128/jvi.02424-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The UL111A gene of human cytomegalovirus encodes a viral homologue of the cellular immunomodulatory cytokine interleukin 10 (cIL-10), which, due to alternative splicing, results in expression of two isoforms designated LAcmvIL-10 (expressed during both lytic and latent infection) and cmvIL-10 (identified only during lytic infection). We have analyzed the functions of LAcmvIL-10 during latent infection of primary myeloid progenitor cells and found that LAcmvIL-10 is responsible, at least in part, for the known increase in secretion of cellular IL-10 and CCL8 in the secretomes of latently infected cells. This latency-associated increase in CCL8 expression results from a concomitant LAcmvIL-10-mediated suppression of the expression of the cellular microRNA (miRNA) hsa-miR-92a, which targets CCL8 directly. Taking the data together, we show that the previously observed downregulation of hsa-miR-92a and upregulation of CCL8 during HCMV latent infection of myeloid cells are intimately linked via the latency-associated expression of LAcmvIL-10. IMPORTANCE HCMV latency causes significant morbidity and mortality in immunocompromised individuals, yet HCMV is carried silently (latently) in 50 to 90% of the population. Understanding how HCMV maintains infection for the lifetime of an infected individual is critical for the treatment of immunocompromised individuals suffering with disease as a result of HCMV. In this study, we analyze one of the proteins that are expressed during the “latent” phase of HCMV, LAcmvIL-10, and find that the expression of the gene modulates the microenvironment of the infected cell, leading to evasion of the immune system.
Collapse
|
100
|
Goldberger T, Mandelboim O. The use of microRNA by human viruses: lessons from NK cells and HCMV infection. Semin Immunopathol 2014; 36:659-74. [PMID: 25234555 DOI: 10.1007/s00281-014-0447-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 08/28/2014] [Indexed: 12/21/2022]
Abstract
Depending on ethnicity and on social conditions, between 40 and 90 % of the population is infected with human cytomegalovirus (HCMV). In immunocompetent patients, the virus may cause an acute disease and then revert to a state of latency, which enables its coexistence with the human host. However, in cases of immunosuppression or in neonatal infections, HCMV can cause serious long-lasting illnesses. HCMV has developed multiple mechanisms in order to escape its elimination by the immune system, specifically by two killer cell types of the adaptive and the innate immune systems; cytotoxic T lymphocytes (CTL) and natural killer (NK) cells, respectively. Another fascinating aspect of HCMV is that like other highly developed herpesviruses, it expresses its own unique set of microRNAs. Here, we initially describe how the activity of NK cells is regulated under normal conditions and during infection. Then, we discuss what is currently known about HCMV microRNA-mediated interactions, with special emphasis on immune modulation and NK cell evasion. We further illustrate the significant modulation of cellular microRNAs during HCMV infection. Although, the full target spectrum of HCMV microRNAs is far from being completely elucidated, it can already be concluded that HCMV uses its "multitasking" microRNAs to globally affect its own life cycle, as well as important cellular and immune-related pathways.
Collapse
Affiliation(s)
- Tal Goldberger
- The Lautenberg Center of General and Tumor Immunology, The Hebrew University Hadassah Medical School, IMRIC, Jerusalem, 91120, Israel
| | | |
Collapse
|