51
|
Brunet T. Cell contractility in early animal evolution. Curr Biol 2023; 33:R966-R985. [PMID: 37751712 DOI: 10.1016/j.cub.2023.07.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Tissue deformation mediated by collective cell contractility is a signature characteristic of animals. In most animals, fast and reversible contractions of muscle cells mediate behavior, while slow and irreversible contractions of epithelial or mesenchymal cells play a key role in morphogenesis. Animal tissue contractility relies on the activity of the actin/myosin II complex (together referred to as 'actomyosin'), an ancient and versatile molecular machinery that performs a broad range of functions in development and physiology. This review synthesizes emerging insights from morphological and molecular studies into the evolutionary history of animal contractile tissue. The most ancient functions of actomyosin are cell crawling and cytokinesis, which are found in a wide variety of unicellular eukaryotes and in individual metazoan cells. Another contractile functional module, apical constriction, is universal in metazoans and shared with choanoflagellates, their closest known living relatives. The evolution of animal contractile tissue involved two key innovations: firstly, the ability to coordinate and integrate actomyosin assembly across multiple cells, notably to generate supracellular cables, which ensure tissue integrity but also allow coordinated morphogenesis and movements at the organism scale; and secondly, the evolution of dedicated contractile cell types for adult movement, belonging to two broad categories respectively defined by the expression of the fast (striated-type) and slow (smooth/non-muscle-type) myosin II paralogs. Both contractile cell types ancestrally resembled generic contractile epithelial or mesenchymal cells and might have played a versatile role in both behavior and morphogenesis. Modern animal contractile cells span a continuum between unspecialized contractile epithelia (which underlie behavior in modern placozoans), epithelia with supracellular actomyosin cables (found in modern sponges), epitheliomuscular tissues (with a concentration of actomyosin cables in basal processes, for example in sea anemones), and specialized muscle tissue that has lost most or all epithelial properties (as in ctenophores, jellyfish and bilaterians). Recent studies in a broad range of metazoans have begun to reveal the molecular basis of these transitions, powered by the elaboration of the contractile apparatus and the evolution of 'core regulatory complexes' of transcription factors specifying contractile cell identity.
Collapse
Affiliation(s)
- Thibaut Brunet
- Institut Pasteur, Université Paris-Cité, CNRS UMR3691, Evolutionary Cell Biology and Evolution of Morphogenesis Unit, 25-28 Rue du Docteur Roux, 75015 Paris, France.
| |
Collapse
|
52
|
Yousafzai MS, Hammer JA. Using Biosensors to Study Organoids, Spheroids and Organs-on-a-Chip: A Mechanobiology Perspective. BIOSENSORS 2023; 13:905. [PMID: 37887098 PMCID: PMC10605946 DOI: 10.3390/bios13100905] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023]
Abstract
The increasing popularity of 3D cell culture models is being driven by the demand for more in vivo-like conditions with which to study the biochemistry and biomechanics of numerous biological processes in health and disease. Spheroids and organoids are 3D culture platforms that self-assemble and regenerate from stem cells, tissue progenitor cells or cell lines, and that show great potential for studying tissue development and regeneration. Organ-on-a-chip approaches can be used to achieve spatiotemporal control over the biochemical and biomechanical signals that promote tissue growth and differentiation. These 3D model systems can be engineered to serve as disease models and used for drug screens. While culture methods have been developed to support these 3D structures, challenges remain to completely recapitulate the cell-cell and cell-matrix biomechanical interactions occurring in vivo. Understanding how forces influence the functions of cells in these 3D systems will require precise tools to measure such forces, as well as a better understanding of the mechanobiology of cell-cell and cell-matrix interactions. Biosensors will prove powerful for measuring forces in both of these contexts, thereby leading to a better understanding of how mechanical forces influence biological systems at the cellular and tissue levels. Here, we discussed how biosensors and mechanobiological research can be coupled to develop accurate, physiologically relevant 3D tissue models to study tissue development, function, malfunction in disease, and avenues for disease intervention.
Collapse
Affiliation(s)
- Muhammad Sulaiman Yousafzai
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John A. Hammer
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
53
|
Narayanan V, Purkayastha P, Yu B, Pendyala K, Chukkapalli S, Cabe JI, Dickinson RB, Conway DE, Lele TP. Rho activation drives luminal collapse and eversion in epithelial acini. Biophys J 2023; 122:3630-3645. [PMID: 36617192 PMCID: PMC10541472 DOI: 10.1016/j.bpj.2023.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/30/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Epithelial cells lining a gland and cells grown in a soft extracellular matrix polarize with apical proteins exposed to the lumen and basal proteins in contact with the extracellular matrix. Alterations to polarity, including an apical-out polarity, occur in human cancers. Although some aberrant polarity states may result from altered protein trafficking, recent observations of an extraordinary tissue-level inside-out unfolding suggest an alternative pathway for altered polarity. Because mechanical alterations are common in human cancer, including an upregulation of RhoA-mediated actomyosin tension in acinar epithelia, we explored whether perturbing mechanical homeostasis could cause apical-out eversion. Acinar eversion was robustly induced by direct activation of RhoA in normal and tumor epithelial acini, or indirect activation of RhoA through blockage of β1-integrins, disruption of the LINC complex, oncogenic Ras activation, or Rac1 inhibition. Furthermore, laser ablation of a portion of the untreated acinus was sufficient to induce eversion. Analyses of acini revealed high curvature and low phosphorylated myosin in the apical cell surfaces relative to the basal surfaces. A vertex-based mathematical model that balances tension at cell-cell interfaces revealed a fivefold greater basal cell surface tension relative to the apical cell surface tension. The model suggests that the difference in surface energy between the apical and basal surfaces is the driving force for acinar eversion. Our findings raise the possibility that a loss of mechanical homeostasis may cause apical-out polarity states in human cancers.
Collapse
Affiliation(s)
- Vani Narayanan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Purboja Purkayastha
- Department of Chemical Engineering, Texas A&M University, College Station, Texas
| | - Bo Yu
- Department of Chemical Engineering, University of Florida, Gainesville, Florida
| | - Kavya Pendyala
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - Sasanka Chukkapalli
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - Jolene I Cabe
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Richard B Dickinson
- Department of Chemical Engineering, University of Florida, Gainesville, Florida.
| | - Daniel E Conway
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio; The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio.
| | - Tanmay P Lele
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas; Department of Chemical Engineering, Texas A&M University, College Station, Texas; Department of Translational Medical Sciences, Texas A&M University, College Station, Texas.
| |
Collapse
|
54
|
Eckert J, Ladoux B, Mège RM, Giomi L, Schmidt T. Hexanematic crossover in epithelial monolayers depends on cell adhesion and cell density. Nat Commun 2023; 14:5762. [PMID: 37717032 PMCID: PMC10505199 DOI: 10.1038/s41467-023-41449-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 08/30/2023] [Indexed: 09/18/2023] Open
Abstract
Changes in tissue geometry during developmental processes are associated with collective migration of cells. Recent experimental and numerical results suggest that these changes could leverage on the coexistence of nematic and hexatic orientational order at different length scales. How this multiscale organization is affected by the material properties of the cells and their substrate is presently unknown. In this study, we address these questions in monolayers of Madin-Darby canine kidney cells having various cell densities and molecular repertoires. At small length scales, confluent monolayers are characterized by a prominent hexatic order, independent of the presence of E-cadherin, monolayer density, and underlying substrate stiffness. However, all three properties affect the meso-scale tissue organization. The length scale at which hexatic order transits to nematic order, the "hexanematic" crossover scale, strongly depends on cell-cell adhesions and correlates with monolayer density. Our study demonstrates how epithelial organization is affected by mechanical properties, and provides a robust description of tissue organization during developmental processes.
Collapse
Affiliation(s)
- Julia Eckert
- Physics of Life Processes, Leiden Institute of Physics, Universiteit Leiden, 2333 CC, Leiden, The Netherlands
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Benoît Ladoux
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - René-Marc Mège
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Luca Giomi
- Instituut-Lorentz, Leiden Institute of Physics, Universiteit Leiden, P.O. Box 9506, 2300 RA, Leiden, The Netherlands
| | - Thomas Schmidt
- Physics of Life Processes, Leiden Institute of Physics, Universiteit Leiden, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
55
|
Guo T, Zou X, Sundar S, Jia X, Dhong C. In situ measurement of viscoelastic properties of cellular monolayers via graphene strain sensing of elastohydrodynamic phenomena. LAB ON A CHIP 2023; 23:4067-4078. [PMID: 37610268 PMCID: PMC10498944 DOI: 10.1039/d3lc00457k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023]
Abstract
Recent advances recognize that the viscoelastic properties of epithelial structures play important roles in biology and disease modeling. However, accessing the viscoelastic properties of multicellular structures in mechanistic or drug-screening applications has challenges in repeatability, accuracy, and practical implementation. Here, we present a microfluidic platform that leverages elastohydrodynamic phenomena, sensed by strain sensors made from graphene decorated with palladium nanoislands, to measure the viscoelasticity of cellular monolayers in situ, without using chemical labels or specialized equipment. We demonstrate platform utility with two systems: cell dissociation following trypsinization, where viscoelastic properties change over minutes, and epithelial-to-mesenchymal transition, where changes occur over days. These cellular events could only be resolved with our platform's higher resolution: viscoelastic relaxation time constants of λ = 14.5 ± 0.4 s-1 for intact epithelial monolayers, compared to λ = 13.4 ± 15.0 s-1 in other platforms, which represents a 30-fold improvement. By rapidly assessing combined contributions from cell stiffness and intercellular interactions, we anticipate that the platform will hasten the translation of new mechanical biomarkers.
Collapse
Affiliation(s)
- Tianzheng Guo
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA.
| | - Xiaoyu Zou
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA.
| | - Shalini Sundar
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA.
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Charles Dhong
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA.
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
56
|
Messer CL, McDonald JA. Rap1 promotes epithelial integrity and cell viability in a growing tissue. Dev Biol 2023; 501:1-19. [PMID: 37269969 DOI: 10.1016/j.ydbio.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/10/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
Having intact epithelial tissues is critical for embryonic development and adult homeostasis. How epithelia respond to damaging insults or tissue growth while still maintaining intercellular connections and barrier integrity during development is poorly understood. The conserved small GTPase Rap1 is critical for establishing cell polarity and regulating cadherin-catenin cell junctions. Here, we identified a new role for Rap1 in maintaining epithelial integrity and tissue shape during Drosophila oogenesis. Loss of Rap1 activity disrupted the follicle cell epithelium and the shape of egg chambers during a period of major growth. Rap1 was required for proper E-Cadherin localization in the anterior epithelium and for epithelial cell survival. Both Myo-II and the adherens junction-cytoskeletal linker protein α-Catenin were required for normal egg chamber shape but did not strongly affect cell viability. Blocking the apoptotic cascade failed to rescue the cell shape defects caused by Rap1 inhibition. One consequence of increased cell death caused by Rap1 inhibition was the loss of polar cells and other follicle cells, which later in development led to fewer cells forming a migrating border cell cluster. Our results thus indicate dual roles for Rap1 in maintaining epithelia and cell survival in a growing tissue during development.
Collapse
Affiliation(s)
- C Luke Messer
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jocelyn A McDonald
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
57
|
Devany J, Falk MJ, Holt LJ, Murugan A, Gardel ML. Epithelial tissue confinement inhibits cell growth and leads to volume-reducing divisions. Dev Cell 2023; 58:1462-1476.e8. [PMID: 37339629 PMCID: PMC10528006 DOI: 10.1016/j.devcel.2023.05.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/12/2023] [Accepted: 05/26/2023] [Indexed: 06/22/2023]
Abstract
Cell proliferation is a central process in tissue development, homeostasis, and disease, yet how proliferation is regulated in the tissue context remains poorly understood. Here, we introduce a quantitative framework to elucidate how tissue growth dynamics regulate cell proliferation. Using MDCK epithelial monolayers, we show that a limiting rate of tissue expansion creates confinement that suppresses cell growth; however, this confinement does not directly affect the cell cycle. This leads to uncoupling between rates of cell growth and division in epithelia and, thereby, reduces cell volume. Division becomes arrested at a minimal cell volume, which is consistent across diverse epithelia in vivo. Here, the nucleus approaches the minimum volume capable of packaging the genome. Loss of cyclin D1-dependent cell-volume regulation results in an abnormally high nuclear-to-cytoplasmic volume ratio and DNA damage. Overall, we demonstrate how epithelial proliferation is regulated by the interplay between tissue confinement and cell-volume regulation.
Collapse
Affiliation(s)
- John Devany
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA; James Franck Institute, The University of Chicago, Chicago, IL 60637, USA; Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Martin J Falk
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA; James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Liam J Holt
- Institute for Systems Genetics, New York University, Grossman School of Medicine, New York, NY 10016, USA
| | - Arvind Murugan
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA; James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Margaret L Gardel
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA; James Franck Institute, The University of Chicago, Chicago, IL 60637, USA; Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
58
|
Li Y, Liu N, Qian Y, Jiao C, Yang J, Meng X, Sun Y, Xu Q, Liu W, Cui J, Guo W. Targeting 14-3-3ζ by a small-molecule compound AI-34 maintains epithelial barrier integrity and alleviates colitis in mice via stabilizing β-catenin. J Pharmacol Sci 2023; 152:210-219. [PMID: 37344056 DOI: 10.1016/j.jphs.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/24/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
Aberrant intestinal epithelial barrier function is the primary pathology of Ulcerative colitis (UC), making it a desirable drug target. In this study, our small-molecule compound AI-34 exerted a significant protective effect in an LPS-induced epithelial barrier injury model. In vitro, AI-34 treatment significantly decreased cell permeability, increased transmembrane resistance, and maintained the junctional protein (ZO-1 and E-cadherin) levels in monolayer cells. Using the LiP-small molecule mapping approach (LiP-SMap), we demonstrated that AI-34 binds to 14-3-3ζ. AI-34 promoted the interaction between 14-3-3ζ and β-catenin, decreasing the ubiquitination of β-catenin and thus maintaining intestinal epithelial barrier function. Finally, AI-34 triggered the stabilization of β-catenin mediated by 14-3-3ζ, provoking a significant improvement in the DSS-induced colitis model. Our findings suggest that AI-34 may be a promising candidate for UC treatment.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Nannan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yao Qian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chenyang Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jiashu Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiangbao Meng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Jian Cui
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
59
|
Koyama H, Okumura H, Ito AM, Nakamura K, Otani T, Kato K, Fujimori T. Effective mechanical potential of cell-cell interaction explains three-dimensional morphologies during early embryogenesis. PLoS Comput Biol 2023; 19:e1011306. [PMID: 37549166 PMCID: PMC10434874 DOI: 10.1371/journal.pcbi.1011306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/17/2023] [Accepted: 06/26/2023] [Indexed: 08/09/2023] Open
Abstract
Mechanical forces are critical for the emergence of diverse three-dimensional morphologies of multicellular systems. However, it remains unclear what kind of mechanical parameters at cellular level substantially contribute to tissue morphologies. This is largely due to technical limitations of live measurements of cellular forces. Here we developed a framework for inferring and modeling mechanical forces of cell-cell interactions. First, by analogy to coarse-grained models in molecular and colloidal sciences, we approximated cells as particles, where mean forces (i.e. effective forces) of pairwise cell-cell interactions are considered. Then, the forces were statistically inferred by fitting the mathematical model to cell tracking data. This method was validated by using synthetic cell tracking data resembling various in vivo situations. Application of our method to the cells in the early embryos of mice and the nematode Caenorhabditis elegans revealed that cell-cell interaction forces can be written as a pairwise potential energy in a manner dependent on cell-cell distances. Importantly, the profiles of the pairwise potentials were quantitatively different among species and embryonic stages, and the quantitative differences correctly described the differences of their morphological features such as spherical vs. distorted cell aggregates, and tightly vs. non-tightly assembled aggregates. We conclude that the effective pairwise potential of cell-cell interactions is a live measurable parameter whose quantitative differences can be a parameter describing three-dimensional tissue morphologies.
Collapse
Affiliation(s)
- Hiroshi Koyama
- Division of Embryology, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
| | - Hisashi Okumura
- SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
- Biomolecular Dynamics Simulation Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
| | - Atsushi M. Ito
- SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
- National Institute for Fusion Science, National Institutes of Natural Sciences, Toki, Gifu, Japan
| | - Kazuyuki Nakamura
- School of Interdisciplinary Mathematical Sciences, Meiji University, Nakano-ku, Tokyo, Japan
- JST, PRESTO, Kawaguchi, Saitama, Japan
| | - Tetsuhisa Otani
- SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
- Division of Cell Structure, National Institute for Physiological Sciences, Myodaiji, Okazaki, Aichi, Japan
| | - Kagayaki Kato
- SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
- Bioimage Informatics Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
- Laboratory of Biological Diversity, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
| |
Collapse
|
60
|
Takata N, Miska JM, Morgan MA, Patel P, Billingham LK, Joshi N, Schipma MJ, Dumar ZJ, Joshi NR, Misharin AV, Embry RB, Fiore L, Gao P, Diebold LP, McElroy GS, Shilatifard A, Chandel NS, Oliver G. Lactate-dependent transcriptional regulation controls mammalian eye morphogenesis. Nat Commun 2023; 14:4129. [PMID: 37452018 PMCID: PMC10349100 DOI: 10.1038/s41467-023-39672-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Mammalian retinal metabolism favors aerobic glycolysis. However, the role of glycolytic metabolism in retinal morphogenesis remains unknown. We report that aerobic glycolysis is necessary for the early stages of retinal development. Taking advantage of an unbiased approach that combines the use of eye organoids and single-cell RNA sequencing, we identify specific glucose transporters and glycolytic genes in retinal progenitors. Next, we determine that the optic vesicle territory of mouse embryos displays elevated levels of glycolytic activity. At the functional level, we show that removal of Glucose transporter 1 and Lactate dehydrogenase A gene activity from developing retinal progenitors arrests eye morphogenesis. Surprisingly, we uncover that lactate-mediated upregulation of key eye-field transcription factors is controlled by the epigenetic modification of histone H3 acetylation through histone deacetylase activity. Our results identify an unexpected bioenergetic independent role of lactate as a signaling molecule necessary for mammalian eye morphogenesis.
Collapse
Affiliation(s)
- Nozomu Takata
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E. Superior Street, Chicago, IL, 60611, USA
| | - Jason M Miska
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Marc A Morgan
- Simpson Querrey Institute for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Priyam Patel
- Center for Genetic Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Leah K Billingham
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Neha Joshi
- Center for Genetic Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Matthew J Schipma
- Center for Genetic Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zachary J Dumar
- Simpson Querrey Institute for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Nikita R Joshi
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Alexander V Misharin
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Ryan B Embry
- Center for Genetic Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Luciano Fiore
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Laboratory of Nanomedicine, National Atomic Energy Commission (CNEA), Av. General Paz 1499, B1650KNA, San Martín, Buenos Aires, Argentina
| | - Peng Gao
- Robert H. Lurie Cancer Center Metabolomics Core, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Lauren P Diebold
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Gregory S McElroy
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Navdeep S Chandel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Guillermo Oliver
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
61
|
Pfannenstein A, Macara IG. A junction-dependent mechanism drives murine mammary cell intercalation for ductal elongation. Dev Cell 2023; 58:1126-1138.e4. [PMID: 37141887 PMCID: PMC10524519 DOI: 10.1016/j.devcel.2023.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/15/2023] [Accepted: 04/11/2023] [Indexed: 05/06/2023]
Abstract
The luminal epithelium of the mammary gland is organized into monolayers; however, it originates from multilayered terminal end buds (TEBs) during development. Although apoptosis provides a plausible mechanism for cavitation of the ductal lumen, it doesn't account for ductal elongation behind TEBs. Spatial calculations in mice suggest that most TEB cells integrate into the outermost luminal layer to generate elongation. We developed a quantitative cell culture assay that models intercalation into epithelial monolayers. We found that tight junction proteins play a key role in this process. ZO-1 puncta form at the new cellular interface and resolve into a new boundary as intercalation proceeds. Deleting ZO-1 suppresses intercalation both in culture and in cells transplanted into mammary glands via intraductal injection. Cytoskeletal rearrangements at the interface are critical for intercalation. These data identify luminal cell rearrangements necessary for mammary development and suggest a mechanism for integration of cells into an existing monolayer.
Collapse
Affiliation(s)
- Alexander Pfannenstein
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Ian G Macara
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA.
| |
Collapse
|
62
|
Subramani A, Cui W, Zhang Y, Friman T, Zhao Z, Huang W, Fonseca P, Lui WO, Narayanan V, Bobrowska J, Lekka M, Yan J, Conway DE, Holmgren L. Modulation of E-Cadherin Function through the AmotL2 Isoforms Promotes Ameboid Cell Invasion. Cells 2023; 12:1682. [PMID: 37443716 PMCID: PMC10340588 DOI: 10.3390/cells12131682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
The spread of tumor cells and the formation of distant metastasis remain the main causes of mortality in cancer patients. However, the mechanisms governing the release of cells from micro-environmental constraints remain unclear. E-cadherin negatively controls the invasion of epithelial cells by maintaining cell-cell contacts. Furthermore, the inactivation of E-cadherin triggers invasion in vitro. However, the role of E-cadherin is complex, as metastasizing cells maintain E-cadherin expression, which appears to have a positive role in the survival of tumor cells. In this report, we present a novel mechanism delineating how E-cadherin function is modulated to promote invasion. We have previously shown that E-cadherin is associated with p100AmotL2, which is required for radial actin formation and the transmission of mechanical force. Here, we present evidence that p60AmotL2, which is expressed in invading tumor cells, binds to the p100AmotL2 isoform and uncouples the mechanical constraint of radial actin filaments. We show for the first time that the coupling of E-cadherin to the actin cytoskeleton via p100AmotL2 is directly connected to the nuclear membrane. The expression of p60AmotL2 inactivates this connection and alters the properties of the nuclear lamina, potentiating the invasion of cells into micropores of the extracellular matrix. In summary, we propose that the balance of the two AmotL2 isoforms is important in the modulation of E-cadherin function and that an imbalance of this axis promotes ameboid cell invasion.
Collapse
Affiliation(s)
- Aravindh Subramani
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden; (A.S.); (W.C.); (Y.Z.); (T.F.); (P.F.); (W.-O.L.)
| | - Weiyingqi Cui
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden; (A.S.); (W.C.); (Y.Z.); (T.F.); (P.F.); (W.-O.L.)
| | - Yuanyuan Zhang
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden; (A.S.); (W.C.); (Y.Z.); (T.F.); (P.F.); (W.-O.L.)
| | - Tomas Friman
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden; (A.S.); (W.C.); (Y.Z.); (T.F.); (P.F.); (W.-O.L.)
| | - Zhihai Zhao
- Department of Physics, Faculty of Science: 2 Science Drive 3, S7-01-10, Lower Kent Ridge Road, Singapore 117542, Singapore; (Z.Z.); (W.H.); (J.Y.)
- Mechanobiology Institute (MBI): T-Lab, #10-02, 5A Engineering Drive 1, National University of Singapore, Singapore 117411, Singapore
| | - Wenmao Huang
- Department of Physics, Faculty of Science: 2 Science Drive 3, S7-01-10, Lower Kent Ridge Road, Singapore 117542, Singapore; (Z.Z.); (W.H.); (J.Y.)
- Mechanobiology Institute (MBI): T-Lab, #10-02, 5A Engineering Drive 1, National University of Singapore, Singapore 117411, Singapore
| | - Pedro Fonseca
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden; (A.S.); (W.C.); (Y.Z.); (T.F.); (P.F.); (W.-O.L.)
| | - Weng-Onn Lui
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden; (A.S.); (W.C.); (Y.Z.); (T.F.); (P.F.); (W.-O.L.)
| | - Vani Narayanan
- Department of Biomedical Engineering, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284, USA; (V.N.); (D.E.C.)
| | - Justyna Bobrowska
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland; (J.B.); (M.L.)
| | - Małgorzata Lekka
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland; (J.B.); (M.L.)
| | - Jie Yan
- Department of Physics, Faculty of Science: 2 Science Drive 3, S7-01-10, Lower Kent Ridge Road, Singapore 117542, Singapore; (Z.Z.); (W.H.); (J.Y.)
- Mechanobiology Institute (MBI): T-Lab, #10-02, 5A Engineering Drive 1, National University of Singapore, Singapore 117411, Singapore
| | - Daniel E. Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284, USA; (V.N.); (D.E.C.)
| | - Lars Holmgren
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden; (A.S.); (W.C.); (Y.Z.); (T.F.); (P.F.); (W.-O.L.)
| |
Collapse
|
63
|
Xu J, Wang Q, Li X, Zheng Y, Ji B. Cellular mechanisms of wound closure under cyclic stretching. Biophys J 2023; 122:2404-2420. [PMID: 36966361 PMCID: PMC10322892 DOI: 10.1016/j.bpj.2023.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/23/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023] Open
Abstract
Wound closure is a fundamental process in many physiological and pathological processes, but the regulating effects of external force on the closure process are still unclear. Here, we systematically studied the closure process of wounds of different shape under cyclic stretching. We found that the stretching amplitude and direction had significant effect on the healing speed and healing mode. For instance, there was a biphasic dependence of the healing speed on the stretching amplitude. That is, the wound closure was faster under relatively small and large amplitude, while it was slower under intermediate amplitude. At the same time, the stretching could regulate the healing pattern. We showed that the stretching would increase the healing speed along the direction perpendicular to the stretching direction. Specifically, when the stretching was along the major axis of the wound, it accelerated the healing speed along the short axis, which induced a rosette to stitching-line mode transition. In contrast, stretching along the minor axis accelerated the healing speed along the long axis, inducing a stitching-line to rosette mode transition. Our theoretical analyses demonstrated that the wound closure process was coregulated by the mechanical factors including prestress in the cytoskeleton, the protrusion of cells, and the contraction of the actin ring, as well as the geometry of the wound. The cyclic stretch could further modulate the roles of these factors. For example, the stretching changed the stress field in the cell layer, and switched the direction of cell protrusions. This article reveals important cellular mechanisms of the wound healing process under cyclic stretching, and provides an insight into possible approaches of regulating cell collective behaviors via mechanical forces.
Collapse
Affiliation(s)
- Jiayi Xu
- Department of Applied Mechanics, Beijing Institute of Technology, Beijing, China; Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Qianchun Wang
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Xiaojun Li
- Department of Applied Mechanics, Beijing Institute of Technology, Beijing, China
| | - Yifei Zheng
- Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Baohua Ji
- Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China.
| |
Collapse
|
64
|
Li Y, Liu C, Rolling L, Sikora V, Chen Z, Gurwin J, Barabell C, Lin J, Duan C. ROS signaling-induced mitochondrial Sgk1 expression regulates epithelial cell renewal. Proc Natl Acad Sci U S A 2023; 120:e2216310120. [PMID: 37276417 PMCID: PMC10268254 DOI: 10.1073/pnas.2216310120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/01/2023] [Indexed: 06/07/2023] Open
Abstract
Many types of differentiated cells can reenter the cell cycle upon injury or stress. The underlying mechanisms are still poorly understood. Here, we investigated how quiescent cells are reactivated using a zebrafish model, in which a population of differentiated epithelial cells are reactivated under a physiological context. A robust and sustained increase in mitochondrial membrane potential was observed in the reactivated cells. Genetic and pharmacological perturbations show that elevated mitochondrial metabolism and ATP synthesis are critical for cell reactivation. Further analyses showed that elevated mitochondrial metabolism increases mitochondrial ROS levels, which induces Sgk1 expression in the mitochondria. Genetic deletion and inhibition of Sgk1 in zebrafish abolished epithelial cell reactivation. Similarly, ROS-dependent mitochondrial expression of SGK1 promotes S phase entry in human breast cancer cells. Mechanistically, SGK1 coordinates mitochondrial activity with ATP synthesis by phosphorylating F1Fo-ATP synthase. These findings suggest a conserved intramitochondrial signaling loop regulating epithelial cell renewal.
Collapse
Affiliation(s)
- Yingxiang Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Chengdong Liu
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Luke Rolling
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Veronica Sikora
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Zhimin Chen
- Life Science Institute, University of Michigan, Ann Arbor, MI48109
| | - Jack Gurwin
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Caroline Barabell
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Jiandie Lin
- Life Science Institute, University of Michigan, Ann Arbor, MI48109
| | - Cunming Duan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
65
|
Mirouse V. Evolution and developmental functions of the dystrophin-associated protein complex: beyond the idea of a muscle-specific cell adhesion complex. Front Cell Dev Biol 2023; 11:1182524. [PMID: 37384252 PMCID: PMC10293626 DOI: 10.3389/fcell.2023.1182524] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
The Dystrophin-Associated Protein Complex (DAPC) is a well-defined and evolutionarily conserved complex in animals. DAPC interacts with the F-actin cytoskeleton via dystrophin, and with the extracellular matrix via the membrane protein dystroglycan. Probably for historical reasons that have linked its discovery to muscular dystrophies, DAPC function is often described as limited to muscle integrity maintenance by providing mechanical robustness, which implies strong cell-extracellular matrix adhesion properties. In this review, phylogenetic and functional data from different vertebrate and invertebrate models will be analyzed and compared to explore the molecular and cellular functions of DAPC, with a specific focus on dystrophin. These data reveals that the evolution paths of DAPC and muscle cells are not intrinsically linked and that many features of dystrophin protein domains have not been identified yet. DAPC adhesive properties also are discussed by reviewing the available evidence of common key features of adhesion complexes, such as complex clustering, force transmission, mechanosensitivity and mechanotransduction. Finally, the review highlights DAPC developmental roles in tissue morphogenesis and basement membrane (BM) assembly that may indicate adhesion-independent functions.
Collapse
Affiliation(s)
- Vincent Mirouse
- Institute of Genetics, Reproduction and Development (iGReD), Université Clermont Auvergne-UMR CNRS 6293-INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| |
Collapse
|
66
|
Landino J, Misterovich E, Chumki S, Miller AL. Neighbor cells restrain furrowing during epithelial cytokinesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.08.544077. [PMID: 37333405 PMCID: PMC10274919 DOI: 10.1101/2023.06.08.544077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Cytokinesis challenges epithelial tissue homeostasis by generating forces that pull on neighboring cells via cell-cell junctions. Previous work has shown that junction reinforcement at the furrow in Xenopus laevis epithelia regulates the speed of furrowing1. This suggests the cytokinetic array that drives cell division is subject to resistive forces from epithelial neighbor cells. We show here that contractility factors accumulate in neighboring cells near the furrow during cytokinesis. Additionally, increasing neighbor cell stiffness, via ɑ-actinin overexpression, or contractility, through optogenetic Rho activation in one neighbor cell, slows or asymmetrically pauses furrowing, respectively. Notably, optogenetic stimulation of neighbor cell contractility on both sides of the furrow induces cytokinetic failure and binucleation. We conclude that forces from the cytokinetic array in the dividing cell are carefully balanced with restraining forces generated by neighbor cells, and neighbor cell mechanics regulate the speed and success of cytokinesis.
Collapse
Affiliation(s)
- Jennifer Landino
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor
| | - Eileen Misterovich
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor
| | - Shahana Chumki
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor
| | - Ann L. Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor
| |
Collapse
|
67
|
Alicea B, Gordon R, Parent J. Embodied cognitive morphogenesis as a route to intelligent systems. Interface Focus 2023; 13:20220067. [PMID: 37065267 PMCID: PMC10102728 DOI: 10.1098/rsfs.2022.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/20/2023] [Indexed: 04/18/2023] Open
Abstract
The embryological view of development is that coordinated gene expression, cellular physics and migration provides the basis for phenotypic complexity. This stands in contrast with the prevailing view of embodied cognition, which claims that informational feedback between organisms and their environment is key to the emergence of intelligent behaviours. We aim to unite these two perspectives as embodied cognitive morphogenesis, in which morphogenetic symmetry breaking produces specialized organismal subsystems which serve as a substrate for the emergence of autonomous behaviours. As embodied cognitive morphogenesis produces fluctuating phenotypic asymmetry and the emergence of information processing subsystems, we observe three distinct properties: acquisition, generativity and transformation. Using a generic organismal agent, such properties are captured through models such as tensegrity networks, differentiation trees and embodied hypernetworks, providing a means to identify the context of various symmetry-breaking events in developmental time. Related concepts that help us define this phenotype further include concepts such as modularity, homeostasis and 4E (embodied, enactive, embedded and extended) cognition. We conclude by considering these autonomous developmental systems as a process called connectogenesis, connecting various parts of the emerged phenotype into an approach useful for the analysis of organisms and the design of bioinspired computational agents.
Collapse
Affiliation(s)
- Bradly Alicea
- OpenWorm Foundation, Boston, MA, USA
- Orthogonal Research and Education Laboratory, Champaign-Urbana, IL, USA
| | - Richard Gordon
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Jesse Parent
- Orthogonal Research and Education Laboratory, Champaign-Urbana, IL, USA
| |
Collapse
|
68
|
Dow LP, Parmar T, Marchetti MC, Pruitt BL. Engineering tools for quantifying and manipulating forces in epithelia. BIOPHYSICS REVIEWS 2023; 4:021303. [PMID: 38510344 PMCID: PMC10903508 DOI: 10.1063/5.0142537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/20/2023] [Indexed: 03/22/2024]
Abstract
The integrity of epithelia is maintained within dynamic mechanical environments during tissue development and homeostasis. Understanding how epithelial cells mechanosignal and respond collectively or individually is critical to providing insight into developmental and (patho)physiological processes. Yet, inferring or mimicking mechanical forces and downstream mechanical signaling as they occur in epithelia presents unique challenges. A variety of in vitro approaches have been used to dissect the role of mechanics in regulating epithelia organization. Here, we review approaches and results from research into how epithelial cells communicate through mechanical cues to maintain tissue organization and integrity. We summarize the unique advantages and disadvantages of various reduced-order model systems to guide researchers in choosing appropriate experimental systems. These model systems include 3D, 2D, and 1D micromanipulation methods, single cell studies, and noninvasive force inference and measurement techniques. We also highlight a number of in silico biophysical models that are informed by in vitro and in vivo observations. Together, a combination of theoretical and experimental models will aid future experiment designs and provide predictive insight into mechanically driven behaviors of epithelial dynamics.
Collapse
Affiliation(s)
| | - Toshi Parmar
- Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | | | | |
Collapse
|
69
|
Sego T, Comlekoglu T, Peirce SM, Desimone D, Glazier JA. General, Open-Source Vertex Modeling in Biological Applications Using Tissue Forge. RESEARCH SQUARE 2023:rs.3.rs-2886960. [PMID: 37214822 PMCID: PMC10197754 DOI: 10.21203/rs.3.rs-2886960/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Vertex models are a widespread approach for describing the biophysics and behaviors of multicellular systems, especially of epithelial tissues. Vertex models describe a wide variety of developmental scenarios and behaviors like cell rearrangement and tissue folding. Often, these models are implemented as single-use or closed-source software, which inhibits reproducibility and decreases accessibility for researchers with limited proficiency in software development and numerical methods. We developed a physics-based vertex model methodology in Tissue Forge, an open-source, particle-based modeling and simulation environment. Our methodology describes the properties and processes of vertex model objects on the basis of vertices, which allows integration of vertex modeling with the particle-based formalism of Tissue Forge, enabling an environment for developing mixed-method models of multicellular systems. Our methodology in Tissue Forge inherits all features provided by Tissue Forge, delivering opensource, extensible vertex modeling with interactive simulation, real-time simulation visualization and model sharing in the C , C + + and Python programming languages and a Jupyter Notebook. Demonstrations show a vertex model of cell sorting and a mixed-method model of cell migration combining vertex- and particle-based models. Our methodology provides accessible vertex modeling for a broad range of scientific disciplines, and we welcome community-developed contributions to our open-source software implementation.
Collapse
Affiliation(s)
- T.J. Sego
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Tien Comlekoglu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Shayn M. Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Douglas Desimone
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - James A. Glazier
- Department of Intelligent Engineering and Biocomplexity Institute, Indiana University,Bloomington, IN, USA
| |
Collapse
|
70
|
Hoffmann LA, Carenza LN, Giomi L. Tuneable defect-curvature coupling and topological transitions in active shells. SOFT MATTER 2023; 19:3423-3435. [PMID: 37129899 DOI: 10.1039/d2sm01370c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Recent experimental observations have suggested that topological defects can facilitate the creation of sharp features in developing embryos. Whereas these observations echo established knowledge about the interplay between geometry and topology in two-dimensional passive liquid crystals, the role of activity has mostly remained unexplored. In this article we focus on deformable shells consisting of either polar or nematic active liquid crystals and demonstrate that activity renders the mechanical coupling between defects and curvature much more involved and versatile than previously thought. Using a combination of linear stability analysis and three-dimensional computational fluid dynamics, we demonstrate that such a coupling can in fact be tuned, depending on the type of liquid crystal order, the specific structure of the defect (i.e. asters or vortices) and the nature of the active forces. In polar systems, this can drive a spectacular transition from spherical to toroidal topology, in the presence of large extensile activity. Our analysis strengthens the idea that defects could serve as topological morphogens and provides a number of predictions that could be tested in in vitro studies, for instance in the context of organoids.
Collapse
Affiliation(s)
- Ludwig A Hoffmann
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands.
| | - Livio Nicola Carenza
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands.
| | - Luca Giomi
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
71
|
Galenza A, Moreno-Roman P, Su YH, Acosta-Alvarez L, Debec A, Guichet A, Knapp JM, Kizilyaprak C, Humbel BM, Kolotuev I, O'Brien LE. Basal stem cell progeny establish their apical surface in a junctional niche during turnover of an adult barrier epithelium. Nat Cell Biol 2023; 25:658-671. [PMID: 36997641 PMCID: PMC10317055 DOI: 10.1038/s41556-023-01116-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/23/2023] [Indexed: 04/01/2023]
Abstract
Barrier epithelial organs face the constant challenge of sealing the interior body from the external environment while simultaneously replacing the cells that contact this environment. New replacement cells-the progeny of basal stem cells-are born without barrier-forming structures such as a specialized apical membrane and occluding junctions. Here, we investigate how new progeny acquire barrier structures as they integrate into the intestinal epithelium of adult Drosophila. We find they gestate their future apical membrane in a sublumenal niche created by a transitional occluding junction that envelops the differentiating cell and enables it to form a deep, microvilli-lined apical pit. The transitional junction seals the pit from the intestinal lumen until differentiation-driven, basal-to-apical remodelling of the niche opens the pit and integrates the now-mature cell into the barrier. By coordinating junctional remodelling with terminal differentiation, stem cell progeny integrate into a functional, adult epithelium without jeopardizing barrier integrity.
Collapse
Affiliation(s)
- Anthony Galenza
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Paola Moreno-Roman
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Foldscope Instruments, Inc., Palo Alto, CA, USA
| | - Yu-Han Su
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Lehi Acosta-Alvarez
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Alain Debec
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Institute of Ecology and Environmental Sciences, iEES, Sorbonne University, UPEC, CNRS, IRD, INRA, Paris, France
| | - Antoine Guichet
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | | | - Caroline Kizilyaprak
- Université de Lausanne, Bâtiment Biophore, Quartier Sorge, Lausanne, Switzerland
| | - Bruno M Humbel
- Université de Lausanne, Bâtiment Biophore, Quartier Sorge, Lausanne, Switzerland
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Provost's Office, Okinawa Institute of Science and Technology, Tancha, Japan
| | - Irina Kolotuev
- Université de Lausanne, Bâtiment Biophore, Quartier Sorge, Lausanne, Switzerland
| | - Lucy Erin O'Brien
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Chan-Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
72
|
Lan G, Twa MD, Song C, Feng J, Huang Y, Xu J, Qin J, An L, Wei X. In vivo corneal elastography: A topical review of challenges and opportunities. Comput Struct Biotechnol J 2023; 21:2664-2687. [PMID: 37181662 PMCID: PMC10173410 DOI: 10.1016/j.csbj.2023.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Clinical measurement of corneal biomechanics can aid in the early diagnosis, progression tracking, and treatment evaluation of ocular diseases. Over the past two decades, interdisciplinary collaborations between investigators in optical engineering, analytical biomechanical modeling, and clinical research has expanded our knowledge of corneal biomechanics. These advances have led to innovations in testing methods (ex vivo, and recently, in vivo) across multiple spatial and strain scales. However, in vivo measurement of corneal biomechanics remains a long-standing challenge and is currently an active area of research. Here, we review the existing and emerging approaches for in vivo corneal biomechanics evaluation, which include corneal applanation methods, such as ocular response analyzer (ORA) and corneal visualization Scheimpflug technology (Corvis ST), Brillouin microscopy, and elastography methods, and the emerging field of optical coherence elastography (OCE). We describe the fundamental concepts, analytical methods, and current clinical status for each of these methods. Finally, we discuss open questions for the current state of in vivo biomechanics assessment techniques and requirements for wider use that will further broaden our understanding of corneal biomechanics for the detection and management of ocular diseases, and improve the safety and efficacy of future clinical practice.
Collapse
Affiliation(s)
- Gongpu Lan
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Michael D. Twa
- College of Optometry, University of Houston, Houston, TX 77204, United States
| | - Chengjin Song
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - JinPing Feng
- Institute of Engineering and Technology, Hubei University of Science and Technology, Xianning, Hubei 437100, China
| | - Yanping Huang
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Jingjiang Xu
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Jia Qin
- Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Lin An
- Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Xunbin Wei
- Biomedical Engineering Department, Peking University, Beijing 100081, China
- International Cancer Institute, Peking University, Beijing 100191, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
73
|
Selvamani P, Chelakkot R, Nandi A, Inamdar MM. Emergence of Spatial Scales and Macroscopic Tissue Dynamics in Active Epithelial Monolayers. Cells Tissues Organs 2023; 213:269-282. [PMID: 37044075 DOI: 10.1159/000528501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 11/22/2022] [Indexed: 04/14/2023] Open
Abstract
Migrating cells in tissues are often known to exhibit collective swirling movements. In this paper, we develop an active vertex model with polarity dynamics based on contact inhibition of locomotion (CIL). We show that under this dynamics, the cells form steady-state vortices in velocity, polarity, and cell stress with length scales that depend on polarity alignment rate (ζ), self-motility (v0), and cell-cell bond tension (λ). When the ratio λ/v0 becomes larger, the tissue reaches a near jamming state because of the inability of the cells to exchange their neighbors, and the length scale associated with tissue kinematics increases. A deeper examination of this jammed state provides insights into the mechanism of sustained swirl formation under CIL rule that is governed by the feedback between cell polarities and deformations. To gain additional understanding of how active forcing governed by CIL dynamics leads to large-scale tissue dynamics, we systematically coarse-grain cell stress, polarity, and motility and show that the tissue remains polar even on larger length scales. Overall, we explore the origin of swirling patterns during collective cell migration and obtain a connection between cell-level dynamics and large-scale cellular flow patterns observed in epithelial monolayers.
Collapse
Affiliation(s)
- Padmalochini Selvamani
- Center for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, India
| | | | - Amitabha Nandi
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, India
| | - Mandar M Inamdar
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
74
|
Lou Y, Rupprecht JF, Theis S, Hiraiwa T, Saunders TE. Curvature-Induced Cell Rearrangements in Biological Tissues. PHYSICAL REVIEW LETTERS 2023; 130:108401. [PMID: 36962052 DOI: 10.1103/physrevlett.130.108401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
On a curved surface, epithelial cells can adapt to geometric constraints by tilting and by exchanging their neighbors from apical to basal sides, known as an apico-basal topological transition 1 (AB-T1). The relationship between cell tilt, AB-T1s, and tissue curvature still lacks a unified understanding. Here, we propose a general framework for cell packing in curved environments and explain the formation of AB-T1s from the perspective of strain anisotropy. We find that steep curvature gradients can lead to cell tilting and induce AB-T1s. Alternatively, pressure differences across the epithelial tissue can drive AB-T1s in regions of large curvature anisotropy. The two mechanisms compete to determine the impact of tissue geometry and mechanics on optimized cell rearrangements in three dimensions.
Collapse
Affiliation(s)
- Yuting Lou
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Jean-Francois Rupprecht
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Aix Marseille Univ, Université de Toulon, CNRS, CPT (UMR 7332), Turing Centre for Living systems, Marseille, France
| | - Sophie Theis
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Tetsuya Hiraiwa
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Timothy E Saunders
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
75
|
Pitt K, Mochida Y, Senoo M. Greener Grass: The Modern History of Epithelial Stem Cell Innovation. Life (Basel) 2023; 13:688. [PMID: 36983843 PMCID: PMC10058258 DOI: 10.3390/life13030688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
The field of epithelial stem cell development has been irrevocably shaped by the work of American scientist Howard Green, whose breakthroughs in stem cell culture methods translated to therapeutic practice. In this review, we chronicle the milestones that propelled the field of regenerative medicine of the skin forward over the last fifty years. We detail the early discoveries made by Green and his collaborators, highlight clinical cases that made life-saving use of his findings, and discuss the accomplishments of other scientists who later innovated upon his discoveries.
Collapse
Affiliation(s)
- Keshia Pitt
- Graduate Program in Molecular and Translational Medicine, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Yoshiyuki Mochida
- Graduate Program in Molecular and Translational Medicine, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Makoto Senoo
- Graduate Program in Molecular and Translational Medicine, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, 72 East Concord Street, Boston, MA 02118, USA
- Cell Exosome Therapeutics Inc., 2-16-9 Higashi, Shibuya-ku, Tokyo 150-0011, Japan
| |
Collapse
|
76
|
Abstract
Changes in bone architecture and metabolism with aging increase the likelihood of osteoporosis and fracture. Age-onset osteoporosis is multifactorial, with contributory extrinsic and intrinsic factors including certain medical problems, specific prescription drugs, estrogen loss, secondary hyperparathyroidism, microenvironmental and cellular alterations in bone tissue, and mechanical unloading or immobilization. At the histological level, there are changes in trabecular and cortical bone as well as marrow cellularity, lineage switching of mesenchymal stem cells to an adipogenic fate, inadequate transduction of signals during skeletal loading, and predisposition toward senescent cell accumulation with production of a senescence-associated secretory phenotype. Cumulatively, these changes result in bone remodeling abnormalities that over time cause net bone loss typically seen in older adults. Age-related osteoporosis is a geriatric syndrome due to the multiple etiologies that converge upon the skeleton to produce the ultimate phenotypic changes that manifest as bone fragility. Bone tissue is dynamic but with tendencies toward poor osteoblastic bone formation and relative osteoclastic bone resorption with aging. Interactions with other aging physiologic systems, such as muscle, may also confer detrimental effects on the aging skeleton. Conversely, individuals who maintain their BMD experience a lower risk of fractures, disability, and mortality, suggesting that this phenotype may be a marker of successful aging. © 2023 American Physiological Society. Compr Physiol 13:4355-4386, 2023.
Collapse
Affiliation(s)
- Robert J Pignolo
- Department of Medicine, Divisions of Geriatric Medicine and Gerontology, Endocrinology, and Hospital Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA.,The Department of Physiology and Biomedical Engineering, and the Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
77
|
Chann AS, Chen Y, Kinwel T, Humbert PO, Russell SM. Scribble and E-cadherin cooperate to control symmetric daughter cell positioning by multiple mechanisms. J Cell Sci 2023; 136:286705. [PMID: 36661138 DOI: 10.1242/jcs.260547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/25/2022] [Indexed: 01/21/2023] Open
Abstract
The fate of the two daughter cells is intimately connected to their positioning, which is in turn regulated by cell junction remodelling and orientation of the mitotic spindle. How multiple cues are integrated to dictate the ultimate positioning of daughters is not clear. Here, we identify novel mechanisms of regulation of daughter positioning in single MCF10A cells. The polarity protein, Scribble cooperates with E-cadherin for sequential roles in daughter positioning. First Scribble stabilises E-cadherin at the mitotic cortex as well as the retraction fibres, to mediate spindle orientation. Second, Scribble re-locates to the junction between the two daughters to allow a new E-cadherin-based-interface to form between them, influencing the width of the nascent daughter-daughter junction and subsequent cell positioning. Thus, E-cadherin and Scribble dynamically relocate to different intracellular sites during cell division to orient the mitotic spindle and control placement of the daughter cells after cell division. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Anchi S Chann
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000Australia
| | - Ye Chen
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000Australia
| | - Tanja Kinwel
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Patrick O Humbert
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.,Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia.,Department of Biochemistry & Pharmacology, University of Melbourne, Melbourne, Victoria 3010, Australia.,Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Sarah M Russell
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
78
|
García-Pérez R, Ramirez JM, Ripoll-Cladellas A, Chazarra-Gil R, Oliveros W, Soldatkina O, Bosio M, Rognon PJ, Capella-Gutierrez S, Calvo M, Reverter F, Guigó R, Aguet F, Ferreira PG, Ardlie KG, Melé M. The landscape of expression and alternative splicing variation across human traits. CELL GENOMICS 2023; 3:100244. [PMID: 36777183 PMCID: PMC9903719 DOI: 10.1016/j.xgen.2022.100244] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/08/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022]
Abstract
Understanding the consequences of individual transcriptome variation is fundamental to deciphering human biology and disease. We implement a statistical framework to quantify the contributions of 21 individual traits as drivers of gene expression and alternative splicing variation across 46 human tissues and 781 individuals from the Genotype-Tissue Expression project. We demonstrate that ancestry, sex, age, and BMI make additive and tissue-specific contributions to expression variability, whereas interactions are rare. Variation in splicing is dominated by ancestry and is under genetic control in most tissues, with ribosomal proteins showing a strong enrichment of tissue-shared splicing events. Our analyses reveal a systemic contribution of types 1 and 2 diabetes to tissue transcriptome variation with the strongest signal in the nerve, where histopathology image analysis identifies novel genes related to diabetic neuropathy. Our multi-tissue and multi-trait approach provides an extensive characterization of the main drivers of human transcriptome variation in health and disease.
Collapse
Affiliation(s)
- Raquel García-Pérez
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Jose Miguel Ramirez
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Aida Ripoll-Cladellas
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Ruben Chazarra-Gil
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Winona Oliveros
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Oleksandra Soldatkina
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Mattia Bosio
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Paul Joris Rognon
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
- Department of Economics and Business, Universitat Pompeu Fabra, Barcelona, Catalonia 08005, Spain
- Department of Statistics and Operations Research, Universitat Politècnica de Catalunya, Barcelona, Catalonia 08034, Spain
| | - Salvador Capella-Gutierrez
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Miquel Calvo
- Statistics Section, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Catalonia 08028, Spain
| | - Ferran Reverter
- Statistics Section, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Catalonia 08028, Spain
| | - Roderic Guigó
- Bioinformatics and Genomics, Center for Genomic Regulation, Barcelona, Catalonia 08003, Spain
| | | | - Pedro G. Ferreira
- Department of Computer Science, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
- Laboratory of Artificial Intelligence and Decision Support, INESC TEC, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto, Institute for Research and Innovation in Health (i3s), R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | | | - Marta Melé
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| |
Collapse
|
79
|
Liu BS, Valenzuela CD, Mentzer KL, Wagner WL, Khalil HA, Chen Z, Ackermann M, Mentzer SJ. Topography of pleural epithelial structure enabled by en face isolation and machine learning. J Cell Physiol 2023; 238:274-284. [PMID: 36502471 PMCID: PMC9845181 DOI: 10.1002/jcp.30927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022]
Abstract
Pleural epithelial adaptations to mechanical stress are relevant to both normal lung function and parenchymal lung diseases. Assessing regional differences in mechanical stress, however, has been complicated by the nonlinear stress-strain properties of the lung and the large displacements with ventilation. Moreover, there is no reliable method of isolating pleural epithelium for structural studies. To define the topographic variation in pleural structure, we developed a method of en face harvest of murine pleural epithelium. Silver-stain was used to highlight cell borders and facilitate imaging with light microscopy. Machine learning and watershed segmentation were used to define the cell area and cell perimeter of the isolated pleural epithelial cells. In the deflated lung at residual volume, the pleural epithelial cells were significantly larger in the apex (624 ± 247 μm2 ) than in basilar regions of the lung (471 ± 119 μm2 ) (p < 0.001). The distortion of apical epithelial cells was consistent with a vertical gradient of pleural pressures. To assess epithelial changes with inflation, the pleura was studied at total lung capacity. The average epithelial cell area increased 57% and the average perimeter increased 27% between residual volume and total lung capacity. The increase in lung volume was less than half the percent change predicted by uniform or isotropic expansion of the lung. We conclude that the structured analysis of pleural epithelial cells complements studies of pulmonary microstructure and provides useful insights into the regional distribution of mechanical stresses in the lung.
Collapse
Affiliation(s)
- Betty S. Liu
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston MA
| | - Cristian D. Valenzuela
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston MA
| | - Katherine L. Mentzer
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford CA
| | - Willi L. Wagner
- Translational Lung Research Center, Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany
| | - Hassan A. Khalil
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston MA
| | - Zi Chen
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston MA
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Steven J. Mentzer
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston MA
| |
Collapse
|
80
|
Wright BA, Kvansakul M, Schierwater B, Humbert PO. Cell polarity signalling at the birth of multicellularity: What can we learn from the first animals. Front Cell Dev Biol 2022; 10:1024489. [PMID: 36506100 PMCID: PMC9729800 DOI: 10.3389/fcell.2022.1024489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
The innovation of multicellularity has driven the unparalleled evolution of animals (Metazoa). But how is a multicellular organism formed and how is its architecture maintained faithfully? The defining properties and rules required for the establishment of the architecture of multicellular organisms include the development of adhesive cell interactions, orientation of division axis, and the ability to reposition daughter cells over long distances. Central to all these properties is the ability to generate asymmetry (polarity), coordinated by a highly conserved set of proteins known as cell polarity regulators. The cell polarity complexes, Scribble, Par and Crumbs, are considered to be a metazoan innovation with apicobasal polarity and adherens junctions both believed to be present in all animals. A better understanding of the fundamental mechanisms regulating cell polarity and tissue architecture should provide key insights into the development and regeneration of all animals including humans. Here we review what is currently known about cell polarity and its control in the most basal metazoans, and how these first examples of multicellular life can inform us about the core mechanisms of tissue organisation and repair, and ultimately diseases of tissue organisation, such as cancer.
Collapse
Affiliation(s)
- Bree A. Wright
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Marc Kvansakul
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia,Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, VIC, Australia
| | - Bernd Schierwater
- Institute of Animal Ecology and Evolution, University of Veterinary Medicine Hannover, Foundation, Bünteweg, Hannover, Germany
| | - Patrick O. Humbert
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia,Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, VIC, Australia,Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC, Australia,Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia,*Correspondence: Patrick O. Humbert,
| |
Collapse
|
81
|
Vanderleest TE, Xie Y, Smits C, Blankenship JT, Loerke D. Interface extension is a continuum property suggesting a linkage between AP contractile and DV lengthening processes. Mol Biol Cell 2022; 33:ar142. [PMID: 36129772 PMCID: PMC9727811 DOI: 10.1091/mbc.e21-07-0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In the early Drosophila embryo, the elongation of the anterior-posterior (AP) body axis is driven by cell intercalation in the germband epithelium. Neighboring cells intercalate through the contraction of AP interfaces (between AP neighbors) into higher-order vertices, which then resolve through the extension of new dorsal-ventral (DV) interfaces (between DV neighbors). Although interface contraction has been extensively studied, less is known about how new interfaces are established. Here we show that DV interface elongation behaviors initiate at the same time as AP contractions, and that DV interfaces which are newly created from resolution of higher-order vertices do not appear to possess a unique 'identity;' instead, all horizontal interfaces undergo lengthening, elongating through ratchetlike sliding behaviors analogous to those found in AP interfaces. Cortical F-actin networks are essential for high area oscillation amplitudes required for effective ratcheting. Our results suggest that, contrary to canonical models, the elongation of new DV interfaces is not produced by a mechanistically separate process. Instead, medial myosin populations drive oscillating radial forces in the cells to generate transient force asymmetries at all tricellular vertices, which-combined with planar polarized stabilization-produce directional ratcheted sliding to generate both AP interface contraction and DV interface elongation.
Collapse
Affiliation(s)
| | - Yi Xie
- Department of Biological Sciences, University of Denver, Denver, CO 80208
| | - Celia Smits
- Department of Biological Sciences, University of Denver, Denver, CO 80208
| | - J. Todd Blankenship
- Department of Biological Sciences, University of Denver, Denver, CO 80208,*Address correspondence to: Dinah Loerke (); Todd Blankenship ()
| | - Dinah Loerke
- Department of Physics and Astronomy, University of Denver, Denver, CO 80208,*Address correspondence to: Dinah Loerke (); Todd Blankenship ()
| |
Collapse
|
82
|
Chumki SA, van den Goor LM, Hall BN, Miller AL. p115RhoGEF activates RhoA to support tight junction maintenance and remodeling. Mol Biol Cell 2022; 33:ar136. [PMID: 36200892 PMCID: PMC9727809 DOI: 10.1091/mbc.e22-06-0205] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In vertebrates, epithelial cell-cell junctions must rapidly remodel to maintain barrier function as cells undergo dynamic shape-change events. Consequently, localized leaks sometimes arise within the tight junction (TJ) barrier, which are repaired by short-lived activations of RhoA, called "Rho flares." However, how RhoA is activated at leak sites remains unknown. Here we asked which guanine nucleotide exchange factor (GEF) localizes to TJs to initiate Rho activity at Rho flares. We find that p115RhoGEF locally activates Rho flares at sites of TJ loss. Knockdown of p115RhoGEF leads to diminished Rho flare intensity and impaired TJ remodeling. p115RhoGEF knockdown also decreases junctional active RhoA levels, thus compromising the apical actomyosin array and junctional complex. Furthermore, p115RhoGEF is necessary to promote local leak repair to maintain TJ barrier function. In all, our work demonstrates a central role for p115RhoGEF in activating junctional RhoA to preserve barrier function and direct local TJ remodeling.
Collapse
Affiliation(s)
- Shahana A. Chumki
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109
| | - Lotte M. van den Goor
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Benjamin N. Hall
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Ann L. Miller
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109,*Address correspondence to: Ann L. Miller ()
| |
Collapse
|
83
|
Fuji K, Tanida S, Sano M, Nonomura M, Riveline D, Honda H, Hiraiwa T. Computational approaches for simulating luminogenesis. Semin Cell Dev Biol 2022; 131:173-185. [PMID: 35773151 DOI: 10.1016/j.semcdb.2022.05.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022]
Abstract
Lumens, liquid-filled cavities surrounded by polarized tissue cells, are elementary units involved in the morphogenesis of organs. Theoretical modeling and computations, which can integrate various factors involved in biophysics of morphogenesis of cell assembly and lumens, may play significant roles to elucidate the mechanisms in formation of such complex tissue with lumens. However, up to present, it has not been documented well what computational approaches or frameworks can be applied for this purpose and how we can choose the appropriate approach for each problem. In this review, we report some typical lumen morphologies and basic mechanisms for the development of lumens, focusing on three keywords - mechanics, hydraulics and geometry - while outlining pros and cons of the current main computational strategies. We also describe brief guidance of readouts, i.e., what we should measure in experiments to make the comparison with the model's assumptions and predictions.
Collapse
Affiliation(s)
- Kana Fuji
- Universal Biology Institute, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sakurako Tanida
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
| | - Masaki Sano
- Institute of Natural Sciences, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Makiko Nonomura
- Department of Mathematical Information Engineering, College of Industrial Technology, Nihon University, 1-2-1 Izumicho, Narashino-shi, Chiba 275-8575, Japan
| | - Daniel Riveline
- Laboratory of Cell Physics IGBMC, CNRS, INSERM and Université de Strasbourg, Strasbourg, France
| | - Hisao Honda
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine Kobe University, Kobe, Hyogo, Japan
| | - Tetsuya Hiraiwa
- Mechanobiology Institute, Singapore, National University of Singapore, 117411, Singapore.
| |
Collapse
|
84
|
Picchi Scardaoni M. Energetic convenience of cell division in biological tissues. Phys Rev E 2022; 106:054405. [PMID: 36559362 DOI: 10.1103/physreve.106.054405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Abstract
A typical feature of living tissues is proliferation by division: it is a fundamental aspect of many biological processes, including embryonic development, morphogenesis, and cancer growth. Here, we study the energetics of cell division occurring in epithelia, highlighting the interplay of the key parameters ruling mitosis. We find the existence of a region, in the parameter space, which is independent of the cell elasticity and weakly dependent on the ratio between mother and daughter cells areas. In this region, cell division is energetically favorable. Our results may lead to an exact characterization of cells having anomalous proliferation.
Collapse
Affiliation(s)
- Marco Picchi Scardaoni
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 2, 56122 Pisa, Italy
| |
Collapse
|
85
|
Kohno T, Kojima T. Atypical Macropinocytosis Contributes to Malignant Progression: A Review of Recent Evidence in Endometrioid Endometrial Cancer Cells. Cancers (Basel) 2022; 14:cancers14205056. [PMID: 36291839 PMCID: PMC9599675 DOI: 10.3390/cancers14205056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/01/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary A novel type of macropinocytosis has been identified as a trigger for the malignant progression of endometrial cancer. Transiently reducing epithelial barrier homeostasis leads to macropinocytosis by splitting between adjacent cells in endometrioid endometrial cancer. Macropinocytosis causes morphological changes in well-differentiated to poorly differentiated cancer cells. Inhibition of macropinocytosis promotes a persistent dormant state in the intrinsic KRAS-mutated cancer cell line Sawano. This review focuses on the mechanisms of atypical macropinocytosis and its effects on cellular function, and it describes the physiological processes involved in inducing resting conditions in endometrioid endometrial cancer cells. Abstract Macropinocytosis is an essential mechanism for the non-specific uptake of extracellular fluids and solutes. In recent years, additional functions have been identified in macropinocytosis, such as the intracellular introduction pathway of drugs, bacterial and viral infection pathways, and nutritional supplement pathway of cancer cells. However, little is known about the changes in cell function after macropinocytosis. Recently, it has been reported that macropinocytosis is essential for endometrial cancer cells to initiate malignant progression in a dormant state. Macropinocytosis is formed by a temporary split of adjacent bicellular junctions of epithelial sheets, rather than from the apical surface or basal membrane, as a result of the transient reduction of tight junction homeostasis. This novel type of macropinocytosis has been suggested to be associated with the malignant pathology of endometriosis and endometrioid endometrial carcinoma. This review outlines the induction of malignant progression of endometrial cancer cells by macropinocytosis based on a new mechanism and the potential preventive mechanism of its malignant progression.
Collapse
|
86
|
Zhao M, Rolandi M, Isseroff RR. Bioelectric Signaling: Role of Bioelectricity in Directional Cell Migration in Wound Healing. Cold Spring Harb Perspect Biol 2022; 14:a041236. [PMID: 36041786 PMCID: PMC9524286 DOI: 10.1101/cshperspect.a041236] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In wound healing, individual cells' behaviors coordinate movement toward the wound center to restore small or large barrier defects. The migration of epithelial cells as a continuous sheet structure is one of the most important processes by which the skin barrier is restored. How such multicellular and tissue level movement is initiated upon injury, coordinated during healing, and stopped when wounds healed has been a research focus for decades. When skin is wounded, the compromised epithelial barrier generates endogenous electric fields (EFs), produced by ion channels and maintained by cell junctions. These EFs are present across wounds, with the cathodal pole at the wound center. Epithelial cells detect minute EFs and migrate directionally in response to electrical signals. It has long been postulated that the naturally occurring EFs facilitate wound healing by guiding cell migration. It is not until recently that experimental evidence has shown that large epithelial sheets of keratinocytes or corneal epithelial cells respond to applied EFs by collective directional migration. Although some of the mechanisms of the collective cell migration are similar to those used by isolated cells, there are unique mechanisms that govern the coordinated movement of the cohesive sheet. We will review the understanding of wound EFs and how epithelial cells and other cells important to wound healing respond to the electric signals individually as well as collectively. Mounting evidence suggests that wound bioelectrical signaling is an important mechanism in healing. Critical understanding and proper exploitation of this mechanism will be important for better wound healing and regeneration.
Collapse
Affiliation(s)
- Min Zhao
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, California 95817, USA
- Department of Dermatology, University of California, Davis, California 95616, USA
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - R Rivkah Isseroff
- Department of Dermatology, University of California, Davis, California 95616, USA
| |
Collapse
|
87
|
Abstract
Chromatin architecture, a key regulator of gene expression, can be inferred using chromatin contact data from chromosome conformation capture, or Hi-C. However, classical Hi-C does not preserve multi-way contacts. Here we use long sequencing reads to map genome-wide multi-way contacts and investigate higher order chromatin organization in the human genome. We use hypergraph theory for data representation and analysis, and quantify higher order structures in neonatal fibroblasts, biopsied adult fibroblasts, and B lymphocytes. By integrating multi-way contacts with chromatin accessibility, gene expression, and transcription factor binding, we introduce a data-driven method to identify cell type-specific transcription clusters. We provide transcription factor-mediated functional building blocks for cell identity that serve as a global signature for cell types. Mapping higher order chromatin architecture is important. Here the authors use long sequencing reads to map genome-wide multi-way contacts and investigate higher order chromatin organisation; they use hypergraph theory for data representation and analysis, and apply this to different cell types.
Collapse
|
88
|
Serre JM, Lucas B, Martin SCT, Heier JA, Shao X, Hardin J. C. elegans srGAP is an α-catenin M domain-binding protein that strengthens cadherin-dependent adhesion during morphogenesis. Development 2022; 149:dev200775. [PMID: 36125129 PMCID: PMC10655919 DOI: 10.1242/dev.200775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022]
Abstract
The cadherin-catenin complex (CCC) is central to embryonic development and tissue repair, yet how CCC binding partners function alongside core CCC components remains poorly understood. Here, we establish a previously unappreciated role for an evolutionarily conserved protein, the slit-robo GTPase-activating protein SRGP-1/srGAP, in cadherin-dependent morphogenetic processes in the Caenorhabditis elegans embryo. SRGP-1 binds to the M domain of the core CCC component, HMP-1/α-catenin, via its C terminus. The SRGP-1 C terminus is sufficient to target it to adherens junctions, but only during later embryonic morphogenesis, when junctional tension is known to increase. Surprisingly, mutations that disrupt stabilizing salt bridges in the M domain block this recruitment. Loss of SRGP-1 leads to an increase in mobility and decrease of junctional HMP-1. In sensitized genetic backgrounds with weakened adherens junctions, loss of SRGP-1 leads to late embryonic failure. Rescue of these phenotypes requires the C terminus of SRGP-1 but also other domains of the protein. Taken together, these data establish a role for an srGAP in stabilizing and organizing the CCC during epithelial morphogenesis by binding to a partially closed conformation of α-catenin at junctions.
Collapse
Affiliation(s)
- Joel M. Serre
- Program in Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Bethany Lucas
- Department of Biology, Regis University, 3333 Regis Blvd., Denver, CO 80221, USA
| | - Sterling C. T. Martin
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jonathon A. Heier
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xiangqiang Shao
- Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jeff Hardin
- Program in Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
89
|
Hospodiuk-Karwowski M, Chi K, Pritchard J, Catchmark JM. Vascularized pancreas-on-a-chip device produced using a printable simulated extracellular matrix. Biomed Mater 2022; 17. [PMID: 36001993 DOI: 10.1088/1748-605x/ac8c74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/24/2022] [Indexed: 11/12/2022]
Abstract
The extracellular matrix (ECM) influences cellular behavior, function, and fate. The ECM surrounding Langerhans islets has not been investigated in detail to explain its role in the development and maturation of pancreatic β-cells. Herein, a complex combination of the simulated ECM (sECM) has been examined with a comprehensive analysis of cell response and a variety of controls. The most promising results were obtained from group containing fibrin, collagen type I, Matrigel®, hyaluronic acid, methylcellulose, and two compounds of functionalized, ionically crosslinking bacterial cellulose (sECMbc). Even though the cell viability was not significantly impacted, the performance of group of sECMbc showed 2 to 4x higher sprouting number and length, 2 to 4x higher insulin secretion in static conditions, and 2 to 10x higher gene expression of VEGF-A, Endothelin-1, and NOS3 than the control group of fibrin matrix (sECMf). Each material was tested in a hydrogel-based, perfusable, pancreas-on-a-chip device and the best group - sECMbc has been tested with the drug Sunitinib to show the extended possibilities of the device for both diabetes-like screening as well as PDAC chemotherapeutics screening for potential personal medicine approach. It proved its functionality in 7 days dynamic culture and is suitable as a physiological tissue model. Moreover, the device with the pancreatic-like spheroids was 3D bioprintable and perfusable.
Collapse
Affiliation(s)
- Monika Hospodiuk-Karwowski
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, 201 Old Main, University Park, Pennsylvania, 16802-1503, UNITED STATES
| | - Kai Chi
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, 201 Old Main, University Park, Pennsylvania, 16802-1503, UNITED STATES
| | - Justin Pritchard
- Biomedical Engineering Department, The Pennsylvania State University, 201 Old Main, University Park, Pennsylvania, 16802-1503, UNITED STATES
| | - Jeffrey M Catchmark
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, 201 Old Main, University Park, Pennsylvania, 16802-1503, UNITED STATES
| |
Collapse
|
90
|
Singh J, Imran Alsous J, Garikipati K, Shvartsman SY. Mechanics of stabilized intercellular bridges. Biophys J 2022; 121:3162-3171. [PMID: 35778841 PMCID: PMC9463629 DOI: 10.1016/j.bpj.2022.06.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/04/2022] [Accepted: 06/27/2022] [Indexed: 11/02/2022] Open
Abstract
Numerous engineered and natural systems form through reinforcement and stabilization of a deformed configuration that was generated by a transient force. An important class of such structures arises during gametogenesis, when a dividing cell undergoes incomplete cytokinesis, giving rise to daughter cells that remain connected through a stabilized intercellular bridge (ICB). ICBs can form through arrest of the contractile cytokinetic furrow and its subsequent stabilization. Despite knowledge of the molecular components, the mechanics underlying robust ICB assembly and the interplay between ring contractility and stiffening are poorly understood. Here, we report joint experimental and theoretical work that explores the physics underlying robust ICB assembly. We develop a continuum mechanics model that reveals the minimal requirements for the formation of stable ICBs, and validate the model's equilibrium predictions through a tabletop experimental analog. With insight into the equilibrium states, we turn to the dynamics: we demonstrate that contractility and stiffening are in dynamic competition and that the time intervals of their action must overlap to ensure assembly of ICBs of biologically observed proportions. Our results highlight a mechanism in which deformation and remodeling are tightly coordinated-one that is applicable to several mechanics-based applications and is a common theme in biological systems spanning several length scales.
Collapse
Affiliation(s)
- Jaspreet Singh
- Center for Computational Biology, Flatiron Institute, New York, New York
| | | | - Krishna Garikipati
- Departments of Mechanical Engineering, and Mathematics, Michigan Institute for Computational Discovery & Engineering, University of Michigan, Ann Arbor, Michigan.
| | - Stanislav Y Shvartsman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey; The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey.
| |
Collapse
|
91
|
Inhibition of negative feedback for persistent epithelial cell-cell junction contraction by p21-activated kinase 3. Nat Commun 2022; 13:3520. [PMID: 35725726 PMCID: PMC9209458 DOI: 10.1038/s41467-022-31252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/12/2022] [Indexed: 11/25/2022] Open
Abstract
Actin-mediated mechanical forces are central drivers of cellular dynamics. They generate protrusive and contractile dynamics, the latter of which are induced in concert with myosin II bundled at the site of contraction. These dynamics emerge concomitantly in tissues and even each cell; thus, the tight regulation of such bidirectional forces is important for proper cellular deformation. Here, we show that contractile dynamics can eventually disturb cell–cell junction contraction in the absence of p21-activated kinase 3 (Pak3). Upon Pak3 depletion, contractility induces the formation of abnormal actin protrusions at the shortening junctions, which causes decrease in E-cadherin levels at the adherens junctions and mislocalization of myosin II at the junctions before they enough shorten, compromising completion of junction shortening. Overexpressing E-cadherin restores myosin II distribution closely placed at the junctions and junction contraction. Our results suggest that contractility both induces and perturbs junction contraction and that the attenuation of such perturbations by Pak3 facilitates persistent junction shortening. Actin and myosin operate at cell–cell junctions during junctional shortening. Here the authors show that prolonged actomyosin contractility can compromise junctional shortening, and that Pak3 is required for attenuation of abnormal active protrusive structure and thus keeps junction contraction, appropriate E-cadherin distribution, and junction shortening in Drosophila.
Collapse
|
92
|
Kaurin D, Bal PK, Arroyo M. Peeling dynamics of fluid membranes bridged by molecular bonds: moving or breaking. J R Soc Interface 2022; 19:20220183. [PMID: 35765808 PMCID: PMC9240675 DOI: 10.1098/rsif.2022.0183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022] Open
Abstract
Biological adhesion is a critical mechanical function of complex organisms. At the scale of cell-cell contacts, adhesion is remarkably tunable to enable both cohesion and malleability during development, homeostasis and disease. It is physically supported by transient and laterally mobile molecular bonds embedded in fluid membranes. Thus, unlike specific adhesion at solid-solid or solid-fluid interfaces, peeling at fluid-fluid interfaces can proceed by breaking bonds, by moving bonds or by a combination of both. How the additional degree of freedom provided by bond mobility changes the mechanics of peeling is not understood. To address this, we develop a theoretical model coupling diffusion, reactions and mechanics. Mobility and reaction rates determine distinct peeling regimes. In a diffusion-dominated Stefan-like regime, bond motion establishes self-stabilizing dynamics that increase the effective fracture energy. In a reaction-dominated regime, peeling proceeds by travelling fronts where marginal diffusion and unbinding control peeling speed. In a mixed reaction-diffusion regime, strengthening by bond motion competes with weakening by bond breaking in a force-dependent manner, defining the strength of the adhesion patch. In turn, patch strength depends on molecular properties such as bond stiffness, force sensitivity or crowding. We thus establish the physical rules enabling tunable cohesion in cellular tissues and in engineered biomimetic systems.
Collapse
Affiliation(s)
- Dimitri Kaurin
- Universitat Politècnica de Catalunya-BarcelonaTech, 08034 Barcelona, Spain
| | - Pradeep K. Bal
- Universitat Politècnica de Catalunya-BarcelonaTech, 08034 Barcelona, Spain
| | - Marino Arroyo
- Universitat Politècnica de Catalunya-BarcelonaTech, 08034 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08034 Barcelona, Spain
- CIMNE, 08034 Barcelona, Spain
| |
Collapse
|
93
|
Li W, Feng J, Wang Y, Shi Q, Ma G, Aglyamov S, Larin KV, Lan G, Twa M. Micron-scale hysteresis measurement using dynamic optical coherence elastography. BIOMEDICAL OPTICS EXPRESS 2022; 13:3021-3041. [PMID: 35774312 PMCID: PMC9203113 DOI: 10.1364/boe.457617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 05/28/2023]
Abstract
We present a novel optical coherence elastography (OCE) method to characterize mechanical hysteresis of soft tissues based on transient (milliseconds), low-pressure (<20 Pa) non-contact microliter air-pulse stimulation and micrometer-scale sample displacements. The energy dissipation rate (sample hysteresis) was quantified for soft-tissue phantoms (0.8% to 2.0% agar) and beef shank samples under different loading forces and displacement amplitudes. Sample hysteresis was defined as the loss ratio (hysteresis loop area divided by the total loading energy). The loss ratio was primarily driven by the sample unloading response which decreased as loading energy increased. Samples were distinguishable based on their loss ratio responses as a function loading energy or displacement amplitude. Finite element analysis and mechanical testing methods were used to validate these observations. We further performed the OCE measurements on a beef shank tissue sample to distinguish the muscle and connective tissue components based on the displacement and hysteresis features. This novel, noninvasive OCE approach has the potential to differentiate soft tissues by quantifying their viscoelasticity using micron-scale transient tissue displacement dynamics. Focal tissue hysteresis measurements could provide additional clinically useful metrics for guiding disease diagnosis and tissue treatment responses.
Collapse
Affiliation(s)
- Wenjie Li
- Foshan University, School of Mechatronic Engineering and Automation, Foshan, Guangdong, 528000, China
- Contributed equally
| | - Jinping Feng
- Hubei University of Science and Technology, Institute of Engineering and Technology, Xianning, Hubei, 437100, China
- Contributed equally
| | - Yicheng Wang
- Foshan University, School of Mechatronic Engineering and Automation, Foshan, Guangdong, 528000, China
| | - Qun Shi
- Foshan University, School of Mechatronic Engineering and Automation, Foshan, Guangdong, 528000, China
| | - Guoqin Ma
- Foshan University, School of Mechatronic Engineering and Automation, Foshan, Guangdong, 528000, China
| | - Salavat Aglyamov
- University of Houston, Mechanical Engineering, Houston, TX 77204, USA
| | - Kirill V Larin
- University of Houston, Biomedical Engineering, Houston, TX 77204, USA
| | - Gongpu Lan
- Foshan University, School of Physics and Optoelectronic Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, Foshan, Guangdong 528000, China
- Innovation and Entrepreneurship Team of Guangdong Pearl River Talents Program, Weiren Meditech Co., Ltd., Foshan, Guangdong, 528000, China
| | - Michael Twa
- University of Houston, College of Optometry, Houston, TX 77204, USA
| |
Collapse
|
94
|
Chen T, Zhao Y, Zhao X, Li S, Cao J, Guo J, Bu W, Zhao H, Du J, Cao Y, Fan Y. Self-Organization of Tissue Growth by Interfacial Mechanical Interactions in Multilayered Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104301. [PMID: 35138041 PMCID: PMC9069393 DOI: 10.1002/advs.202104301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Morphogenesis is a spatially and temporally regulated process involved in various physiological and pathological transformations. In addition to the associated biochemical factors, the physical regulation of morphogenesis has attracted increasing attention. However, the driving force of morphogenesis initiation remains elusive. Here, it is shown that during the growth of multilayered tissues, a morphogenetic process can be self-organized by the progression of compression gradient stemmed from the interfacial mechanical interactions between layers. In tissues with low fluidity, the compression gradient is progressively strengthened during growth and induces stratification by triggering symmetric-to-asymmetric cell division reorientation at the critical tissue size. In tissues with high fluidity, compression gradient is dynamic and induces cell rearrangement leading to 2D in-plane morphogenesis instead of 3D deformation. Morphogenesis can be tuned by manipulating tissue fluidity, cell adhesion forces, and mechanical properties to influence the progression of compression gradient during the development of cultured cell sheets and chicken embryos. Together, the dynamics of compression gradient arising from interfacial mechanical interaction provides a conserved mechanism underlying morphogenesis initiation and size control during tissue growth.
Collapse
Affiliation(s)
- Tailin Chen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Center for Biomedical EngineeringSchool of Biological Science and Medical EngineeringSchool of Engineering MedicineBeihang UniversityBeijing100083China
| | - Yan Zhao
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle BodyCollege of Mechanical and Vehicle EngineeringHunan UniversityChangsha410082China
| | - Xinbin Zhao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Center for Biomedical EngineeringSchool of Biological Science and Medical EngineeringSchool of Engineering MedicineBeihang UniversityBeijing100083China
| | - Shukai Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Center for Biomedical EngineeringSchool of Biological Science and Medical EngineeringSchool of Engineering MedicineBeihang UniversityBeijing100083China
| | - Jialing Cao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Center for Biomedical EngineeringSchool of Biological Science and Medical EngineeringSchool of Engineering MedicineBeihang UniversityBeijing100083China
| | - Jun Guo
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Center for Biomedical EngineeringSchool of Biological Science and Medical EngineeringSchool of Engineering MedicineBeihang UniversityBeijing100083China
| | - Wanjuan Bu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Center for Biomedical EngineeringSchool of Biological Science and Medical EngineeringSchool of Engineering MedicineBeihang UniversityBeijing100083China
| | - Hucheng Zhao
- Institute of Biomechanics and Medical EngineeringDepartment of Engineering MechanicsSchool of Aerospace EngineeringTsinghua UniversityBeijing100084China
| | - Jing Du
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Center for Biomedical EngineeringSchool of Biological Science and Medical EngineeringSchool of Engineering MedicineBeihang UniversityBeijing100083China
| | - Yanping Cao
- Institute of Biomechanics and Medical EngineeringDepartment of Engineering MechanicsSchool of Aerospace EngineeringTsinghua UniversityBeijing100084China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Center for Biomedical EngineeringSchool of Biological Science and Medical EngineeringSchool of Engineering MedicineBeihang UniversityBeijing100083China
| |
Collapse
|
95
|
Varadarajan S, Chumki SA, Stephenson RE, Misterovich ER, Wu JL, Dudley CE, Erofeev IS, Goryachev AB, Miller AL. Mechanosensitive calcium flashes promote sustained RhoA activation during tight junction remodeling. J Cell Biol 2022; 221:213049. [PMID: 35254388 PMCID: PMC8906493 DOI: 10.1083/jcb.202105107] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/03/2021] [Accepted: 02/02/2022] [Indexed: 11/22/2022] Open
Abstract
Epithelial cell–cell junctions remodel in response to mechanical stimuli to maintain barrier function. Previously, we found that local leaks in tight junctions (TJs) are rapidly repaired by local, transient RhoA activation, termed “Rho flares,” but how Rho flares are regulated is unknown. Here, we discovered that intracellular calcium flashes and junction elongation are early events in the Rho flare pathway. Both laser-induced and naturally occurring TJ breaks lead to local calcium flashes at the site of leaks. Additionally, junction elongation induced by optogenetics increases Rho flare frequency, suggesting that Rho flares are mechanically triggered. Depletion of intracellular calcium or inhibition of mechanosensitive calcium channels (MSCs) reduces the amplitude of calcium flashes and diminishes the sustained activation of Rho flares. MSC-dependent calcium influx is necessary to maintain global barrier function by regulating reinforcement of local TJ proteins via junction contraction. In all, we uncovered a novel role for MSC-dependent calcium flashes in TJ remodeling, allowing epithelial cells to repair local leaks induced by mechanical stimuli.
Collapse
Affiliation(s)
| | - Shahana A Chumki
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI
| | - Rachel E Stephenson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Eileen R Misterovich
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Jessica L Wu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Claire E Dudley
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Ivan S Erofeev
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, Scotland
| | - Andrew B Goryachev
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, Scotland
| | - Ann L Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI.,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI
| |
Collapse
|
96
|
Balasubramaniam L, Mège RM, Ladoux B. Active nematics across scales from cytoskeleton organization to tissue morphogenesis. Curr Opin Genet Dev 2022; 73:101897. [DOI: 10.1016/j.gde.2021.101897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 11/28/2022]
|
97
|
Ding X, Li M, Cheng B, Wei Z, Dong Y, Xu F. Microsphere sensors for characterizing stress fields within three-dimensional extracellular matrix. Acta Biomater 2022; 141:1-13. [PMID: 34979325 DOI: 10.1016/j.actbio.2021.12.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/11/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022]
Abstract
Stress in the three-dimensional extracellular matrix is one of the key cues in regulating multiscale biological processes. Thus far, noticeable progress in methods and techniques (e.g., micropipette aspiration, AFM, and molecule probes) has been made to quantify stress in cell microenvironment at different length scales. Among them, the microsphere sensor-based method (MSS-based method) has emerged as an advantageous approach over conventional techniques in quantifying stress in situ and in vivo at cellular and supra-cellular scales. This method is implemented by seven sequential steps, including fabrication, modification, characterization, cell adhesion, imaging, displacement field extraction and stress calculation. Precise control of each step and inter-tunning between steps can provide quantitative characterization of stress field. However, detailed procedural information associated with each step and process has been scattered. This review aims to provide a comprehensive overview of MSS-based method, systematically summarizing the principles and research progresses. Firstly, the basic principles are introduced, and the specific experiment and calculation processes of MSS-based method are presented in detail. Then, recent advances and applications of this method are summarized. Finally, perspectives of the limitations and development trends of MSS-based method are discussed. This specific and comprehensive review would provide a guideline for the widespread application of MSS-based method as an advantageous method for in situ and in vivo stress characterization at cellular and supra-cellular scale within three-dimensional extracellular matrix. STATEMENT OF SIGNIFICANCE: In this review, a method based on a microsphere sensor (MSS-based method) as an advantageous approach over conventional techniques in quantifying stress in situ and in vivo at cellular and supra-cellular scales is introduced and discussed. This technique is implemented by seven sequential steps, including fabrication, modification, characterization, cell junction, imaging, displacement field extraction, and stress calculation. Precise control of each step and inter-tunning between steps can provide quantitative stress field. However, detailed procedural information associated with each step has been scattered. Thus, a comprehensive review collating recent advances and perspective discussions is a necessity to introduce a better option for quantifying the stress field in biological processes at the cellular and supra-cellular scales.
Collapse
Affiliation(s)
- Xin Ding
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Moxiao Li
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
| | - Bo Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuqing Dong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
98
|
Wolf AE, Heinrich MA, Breinyn IB, Zajdel TJ, Cohen DJ. Short-term bioelectric stimulation of collective cell migration in tissues reprograms long-term supracellular dynamics. PNAS NEXUS 2022; 1:pgac002. [PMID: 35360553 PMCID: PMC8962779 DOI: 10.1093/pnasnexus/pgac002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/03/2021] [Accepted: 01/07/2022] [Indexed: 01/28/2023]
Abstract
The ability to program collective cell migration can allow us to control critical multicellular processes in development, regenerative medicine, and invasive disease. However, while various technologies exist to make individual cells migrate, translating these tools to control myriad, collectively interacting cells within a single tissue poses many challenges. For instance, do cells within the same tissue interpret a global migration 'command' differently based on where they are in the tissue? Similarly, since no stimulus is permanent, what are the long-term effects of transient commands on collective cell dynamics? We investigate these questions by bioelectrically programming large epithelial tissues to globally migrate 'rightward' via electrotaxis. Tissues clearly developed distinct rear, middle, side, and front responses to a single global migration stimulus. Furthermore, at no point poststimulation did tissues return to their prestimulation behavior, instead equilibrating to a 3rd, new migratory state. These unique dynamics suggested that programmed migration resets tissue mechanical state, which was confirmed by transient chemical disruption of cell-cell junctions, analysis of strain wave propagation patterns, and quantification of cellular crowd dynamics. Overall, this work demonstrates how externally driving the collective migration of a tissue can reprogram baseline cell-cell interactions and collective dynamics, even well beyond the end of the global migratory cue, and emphasizes the importance of considering the supracellular context of tissues and other collectives when attempting to program crowd behaviors.
Collapse
Affiliation(s)
- Abraham E Wolf
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | | | | | - Tom J Zajdel
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Daniel J Cohen
- To whom correspondence should be addressed. Address: Attn. , 111 Hoyt Laboratory, Princeton, NJ 08544, USA. E-mail:
| |
Collapse
|
99
|
Luciano M, Versaevel M, Vercruysse E, Procès A, Kalukula Y, Remson A, Deridoux A, Gabriele S. Appreciating the role of cell shape changes in the mechanobiology of epithelial tissues. BIOPHYSICS REVIEWS 2022; 3:011305. [PMID: 38505223 PMCID: PMC10903419 DOI: 10.1063/5.0074317] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/23/2022] [Indexed: 03/21/2024]
Abstract
The wide range of epithelial cell shapes reveals the complexity and diversity of the intracellular mechanisms that serve to construct their morphology and regulate their functions. Using mechanosensitive steps, epithelial cells can sense a variety of different mechanochemical stimuli and adapt their behavior by reshaping their morphology. These changes of cell shape rely on a structural reorganization in space and time that generates modifications of the tensional state and activates biochemical cascades. Recent studies have started to unveil how the cell shape maintenance is involved in mechanical homeostatic tasks to sustain epithelial tissue folding, identity, and self-renewal. Here, we review relevant works that integrated mechanobiology to elucidate some of the core principles of how cell shape may be conveyed into spatial information to guide collective processes such as epithelial morphogenesis. Among many other parameters, we show that the regulation of the cell shape can be understood as the result of the interplay between two counteracting mechanisms: actomyosin contractility and intercellular adhesions, and that both do not act independently but are functionally integrated to operate on molecular, cellular, and tissue scales. We highlight the role of cadherin-based adhesions in force-sensing and mechanotransduction, and we report recent developments that exploit physics of liquid crystals to connect cell shape changes to orientational order in cell aggregates. Finally, we emphasize that the further intermingling of different disciplines to develop new mechanobiology assays will lead the way toward a unified picture of the contribution of cell shape to the pathophysiological behavior of epithelial tissues.
Collapse
Affiliation(s)
- Marine Luciano
- University of Mons, Interfaces and Complex Fluids Laboratory, Mechanobiology and Biomaterials Group, Research Institute for Biosciences, CIRMAP, 20 Place du Parc, B-7000 Mons, Belgium
| | - Marie Versaevel
- University of Mons, Interfaces and Complex Fluids Laboratory, Mechanobiology and Biomaterials Group, Research Institute for Biosciences, CIRMAP, 20 Place du Parc, B-7000 Mons, Belgium
| | - Eléonore Vercruysse
- University of Mons, Interfaces and Complex Fluids Laboratory, Mechanobiology and Biomaterials Group, Research Institute for Biosciences, CIRMAP, 20 Place du Parc, B-7000 Mons, Belgium
| | - Anthony Procès
- University of Mons, Interfaces and Complex Fluids Laboratory, Mechanobiology and Biomaterials Group, Research Institute for Biosciences, CIRMAP, 20 Place du Parc, B-7000 Mons, Belgium
| | - Yohalie Kalukula
- University of Mons, Interfaces and Complex Fluids Laboratory, Mechanobiology and Biomaterials Group, Research Institute for Biosciences, CIRMAP, 20 Place du Parc, B-7000 Mons, Belgium
| | - Alexandre Remson
- University of Mons, Interfaces and Complex Fluids Laboratory, Mechanobiology and Biomaterials Group, Research Institute for Biosciences, CIRMAP, 20 Place du Parc, B-7000 Mons, Belgium
| | - Amandine Deridoux
- University of Mons, Interfaces and Complex Fluids Laboratory, Mechanobiology and Biomaterials Group, Research Institute for Biosciences, CIRMAP, 20 Place du Parc, B-7000 Mons, Belgium
| | - Sylvain Gabriele
- University of Mons, Interfaces and Complex Fluids Laboratory, Mechanobiology and Biomaterials Group, Research Institute for Biosciences, CIRMAP, 20 Place du Parc, B-7000 Mons, Belgium
| |
Collapse
|
100
|
Enhancing membrane-based soft materials with magnetic reconfiguration events. Sci Rep 2022; 12:1703. [PMID: 35105905 PMCID: PMC8807651 DOI: 10.1038/s41598-022-05501-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/12/2022] [Indexed: 11/08/2022] Open
Abstract
Adaptive and bioinspired droplet-based materials are built using the droplet interface bilayer (DIB) technique, assembling networks of lipid membranes through adhered microdroplets. The properties of these lipid membranes are linked to the properties of the droplets forming the interface. Consequently, rearranging the relative positions of the droplets within the network will also alter the properties of the lipid membranes formed between them, modifying the transmembrane exchanges between neighboring compartments. In this work, we achieved this through the use of magnetic fluids or ferrofluids selectively dispersed within the droplet-phase of DIB structures. First, the ferrofluid DIB properties are optimized for reconfiguration using a coupled experimental-computational approach, exploring the ideal parameters for droplet manipulation through magnetic fields. Next, these findings are applied towards larger, magnetically-heterogeneous collections of DIBs to investigate magnetically-driven reconfiguration events. Activating electromagnets bordering the DIB networks generates rearrangement events by separating and reforming the interfacial membranes bordering the dispersed magnetic compartments. These findings enable the production of dynamic droplet networks capable of modifying their underlying membranous architecture through magnetic forces.
Collapse
|