51
|
van den Hoogen LL, Walk J, Oulton T, Reuling IJ, Reiling L, Beeson JG, Coppel RL, Singh SK, Draper SJ, Bousema T, Drakeley C, Sauerwein R, Tetteh KKA. Antibody Responses to Antigenic Targets of Recent Exposure Are Associated With Low-Density Parasitemia in Controlled Human Plasmodium falciparum Infections. Front Microbiol 2019; 9:3300. [PMID: 30700984 PMCID: PMC6343524 DOI: 10.3389/fmicb.2018.03300] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 12/18/2018] [Indexed: 12/05/2022] Open
Abstract
The majority of malaria infections in low transmission settings remain undetectable by conventional diagnostics. A powerful model to identify antibody responses that allow accurate detection of recent exposure to low-density infections is controlled human malaria infection (CHMI) studies in which healthy volunteers are infected with the Plasmodium parasite. We aimed to evaluate antibody responses in malaria-naïve volunteers exposed to a single CHMI using a custom-made protein microarray. All participants developed a blood-stage infection with peak parasite densities up to 100 parasites/μl in the majority of participants (50/54), while the remaining four participants had peak densities between 100 and 200 parasites/μl. There was a strong correlation between parasite density and antibody responses associated with the most reactive blood-stage targets 1 month after CHMI (Etramp 5, GLURP-R2, MSP4 and MSP1-19; Spearman’s ρ = 0.82, p < 0.001). Most volunteers developed antibodies against a potential marker of recent exposure: Etramp 5 (37/45, 82%). Our findings justify validation in endemic populations to define a minimum set of antigens needed to detect exposure to natural low-density infections.
Collapse
Affiliation(s)
- Lotus L van den Hoogen
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Jona Walk
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Tate Oulton
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Isaie J Reuling
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - James G Beeson
- Burnet Institute, Melbourne, VIC, Australia.,Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia.,Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Ross L Coppel
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Susheel K Singh
- Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Department of International Health, Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark
| | - Simon J Draper
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Robert Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Kevin K A Tetteh
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
52
|
Kamuyu G, Tuju J, Kimathi R, Mwai K, Mburu J, Kibinge N, Chong Kwan M, Hawkings S, Yaa R, Chepsat E, Njunge JM, Chege T, Guleid F, Rosenkranz M, Kariuki CK, Frank R, Kinyanjui SM, Murungi LM, Bejon P, Färnert A, Tetteh KKA, Beeson JG, Conway DJ, Marsh K, Rayner JC, Osier FHA. KILchip v1.0: A Novel Plasmodium falciparum Merozoite Protein Microarray to Facilitate Malaria Vaccine Candidate Prioritization. Front Immunol 2018; 9:2866. [PMID: 30619257 PMCID: PMC6298441 DOI: 10.3389/fimmu.2018.02866] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022] Open
Abstract
Passive transfer studies in humans clearly demonstrated the protective role of IgG antibodies against malaria. Identifying the precise parasite antigens that mediate immunity is essential for vaccine design, but has proved difficult. Completion of the Plasmodium falciparum genome revealed thousands of potential vaccine candidates, but a significant bottleneck remains in their validation and prioritization for further evaluation in clinical trials. Focusing initially on the Plasmodium falciparum merozoite proteome, we used peer-reviewed publications, multiple proteomic and bioinformatic approaches, to select and prioritize potential immune targets. We expressed 109 P. falciparum recombinant proteins, the majority of which were obtained using a mammalian expression system that has been shown to produce biologically functional extracellular proteins, and used them to create KILchip v1.0: a novel protein microarray to facilitate high-throughput multiplexed antibody detection from individual samples. The microarray assay was highly specific; antibodies against P. falciparum proteins were detected exclusively in sera from malaria-exposed but not malaria-naïve individuals. The intensity of antibody reactivity varied as expected from strong to weak across well-studied antigens such as AMA1 and RH5 (Kruskal–Wallis H test for trend: p < 0.0001). The inter-assay and intra-assay variability was minimal, with reproducible results obtained in re-assays using the same chip over a duration of 3 months. Antibodies quantified using the multiplexed format in KILchip v1.0 were highly correlated with those measured in the gold-standard monoplex ELISA [median (range) Spearman's R of 0.84 (0.65–0.95)]. KILchip v1.0 is a robust, scalable and adaptable protein microarray that has broad applicability to studies of naturally acquired immunity against malaria by providing a standardized tool for the detection of antibody correlates of protection. It will facilitate rapid high-throughput validation and prioritization of potential Plasmodium falciparum merozoite-stage antigens paving the way for urgently needed clinical trials for the next generation of malaria vaccines.
Collapse
Affiliation(s)
- Gathoni Kamuyu
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya.,Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - James Tuju
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya.,Department of Biochemistry, Pwani University, Kilifi, Kenya
| | - Rinter Kimathi
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Kennedy Mwai
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - James Mburu
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Nelson Kibinge
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Marisa Chong Kwan
- Arrayjet, Innovative Microarray Solutions, Edinburgh, United Kingdom
| | - Sam Hawkings
- Arrayjet, Innovative Microarray Solutions, Edinburgh, United Kingdom
| | - Reuben Yaa
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Emily Chepsat
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - James M Njunge
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Timothy Chege
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Fatuma Guleid
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Micha Rosenkranz
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christopher K Kariuki
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Nairobi, Kenya.,Cellular and Molecular Immunology, Vrije Universiteit Brussels, Brussels, Belgium
| | - Roland Frank
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Samson M Kinyanjui
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya.,Department of Biochemistry, Pwani University, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Linda M Murungi
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Kevin K A Tetteh
- Immunology and Infection Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - James G Beeson
- Burnet Institute, Melbourne, VIC, Australia.,Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - David J Conway
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kevin Marsh
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom.,African Academy of Sciences, Nairobi, Kenya
| | - Julian C Rayner
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Faith H A Osier
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya.,Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany.,Department of Biochemistry, Pwani University, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
53
|
Garrido-Cardenas JA, Mesa-Valle C, Manzano-Agugliaro F. Genetic approach towards a vaccine against malaria. Eur J Clin Microbiol Infect Dis 2018; 37:1829-1839. [PMID: 29956023 DOI: 10.1007/s10096-018-3313-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
Abstract
Malaria is a major concern for international health authorities. Millions of people contract it every year in the world due to a parasite of the Plasmodium genus. Due to the complexity of the parasite biology and genetics, there is currently no vaccine against the disease. However, due to the great resistance both to the medicines and to the insecticides used to combat the disease, it has become essential to obtain a vaccine as the necessary tool to prevent transmission and eliminate the disease. The bibliometric data indicate that interest in vaccines has been growing steadily since the 1980s. But nowadays, a powerful tool is used: the Plasmodium genome. This allows us to improve the fight against the disease. Knowing the sequences of the genes that favor the appearance of drug resistance, or those that encode for proteins with greater antigenic response, is a tool that can become fundamental. This article reviews the state of the art on vaccines and genetics, in the fight against malaria, and analyzes the fixed photo that the worldwide research on the disease poses.
Collapse
Affiliation(s)
| | | | - Francisco Manzano-Agugliaro
- Department of Engineering, University of Almeria, ceiA3, 04120, Almeria, Spain
- CIAIMBITAL, University of Almeria, 04120, Almeria, Spain
| |
Collapse
|
54
|
Plasmodium falciparum dihydroorotate dehydrogenase: a drug target against malaria. Future Med Chem 2018; 10:1853-1874. [PMID: 30019917 DOI: 10.4155/fmc-2017-0250] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Malaria remains one of the most lethal infectious diseases worldwide, and the most severe form is caused by Plasmodium falciparum. In recent decades, the major challenge to treatment of this disease has been the ability of the protozoan parasite to develop resistance to the drugs that are currently in use. Among P. falciparum enzymes, P. falciparum dihydroorotate dehydrogenase has been identified as an important target in drug discovery. Interference with the activity of this enzyme inhibits de novo pyrimidine biosynthesis and consequently prevents malarial infection. Organic synthesis, x-ray crystallography, high-throughput screening and molecular modeling methods such as molecular docking, quantitative structure-activity relationships, structure-based pharmacophore mapping and molecular dynamics simulations have been applied to the discovery of new inhibitors of P. falciparum dihydroorotate dehydrogenase.
Collapse
|
55
|
Liu T, Cheng X, Ding Y, Zhu F, Fu Y, Peng X, Xu W. PD-1 deficiency promotes TFH cells expansion in ITV-immunized mice by upregulating cytokines secretion. Parasit Vectors 2018; 11:397. [PMID: 29980219 PMCID: PMC6035468 DOI: 10.1186/s13071-018-2984-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 06/27/2018] [Indexed: 12/17/2022] Open
Abstract
Background T follicular helper (TFH) cells are fundamental for the development of humoral immunity. In our previous study, we found that PD-1 deficiency substantially promoted the expansion of Plasmodium-specific TFH cells and enhanced the humoral immunity of ITV (infection treatment vaccine)-immunized mice. However, the underlying mechanism by which PD-1 signaling modulates TFH cells activation remains unclear. Methods Mice were immunized with the ITV following the standard procedures. The activation phenotype of CD11c+CXCR5+ dendritic cells (DCs), the frequency and number of splenic follicular regulatory T cells (TFR cells), Plasmodium-specific TFH cells and germinal center (GC) B cells were analyzed by FACS. The levels of serum cytokines were quantified using the cytometric bead array (CBA) and in vivo cytokine neutralization was carried out according to a previously described protocol and verified by serum cytokine detection. Results We found that PD-1-/- naïve and immunized mice had more TFR cells in the spleen than WT and WT immunized mice. Additionally, CXCR5+ DC, which prime TFH cells, were activated at similar levels in ITV-immunized WT and PD-1-/- mice. However, the serum levels of IL-10, IFN-γ and MCP-1 were significantly increased in ITV-immunized PD-1-/- mice, and treatment with an anti-IL-10, anti-IFN-γ or anti-MCP-1 neutralizing antibody in vivo markedly impaired the development of TFH cells and GC B cells. Conclusions Our findings demonstrate that the modulation of TFH cells by PD-1 signaling is dependent on the cytokines IL-10, IFN-γ and MCP-1 in ITV-immunized mice. These results could facilitate the design of an effective malaria vaccine with the aim of inducing humoral immune responses. Electronic supplementary material The online version of this article (10.1186/s13071-018-2984-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Taiping Liu
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Xiangyun Cheng
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Yan Ding
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Feng Zhu
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Yong Fu
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Xiaohong Peng
- Department of Parasitology, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Wenyue Xu
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China.
| |
Collapse
|
56
|
Jagannathan P, Kakuru A, Okiring J, Muhindo MK, Natureeba P, Nakalembe M, Opira B, Olwoch P, Nankya F, Ssewanyana I, Tetteh K, Drakeley C, Beeson J, Reiling L, Clark TD, Rodriguez-Barraquer I, Greenhouse B, Wallender E, Aweeka F, Prahl M, Charlebois ED, Feeney ME, Havlir DV, Kamya MR, Dorsey G. Dihydroartemisinin-piperaquine for intermittent preventive treatment of malaria during pregnancy and risk of malaria in early childhood: A randomized controlled trial. PLoS Med 2018; 15:e1002606. [PMID: 30016328 PMCID: PMC6049882 DOI: 10.1371/journal.pmed.1002606] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/08/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Intermittent preventive treatment of malaria in pregnancy (IPTp) with dihydroartemisinin-piperaquine (IPTp-DP) has been shown to reduce the burden of malaria during pregnancy compared to sulfadoxine-pyrimethamine (IPTp-SP). However, limited data exist on how IPTp regimens impact malaria risk during infancy. We conducted a double-blinded randomized controlled trial (RCT) to test the hypothesis that children born to mothers given IPTp-DP would have a lower incidence of malaria during infancy compared to children born to mothers who received IPTp-SP. METHODS AND FINDINGS We compared malaria metrics among children in Tororo, Uganda, born to women randomized to IPTp-SP given every 8 weeks (SP8w, n = 100), IPTp-DP every 8 weeks (DP8w, n = 44), or IPTp-DP every 4 weeks (DP4w, n = 47). After birth, children were given chemoprevention with DP every 12 weeks from 8 weeks to 2 years of age. The primary outcome was incidence of malaria during the first 2 years of life. Secondary outcomes included time to malaria from birth and time to parasitemia following each dose of DP given during infancy. Results are reported after adjustment for clustering (twin gestation) and potential confounders (maternal age, gravidity, and maternal parasitemia status at enrolment).The study took place between June 2014 and May 2017. Compared to children whose mothers were randomized to IPTp-SP8w (0.24 episodes per person year [PPY]), the incidence of malaria was higher in children born to mothers who received IPTp-DP4w (0.42 episodes PPY, adjusted incidence rate ratio [aIRR] 1.92; 95% CI 1.00-3.65, p = 0.049) and nonsignificantly higher in children born to mothers who received IPT-DP8w (0.30 episodes PPY, aIRR 1.44; 95% CI 0.68-3.05, p = 0.34). However, these associations were modified by infant sex. Female children whose mothers were randomized to IPTp-DP4w had an apparently 4-fold higher incidence of malaria compared to female children whose mothers were randomized to IPTp-SP8w (0.65 versus 0.20 episodes PPY, aIRR 4.39, 95% CI 1.87-10.3, p = 0.001), but no significant association was observed in male children (0.20 versus 0.28 episodes PPY, aIRR 0.66, 95% CI 0.25-1.75, p = 0.42). Nonsignificant increases in malaria incidence were observed among female, but not male, children born to mothers who received DP8w versus SP8w. In exploratory analyses, levels of malaria-specific antibodies in cord blood were similar between IPTp groups and sex. However, female children whose mothers were randomized to IPTp-DP4w had lower mean piperaquine (PQ) levels during infancy compared to female children whose mothers received IPTp-SP8w (coef 0.81, 95% CI 0.65-1.00, p = 0.048) and male children whose mothers received IPTp-DP4w (coef 0.72, 95% CI 0.57-0.91, p = 0.006). There were no significant sex-specific differences in PQ levels among children whose mothers were randomized to IPTp-SP8w or IPTp-DP8w. The main limitations were small sample size and childhood provision of DP every 12 weeks in infancy. CONCLUSIONS Contrary to our hypothesis, preventing malaria in pregnancy with IPTp-DP in the context of chemoprevention with DP during infancy does not lead to a reduced incidence of malaria in childhood; in this setting, it may be associated with an increased incidence of malaria in females. Future studies are needed to better understand the biological mechanisms of in utero drug exposure on drug metabolism and how this may affect the dosing of antimalarial drugs for treatment and prevention during infancy. TRIAL REGISTRATION ClinicalTrials.gov number NCT02163447.
Collapse
MESH Headings
- Adolescent
- Adult
- Antimalarials/administration & dosage
- Antimalarials/adverse effects
- Artemisinins/administration & dosage
- Artemisinins/adverse effects
- Child, Preschool
- Double-Blind Method
- Drug Administration Schedule
- Drug Combinations
- Female
- Humans
- Incidence
- Infant
- Infant, Newborn
- Infectious Disease Transmission, Vertical/prevention & control
- Malaria, Falciparum/epidemiology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/prevention & control
- Malaria, Falciparum/transmission
- Pregnancy
- Pregnancy Complications, Parasitic/epidemiology
- Pregnancy Complications, Parasitic/parasitology
- Pregnancy Complications, Parasitic/prevention & control
- Pyrimethamine/administration & dosage
- Pyrimethamine/adverse effects
- Quinolines/administration & dosage
- Quinolines/adverse effects
- Sulfadoxine/administration & dosage
- Sulfadoxine/adverse effects
- Time Factors
- Treatment Outcome
- Uganda/epidemiology
- Young Adult
Collapse
Affiliation(s)
- Prasanna Jagannathan
- Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Abel Kakuru
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Jaffer Okiring
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Paul Natureeba
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Miriam Nakalembe
- Department of Obstetrics and Gynecology, Makerere University College of Health Sciences, Kampala, Uganda
| | - Bishop Opira
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Peter Olwoch
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | - Kevin Tetteh
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | | | - Tamara D. Clark
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Isabel Rodriguez-Barraquer
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Bryan Greenhouse
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Erika Wallender
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Francesca Aweeka
- Department of Clinical Pharmacy, University of California, San Francisco, San Francisco, California, United States of America
| | - Mary Prahl
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, United States of America
| | - Edwin D. Charlebois
- Center for AIDS Prevention Studies, University of California, San Francisco, San Francisco, California, United States of America
| | - Margaret E. Feeney
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, United States of America
| | - Diane V. Havlir
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Moses R. Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
57
|
Krishnarjuna B, Sugiki T, Morales RAV, Seow J, Fujiwara T, Wilde KL, Norton RS, MacRaild CA. Transient antibody-antigen interactions mediate the strain-specific recognition of a conserved malaria epitope. Commun Biol 2018; 1:58. [PMID: 30271940 PMCID: PMC6123721 DOI: 10.1038/s42003-018-0063-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/07/2018] [Indexed: 01/09/2023] Open
Abstract
Transient interactions in which binding partners retain substantial conformational disorder play an essential role in regulating biological networks, challenging the expectation that specificity demands structurally defined and unambiguous molecular interactions. The monoclonal antibody 6D8 recognises a completely conserved continuous nine-residue epitope within the intrinsically disordered malaria antigen, MSP2, yet it has different affinities for the two allelic forms of this antigen. NMR chemical shift perturbations, relaxation rates and paramagnetic relaxation enhancements reveal the presence of transient interactions involving polymorphic residues immediately C-terminal to the structurally defined epitope. A combination of these experimental data with molecular dynamics simulations shows clearly that the polymorphic C-terminal extension engages in multiple transient interactions distributed across much of the accessible antibody surface. These interactions are determined more by topographical features of the antibody surface than by sequence-specific interactions. Thus, specificity arises as a consequence of subtle differences in what are highly dynamic and essentially non-specific interactions.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Toshihiko Sugiki
- Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Rodrigo A V Morales
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Jeffrey Seow
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Toshimichi Fujiwara
- Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Karyn L Wilde
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, NSW, 2234, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| | - Christopher A MacRaild
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| |
Collapse
|
58
|
Sebina I, Pepper M. Humoral immune responses to infection: common mechanisms and unique strategies to combat pathogen immune evasion tactics. Curr Opin Immunol 2018; 51:46-54. [PMID: 29477969 DOI: 10.1016/j.coi.2018.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 01/08/2023]
Abstract
Humoral immune responses are crucial for protection against invading pathogens and are the underlying mechanism of protection for most successful vaccines. Our understanding of how humoral immunity develops is largely based on animal models utilizing experimental immunization systems. While these studies have made enormous progress for the field and have defined many of the fundamental principles of B cell differentiation and function, we are only now beginning to appreciate the complexities of humoral immune responses induced by infection. Co-evolution of the adaptive immune system and the pathogenic world has created a diverse array of B cell responses to infections, with both shared and unique strategies. In this review, we consider the common mechanisms that regulate the development of humoral immune responses during infection and highlight recent findings demonstrating the evolution of unique strategies used by either host or pathogen for survival.
Collapse
Affiliation(s)
- Ismail Sebina
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Marion Pepper
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA.
| |
Collapse
|
59
|
PINHEIRO LUIZC, FEITOSA LÍVIAM, SILVEIRA FLÁVIAFDA, BOECHAT NUBIA. Current Antimalarial Therapies and Advances in the Development of Semi-Synthetic Artemisinin Derivatives. ACTA ACUST UNITED AC 2018; 90:1251-1271. [DOI: 10.1590/0001-3765201820170830] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022]
Affiliation(s)
| | - LÍVIA M. FEITOSA
- Fundação Oswaldo Cruz, Brazil; Universidade Federal do Rio de Janeiro, Brazil
| | | | | |
Collapse
|
60
|
Mechanisms of naturally acquired immunity to P. falciparum and approaches to identify merozoite antigen targets. Parasitology 2017; 145:839-847. [PMID: 29144217 DOI: 10.1017/s0031182017001949] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Malaria is one the most serious infectious diseases with over 200 million clinical cases annually. Most cases of the severe disease are caused by Plasmodium falciparum. The blood stage of Plasmodium parasite is entirely responsible for malaria-associated pathology. The population most susceptible to severe malaria are children under the age of 5, with low levels of immunity. It is only after many years of repeated exposure that individuals living in endemic areas develop clinical immunity. This form of protection prevents clinical episodes by substantially reducing parasite burden. Naturally acquired immunity predominantly targets blood-stage parasites with antibody responses being the main mediators of protection. The targets of clinical immunity are the extracellular merozoite and the infected erythrocyte surface, with the extremely diverse PfEMP1 proteins the main target here. This observation provides a strong rationale that an effective anti-malaria vaccine targeting blood-stage parasites is achievable. Thus the identification of antigenic targets of naturally acquired immunity remains an important step towards the formulation of novel vaccine combinations before testing their efficacy in clinical trials. This review summarizes the main findings to date defining antigenic targets present on the extracellular merozoite associated with naturally acquired immunity to P. falciparum malaria.
Collapse
|
61
|
Mackelprang RD, Bamshad MJ, Chong JX, Hou X, Buckingham KJ, Shively K, deBruyn G, Mugo NR, Mullins JI, McElrath MJ, Baeten JM, Celum C, Emond MJ, Lingappa JR, for the Partners in Prevention HSV/HIV Transmission Study and the Partners PrEP Study Teams. Whole genome sequencing of extreme phenotypes identifies variants in CD101 and UBE2V1 associated with increased risk of sexually acquired HIV-1. PLoS Pathog 2017; 13:e1006703. [PMID: 29108000 PMCID: PMC5690691 DOI: 10.1371/journal.ppat.1006703] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 11/16/2017] [Accepted: 10/19/2017] [Indexed: 12/27/2022] Open
Abstract
Host genetic variation modifying HIV-1 acquisition risk can inform development of HIV-1 prevention strategies. However, associations between rare or intermediate-frequency variants and HIV-1 acquisition are not well studied. We tested for the association between variation in genic regions and extreme HIV-1 acquisition phenotypes in 100 sub-Saharan Africans with whole genome sequencing data. Missense variants in immunoglobulin-like regions of CD101 and, among women, one missense/5' UTR variant in UBE2V1, were associated with increased HIV-1 acquisition risk (p = 1.9x10-4 and p = 3.7x10-3, respectively, for replication). Both of these genes are known to impact host inflammatory pathways. Effect sizes increased with exposure to HIV-1 after adjusting for the independent effect of increasing exposure on acquisition risk. TRIAL REGISTRATION ClinicalTrials.gov NCT00194519; NCT00557245.
Collapse
Affiliation(s)
- Romel D. Mackelprang
- Department of Global Health, University of Washington, Seattle, United States of America
| | - Michael J. Bamshad
- Department of Pediatrics, University of Washington, Seattle, United States of America
- Department of Genome Sciences, University of Washington, Seattle, United States of America
| | - Jessica X. Chong
- Department of Pediatrics, University of Washington, Seattle, United States of America
| | - Xuanlin Hou
- Department of Global Health, University of Washington, Seattle, United States of America
| | - Kati J. Buckingham
- Department of Pediatrics, University of Washington, Seattle, United States of America
| | - Kathryn Shively
- Department of Pediatrics, University of Washington, Seattle, United States of America
| | - Guy deBruyn
- Perinatal HIV Research Unit, University of Witwatersrand, Johannesburg, South Africa
| | - Nelly R. Mugo
- Department of Global Health, University of Washington, Seattle, United States of America
- Partners in Health Research and Development, Kenya Medical Research Institute, Thika, Kenya
| | - James I. Mullins
- Department of Global Health, University of Washington, Seattle, United States of America
- Department of Microbiology, University of Washington, Seattle, United States of America
- Department of Medicine, University of Washington, Seattle, United States of America
| | - M. Juliana McElrath
- Department of Medicine, University of Washington, Seattle, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States of America
| | - Jared M. Baeten
- Department of Global Health, University of Washington, Seattle, United States of America
- Department of Medicine, University of Washington, Seattle, United States of America
- Department of Epidemiology, University of Washington, Seattle, United States of America
| | - Connie Celum
- Department of Global Health, University of Washington, Seattle, United States of America
- Department of Medicine, University of Washington, Seattle, United States of America
- Department of Epidemiology, University of Washington, Seattle, United States of America
| | - Mary J. Emond
- Department of Biostatistics, University of Washington, Seattle, United States of America
| | - Jairam R. Lingappa
- Department of Global Health, University of Washington, Seattle, United States of America
- Department of Pediatrics, University of Washington, Seattle, United States of America
- Department of Epidemiology, University of Washington, Seattle, United States of America
- * E-mail:
| | | |
Collapse
|
62
|
Tuju J, Kamuyu G, Murungi LM, Osier FHA. Vaccine candidate discovery for the next generation of malaria vaccines. Immunology 2017; 152:195-206. [PMID: 28646586 PMCID: PMC5588761 DOI: 10.1111/imm.12780] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/12/2017] [Accepted: 06/19/2017] [Indexed: 12/21/2022] Open
Abstract
Although epidemiological observations, IgG passive transfer studies and experimental infections in humans all support the feasibility of developing highly effective malaria vaccines, the precise antigens that induce protective immunity remain uncertain. Here, we review the methodologies applied to vaccine candidate discovery for Plasmodium falciparum malaria from the pre- to post-genomic era. Probing of genomic and cDNA libraries with antibodies of defined specificities or functional activity predominated the former, whereas reverse vaccinology encompassing high throughput in silico analyses of genomic, transcriptomic or proteomic parasite data sets is the mainstay of the latter. Antibody-guided vaccine design spanned both eras but currently benefits from technological advances facilitating high-throughput screening and downstream applications. We make the case that although we have exponentially increased our ability to identify numerous potential vaccine candidates in a relatively short space of time, a significant bottleneck remains in their validation and prioritization for evaluation in clinical trials. Longitudinal cohort studies provide supportive evidence but results are often conflicting between studies. Demonstration of antigen-specific antibody function is valuable but the relative importance of one mechanism over another with regards to protection remains undetermined. Animal models offer useful insights but may not accurately reflect human disease. Challenge studies in humans are preferable but prohibitively expensive. In the absence of reliable correlates of protection, suitable animal models or a better understanding of the mechanisms underlying protective immunity in humans, vaccine candidate discovery per se may not be sufficient to provide the paradigm shift necessary to develop the next generation of highly effective subunit malaria vaccines.
Collapse
Affiliation(s)
- James Tuju
- KEMRI‐Wellcome Trust Research ProgrammeCentre for Geographic Medicine CoastKilifiKenya
- Department of BiochemistryPwani UniversityKilifiKenya
| | - Gathoni Kamuyu
- KEMRI‐Wellcome Trust Research ProgrammeCentre for Geographic Medicine CoastKilifiKenya
| | - Linda M. Murungi
- KEMRI‐Wellcome Trust Research ProgrammeCentre for Geographic Medicine CoastKilifiKenya
| | - Faith H. A. Osier
- KEMRI‐Wellcome Trust Research ProgrammeCentre for Geographic Medicine CoastKilifiKenya
- Centre for Infectious DiseasesHeidelberg University HospitalHeidelbergGermany
- Department of Biomedical SciencesPwani UniversityKilifiKenya
| |
Collapse
|
63
|
Healer J, Cowman AF, Kaslow DC, Birkett AJ. Vaccines to Accelerate Malaria Elimination and Eventual Eradication. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a025627. [PMID: 28490535 DOI: 10.1101/cshperspect.a025627] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Remarkable progress has been made in coordinated malaria control efforts with substantial reductions in malaria-associated deaths and morbidity achieved through mass administration of drugs and vector control measures including distribution of long-lasting insecticide-impregnated bednets and indoor residual spraying. However, emerging resistance poses a significant threat to the sustainability of these interventions. In this light, the malaria research community has been charged with the development of a highly efficacious vaccine to complement existing malaria elimination measures. As the past 40 years of investment in this goal attests, this is no small feat. The malaria parasite is a highly complex organism, exquisitely adapted for survival under hostile conditions within human and mosquito hosts. Here we review current vaccine strategies to accelerate elimination and the potential for novel and innovative approaches to vaccine design through a better understanding of the host-parasite interaction.
Collapse
Affiliation(s)
- Julie Healer
- Walter & Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia
| | - Alan F Cowman
- Walter & Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia
| | | | | |
Collapse
|
64
|
Identification of Protective B-Cell Epitopes within the Novel Malaria Vaccine Candidate Plasmodium falciparum Schizont Egress Antigen 1. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00068-17. [PMID: 28468980 DOI: 10.1128/cvi.00068-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/16/2017] [Indexed: 02/03/2023]
Abstract
Naturally acquired antibodies to Plasmodium falciparum schizont egress antigen 1 (PfSEA-1A) are associated with protection against severe malaria in children. Vaccination of mice with SEA-1A from Plasmodium berghei (PbSEA-1A) decreases parasitemia and prolongs survival following P. berghei ANKA challenge. To enhance the immunogenicity of PfSEA-1A, we identified five linear B-cell epitopes using peptide microarrays probed with antisera from nonhuman primates vaccinated with recombinant PfSEA-1A (rPfSEA-1A). We evaluated the relationship between epitope-specific antibody levels and protection from parasitemia in a longitudinal treatment-reinfection cohort in western Kenya. Antibodies to three epitopes were associated with 16 to 17% decreased parasitemia over an 18-week high transmission season. We are currently designing immunogens to enhance antibody responses to these three epitopes.
Collapse
|
65
|
Acharya P, Garg M, Kumar P, Munjal A, Raja KD. Host-Parasite Interactions in Human Malaria: Clinical Implications of Basic Research. Front Microbiol 2017; 8:889. [PMID: 28572796 PMCID: PMC5435807 DOI: 10.3389/fmicb.2017.00889] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 05/02/2017] [Indexed: 12/21/2022] Open
Abstract
The malaria parasite, Plasmodium, is one of the oldest parasites documented to infect humans and has proven particularly hard to eradicate. One of the major hurdles in designing an effective subunit vaccine against the malaria parasite is the insufficient understanding of host–parasite interactions within the human host during infections. The success of the parasite lies in its ability to evade the human immune system and recruit host responses as physiological cues to regulate its life cycle, leading to rapid acclimatization of the parasite to its immediate host environment. Hence understanding the environmental niche of the parasite is crucial in developing strategies to combat this deadly infectious disease. It has been increasingly recognized that interactions between parasite proteins and host factors are essential to establishing infection and virulence at every stage of the parasite life cycle. This review reassesses all of these interactions and discusses their clinical importance in designing therapeutic approaches such as design of novel vaccines. The interactions have been followed from the initial stages of introduction of the parasite under the human dermis until asexual and sexual blood stages which are essential for transmission of malaria. We further classify the interactions as “direct” or “indirect” depending upon their demonstrated ability to mediate direct physical interactions of the parasite with host factors or their indirect manipulation of the host immune system since both forms of interactions are known to have a crucial role during infections. We also discuss the many ways in which this understanding has been taken to the field and the success of these strategies in controlling human malaria.
Collapse
Affiliation(s)
- Pragyan Acharya
- Department of Biochemistry, All India Institute of Medical SciencesNew Delhi, India
| | - Manika Garg
- Department of Biochemistry, Jamia Hamdard UniversityNew Delhi, India
| | - Praveen Kumar
- Department of Biochemistry, All India Institute of Medical SciencesNew Delhi, India
| | - Akshay Munjal
- Department of Biochemistry, All India Institute of Medical SciencesNew Delhi, India
| | - K D Raja
- Department of Biochemistry, All India Institute of Medical SciencesNew Delhi, India
| |
Collapse
|
66
|
Regulatory T Cells in Endemic Burkitt Lymphoma Patients Are Associated with Poor Outcomes: A Prospective, Longitudinal Study. PLoS One 2016; 11:e0167841. [PMID: 28033393 PMCID: PMC5199096 DOI: 10.1371/journal.pone.0167841] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/21/2016] [Indexed: 12/12/2022] Open
Abstract
Deficiencies in Epstein-Barr virus (EBV)-specific T cell immunosurveillance appear to precede the development of endemic Burkitt lymphoma (eBL), a malaria-associated pediatric cancer common in sub-Saharan Africa. However, T cell contributions to eBL disease progression and survival have not been characterized. Our objective was to investigate regulatory and inflammatory T cell responses in eBL patients associated with clinical outcomes. By multi-parameter flow cytometry, we examined peripheral blood mononuclear cells from 38 eBL patients enrolled in a prospective cohort study in Kisumu, Kenya from 2008–2010, and 14 healthy age-matched Kenyan controls. Children diagnosed with eBL were prospectively followed and outcomes categorized as 2-year event-free survivors, cases of relapses, or those who died. At the time of diagnosis, eBL children with higher CD25+Foxp3+ regulatory T (Treg) cell frequencies were less likely to survive than patients with lower Treg frequencies (p = 0·0194). Non-survivors also had higher absolute counts of CD45RA+Foxp3lo naïve and CD45RA-Foxp3hi effector Treg subsets compared to survivors and healthy controls. Once patients went into clinical remission, Treg frequencies remained low in event-free survivors. Patients who relapsed, however, showed elevated Treg frequencies months prior to their adverse event. Neither concurrent peripheral blood EBV load nor malaria infection could explain higher Treg cell frequencies. CD8+ T cell PD-1 expression was elevated in all eBL patients at time of diagnosis, but relapse patients tended to have persistently high PD-1 expression compared to long-term survivors. Non-survivors produced more CD4+ T-cell IL-10 in response to both Epstein-Barr Nuclear Antigen-1 (EBNA-1) (p = 0·026) and the malaria antigen Plasmodium falciparum Schizont Egress Antigen-1 (p = 0·0158) compared to survivors, and were concurrently deficient in (EBNA-1)-specific CD8+ T-cell derived IFN-γ production (p = 0·002). In addition, we identified the presence of Foxp3-IL10+ regulatory Type 1 cells responding to EBNA-1 in contrast to the malaria antigen tested. These novel findings suggest that poor outcomes in eBL patients are associated with a predominantly immuno-regulatory environment. Therefore, Treg frequencies could be a predictive biomarker of disease progression and manipulation of Treg activity has potential as a therapeutic target to improve eBL survival.
Collapse
|
67
|
Sebina I, James KR, Soon MSF, Fogg LG, Best SE, de Labastida Rivera F, Montes de Oca M, Amante FH, Thomas BS, Beattie L, Souza-Fonseca-Guimaraes F, Smyth MJ, Hertzog PJ, Hill GR, Hutloff A, Engwerda CR, Haque A. IFNAR1-Signalling Obstructs ICOS-mediated Humoral Immunity during Non-lethal Blood-Stage Plasmodium Infection. PLoS Pathog 2016; 12:e1005999. [PMID: 27812214 PMCID: PMC5094753 DOI: 10.1371/journal.ppat.1005999] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/13/2016] [Indexed: 01/19/2023] Open
Abstract
Parasite-specific antibodies protect against blood-stage Plasmodium infection. However, in malaria-endemic regions, it takes many months for naturally-exposed individuals to develop robust humoral immunity. Explanations for this have focused on antigenic variation by Plasmodium, but have considered less whether host production of parasite-specific antibody is sub-optimal. In particular, it is unclear whether host immune factors might limit antibody responses. Here, we explored the effect of Type I Interferon signalling via IFNAR1 on CD4+ T-cell and B-cell responses in two non-lethal murine models of malaria, P. chabaudi chabaudi AS (PcAS) and P. yoelii 17XNL (Py17XNL) infection. Firstly, we demonstrated that CD4+ T-cells and ICOS-signalling were crucial for generating germinal centre (GC) B-cells, plasmablasts and parasite-specific antibodies, and likewise that T follicular helper (Tfh) cell responses relied on B cells. Next, we found that IFNAR1-signalling impeded the resolution of non-lethal blood-stage infection, which was associated with impaired production of parasite-specific IgM and several IgG sub-classes. Consistent with this, GC B-cell formation, Ig-class switching, plasmablast and Tfh differentiation were all impaired by IFNAR1-signalling. IFNAR1-signalling proceeded via conventional dendritic cells, and acted early by limiting activation, proliferation and ICOS expression by CD4+ T-cells, by restricting the localization of activated CD4+ T-cells adjacent to and within B-cell areas of the spleen, and by simultaneously suppressing Th1 and Tfh responses. Finally, IFNAR1-deficiency accelerated humoral immune responses and parasite control by boosting ICOS-signalling. Thus, we provide evidence of a host innate cytokine response that impedes the onset of humoral immunity during experimental malaria. Plasmodium parasites cause malaria by invading, replicating within, and rupturing out of red blood cells. Natural immunity to malaria, which depends on generating Plasmodium-specific antibodies, often takes years to develop. Explanations for this focus on antigenic variation by the parasite, but consider less whether antibody responses themselves may be sub-optimal. Surprisingly little is known about how Plasmodium-specific antibody responses are generated in the host, and whether these can be enhanced. Using mouse models, we found that cytokine-signalling via the receptor IFNAR1 delayed the production of Plasmodium-specific antibody responses. IFNAR1-signalling hindered the resolution of infection, and acted early via conventional dendritic cells to restrict CD4+ T-cell activation and their interactions with B-cells. Thus, we reveal that an innate cytokine response, which occurs during blood-stage Plasmodium infection in humans, obstructs the onset of antibody–mediated immunity during experimental malaria.
Collapse
Affiliation(s)
- Ismail Sebina
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- The University of Queensland, School of Medicine PhD Program, Herston, Queensland, Australia
| | - Kylie R. James
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- The University of Queensland, School of Medicine PhD Program, Herston, Queensland, Australia
| | - Megan S. F. Soon
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Lily G. Fogg
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Shannon E. Best
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Fabian de Labastida Rivera
- Immunology and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Marcela Montes de Oca
- Immunology and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Fiona H. Amante
- Immunology and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Bryce S. Thomas
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Lynette Beattie
- Immunology and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | | | - Mark J. Smyth
- Immunity in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute Herston, Queensland, Australia
| | - Paul J. Hertzog
- Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Geoffrey R. Hill
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Andreas Hutloff
- Chronic Immune Reactions, German Rheumatism Research Centre (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Christian R. Engwerda
- Immunology and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Ashraful Haque
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- * E-mail:
| |
Collapse
|
68
|
Lima WR, Tessarin-Almeida G, Rozanski A, Parreira KS, Moraes MS, Martins DC, Hashimoto RF, Galante PAF, Garcia CRS. Signaling transcript profile of the asexual intraerythrocytic development cycle of Plasmodium falciparum induced by melatonin and cAMP. Genes Cancer 2016; 7:323-339. [PMID: 28050233 PMCID: PMC5115173 DOI: 10.18632/genesandcancer.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
According to the World Health Organization (WHO), Plasmodium falciparum is the deadliest parasite among all species. This parasite possesses the ability to sense molecules, including melatonin (MEL) and cAMP, and modulate its cell cycle accordingly. MEL synchronizes the development of this malaria parasite by activating several cascades, including the generation of the second messenger cAMP. Therefore, we performed RNA sequencing (RNA-Seq) analysis in P. falciparum erythrocytic stages (ring, trophozoite and schizont) treated with MEL and cAMP. To investigate the expression profile of P. falciparum genes regulated by MEL and cAMP, we performed RNA-Seq analysis in three P. falciparum strains (control, 3D7; protein kinase 7 knockout, PfPK7-; and PfPK7 complement, PfPK7C). In the 3D7 strain, 38 genes were differentially expressed upon MEL treatment; however, none of the genes in the trophozoite (T) stage PfPK7- knockout parasites were differentially expressed upon MEL treatment for 5 hours compared to untreated controls, suggesting that PfPK7 may be involved in the signaling leading to differential gene expression. Moreover, we found that MEL modified the mRNA expression of genes encoding membrane proteins, zinc ion-binding proteins and nucleic acid-binding proteins, which might influence numerous functions in the parasite. The RNA-Seq data following treatment with cAMP show that this molecule modulates different genes throughout the intraerythrocytic cycle, namely, 75, 101 and 141 genes, respectively, in the ring (R), T and schizont (S) stages. Our results highlight P. falciparum's perception of the external milieu through the signaling molecules MEL and cAMP, which are able to drive to changes in gene expression in the parasite.
Collapse
Affiliation(s)
- Wânia Rezende Lima
- Departamento de Fisiologia, Instituto de Biociências, Universidade de Sao Paulo, Sao Paulo, Brazil.,Instituto de Ciências Exatas e Naturais (ICEN)- Medicina, Universidade Federal do Mato Grosso - Campus Rondonópolis, Brazil
| | | | - Andrei Rozanski
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, Sao Paulo, Brazil
| | - Kleber S Parreira
- Departamento de Imunologia e Parasitologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Brazil
| | - Miriam S Moraes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - David C Martins
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Paulo, Brazil
| | - Ronaldo F Hashimoto
- Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, Sao Paulo, Brazil
| | - Célia R S Garcia
- Departamento de Fisiologia, Instituto de Biociências, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
69
|
Teo A, Feng G, Brown GV, Beeson JG, Rogerson SJ. Functional Antibodies and Protection against Blood-stage Malaria. Trends Parasitol 2016; 32:887-898. [PMID: 27546781 DOI: 10.1016/j.pt.2016.07.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/09/2016] [Accepted: 07/14/2016] [Indexed: 01/06/2023]
Abstract
Numerous efforts to understand the functional roles of antibodies demonstrated that they can protect against malaria. However, it is unclear which antibody responses are the best correlates of immunity, and which antibody functions are most important in protection from disease. Understanding the role of antibodies in protection against malaria is crucial for antimalarial vaccine design. In this review, the specific functional properties of naturally acquired and vaccine-induced antibodies that correlate to protection from the blood stages of Plasmodium falciparum malaria are re-examined and the gaps in knowledge related to antibody function in malarial immunity are highlighted.
Collapse
Affiliation(s)
- Andrew Teo
- Department of Medicine, University of Melbourne (Royal Melbourne Hospital), Parkville, Australia; Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Gaoqian Feng
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Australia
| | - Graham V Brown
- Department of Medicine, University of Melbourne (Royal Melbourne Hospital), Parkville, Australia; Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia; Victorian Infectious Diseases Service, Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - James G Beeson
- Department of Medicine, University of Melbourne (Royal Melbourne Hospital), Parkville, Australia; Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Australia; Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Stephen J Rogerson
- Department of Medicine, University of Melbourne (Royal Melbourne Hospital), Parkville, Australia; Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia; Victorian Infectious Diseases Service, Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
70
|
Goh YS, Peng K, Chia WN, Siau A, Chotivanich K, Gruner AC, Preiser P, Mayxay M, Pukrittayakamee S, Sriprawat K, Nosten F, White NJ, Renia L. Neutralizing Antibodies against Plasmodium falciparum Associated with Successful Cure after Drug Therapy. PLoS One 2016; 11:e0159347. [PMID: 27427762 PMCID: PMC4948787 DOI: 10.1371/journal.pone.0159347] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/30/2016] [Indexed: 12/15/2022] Open
Abstract
An effective antibody response can assist drug treatment to contribute to better parasite clearance in malaria patients. To examine this, sera were obtained from two groups of adult patients with acute falciparum malaria, prior to drug treatment: patients who (1) have subsequent recrudescent infection, or (2) were cured by Day 28 following treatment. Using a Plasmodium falciparum antigen library, we examined the antibody specificities in these sera. While the antibody repertoire of both sera groups was extremely broad and varied, there was a differential antibody profile between the two groups of sera. The proportion of cured patients with antibodies against EXP1, MSP3, GLURP, RAMA, SEA and EBA181 was higher than the proportion of patients with recrudescent infection. The presence of these antibodies was associated with higher odds of treatment cure. Sera containing all six antibodies impaired the invasion of P. falciparum clinical isolates into erythrocytes. These results suggest that antibodies specific against EXP1, MSP3, GLURP, RAMA, SEA and EBA181 in P. falciparum infections could assist anti-malarial drug treatment and contribute to the resolution of the malarial infection.
Collapse
MESH Headings
- Acute Disease
- Adolescent
- Adult
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Neutralizing/blood
- Antibodies, Protozoan/biosynthesis
- Antibodies, Protozoan/blood
- Antibody Specificity
- Antigens, Protozoan/blood
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Antimalarials/therapeutic use
- Artemether
- Artemisinins/therapeutic use
- Azithromycin/therapeutic use
- Cohort Studies
- Erythrocytes/drug effects
- Erythrocytes/parasitology
- Ethanolamines/therapeutic use
- Female
- Fluorenes/therapeutic use
- Humans
- Immune Sera/pharmacology
- Immunity, Humoral
- Lumefantrine
- Malaria, Falciparum/blood
- Malaria, Falciparum/drug therapy
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Male
- Plasmodium falciparum/drug effects
- Plasmodium falciparum/growth & development
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Recurrence
- Treatment Outcome
Collapse
Affiliation(s)
- Yun Shan Goh
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Kaitian Peng
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Wan Ni Chia
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Anthony Siau
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Anne-Charlotte Gruner
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Peter Preiser
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Laos
| | | | - Kanlaya Sriprawat
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas J. White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Laurent Renia
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
71
|
Speake C, Pichugin A, Sahu T, Malkov V, Morrison R, Pei Y, Juompan L, Milman N, Zarling S, Anderson C, Wong-Madden S, Wendler J, Ishizuka A, MacMillen ZW, Garcia V, Kappe SHI, Krzych U, Duffy PE. Identification of Novel Pre-Erythrocytic Malaria Antigen Candidates for Combination Vaccines with Circumsporozoite Protein. PLoS One 2016; 11:e0159449. [PMID: 27434123 PMCID: PMC4951032 DOI: 10.1371/journal.pone.0159449] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 07/01/2016] [Indexed: 12/17/2022] Open
Abstract
Malaria vaccine development has been hampered by the limited availability of antigens identified through conventional discovery approaches, and improvements are needed to enhance the efficacy of the leading vaccine candidate RTS,S that targets the circumsporozoite protein (CSP) of the infective sporozoite. Here we report a transcriptome-based approach to identify novel pre-erythrocytic vaccine antigens that could potentially be used in combination with CSP. We hypothesized that stage-specific upregulated genes would enrich for protective vaccine targets, and used tiling microarray to identify P. falciparum genes transcribed at higher levels during liver stage versus sporozoite or blood stages of development. We prepared DNA vaccines for 21 genes using the predicted orthologues in P. yoelii and P. berghei and tested their efficacy using different delivery methods against pre-erythrocytic malaria in rodent models. In our primary screen using P. yoelii in BALB/c mice, we found that 16 antigens significantly reduced liver stage parasite burden. In our confirmatory screen using P. berghei in C57Bl/6 mice, we confirmed 6 antigens that were protective in both models. Two antigens, when combined with CSP, provided significantly greater protection than CSP alone in both models. Based on the observations reported here, transcriptional patterns of Plasmodium genes can be useful in identifying novel pre-erythrocytic antigens that induce protective immunity alone or in combination with CSP.
Collapse
MESH Headings
- Animals
- Antibodies, Protozoan/immunology
- Antibodies, Protozoan/therapeutic use
- Antigens, Protozoan/immunology
- Female
- Humans
- Malaria Vaccines/genetics
- Malaria Vaccines/immunology
- Malaria Vaccines/therapeutic use
- Malaria, Falciparum/drug therapy
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Mice
- Mice, Inbred C57BL
- Plasmodium falciparum/immunology
- Plasmodium falciparum/pathogenicity
- Plasmodium yoelii/immunology
- Protozoan Proteins/immunology
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, DNA/therapeutic use
Collapse
Affiliation(s)
- Cate Speake
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Alexander Pichugin
- Department of Cellular Immunology, Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Tejram Sahu
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Vlad Malkov
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Robert Morrison
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ying Pei
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Laure Juompan
- Department of Cellular Immunology, Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Neta Milman
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Stasya Zarling
- Department of Cellular Immunology, Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Charles Anderson
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sharon Wong-Madden
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jason Wendler
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Andrew Ishizuka
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Zachary W. MacMillen
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Valentino Garcia
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Stefan H. I. Kappe
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Urszula Krzych
- Department of Cellular Immunology, Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Patrick E. Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
72
|
Peng K, Goh YS, Siau A, Franetich JF, Chia WN, Ong ASM, Malleret B, Wu YY, Snounou G, Hermsen CC, Adams JH, Mazier D, Preiser PR, Sauerwein RW, Grüner AC, Rénia L. Breadth of humoral response and antigenic targets of sporozoite-inhibitory antibodies associated with sterile protection induced by controlled human malaria infection. Cell Microbiol 2016; 18:1739-1750. [PMID: 27130708 DOI: 10.1111/cmi.12608] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 11/28/2022]
Abstract
The development of an effective malaria vaccine has remained elusive even until today. This is because of our incomplete understanding of the immune mechanisms that confer and/or correlate with protection. Human volunteers have been protected experimentally from a subsequent challenge by immunization with Plasmodium falciparum sporozoites under drug cover. Here, we demonstrate that sera from the protected individuals contain neutralizing antibodies against the pre-erythrocytic stage. To identify the antigen(s) recognized by these antibodies, a newly developed library of P. falciparum antigens was screened with the neutralizing sera. Antibodies from protected individuals recognized a broad antigenic repertoire of which three antigens, PfMAEBL, PfTRAP and PfSEA1 were recognized by most protected individuals. As a proof of principle, we demonstrated that anti-PfMAEBL antibodies block liver stage development in human hepatocytes. Thus, these antigens identified are promising targets for vaccine development against malaria.
Collapse
Affiliation(s)
- Kaitian Peng
- Laboratory of Pathogen Immunobiology, Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Yun Shan Goh
- Laboratory of Pathogen Immunobiology, Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Anthony Siau
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Jean-François Franetich
- Centre d'Immunologie et de Maladies Infectieuses (CIMI) - Paris, Institut National de la Santé et de la Recherche Médicale (Inserm) U1135 - Centre National de la Recherche Scientifique (CNRS) ERL 8255, F-75013, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, UPMC UMRS CR7, F-75005, Paris, France
| | - Wan Ni Chia
- Laboratory of Pathogen Immunobiology, Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Alice Soh Meoy Ong
- Laboratory of Pathogen Immunobiology, Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Benoit Malleret
- Laboratory of Pathogen Immunobiology, Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Ying Ying Wu
- Laboratory of Pathogen Immunobiology, Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Georges Snounou
- Centre d'Immunologie et de Maladies Infectieuses (CIMI) - Paris, Institut National de la Santé et de la Recherche Médicale (Inserm) U1135 - Centre National de la Recherche Scientifique (CNRS) ERL 8255, F-75013, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, UPMC UMRS CR7, F-75005, Paris, France
| | - Cornelus C Hermsen
- Department of Medical Microbiology, Radboud University, Nijmegen Medical Center, Nijmegen, Netherlands
| | - John H Adams
- Department of Global Health, College of Public Health, University of South Florida, Tampa, USA
| | - Dominique Mazier
- Centre d'Immunologie et de Maladies Infectieuses (CIMI) - Paris, Institut National de la Santé et de la Recherche Médicale (Inserm) U1135 - Centre National de la Recherche Scientifique (CNRS) ERL 8255, F-75013, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, UPMC UMRS CR7, F-75005, Paris, France.,AP HP, Centre Hospitalo-Universitaire Pitié-Salpêtrière, F-75013, Paris, France
| | - Peter R Preiser
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud University, Nijmegen Medical Center, Nijmegen, Netherlands
| | - Anne-Charlotte Grüner
- Laboratory of Pathogen Immunobiology, Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Laurent Rénia
- Laboratory of Pathogen Immunobiology, Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
73
|
Murungi LM, Sondén K, Llewellyn D, Rono J, Guleid F, Williams AR, Ogada E, Thairu A, Färnert A, Marsh K, Draper SJ, Osier FHA. Targets and Mechanisms Associated with Protection from Severe Plasmodium falciparum Malaria in Kenyan Children. Infect Immun 2016; 84:950-963. [PMID: 26787721 PMCID: PMC4807498 DOI: 10.1128/iai.01120-15] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/14/2016] [Indexed: 01/23/2023] Open
Abstract
Severe malaria (SM) is a life-threatening complication of infection with Plasmodium falciparum Epidemiological observations have long indicated that immunity against SM is acquired relatively rapidly, but prospective studies to investigate its immunological basis are logistically challenging and have rarely been undertaken. We investigated the merozoite targets and antibody-mediated mechanisms associated with protection against SM in Kenyan children aged 0 to 2 years. We designed a unique prospective matched case-control study of well-characterized SM clinical phenotypes nested within a longitudinal birth cohort of children (n= 5,949) monitored over the first 2 years of life. We quantified immunological parameters in sera collected before the SM event in cases and their individually matched controls to evaluate the prospective odds of developing SM in the first 2 years of life. Anti-AMA1 antibodies were associated with a significant reduction in the odds of developing SM (odds ratio [OR] = 0.37; 95% confidence interval [CI] = 0.15 to 0.90; P= 0.029) after adjustment for responses to all other merozoite antigens tested, while those against MSP-2, MSP-3, Plasmodium falciparum Rh2 [PfRh2], MSP-119, and the infected red blood cell surface antigens were not. The combined ability of total IgG to inhibit parasite growth and mediate the release of reactive oxygen species from neutrophils was associated with a marked reduction in the odds of developing SM (OR = 0.07; 95% CI = 0.006 to 0.82;P= 0.03). Assays of these two functional mechanisms were poorly correlated (Spearman rank correlation coefficient [rs] = 0.12;P= 0.07). Our data provide epidemiological evidence that multiple antibody-dependent mechanisms contribute to protective immunity via distinct targets whose identification could accelerate the development of vaccines to protect against SM.
Collapse
Affiliation(s)
- Linda M Murungi
- KEMRI Wellcome Trust Research Programme, Centre for Geographical Medicine Research-Coast, Kilifi, Kenya
| | - Klara Sondén
- Unit of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - David Llewellyn
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Josea Rono
- KEMRI Wellcome Trust Research Programme, Centre for Geographical Medicine Research-Coast, Kilifi, Kenya
| | - Fatuma Guleid
- KEMRI Wellcome Trust Research Programme, Centre for Geographical Medicine Research-Coast, Kilifi, Kenya
| | | | - Edna Ogada
- KEMRI Wellcome Trust Research Programme, Centre for Geographical Medicine Research-Coast, Kilifi, Kenya
| | - Amos Thairu
- KEMRI Wellcome Trust Research Programme, Centre for Geographical Medicine Research-Coast, Kilifi, Kenya
| | - Anna Färnert
- Unit of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Kevin Marsh
- KEMRI Wellcome Trust Research Programme, Centre for Geographical Medicine Research-Coast, Kilifi, Kenya
- Nuffield Department of Medicine, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Simon J Draper
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Faith H A Osier
- KEMRI Wellcome Trust Research Programme, Centre for Geographical Medicine Research-Coast, Kilifi, Kenya
| |
Collapse
|
74
|
Gonçalves BP, Prevots DR, Kabyemela E, Fried M, Duffy PE. Preparing for future efficacy trials of severe malaria vaccines. Vaccine 2016; 34:1865-7. [PMID: 26923455 DOI: 10.1016/j.vaccine.2016.02.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 10/22/2022]
Abstract
Severe malaria is a major cause of mortality in children, but comprises only a small proportion of Plasmodium falciparum infections in naturally exposed populations. The evaluation of vaccines that prevent severe falciparum disease will require clinical trials whose primary efficacy endpoint will be severe malaria risk during follow-up. Here, we show that such trials are feasible with fewer than 1000 participants in areas with intense malaria transmission during the age interval when severe malaria incidence peaks.
Collapse
Affiliation(s)
- Bronner P Gonçalves
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States; Laboratory of Clinical Infectious Diseases-Epidemiology Unit, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States
| | - D Rebecca Prevots
- Laboratory of Clinical Infectious Diseases-Epidemiology Unit, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States
| | - Edward Kabyemela
- MOMS Project, Seattle Biomedical Research Institute (currently Center for Infectious Disease Research), Seattle, WA, United States; Muheza Designated District Hospital, Muheza, Tanzania
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States; MOMS Project, Seattle Biomedical Research Institute (currently Center for Infectious Disease Research), Seattle, WA, United States; Muheza Designated District Hospital, Muheza, Tanzania
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States; MOMS Project, Seattle Biomedical Research Institute (currently Center for Infectious Disease Research), Seattle, WA, United States; Muheza Designated District Hospital, Muheza, Tanzania.
| |
Collapse
|
75
|
Abstract
There have been significant decreases in malaria mortality and morbidity in the last 10-15 years, and the most advanced pre-erythrocytic malaria vaccine, RTS,S, received a positive opinion from European regulators in July 2015. However, no blood-stage vaccine has reached a phase III trial. The first part of this review summarizes the pros and cons of various assays and models that have been and will be used to predict the efficacy of blood-stage vaccines. In the second part, blood-stage vaccine candidates that showed some efficacy in human clinical trials or controlled human malaria infection models are discussed. Then, candidates under clinical investigation are described in the third part, and other novel candidates and strategies are reviewed in the last part.
Collapse
Affiliation(s)
- Kazutoyo Miura
- a Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases , National Institutes of Health , Rockville , MD , USA
| |
Collapse
|
76
|
Langhorne J, Duffy PE. Expanding the antimalarial toolkit: Targeting host-parasite interactions. J Exp Med 2016; 213:143-53. [PMID: 26834158 PMCID: PMC4749928 DOI: 10.1084/jem.20151677] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/21/2015] [Indexed: 12/27/2022] Open
Abstract
Recent successes in malaria control are threatened by drug-resistant Plasmodium parasites and insecticide-resistant Anopheles mosquitoes, and first generation vaccines offer only partial protection. New research approaches have highlighted host as well as parasite molecules or pathways that could be targeted for interventions. In this study, we discuss host–parasite interactions at the different stages of the Plasmodium life cycle within the mammalian host and the potential for therapeutics that prevent parasite migration, invasion, intracellular growth, or egress from host cells, as well as parasite-induced pathology.
Collapse
Affiliation(s)
- Jean Langhorne
- Mill Hill Laboratory, The Francis Crick Institute, London NW7 1AA, England, UK
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| |
Collapse
|
77
|
Abstract
The development of an efficacious and practicable vaccine conferring sterile immunity towards a Plasmodium infection represents a not yet achieved goal. A crucial factor for the impact of a given anti-plasmodial subunit vaccine is the identification of the most potent parasitic components required to induce protection from both infection and disease. Here, we present a method based on a novel high-density peptide array technology that allows for a flexible readout of malaria antibodies. Peptide arrays applied as a screening method can be used to identify novel immunogenic antibody epitopes under a large number of potential antigens/peptides. Ultimately, discovered antigen candidates and/or epitope sequences can be translated into vaccine prototype design. The technology can be further utilized to unravel antibody-mediated immune responses (e.g., involved in the establishment of semi-immunity) and moreover to confirm vaccine potency during the process of clinical development by verifying the induced antibody responses following vaccination.
Collapse
|
78
|
Bentzinger G, De Souza W, Mullié C, Agnamey P, Dassonville-Klimpt A, Sonnet P. Asymmetric synthesis of new antimalarial aminoquinolines through Sharpless aminohydroxylation. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.tetasy.2015.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
79
|
MacRaild CA, Richards JS, Anders RF, Norton RS. Antibody Recognition of Disordered Antigens. Structure 2015; 24:148-157. [PMID: 26712277 DOI: 10.1016/j.str.2015.10.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/12/2015] [Accepted: 10/28/2015] [Indexed: 11/16/2022]
Abstract
Disordered proteins are important antigens in a range of infectious diseases. Little is known, however, about the molecular details of recognition of disordered antigens by their cognate antibodies. Using a large dataset of protein antigens, we show that disordered epitopes are as likely to be recognized by antibodies as ordered epitopes. Moreover, the affinity with which antigens are recognized is, unexpectedly, only weakly dependent on the degree of disorder within the epitope. Structurally defined complexes of ordered and disordered protein antigens with their cognate antibodies reveal that disordered epitopes are smaller than their ordered counterparts, but are more efficient in their interactions with antibody. Our results demonstrate that disordered antigens are bona fide targets of antibody recognition, and that recognition of disordered epitopes is particularly sensitive to epitope variation, a finding with implications for the effects of disorder on the specificity of molecular recognition more generally.
Collapse
Affiliation(s)
- Christopher A MacRaild
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| | - Jack S Richards
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC 3004, Australia
| | - Robin F Anders
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
80
|
John CC. Editorial Commentary:Toward a Better Malaria Vaccine: Understanding How Antibodies to Malaria Protect Against Disease. Clin Infect Dis 2015; 61:1253-4. [DOI: 10.1093/cid/civ529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 06/22/2015] [Indexed: 11/12/2022] Open
|
81
|
Dutta S, DasSarma P, DasSarma S, Jarori GK. Immunogenicity and protective potential of a Plasmodium spp. enolase peptide displayed on archaeal gas vesicle nanoparticles. Malar J 2015; 14:406. [PMID: 26463341 PMCID: PMC4605222 DOI: 10.1186/s12936-015-0914-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/25/2015] [Indexed: 11/15/2022] Open
Abstract
Background Plasmodium falciparum enolase has been shown to localize on the surface of merozoites and ookinetes. Immunization of mice with recombinant Plasmodium enolase (rPfeno) showed partial protection against malaria. Anti-rPfeno antibodies inhibited growth of the parasite in in vitro cultures and blocked ookinete invasion of mosquito midgut epithelium. It is hypothesized that parasite specific moonlighting functions (e.g. host cell invasion) may map on to unique structural elements of Pfeno. Since enolases are highly conserved between the host and the parasite, a parasite-specific epitope of enolase was displayed on novel protein nanoparticles produced by a halophilic Archaeon Halobacterium sp. NRC-1 and tested their ability to protect mice against live challenge. Methods By genetic engineering, a Plasmodium-enolase specific peptide sequence 104EWGWS108 with protective antigenic potential was inserted into the Halobacterium gas vesicle protein GvpC, a protein localized on the surface of immunogenic gas vesicle nanoparticles (GVNPs). Two groups of mice were immunized with the wild type (WT) and the insert containing recombinant (Rec) GVNPs respectively. A third group of mice was kept as un-immunized control. Antibody titres were measured against three antigens (i.e. WT-GVNPs, Rec-GVNPs and rPfeno) using ELISA. The protective potential was determined by measuring percentage parasitaemia and survival after challenge with the lethal strain Plasmodium yoelii 17XL. Results Rec-GVNP-immunized mice showed higher antibody titres against rPfeno and Rec-GVNPs, indicating that the immunized mice had produced antibodies against the parasite enolase-specific insert sequence. Challenging the un-immunized, WT-GVNP and Rec-GVNP-immunized mice with a lethal strain of mice malarial parasite showed significantly lower parasitaemia and longer survival in the Rec-GVNP-immunized group as compared to control groups. The extent of survival advantage in the Rec-GVNP-group showed positive correlation with anti-rPfeno antibody titres while the parasitaemia showed a negative correlation. These results indicate that the parasite enolase peptide insert displayed on Halobacterium GVNPs is a good candidate as a protective antigenic epitope. Conclusion The work reported here showed that the parasite-specific peptide sequence is a protective antigenic epitope. Although antibody response of B-cells to the guest sequence in Rec-GVNPs was mild, significant advantage in the control of parasitaemia and survival was observed. Future efforts are needed to display multiple antigens with protective properties to improve the performance of the GVNP-based approach.
Collapse
Affiliation(s)
- Sneha Dutta
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400005, India.
| | - Priya DasSarma
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD, 21202, USA.
| | - Shiladitya DasSarma
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD, 21202, USA.
| | - Gotam K Jarori
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400005, India.
| |
Collapse
|
82
|
Large screen approaches to identify novel malaria vaccine candidates. Vaccine 2015; 33:7496-505. [PMID: 26428458 DOI: 10.1016/j.vaccine.2015.09.059] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/07/2015] [Accepted: 09/15/2015] [Indexed: 11/20/2022]
Abstract
Until recently, malaria vaccine development efforts have focused almost exclusively on a handful of well characterized Plasmodium falciparum antigens. Despite dedicated work by many researchers on different continents spanning more than half a century, a successful malaria vaccine remains elusive. Sequencing of the P. falciparum genome has revealed more than five thousand genes, providing the foundation for systematic approaches to discover candidate vaccine antigens. We are taking advantage of this wealth of information to discover new antigens that may be more effective vaccine targets. Herein, we describe different approaches to large-scale screening of the P. falciparum genome to identify targets of either antibody responses or T cell responses using human specimens collected in Controlled Human Malaria Infections (CHMI) or under conditions of natural exposure in the field. These genome, proteome and transcriptome based approaches offer enormous potential for the development of an efficacious malaria vaccine.
Collapse
|
83
|
Miyazaki Y, Chen LC, Chu BW, Swigut T, Wandless TJ. Distinct transcriptional responses elicited by unfolded nuclear or cytoplasmic protein in mammalian cells. eLife 2015; 4. [PMID: 26314864 PMCID: PMC4566031 DOI: 10.7554/elife.07687] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 08/13/2015] [Indexed: 12/13/2022] Open
Abstract
Eukaryotic cells possess a variety of signaling pathways that prevent accumulation of unfolded and misfolded proteins. Chief among these is the heat shock response (HSR), which is assumed to respond to unfolded proteins in the cytosol and nucleus alike. In this study, we probe this axiom further using engineered proteins called 'destabilizing domains', whose folding state we control with a small molecule. The sudden appearance of unfolded protein in mammalian cells elicits a robust transcriptional response, which is distinct from the HSR and other known pathways that respond to unfolded proteins. The cellular response to unfolded protein is strikingly different in the nucleus and the cytosol, although unfolded protein in either compartment engages the p53 network. This response provides cross-protection during subsequent proteotoxic stress, suggesting that it is a central component of protein quality control networks, and like the HSR, is likely to influence the initiation and progression of human pathologies.
Collapse
Affiliation(s)
- Yusuke Miyazaki
- Department of Chemical and Systems Biology, Stanford University, Stanford, United States
| | - Ling-chun Chen
- Department of Chemical and Systems Biology, Stanford University, Stanford, United States
| | - Bernard W Chu
- Department of Chemical and Systems Biology, Stanford University, Stanford, United States
| | - Tomek Swigut
- Department of Chemical and Systems Biology, Stanford University, Stanford, United States
| | - Thomas J Wandless
- Department of Chemical and Systems Biology, Stanford University, Stanford, United States
| |
Collapse
|
84
|
King CL, Davies DH, Felgner P, Baum E, Jain A, Randall A, Tetteh K, Drakeley CJ, Greenhouse B. Biosignatures of Exposure/Transmission and Immunity. Am J Trop Med Hyg 2015; 93:16-27. [PMID: 26259938 PMCID: PMC4574271 DOI: 10.4269/ajtmh.15-0037] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 06/05/2015] [Indexed: 12/26/2022] Open
Abstract
A blood test that captures cumulative exposure over time and assesses levels of naturally acquired immunity (NAI) would provide a critical tool to monitor the impact of interventions to reduce malaria transmission and broaden our understanding of how NAI develops around the world as a function of age and exposure. This article describes a collaborative effort in multiple International Centers of Excellence in Malaria Research (ICEMRs) to develop such tests using malaria-specific antibody responses as biosignatures of transmission and immunity. The focus is on the use of Plasmodium falciparum and Plasmodium vivax protein microarrays to identify a panel of the most informative antibody responses in diverse malaria-endemic settings representing an unparalleled spectrum of malaria transmission and malaria species mixes before and after interventions to reduce malaria transmission.
Collapse
Affiliation(s)
- Christopher L. King
- * Address correspondence to Christopher L. King, Case Western Reserve University School of Medicine, Biomedical Research Building Room 421, Cleveland, OH 44106, E-mail: or D. Huw Davies, Division of Infectious Diseases, Department of Medicine, University of California, Irvine, Irvine, CA, 92697. E-mail:
| | - D. Huw Davies
- * Address correspondence to Christopher L. King, Case Western Reserve University School of Medicine, Biomedical Research Building Room 421, Cleveland, OH 44106, E-mail: or D. Huw Davies, Division of Infectious Diseases, Department of Medicine, University of California, Irvine, Irvine, CA, 92697. E-mail:
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Phosphoantigen Burst upon Plasmodium falciparum Schizont Rupture Can Distantly Activate Vγ9Vδ2 T Cells. Infect Immun 2015; 83:3816-24. [PMID: 26169273 PMCID: PMC4567633 DOI: 10.1128/iai.00446-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/07/2015] [Indexed: 11/23/2022] Open
Abstract
Malaria induces potent activation and expansion of the Vγ9Vδ2 subpopulation of γδT cells, which inhibit the Plasmodium falciparum blood cycle through soluble cytotoxic mediators, abrogating merozoite invasion capacity. Intraerythrocytic stages efficiently trigger Vγ9Vδ2 T-cell activation and degranulation through poorly understood mechanisms. P. falciparum blood-stage extracts are known to contain phosphoantigens able to stimulate Vγ9Vδ2 T cells, but how these are presented by intact infected red blood cells (iRBCs) remains elusive. Here we show that, unlike activation by phosphoantigen-expressing cells, Vγ9Vδ2 T-cell activation by intact iRBCs is independent of butyrophilin expression by the iRBC, and contact with an intact iRBC is not required. Moreover, blood-stage culture supernatants proved to be as potent activators of Vγ9Vδ2 T cells as iRBCs. Bioactivity in the microenvironment is attributable to phosphoantigens, as it is dependent on the parasite DOXP pathway, on Vγ9Vδ2 TCR signaling, and on butyrophilin expression by Vγ9Vδ2 T cells. Kinetic studies showed that the phosphoantigens were released at the end of the intraerythrocytic cycle at the time of parasite egress. We document exquisite sensitivity of Vγ9Vδ2 T cells, which respond to a few thousand parasites. These data unravel a novel framework, whereby release of phosphoantigens into the extracellular milieu by sequestered parasites likely promotes activation of distant Vγ9Vδ2 T cells that in turn exert remote antiparasitic functions.
Collapse
|
86
|
Phosphoproteomics reveals malaria parasite Protein Kinase G as a signalling hub regulating egress and invasion. Nat Commun 2015; 6:7285. [PMID: 26149123 PMCID: PMC4507021 DOI: 10.1038/ncomms8285] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 04/26/2015] [Indexed: 12/19/2022] Open
Abstract
Our understanding of the key phosphorylation-dependent signalling pathways in the human malaria parasite, Plasmodium falciparum, remains rudimentary. Here we address this issue for the essential cGMP-dependent protein kinase, PfPKG. By employing chemical and genetic tools in combination with quantitative global phosphoproteomics, we identify the phosphorylation sites on 69 proteins that are direct or indirect cellular targets for PfPKG. These PfPKG targets include proteins involved in cell signalling, proteolysis, gene regulation, protein export and ion and protein transport, indicating that cGMP/PfPKG acts as a signalling hub that plays a central role in a number of core parasite processes. We also show that PfPKG activity is required for parasite invasion. This correlates with the finding that the calcium-dependent protein kinase, PfCDPK1, is phosphorylated by PfPKG, as are components of the actomyosin complex, providing mechanistic insight into the essential role of PfPKG in parasite egress and invasion.
Collapse
|
87
|
Chemical biology strategies for posttranslational control of protein function. ACTA ACUST UNITED AC 2015; 21:1238-52. [PMID: 25237866 DOI: 10.1016/j.chembiol.2014.08.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/08/2014] [Accepted: 08/25/2014] [Indexed: 02/07/2023]
Abstract
A common strategy to understand a biological system is to selectively perturb it and observe its response. Although technologies now exist to manipulate cellular systems at the genetic and transcript level, the direct manipulation of functions at the protein level can offer significant advantages in precision, speed, and reversibility. Combining the specificity of genetic manipulation and the spatiotemporal resolution of light- and small molecule-based approaches now allows exquisite control over biological systems to subtly perturb a system of interest in vitro and in vivo. Conditional perturbation mechanisms may be broadly characterized by change in intracellular localization, intramolecular activation, or degradation of a protein-of-interest. Here we review recent advances in technologies for conditional regulation of protein function and suggest further areas of potential development.
Collapse
|
88
|
Spiegel H, Boes A, Kastilan R, Kapelski S, Edgue G, Beiss V, Chubodova I, Scheuermayer M, Pradel G, Schillberg S, Reimann A, Fischer R. The stage-specific in vitro efficacy of a malaria antigen cocktail provides valuable insights into the development of effective multi-stage vaccines. Biotechnol J 2015; 10:1651-9. [PMID: 25913888 DOI: 10.1002/biot.201500055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/18/2015] [Accepted: 04/21/2015] [Indexed: 11/06/2022]
Abstract
Multicomponent vaccines targeting different stages of Plasmodium falciparum represent a promising, holistic concept towards better malaria vaccines. Additionally, an effective vaccine candidate should demonstrate cross-strain specificity because many antigens are polymorphic, which can reduce vaccine efficacy. A cocktail of recombinant fusion proteins (VAMAX-Mix) featuring three diversity-covering variants of the blood-stage antigen PfAMA1, each combined with the conserved sexual-stage antigen Pfs25 and one of the pre-erythrocytic-stage antigens PfCSP_TSR or PfCelTOS, or the additional blood-stage antigen PfMSP1_19, was produced in Pichia pastoris and used to immunize rabbits. The immune sera and purified IgG were used to perform various assays determining antigen specific titers and in vitro efficacy against different parasite stages and strains. In functional in vitro assays we observed robust inhibition of blood-stage (up to 90%), and sexual-stage parasites (up to 100%) and biased inhibition of pre-erythrocytic parasites (0-40%). Cross-strain blood-stage efficacy was observed in erythrocyte invasion assays using four different P. falciparum strains. The quantification of antigen-specific IgGs allowed the determination of specific IC50 values. The significant difference in antigen-specific IC50 requirements, the direct correlation between antigen-specific IgG and the relative quantitative representation of antigens within the cocktail, provide valuable implementations for future multi-stage, multi-component vaccine designs.
Collapse
Affiliation(s)
- Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany.
| | - Alexander Boes
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Robin Kastilan
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Stephanie Kapelski
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Güven Edgue
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Veronique Beiss
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Ivana Chubodova
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | | | - Gabriele Pradel
- RWTH Aachen University, Institute of Molecular Biotechnology, Aachen, Germany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Andreas Reimann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany.,RWTH Aachen University, Institute of Molecular Biotechnology, Aachen, Germany
| |
Collapse
|
89
|
Structural basis for epitope masking and strain specificity of a conserved epitope in an intrinsically disordered malaria vaccine candidate. Sci Rep 2015; 5:10103. [PMID: 25965408 PMCID: PMC4428071 DOI: 10.1038/srep10103] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/30/2015] [Indexed: 12/15/2022] Open
Abstract
Merozoite surface protein 2 (MSP2) is an intrinsically disordered, membrane-anchored antigen of the malaria parasite Plasmodium falciparum. MSP2 can elicit a protective, albeit strain-specific, antibody response in humans. Antibodies are generated to the conserved N- and C-terminal regions but many of these react poorly with the native antigen on the parasite surface. Here we demonstrate that recognition of a conserved N-terminal epitope by mAb 6D8 is incompatible with the membrane-bound conformation of that region, suggesting a mechanism by which native MSP2 escapes antibody recognition. Furthermore, crystal structures and NMR spectroscopy identify transient, strain-specific interactions between the 6D8 antibody and regions of MSP2 beyond the conserved epitope. These interactions account for the differential affinity of 6D8 for the two allelic families of MSP2, even though 6D8 binds to a fully conserved epitope. These results highlight unappreciated mechanisms that may modulate the specificity and efficacy of immune responses towards disordered antigens.
Collapse
|
90
|
Kumar S, Kumari R, Pandey R. New insight-guided approaches to detect, cure, prevent and eliminate malaria. PROTOPLASMA 2015; 252:717-53. [PMID: 25323622 DOI: 10.1007/s00709-014-0697-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 09/01/2014] [Indexed: 06/04/2023]
Abstract
New challenges posed by the development of resistance against artemisinin-based combination therapies (ACTs) as well as previous first-line therapies, and the continuing absence of vaccine, have given impetus to research in all areas of malaria control. This review portrays the ongoing progress in several directions of malaria research. The variants of RTS,S and apical membrane antigen 1 (AMA1) are being developed and test adapted as multicomponent and multistage malaria control vaccines, while many other vaccine candidates and methodologies to produce antigens are under experimentation. To track and prevent the spread of artemisinin resistance from Southeast Asia to other parts of the world, rolling circle-enhanced enzyme activity detection (REEAD), a time- and cost-effective malaria diagnosis in field conditions, and a DNA marker associated with artemisinin resistance have become available. Novel mosquito repellents and mosquito trapping and killing techniques much more effective than the prevalent ones are undergoing field testing. Mosquito lines stably infected with their symbiotic wild-type or genetically engineered bacteria that kill sympatric malaria parasites are being constructed and field tested for stopping malaria transmission. A complementary approach being pursued is the addition of ivermectin-like drug molecules to ACTs to cure malaria and kill mosquitoes. Experiments are in progress to eradicate malaria mosquito by making it genetically male sterile. High-throughput screening procedures are being developed and used to discover molecules that possess long in vivo half life and are active against liver and blood stages for the fast cure of malaria symptoms caused by simple or relapsing and drug-sensitive and drug-resistant types of varied malaria parasites, can stop gametocytogenesis and sporogony and could be given in one dose. Target-based antimalarial drug designing has begun. Some of the putative next-generation antimalarials that possess in their scaffold structure several of the desired properties of malaria cure and control are exemplified by OZ439, NITD609, ELQ300 and tafenoquine that are already undergoing clinical trials, and decoquinate, usnic acid, torin-2, ferroquine, WEHI-916, MMV396749 and benzothiophene-type N-myristoyltransferase (NMT) inhibitors, which are candidates for future clinical usage. Among these, NITD609, ELQ300, decoquinate, usnic acid, torin-2 and NMT inhibitors not only cure simple malaria and are prophylactic against simple malaria, but they also cure relapsing malaria.
Collapse
Affiliation(s)
- Sushil Kumar
- SKA Institution for Research, Education and Development (SKAIRED), 4/11 SarvPriya Vihar, New Delhi, 110016, India,
| | | | | |
Collapse
|
91
|
Abstract
The development of a highly effective malaria vaccine remains a key goal to aid in the control and eventual eradication of this devastating parasitic disease. The field has made huge strides in recent years, with the first-generation vaccine RTS,S showing modest efficacy in a Phase III clinical trial. The updated 2030 Malaria Vaccine Technology Roadmap calls for a second generation vaccine to achieve 75% efficacy over two years for both Plasmodium falciparum and Plasmodium vivax, and for a vaccine that can prevent malaria transmission. Whole-parasite immunisation approaches and combinations of pre-erythrocytic subunit vaccines are now reporting high-level efficacy, whilst exciting new approaches to the development of blood-stage and transmission-blocking vaccine subunit components are entering clinical development. The development of a highly effective multi-component multi-stage subunit vaccine now appears to be a realistic ambition. This review will cover these recent developments in malaria vaccinology.
Collapse
|
92
|
MacRaild CA, Zachrdla M, Andrew D, Krishnarjuna B, Nováček J, Žídek L, Sklenář V, Richards JS, Beeson JG, Anders RF, Norton RS. Conformational dynamics and antigenicity in the disordered malaria antigen merozoite surface protein 2. PLoS One 2015; 10:e0119899. [PMID: 25742002 PMCID: PMC4351039 DOI: 10.1371/journal.pone.0119899] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/16/2015] [Indexed: 12/14/2022] Open
Abstract
Merozoite surface protein 2 (MSP2) of Plasmodium falciparum is an abundant, intrinsically disordered protein that is GPI-anchored to the surface of the invasive blood stage of the malaria parasite. Recombinant MSP2 has been trialled as a component of a malaria vaccine, and is one of several disordered proteins that are candidates for inclusion in vaccines for malaria and other diseases. Nonetheless, little is known about the implications of protein disorder for the development of an effective antibody response. We have therefore undertaken a detailed analysis of the conformational dynamics of the two allelic forms of MSP2 (3D7 and FC27) using NMR spectroscopy. Chemical shifts and NMR relaxation data indicate that conformational and dynamic properties of the N- and C-terminal conserved regions in the two forms of MSP2 are essentially identical, but significant variation exists between and within the central variable regions. We observe a strong relationship between the conformational dynamics and the antigenicity of MSP2, as assessed with antisera to recombinant MSP2. Regions of increased conformational order in MSP2, including those in the conserved regions, are more strongly antigenic, while the most flexible regions are minimally antigenic. This suggests that modifications that increase conformational order may offer a means to tune the antigenicity of MSP2 and other disordered antigens, with implications for vaccine design.
Collapse
Affiliation(s)
- Christopher A. MacRaild
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052, Australia
- * E-mail:
| | - Milan Zachrdla
- NCBR, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- CEITEC, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Dean Andrew
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, 3004, Australia
| | - Bankala Krishnarjuna
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052, Australia
| | - Jiří Nováček
- NCBR, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- CEITEC, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Lukáš Žídek
- NCBR, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- CEITEC, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Vladimír Sklenář
- NCBR, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- CEITEC, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Jack S. Richards
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, 3004, Australia
| | - James G. Beeson
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, 3004, Australia
| | - Robin F. Anders
- Department of Biochemistry, La Trobe University, Victoria, 3086, Australia
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052, Australia
| |
Collapse
|
93
|
Abstract
An effective malaria vaccine that reduces morbidity and mortality and contributes to malaria elimination is a much-needed tool, particularly in endemic areas where health-care delivery and vector control efforts are difficult to sustain. RTS,S/AS01 is likely to be the first licensed malaria vaccine and represents an important step toward malaria control and elimination. However, a partially effective vaccine such as RTS,S/AS01 poses challenges for evaluating the efficacy of second-generation malaria vaccines. Whole-sporozoite immunization approaches have shown promising results, inducing sterile immunity in small-scale trials of malaria-naïve adults, but may not achieve durable sterile protection in endemic populations. Vaccines targeting both the pre-erythrocytic and the erythrocyte-invasive form of the parasite (merozoites) may abrogate breakthrough infections by neutralizing merozoites emerging from infected hepatocytes, whereas vaccines targeting the sexual stages seek to break the transmission cycle. Moving forward, a multi-stage vaccine could be the next step toward malaria elimination and eradication.
Collapse
|
94
|
Chia WN, Goh YS, Rénia L. Novel approaches to identify protective malaria vaccine candidates. Front Microbiol 2014; 5:586. [PMID: 25452745 PMCID: PMC4233905 DOI: 10.3389/fmicb.2014.00586] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/17/2014] [Indexed: 12/17/2022] Open
Abstract
Efforts to develop vaccines against malaria have been the focus of substantial research activities for decades. Several categories of candidate vaccines are currently being developed for protection against malaria, based on antigens corresponding to the pre-erythrocytic, blood stage, or sexual stages of the parasite. Long lasting sterile protection from Plasmodium falciparum sporozoite challenge has been observed in human following vaccination with whole parasite formulations, clearly demonstrating that a protective immune response targeting predominantly the pre-erythrocytic stages can develop against malaria. However, most of vaccine candidates currently being investigated, which are mostly subunits vaccines, have not been able to induce substantial (>50%) protection thus far. This is due to the fact that the antigens responsible for protection against the different parasite stages are still yet to be known and relevant correlates of protection have remained elusive. For a vaccine to be developed in a timely manner, novel approaches are required. In this article, we review the novel approaches that have been developed to identify the antigens for the development of an effective malaria vaccine.
Collapse
Affiliation(s)
- Wan Ni Chia
- Singapore Immunology Network, Agency for Science, Technology and Research Singapore, Singapore ; Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| | - Yun Shan Goh
- Singapore Immunology Network, Agency for Science, Technology and Research Singapore, Singapore
| | - Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research Singapore, Singapore ; Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| |
Collapse
|
95
|
Terkawi MA, Kuroda Y, Fukumoto S, Tanaka S, Kojima N, Nishikawa Y. Plasmodium berghei circumsporozoite protein encapsulated in oligomannose-coated liposomes confers protection against sporozoite infection in mice. Malar J 2014; 13:426. [PMID: 25373617 PMCID: PMC4232614 DOI: 10.1186/1475-2875-13-426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 10/26/2014] [Indexed: 12/12/2022] Open
Abstract
Background The design and development of an effective malaria vaccine against the pre-erythrocytic and erythrocytic-stages of infection present a great challenge. Methods In the present study, protective efficacy of oligomannose-coated liposome (OML)-entrapped merozoite and sporozoite antigens against Plasmodium berghei challenge infection in BALB/c mice was evaluated. Results Subcutaneous immunization with truncated merozoite surface protein 1 entrapped with OML (OML-PbMSP1) prolonged survival, but failed to protect the mice from erythrocytic-stage infection, despite the antigen-specific antibody responses induced by the immunization regimen. In contrast, immunization with circumsporozoite protein entrapped with OML (OML-PbCSP) elicited antigen-specific humoral and cellular responses, which correlated with substantial protection against sporozoite challenge infections. Conclusions The current results represent the use of an oligomannose-coated liposome-based vaccine against pre-erythrocytic and erythrocytic stages malaria infection. This approach may offer a new vaccination strategy against malaria infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
96
|
New target for vaccine development. Nat Rev Drug Discov 2014. [DOI: 10.1038/nrd4393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
97
|
Njoroge M, Njuguna NM, Mutai P, Ongarora DSB, Smith PW, Chibale K. Recent approaches to chemical discovery and development against malaria and the neglected tropical diseases human African trypanosomiasis and schistosomiasis. Chem Rev 2014; 114:11138-63. [PMID: 25014712 DOI: 10.1021/cr500098f] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | | | | | - Paul W Smith
- Novartis Institute for Tropical Diseases , Singapore 138670, Singapore
| | | |
Collapse
|
98
|
Abstract
Natural selection defined by differential survival and reproduction of individuals in populations is influenced by genetic, developmental, and environmental factors operating at every age and stage in human life history: generation of gametes, conception, birth, maturation, reproduction, senescence, and death. Biological systems are built upon a hierarchical organization nesting subcellular organelles, cells, tissues, and organs within individuals, individuals within families, and families within populations, and the latter among other populations. Natural selection often acts simultaneously at more than one level of biological organization and on specific traits, which we define as multilevel selection. Under this model, the individual is a fundamental unit of biological organization and also of selection, imbedded in a larger evolutionary context, just as it is a unit of medical intervention imbedded in larger biological, cultural, and environmental contexts. Here, we view human health and life span as necessary consequences of natural selection, operating at all levels and phases of biological hierarchy in human life history as well as in sociological and environmental milieu. An understanding of the spectrum of opportunities for natural selection will help us develop novel approaches to improving healthy life span through specific and global interventions that simultaneously focus on multiple levels of biological organization. Indeed, many opportunities exist to apply multilevel selection models employed in evolutionary biology and biodemography to improving human health at all hierarchical levels. Multilevel selection perspective provides a rational theoretical foundation for a synthesis of medicine and evolution that could lead to discovering effective predictive, preventive, palliative, potentially curative, and individualized approaches in medicine and in global health programs.
Collapse
|