51
|
Abioye OE, Osunla CA, Nontongana N, Okoh AI. Occurrence of virulence determinants in vibrio cholerae, vibrio mimicus, vibrio alginolyticus, and vibrio parahaemolyticus isolates from important water resources of Eastern Cape, South Africa. BMC Microbiol 2023; 23:316. [PMID: 37891478 PMCID: PMC10612165 DOI: 10.1186/s12866-023-03060-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Virulence determinants are crucial to the risk assessment of pathogens in an environment. This study investigated the presence of eleven key virulence-associated genes in Vibrio cholerae (n = 111) and Vibrio mimicus (n = 22) and eight virulence determinants in Vibrio alginolyticus (n = 65) and Vibrio parahaemolyticus (n = 17) isolated from six important water resources in Eastern Cape, South Africa, using PCR techniques. The multiple virulence gene indexes (MVGI) for sampling sites and isolates as well as hotspots for potential vibriosis outbreaks among sampling sites were determined statistically based on the comparison of MVGI. RESULT The PCR assay showed that all the V. cholerae isolates belong to non-O1/non-O139 serogroups. Of the isolates, Vibrio Cholera (84%), V. mimicus (73%), V. alginolyticus (91%) and V. parahaemolyticus (100%) isolates harboured at least one of the virulence-associated genes investigated. The virulence gene combinations detected in isolates varied at sampling site and across sites. Typical virulence-associated determinants of V. cholerae were detected in V. mimicus while that of V. parahaemolyticus were detected in V. alginolyticus. The isolates with the highest MVGI were recovered from three estuaries (Sunday river, Swartkopps river, buffalo river) and a freshwater resource (Lashinton river). The cumulative MVGI for V. cholerae, V. mimicus, V. alginolyticus and V. parahaemolyticus isolates were 0.34, 0.20, 0.45, and 0.40 respectively. The targeted Vibrio spp. in increasing order of the public health risk posed in our study areas based on the MVGI is V. alginolyticus > V. parahaemolyticus > V. cholerae > V. mimicus. Five (sites SR, PA5, PA6, EL4 and EL6) out of the seventeen sampling sites were detected as the hotspots for potential cholera-like infection and vibriosis outbreaks. CONCLUSIONS Our findings suggest that humans having contact with water resources in our study areas are exposed to potential public health risks owing to the detection of virulent determinants in human pathogenic Vibrio spp. recovered from the water resources. The study affirms the relevancy of environmental Vibrio species to the epidemiology of vibriosis, cholera and cholera-like infections. Hence we suggest a monitoring program for human pathogenic Vibrio spp. in the environment most especially surface water that humans have contact with regularly.
Collapse
Affiliation(s)
| | - Charles A Osunla
- Department of Microbiology, Adekunle Ajasin University, Akungba Akoko, Nigeria
| | - Nolonwabo Nontongana
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| |
Collapse
|
52
|
Yang J, Jia P, Wang J, Jin Z. Rich dynamics of a bidirectionally linked immuno-epidemiological model for cholera. J Math Biol 2023; 87:71. [PMID: 37848667 DOI: 10.1007/s00285-023-02009-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 09/24/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
Cholera is an environmentally driven disease where the human hosts both ingest the pathogen from polluted environment and shed the pathogen to the environment, generating a two-way feedback cycle. In this paper, we propose a bidirectionally linked immuno-epidemiological model to study the interaction of within- and between-host cholera dynamics. We conduct a rigorous analysis for this multiscale model, with a focus on the stability and bifurcation properties of each feasible equilibrium. We find that the parameter that represents the bidirectional connection is a key factor in shaping the rich dynamics of the system, including the occurrence of the backward bifurcation and Hopf bifurcation. Numerical results illustrate a practical application of our model and add new insight into the prevention and intervention of cholera epidemics.
Collapse
Affiliation(s)
- Junyuan Yang
- Complex Systems Research Center, Shanxi University, Taiyuan, 030006, Shanxi, People's Republic of China.
- Shanxi Key Laboratory of Mathematical Techniques and Big Data Analysis on Disease Control and Prevention, Shanxi University, Taiyuan, 030006, People's Republic of China.
| | - Peiqi Jia
- Complex Systems Research Center, Shanxi University, Taiyuan, 030006, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Mathematical Techniques and Big Data Analysis on Disease Control and Prevention, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Jin Wang
- Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN, 37403, USA
| | - Zhen Jin
- Complex Systems Research Center, Shanxi University, Taiyuan, 030006, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Mathematical Techniques and Big Data Analysis on Disease Control and Prevention, Shanxi University, Taiyuan, 030006, People's Republic of China
| |
Collapse
|
53
|
Lloyd CJ, Guo S, Kinrade B, Zahiri H, Eves R, Ali SK, Yildiz F, Voets IK, Davies PL, Klose KE. A peptide-binding domain shared with an Antarctic bacterium facilitates Vibrio cholerae human cell binding and intestinal colonization. Proc Natl Acad Sci U S A 2023; 120:e2308238120. [PMID: 37729203 PMCID: PMC10523503 DOI: 10.1073/pnas.2308238120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/31/2023] [Indexed: 09/22/2023] Open
Abstract
Vibrio cholerae, the causative agent of the disease cholera, is responsible for multiple pandemics. V. cholerae binds to and colonizes the gastrointestinal tract within the human host, as well as various surfaces in the marine environment (e.g., zooplankton) during interepidemic periods. A large adhesin, the Flagellar Regulated Hemagglutinin A (FrhA), enhances binding to erythrocytes and epithelial cells and enhances intestinal colonization. We identified a peptide-binding domain (PBD) within FrhA that mediates hemagglutination, binding to epithelial cells, intestinal colonization, and facilitates biofilm formation. Intriguingly, this domain is also found in the ice-binding protein of the Antarctic bacterium Marinomonas primoryensis, where it mediates binding to diatoms. Peptide inhibitors of the M. primoryensis PBD inhibit V. cholerae binding to human cells as well as to diatoms and inhibit biofilm formation. Moreover, the M. primoryensis PBD inserted into FrhA allows V. cholerae to bind human cells and colonize the intestine and also enhances biofilm formation, demonstrating the interchangeability of the PBD from these bacteria. Importantly, peptide inhibitors of PBD reduce V. cholerae intestinal colonization in infant mice. These studies demonstrate how V. cholerae uses a PBD shared with a diatom-binding Antarctic bacterium to facilitate intestinal colonization in humans and biofilm formation in the environment.
Collapse
Affiliation(s)
- Cameron J. Lloyd
- South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, TX78249
- Department of Molecular Microbiology and Immunology, University of Texas, San Antonio, TX78249
| | - Shuaiqi Guo
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ONK7L 3N6, Canada
| | - Brett Kinrade
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ONK7L 3N6, Canada
| | - Hossein Zahiri
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ONK7L 3N6, Canada
| | - Robert Eves
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ONK7L 3N6, Canada
| | - Syed Khalid Ali
- South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, TX78249
- Department of Molecular Microbiology and Immunology, University of Texas, San Antonio, TX78249
| | - Fitnat Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA95064
| | - Ilja K. Voets
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven5612, the Netherlands
| | - Peter L. Davies
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ONK7L 3N6, Canada
| | - Karl E. Klose
- South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, TX78249
- Department of Molecular Microbiology and Immunology, University of Texas, San Antonio, TX78249
| |
Collapse
|
54
|
Iancu MA, Profir M, Roşu OA, Ionescu RF, Cretoiu SM, Gaspar BS. Revisiting the Intestinal Microbiome and Its Role in Diarrhea and Constipation. Microorganisms 2023; 11:2177. [PMID: 37764021 PMCID: PMC10538221 DOI: 10.3390/microorganisms11092177] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The gut microbiota represents a community of microorganisms (bacteria, fungi, archaea, viruses, and protozoa) that colonize the gut and are responsible for gut mucosal structural integrity and immune and metabolic homeostasis. The relationship between the gut microbiome and human health has been intensively researched in the past years. It is now widely recognized that gut microbial composition is highly responsible for the general health of the host. Among the diseases that have been linked to an altered gut microbial population are diarrheal illnesses and functional constipation. The capacity of probiotics to modulate the gut microbiome population, strengthen the intestinal barrier, and modulate the immune system together with their antioxidant properties have encouraged the research of probiotic therapy in many gastrointestinal afflictions. Dietary and lifestyle changes and the use of probiotics seem to play an important role in easing constipation and effectively alleviating diarrhea by suppressing the germs involved. This review aims to describe how probiotic bacteria and the use of specific strains could interfere and bring benefits as an associated treatment for diarrhea and constipation.
Collapse
Affiliation(s)
- Mihaela Adela Iancu
- Department of Family Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Monica Profir
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania; (M.P.); (O.A.R.)
| | - Oana Alexandra Roşu
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania; (M.P.); (O.A.R.)
| | - Ruxandra Florentina Ionescu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Cardiology I, “Dr. Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
| | - Sanda Maria Cretoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Bogdan Severus Gaspar
- Surgery Clinic, Emergency Clinical Hospital, 014461 Bucharest, Romania;
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
55
|
Lee D, Choi H, Son S, Bae J, Joo J, Kim DW, Kim EJ. Expression of Cholera Toxin (CT) and the Toxin Co-Regulated Pilus (TCP) by Variants of ToxT in Vibrio cholerae Strains. Toxins (Basel) 2023; 15:507. [PMID: 37624264 PMCID: PMC10467113 DOI: 10.3390/toxins15080507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
The expression of the two major virulence genes of Vibrio cholerae-tcpA (the major subunit of the toxin co-regulated pilus) and ctxAB (cholera toxin)-is regulated by the ToxR regulon, which is triggered by environmental stimuli during infection within the human small intestine. Special culture methods are required to induce the expression of virulence genes in V. cholerae in the laboratory setting. In the present study, induction of the expression of virulence genes by two point mutations (65th and 139th amino acids) in toxT, which is produced by the ToxR regulon and activates the transcription of the virulence genes in V. cholerae, under laboratory culture conditions has been investigated. Each of the four toxT alleles assessed displayed different transcriptional activator functions in a given V. cholerae strain. Although the ToxR regulon has been known to not be expressed by El Tor biotype V. cholerae strains cultured under standard laboratory conditions, the variant toxT alleles that we assessed in this study enabled the expression virulence genes in El Tor biotype strains grown under simple culture conditions comprising shake culture in LB medium, suggesting that the regulation of virulence gene expression may be regulated more complexly than previously thought and may involve additional factors beyond the production of ToxT by the ToxR regulon.
Collapse
Affiliation(s)
- Donghyun Lee
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Hunseok Choi
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Seonghyeon Son
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Jonghyun Bae
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Jayun Joo
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Dong Wook Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Eun Jin Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
56
|
Mincer TJ, Bos RP, Zettler ER, Zhao S, Asbun AA, Orsi WD, Guzzetta VS, Amaral-Zettler LA. Sargasso Sea Vibrio bacteria: Underexplored potential pathovars in a perturbed habitat. WATER RESEARCH 2023; 242:120033. [PMID: 37244770 DOI: 10.1016/j.watres.2023.120033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/25/2023] [Accepted: 05/01/2023] [Indexed: 05/29/2023]
Abstract
We fully sequenced the genomes of 16 Vibrio cultivars isolated from eel larvae, plastic marine debris (PMD), the pelagic brown macroalga Sargassum, and seawater samples collected from the Caribbean and Sargasso Seas of the North Atlantic Ocean. Annotation and mapping of these 16 bacterial genome sequences to a PMD-derived Vibrio metagenome-assembled genome created for this study showcased vertebrate pathogen genes closely-related to cholera and non-cholera pathovars. Phenotype testing of cultivars confirmed rapid biofilm formation, hemolytic, and lipophospholytic activities, consistent with pathogenic potential. Our study illustrates that open ocean vibrios represent a heretofore undescribed group of microbes, some representing potential new species, possessing an amalgam of pathogenic and low nutrient acquisition genes, reflecting their pelagic habitat and the substrates and hosts they colonize.
Collapse
Affiliation(s)
- Tracy J Mincer
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA; Department of Biology, Wilkes Honors College, Florida Atlantic University, Jupiter, FL, USA.
| | - Ryan P Bos
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA
| | - Erik R Zettler
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Texel, the Netherlands
| | - Shiye Zhao
- Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushimacho, Yokosuka 237-0061, Japan
| | - Alejandro A Asbun
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Texel, the Netherlands
| | - William D Orsi
- Department of Earth and Environmental Sciences, Paleontology and Geobiology,Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | | | - Linda A Amaral-Zettler
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Texel, the Netherlands; Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands; Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA.
| |
Collapse
|
57
|
Pellegri C, Moreau A, Duché D, Houot L. Direct interaction between fd phage pilot protein pIII and the TolQ-TolR proton-dependent motor provides new insights into the import of filamentous phages. J Biol Chem 2023; 299:105048. [PMID: 37451481 PMCID: PMC10424213 DOI: 10.1016/j.jbc.2023.105048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
Filamentous phages are one of the simplest examples of viruses with a protein capsid that protects a circular single-stranded DNA genome. The infection is very specific, nonlytic, and can strongly affect the physiology or provide new pathogenic factors to its bacterial host. The infection process is proposed to rely on a pore-forming mechanism similar to that of certain nonenveloped eukaryotic viruses. The Ff coliphages (including M13, fd, and f1) have been intensively studied and were used to establish the sequence of events taking place for efficient crossing of the host envelope structure. However, the mechanism involved in the penetration of the cell inner membrane is not well understood. Here, we identify new host players involved in the phage translocation mechanism. Interaction studies by a combination of in vivo biochemical methods demonstrate that the adhesion protein pIII located at the tip of the phage binds to TolQ and TolR, two proteins that form a conserved proton-dependent molecular motor in the inner membrane of the host cell. Moreover, in vivo cysteine cross-linking studies reveal that the interactions between the pIII and TolQ or TolR occur between their transmembrane helix domains and may be responding to the proton motive force status of the cell. These results allow us to propose a model for the late stage of filamentous phage translocation mediated by multiple interactions with each individual component of the host TolQRA complex.
Collapse
Affiliation(s)
- Callypso Pellegri
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ - CNRS, Marseille Cedex, France
| | - Ambre Moreau
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ - CNRS, Marseille Cedex, France
| | - Denis Duché
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ - CNRS, Marseille Cedex, France
| | - Laetitia Houot
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ - CNRS, Marseille Cedex, France.
| |
Collapse
|
58
|
Zou G, He L, Rao J, Song Z, Du H, Li R, Wang W, Zhou Y, Liang L, Chen H, Li J. Improving the safety and efficacy of phage therapy from the perspective of phage-mammal interactions. FEMS Microbiol Rev 2023; 47:fuad042. [PMID: 37442611 DOI: 10.1093/femsre/fuad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 07/15/2023] Open
Abstract
Phage therapy has re-emerged as a promising solution for combating antimicrobial-resistant bacterial infections. Increasingly, studies have revealed that phages possess therapeutic potential beyond their antimicrobial properties, including regulating the gut microbiome and maintain intestinal homeostasis, as a novel nanocarrier for targeted drug delivery. However, the complexity and unpredictability of phage behavior during treatment pose a significant challenge in clinical practice. The intricate interactions established between phages, humans, and bacteria throughout their long coexistence in the natural ecosystem contribute to the complexity of phage behavior in therapy, raising concerns about their efficacy and safety as therapeutic agents. Revealing the mechanisms by which phages interact with the human body will provide a theoretical basis for increased application of promising phage therapy. In this review, we provide a comprehensive summary of phage-mammal interactions, including signaling pathways, adaptive immunity responses, and phage-mediated anti-inflammatory responses. Then, from the perspective of phage-mammalian immune system interactions, we present the first systematic overview of the factors affecting phage therapy, such as the mode of administration, the physiological status of the patient, and the biological properties of the phage, to offer new insights into phage therapy for various human diseases.
Collapse
Affiliation(s)
- Geng Zou
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijun He
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Rao
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiyong Song
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Hu Du
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Runze Li
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenjing Wang
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Zhou
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Liang
- School of Bioscience, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinquan Li
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| |
Collapse
|
59
|
Duddy OP, Silpe JE, Fei C, Bassler BL. Natural silencing of quorum-sensing activity protects Vibrio parahaemolyticus from lysis by an autoinducer-detecting phage. PLoS Genet 2023; 19:e1010809. [PMID: 37523407 PMCID: PMC10426928 DOI: 10.1371/journal.pgen.1010809] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/15/2023] [Accepted: 07/15/2023] [Indexed: 08/02/2023] Open
Abstract
Quorum sensing (QS) is a chemical communication process that bacteria use to track population density and orchestrate collective behaviors. QS relies on the production, accumulation, and group-wide detection of extracellular signal molecules called autoinducers. Vibriophage 882 (phage VP882), a bacterial virus, encodes a homolog of the Vibrio QS receptor-transcription factor, called VqmA, that monitors the Vibrio QS autoinducer DPO. Phage VqmA binds DPO at high host-cell density and activates transcription of the phage gene qtip. Qtip, an antirepressor, launches the phage lysis program. Phage-encoded VqmA when bound to DPO also manipulates host QS by activating transcription of the host gene vqmR. VqmR is a small RNA that controls downstream QS target genes. Here, we sequence Vibrio parahaemolyticus strain O3:K6 882, the strain from which phage VP882 was initially isolated. The chromosomal region normally encoding vqmR and vqmA harbors a deletion encompassing vqmR and a portion of the vqmA promoter, inactivating that QS system. We discover that V. parahaemolyticus strain O3:K6 882 is also defective in its other QS systems, due to a mutation in luxO, encoding the central QS transcriptional regulator LuxO. Both the vqmR-vqmA and luxO mutations lock V. parahaemolyticus strain O3:K6 882 into the low-cell density QS state. Reparation of the QS defects in V. parahaemolyticus strain O3:K6 882 promotes activation of phage VP882 lytic gene expression and LuxO is primarily responsible for this effect. Phage VP882-infected QS-competent V. parahaemolyticus strain O3:K6 882 cells lyse more rapidly and produce more viral particles than the QS-deficient parent strain. We propose that, in V. parahaemolyticus strain O3:K6 882, constitutive maintenance of the low-cell density QS state suppresses the launch of the phage VP882 lytic cascade, thereby protecting the bacterial host from phage-mediated lysis.
Collapse
Affiliation(s)
- Olivia P. Duddy
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Justin E. Silpe
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Chenyi Fei
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Bonnie L. Bassler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
60
|
Li X, Wang X, Li R, Zhang W, Wang L, Yan B, Zhu T, Xu Y, Tan D. Characterization of a Filamentous Phage, Vaf1, from Vibrio alginolyticus AP-1. Appl Environ Microbiol 2023; 89:e0052023. [PMID: 37255423 PMCID: PMC10304664 DOI: 10.1128/aem.00520-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/11/2023] [Indexed: 06/01/2023] Open
Abstract
Filamentous phages are ubiquitously distributed in the global oceans. However, little is known about their biological contribution to their host's genetic and phenotypic diversity. In this study, a filamentous phage, Vaf1, was isolated and characterized from the emerging marine pathogen strain Vibrio alginolyticus AP-1. We explored the effects of the resident phage Vaf1 on the host physiology under diverse conditions by precisely deleting the entire phage Vaf1. Our results demonstrate that the presence of phage Vaf1 significantly increased biofilm formation, swarming motility, and contact-dependent competition. Furthermore, the gene expression profile suggests that several phage genes were upregulated in response to low-nutrient conditions. Unexpectedly, an in vivo study of zebrafish shows that fish infected with strain ΔVaf1 survived longer than those infected with wild-type strain AP-1, indicating that Vaf1 contributes to the virulence of V. alginolyticus. Together, our results provide direct evidence for the effect of Vaf1 phage-mediated phenotypic changes in marine bacteria V. alginolyticus. This further emphasizes the impressive complexity and diversity that filamentous phage-host interactions pose and the challenges associated with bacterial disease control in marine aquaculture. IMPORTANCE Non-lytic filamentous phages can replicate without killing their host, establishing long-term persistence within the bacterial host. In contrast to the well-studied CTXφ phage of the human-pathogenic Vibrio cholerae, little is known about the filamentous phage Vaf1 and its biological role in host fitness. In this study, we constructed a filamentous phage-deleted strain, ΔVaf1, and provided direct evidence on how an intact phage, φVaf1, belonging to the family Inoviridae, helps the bacterial host AP-1 to overcome adverse environmental conditions. Our results likely open new avenues for fundamental studies on how filamentous phage-host interactions regulate different aspects of Vibrio cell behaviors.
Collapse
Affiliation(s)
- Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xiao Wang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Ruoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Wan Zhang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Bo Yan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Tongyu Zhu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Demeng Tan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
61
|
Duddy OP, Silpe JE, Fei C, Bassler BL. Natural Silencing of Quorum-Sensing Activity Protects Vibrio parahaemolyticus from Lysis by an Autoinducer-Detecting Phage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543668. [PMID: 37333398 PMCID: PMC10274711 DOI: 10.1101/2023.06.05.543668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Quorum sensing (QS) is a chemical communication process that bacteria use to track population density and orchestrate collective behaviors. QS relies on the production, accumulation, and group-wide detection of extracellular signal molecules called autoinducers. Vibriophage 882 (phage VP882), a bacterial virus, encodes a homolog of the Vibrio QS receptor-transcription factor, called VqmA, that monitors the Vibrio QS autoinducer DPO. Phage VqmA binds DPO at high host-cell density and activates transcription of the phage gene qtip . Qtip, an antirepressor, launches the phage lysis program. Phage-encoded VqmA when bound to DPO also manipulates host QS by activating transcription of the host gene vqmR . VqmR is a small RNA that controls downstream QS target genes. Here, we sequence Vibrio parahaemolyticus strain O3:K6 882, the strain from which phage VP882 was initially isolated. The chromosomal region normally encoding vqmR and vqmA harbors a deletion encompassing vqmR and a portion of the vqmA promoter, inactivating that QS system. We discover that V. parahaemolyticus strain O3:K6 882 is also defective in its other QS systems, due to a mutation in luxO , encoding the central QS transcriptional regulator LuxO. Both the vqmR-vqmA and luxO mutations lock V. parahaemolyticus strain O3:K6 882 into the low-cell density QS state. Reparation of the QS defects in V. parahaemolyticus strain O3:K6 882 promotes activation of phage VP882 lytic gene expression and LuxO is primarily responsible for this effect. Phage VP882-infected QS-competent V. parahaemolyticus strain O3:K6 882 cells lyse more rapidly and produce more viral particles than the QS-deficient parent strain. We propose that, in V. parahaemolyticus strain O3:K6 882, constitutive maintenance of the low-cell density QS state suppresses the launch of the phage VP882 lytic cascade, thereby protecting the bacterial host from phage-mediated lysis.
Collapse
Affiliation(s)
- Olivia P. Duddy
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Justin E. Silpe
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Chenyi Fei
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Bonnie L. Bassler
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
62
|
Abstract
In order for successful fecal-oral transmission, enteric bacterial pathogens have to successfully compete with the intestinal microbiota and reach high concentrations during infection. Vibrio cholerae requires cholera toxin (CT) to cause diarrheal disease, which is thought to promote the fecal-oral transmission of the pathogen. Besides inducing diarrheal disease, the catalytic activity of CT also alters host intestinal metabolism, which promotes the growth of V. cholerae during infection through the acquisition of host-derived nutrients. Furthermore, recent studies have found that CT-induced disease activates a niche-specific suite of V. cholerae genes during infection, some of which may be important for fecal-oral transmission of the pathogen. Our group is currently exploring the concept that CT-induced disease promotes the fecal-oral transmission of V. cholerae by modulating both host and pathogen metabolism. Furthermore, the role of the intestinal microbiota in pathogen growth and transmission during toxin-induced disease merits further investigation. These studies open the door to investigating whether other bacterial toxins also enhance pathogen growth and transmission during infection, which may shed light on the design of novel therapeutics for intervention or prevention of diarrheal diseases.
Collapse
Affiliation(s)
- Claire M. L. Chapman
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Andrew Kapinos
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Fabian Rivera-Chávez
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
63
|
Conners R, León-Quezada RI, McLaren M, Bennett NJ, Daum B, Rakonjac J, Gold VAM. Cryo-electron microscopy of the f1 filamentous phage reveals insights into viral infection and assembly. Nat Commun 2023; 14:2724. [PMID: 37169795 PMCID: PMC10175506 DOI: 10.1038/s41467-023-37915-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/04/2023] [Indexed: 05/13/2023] Open
Abstract
Phages are viruses that infect bacteria and dominate every ecosystem on our planet. As well as impacting microbial ecology, physiology and evolution, phages are exploited as tools in molecular biology and biotechnology. This is particularly true for the Ff (f1, fd or M13) phages, which represent a widely distributed group of filamentous viruses. Over nearly five decades, Ffs have seen an extraordinary range of applications, yet the complete structure of the phage capsid and consequently the mechanisms of infection and assembly remain largely mysterious. In this work, we use cryo-electron microscopy and a highly efficient system for production of short Ff-derived nanorods to determine a structure of a filamentous virus including the tips. We show that structure combined with mutagenesis can identify phage domains that are important in bacterial attack and for release of new progeny, allowing new models to be proposed for the phage lifecycle.
Collapse
Affiliation(s)
- Rebecca Conners
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Rayén Ignacia León-Quezada
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
- Nanophage Technologies, Palmerston North, New Zealand
| | - Mathew McLaren
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Nicholas J Bennett
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Bertram Daum
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Jasna Rakonjac
- School of Natural Sciences, Massey University, Palmerston North, New Zealand.
- Nanophage Technologies, Palmerston North, New Zealand.
| | - Vicki A M Gold
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
- Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
64
|
Tang X, Zhong L, Tang L, Fan C, Zhang B, Wang M, Dong H, Zhou C, Rensing C, Zhou S, Zeng G. Lysogenic bacteriophages encoding arsenic resistance determinants promote bacterial community adaptation to arsenic toxicity. THE ISME JOURNAL 2023:10.1038/s41396-023-01425-w. [PMID: 37161002 DOI: 10.1038/s41396-023-01425-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023]
Abstract
Emerging evidence from genomics gives us a glimpse into the potential contribution of lysogenic bacteriophages (phages) to the environmental adaptability of their hosts. However, it is challenging to quantify this kind of contribution due to the lack of appropriate genetic markers and the associated controllable environmental factors. Here, based on the unique transformable nature of arsenic (the controllable environmental factor), a series of flooding microcosms was established to investigate the contribution of arsM-bearing lysogenic phages to their hosts' adaptation to trivalent arsenic [As(III)] toxicity, where arsM is the marker gene associated with microbial As(III) detoxification. In the 15-day flooding period, the concentration of As(III) was significantly increased, and this elevated As(III) toxicity visibly inhibited the bacterial population, but the latter quickly adapted to As(III) toxicity. During the flooding period, some lysogenic phages re-infected new hosts after an early burst, while others persistently followed the productive cycle (i.e., lytic cycle). The unique phage-host interplay contributed to the rapid spread of arsM among soil microbiota, enabling the quick recovery of the bacterial community. Moreover, the higher abundance of arsM imparted a greater arsenic methylation capability to soil microbiota. Collectively, this study provides experimental evidence for lysogenic phages assisting their hosts in adapting to an extreme environment, which highlights the ecological perspectives on lysogenic phage-host mutualism.
Collapse
Affiliation(s)
- Xiang Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Linrui Zhong
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Changzheng Fan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China.
| | - Baowei Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Mier Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China.
| |
Collapse
|
65
|
Montero DA, Vidal RM, Velasco J, George S, Lucero Y, Gómez LA, Carreño LJ, García-Betancourt R, O’Ryan M. Vibrio cholerae, classification, pathogenesis, immune response, and trends in vaccine development. Front Med (Lausanne) 2023; 10:1155751. [PMID: 37215733 PMCID: PMC10196187 DOI: 10.3389/fmed.2023.1155751] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
Vibrio cholerae is the causative agent of cholera, a highly contagious diarrheal disease affecting millions worldwide each year. Cholera is a major public health problem, primarily in countries with poor sanitary conditions and regions affected by natural disasters, where access to safe drinking water is limited. In this narrative review, we aim to summarize the current understanding of the evolution of virulence and pathogenesis of V. cholerae as well as provide an overview of the immune response against this pathogen. We highlight that V. cholerae has a remarkable ability to adapt and evolve, which is a global concern because it increases the risk of cholera outbreaks and the spread of the disease to new regions, making its control even more challenging. Furthermore, we show that this pathogen expresses several virulence factors enabling it to efficiently colonize the human intestine and cause cholera. A cumulative body of work also shows that V. cholerae infection triggers an inflammatory response that influences the development of immune memory against cholera. Lastly, we reviewed the status of licensed cholera vaccines, those undergoing clinical evaluation, and recent progress in developing next-generation vaccines. This review offers a comprehensive view of V. cholerae and identifies knowledge gaps that must be addressed to develop more effective cholera vaccines.
Collapse
Affiliation(s)
- David A. Montero
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Roberto M. Vidal
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juliana Velasco
- Unidad de Paciente Crítico, Clínica Hospital del Profesor, Santiago, Chile
- Programa de Formación de Especialista en Medicina de Urgencia, Universidad Andrés Bello, Santiago, Chile
| | - Sergio George
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Yalda Lucero
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Pediatría y Cirugía Infantil, Hospital Dr. Roberto del Rio, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Leonardo A. Gómez
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Leandro J. Carreño
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Richard García-Betancourt
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Miguel O’Ryan
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
66
|
Inglis LK, Roach MJ, Edwards RA. Prophage rates in the human microbiome vary by body site and host health. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539508. [PMID: 37205434 PMCID: PMC10187302 DOI: 10.1101/2023.05.04.539508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Phages integrated into a bacterial genome-called prophages-continuously monitor the health of the host bacteria to determine when to escape the genome, protect their host from other phage infections, and may provide genes that promote bacterial growth. Prophages are essential to almost all microbiomes, including the human microbiome. However, most human microbiome studies focus on bacteria, ignoring free and integrated phages, so we know little about how these prophages affect the human microbiome. We compared the prophages identified in 11,513 bacterial genomes isolated from human body sites to characterise prophage DNA in the human microbiome. Here, we show that prophage DNA comprised an average of 1-5% of each bacterial genome. The prophage content per genome varies with the isolation site on the human body, the health of the human, and whether the disease was symptomatic. The presence of prophages promotes bacterial growth and sculpts the microbiome. However, the disparities caused by prophages vary throughout the body.
Collapse
Affiliation(s)
- Laura K. Inglis
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Michael J. Roach
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Robert A. Edwards
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
67
|
Chen X, Mendes BG, Alves BS, Duan Y. Phage therapy in gut microbiome. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 201:93-118. [PMID: 37770177 DOI: 10.1016/bs.pmbts.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Phage therapy, the use of bacteriophage viruses for bacterial infection treatment, has been around for almost a century, but with the increase in antibiotic use, its importance has declined rapidly. There has been renewed interest in revisiting this practice due to the general decline in the effectiveness of antibiotics, combined with improved understanding of human microbiota and advances in sequencing technologies. Phage therapy has been proposed as a clinical alternative to restore the gut microbiota in the absence of an effective treatment. That is due to its immunomodulatory and bactericidal effects against its target bacteria. In the gastrointestinal diseases field, phage therapy has been studied mainly as a promising tool in infectious diseases treatment, such as cholera and diarrhea. However, many studies have been conducted in non-communicable diseases, such as the targeting of adherent invasive Escherichia coli in Crohn's disease, the treatment of Clostridioides difficile in ulcerative colitis, the eradication of Fusobacterium nucleatum in colorectal cancer, the targeting of alcohol-producing Klebsiella pneumoniae in non-alcoholic fatty liver disease, or Enterococcus faecalis in alcohol-associated hepatitis. This review will summarize the changes in the gut microbiota and the phageome in association with some gastrointestinal and liver diseases and highlight the recent scientific advances in phage therapy as a therapeutic tool for their treatment.
Collapse
Affiliation(s)
- Xingyao Chen
- Department of Infectious Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Beatriz G Mendes
- Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Catarina, Campus Universitário Trindade, Florianópolis, Santa Catarina, Brazil
| | - Bruno Secchi Alves
- Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Catarina, Campus Universitário Trindade, Florianópolis, Santa Catarina, Brazil
| | - Yi Duan
- Department of Infectious Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
68
|
Silpe JE, Duddy OP, Bassler BL. Induction mechanisms and strategies underlying interprophage competition during polylysogeny. PLoS Pathog 2023; 19:e1011363. [PMID: 37200239 PMCID: PMC10194989 DOI: 10.1371/journal.ppat.1011363] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Affiliation(s)
- Justin E. Silpe
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Olivia P. Duddy
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Bonnie L. Bassler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
69
|
Chen L, Hou X, Chu H. The Novel Role of Phage Particles in Chronic Liver Diseases. Microorganisms 2023; 11:1181. [PMID: 37317156 PMCID: PMC10220600 DOI: 10.3390/microorganisms11051181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 06/16/2023] Open
Abstract
The gut microbiome is made up of bacteria, fungi, viruses and archaea, all of which are closely related with human health. As the main component of enterovirus, the role of bacteriophages (phages) in chronic liver disease has been gradually recognized. Chronic liver diseases, including alcohol-related liver disease and nonalcoholic fatty liver disease, exhibit alterations of the enteric phages. Phages shape intestinal bacterial colonization and regulate bacterial metabolism. Phages adjoining to intestinal epithelial cells prevent bacteria from invading the intestinal barrier, and mediate intestinal inflammatory response. Phages are also observed increasing intestinal permeability and migrating to peripheral blood and organs, likely contributing to inflammatory injury in chronic liver diseases. By preying on harmful bacteria, phages can improve the gut microbiome of patients with chronic liver disease and thus act as an effective treatment method.
Collapse
Affiliation(s)
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| |
Collapse
|
70
|
Mittal M, Tripathi S, Saini A, Mani I. Phage for treatment of Vibrio cholerae infection. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 201:21-39. [PMID: 37770173 DOI: 10.1016/bs.pmbts.2023.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Bacteriophages (or "phages") are ubiquitous and the amplest biological entities on our planet. It is a natural enemy of bacteria. Cholera is one of the most known diseases to cause multiple pandemics around the world, killing millions of people. The pathogen of cholera is Vibrio species. Up until the emergence of multidrug resistance, preventive therapeutics like antibiotics were the most effective means of battling bacteria. Globally, one of the most significant challenges in treating microbial infections is the development of drug-resistant strains. Based on their antibacterial properties and unique characteristics, phages are being comprehensively evaluated taxonomically. Moreover, phage-based vaccination is evolving as one of the most encouraging preventive approaches. Due to this, its related research got remarkable recognition. However, due to the rapid emergence of bacterial resistance to antibiotics, the use of phages (phage therapy) could be a major motive for research because the most promising solution lies in bacteriophages. This chapter briefly highlights the promising use of bacteriophages to combat Vibrio-related infectious diseases.
Collapse
Affiliation(s)
- Milky Mittal
- Dr. B.R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi, India
| | - Surbhi Tripathi
- Dr. B.R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi, India
| | - Ashok Saini
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, India.
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
71
|
Dorman MJ, Thomson NR. Vibrio cholerae O37: one of the exceptions that prove the rule. Microb Genom 2023; 9:mgen000980. [PMID: 37043377 PMCID: PMC10210954 DOI: 10.1099/mgen.0.000980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/10/2023] [Indexed: 04/13/2023] Open
Abstract
Between 1965 and 1968, outbreaks of cholera in Sudan and former Czechoslovakia provoked considerable public health concern. These still represent important historical events that need to be linked to the growing genomic evidence describing the aetiological agent of cholera, Vibrio cholerae. Whilst O1 serogroup V. cholerae are canonically associated with epidemic and pandemic cholera, these events were caused by a clone of toxigenic V. cholerae O37 that may be more globally distributed than just to Europe and North Africa. Understanding the biology of these non-O1 strains of V. cholerae is key to understanding how diseases like cholera continue to be globally important. In this article, we consolidate epidemiological, molecular and genomic descriptions of the bacteria responsible for these outbreaks. We attempt to resolve discrepancies in order to summarize the history and provenance of as many commonly used serogroup O37 strains as possible. Finally, we highlight the potential for whole-genome sequencing of V. cholerae O37 isolates from strain collections to shed light on the open questions that we identify.
Collapse
Affiliation(s)
- Matthew J. Dorman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Churchill College, University of Cambridge, Storey’s Way, Cambridge, CB3 0DS, UK
| | - Nicholas R. Thomson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- London School of Hygiene and Tropical Medicine, Keppel St, Bloomsbury, London, WC1E 7HT, UK
| |
Collapse
|
72
|
Burckhardt JC, Chong DHY, Pett N, Tropini C. Gut commensal Enterocloster species host inoviruses that are secreted in vitro and in vivo. MICROBIOME 2023; 11:65. [PMID: 36991500 PMCID: PMC10061712 DOI: 10.1186/s40168-023-01496-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/17/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Bacteriophages in the family Inoviridae, or inoviruses, are under-characterized phages previously implicated in bacterial pathogenesis by contributing to biofilm formation, immune evasion, and toxin secretion. Unlike most bacteriophages, inoviruses do not lyse their host cells to release new progeny virions; rather, they encode a secretion system that actively pumps them out of the bacterial cell. To date, no inovirus associated with the human gut microbiome has been isolated or characterized. RESULTS In this study, we utilized in silico, in vitro, and in vivo methods to detect inoviruses in bacterial members of the gut microbiota. By screening a representative genome library of gut commensals, we detected inovirus prophages in Enterocloster spp. (formerly Clostridium spp.). We confirmed the secretion of inovirus particles in in vitro cultures of these organisms using imaging and qPCR. To assess how the gut abiotic environment, bacterial physiology, and inovirus secretion may be linked, we deployed a tripartite in vitro assay that progressively evaluated bacterial growth dynamics, biofilm formation, and inovirus secretion in the presence of changing osmotic environments. Counter to other inovirus-producing bacteria, inovirus production was not correlated with biofilm formation in Enterocloster spp. Instead, the Enterocloster strains had heterogeneous responses to changing osmolality levels relevant to gut physiology. Notably, increasing osmolality induced inovirus secretion in a strain-dependent manner. We confirmed inovirus secretion in a gnotobiotic mouse model inoculated with individual Enterocloster strains in vivo in unperturbed conditions. Furthermore, consistent with our in vitro observations, inovirus secretion was regulated by a changed osmotic environment in the gut due to osmotic laxatives. CONCLUSION In this study, we report on the detection and characterization of novel inoviruses from gut commensals in the Enterocloster genus. Together, our results demonstrate that human gut-associated bacteria can secrete inoviruses and begin to elucidate the environmental niche filled by inoviruses in commensal bacteria. Video Abstract.
Collapse
Affiliation(s)
- Juan C Burckhardt
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Derrick H Y Chong
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Nicola Pett
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Carolina Tropini
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada.
- Humans and the Microbiome Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Canada.
| |
Collapse
|
73
|
Kumarage PM, Majeed S, De Silva LADS, Heo GJ. Detection of virulence, antimicrobial resistance, and heavy metal resistance properties in Vibrio anguillarum isolated from mullet (Mugil cephalus) cultured in Korea. Braz J Microbiol 2023; 54:415-425. [PMID: 36735199 PMCID: PMC9944176 DOI: 10.1007/s42770-023-00911-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
In the present study, we identified and characterized 22 strains of V. anguillarum from 145 samples of mullets (Mugill cephallus) cultured in several fish farms in South Korea. They were subjected to pathogenicity tests, antimicrobial susceptibility test, and broth dilution test to detect virulence markers, antimicrobial resistance, and heavy metal resistance properties. All the isolates showed amylase and caseinase activity, followed by gelatinase (90.9%), DNase (45.5%), and hemolysis activities (α = 81.1% and β = 18.2%). The PCR assay revealed that isolates were positive for VAC, ctxAB, AtoxR, tdh, tlh, trh, Vfh, hupO, VPI, and FtoxR virulence genes at different percentages. All the isolates showed multi-drug resistance properties (MAR index ≥ 0.2), while 100% of the isolates were resistant to oxacillin, ticarcillin, streptomycin, and ciprofloxacin. Antimicrobial resistance genes, qnrS (95.5%), qnrB (86.4%), and StrAB (27.3%), were reported. In addition, 40.9% of the isolates were cadmium-tolerant, with the presence of CzcA (86.4%) heavy metal resistance gene. The results revealed potential pathogenicity associated with V. anguillarum in aquaculture and potential health risk associated with consumer health.
Collapse
Affiliation(s)
- P M Kumarage
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Chungdae-Ro 1, Seowon-Gu, Chungbuk, 28644, Cheongju, South Korea
| | - Sana Majeed
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Chungdae-Ro 1, Seowon-Gu, Chungbuk, 28644, Cheongju, South Korea
| | - L A D S De Silva
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Chungdae-Ro 1, Seowon-Gu, Chungbuk, 28644, Cheongju, South Korea
| | - Gang-Joon Heo
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Chungdae-Ro 1, Seowon-Gu, Chungbuk, 28644, Cheongju, South Korea.
| |
Collapse
|
74
|
Schwartzkopf CM, Robinson AJ, Ellenbecker M, Faith DR, Schmidt AK, Brooks DM, Lewerke L, Voronina E, Dandekar AA, Secor PR. Tripartite interactions between filamentous Pf4 bacteriophage, Pseudomonas aeruginosa, and bacterivorous nematodes. PLoS Pathog 2023; 19:e1010925. [PMID: 36800381 PMCID: PMC9980816 DOI: 10.1371/journal.ppat.1010925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/02/2023] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa PAO1 is infected by the filamentous bacteriophage Pf4. Pf4 virions promote biofilm formation, protect bacteria from antibiotics, and modulate animal immune responses in ways that promote infection. Furthermore, strains cured of their Pf4 infection (ΔPf4) are less virulent in animal models of infection. Consistently, we find that strain ΔPf4 is less virulent in a Caenorhabditis elegans nematode infection model. However, our data indicate that PQS quorum sensing is activated and production of the pigment pyocyanin, a potent virulence factor, is enhanced in strain ΔPf4. The reduced virulence of ΔPf4 despite high levels of pyocyanin production may be explained by our finding that C. elegans mutants unable to sense bacterial pigments through the aryl hydrocarbon receptor are more susceptible to ΔPf4 infection compared to wild-type C. elegans. Collectively, our data support a model where suppression of quorum-regulated virulence factors by Pf4 allows P. aeruginosa to evade detection by innate host immune responses.
Collapse
Affiliation(s)
- Caleb M. Schwartzkopf
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Autumn J. Robinson
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Mary Ellenbecker
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Dominick R. Faith
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Amelia K. Schmidt
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Diane M. Brooks
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Lincoln Lewerke
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Ekaterina Voronina
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Ajai A. Dandekar
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Patrick R. Secor
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
- * E-mail:
| |
Collapse
|
75
|
McDonald ND, Rosenberger JR, Almagro-Moreno S, Boyd EF. The Role of Nutrients and Nutritional Signals in the Pathogenesis of Vibrio cholerae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:195-211. [PMID: 36792877 DOI: 10.1007/978-3-031-22997-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Vibrio cholerae, the agent of cholera, is a natural inhabitant of aquatic environments. Over the past decades, the importance of specific nutrients and micronutrients in the environmental survival, host colonization, and pathogenesis of this species has become increasingly clear. For instance, V. cholerae has evolved ingenious mechanisms that allow the bacterium to colonize and establish a niche in the intestine of human hosts, where it competes with commensals (gut microbiota) and other pathogenic bacteria for available nutrients. Here, we discuss the carbon and energy sources utilized by V. cholerae and what is known about the role of nutrition in V. cholerae colonization. We examine how nutritional signals affect virulence gene regulation and how interactions with intestinal commensal species can affect intestinal colonization.
Collapse
Affiliation(s)
- N D McDonald
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - J R Rosenberger
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - S Almagro-Moreno
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA.,National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL, USA
| | - E Fidelma Boyd
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.
| |
Collapse
|
76
|
Lau DYL, Aguirre Sánchez JR, Baker-Austin C, Martinez-Urtaza J. What Whole Genome Sequencing Has Told Us About Pathogenic Vibrios. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:337-352. [PMID: 36792883 DOI: 10.1007/978-3-031-22997-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
When the first microbial genome sequences were published just 20 years ago, our understanding regarding the microbial world changed dramatically. The genomes of the first pathogenic vibrios sequenced, including Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus revealed a functional and phylogenetic diversity previously unimagined as well as a genome structure indelibly shaped by horizontal gene transfer. The initial glimpses into these organisms also revealed a genomic plasticity that allowed these bacteria to thrive in challenging and varied aquatic and marine environments, but critically also a suite of pathogenicity attributes. In this review we outline how our understanding of vibrios has changed over the last two decades with the advent of genomics and advances in bioinformatic and data analysis techniques, it has become possible to provide a more cohesive understanding regarding these bacteria: how these pathogens have evolved and emerged from environmental sources, their evolutionary routes through time and space, how they interact with other bacteria and the human host, as well as initiate disease. We outline novel approaches to the use of whole genome sequencing for this important group of bacteria and how new sequencing technologies may be applied to study these organisms in future studies.
Collapse
Affiliation(s)
- Dawn Yan Lam Lau
- Centre for Environment, Fisheries and Aquaculture (CEFAS), Weymouth, Dorset, UK
| | - Jose Roberto Aguirre Sánchez
- Centre for Environment, Fisheries and Aquaculture (CEFAS), Weymouth, Dorset, UK.,Centro de Investigación en Alimentación y Desarrollo (CIAD), Culiacán, Sinaloa, Mexico
| | - Craig Baker-Austin
- Centre for Environment, Fisheries and Aquaculture (CEFAS), Weymouth, Dorset, UK
| | - Jaime Martinez-Urtaza
- Centre for Environment, Fisheries and Aquaculture (CEFAS), Weymouth, Dorset, UK. .,Department of Genetics and Microbiology, Facultat de Biociències, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain.
| |
Collapse
|
77
|
Environmental Reservoirs of Pathogenic Vibrio spp. and Their Role in Disease: The List Keeps Expanding. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:99-126. [PMID: 36792873 DOI: 10.1007/978-3-031-22997-8_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Vibrio species are natural inhabitants of aquatic environments and have complex interactions with the environment that drive the evolution of traits contributing to their survival. These traits may also contribute to their ability to invade or colonize animal and human hosts. In this review, we attempt to summarize the relationships of Vibrio spp. with other organisms in the aquatic environment and discuss how these interactions could potentially impact colonization of animal and human hosts.
Collapse
|
78
|
Balasubramanian D, López-Pérez M, Almagro-Moreno S. Cholera Dynamics and the Emergence of Pandemic Vibrio cholerae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:127-147. [PMID: 36792874 DOI: 10.1007/978-3-031-22997-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Cholera is a severe diarrheal disease caused by the aquatic bacterium Vibrio cholerae. Interestingly, to date, only one major clade has emerged to cause pandemic disease in humans: the clade that encompasses the strains from the O1 and O139 serogroups. In this chapter, we provide a comprehensive perspective on the virulence factors and mobile genetic elements (MGEs) associated with the emergence of pandemic V. cholerae strains and highlight novel findings such as specific genomic background or interactions between MGEs that explain their confined distribution. Finally, we discuss pandemic cholera dynamics contextualizing them within the evolution of the bacterium.
Collapse
Affiliation(s)
- Deepak Balasubramanian
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL, USA
| | - Mario López-Pérez
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL, USA
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Salvador Almagro-Moreno
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA.
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
79
|
Abstract
Vibrio cholerae O1 is the causative agent of cholera, a severe diarrheal disease which can cause death if left untreated. In this study, a collection of clinical and environmental V. cholerae serogroup O1 isolates from Australia (1977 to 1987) (from local cases and cases acquired through international travel) and publicly available international isolates were characterized for genotypic features (virulence genes, mobile genetic elements [MGEs], and antimicrobial resistance gene profiles). Whole-genome sequencing (WGS) was used to investigate and compare the genetic relatedness between the 44 Australian and nine travel-associated isolates and the 60 publicly available international V. cholerae sequences representing pre-seventh-pandemic (pre-7PET) isolates and different waves of 7PET isolates. In this study, 36 (81%) Australian clinical and aquatic isolates harbored the cholera toxin-producing genes located in the CTX bacteriophage region. All the Australian environmental and clinical isolates lacked the seventh-pandemic virulence-associated genomic islands (VSP-I and -II). In silico multilocus sequence typing (MLST) classified all nine internationally acquired isolates as sequence type 69 (ST69), 36 clinical and aquatic isolates as ST70, and eight isolates from Australia as ST71. Most of the nontoxigenic clinical and aquatic isolates of ST71 had diverse genetic variations compared to ST70 Australian strains. The antimicrobial resistance-associated genes gyrA, parC, and parE had no mutations in all the environmental and clinical isolates from Australia. The SXT genetic element and class 1 integron gene sequences were not detected in Australian strains. Moreover, in this study, a Bayesian evolutionary study suggests that two distinct lineages of ST71 (new set of strains) and ST70 strains were prevalent around similar times in Australia, in ~1973 and 1969. IMPORTANCE Australia has its own indigenous V. cholerae strains, both toxigenic and nontoxigenic, that are associated with disease. Exotic strains are also detected in Australian patients returning from overseas travel. The clinical and aquatic V. cholerae O1 toxin gene-positive isolates from Australia responsible for cases in 1977 to 1987 were linked to acquisition from Queensland waterways but until now had not been characterized genetically. It is important to determine the genetic relatedness of Australian strains to international strains to assist in understanding their origin. This is the first extensive study to provide sequences and genomic analysis focused on toxigenic O1 V. cholerae clinical and environmental strains from Australia and its possible evolutionary relationship with other publicly available pre-7PET and 7PET V. cholerae strains. It is important to understand the population genetics of Australian V. cholerae from a public health perspective to assist in devising control measures and management plans for reducing V. cholerae exposure in Australia, given previous Australian disease clusters.
Collapse
|
80
|
Wang BX, Takagi J, McShane A, Park JH, Aoki K, Griffin C, Teschler J, Kitts G, Minzer G, Tiemeyer M, Hevey R, Yildiz F, Ribbeck K. Host-derived O-glycans inhibit toxigenic conversion by a virulence-encoding phage in Vibrio cholerae. EMBO J 2023; 42:e111562. [PMID: 36504455 PMCID: PMC9890226 DOI: 10.15252/embj.2022111562] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 12/14/2022] Open
Abstract
Pandemic and endemic strains of Vibrio cholerae arise from toxigenic conversion by the CTXφ bacteriophage, a process by which CTXφ infects nontoxigenic strains of V. cholerae. CTXφ encodes the cholera toxin, an enterotoxin responsible for the watery diarrhea associated with cholera infections. Despite the critical role of CTXφ during infections, signals that affect CTXφ-driven toxigenic conversion or expression of the CTXφ-encoded cholera toxin remain poorly characterized, particularly in the context of the gut mucosa. Here, we identify mucin polymers as potent regulators of CTXφ-driven pathogenicity in V. cholerae. Our results indicate that mucin-associated O-glycans block toxigenic conversion by CTXφ and suppress the expression of CTXφ-related virulence factors, including the toxin co-regulated pilus and cholera toxin, by interfering with the TcpP/ToxR/ToxT virulence pathway. By synthesizing individual mucin glycan structures de novo, we identify the Core 2 motif as the critical structure governing this virulence attenuation. Overall, our results highlight a novel mechanism by which mucins and their associated O-glycan structures affect CTXφ-mediated evolution and pathogenicity of V. cholerae, underscoring the potential regulatory power housed within mucus.
Collapse
Affiliation(s)
- Benjamin X Wang
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
- Department of Microbiology and ImmunologyStanford UniversityStanfordCAUSA
| | - Julie Takagi
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Abigail McShane
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Jin Hwan Park
- Department of Microbiology and Environmental ToxicologyUniversity of CaliforniaSanta CruzCAUSA
| | - Kazuhiro Aoki
- Complex Carbohydrate Research CenterUniversity of GeorgiaAthensGAUSA
| | - Catherine Griffin
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Jennifer Teschler
- Department of Microbiology and Environmental ToxicologyUniversity of CaliforniaSanta CruzCAUSA
| | - Giordan Kitts
- Department of Microbiology and Environmental ToxicologyUniversity of CaliforniaSanta CruzCAUSA
| | - Giulietta Minzer
- Department of Pharmaceutical SciencesUniversity of BaselBaselSwitzerland
| | - Michael Tiemeyer
- Complex Carbohydrate Research CenterUniversity of GeorgiaAthensGAUSA
| | - Rachel Hevey
- Department of Pharmaceutical SciencesUniversity of BaselBaselSwitzerland
| | - Fitnat Yildiz
- Department of Microbiology and Environmental ToxicologyUniversity of CaliforniaSanta CruzCAUSA
| | - Katharina Ribbeck
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
| |
Collapse
|
81
|
Pmorf0222, a Virulence Factor in Pasteurella multocida, Activates Nuclear Factor Kappa B and Mitogen-Activated Protein Kinase via Toll-Like Receptor 1/2. Infect Immun 2023; 91:e0019322. [PMID: 36541752 PMCID: PMC9872710 DOI: 10.1128/iai.00193-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pasteurella multocida primarily causes hemorrhagic septicemia and pneumonia in poultry and livestock. Identification of the relevant virulence factors is therefore essential for understanding its pathogenicity. Pmorf0222, encoding the PM0222 protein, is located on a specific prophage island of the pathogenic strain C48-1 of P. multocida. Its role in the pathogenesis of P. multocida infection is still unknown. The proinflammatory cytokine plays an important role in P. multocida infection; therefore, murine peritoneal exudate macrophages were treated with the purified recombinant PM0222, which induced the secretion of tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β) via the Toll-like receptor 1/2 (TLR1/2)-nuclear factor kappa B (NF-κB)/mitogen-activated protein kinase (MAPK) signaling and inflammasome activation. Additionally, the mutant strain and complemented strain were evaluated in the mouse model with P. multocida infection, and PM0222 was identified as a virulence factor, which was secreted by outer membrane vesicles of P. multocida. Further results revealed that Pmorf0222 affected the synthesis of the capsule, adhesion, serum sensitivity, and biofilm formation. Thus, we identified Pmorf0222 as a novel virulence factor in the C48-1 strain of P. multocida, explaining the high pathogenicity of this pathogenic strain.
Collapse
|
82
|
Billaud M, Petit MA, Lossouarn J. The Clostridium-infecting filamentous phage CAK1 genome analysis allows to define a new potential clade of Tubulavirales. FEMS Microbiol Lett 2023; 370:fnad099. [PMID: 37791400 DOI: 10.1093/femsle/fnad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/05/2023] Open
Abstract
What we know about Tubulavirales, i.e. filamentous phages, essentially comes from Gram-negative-infecting Inoviridae. However, metagenomics recently suggests filamentous phages are much more widespread and diverse. Here, we report the complete sequence and functional annotation of CAK1, a 6.6 kb filamentous phage that was shown to chronically infect Clostridium beijerinckii 30 years ago and only represents the second filamentous phage cultivated on a Gram-positive bacterium. CAK1 has a typical filamentous phage modular genome with no homologs in databases and we were interested to compare it with a pig gut filamentous phage metagenomics dataset that we previously assembled and for which many filamentous phages were predicted to infect Clostridium species by bioinformatics means. CAK1 is distantly related to nine of these sequences, two of which have been predicted as Clostridium-associated. In itself, this small cluster of CAK1-connected sequences sheds light on the diversity of filamentous phages that putatively infect Clostridium species, and probably many other Gram-positive genera.
Collapse
Affiliation(s)
- Maud Billaud
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Marie-Agnès Petit
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Julien Lossouarn
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| |
Collapse
|
83
|
Bi L, Han LL, Du S, Yu DT, He JZ, Zhang LM, Hu HW. Cross-biome soil viruses as an important reservoir of virulence genes. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130111. [PMID: 36209605 DOI: 10.1016/j.jhazmat.2022.130111] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Viruses can significantly influence the composition and functions of their host communities and enhance host pathogenicity via the transport of virus-encoded virulence genes. However, the contribution of viral communities to the dissemination of virulence genes across various biomes across a large scale is largely unknown. Here, we constructed 29,283 soil viral contigs (SVCs) from viral size fraction metagenomes and public databases. A total of 1310 virulence genes were identified from 1164 SVCs in a wide variety of soil biomes, including grassland, agricultural and forest soils. The virulence gene gmd was the most abundant one, followed by csrA, evpJ, and pblA. A great proportion of viruses encoding virulence genes were uncharacterized. Virus-host linkage analysis revealed that most viruses were linked to only one bacterial genus, whereas several SVCs were associated with more than one bacterial genus and even two bacterial phyla, suggesting the potential risk of spreading virulence genes across different bacterial communities via viruses. Altogether, we provided new evidence for the prevalence of virulence genes in soil viruses across biomes, which advanced our understanding of the potential role of soil viruses in driving the pathogenesis of their hosts in terrestrial ecosystems.
Collapse
Affiliation(s)
- Li Bi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Li-Li Han
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Shuai Du
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Dan-Ting Yu
- School of Geographical Sciences, Fujian Normal University, Fujian 350007, China
| | - Ji-Zheng He
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Li-Mei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hang-Wei Hu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
84
|
Tai JSB, Ferrell MJ, Yan J, Waters CM. New Insights into Vibrio cholerae Biofilms from Molecular Biophysics to Microbial Ecology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:17-39. [PMID: 36792869 PMCID: PMC10726288 DOI: 10.1007/978-3-031-22997-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
With the discovery that 48% of cholera infections in rural Bangladesh villages could be prevented by simple filtration of unpurified waters and the detection of Vibrio cholerae aggregates in stools from cholera patients it was realized V. cholerae biofilms had a central function in cholera pathogenesis. We are currently in the seventh cholera pandemic, caused by O1 serotypes of the El Tor biotypes strains, which initiated in 1961. It is estimated that V. cholerae annually causes millions of infections and over 100,000 deaths. Given the continued emergence of cholera in areas that lack access to clean water, such as Haiti after the 2010 earthquake or the ongoing Yemen civil war, increasing our understanding of cholera disease remains a worldwide public health priority. The surveillance and treatment of cholera is also affected as the world is impacted by the COVID-19 pandemic, raising significant concerns in Africa. In addition to the importance of biofilm formation in its life cycle, V. cholerae has become a key model system for understanding bacterial signal transduction networks that regulate biofilm formation and discovering fundamental principles about bacterial surface attachment and biofilm maturation. This chapter will highlight recent insights into V. cholerae biofilms including their structure, ecological role in environmental survival and infection, regulatory systems that control them, and biomechanical insights into the nature of V. cholerae biofilms.
Collapse
Affiliation(s)
- Jung-Shen B Tai
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Micah J Ferrell
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Jing Yan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Christopher M Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
85
|
Dantas R, Brocchi M, Pacheco Fill T. Chemical-Biology and Metabolomics Studies in Phage-Host Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1439:71-100. [PMID: 37843806 DOI: 10.1007/978-3-031-41741-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
For many years, several studies have explored the molecular mechanisms involved in the infection of bacteria by their specific phages to understand the main infection strategies and the host defense strategies. The modulation of the mechanisms involved in the infection, as well as the expression of key substances in the development of the different life cycles of phages, function as a natural source of strategies capable of promoting the control of different pathogens that are harmful to human and animal health. Therefore, this chapter aims to provide an overview of the mechanisms involved in virus-bacteria interaction to explore the main compounds produced or altered as a chemical survival strategy and the metabolism modulation when occurring a host-phage interaction. In this context, emphasis will be given to the chemistry of peptides/proteins and enzymes encoded by bacteriophages in the control of pathogenic bacteria and the use of secondary metabolites recently reported as active participants in the mechanisms of phage-bacteria interaction. Finally, metabolomics strategies developed to gain new insights into the metabolism involved in the phage-host interaction and the metabolomics workflow in host-phage interaction will be presented.
Collapse
Affiliation(s)
- Rodolfo Dantas
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Marcelo Brocchi
- Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Taícia Pacheco Fill
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
86
|
Molina-Quiroz RC, Camilli A, Silva-Valenzuela CA. Role of Bacteriophages in the Evolution of Pathogenic Vibrios and Lessons for Phage Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:149-173. [PMID: 36792875 PMCID: PMC10587905 DOI: 10.1007/978-3-031-22997-8_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Viruses of bacteria, i.e., bacteriophages (or phages for short), were discovered over a century ago and have played a major role as a model system for the establishment of the fields of microbial genetics and molecular biology. Despite the relative simplicity of phages, microbiologists are continually discovering new aspects of their biology including mechanisms for battling host defenses. In turn, novel mechanisms of host defense against phages are being discovered at a rapid clip. A deeper understanding of the arms race between bacteria and phages will continue to reveal novel molecular mechanisms and will be important for the rational design of phage-based prophylaxis and therapies to prevent and treat bacterial infections, respectively. Here we delve into the molecular interactions of Vibrio species and phages.
Collapse
Affiliation(s)
- Roberto C Molina-Quiroz
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance (Levy CIMAR), Tufts Medical Center and Tufts University, Boston, MA, USA
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, MA, USA
| | | |
Collapse
|
87
|
Klonowska A, Ardley J, Moulin L, Zandberg J, Patrel D, Gollagher M, Marinova D, Reddy TBK, Varghese N, Huntemann M, Woyke T, Seshadri R, Ivanova N, Kyrpides N, Reeve W. Discovery of a novel filamentous prophage in the genome of the Mimosa pudica microsymbiont Cupriavidus taiwanensis STM 6018. Front Microbiol 2023; 14:1082107. [PMID: 36925474 PMCID: PMC10011098 DOI: 10.3389/fmicb.2023.1082107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/24/2023] [Indexed: 03/08/2023] Open
Abstract
Integrated virus genomes (prophages) are commonly found in sequenced bacterial genomes but have rarely been described in detail for rhizobial genomes. Cupriavidus taiwanensis STM 6018 is a rhizobial Betaproteobacteria strain that was isolated in 2006 from a root nodule of a Mimosa pudica host in French Guiana, South America. Here we describe features of the genome of STM 6018, focusing on the characterization of two different types of prophages that have been identified in its genome. The draft genome of STM 6018 is 6,553,639 bp, and consists of 80 scaffolds, containing 5,864 protein-coding genes and 61 RNA genes. STM 6018 contains all the nodulation and nitrogen fixation gene clusters common to symbiotic Cupriavidus species; sharing >99.97% bp identity homology to the nod/nif/noeM gene clusters from C. taiwanensis LMG19424T and "Cupriavidus neocalidonicus" STM 6070. The STM 6018 genome contains the genomes of two prophages: one complete Mu-like capsular phage and one filamentous phage, which integrates into a putative dif site. This is the first characterization of a filamentous phage found within the genome of a rhizobial strain. Further examination of sequenced rhizobial genomes identified filamentous prophage sequences in several Beta-rhizobial strains but not in any Alphaproteobacterial rhizobia.
Collapse
Affiliation(s)
- Agnieszka Klonowska
- Université de Montpellier, IRD, CIRAD, INRAE, Institut AgroPHIM Plant Health Institute, Montpellier, France
| | - Julie Ardley
- Centre for Crop and Food Innovation, Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Lionel Moulin
- Université de Montpellier, IRD, CIRAD, INRAE, Institut AgroPHIM Plant Health Institute, Montpellier, France
| | - Jaco Zandberg
- Centre for Crop and Food Innovation, Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Delphine Patrel
- Université de Montpellier, IRD, CIRAD, INRAE, Institut AgroPHIM Plant Health Institute, Montpellier, France
| | - Margaret Gollagher
- Curtin University Sustainability Policy Institute, Curtin University, Bentley, WA, Australia
| | - Dora Marinova
- Curtin University Sustainability Policy Institute, Curtin University, Bentley, WA, Australia
| | - T B K Reddy
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Neha Varghese
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Marcel Huntemann
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Tanja Woyke
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Rekha Seshadri
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Natalia Ivanova
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Nikos Kyrpides
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Wayne Reeve
- Centre for Crop and Food Innovation, Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
88
|
Tian L, He L, Jackson K, Saif A, Khan S, Wan Z, Didar TF, Hosseinidoust Z. Self-assembling nanofibrous bacteriophage microgels as sprayable antimicrobials targeting multidrug-resistant bacteria. Nat Commun 2022; 13:7158. [PMID: 36470891 PMCID: PMC9723106 DOI: 10.1038/s41467-022-34803-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Nanofilamentous bacteriophages (bacterial viruses) are biofunctional, self-propagating, and monodisperse natural building blocks for virus-built materials. Minifying phage-built materials to microscale offers the promise of expanding the range function for these biomaterials to sprays and colloidal bioassays/biosensors. Here, we crosslink half a million self-organized phages as the sole structural component to construct each soft microgel. Through an in-house developed, biologics-friendly, high-throughput template method, over 35,000 phage-built microgels are produced from every square centimetre of a peelable microporous film template, constituting a 13-billion phage community. The phage-exclusive microgels exhibit a self-organized, highly-aligned nanofibrous texture and tunable auto-fluorescence. Further preservation of antimicrobial activity was achieved by making hybrid protein-phage microgels. When loaded with potent virulent phages, these microgels effectively reduce heavy loads of multidrug-resistant Escherichia coli O157:H7 on food products, leading to up to 6 logs reduction in 9 hours and rendering food contaminant free.
Collapse
Affiliation(s)
- Lei Tian
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Leon He
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Kyle Jackson
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Ahmed Saif
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Shadman Khan
- School of Biomedical Engineering, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Zeqi Wan
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, Hamilton, ON, L8S 4K1, Canada
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
- Department of Mechanical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Zeinab Hosseinidoust
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada.
- School of Biomedical Engineering, McMaster University, Hamilton, ON, L8S 4K1, Canada.
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
89
|
Jones JD, Varghese D, Pabary R, Langley RJ. The potential of bacteriophage therapy in the treatment of paediatric respiratory infections. Paediatr Respir Rev 2022; 44:70-77. [PMID: 35241371 DOI: 10.1016/j.prrv.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/14/2022]
Abstract
The looming antibiotic resistance crisis is forcing clinicians to consider alternative approaches to treating bacterial infections. As the window of use for current antimicrobial agents becomes ever narrower, we consider if looking back will now be the way forward. Conceptually, phage therapy is simple and specific; a targeted treatment to control bacterial overgrowth. In this article we discuss bacteriophage and potential use in future therapy.
Collapse
Affiliation(s)
- J D Jones
- Infection Medicine, University of Edinburgh, United Kingdom
| | - D Varghese
- Department of Paediatric Respiratory and Sleep Medicine, Royal Hospital for Children, Glasgow, United Kingdom
| | - R Pabary
- Department of Paediatric Respiratory and Sleep Medicine, Royal Brompton Hospital, London, United Kingdom
| | - R J Langley
- Department of Paediatric Respiratory and Sleep Medicine, Royal Hospital for Children, Glasgow, United Kingdom; School of Medicine, Dentistry & Nursing, University of Glasgow, United Kingdom.
| |
Collapse
|
90
|
Wang J. Mathematical Models for Cholera Dynamics-A Review. Microorganisms 2022; 10:microorganisms10122358. [PMID: 36557611 PMCID: PMC9783556 DOI: 10.3390/microorganisms10122358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022] Open
Abstract
Cholera remains a significant public health burden in many countries and regions of the world, highlighting the need for a deeper understanding of the mechanisms associated with its transmission, spread, and control. Mathematical modeling offers a valuable research tool to investigate cholera dynamics and explore effective intervention strategies. In this article, we provide a review of the current state in the modeling studies of cholera. Starting from an introduction of basic cholera transmission models and their applications, we survey model extensions in several directions that include spatial and temporal heterogeneities, effects of disease control, impacts of human behavior, and multi-scale infection dynamics. We discuss some challenges and opportunities for future modeling efforts on cholera dynamics, and emphasize the importance of collaborations between different modeling groups and different disciplines in advancing this research area.
Collapse
Affiliation(s)
- Jin Wang
- Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA
| |
Collapse
|
91
|
Kim EJ, Bae J, Ju YJ, Ju DB, Lee D, Son S, Choi H, Ramamurthy T, Yun CH, Kim DW. Inactivated Vibrio cholerae Strains That Express TcpA via the toxT-139F Allele Induce Antibody Responses against TcpA. J Microbiol Biotechnol 2022; 32:1396-1405. [PMID: 36317425 PMCID: PMC9720071 DOI: 10.4014/jmb.2209.09001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Cholera remains a major global public health problem, for which oral cholera vaccines (OCVs) being a valuable strategy. Patients, who have recovered from cholera, develop antibody responses against LPS, cholera toxin (CT), toxin-coregulated pilus (TCP) major subunit A (TcpA) and other antigens; thus, these responses are potentially important contributors to immunity against Vibrio cholerae infection. However, assessments of the efficacy of current OCVs, especially inactivated OCVs, have focused primarily on O-antigen-specific antibody responses, suggesting that more sophisticated strategies are required for inactivated OCVs to induce immune responses against TCP, CT, and other antigens. Previously, we have shown that the toxT-139F allele enables V. cholerae strains to produce CT and TCP under simple laboratory culture conditions. Thus, we hypothesized that V. cholerae strains that express TCP via the toxT-139F allele induce TCP-specific antibody responses. As anticipated, V. cholerae strains that expressed TCP through the toxT-139F allele elicited antibody responses against TCP when the inactivated bacteria were delivered via a mouse model. We have further developed TCP-expressing V. cholerae strains that have been used in inactivated OCVs and shown that they effect an antibody response against TcpA in vivo, suggesting that V. cholerae strains with the toxT-139F allele are excellent candidates for cholera vaccines.
Collapse
Affiliation(s)
- Eun Jin Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea,Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Jonghyun Bae
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea,Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Young-Jun Ju
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Do-Bin Ju
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Donghyun Lee
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea,Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Seonghyeon Son
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea,Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Hunseok Choi
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea,Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | | | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea,Corresponding authors C.-H. Yun Phone: + 82-2-880-4802 E-mail:
| | - Dong Wook Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea,Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea,
D.W. Kim Phone: +82-31-400-5806 E-mail:
| |
Collapse
|
92
|
Arai H, Inoue MN, Kageyama D. Male-killing mechanisms vary between Spiroplasma species. Front Microbiol 2022; 13:1075199. [PMID: 36519169 PMCID: PMC9742256 DOI: 10.3389/fmicb.2022.1075199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/08/2022] [Indexed: 03/11/2024] Open
Abstract
Male-killing, a male-specific death of arthropod hosts during development, is induced by Spiroplasma (Mollicutes) endosymbionts of the Citri-Poulsonii and the Ixodetis groups, which are phylogenetically distant groups. Spiroplasma poulsonii induces male-killing in Drosophila melanogaster (Diptera) using the Spaid toxin that harbors ankyrin repeats, whereas little is known about the origin and mechanisms of male-killing induced by Spiroplasma ixodetis. Here, we analyzed the genome and the biological characteristics of a male-killing S. ixodetis strain sHm in the moth Homona magnanima (Tortricidae, Lepidoptera). Strain sHm harbored a 2.1 Mb chromosome and two potential plasmids encoding Type IV effectors, putatively involved in virulence and host-symbiont interactions. Moreover, sHm did not harbor the spaid gene but harbored 10 ankyrin genes that were homologous to those in other S. ixodetis strains. In contrast to the predominant existence of S. poulsonii in hemolymph, our quantitative PCR assays revealed a systemic distribution of strain sHm in H. magnanima, with particularly high titers in Malpighian tubules but low titers in hemolymph. Furthermore, transinfection assays confirmed that strain sHm can infect cultured cells derived from distantly related insects, namely Aedes albopictus (Diptera) and Bombyx mori (Lepidoptera). These results suggest different origins and characteristics of S. ixodetis- and S. poulsonii-induced male-killing.
Collapse
Affiliation(s)
- Hiroshi Arai
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Maki N. Inoue
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Daisuke Kageyama
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| |
Collapse
|
93
|
Orata FD, Hussain NAS, Liang KYH, Hu D, Boucher YF. Genomes of Vibrio metoecus co-isolated with Vibrio cholerae extend our understanding of differences between these closely related species. Gut Pathog 2022; 14:42. [PMID: 36404338 PMCID: PMC9677704 DOI: 10.1186/s13099-022-00516-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/04/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Vibrio cholerae, the causative agent of cholera, is a well-studied species, whereas Vibrio metoecus is a recently described close relative that is also associated with human infections. The availability of V. metoecus genomes provides further insight into its genetic differences from V. cholerae. Additionally, both species have been co-isolated from a cholera-free brackish coastal pond and have been suggested to interact with each other by horizontal gene transfer (HGT). RESULTS The genomes of 17 strains from each species were sequenced. All strains share a large core genome (2675 gene families) and very few genes are unique to each species (< 3% of the pan-genome of both species). This led to the identification of potential molecular markers-for nitrite reduction, as well as peptidase and rhodanese activities-to further distinguish V. metoecus from V. cholerae. Interspecies HGT events were inferred in 21% of the core genes and 45% of the accessory genes. A directional bias in gene transfer events was found in the core genome, where V. metoecus was a recipient of three times (75%) more genes from V. cholerae than it was a donor (25%). CONCLUSION V. metoecus was misclassified as an atypical variant of V. cholerae due to their resemblance in a majority of biochemical characteristics. More distinguishing phenotypic assays can be developed based on the discovery of potential gene markers to avoid any future misclassifications. Furthermore, differences in relative abundance or seasonality were observed between the species and could contribute to the bias in directionality of HGT.
Collapse
Affiliation(s)
- Fabini D. Orata
- grid.17089.370000 0001 2190 316XDepartment of Biological Sciences, University of Alberta, Edmonton, Alberta Canada ,grid.17089.370000 0001 2190 316XDepartment of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta Canada
| | - Nora A. S. Hussain
- grid.17089.370000 0001 2190 316XDepartment of Biological Sciences, University of Alberta, Edmonton, Alberta Canada
| | - Kevin Y. H. Liang
- grid.17089.370000 0001 2190 316XDepartment of Biological Sciences, University of Alberta, Edmonton, Alberta Canada ,grid.14709.3b0000 0004 1936 8649Department of Quantitative Life Sciences, McGill University, Montréal, Québec Canada ,grid.14709.3b0000 0004 1936 8649Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec Canada
| | - Dalong Hu
- grid.4280.e0000 0001 2180 6431Saw Swee Hock School of Public Health, National University of Singapore and National University Hospital System, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| | - Yann F. Boucher
- grid.17089.370000 0001 2190 316XDepartment of Biological Sciences, University of Alberta, Edmonton, Alberta Canada ,grid.4280.e0000 0001 2180 6431Saw Swee Hock School of Public Health, National University of Singapore and National University Hospital System, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore and National University Hospital System, Singapore, Singapore
| |
Collapse
|
94
|
Wu J, Liu Y, Li W, Li F, Liu R, Sun H, Qin J, Feng X, Huang D, Liu B. MlrA, a MerR family regulator in Vibrio cholerae, senses the anaerobic signal in the small intestine of the host to promote bacterial intestinal colonization. Gut Microbes 2022; 14:2143216. [PMID: 36369865 PMCID: PMC9662190 DOI: 10.1080/19490976.2022.2143216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Vibrio cholerae (V. cholerae), one of the most important bacterial pathogens in history, is a gram-negative motile bacterium that causes fatal pandemic disease in humans via oral ingestion of contaminated water or food. This process involves the coordinated actions of numerous regulatory factors. The MerR family regulators, which are widespread in prokaryotes, have been reported to be associated with pathogenicity. However, the role of the MerR family regulators in V. cholerae virulence remains unknown. Our study systematically investigated the influence of MerR family regulators on intestinal colonization of V. cholerae within the host. Among the five MerR family regulators, MlrA was found to significantly promote the colonization capacity of V. cholerae in infant mice. Furthermore, we revealed that MlrA increases bacterial intestinal colonization by directly enhancing the expression of tcpA, which encodes one of the most important virulence factors in V. cholerae, by binding to its promoter region. In addition, we revealed that during infection, mlrA is activated by anaerobic signals in the small intestine of the host through Fnr. In summary, our findings reveal a MlrA-mediated virulence regulation pathway that enables V. cholerae to sense environmental signals at the infection site to precisely activate virulence gene expression, thus providing useful insights into the pathogenic mechanisms of V. cholerae.
Collapse
Affiliation(s)
- Jialin Wu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China,Nankai International Advanced Research Institute, Nankai University Shenzhen, China
| | - Wendi Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Fan Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Ruiying Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Hao Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Jingliang Qin
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Xiaohui Feng
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China,Nankai International Advanced Research Institute, Nankai University Shenzhen, China,Di Huang TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China,Nankai International Advanced Research Institute, Nankai University Shenzhen, China,CONTACT Bin Liu TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| |
Collapse
|
95
|
Boucher D, Barnich N. Phage Therapy Against Adherent-invasive E. coli: Towards a Promising Treatment of Crohn's Disease Patients? J Crohns Colitis 2022; 16:1509-1510. [PMID: 35796668 DOI: 10.1093/ecco-jcc/jjac070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Delphine Boucher
- Université Clermont Auvergne, Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, 63001, France
| | - Nicolas Barnich
- Université Clermont Auvergne, Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, 63001, France
| |
Collapse
|
96
|
Ding Y, Hao J, Zeng Z, Jinbo Liu. Identification and genomic analysis of a Vibrio cholerae strain isolated from a patient with bloodstream infection. Heliyon 2022; 8:e11572. [PMID: 36439761 PMCID: PMC9681642 DOI: 10.1016/j.heliyon.2022.e11572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/25/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
Vibrio cholerae is a bacterium ubiquitous in aquatic environments which can cause widespread infection worldwide. V. cholerae gradually became a rare species of bacteria in clinical microbiology laboratories with the control of the cholera epidemic. In this study, we isolated a V. cholerae strain, named VCHL017, from the blood of an elderly patient without gastrointestinal symptoms. The patient had a history of hookworm infection and multiple myeloma. Furthermore, she was immunocompromised, and received long-term chemotherapy and antimicrobial agents. VCHL017 was inoculated on blood agar and thiosulfate citrate bile salt sucrose plates (TCBS) to observe morphological characteristics. Then this isolate was identified by matrix-assisted laser desorption/ionization time-of-flight spectrometry (MALDI-TOF MS). The minimum inhibitory concentrations (MICs) for cefazolin, ceftazidime, cefepime, meropenem, tetracycline, ciprofloxacin, chloramphenicol, and gentamicin of VCHL017 were determined by the microbroth dilution method. PCR and serum agglutination tests were used to determine whether the serogroups of the isolate belonged to the O1/O139 and cholera toxin encoding genes. Finally, the genomic features and phylogeny of VCHL017 were analyzed by whole genome sequencing (WGS). VCHL017 was a non-O1/O139 V cholerae strain that did not carry the ctxA gene. Antimicrobial susceptibility tests revealed that VCHL017 was susceptive to chloramphenicol and tetracycline. Although it did not carry the genes encoding the cholera toxin, WGS indicated that VCHL017 carried a variety of other virulence factors. By calculating the average nucleotide identity (ANI), we precisely identified the species of VCHL017 as V. cholerae. There are also A171S and A202S missense mutations in gyrA of VCHL017. The phylogenetic analysis indicated that VCHL017 was closely related to V. cholerae strains isolated from aquatic environments. Our results suggest that continuous monitoring is necessary for non-O1/O139 V cholerae strains isolated from outside the digestive tract, which could be pathogenic through multiple virulence factors.
Collapse
Affiliation(s)
| | | | - Zhangrui Zeng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| |
Collapse
|
97
|
Lerer V, Shlezinger N. Inseparable companions: Fungal viruses as regulators of fungal fitness and host adaptation. Front Cell Infect Microbiol 2022; 12:1020608. [PMID: 36310864 PMCID: PMC9606465 DOI: 10.3389/fcimb.2022.1020608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/28/2022] [Indexed: 08/01/2023] Open
|
98
|
Wendling CC, Lange J, Liesegang H, Sieber M, Pöhlein A, Bunk B, Rajkov J, Goehlich H, Roth O, Brockhurst MA. Higher phage virulence accelerates the evolution of host resistance. Proc Biol Sci 2022; 289:20221070. [PMID: 36196537 PMCID: PMC9532999 DOI: 10.1098/rspb.2022.1070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Pathogens vary strikingly in their virulence and the selection they impose on their hosts. While the evolution of different virulence levels is well studied, the evolution of host resistance in response to different virulence levels is less understood and, at present, mainly based on observations and theoretical predictions with few experimental tests. Increased virulence can increase selection for host resistance evolution if the benefits of avoiding infection outweigh resistance costs. To test this, we experimentally evolved the bacterium Vibrio alginolyticus in the presence of two variants of a filamentous phage that differ in their virulence. The bacterial host exhibited two alternative defence strategies: (1) super infection exclusion (SIE), whereby phage-infected cells were immune to subsequent infection at the cost of reduced growth, and (2) surface receptor mutations (SRM), providing resistance to infection by preventing phage attachment. While SIE emerged rapidly against both phages, SRM evolved faster against the high- than the low-virulence phage. Using a mathematical model of our system, we show that increasing virulence strengthens selection for SRM owing to the higher costs of infection suffered by SIE immune hosts. Thus, by accelerating the evolution of host resistance, more virulent phages caused shorter epidemics.
Collapse
Affiliation(s)
- Carolin C Wendling
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Evolutionary Ecology, Düsternbrooker Weg 20, 24105 Kiel, Germany.,ETH Zürich, Institute of Integrative Biology, Universitätstrasse 16, CHN D 33, 8092 Zürich, Switzerland
| | - Janina Lange
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Evolutionary Ecology, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Heiko Liesegang
- Department of genomic and applied microbiology, Georg-August-University Göttingen, Grisebachstr 8, 37077 Göttingen, Germany
| | - Michael Sieber
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
| | - Anja Pöhlein
- Department of genomic and applied microbiology, Georg-August-University Göttingen, Grisebachstr 8, 37077 Göttingen, Germany
| | - Boyke Bunk
- Department Bioinformatics and Databases, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38114 Braunschweig, Germany
| | - Jelena Rajkov
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Evolutionary Ecology, Düsternbrooker Weg 20, 24105 Kiel, Germany.,Marine Evolutionary Biology, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Henry Goehlich
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Evolutionary Ecology, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Olivia Roth
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Evolutionary Ecology, Düsternbrooker Weg 20, 24105 Kiel, Germany.,Marine Evolutionary Biology, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Michael A Brockhurst
- Division of Evolution and Genomic Sciences, University of Manchester, Dover Street, Manchester M13 9PT, UK
| |
Collapse
|
99
|
Khouadja S, Roque A, Gonzalez M, Furones D. Vibrio pathogenicity island and phage CTX genes in Vibrio alginolyticus isolated from different aquatic environments. JOURNAL OF WATER AND HEALTH 2022; 20:1469-1478. [PMID: 36308492 DOI: 10.2166/wh.2022.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In the present study, we investigated the presence of four Vibrio cholerae virulence genes (ctxA, VPI, Zot and ace) in 36 Vibrio alginolyticus isolates obtained from different seawater, sediments and aquatic organisms. We tested the virulence of 13 V. alginolyticus strains against juveniles of Sparus aurata and this virulence was correlated with the presence of V. cholerae virulence genes. A positive amplification for the virulence pathogenicity island was produced by five V. alginolyticus strains and four for cholerae toxin. Some of the V. alginolyticus strains are pathogenic to aquatic animals and might have derived their virulence genes from V. cholerae. V. alginolyticus strains can be considered as a possible reservoir of V. cholerae virulence genes.
Collapse
Affiliation(s)
- Sadok Khouadja
- Laboratoire d'Analyse, Traitement et Valorisation des Polluants de l'Environnement et des Produits, Département de Microbiologie, Faculté de Pharmacie, Rue Avicenne 5000, Monastir, Tunisia E-mail:
| | - Ana Roque
- IRTA-SCR, Ctra. Poble Nou Km 7.5, 43540 Sant Carles de la Ràpita, Tarragona, Spain
| | - Mar Gonzalez
- IRTA-SCR, Ctra. Poble Nou Km 7.5, 43540 Sant Carles de la Ràpita, Tarragona, Spain
| | - Dolors Furones
- IRTA-SCR, Ctra. Poble Nou Km 7.5, 43540 Sant Carles de la Ràpita, Tarragona, Spain
| |
Collapse
|
100
|
Mousa WK. The microbiome-product colibactin hits unique cellular targets mediating host–microbe interaction. Front Pharmacol 2022; 13:958012. [PMID: 36172175 PMCID: PMC9510844 DOI: 10.3389/fphar.2022.958012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022] Open
Abstract
The human microbiota produces molecules that are evolved to interact with the diverse cellular machinery of both the host and microbes, mediating health and diseases. One of the most puzzling microbiome molecules is colibactin, a genotoxin encoded in some commensal and extraintestinal microbes and is implicated in initiating colorectal cancer. The colibactin cluster was discovered more than 15 years ago, and most of the research studies have been focused on revealing the biosynthesis and precise structure of the cryptic encoded molecule(s) and the mechanism of carcinogenesis. In 2022, the Balskus group revealed that colibactin not only hits targets in the eukaryotic cell machinery but also in the prokaryotic cell. To that end, colibactin crosslinks the DNA resulting in activation of the SOS signaling pathway, leading to prophage induction from bacterial lysogens and modulation of virulence genes in pathogenic species. These unique activities of colibactin highlight its ecological role in shaping gut microbial communities and further consequences that impact human health. This review dives in-depth into the molecular mechanisms underpinning colibactin cellular targets in eukaryotic and prokaryotic cells, aiming to understand the fine details of the role of secreted microbiome chemistry in mediating host–microbe and microbe–microbe interactions. This understanding translates into a better realization of microbiome potential and how this could be advanced to future microbiome-based therapeutics or diagnostic biomarkers.
Collapse
Affiliation(s)
- Walaa K. Mousa
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- College of Pharmacy, Mansoura University, Mansoura, Egypt
- *Correspondence: Walaa K. Mousa,
| |
Collapse
|