51
|
Zhang H, Lipinski AA, Liktor-Busa E, Smith AF, Moutal A, Khanna R, Langlais PR, Largent-Milnes TM, Vanderah TW. The Effects of Repeated Morphine Treatment on the Endogenous Cannabinoid System in the Ventral Tegmental Area. Front Pharmacol 2021; 12:632757. [PMID: 33953672 PMCID: PMC8090348 DOI: 10.3389/fphar.2021.632757] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/26/2021] [Indexed: 12/18/2022] Open
Abstract
The therapeutic utility of opioids is diminished by their ability to induce rewarding behaviors that may lead to opioid use disorder. Recently, the endogenous cannabinoid system has emerged as a hot topic in the study of opioid reward but relatively little is known about how repeated opioid exposure may affect the endogenous cannabinoid system in the mesolimbic reward circuitry. In the present study, we investigated how sustained morphine may modulate the endogenous cannabinoid system in the ventral tegmental area (VTA) of Sprague Dawley rats, a critical region in the mesolimbic reward circuitry. Studies here using proteomic analysis and quantitative real-time PCR (qRT-PCR) found that the VTA expresses 32 different proteins or genes related to the endogenous cannabinoid system; three of these proteins or genes (PLCγ2, ABHD6, and CB2R) were significantly affected after repeated morphine exposure (CB2R was only detected by qRT-PCR but not proteomics). We also identified that repeated morphine treatment does not alter either anandamide (AEA) or 2-arachidonoylglycerol (2-AG) levels in the VTA compared to saline treatment; however, there may be diminished levels of anandamide (AEA) production in the VTA 4 h after a single morphine injection in both chronic saline and morphine pretreated cohorts. Treating the animals with an inhibitor of 2-AG degradation significantly decreased repeated opioid rewarding behavior. Taken together, our studies reveal a potential influence of sustained opioids on the endocannabinoid system in the VTA, suggesting that the endogenous cannabinoid system may participate in the opioid-induced reward.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Austin A. Lipinski
- Department of Medicine, Division of Endocrinology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Erika Liktor-Busa
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Angela F. Smith
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Paul R. Langlais
- Department of Medicine, Division of Endocrinology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Tally M. Largent-Milnes
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Todd W. Vanderah
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
52
|
Misganaw D. Heteromerization of dopaminergic receptors in the brain: Pharmacological implications. Pharmacol Res 2021; 170:105600. [PMID: 33836279 DOI: 10.1016/j.phrs.2021.105600] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/17/2021] [Accepted: 04/02/2021] [Indexed: 12/15/2022]
Abstract
Dopamine exerts its physiological effects through two subtypes of receptors, i.e. the receptors of the D1 family (D1R and D5R) and the D2 family (D2R, D3R, and D4R), which differ in their pattern of distribution, affinity, and signaling. The D1-like subfamily (D1R and D5R) are coupled to Gαs/olf proteins to activate adenylyl cyclase whereas the D2-like receptors are coupled to Gαi/o subunits and suppress the activity of adenylyl cyclase. Dopamine receptors are capable of forming homodimers, heterodimers, and higher-order oligomeric complexes, resulting in a change in the individual protomers' recognition, signaling, and pharmacology. Heteromerization has the potential to modify the canonical pharmacological features of individual monomeric units such as ligand affinity, activation, signaling, and cellular trafficking through allosteric interactions, reviving the field and introducing a new pharmacological target. Since heteromers are expressed and formed in a tissue-specific manner, they could provide the framework to design selective and effective drug candidates, such as brain-penetrant heterobivalent drugs and interfering peptides, with limited side effects. Therefore, heteromerization could be a promising area of pharmacology research, as it could contribute to the development of novel pharmacological interventions for dopamine dysregulated brain disorders such as addiction, schizophrenia, cognition, Parkinson's disease, and other motor-related disorders. This review is articulated based on the three criteria established by the International Union of Basic and Clinical Pharmacology for GPCR heterodimers (IUPHAR): evidence of co-localization and physical interactions in native or primary tissue, presence of a new physiological and functional property than the individual protomers, and loss of interaction and functional fingerprints upon heterodimer disruption.
Collapse
Affiliation(s)
- Desye Misganaw
- Pharmacology and Toxicology Unit, Department of Pharmacy, College of Medicine and Health Science, Wollo University, P.O. Box 1145, Dessie, Ethiopia.
| |
Collapse
|
53
|
Crane NA, Phan KL. Effect of Δ9-Tetrahydrocannabinol on frontostriatal resting state functional connectivity and subjective euphoric response in healthy young adults. Drug Alcohol Depend 2021; 221:108565. [PMID: 33592558 PMCID: PMC8026570 DOI: 10.1016/j.drugalcdep.2021.108565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/16/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Few studies have examined how Δ9-Tetrahydrocannabinol (THC), the main psychoactive component of cannabis, impacts brain reward circuitry in humans. In this study, we examined if an acute dose of THC altered resting state functional connectivity between the striatum and prefrontal cortex among healthy young adults with limited cannabis use. METHODS Participants received THC (n = 24) or placebo (n = 22) in a double-blind, randomized, between-subject design. Participants completed self-report measures of euphoria and drug-liking throughout the visit. Approximately 120 min after drug administration, participants completed an 8-min resting state functional MRI (rs-fMRI) scan. We utilized seed-based connectivity of the striatum (bilateral putamen, caudate, and NAcc seeds) to the frontal cortex. RESULTS Individuals who received THC demonstrated greater rs-fMRI connectivity between the right NAcc and regions of the medial prefrontal cortex (mPFC) (p-values<0.05, corrected) and higher subjective euphoria ratings (p = .03) compared to compared to individuals who received placebo. Higher ratings of euphoria were related to greater right NAcc-dorsal mPFC (dmPFC) connectivity for the THC group (p=.03), but not for the placebo group (p=.98). CONCLUSIONS This is one of the first studies to examine rs-fMRI connectivity in healthy young non-users after THC administration. We found individuals receiving THC show greater rs-fMRI connectivity between the NAcc and mPFC, regions implicated in reward, compared to individuals receiving placebo. In addition, individuals receiving THC reported higher subjective euphoria ratings, which were positively associated with NAcc-dmPFC connectivity. Overall, our findings suggest THC may produce subjective and neural reward responses that contribute to the rewarding, reinforcing properties of cannabis.
Collapse
Affiliation(s)
| | - K. Luan Phan
- Department of Psychiatry, University of Illinois at
Chicago,Department of Psychiatry and Behavioral Health, The Ohio
State University
| |
Collapse
|
54
|
Sallam NA, Borgland SL. Insulin and endocannabinoids in the mesolimbic system. J Neuroendocrinol 2021; 33:e12965. [PMID: 33856071 DOI: 10.1111/jne.12965] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 12/31/2022]
Abstract
Easy access to palatable food and an abundance of food-related cues exacerbate non-homeostatic feeding. The metabolic and economical sequelae of non-homeostatic feeding outweigh those of homeostatic feeding and contribute significantly to the global obesity pandemic. The mesolimbic dopamine system is the primary central circuit that governs the motivation to consume food. Insulin and endocannabinoids (eCBs) are two major, presumably opposing, players in regulating homeostatic and non-homeostatic feeding centrally and peripherally. Insulin is generally regarded as a postprandial satiety signal, whereas eCBs mainly function as pre-prandial orexinergic signals. In this review, we discuss the effects of insulin and eCB-mediated actions within the mesolimbic pathways. We propose that insulin and eCBs have regional- and time course-dependent roles. We discuss their mechanisms of actions in the ventral tegmental area and nucleus accumbens, as well as how their mechanisms converge to finely tune dopaminergic activity and food intake.
Collapse
Affiliation(s)
- Nada A Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
55
|
Laksmidewi AAAP, Soejitno A. Endocannabinoid and dopaminergic system: the pas de deux underlying human motivation and behaviors. J Neural Transm (Vienna) 2021; 128:615-630. [PMID: 33712975 PMCID: PMC8105194 DOI: 10.1007/s00702-021-02326-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/04/2021] [Indexed: 01/11/2023]
Abstract
Endocannabinoid system (ECS) has been identified ever since cannabinoid, an active substance of Cannabis, was known to interact with endogenous cannabinoid (endocannabinoid/eCB) receptors. It later turned out that eCB was more intricate than previously thought. It has a pervasive role and exerts a multitude of cellular signaling mechanisms, regulating various physiological neurotransmission pathways in the human brain, including the dopaminergic (DA) system. eCB roles toward DA system were robust, clearly delineated, and reproducible with respect to physiological as well as pathological neurochemical and neurobehavioral manifestations of DA system, particularly those involving the nigrostriatal and mesocorticolimbic pathways. The eCB–DA system regulates the basics in the Maslow’s pyramid of hierarchy of needs required for individual survival such as food and sexual activity for reproductive purpose to those of higher needs in the pyramid, including self-actualization behaviors leading to achievement and reward (e.g., academic- and/or work-related performance and achievements). It is, thus, interesting to specifically discuss the eCB–DA system, not only on the molecular level, but also its tremendous potential to be developed as a future therapeutic strategy for various neuropsychiatric problems, including obesity, drug addiction and withdrawal, pathological hypersexuality, or low motivation behaviors.
Collapse
Affiliation(s)
- A A A Putri Laksmidewi
- Neurobehavioral and Cognitive Division, Neurology Department, Faculty of Medicine, Udayana University/Sanglah Hospital, Denpasar, Bali, Indonesia.
| | - Andreas Soejitno
- Neurobehavioral and Cognitive Division, Neurology Department, Faculty of Medicine, Udayana University/Sanglah Hospital, Denpasar, Bali, Indonesia
| |
Collapse
|
56
|
Hurel I, Muguruza C, Redon B, Marsicano G, Chaouloff F. Cannabis and exercise: Effects of Δ 9-tetrahydrocannabinol on preference and motivation for wheel-running in mice. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110117. [PMID: 32971218 DOI: 10.1016/j.pnpbp.2020.110117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/11/2020] [Accepted: 09/20/2020] [Indexed: 11/27/2022]
Abstract
Recent surveys have revealed close links between cannabis and exercise. Specifically, cannabis usage before and/or after exercise is an increasingly common habit primarily aimed at boosting exercise pleasure, motivation, and performance whilst facilitating post-exercise recovery. However, whether these beliefs reflect the true impact of cannabis on these aspects of exercise is unknown. This study has thus examined the effects of cannabis' main psychoactive ingredient, namely Δ9-tetrahydrocannabinol (THC), on (i) mouse wheel-running preference and performance and (ii) running motivation and seeking behaviour. Wheel-running preference and performance were investigated using a T-maze with free and locked wheels located at the extremity of either arm. Running motivation and seeking were assessed by a cued-running operant task wherein wheel-running was conditioned by nose poking. Moreover, because THC targets cannabinoid type 1 (CB1) receptors, i.e. receptors previously documented to control running motivation, this study also assessed the role of these receptors in running preference, performance, and craving-like behaviour. Whilst acute blockade or genetic deletion of CB1 receptors decreased running preference and performance in the T-maze, THC proved ineffective on either variable. The failure of THC to affect running variables in the T-maze extended to running motivation, as assessed by cued-running under a progressive ratio (PR) reinforcement schedule. This ineffectiveness of THC was not related to the treatment protocol because it successfully increased motivation for palatable food. Although craving-like behaviour, as indexed by a cue-induced reinstatement of running seeking, was found to depend on CB1 receptors, THC again proved ineffective. Neither running motivation nor running seeking were affected when CB1 receptors were further stimulated by increasing the levels of the endocannabinoid 2-arachidonoylglycerol. These results, which suggest that the drive for running is insensitive to the acute stimulation of CB1 receptors, raise the hypothesis that cannabis is devoid of effect on exercise motivation. Future investigation using chronic administration of THC, with and without other cannabis ingredients (e.g. cannabidiol), is however required before conclusions can be drawn.
Collapse
Affiliation(s)
- Imane Hurel
- Endocannabinoids and NeuroAdaptation, NeuroCentre INSERM U1215, 33077 Bordeaux, France; Université de Bordeaux, 33077 Bordeaux, France
| | - Carolina Muguruza
- Endocannabinoids and NeuroAdaptation, NeuroCentre INSERM U1215, 33077 Bordeaux, France; Université de Bordeaux, 33077 Bordeaux, France; Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain
| | - Bastien Redon
- Endocannabinoids and NeuroAdaptation, NeuroCentre INSERM U1215, 33077 Bordeaux, France; Université de Bordeaux, 33077 Bordeaux, France
| | - Giovanni Marsicano
- Endocannabinoids and NeuroAdaptation, NeuroCentre INSERM U1215, 33077 Bordeaux, France; Université de Bordeaux, 33077 Bordeaux, France
| | - Francis Chaouloff
- Endocannabinoids and NeuroAdaptation, NeuroCentre INSERM U1215, 33077 Bordeaux, France; Université de Bordeaux, 33077 Bordeaux, France.
| |
Collapse
|
57
|
Gastelum C, Perez L, Hernandez J, Le N, Vahrson I, Sayers S, Wagner EJ. Adaptive Changes in the Central Control of Energy Homeostasis Occur in Response to Variations in Energy Status. Int J Mol Sci 2021; 22:2728. [PMID: 33800452 PMCID: PMC7962960 DOI: 10.3390/ijms22052728] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/15/2022] Open
Abstract
Energy homeostasis is regulated in coordinate fashion by the brain-gut axis, the homeostatic energy balance circuitry in the hypothalamus and the hedonic energy balance circuitry comprising the mesolimbcortical A10 dopamine pathway. Collectively, these systems convey and integrate information regarding nutrient status and the rewarding properties of ingested food, and formulate it into a behavioral response that attempts to balance fluctuations in consumption and food-seeking behavior. In this review we start with a functional overview of the homeostatic and hedonic energy balance circuitries; identifying the salient neural, hormonal and humoral components involved. We then delve into how the function of these circuits differs in males and females. Finally, we turn our attention to the ever-emerging roles of nociceptin/orphanin FQ (N/OFQ) and pituitary adenylate cyclase-activating polypeptide (PACAP)-two neuropeptides that have garnered increased recognition for their regulatory impact in energy homeostasis-to further probe how the imposed regulation of energy balance circuitry by these peptides is affected by sex and altered under positive (e.g., obesity) and negative (e.g., fasting) energy balance states. It is hoped that this work will impart a newfound appreciation for the intricate regulatory processes that govern energy homeostasis, as well as how recent insights into the N/OFQ and PACAP systems can be leveraged in the treatment of conditions ranging from obesity to anorexia.
Collapse
Affiliation(s)
- Cassandra Gastelum
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (C.G.); (L.P.); (J.H.); (N.L.); (I.V.); (S.S.)
| | - Lynnea Perez
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (C.G.); (L.P.); (J.H.); (N.L.); (I.V.); (S.S.)
| | - Jennifer Hernandez
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (C.G.); (L.P.); (J.H.); (N.L.); (I.V.); (S.S.)
| | - Nikki Le
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (C.G.); (L.P.); (J.H.); (N.L.); (I.V.); (S.S.)
| | - Isabella Vahrson
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (C.G.); (L.P.); (J.H.); (N.L.); (I.V.); (S.S.)
| | - Sarah Sayers
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (C.G.); (L.P.); (J.H.); (N.L.); (I.V.); (S.S.)
| | - Edward J. Wagner
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (C.G.); (L.P.); (J.H.); (N.L.); (I.V.); (S.S.)
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
58
|
Ney LJ, Akhurst J, Bruno R, Laing PAF, Matthews A, Felmingham KL. Dopamine, endocannabinoids and their interaction in fear extinction and negative affect in PTSD. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110118. [PMID: 32991952 DOI: 10.1016/j.pnpbp.2020.110118] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
There currently exist few frameworks for common neurobiology between reexperiencing and negative cognitions and mood symptoms of PTSD. Adopting a dopaminergic framework for PTSD unites many aspects of unique symptom clusters, and this approach also links PTSD symptomology to common comorbidities with a common neurobiological deficiency. Here we review the dopamine literature and incorporate it with a growing field of research that describes both the contribution of endocannabinoids to fear extinction and PTSD, as well as the interactions between dopaminergic and endocannabinoid systems underlying this disorder. Based on current evidence, we outline an early, preliminary model that links re-experiencing and negative cognitions and mood in PTSD by invoking the interaction between endocannabinoid and dopaminergic signalling in the brain. These interactions between PTSD, dopamine and endocannabinoids may have implications for future therapies for treatment-resistant and comorbid PTSD patients.
Collapse
Affiliation(s)
- Luke J Ney
- School of Psychology, University of Tasmania, Australia.
| | - Jane Akhurst
- School of Psychology, University of Tasmania, Australia
| | | | - Patrick A F Laing
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne & Melbourne Health, Australia
| | | | - Kim L Felmingham
- School of Psychological Sciences, University of Melbourne, Australia
| |
Collapse
|
59
|
Cannabinoid-Induced Conditioned Place Preference, Intravenous Self-Administration, and Behavioral Stimulation Influenced by Ghrelin Receptor Antagonism in Rats. Int J Mol Sci 2021; 22:ijms22052397. [PMID: 33673659 PMCID: PMC7957642 DOI: 10.3390/ijms22052397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/13/2021] [Accepted: 02/21/2021] [Indexed: 11/24/2022] Open
Abstract
Cannabis/cannabinoids are widely used for recreational and therapy purposes, but their risks are largely disregarded. However, cannabinoid-associated use disorders and dependence are alarmingly increasing and an effective treatment is lacking. Recently, the growth hormone secretagogue receptor (GHSR1A) antagonism was proposed as a promising mechanism for drug addiction therapy. However, the role of GHS-R1A and its endogenous ligand ghrelin in cannabinoid abuse remains unclear. Therefore, the aim of our study was to investigate whether the GHS-R1A antagonist JMV2959 could reduce the tetrahydrocannabinol (THC)-induced conditioned place preference (CPP) and behavioral stimulation, the WIN55,212-2 intravenous self-administration (IVSA), and the tendency to relapse. Following an ongoing WIN55,212-2 self-administration, JMV2959 3 mg/kg was administered intraperitoneally 20 min before three consequent daily 120-min IVSA sessions under a fixed ratio FR1, which significantly reduced the number of the active lever-pressing, the number of infusions, and the cannabinoid intake. Pretreatment with JMV2959 suggested reduction of the WIN55,212-2-seeking/relapse-like behavior tested in rats on the twelfth day of the forced abstinence period. On the contrary, pretreatment with ghrelin significantly increased the cannabinoid IVSA as well as enhanced the relapse-like behavior. Co-administration of ghrelin with JMV2959 abolished/reduced the significant efficacy of the GHS-R1A antagonist in the cannabinoid IVSA. Pretreatment with JMV2959 significantly and dose-dependently reduced the manifestation of THC-induced CPP. The THC-CPP development was reduced after the simultaneous administration of JMV2959 with THC during conditioning. JMV2959 also significantly reduced the THC-induced behavioral stimulation in the LABORAS cage. Our findings suggest that GHS-R1A importantly participates in the rewarding/reinforcing effects of cannabinoids.
Collapse
|
60
|
Abstract
Cannabis use disorder (CUD) is an underappreciated risk of using cannabis that affects ~10% of the 193 million cannabis users worldwide. The individual and public health burdens are less than those of other forms of drug use, but CUD accounts for a substantial proportion of persons seeking treatment for drug use disorders owing to the high global prevalence of cannabis use. Cognitive behavioural therapy, motivational enhancement therapy and contingency management can substantially reduce cannabis use and cannabis-related problems, but enduring abstinence is not a common outcome. No pharmacotherapies have been approved for cannabis use or CUD, although a number of drug classes (such as cannabinoid agonists) have shown promise and require more rigorous evaluation. Treatment of cannabis use and CUD is often complicated by comorbid mental health and other substance use disorders. The legalization of non-medical cannabis use in some high-income countries may increase the prevalence of CUD by making more potent cannabis products more readily available at a lower price. States that legalize medical and non-medical cannabis use should inform users about the risks of CUD and provide information on how to obtain assistance if they develop cannabis-related mental and/or physical health problems.
Collapse
|
61
|
Chakravarthy K, Goel A, Jeha GM, Kaye AD, Christo PJ. Review of the Current State of Urine Drug Testing in Chronic Pain: Still Effective as a Clinical Tool and Curbing Abuse, or an Arcane Test? Curr Pain Headache Rep 2021; 25:12. [PMID: 33598816 DOI: 10.1007/s11916-020-00918-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW Therapeutic use, misuse, abuse, and diversion of controlled substances in managing chronic non-cancer pain remain a major concern for physicians, the government, payers, and patients. The challenge remains finding effective diagnostic tools that can be clinically validated to eliminate or substantially reduce the abuse of controlled prescription drugs, while still assuring the proper treatment of those patients in pain. Urine drug testing still remains an important means of adherence monitoring, but questions arise as to its relevance and effectiveness. This review examines the role of UDT, determines its utility in current clinical practice, and investigates its relevance in current chronic pain management. RECENT FINDINGS A review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Literature was searched from year 2000 to present examining the relevance and role of UDT in monitoring chronic opioid therapy along with reliability and accuracy, appropriate use, overuse, misuse, and abuse. There are only a limited number of reviews and investigations on UDT, despite the fact that clinicians who prescribe controlled medications for chronic states commonly are expected to utilize UDT. Therefore, despite highly prevalent use, there is a limited publication base from which to draw in this present study. Regardless of experience or training background, physicians and healthcare providers can much more adequately assess opioid therapy with the aid of UDT, which often requires confirmatory testing by a laboratory for clinical and therapeutic prescribing decisions. It has become a strongly recommended aspect of pain care with controlled substances locally, regionally, and nationally. Incorporating UDT for all patients in whom chronic opioid therapy is undertaken is consistent with state and national guidelines and best practice strategies. Practice standards vary as to the frequency of UDT locally, regionally, and nationally, however.
Collapse
Affiliation(s)
- Krishnan Chakravarthy
- VA San Diego Healthcare System, UC San Diego School of Medicine, La Jolla, CA, USA. .,Department of Anesthesiology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
| | - Aneesh Goel
- Department of Anesthesiology and Critical Care Medicine, Division of Pain Medicine, The Johns Hopkins University School of Medicine, 550 North Broadway, Suite 301, Baltimore, MD, 21205, USA
| | - George M Jeha
- Department of Anesthesiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Alan David Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Departments of Anesthesiology and Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Paul J Christo
- Department of Anesthesiology and Critical Care Medicine, Division of Pain Medicine, The Johns Hopkins University School of Medicine, 550 North Broadway, Suite 301, Baltimore, MD, 21205, USA.
| |
Collapse
|
62
|
Drug addiction co-morbidity with alcohol: Neurobiological insights. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 157:409-472. [PMID: 33648675 DOI: 10.1016/bs.irn.2020.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Addiction is a chronic disorder that consists of a three-stage cycle of binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. These stages involve, respectively, neuroadaptations in brain circuits involved in incentive salience and habit formation, stress surfeit and reward deficit, and executive function. Much research on addiction focuses on the neurobiology underlying single drug use. However, alcohol use disorder (AUD) can be co-morbid with substance use disorder (SUD), called dual dependence. The limited epidemiological data on dual dependence indicates that there is a large population of individuals suffering from addiction who are dependent on more than one drug and/or alcohol, yet dual dependence remains understudied in addiction research. Here, we review neurobiological data on neurotransmitter and neuropeptide systems that are known to contribute to addiction pathology and how the involvement of these systems is consistent or divergent across drug classes. In particular, we highlight the dopamine, opioid, corticotropin-releasing factor, norepinephrine, hypocretin/orexin, glucocorticoid, neuroimmune signaling, endocannabinoid, glutamate, and GABA systems. We also discuss the limited research on these systems in dual dependence. Collectively, these studies demonstrate that the use of multiple drugs can produce neuroadaptations that are distinct from single drug use. Further investigation into the neurobiology of dual dependence is necessary to develop effective treatments for addiction to multiple drugs.
Collapse
|
63
|
Li X, Hempel BJ, Yang HJ, Han X, Bi GH, Gardner EL, Xi ZX. Dissecting the role of CB 1 and CB 2 receptors in cannabinoid reward versus aversion using transgenic CB 1- and CB 2-knockout mice. Eur Neuropsychopharmacol 2021; 43:38-51. [PMID: 33334652 PMCID: PMC7854511 DOI: 10.1016/j.euroneuro.2020.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/28/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022]
Abstract
Cannabinoids produce both rewarding and aversive effects in humans and experimental animals. However, the mechanisms underlying these conflicting findings are unclear. Here we examined the potential involvement of CB1 and CB2 receptors in cannabinoid action using transgenic CB1-knockout (CB1-KO) and CB2-knockout (CB2-KO) mice. We found that Δ9-tetrahydrocannabinol (Δ9-THC) induced conditioned place preference at a low dose (1 mg/kg) in WT mice that was attenuated by deletion of the CB1 receptor. At 5 mg/kg, no subjective effects of Δ9-THC were detected in WT mice, but CB1-KO mice exhibited a trend towards place aversion and CB2-KO mice developed significant place preferences. This data suggests that activation of the CB1 receptor is rewarding, while CB2R activation is aversive. We then examined the nucleus accumbens (NAc) dopamine (DA) response to Δ9-THC using in vivo microdialysis. Unexpectedly, Δ9-THC produced a dose-dependent decrease in extracellular DA in WT mice, that was potentiated in CB1-KO mice. However, in CB2-KO mice Δ9-THC produced a dose-dependent increase in extracellular DA, suggesting that activation of the CB2R inhibits DA release in the NAc. In contrast, Δ9-THC, when administered systemically or locally into the NAc, failed to alter extracellular DA in rats. Lastly, we examined the locomotor response to Δ9-THC. Both CB1 and CB2 receptor mechanisms were shown to underlie Δ9-THC-induced hypolocomotion. These findings indicate that Δ9-THC's variable subjective effects reflect differential activation of cannabinoid receptors. Specifically, the opposing actions of CB1 and CB2 receptors regulate cannabis reward and aversion, with CB2-mediated effects predominant in mice.
Collapse
Affiliation(s)
- Xia Li
- Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd, NIDA IRP, BRC Suite 200, Baltimore, MD 21224, USA; Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Briana J Hempel
- Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd, NIDA IRP, BRC Suite 200, Baltimore, MD 21224, USA
| | - Hong-Ju Yang
- Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd, NIDA IRP, BRC Suite 200, Baltimore, MD 21224, USA
| | - Xiao Han
- Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd, NIDA IRP, BRC Suite 200, Baltimore, MD 21224, USA
| | - Guo-Hua Bi
- Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd, NIDA IRP, BRC Suite 200, Baltimore, MD 21224, USA
| | - Eliot L Gardner
- Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd, NIDA IRP, BRC Suite 200, Baltimore, MD 21224, USA
| | - Zheng-Xiong Xi
- Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd, NIDA IRP, BRC Suite 200, Baltimore, MD 21224, USA.
| |
Collapse
|
64
|
Connor C, Hamilton J, Robison L, Hadjiargyrou M, Komatsu D, Thanos P. Abstinence from chronic methylphenidate exposure modifies cannabinoid receptor 1 levels in the brain in a dose-dependent manner. Curr Pharm Des 2021; 28:331-338. [PMID: 33504296 DOI: 10.2174/1381612827666210127120411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/06/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Methylphenidate (MP) is a widely used psychostimulant prescribed for Attention Deficit Hyperactivity Disorder, and is also used illicitly by healthy individuals. Chronic exposure to MP has been shown to affect physiology, behavior, and neurochemistry. METHODS The present study examined its effect on the endocannabinoid system. Adolescent rats had daily oral access to either water (control), low dose MP (4/10 mg/kg), or high dose MP (30/60 mg/kg). After 13 weeks of exposure, half of the rats in each group were euthanized, however the remaining rats underwent a four-week long abstinence period. Cannabinoid receptor 1 binding (CB1) was measured with in vitro autoradiography using [3H] SR141716A. RESULTS Rats who underwent a 4-week abstinence period after exposure to chronic HD MP showed increased binding compared to rats with no abstinence period in several cortical and basal ganglia regions of the brain. In contrast to this, rats who underwent a 4-week abstinence period after exposure to chronic LD MP showed lower binding compared to rats with no abstinence period in mainly the basal ganglia regions and in the hindlimb region of the somatosensory cortex. Following 4 weeks of drug abstinence, rats who were previously given HD MP showed higher [ 3H] SR141716A binding than rats given LD MP in many of the cortical and basal ganglia regions examined. These results highlight biphasic effects of MP treatment on cannabinoid receptor levels. Abstinence from HD MP seemed to increase CB1 receptor levels while abstinence from LD MP seemed to decrease CB1 levels. CONCLUSION Given the prolific expression of cannabinoid receptors throughout the brain, many types of behaviors may be affected as a result of MP abstinence. Further research will be needed to help identify these behavioral changes.
Collapse
Affiliation(s)
- Carly Connor
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY. United States
| | - John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY. United States
| | - Lisa Robison
- Department of Neuroscience and Experimental Techniques, Albany Medical College, Albany, NY. United States
| | - Michael Hadjiargyrou
- Department of Life Sciences, New York Institute of Technology, Old Westbury, NY. United States
| | - David Komatsu
- Department of Orthopedics, Stony Brook University, Stony Brook, NY. United States
| | - Panayotis Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY. United States
| |
Collapse
|
65
|
Everett TJ, Gomez DM, Hamilton LR, Oleson EB. Endocannabinoid modulation of dopamine release during reward seeking, interval timing, and avoidance. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110031. [PMID: 32663486 DOI: 10.1016/j.pnpbp.2020.110031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/15/2020] [Accepted: 06/28/2020] [Indexed: 01/02/2023]
Abstract
Endocannabinoids (eCBs) are neuromodulators that influence a wide range of neural systems and behaviors. In the current review, we describe our recent research showing how eCBs, particularly 2-arachidonoylglycerol (2-AG), concurrently shape mesolimbic dopamine (DA) release and associated behavior. We will restrict our discussion by emphasizing three distinct behaviors: reward seeking, interval timing, and active avoidance. During reward seeking we find that 2-AG is necessary to observe cue-evoked DA release events that are thought to represent the value of a rewarding outcome. We then describe data showing that 2-AG modulates unique patterns of DA release and behavior observed under conditions of periodic reinforcement. These data are discussed within the context of interval timing and adjunctive behavior. eCB modulation of DA release is also implicated in defensive behavior, including the avoidance of harm. As in reward seeking, our data suggest that the concentration of DA that is evoked by a warning signal can represent the value of an avoidance outcome. And, disrupting eCB signaling concomitantly reduces the concentration of the avoidance value signal and active avoidance. Disruptions in reward seeking, interval timing, and defensive behavior are commonly observed in a variety of movement disorders (e.g., Parkinson's and Huntington's disease) and disorders of motivation (e.g., addiction). We believe our data on eCB-DA interactions have implications for the development of novel pharmacotherapies to treat these disorders. Thus, we conclude by discussing how eCB pharmacology might be harnessed to treat disorders of movement and motivation.
Collapse
Affiliation(s)
| | - Devan M Gomez
- Psychology Department, University of Colorado Denver, USA; Department of Biomedical Sciences, Marquette University, USA
| | | | - Erik B Oleson
- Psychology Department, University of Colorado Denver, USA; Integrative Biology Department, University of Colorado Denver, USA.
| |
Collapse
|
66
|
Peters KZ, Oleson EB, Cheer JF. A Brain on Cannabinoids: The Role of Dopamine Release in Reward Seeking and Addiction. Cold Spring Harb Perspect Med 2021; 11:a039305. [PMID: 31964646 PMCID: PMC7778214 DOI: 10.1101/cshperspect.a039305] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cannabis sativa, like all known drugs of abuse, leads to increased dopamine activation within the mesolimbic pathway. Consequent dopamine release within terminal regions of the striatum is a powerful mediator of reward and reinforcement and patterned dopamine release is critical for associative learning processes that are fundamentally involved in addiction. The endocannabinoid system modulates dopamine release at multiple sites, and the receptors, endogenous ligands, and synthetic and metabolic enzymes of the endocannabinoid system may provide key targets for pharmacotherapies to treat disorders of motivation including addiction. Disrupting endocannabinoid signaling decreases drug-induced increases in dopamine release as well those dopamine events evoked by conditioned stimuli during reward seeking. Advances in recording techniques for dopamine are allowing unprecedented examinations of these two interacting systems and elucidating the mechanisms of endocannabinoid modulation of dopamine release in reward and addiction.
Collapse
Affiliation(s)
- Kate Z Peters
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Erik B Oleson
- Department of Psychology, University of Colorado, Denver, Colorado 80217-3364, USA
| | - Joseph F Cheer
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| |
Collapse
|
67
|
Gomez DM, Everett TJ, Hamilton LR, Ranganath A, Cheer JF, Oleson EB. Chronic cannabinoid exposure produces tolerance to the dopamine releasing effects of WIN 55,212-2 and heroin in adult male rats. Neuropharmacology 2021; 182:108374. [PMID: 33115642 PMCID: PMC7836093 DOI: 10.1016/j.neuropharm.2020.108374] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/16/2020] [Accepted: 10/24/2020] [Indexed: 02/06/2023]
Abstract
Synthetic cannabinoids were introduced into recreational drug culture in 2008 and quickly became one of the most commonly abused drugs in the United States. The neurobiological consequences resulting from synthetic cannabinoid repeated exposure remain poorly understood. It is possible that a blunted dopamine (DA) response may lead drug users to consume larger quantities to compensate for this form of neurochemical tolerance. Because the endogenous cannabinoid and opioid systems exhibit considerable cross-talk and cross-tolerance frequently develops following repeated exposure to either opioids or cannabinoids, there is interest in investigating whether a history of synthetic cannabinoid exposure influences the ability of heroin to increase DA release. To test the effects of chronic cannabinoid exposure on cannabinoid- and heroin-evoked DA release, male adult rats were treated with either vehicle or a synthetic cannabinoid (WIN55-212-2; WIN) using an intravenous (IV) dose escalation regimen (0.2-0.8 mg/kg IV over 9 treatments). As predicted, WIN-treated rats showed a rightward shift in the dose-response relationship across all behavioral/physiological measures when compared to vehicle-treated controls. Then, using fast-scan cyclic voltammetry to measure changes in the frequency of transient DA events in the nucleus accumbens shell of awake and freely-moving rats, it was observed that the DA releasing effects of both WIN and heroin were significantly reduced in male rats with a pharmacological history of cannabinoid exposure. These results demonstrate that repeated exposure to the synthetic cannabinoid WIN can produce tolerance to its DA releasing effects and cross-tolerance to the DA releasing effects of heroin.
Collapse
Affiliation(s)
- Devan M Gomez
- Psychology Department, University of Colorado Denver, USA; Current: Department of Biomedical Sciences, Marquette University, USA
| | | | | | - Ajit Ranganath
- Department of Neurobiology and Anatomy, University of Maryland Baltimore, USA
| | - Joseph F Cheer
- Department of Neurobiology and Anatomy, University of Maryland Baltimore, USA
| | - Erik B Oleson
- Psychology Department, University of Colorado Denver, USA; Biology Department, University of Colorado Denver, USA.
| |
Collapse
|
68
|
Charalambous C, Lapka M, Havlickova T, Syslova K, Sustkova-Fiserova M. Alterations in Rat Accumbens Dopamine, Endocannabinoids and GABA Content During WIN55,212-2 Treatment: The Role of Ghrelin. Int J Mol Sci 2020; 22:ijms22010210. [PMID: 33379212 PMCID: PMC7795825 DOI: 10.3390/ijms22010210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 01/22/2023] Open
Abstract
The endocannabinoid/CB1R system as well as the central ghrelin signalling with its growth hormone secretagogoue receptors (GHS-R1A) are importantly involved in food intake and reward/reinforcement processing and show distinct overlaps in distribution within the relevant brain regions including the hypothalamus (food intake), the ventral tegmental area (VTA) and the nucleus accumbens (NAC) (reward/reinforcement). The significant mutual interaction between these systems in food intake has been documented; however, the possible role of ghrelin/GHS-R1A in the cannabinoid reinforcement effects and addiction remain unclear. Therefore, the principal aim of the present study was to investigate whether pretreatment with GHS-R1A antagonist/JMV2959 could reduce the CB1R agonist/WIN55,212-2–induced dopamine efflux in the nucleus accumbens shell (NACSh), which is considered a crucial trigger impulse of the addiction process. The synthetic aminoalklylindol cannabinoid WIN55,212-2 administration into the posterior VTA induced significant accumbens dopamine release, which was significantly reduced by the 3 mg/kg i.p. JMV2959 pretreatment. Simultaneously, the cannabinoid-increased accumbens dopamine metabolic turnover was significantly augmented by the JMV2959 pretreament. The intracerebral WIN55,212-2 administration also increased the endocannabinoid arachidonoylethanolamide/anandamide and the 2-arachidonoylglycerol/2-AG extracellular levels in the NACSh, which was moderately but significantly attenuated by the JMV2959 pretreatment. Moreover, the cannabinoid-induced decrease in accumbens γ-aminobutyric acid/gamma-aminobutyric acid levels was reversed by the JMV2959 pretreatment. The behavioural study in the LABORAS cage showed that 3 mg/kg JMV2959 pretreatment also significantly reduced the systemic WIN55,212-2-induced behavioural stimulation. Our results demonstrate that the ghrelin/GHS-R1A system significantly participates in the rewarding/reinforcing effects of the cannabinoid/CB1 agonist that are involved in cannabinoid addiction processing.
Collapse
Affiliation(s)
- Chrysostomos Charalambous
- Department of Addictology, First Faculty of Medicine, Charles University, Apolinarska 4, 128 00 Prague 2, Czech Republic;
| | - Marek Lapka
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 34 Prague 10, Czech Republic; (M.L.); (T.H.)
| | - Tereza Havlickova
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 34 Prague 10, Czech Republic; (M.L.); (T.H.)
| | - Kamila Syslova
- Laboratory of Medicinal Diagnostics, Department of Organic Technology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic;
| | - Magdalena Sustkova-Fiserova
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 34 Prague 10, Czech Republic; (M.L.); (T.H.)
- Correspondence: ; Tel.: +420-267-102-450; Fax: +420-267-102-461
| |
Collapse
|
69
|
Mohammadkhani A, Borgland SL. Cellular and behavioral basis of cannabinioid and opioid interactions: Implications for opioid dependence and withdrawal. J Neurosci Res 2020; 100:278-296. [PMID: 33352618 DOI: 10.1002/jnr.24770] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 01/22/2023]
Abstract
The brain's endogenous opioid and endocannabinoid systems are neuromodulatory of synaptic transmission, and play key roles in pain, memory, reward, and addiction. Recent clinical and pre-clinical evidence suggests that opioid use may be reduced with cannabinoid intake. This suggests the presence of a functional interaction between these two systems. Emerging research indicates that cannabinoids and opioids can functionally interact at different levels. At the cellular level, opioid and cannabinoids can have direct receptor associations, alterations in endogenous opioid peptide or cannabinoid release, or post-receptor activation interactions via shared signal transduction pathways. At the systems level, the nature of cannabinoid and opioid interaction might differ in brain circuits underlying different behavioral phenomenon, including reward-seeking or antinociception. Given the rising use of opioid and cannabinoid drugs, a better understanding of how these endogenous signaling systems interact in the brain is of significant interest. This review focuses on the potential relationship of these neural systems in addiction-related processes.
Collapse
Affiliation(s)
- Aida Mohammadkhani
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB, Canada
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB, Canada
| |
Collapse
|
70
|
Neurochemical and Behavioral Characterization after Acute and Repeated Exposure to Novel Synthetic Cannabinoid Agonist 5-MDMB-PICA. Brain Sci 2020; 10:brainsci10121011. [PMID: 33353194 PMCID: PMC7766979 DOI: 10.3390/brainsci10121011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/06/2020] [Accepted: 12/14/2020] [Indexed: 01/21/2023] Open
Abstract
Since the early 2000s, herbal mixtures containing synthetic cannabinoids (SCs), broadly known as Spice/K2, have been marketed as a legal marijuana surrogate and have become very popular among adolescents. Adolescence is a critical period of development, which is associated with an increased vulnerability to the central effects of drugs. Despite growing concerns about the negative effects of the use of SCs, newly synthetized compounds are increasingly detected in drugs seized by the authorities, posing a serious threat to public health. 5F-MDMB-PICA has been recently detected and classified as a highly potent agonist of CB1 and CB2 cannabinoid receptors. Here, we first investigated the rewarding properties of 5F-MDMB-PICA in C57BL/6 adolescent and adult mice by in vivo brain microdialysis. Data showed that acute administration of a selected dose of 5F-MDMB-PICA (0.01 mg/kg i.p.) stimulates the release of dopamine in the nucleus accumbens shell of adolescent, but not of adult, mice. To further investigate the consequences of repeated exposure to this dose of 5F-MDMB-PICA, a separate group of adolescent mice was treated for 14 consecutive days and evaluated for behavioral abnormalities at adulthood, starting from 7 days after drug discontinuation. Data showed that this group of adult mice displayed an anxiety-like and compulsive-like state as revealed by an altered performance in the marble burying test. Our study suggests an alarming vulnerability of adolescent mice to the effects of 5F-MDMB-PICA. These findings provide a useful basis for understanding and evaluating both early and late detrimental effects that may derive from the use of SCs during adolescence.
Collapse
|
71
|
Flores-Soto ME, Corona-Angeles JA, Tejeda-Martinez AR, Flores-Guzman PA, Luna-Mujica I, Chaparro-Huerta V, Viveros-Paredes JM. β-Caryophyllene exerts protective antioxidant effects through the activation of NQO1 in the MPTP model of Parkinson's disease. Neurosci Lett 2020; 742:135534. [PMID: 33271195 DOI: 10.1016/j.neulet.2020.135534] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 11/16/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder, caused by the selective death of dopaminergic neurons in the substantia nigra pars compacta. β-caryophyllene (BCP) is a phytocannabinoid with several pharmacological properties, producing anti-inflammatory and antihypertensive effects. In addition, BCP protects dopaminergic neurons from neuronal death induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), yet it remains unclear if this effect is due to its antioxidant activity. To assess whether this is the case, the effect of BCP on the expression and activity of NAD(P)H quinone oxidoreductase (NQO1) was evaluated in mice after the administration of MPTP. Male C57BL/6 J mice were divided into four groups, the first of which received saline solution i.p. in equivalent volume and served as a control group. The second group received MPTP. The second group received MPTP hydrochloride (5 mg/kg, i.p.) daily for seven consecutive days. The third group received BCP (10 mg/kg) for seven days, administered orally and finally, the fourth group received MPTP as described above and BCP for 7 days from the fourth day of MPTP administration. The results showed that BCP inhibits oxidative stress-induced cell death of dopaminergic neurons exposed to MPTP at the same time as it enhances the expression and enzymatic activity of NQO1. Also, the BCP treatment ameliorated motor dysfunction and protected the dopaminergic cells of the SNpc from damage induced by MPTP. Hence, BCP appears to achieve at least some of its antioxidant effects by augmenting NQO1 activity, which protects cells from MPTP toxicity. Accordingly, this phytocannabinoid may represent a promising pharmacological option to safeguard dopaminergic neurons and prevent the progression of PD.
Collapse
Affiliation(s)
- M E Flores-Soto
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, 44340, Guadalajara, Jalisco, Mexico
| | - J A Corona-Angeles
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, 44340, Guadalajara, Jalisco, Mexico
| | - A R Tejeda-Martinez
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, 44340, Guadalajara, Jalisco, Mexico
| | - P A Flores-Guzman
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, 44340, Guadalajara, Jalisco, Mexico
| | - I Luna-Mujica
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, 44340, Guadalajara, Jalisco, Mexico
| | - V Chaparro-Huerta
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, 44340, Guadalajara, Jalisco, Mexico
| | - J M Viveros-Paredes
- Laboratorio de Investigación y Desarrollo Farmacéutico, Departamento de Farmacología, Centro Universitario de Ciencias Exactas e Ingenierías, 44430, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
72
|
Vaseghi S, Nasehi M, Zarrindast MR. How do stupendous cannabinoids modulate memory processing via affecting neurotransmitter systems? Neurosci Biobehav Rev 2020; 120:173-221. [PMID: 33171142 DOI: 10.1016/j.neubiorev.2020.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/17/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022]
Abstract
In the present study, we wanted to review the role of cannabinoids in learning and memory in animal models, with respect to their interaction effects with six principal neurotransmitters involved in learning and memory including dopamine, glutamate, GABA (γ-aminobutyric acid), serotonin, acetylcholine, and noradrenaline. Cannabinoids induce a wide-range of unpredictable effects on cognitive functions, while their mechanisms are not fully understood. Cannabinoids in different brain regions and in interaction with different neurotransmitters, show diverse responses. Previous findings have shown that cannabinoids agonists and antagonists induce various unpredictable effects such as similar effect, paradoxical effect, or dualistic effect. It should not be forgotten that brain neurotransmitter systems can also play unpredictable roles in mediating cognitive functions. Thus, we aimed to review and discuss the effect of cannabinoids in interaction with neurotransmitters on learning and memory. In addition, we mentioned to the type of interactions between cannabinoids and neurotransmitter systems. We suggested that investigating the type of interactions is a critical neuropharmacological issue that should be considered in future studies.
Collapse
Affiliation(s)
- Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
73
|
Meneses-Gaya CD, Crippa JA, Hallak JE, Miguel AQ, Laranjeira R, Bressan RA, Zuardi AW, Lacerda AL. Cannabidiol for the treatment of crack-cocaine craving: an exploratory double-blind study. BRAZILIAN JOURNAL OF PSYCHIATRY 2020; 43:467-476. [PMID: 33146345 PMCID: PMC8555645 DOI: 10.1590/1516-4446-2020-1416] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022]
Abstract
Objective: To assess the efficacy of cannabidiol (CBD) in the management of crack-cocaine craving and the treatment of frequent withdrawal symptoms. Methods: Thirty-one men with a diagnosis of crack-cocaine dependence were enrolled in a randomized, double-blind, placebo-controlled trial. We applied neuropsychological tests and assessed craving intensity, anxiety and depression symptoms, and substance use patterns at baseline and at the end of the trial. The participants were treated with CBD 300 mg/day or placebo for 10 days. During this period, we used a technique to induce craving and assessed the intensity of symptoms before and after the induction procedure. Results: Craving levels reduced significantly over the 10 days of the trial, although no differences were found between the CBD and placebo groups. Craving induction was successful in both groups, with no significant differences between them. Indicators of anxiety, depression, and sleep alterations before and after treatment also did not differ across groups. Conclusion: Under the conditions of this trial, CBD was unable to interfere with symptoms of crack-cocaine withdrawal. Further studies with larger outpatient samples involving different doses and treatment periods would be desirable and timely to elucidate the potential of CBD to induce reductions in crack-cocaine self-administration.
Collapse
Affiliation(s)
- Carolina de Meneses-Gaya
- Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), Brazil
| | - José A. Crippa
- Divisão de Psiquiatria, Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Jaime E. Hallak
- Divisão de Psiquiatria, Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - André Q. Miguel
- Instituto Nacional de Políticas Públicas do Álcool e Drogas (INPAD), UNIFESP, Brazil
| | - Ronaldo Laranjeira
- Instituto Nacional de Políticas Públicas do Álcool e Drogas (INPAD), UNIFESP, Brazil
| | - Rodrigo A. Bressan
- Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), Brazil
| | - Antonio W. Zuardi
- Divisão de Psiquiatria, Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Acioly L. Lacerda
- Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), Brazil
| |
Collapse
|
74
|
Isaacs DP, Leman RP, Everett TJ, Lopez-Beltran H, Hamilton LR, Oleson EB. Buprenorphine is a weak dopamine releaser relative to heroin, but its pretreatment attenuates heroin-evoked dopamine release in rats. Neuropsychopharmacol Rep 2020; 40:355-364. [PMID: 32935483 PMCID: PMC7718284 DOI: 10.1002/npr2.12139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 01/25/2023] Open
Abstract
AIMS The United States of America is currently in an opioid epidemic. Heroin remains the most lethal opioid option with its death rate increasing by over 500% in the last decade. The rewarding and reinforcing effects of heroin are thought to be mediated by its ability to increase dopamine concentration in the nucleus accumbens shell. By activating Gi/o-coupled μ-opioid receptors, opioids are thought to indirectly excite midbrain dopamine neurons by removing an inhibitory GABAergic tone. The partial μ-opioid receptor agonist buprenorphine is a substitution-based therapy for heroin dependence that is thought to produce a steady-state level of μ-opioid receptor activation. But it remains unclear how buprenorphine alters dopamine release relative to heroin and how buprenorphine alters the dopamine-releasing effects of heroin. Because buprenorphine is a partial agonist at the μ-opioid receptor and heroin is a full agonist, we predicted that buprenorphine would function as a weak dopamine releaser relative to heroin, while functioning as a competitive antagonist if administered in advance of heroin. METHODS We performed fast-scan cyclic voltammetry in awake and behaving rats to measure how heroin, buprenorphine HCl, and their combination affect transient dopamine release events in the nucleus accumbens shell. We also performed a complimentary pharmacokinetic analysis comparing opioid plasma levels at time points correlated to our neurochemical findings. RESULTS Both buprenorphine and heroin produced changes in the frequency of transient dopamine release events, although the effect of buprenorphine was weak and only observed at a low dose. In comparison with vehicle, the frequency of dopamine release events maximally increased by ~25% following buprenorphine treatment and by ~60% following heroin treatment. Distinct neuropharmacological effects were observed in the high-dose range. The frequency of dopamine release events increased linearly with heroin dose but biphasically with buprenorphine dose. We also found that buprenorphine pretreatment occluded the dopamine-releasing effects of heroin, but plasma levels of buprenorphine had returned to baseline at this time point. CONCLUSION These findings support the notion that low-dose buprenorphine is a weak dopamine releaser relative to heroin and that buprenorphine pretreatment can block the dopamine-releasing effects of heroin. The finding that high-dose buprenorphine fails to increase dopamine release might explain its relatively low abuse potential among opioid-dependent populations. Because high-dose buprenorphine decreased dopamine release before occluding heroin-evoked dopamine release, and buprenorphine was no longer detected in plasma, we conclude that the mechanisms through which buprenorphine blocks heroin-evoked dopamine release involve multifaceted pharmacokinetic and pharmacodynamic interactions.
Collapse
Affiliation(s)
- Dominic P Isaacs
- Psychology Department, University of Colorado, Denver, Colorado, USA.,Department of Bioengineering, University of Colorado, Denver, Colorado, USA
| | - Ryan P Leman
- Psychology Department, University of Colorado, Denver, Colorado, USA
| | - Thomas J Everett
- Psychology Department, University of Colorado, Denver, Colorado, USA
| | | | | | - Erik B Oleson
- Psychology Department, University of Colorado, Denver, Colorado, USA
| |
Collapse
|
75
|
Abbasi-Habashi S, Ghasemzadeh Z, Rezayof A. Morphine improved stress-induced amnesia and anxiety through interacting with the ventral hippocampal endocannabinoid system in rats. Brain Res Bull 2020; 164:407-414. [PMID: 32937186 DOI: 10.1016/j.brainresbull.2020.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/28/2020] [Accepted: 09/06/2020] [Indexed: 12/15/2022]
Abstract
The present study aimed to investigate the possible role of the ventral hippocampal (VH) cannabinoid CB1 receptors in the improving effect of morphine on stress-induced memory formation impairment and anxiety. A step-through type passive avoidance task and a hole-board test were used to measure memory formation and anxiety-like exploratory behavior, respectively. The results showed that the exposure to 10-min stress immediately after the successful training phase impaired memory formation and also produced anxiogenic-like exploratory behaviour in adult male Wistar rats. Moreover, morphine administration before stress exposure improved the adverse effects of stress on memory formation and exploratory behaviour. After training, intra-VH microinjection of cannabinoid CB1/CB2 receptor agonist, WIN 55,212-2 (0.01-0.05 μg/rat) enhanced the response of an ineffective dose of morphine (0.5 mg/kg for memory; 5 mg/kg for anxiety, i.p.) on memory impairment and anxiogenic-like exploratory behaviour induced by acute stress. Intra-VH microinjection of the higher dose of WIN 55,212-2 alone impaired memory formation. Post-training microinjection of a cannabinoid CB1 receptor antagonist/inverse agonist, AM-251 (100-150 ng/rat) into the VH attenuated the response of an effective dose of morphine (5 mg/kg for memory; 6 mg/kg for anxiety, i.p.) in stress-exposed rats. Taken together, the present results showed that morphine administration could improve stress-induced memory impairment and anxiety in the rats exposed to the inescapable acute stress. Interestingly, the improving effect of morphine on the adverse effect of stress on memory formation and anxiety-like exploratory behaviour may be mediated through the VH endocannabinoid CB1/CB2 receptors mechanism.
Collapse
Affiliation(s)
- Sima Abbasi-Habashi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Zahra Ghasemzadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
76
|
Ramadan MM, Banta JE, Bahjri K, Montgomery SB. Marijuana users are likely to report opioid misuse among adults over 50 years in representative sample of the United States (2002-2014). J Addict Dis 2020; 39:66-73. [PMID: 32935646 DOI: 10.1080/10550887.2020.1816117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background: In the wake of the rising rate of prescription opioid misuse, there has been increased public health interest in the possibility that cannabis might help to curb or prevent opioid use disorder. Previous studies were limited to young adult marijuana use population. Little is known about whether in older adult population, marijuana use is associated with a different type of nonmedical use opioids. We examined the association between marijuana use and nonmedical prescription opioids dependence and use among older adults.Methods: The National Survey on Drug Use and Health is a nationally U.S. representative cross-sectional survey. We analyzed data for 75,949 adults aged ≥ 50 who participated in the year 2002-2014.Results: Within the overall population, 3.8% of the older adults reported past-year marijuana use (estimate 3.5 million older adults Americans). Past-year marijuana use was very common (25%-37%) among nonmedical opioid dependence respondents compared to those who did not report nonmedical opioid dependence and use (3.5%-3.7%). Past-year marijuana user was significantly associated with an increase in odds of reporting opioid dependence (AOR 9.6 95% CI = 5.8-15.7), and past-year nonmedical use opioids (AOR 6.4 95% CI = 5.2-7.8). Illicit drug heroin was the most prevalent nonmedical used opioid (AOR 6.3 95% CI = 5.0-7.9), compared to codeine (AOR 4.5 95% CI = 3.5-5.7), hydrocodone (AOR 4.9 95% CI = 3.8-6.4), methadone or tramadol (AOR 4.9 95% CI = 2.0-12.3).Conclusion: Policymakers and healthcare providers should remain mindful that older adult marijuana users regardless of initial legitimate medical needs are likely to report nonmedical opioid use including illicit drug heroin.
Collapse
Affiliation(s)
- Majed M Ramadan
- Department of Health Policy and Leadership, School of Public Health, University of Loma Linda, Loma Linda, CA, USA
| | - Jim E Banta
- School of Public Health, Center for Leadership in Health Systems, Loma Linda University, Loma Linda, CA, USA
| | - Khaled Bahjri
- School of Pharmacy, Loma Linda University, Loma Linda, CA, USA
| | - Susanne B Montgomery
- Loma Linda University School of Behavioral Health, Loma Linda, CA, USA.,Behavioral Health Institute, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
77
|
Gheidi A, Cope LM, Fitzpatrick CJ, Froehlich BN, Atkinson R, Groves CK, Barcelo CN, Morrow JD. Effects of the cannabinoid receptor agonist CP-55,940 on incentive salience attribution. Psychopharmacology (Berl) 2020; 237:2767-2776. [PMID: 32494975 PMCID: PMC7502542 DOI: 10.1007/s00213-020-05571-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/26/2020] [Indexed: 10/24/2022]
Abstract
RATIONALE Pavlovian conditioned approach paradigms are used to characterize the nature of motivational behaviors in response to stimuli as either directed toward the cue (i.e., sign-tracking) or the site of reward delivery (i.e., goal-tracking). Recent evidence has shown that activity of the endocannabinoid system increases dopaminergic activity in the mesocorticolimbic system, and other studies have shown that sign-tracking behaviors are dependent on dopamine. OBJECTIVES Therefore, we hypothesized that administration of a cannabinoid agonist would increase sign-tracking and decrease goal-tracking behaviors. METHODS Forty-seven adult male Sprague-Dawley rats were given a low, medium, or high dose of the cannabinoid agonist CP-55,940 (N = 12 per group) or saline (N = 11) before Pavlovian conditioned approach training. A separate group of rats (N = 32) were sacrificed after PCA training for measurement of cannabinoid receptor type 1 (CB1) and fatty acid amide hydrolase (FAAH) using in situ hybridization. RESULTS Contrary to our initial hypothesis, CP-55,940 dose-dependently decreased sign-tracking and increased goal-tracking behavior. CB1 expression was higher in sign-trackers compared with that in goal-trackers in the prelimbic cortex, but there were no significant differences in CB1 or FAAH expression in the infralimbic cortex, dorsal or ventral CA1, dorsal or ventral CA3, dorsal or ventral dentate gyrus, or amygdala. CONCLUSIONS These results demonstrate that cannabinoid signaling can specifically influence behavioral biases toward sign- or goal-tracking. Pre-existing differences in CB1 expression patterns, particularly in the prelimbic cortex, could contribute to individual differences in the tendency to attribute incentive salience to reward cues.
Collapse
Affiliation(s)
- Ali Gheidi
- Department of Psychiatry, University of Michigan
| | - Lora M. Cope
- Department of Psychiatry, University of Michigan,Addiction Center, University of Michigan
| | | | | | | | | | - Clair N. Barcelo
- Molecular and Behavioral Neuroscience Institute, University of Michigan
| | - Jonathan D. Morrow
- Department of Psychiatry, University of Michigan,Addiction Center, University of Michigan,Neuroscience Graduate Program, University of Michigan,Corresponding Author: Jonathan D. Morrow, Biomedical Science Research Building Room 5047, 109 Zina Pitcher Place Ann Arbor, MI 48109, 1-734-764-4283 (phone), 1-734-232-0244 (fax),
| |
Collapse
|
78
|
Amancio-Belmont O, Becerril Meléndez AL, Ruiz-Contreras AE, Méndez-Díaz M, Prospéro-García O. Maternal separation plus social isolation during adolescence reprogram brain dopamine and endocannabinoid systems and facilitate alcohol intake in rats. Brain Res Bull 2020; 164:21-28. [PMID: 32784005 DOI: 10.1016/j.brainresbull.2020.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/18/2020] [Accepted: 08/02/2020] [Indexed: 12/22/2022]
Abstract
Adverse early life experiences, i.e. abusive parenting, during postnatal development, induce long-lasting effects on the stress response systems and behavior. Such changes persist throughout an individual's life, making him/her vulnerable to suffer psychiatric disorders, including anxiety disorders and drug addiction. Rat pup maternal separation (MS) is a widely used rodent early-life stress model. MS induces changes in the dopamine and endocannabinoid systems in the nucleus accumbens (NAcc) that facilitate alcohol consumption. In this study, our endeavor was to determine if social isolation during adolescence (aSI) was as efficient as MS to facilitate alcohol intake; and moreover, if their combination (MS + aSI) induces even higher alcohol intake and exacerbates anxiety-like behaviors. Also, we evaluated dopamine and endocannabinoid receptors in the NAcc to describe potential changes caused by MS, aSI or both. Wistar rats were reared under 4 different conditions: non-MS + social housing (SH), MS + SH, non-MS + aSI and MS + aSI. Once these rats became adults they were submitted to a voluntary alcohol intake protocol for 10 days. Similar groups of rats with no exposure to alcohol whatsoever, were sacrificed to dissect out the NAcc to analyze the expression of cannabinoid (CB1R and CB2R) and dopamine (D2R and D3R) receptors. Results showed that MS, aSI and MS + aSI increase both CB1R, D2R and D3R expression in the NAcc and also increase alcohol intake and anxiety. These results suggest that early life adverse experiences induce a reprogramming of the brain's dopamine and endocannabinoid systems which increases subject's vulnerability to develop anxiety, alcohol abuse and dependence.
Collapse
Affiliation(s)
- Octavio Amancio-Belmont
- Laboratorio de Canabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Alline L Becerril Meléndez
- Laboratorio de Canabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Alejandra E Ruiz-Contreras
- Laboratorio de Neurogenómica Cognitiva, Departamento de Psicofisiología, Facultad de Psicología. Universidad Nacional Autónoma de México, Mexico
| | - Mónica Méndez-Díaz
- Laboratorio de Canabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Oscar Prospéro-García
- Laboratorio de Canabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
79
|
Abboussi O, Andaloussi ZIL, Chris AD, Taghzouti K. Chronic Exposure to WIN55,212-2 During Adolescence Alters Prefrontal Dopamine Turnover and Induces Sensorimotor Deficits in Adult Rats. Neurotox Res 2020; 38:682-690. [PMID: 32757167 DOI: 10.1007/s12640-020-00266-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 01/01/2023]
Abstract
Several lines of evidence suggest that chronic exposure to cannabinoids during adolescence may increase the risk of schizophrenia. Studies of the disorder have identified altered cortical dopaminergic neurotransmission. In this study, we hypothesised that heightened endocannabinoid system activation via chronic exposure to a highly potent cannabinoid receptors agonist in adolescent rats would cause long-lasting neurobiological changes that may dramatically alter expression and functions of dopamine metabolising enzymes, comethyl-o-transferase (COMT) and monoamine oxidases MAO-A and MAO-B. To test this hypothesis, adult male rats (70 PND) undergoing chronic treatment of the highly potent and non-selective CB agonist WIN55,212-2 (1.2 mg/kg) during adolescence (PND 30-50) were subjected after 20 days washout period to prepulse inhibition of acoustic startle test (PPI) to confirm cannabinoid-induced sensorimotor-gating impairments and afterwards examined for COMT, MAO-A and MAO-B expression and activity in the prefrontal cortex. Chronic WIN55,212-2 exposure during adolescence caused disruption of PPI, increased cortical dopamine level, decreased COMT mRNA expression and decreased MAO-A and MAO-B enzymatic activities. These results indicate that chronic exposure to cannabinoids during adolescence induces sensorimotor-gating alterations which likely result from changes in the prefrontal cortex dopaminergic signalling. This has important implications for developing methods of targeting dopamine metabolising enzymes and/or sequelae of its dysregulation in cannabinoid-induced schizoaffective-like behaviour.
Collapse
Affiliation(s)
- Oualid Abboussi
- Division of Neuroscience, Ninewells Hospital and Medical School, Institute of Academic Anaesthesia, University of Dundee, Dundee, UK.
| | - Zineb Ibn Lahmar Andaloussi
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University in Rabat, Rabat, Morocco
| | - Ajonijebu Duyilemi Chris
- Department of Physiology, School of Biomolecular and Chemical Sciences, Faculty of Science, Nelson Mandela University, Port Elizabeth, South Africa
| | - Khalid Taghzouti
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
80
|
Modafinil potentiates cocaine self-administration by a dopamine-independent mechanism: possible involvement of gap junctions. Neuropsychopharmacology 2020; 45:1518-1526. [PMID: 32340023 PMCID: PMC7360549 DOI: 10.1038/s41386-020-0680-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/15/2020] [Accepted: 04/09/2020] [Indexed: 12/21/2022]
Abstract
Modafinil and methylphenidate are medications that inhibit the neuronal reuptake of dopamine, a mechanism shared with cocaine. Their use as "smart drugs" by healthy subjects poses health concerns and requires investigation. We show that methylphenidate, but not modafinil, maintained intravenous self-administration in Sprague-Dawley rats similar to cocaine. Both modafinil and methylphenidate pretreatments potentiated cocaine self-administration. Cocaine, at self-administered doses, stimulated mesolimbic dopamine levels. This effect was potentiated by methylphenidate, but not by modafinil pretreatments, indicating dopamine-dependent actions for methylphenidate, but not modafinil. Modafinil is known to facilitate electrotonic neuronal coupling by actions on gap junctions. Carbenoxolone, a gap junction inhibitor, antagonized modafinil, but not methylphenidate potentiation of cocaine self-administration. Our results indicate that modafinil shares mechanisms with cocaine and methylphenidate but has a unique pharmacological profile that includes facilitation of electrotonic coupling and lower abuse liability, which may be exploited in future therapeutic drug design for cocaine use disorder.
Collapse
|
81
|
Pérez-Valenzuela EJ, Andrés Coke ME, Grace AA, Fuentealba Evans JA. Adolescent Exposure to WIN 55212-2 Render the Nigrostriatal Dopaminergic Pathway Activated During Adulthood. Int J Neuropsychopharmacol 2020; 23:626-637. [PMID: 32710782 PMCID: PMC7710918 DOI: 10.1093/ijnp/pyaa053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/08/2020] [Accepted: 07/22/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND During adolescence, neuronal circuits exhibit plasticity in response to physiological changes and to adapt to environmental events. Nigrostriatal dopaminergic pathways are in constant flux during development. Evidence suggests a relationship between early use of cannabinoids and psychiatric disorders characterized by altered dopaminergic systems, such as schizophrenia and addiction. However, the impact of adolescent exposure to cannabinoids on nigrostriatal dopaminergic pathways in adulthood remains unclear. The aim of this research was to determine the effects of repeated activation of cannabinoid receptors during adolescence on dopaminergic activity of nigrostriatal pathways and the mechanisms underlying this impact during adulthood. METHODS Male Sprague-Dawley rats were treated with 1.2 mg/kg WIN 55212-2 daily from postnatal day 40 to 65. Then no-net flux microdialysis of dopamine in the dorsolateral striatum, electrophysiological recording of dopaminergic neuronal activity, and microdialysis measures of gamma-aminobutyric acid (GABA) and glutamate in substantia nigra par compacta were carried out during adulthood (postnatal days 72-78). RESULTS Repeated activation of cannabinoid receptors during adolescence increased the release of dopamine in dorsolateral striatum accompanied by increased population activity of dopamine neurons and decreased extracellular GABA levels in substantia nigra par compacta in adulthood. Furthermore, perfusion of bicuculline, a GABAa antagonist, into the ventral pallidum reversed the increased dopamine neuron population activity in substantia nigra par compacta induced by adolescent cannabinoid exposure. CONCLUSIONS These results suggest that adolescent exposure to cannabinoid agonists produces disinhibition of nigrostriatal dopamine transmission during adulthood mediated by decreased GABAergic input from the ventral pallidum.
Collapse
Affiliation(s)
- Enzo Javier Pérez-Valenzuela
- Department of Pharmacy and Interdisciplinary Center of Neuroscience, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago, Chile,Departments of Neuroscience, Psychiatry, and Psychology, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - María Estela Andrés Coke
- Department of Cellular and Molecular Biology, Faculty of Biological Science, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry, and Psychology, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - José Antonio Fuentealba Evans
- Department of Pharmacy and Interdisciplinary Center of Neuroscience, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago, Chile,Correspondence: José Antonio Fuentealba, PhD, Department of Pharmacy, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago, Chile ()
| |
Collapse
|
82
|
Rosa HZ, Segat HJ, Barcelos RCS, Roversi K, Rossato DR, de Brum GF, Burger ME. Involvement of the endogenous opioid system in the beneficial influence of physical exercise on amphetamine-induced addiction parameters. Pharmacol Biochem Behav 2020; 197:173000. [PMID: 32702398 DOI: 10.1016/j.pbb.2020.173000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/31/2020] [Accepted: 07/16/2020] [Indexed: 12/21/2022]
Abstract
Psychostimulant drugs addiction is a chronic public health problem and individuals remain susceptible to relapses increasing public expenses even after withdrawal and treatment. Our research group has focused on finding new therapies to be employed in drug addiction treatment, suggesting the physical exercise as a promising tool. This way, it is necessary to know the mechanisms involved in the beneficial influences of physical exercise observing the pathway that could be explored in drug addiction treatment. Male Wistar rats were conditioned with amphetamine (AMPH) following the conditioned place preference (CPP) protocol and subsequently submitted to swimming for 5 weeks (1 h per day, 5 days per week). Half of the animals were injected with Naloxone (0.3 mg/mL/kg body weight, i.p.) 5 min prior each physical exercise day. After AMPH-CPP re-exposure, our outcomes showed that physical exercise, in addition to minimizing the relapse behavior in the CPP, it increased D1R, D2R and DAT in the Ventral Tegmental Area (VTA), but not in the Nucleus accumbens (NAc). Interestingly, while naloxone inhibited the partial beneficial influence of the exercise on drug-relapse behavior, exercise-induced changes in the dopaminergic system were not observed in the group administered with naloxone as well. Based on these evidences, besides reinforcing the beneficial influence of the physical exercise on AMPH-induced drug addiction, we propose the involvement of endogenous opioid system activation, not as a single one, but as a possible mechanism of action resulting from the physical activity practice, thus characterizing an important therapeutic approach, which may contribute to drug withdrawal consequently preventing relapse.
Collapse
Affiliation(s)
- H Z Rosa
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - H J Segat
- Departamento de Patologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - R C S Barcelos
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - Kr Roversi
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - D R Rossato
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - G F de Brum
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - M E Burger
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil; Departamento de Patologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil; Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil.
| |
Collapse
|
83
|
Babalonis S, Walsh SL. Therapeutic potential of opioid/cannabinoid combinations in humans: Review of the evidence. Eur Neuropsychopharmacol 2020; 36:206-216. [PMID: 32273144 PMCID: PMC7338254 DOI: 10.1016/j.euroneuro.2020.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/12/2020] [Accepted: 03/06/2020] [Indexed: 02/05/2023]
Abstract
The endogenous opioid and cannabinoid receptor systems are widely distributed and co-localized throughout central and peripheral nervous system regions. A large body of preclinical evidence suggests that there are functional interactions between these two systems that may be leveraged to address various health conditions. Numerous animal studies have shown that cannabinoid agonists (e.g., delta-9-tetrahydrocannabinol [Δ9-THC]) enhance the analgesic effects of µ-opioid analgesics as evidenced by decreasing the opioid dose required for analgesia (i.e., opioid sparing) and extending the duration of the opioid analgesia. In contrast, controlled human laboratory studies and clinical trials have not demonstrated robust analgesic or opioid-sparing effects from opioid-cannabinoid combinations. Meta-analyses of the literature (clinical trials, controlled laboratory studies; some non-controlled studies/case reports) have examined the effects of cannabis/cannabinoids for pain relief in those taking a wide variety of analgesics, including prescription opioid medications. These data do not strongly support the use of cannabinoids for chronic pain nor do prospective studies demonstrate significant cannabinoid-mediated opioid-sparing effects. Preclinical studies have also suggested a role for cannabinoids for the treatment of opioid withdrawal. Controlled laboratory and clinical studies suggest that there may be a modest signal for Δ9-THC to suppress some opioid signs and symptoms but they are not completely ameliorated and there may also be concerns around safety of Δ9-THC administration in a state of heightened autonomic arousal as occurs with opioid withdrawal. Despite anecdotal and correlational reports suggesting a benefit of cannabis on reducing opioid overdose, there is no strong data supporting this contention and emerging reports have conflicting results. In summary, there is a groundswell of public advocacy supporting the use of cannabis and cannabinoids to replace opioid analgesics or to reduce opioid use; however, the extant controlled clinical data do not support the role of cannabinoids for opioid replacement or opioid-sparing effects when treating opioid use disorder or chronic pain.
Collapse
Affiliation(s)
- Shanna Babalonis
- Department of Behavioral Science, University of Kentucky, 845 Angliana Avenue, Lexington, KY 40508, United States; Department of the Center on Drug and Alcohol Research, University of Kentucky, Lexington, KY 40508, United States
| | - Sharon L Walsh
- Department of Behavioral Science, University of Kentucky, 845 Angliana Avenue, Lexington, KY 40508, United States; Department of Pharmacology, University of Kentucky, Lexington, KY 40508, United States; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40508, United States; Department of Psychiatry, University of Kentucky, Lexington, KY 40508, United States; Department of the Center on Drug and Alcohol Research, University of Kentucky, Lexington, KY 40508, United States.
| |
Collapse
|
84
|
Crummy EA, O'Neal TJ, Baskin BM, Ferguson SM. One Is Not Enough: Understanding and Modeling Polysubstance Use. Front Neurosci 2020; 14:569. [PMID: 32612502 PMCID: PMC7309369 DOI: 10.3389/fnins.2020.00569] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022] Open
Abstract
Substance use disorder (SUD) is a chronic, relapsing disease with a highly multifaceted pathology that includes (but is not limited to) sensitivity to drug-associated cues, negative affect, and motivation to maintain drug consumption. SUDs are highly prevalent, with 35 million people meeting criteria for SUD. While drug use and addiction are highly studied, most investigations of SUDs examine drug use in isolation, rather than in the more prevalent context of comorbid substance histories. Indeed, 11.3% of individuals diagnosed with a SUD have concurrent alcohol and illicit drug use disorders. Furthermore, having a SUD with one substance increases susceptibility to developing dependence on additional substances. For example, the increased risk of developing heroin dependence is twofold for alcohol misusers, threefold for cannabis users, 15-fold for cocaine users, and 40-fold for prescription misusers. Given the prevalence and risk associated with polysubstance use and current public health crises, examining these disorders through the lens of co-use is essential for translatability and improved treatment efficacy. The escalating economic and social costs and continued rise in drug use has spurred interest in developing preclinical models that effectively model this phenomenon. Here, we review the current state of the field in understanding the behavioral and neural circuitry in the context of co-use with common pairings of alcohol, nicotine, cannabis, and other addictive substances. Moreover, we outline key considerations when developing polysubstance models, including challenges to developing preclinical models to provide insights and improve treatment outcomes.
Collapse
Affiliation(s)
- Elizabeth A Crummy
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States.,Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Timothy J O'Neal
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States.,Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Britahny M Baskin
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States.,Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Susan M Ferguson
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Alcohol and Drug Abuse Institute, University of Washington, Seattle, WA, United States
| |
Collapse
|
85
|
Godoi MM, Junior HZ, da Cunha JM, Zanoveli JM. Mu-opioid and CB1 cannabinoid receptors of the dorsal periaqueductal gray interplay in the regulation of fear response, but not antinociception. Pharmacol Biochem Behav 2020; 194:172938. [PMID: 32376258 DOI: 10.1016/j.pbb.2020.172938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/21/2022]
Abstract
Evidence indicates that periaqueductal gray matter (PAG) plays an important role in defensive responses and pain control. The activation of cannabinoid type-1 (CB1) or mu-opioid (MOR) receptors in the dorsal region of this structure (dPAG) inhibits fear and facilitates antinociception induced by different aversive stimuli. However, it is still unknown whether these two receptors work cooperatively in order to achieve these inhibitory actions. This study investigated the involvement and a likely interplay between CB1 and MOR receptors localized into the dPAG on the regulation of fear-like defensive responses and antinociception (evaluated in tail-flick test) evoked by dPAG chemical stimulation with N-methyl-d-aspartate (NMDA). Before the administration of NMDA, animals were first intra-dPAG injected with the CB1 agonist ACEA (0.5 pmol), or with the MOR agonist DAMGO (0.5 pmol) in combination with the respective antagonists AM251 (CB1 antagonist, 100 pmol) or CTOP (MOR antagonist, 1 nmol). To investigate the interplay between these receptors, microinjection of CTOP was combined with ACEA, or microinjection of AM251 was combined with DAMGO. Our results showed that both the intra-PAG treatments with ACEA or DAMGO inhibited NMDA-induced freezing expression, whereas only the treatment with DAMGO increased antinociception induced with NMDA, which are completely blocked by its respective antagonists. Interestingly, the inhibitory effects of ACEA or DAMGO on freezing was blocked by CTOP and AM251, respectively, indicating a functional interaction between these two receptors in the mediation of defensive behaviors. However, this cooperative interaction was not observed during the NMDA-induced antinociception. Our findings indicate that there is a cooperative action between the MOR and CB1 receptors within the dPAG and it is involved in the mediation of NMDA-induced defensive responses. Additionally, the MORs into the dPAG are involved in the modulation of the antinociceptive effects that follow a fear-like defense-reaction induced by dPAG chemical stimulation with NMDA.
Collapse
Affiliation(s)
- Manuella Machado Godoi
- Department of Pharmacology, Biological Sciences Building, Federal University of Paraná, Rua Coronel H. dos Santos S/N, P.O. Box 19031, Curitiba, Paraná 81540-990, Brazil
| | - Hélio Zangrossi Junior
- Department of Pharmacology, School of Medicine, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Joice Maria da Cunha
- Department of Pharmacology, Biological Sciences Building, Federal University of Paraná, Rua Coronel H. dos Santos S/N, P.O. Box 19031, Curitiba, Paraná 81540-990, Brazil; Institute of Neurosciences and Behavior and Laboratory of Neuropsychopharmacology of Faculty of Philosophy, Sciences and Letters of University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil
| | - Janaina Menezes Zanoveli
- Department of Pharmacology, Biological Sciences Building, Federal University of Paraná, Rua Coronel H. dos Santos S/N, P.O. Box 19031, Curitiba, Paraná 81540-990, Brazil; Institute of Neurosciences and Behavior and Laboratory of Neuropsychopharmacology of Faculty of Philosophy, Sciences and Letters of University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil.
| |
Collapse
|
86
|
Abstract
AbstractPurposeTo test the hypothesis that recent onset psychotic patients who use cannabis will have psychotic symptoms that are more severe and more persistent than those who do not use cannabis.Subjects and methodsWe carried out a 4-year follow-up study of a cohort of 119 patients with recent onset of psychosis. The patients were divided into four groups according to duration of cannabis use, taking index admission and follow-up as reference points.ResultsThose subjects who persisted in the use of cannabis had more positive (but not negative) symptoms and a more continuous illness at follow-up.LimitationsThe main limitations of the study were: the relatively small sample size, and that the excess of male subjects and the presence of cannabis induced psychosis could have a confusing impact on the interpretation of the results.ConclusionIt is possible that psychotic patients who use cannabis are at a greater risk of a more continuous illness with more positive symptoms than those who do not.
Collapse
Affiliation(s)
- Anton Grech
- Department of Psychiatry, Mount Carmel Hospital, Malta.
| | | | | | | | | |
Collapse
|
87
|
Hwang EK, Lupica CR. Altered Corticolimbic Control of the Nucleus Accumbens by Long-term Δ 9-Tetrahydrocannabinol Exposure. Biol Psychiatry 2020; 87:619-631. [PMID: 31543247 PMCID: PMC7002212 DOI: 10.1016/j.biopsych.2019.07.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/14/2019] [Accepted: 07/04/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND The decriminalization and legalization of cannabis and the expansion of availability of medical cannabis in North America have led to an increase in cannabis use and the availability of high-potency strains. Cannabis potency is determined by the concentration of Δ9-tetrahydrocannabinol (Δ9-THC), a psychoactive constituent that activates cannabinoid CB1 and CB2 receptors. The use of high-potency cannabis is associated with cannabis use disorder and increased susceptibility to psychiatric illness. The nucleus accumbens (NAc) is part of a brain reward circuit affected by Δ9-THC through modulation of glutamate afferents arising from corticolimbic brain areas implicated in drug addiction and psychiatric disorders. Moreover, brain imaging studies show alterations in corticolimbic and NAc properties in human cannabis users. METHODS Using in vitro electrophysiology and optogenetics, we examined how Δ9-THC alters corticolimbic input to the NAc in rats. RESULTS We found that long-term exposure to Δ9-THC weakens prefrontal cortex glutamate input to the NAc shell and strengthens input from basolateral amygdala and ventral hippocampus. Further, whereas long-term exposure to Δ9-THC had no effect on net strength of glutamatergic input to NAc shell arising from midbrain dopamine neurons, it alters fundamental properties of these synapses. CONCLUSIONS Long-term exposure to Δ9-THC shifts control of the NAc shell from cortical to limbic input, likely contributing to cognitive and psychiatric dysfunction that is associated with cannabis use.
Collapse
|
88
|
Kunos G. Interactions Between Alcohol and the Endocannabinoid System. Alcohol Clin Exp Res 2020; 44:790-805. [PMID: 32056226 DOI: 10.1111/acer.14306] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/05/2020] [Indexed: 12/12/2022]
Abstract
Endocannabinoids are lipid mediators that interact with the same cannabinoid receptors that recognize Δ9 -tetrahydrocannabinol (THC), the psychoactive constituent of marijuana, to induce similar effects in the brain and periphery. Alcohol and THC are both addictive substances whose acute use elicits rewarding effects that can lead to chronic and compulsive use via engaging similar signaling pathways in the brain. In the liver, both alcohol and endocannabinoids activate lipogenic gene expression leading to fatty liver disease. This review focuses on evidence accumulated over the last 2 decades to indicate that both the addictive neural effects of ethanol and its organ toxic effects in the liver and elsewhere are mediated, to a large extent, by endocannabinoids signaling via cannabinoid-1 receptors (CB1 R). The therapeutic potential of CB1 R blockade globally or in peripheral tissues only is also discussed.
Collapse
Affiliation(s)
- George Kunos
- From the, Division of Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
89
|
Matt SM, Gaskill PJ. Where Is Dopamine and how do Immune Cells See it?: Dopamine-Mediated Immune Cell Function in Health and Disease. J Neuroimmune Pharmacol 2020; 15:114-164. [PMID: 31077015 PMCID: PMC6842680 DOI: 10.1007/s11481-019-09851-4] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/07/2019] [Indexed: 02/07/2023]
Abstract
Dopamine is well recognized as a neurotransmitter in the brain, and regulates critical functions in a variety of peripheral systems. Growing research has also shown that dopamine acts as an important regulator of immune function. Many immune cells express dopamine receptors and other dopamine related proteins, enabling them to actively respond to dopamine and suggesting that dopaminergic immunoregulation is an important part of proper immune function. A detailed understanding of the physiological concentrations of dopamine in specific regions of the human body, particularly in peripheral systems, is critical to the development of hypotheses and experiments examining the effects of physiologically relevant dopamine concentrations on immune cells. Unfortunately, the dopamine concentrations to which these immune cells would be exposed in different anatomical regions are not clear. To address this issue, this comprehensive review details the current information regarding concentrations of dopamine found in both the central nervous system and in many regions of the periphery. In addition, we discuss the immune cells present in each region, and how these could interact with dopamine in each compartment described. Finally, the review briefly addresses how changes in these dopamine concentrations could influence immune cell dysfunction in several disease states including Parkinson's disease, multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, as well as the collection of pathologies, cognitive and motor symptoms associated with HIV infection in the central nervous system, known as NeuroHIV. These data will improve our understanding of the interactions between the dopaminergic and immune systems during both homeostatic function and in disease, clarify the effects of existing dopaminergic drugs and promote the creation of new therapeutic strategies based on manipulating immune function through dopaminergic signaling. Graphical Abstract.
Collapse
Affiliation(s)
- S M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
90
|
Haider MR, Brown MJ, Gupta RD, Karim S, Olatosi B, Li X. Psycho-Social Correlates of Opioid Use Disorder among the US Adult Population: Evidence from the National Survey on Drug Use and Health, 2015-2018. Subst Use Misuse 2020; 55:2002-2010. [PMID: 32633664 PMCID: PMC7952032 DOI: 10.1080/10826084.2020.1788086] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The United States (US) has experienced an opioid epidemic over the last two decades. Drug overdose deaths increased by 21% from 2015 to 2016, with two-thirds of these deaths attributed to opioid use disorder (OUD). This study assessed the psycho-social correlates associated with OUD over 2015-2018 in the US. Methods: This study used data collected from 171,766 (weighted = 245,838,163) eligible non-institutionalized US adults in the pooled National Survey on Drug Use and Health from 2015-2018. Survey-weighted descriptive, bivariate, and multivariable analyses were performed to assess the psycho-social correlates of OUD. Results: About 0.85% of the respondents reported having OUD in the past year. About one-quarter (26.3%), one-sixth (14.8%), and half (47.3%) of the respondents with OUD reported alcohol, marijuana, and nicotine dependence, respectively. One-sixth (16.7%) had a criminal justice involvement history, and almost one-third (30.8%) experienced a major depressive episode (MDE) in the past year. In multivariable analysis, ≤64 years, White race, male gender, lower educational attainment, unemployment, large metro area residence, history of alcohol, marijuana, nicotine use disorder, history of criminal justice involvement, and MDE in previous year were associated with higher odds of OUD. In contrast, being married, non-Hispanic African American, non-Hispanic Other, and Hispanic ethnicity, good physical health, private health insurance, and higher risk perception about addictive substance use were associated with lower odds of OUD. Conclusions: OUD is more prevalent among certain sociodemographic groups in the US. Targeted interventions focusing on young, White, unmarried, male, and uninsured/Medicaid/Medicare populations should be implemented to reduce the OUD.
Collapse
Affiliation(s)
- Mohammad Rifat Haider
- Department of Social and Public Health, College of Health Sciences and Professions, Ohio University, Athens, Ohio, USA
| | - Monique J Brown
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA.,South Carolina SmartState Center for Healthcare Quality, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Rajat Das Gupta
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Sabrina Karim
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Bankole Olatosi
- Department of Health Services Policy and Management, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Xiaoming Li
- South Carolina SmartState Center for Healthcare Quality, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA.,Department of Health, Promotion, Education and Behavior, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
91
|
Blair Thies M, DeRosse P, Sarpal DK, Argyelan M, Fales CL, Gallego JA, Robinson DG, Lencz T, Homan P, Malhotra AK. Interaction of Cannabis Use Disorder and Striatal Connectivity in Antipsychotic Treatment Response. SCHIZOPHRENIA BULLETIN OPEN 2020; 1:sgaa014. [PMID: 32803161 PMCID: PMC7418867 DOI: 10.1093/schizbullopen/sgaa014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Antipsychotic (AP) medications are the mainstay for the treatment of schizophrenia spectrum disorders (SSD), but their efficacy is unpredictable and widely variable. Substantial efforts have been made to identify prognostic biomarkers that can be used to guide optimal prescription strategies for individual patients. Striatal regions involved in salience and reward processing are disrupted as a result of both SSD and cannabis use, and research demonstrates that striatal circuitry may be integral to response to AP drugs. In the present study, we used functional magnetic resonance imaging (fMRI) to investigate the relationship between a history of cannabis use disorder (CUD) and a striatal connectivity index (SCI), a previously developed neural biomarker for AP treatment response in SSD. Patients were part of a 12-week randomized, double-blind controlled treatment study of AP drugs. A sample of 48 first-episode SSD patients with no more than 2 weeks of lifetime exposure to AP medications, underwent a resting-state fMRI scan pretreatment. Treatment response was defined a priori as a binary (response/nonresponse) variable, and a SCI was calculated in each patient. We examined whether there was an interaction between lifetime CUD history and the SCI in relation to treatment response. We found that CUD history moderated the relationship between SCI and treatment response, such that it had little predictive value in SSD patients with a CUD history. In sum, our findings highlight that biomarker development can be critically impacted by patient behaviors that influence neurobiology, such as a history of CUD.
Collapse
Affiliation(s)
- Melanie Blair Thies
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY
| | - Pamela DeRosse
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Deepak K Sarpal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Miklos Argyelan
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Christina L Fales
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY
| | - Juan A Gallego
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY
- Graduate Center—City University of New York, New York, NY
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Delbert G Robinson
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Todd Lencz
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Philipp Homan
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY
| | - Anil K Malhotra
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| |
Collapse
|
92
|
Corongiu S, Dessì C, Cadoni C. Adolescence versus adulthood: Differences in basal mesolimbic and nigrostriatal dopamine transmission and response to drugs of abuse. Addict Biol 2020; 25:e12721. [PMID: 30779271 DOI: 10.1111/adb.12721] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/06/2018] [Accepted: 01/08/2019] [Indexed: 12/21/2022]
Abstract
Epidemiological studies have shown that people who begin experimenting drugs of abuse during adolescence are more likely to develop substance use disorders, and the earliest is the beginning of their use, the greatest is the likelihood to become dependent. Understanding the neurobiological changes increasing adolescent vulnerability to drug use is becoming imperative. Although all neurotransmitter systems undergo relevant developmental changes, dopamine system is of particular interest, given its role in a variety of functions related to reward, motivation, and decision making. Thus, in the present study, we investigated differences in mesolimbic and nigrostriatal dopamine transmission between adolescent (5, 6, 7 weeks of age) and adult rats (10-12 weeks of age), in basal conditions and following drug challenge, by using in vivo brain microdialysis. Although no significant difference between adolescents and adults was observed in dopamine basal levels in the nucleus accumbens (NAc)shell and core, reduced DA levels were found in the dorsolateral striatum (DLS) of early and mid-adolescent rats. Adolescent rats showed greater increase of dopamine in the NAc shell following nicotine (0.4 mg/kg), THC (1.0 mg/kg), and morphine (1.0 mg/kg), in the NAc core following nicotine and morphine, and in the DLS following THC, morphine, and cocaine (10 mg/kg). These results, while adding new insight in the development and functionality of the dopamine system during different stages of adolescence, might provide a neurochemical basis for the greater vulnerability of adolescents to drugs of abuse and for the postulated gateway effect of nicotine and THC toward abuse of other illicit substances.
Collapse
Affiliation(s)
- Silvia Corongiu
- Department of Biomedical Sciences, Neuropsychopharmacology SectionUniversity of Cagliari Italy
| | - Christian Dessì
- National Research Council of ItalyInstitute of Neuroscience Italy
| | - Cristina Cadoni
- National Research Council of ItalyInstitute of Neuroscience Italy
- Centre of Excellence “Neurobiology of Dependence”University of Cagliari Italy
| |
Collapse
|
93
|
Feja M, Leigh MPK, Baindur AN, McGraw JJ, Wakabayashi KT, Cravatt BF, Bass CE. The novel MAGL inhibitor MJN110 enhances responding to reward-predictive incentive cues by activation of CB1 receptors. Neuropharmacology 2020; 162:107814. [PMID: 31628934 PMCID: PMC6983961 DOI: 10.1016/j.neuropharm.2019.107814] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 11/17/2022]
Abstract
CB1 receptor antagonists disrupt operant responding for food and drug reinforcers, and cue-induced reinstatement of cocaine and heroin seeking. Conversely, enhancing endocannabinoid signaling, particularly 2-arachidonyl glycerol (2-AG), by inhibition of monoacyl glycerol lipase (MAGL), may facilitate some aspects of reward seeking. To determine how endocannabinoid signaling affects responding to reward-predictive cues, we employed an operant task that allows us to parse the incentive motivational properties of cues. Rats were required to nosepoke during an intermittent audiovisual incentive cue (IC) to obtain a 10% sucrose reward. The CB1 receptor antagonist, rimonabant, dose-dependently decreased the response ratio (rewarded ICs/total presented) and active nosepokes per IC, while it increased the latency to respond to the cue and obtain the reward, indicating an overall decrease in both the choice and vigor of responding. Yet rats persisted in entering the reward cup. Using a modified version of the task, the novel MAGL inhibitor MJN110 increased the response ratio, decreased the latencies to respond to the IC and enhanced active nosepokes per IC, indicating a facilitation of cue-induced reward seeking. These effects were blocked by a subthreshold dose of rimonabant. Finally, MJN110 did not alter consumption of freely available sucrose within volumes obtained in the operant task. Together these data demonstrate blocking endocannabinoid tone at the CB1 receptor attenuates the ability of cues to induce reward seeking, while some aspects of motivation for the reward are retained. Conversely, enhancing 2-AG signaling at CB1 receptors facilitates IC responding and increases the motivational properties of the IC.
Collapse
Affiliation(s)
- Malte Feja
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 955 Main St, Buffalo, NY, 14203, USA.
| | - Martin P K Leigh
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 955 Main St, Buffalo, NY, 14203, USA.
| | - Ajay N Baindur
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 955 Main St, Buffalo, NY, 14203, USA.
| | - Justin J McGraw
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 955 Main St, Buffalo, NY, 14203, USA.
| | - Ken T Wakabayashi
- Department of Psychology, University of Nebraska-Lincoln, 1220 T. Street, Lincoln, NE, 68503, USA.
| | - Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Caroline E Bass
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 955 Main St, Buffalo, NY, 14203, USA.
| |
Collapse
|
94
|
Lee MR, Rohn MC, Zanettini C, Coggiano MA, Leggio L, Tanda G. Effect of systemically administered oxytocin on dose response for methylphenidate self-administration and mesolimbic dopamine levels. Ann N Y Acad Sci 2019; 1455:173-184. [PMID: 31074517 PMCID: PMC10014164 DOI: 10.1111/nyas.14101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/01/2019] [Accepted: 03/27/2019] [Indexed: 11/29/2022]
Abstract
The neuropeptide oxytocin (OT) alters behaviors related to the administration of drugs of abuse, including stimulants. OT also plays a key role in social bonding, which involves an interaction between OT and dopamine (DA) in the nucleus accumbens (NAc). The nature of the interaction between OT and DA in the striatum in the context of psychostimulants is unclear. We investigated the effect of OT, delivered intraperitoneally, on the methylphenidate (MP) dose-response function for self-administration in rats. Food was used as a control condition. In a microdialysis study, we measured the effect of intraperitoneal OT on MP-stimulated striatal DA levels. Systemic OT pretreatment caused a downward shift in the MP dose-response function for self-administration, while having no effect on motor activity. OT also caused a reduction in food self-administration, although a significantly higher dose of OT was required for this effect compared with that required for a reduction of MP self-administration. Systemic OT pretreatment caused a potentiation of MP-stimulated DA levels in the NAc shell but not in the core. The significance of these findings is discussed, including the potential of OT as a therapeutic agent for addictive disorders.
Collapse
Affiliation(s)
- Mary R. Lee
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Basic Research and National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Bethesda, MD
| | - Matthew C.H. Rohn
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Basic Research and National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Bethesda, MD
| | - Claudio Zanettini
- Medications Development Program, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD
| | - Mark A. Coggiano
- Medications Development Program, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Basic Research and National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Bethesda, MD
- Medications Development Program, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI
| | - Gianluigi Tanda
- Medications Development Program, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD
| |
Collapse
|
95
|
Maher DP, Carr DB, Hill K, McGeeney B, Weed V, Jackson WC, DiBenedetto DJ, Moriarty EM, Kulich RJ. Cannabis for the Treatment of Chronic Pain in the Era of an Opioid Epidemic: A Symposium-Based Review of Sociomedical Science. PAIN MEDICINE (MALDEN, MASS.) 2019; 20:2311-2323. [PMID: 29016917 PMCID: PMC7963205 DOI: 10.1093/pm/pnx143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
OBJECTIVE This manuscript reviews medical literature published pertaining to the management of chronic pain with medical marijuana therapy (MMJ), with an emphasis on the social, medical, and legal aspects of therapy. DESIGN Narrative review of peer-reviewed literature. METHODS The 3rd Symposium on Controlled Substances and Their Alternatives for the Treatment of Pain was held in Boston on February 27, 2016, with a focus on MMJ for the treatment of chronic pain. Invited speakers had diverse backgrounds, including pain management, addiction psychiatry, neurology, and legal authorities. The purpose of this conference and this subsequent narrative review is to provide a medical, legal, and logistical framework for physicians and other health care providers to refer to when considering the initiation of medical marijuana therapy. RESULTS The invited speakers each covered a unique aspect of MMJ therapy for the treatment of chronic pain. These presentations highlighted the current data for and against the use of MMJ as a pain therapy. Optimal patient selection and screening, in addition to policy developments, were discussed. CONCLUSIONS Increasing interest in MMJ for chronic pain underscores a need for primary care and pain physicians to better understand the indications and evidence for its use free from cultural bias. Given a lack of full conclusive clinical utility, continued research is needed to better understand how to best utilize MMJ therapy for the treatment of chronic pain. Policy initiatives, such as enumerated indications, should follow medical science in order to prevent another abused substance epidemic.
Collapse
Affiliation(s)
- Dermot P Maher
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel B Carr
- Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Kevin Hill
- McLean Hospital, Harvard Medical School, Boston, Massachusetts
| | - Brian McGeeney
- Boston University School of Medicine, Boston, Massachusetts
| | | | - William C Jackson
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Craniofacial Pain and Headache Center, Tufts University, Boston, Massachusetts
| | | | | | - Ronald J Kulich
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Craniofacial Pain and Headache Center, Tufts University, Boston, Massachusetts
| |
Collapse
|
96
|
Bilel S, Tirri M, Arfè R, Stopponi S, Soverchia L, Ciccocioppo R, Frisoni P, Strano-Rossi S, Miliano C, De-Giorgio F, Serpelloni G, Fantinati A, De Luca MA, Neri M, Marti M. Pharmacological and Behavioral Effects of the Synthetic Cannabinoid AKB48 in Rats. Front Neurosci 2019; 13:1163. [PMID: 31736697 PMCID: PMC6831561 DOI: 10.3389/fnins.2019.01163] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022] Open
Abstract
AKB48 is a designer drug belonging to the indazole synthetic cannabinoids class, illegally sold as herbal blend, incense, or research chemicals for their psychoactive cannabis-like effects. In the present study, we investigated the in vivo pharmacological and behavioral effects of AKB48 in male rats and measured the pharmacodynamic effects of AKB48 and simultaneously determined its plasma pharmacokinetic. AKB48 at low doses preferentially stimulated dopamine release in the nucleus accumbens shell (0.25 mg/kg) and impaired visual sensorimotor responses (0.3 mg/kg) without affecting acoustic and tactile reflexes, which are reduced only to the highest dose tested (3 mg/kg). Increasing doses (0.5 mg/kg) of AKB48 impaired place preference and induced hypolocomotion in rats. At the highest dose (3 mg/kg), AKB48 induced hypothermia, analgesia, and catalepsy; inhibited the startle/pre-pulse inhibition test; and caused cardiorespiratory changes characterized by bradycardia and mild bradipnea and SpO2 reduction. All behavioral and neurochemical effects were fully prevented by the selective CB1 receptor antagonist/inverse agonist AM251. AKB48 plasma concentrations rose linearly with increasing dose and were correlated with changes in the somatosensory, hypothermic, analgesic, and cataleptic responses in rats. For the first time, this study shows the pharmacological and behavioral effects of AKB48 in rats, correlating them to the plasma levels of the synthetic cannabinoid. Chemical Compound Studied in This Article: AKB48 (PubChem CID: 57404063); AM251 (PubChem CID: 2125).
Collapse
Affiliation(s)
- Sabrine Bilel
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Micaela Tirri
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Raffaella Arfè
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy.,Section of Legal Medicine, Institute of Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Serena Stopponi
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Laura Soverchia
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Roberto Ciccocioppo
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Paolo Frisoni
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Sabina Strano-Rossi
- Section of Legal Medicine, Institute of Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Cristina Miliano
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Fabio De-Giorgio
- Section of Legal Medicine, Institute of Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Serpelloni
- Department of Psychiatry in the College of Medicine, Drug Policy Institute, University of Florida, Gainesville, FL, United States
| | - Anna Fantinati
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Margherita Neri
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Matteo Marti
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy.,Department of Anti-Drug Policies, Presidency of the Council of Ministers, Collaborative Center for the Italian National Early Warning System, Ferrara, Italy
| |
Collapse
|
97
|
Bechara A, Berridge KC, Bickel WK, Morón JA, Williams SB, Stein JS. A Neurobehavioral Approach to Addiction: Implications for the Opioid Epidemic and the Psychology of Addiction. Psychol Sci Public Interest 2019; 20:96-127. [PMID: 31591935 PMCID: PMC7001788 DOI: 10.1177/1529100619860513] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two major questions about addictive behaviors need to be explained by any worthwhile neurobiological theory. First, why do people seek drugs in the first place? Second, why do some people who use drugs seem to eventually become unable to resist drug temptation and so become "addicted"? We will review the theories of addiction that address negative-reinforcement views of drug use (i.e., taking opioids to alleviate distress or withdrawal), positive-reinforcement views (i.e., taking drugs for euphoria), habit views (i.e., growth of automatic drug-use routines), incentive-sensitization views (i.e., growth of excessive "wanting" to take drugs as a result of dopamine-related sensitization), and cognitive-dysfunction views (i.e., impaired prefrontal top-down control), including those involving competing neurobehavioral decision systems (CNDS), and the role of the insula in modulating addictive drug craving. In the special case of opioids, particular attention is paid to whether their analgesic effects overlap with their reinforcing effects and whether the perceived low risk of taking legal medicinal opioids, which are often prescribed by a health professional, could play a role in the decision to use. Specifically, we will address the issue of predisposition or vulnerability to becoming addicted to drugs (i.e., the question of why some people who experiment with drugs develop an addiction, while others do not). Finally, we review attempts to develop novel therapeutic strategies and policy ideas that could help prevent opioid and other substance abuse.
Collapse
Affiliation(s)
- Antoine Bechara
- Department of Psychology, University of Southern California
- Brain and Creativity Institute, University of Southern California
| | | | - Warren K. Bickel
- Addiction Recovery Research Center & Center for Transformational Research on Health Behaviors, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia
| | - Jose A. Morón
- Department of Anesthesiology, Washington University School of Medicine
- Washington University Pain Center, Washington University School of Medicine
| | - Sidney B. Williams
- Department of Anesthesiology, Washington University School of Medicine
- Washington University Pain Center, Washington University School of Medicine
| | - Jeffrey S. Stein
- Addiction Recovery Research Center & Center for Transformational Research on Health Behaviors, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia
| |
Collapse
|
98
|
Lecca S, Luchicchi A, Scherma M, Fadda P, Muntoni AL, Pistis M. Δ 9-Tetrahydrocannabinol During Adolescence Attenuates Disruption of Dopamine Function Induced in Rats by Maternal Immune Activation. Front Behav Neurosci 2019; 13:202. [PMID: 31551729 PMCID: PMC6743372 DOI: 10.3389/fnbeh.2019.00202] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/19/2019] [Indexed: 01/29/2023] Open
Abstract
The combination of prenatal, such as maternal infections, and postnatal environmental insults (e.g., adolescent drug abuse) increases risks for psychosis, as predicted by the two-hit hypothesis of schizophrenia. Cannabis abuse during adolescence is widespread and is associated with increased risk of psychoses later in life. Here, we hypothesized that adolescent Δ9-tetrahydrocannabinol (THC) worsens the impact of prenatal maternal immune activation (MIA) on ventral tegmental area (VTA) dopamine cells in rat offspring. Additionally, since substance abuse disorder is particularly prevalent among schizophrenia patients, we also tested how VTA dopamine neurons in MIA offspring respond to acute nicotine and cocaine administration. We used a model of neurodevelopmental disruption based on prenatal administration of the polyriboinosinic-polyribocytidilic acid [poly (I:C)] in rats, which activates the maternal immune system by mimicking a viral infection and induces behavioral abnormalities and disruption of dopamine transmission relevant to psychiatric disorders in the offspring. Male offspring were administered THC (or vehicle) during adolescence (PND 45–55). Once adult (PND 70–90), we recorded the spontaneous activity of dopamine neurons in the VTA and their responses to nicotine and cocaine. MIA male offspring displayed reduced number, firing rate and altered activity pattern of VTA dopamine cells. Adolescent THC attenuated several MIA-induced effects. Both prenatal [poly (I:C)] and postnatal (THC) treatments affected the response to nicotine but not to cocaine. Contrary to our expectations, adolescent THC did not worsen MIA-induced deficits. Results indicate that the impact of cannabinoids in psychosis models is complex.
Collapse
Affiliation(s)
- Salvatore Lecca
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato, Italy
| | - Antonio Luchicchi
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato, Italy
| | - Maria Scherma
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato, Italy
| | - Paola Fadda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato, Italy.,Section of Cagliari, Neuroscience Institute, National Research Council of Italy (CNR), Monserrato, Italy
| | - Anna Lisa Muntoni
- Section of Cagliari, Neuroscience Institute, National Research Council of Italy (CNR), Monserrato, Italy
| | - Marco Pistis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato, Italy.,Section of Cagliari, Neuroscience Institute, National Research Council of Italy (CNR), Monserrato, Italy
| |
Collapse
|
99
|
Pérez-Valenzuela E, Castillo-Faúndez R, Fuentealba J. Comparing dopaminergic dynamics in the dorsolateral striatum between adolescent and adult rats: Effect of an acute dose of WIN55212-2. Brain Res 2019; 1719:235-242. [DOI: 10.1016/j.brainres.2019.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/17/2019] [Accepted: 06/06/2019] [Indexed: 12/13/2022]
|
100
|
Gupta S, De Aquino JP, D'Souza DC, Ranganathan M. Effects of haloperidol on the delta-9-tetrahydrocannabinol response in humans: a responder analysis. Psychopharmacology (Berl) 2019; 236:2635-2640. [PMID: 30919005 PMCID: PMC6697616 DOI: 10.1007/s00213-019-05235-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/19/2019] [Indexed: 12/12/2022]
Abstract
RATIONALE Δ-9-Tetrahydrocannabinol (Δ-9-THC) produces psychotomimetic effects in humans. However, the role of dopamine signaling in producing such effects is unclear. We hypothesized that dopaminergic antagonism would reduce the psychotomimetic effect of Δ-9-THC. OBJECTIVE The objective of this study was to evaluate whether pre-treatment with haloperidol would alter the psychotomimetic and perceptual-altering effects of Δ-9-THC, measured by the Positive and Negative Syndrome Scale for Schizophrenia (PANSS) and the Clinician-Administered Dissociative Symptom Scale (CADSS) in humans. METHODS In a two-test-day double-blind study, 28 healthy individuals were administered with active (0.057 mg/kg) or placebo oral haloperidol, followed 90 and 215 min later by intravenous administration of active (0.0286 mg/kg) Δ-9-THC and placebo, respectively. This secondary analysis was conducted because of the observation in other studies and in our data that a significant proportion of individuals may not have an adequate response to THC (floor effect), thus limiting the ability to test an interaction. Therefore, this analysis was performed including only responders to THC (n = 10), defined as individuals who had an increase of at least one point on the PANSS positive scale, consistent with prior human laboratory studies. RESULTS In the 10 responders, Δ-9-THC-induced increases in PANSS positive scores were significantly lower in the haloperidol condition (1.1 + 0.35) compared with the placebo condition (2.9 + 0.92). CONCLUSION This responder analysis showed that haloperidol did reduce the psychotomimetic effect of Δ-9-THC, supporting the hypothesis that dopaminergic signaling may participate in the psychosis-like effects of cannabinoids.
Collapse
Affiliation(s)
- Swapnil Gupta
- Department of Psychiatry, Yale University School of Medicine, 300 George St, Suite 901, New Haven, CT, 06510, USA
- Connecticut Mental Health Center, 34 Park St, New Haven, CT, USA
| | - Joao P De Aquino
- Department of Psychiatry, Yale University School of Medicine, 300 George St, Suite 901, New Haven, CT, 06510, USA.
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, 34 Park St, 3rd Floor, New Haven, CT, USA.
- VA Connecticut Healthcare System, Clinical Neurosciences Division, U.S. Department of Veterans Affairs, West Haven, CT, USA.
| | - Deepak C D'Souza
- Department of Psychiatry, Yale University School of Medicine, 300 George St, Suite 901, New Haven, CT, 06510, USA
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, 34 Park St, 3rd Floor, New Haven, CT, USA
- VA Connecticut Healthcare System, Clinical Neurosciences Division, U.S. Department of Veterans Affairs, West Haven, CT, USA
| | - Mohini Ranganathan
- Department of Psychiatry, Yale University School of Medicine, 300 George St, Suite 901, New Haven, CT, 06510, USA
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, 34 Park St, 3rd Floor, New Haven, CT, USA
- VA Connecticut Healthcare System, Clinical Neurosciences Division, U.S. Department of Veterans Affairs, West Haven, CT, USA
| |
Collapse
|