51
|
König A, Fernandez-Zapico ME, Ellenrieder V. Primers on molecular pathways--the NFAT transcription pathway in pancreatic cancer. Pancreatology 2010; 10:416-22. [PMID: 20720442 PMCID: PMC3114309 DOI: 10.1159/000315035] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The calcineurin-responsive nuclear factor of activated T cells (NFAT) family of transcription factors was originally identified as a group of inducible nuclear proteins, which regulate transcription during T lymphocyte activation. However, following their initial discovery, a multitude of studies quickly established that NFAT proteins are also expressed in cells outside the immune system, where they participate in the regulation of the expression of genes influencing cell growth and differentiation. Ectopic activation of individual NFAT members is now recognized as an important aspect for oncogenic transformation in several human malignancies, most notably in pancreatic cancer. Sustained activation of the Ca(2+)/calcineurin/NFAT signaling pathway has emerged as a powerful regulatory principle governing pancreatic cancer cell growth. Activated NFAT proteins form complexes with key oncogenic proteins to regulate the transcription of master cell cycle regulators and proteins with functions in cell survival, migration and angiogenesis. This review pays particular attention to recent advances in our understanding of how the NFAT transcription pathway controls gene expression during development and progression of pancreatic cancer. and IAP.
Collapse
Affiliation(s)
- Alexander König
- Signal Transduction and Transcription Laboratory, Department of Gastroenterology and Endocrinology, Philipps-University of Marburg, Marburg, Germany,Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minn., USA
| | - Martin E. Fernandez-Zapico
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minn., USA
| | - Volker Ellenrieder
- Signal Transduction and Transcription Laboratory, Department of Gastroenterology and Endocrinology, Philipps-University of Marburg, Marburg, Germany,*Volker Ellenrieder, MD, Signal Transduction and Transcription Laboratory, Department of Gastroenterology and Endocrinology, Philipps-University of Marburg, DE–35043 Marburg (Germany), Tel. +49 642 1286 6460, Fax +49 642 1286 8922, E-Mail
| |
Collapse
|
52
|
Zhu P, Jiang W, Cao L, Yu W, Pei Y, Yang X, Wan B, Liu JO, Yi Q, Yu L. IL-2 mRNA stabilization upon PMA stimulation is dependent on NF90-Ser647 phosphorylation by protein kinase CbetaI. THE JOURNAL OF IMMUNOLOGY 2010; 185:5140-9. [PMID: 20870937 DOI: 10.4049/jimmunol.1000849] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-2 is an important cytokine produced in T cells in response to Ag or mitogen stimulation. It is regulated at both transcriptional and posttranscriptional levels. One of the key regulators of IL-2 mRNA stability is NF90. Upon T cell activation, NF90 translocates from the nucleus into the cytoplasm, where it binds to the AU-rich element-containing 3' untranslated regions of IL-2 mRNA and stabilizes it. Our previous work showed that CD28 costimulation of T cells activated AKT to phosphorylate NF90 at Ser(647) and caused NF90 to undergo nuclear export and stabilize IL-2 mRNA. Phorbol ester (PMA) is a protein kinase C (PKC) activator. Through transcription activation and mRNA stabilization, IL-2 mRNA levels increase promptly when T cells are stimulated with PMA. However, how PMA stabilizes IL-2 mRNA was still unclear. In this study, we demonstrate that PMA stimulation led to phosphorylation of NF90 at Ser(647) via PKCβI. This phosphorylation was necessary for nuclear export of NF90 in response to PMA and for IL-2 mRNA stabilization. We show that phosphorylation at NF90-Ser(647) upregulated IL-2 production in response to PMA stimulation. Our results support a model in which PMA stimulation activates PKCβI to phosphorylate NF90-Ser(647), and this phosphorylation triggers NF90 relocation to the cytoplasm and stabilize IL-2 mRNA. Thus, our study elucidates the mechanism by which PMA activates and stabilizes IL-2 expression in T cells.
Collapse
Affiliation(s)
- Ping Zhu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Hasegawa H, Kido S, Tomomura M, Fujimoto K, Ohi M, Kiyomura M, Kanegae H, Inaba A, Sakagami H, Tomomura A. Serum calcium-decreasing factor, caldecrin, inhibits osteoclast differentiation by suppression of NFATc1 activity. J Biol Chem 2010; 285:25448-57. [PMID: 20547767 DOI: 10.1074/jbc.m109.068742] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caldecrin/chymotrypsin C is a novel secretory-type serine protease that was originally isolated as a serum calcium-decreasing factor from the pancreas. Previously, we reported that caldecrin suppressed the bone-resorbing activity of rabbit mature osteoclasts (Tomomura, A., Yamada, H., Fujimoto, K., Inaba, A., and Katoh, S. (2001) FEBS Lett. 508, 454-458). Here, we investigated the effects of caldecrin on mouse osteoclast differentiation induced by macrophage-colony stimulating factor and the receptor activator of NF-kappaB ligand (RANKL) from the monocyte/macrophage cell lineage of bone marrow cells. Wild-type and protease-deficient mutant caldecrin dose-dependently inhibited RANKL-stimulated tartrate-resistant acid phosphatase-positive osteoclast formation from bone marrow cells. Caldecrin did not affect macrophage colony formation from monocyte/macrophage lineage cells or osteoclast progenitor generation in cultures of bone marrow cells. Caldecrin inhibited accumulation of the RANKL-stimulated nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) mRNA in bone marrow cells, which is a key transcription factor for the differentiation of osteoclasts. Caldecrin also suppressed RANKL-induced differentiation of the RAW264.7 monocyte/macrophage cell line into osteoclasts. Caldecrin reduced the transcriptional activity of NFATc1 in RAW264.7 cells, whereas those of NF-kappaB and c-Fos, which are also transcription factors involved in osteoclast differentiation, were unaffected. Caldecrin inhibited RANKL-stimulated nuclear translocation of NFATc1 and the activity of the calcium/calmodulin-dependent phosphatase, calcineurin. Caldecrin inhibited phospholipase Cgamma1-mediated Ca(2+) oscillation evoked by RANKL stimulation. RANKL-stimulated phosphorylation of spleen tyrosine kinase (Syk) was also attenuated by caldecrin. Taken together, these results indicate that caldecrin inhibits osteoclastogenesis, without its protease activity, by preventing a phospholipase Cgamma1-mediated Ca(2+)oscillation-calcineurin-NFATc1 pathway.
Collapse
Affiliation(s)
- Hiroya Hasegawa
- Division of Biochemistry, Department of Oral Biology and Tissue Engineering, Meikai University, School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Reversing interleukin-2 inhibition mediated by anti-double-stranded DNA autoantibody ameliorates glomerulonephritis in MRL-lpr/lpr mice. ACTA ACUST UNITED AC 2010; 62:2401-11. [DOI: 10.1002/art.27487] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
55
|
Cuddapah S, Barski A, Zhao K. Epigenomics of T cell activation, differentiation, and memory. Curr Opin Immunol 2010; 22:341-7. [PMID: 20226645 DOI: 10.1016/j.coi.2010.02.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 02/04/2010] [Accepted: 02/11/2010] [Indexed: 11/15/2022]
Abstract
Activation of T cells is an essential step in the immunological response to infection. Although activation of naïve T cells results in proliferation and slow differentiation into cytokine-producing effector cells, antigen engagement with memory cells leads to cytokine production immediately. Even though the cell surface signaling events are similar in both the cases, the outcome is different, suggesting that distinct regulatory mechanisms may exist downstream of the activation signals. Recent advances in the understanding of global epigenetic patterns in T cells have resulted in the appreciation of the role of epigenetic mechanisms in processes such as activation and differentiation. In this review we discuss recent data suggesting that naïve T cell activation, differentiation, and lineage commitment result in epigenetic changes and a fine balance between different histone modifications is required. On the other hand, memory T cells are poised and do not require epigenetic changes for short-term activation.
Collapse
Affiliation(s)
- Suresh Cuddapah
- Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
56
|
Mycobacterial antigen(s) induce anergy by altering TCR- and TCR/CD28-induced signalling events: insights into T-cell unresponsiveness in leprosy. Mol Immunol 2009; 47:943-52. [PMID: 20018378 DOI: 10.1016/j.molimm.2009.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 11/09/2009] [Accepted: 11/16/2009] [Indexed: 11/27/2022]
Abstract
Present study investigates the role of Mycobacterium leprae (M. leprae) antigens on TCR- and TCR/CD28-induced signalling leading to T-cell activation and further correlates these early biochemical events with T-cell anergy, as prevailed in advanced stages of leprosy. We observed that both whole cell lystae (WCL) and soluble fraction of M. leprae sonicate (MLSA) not only inhibited TCR, thapsigargin and ionomycin induced calcium fluxes by diminishing the opening of calcium channels, but also TCR- or TCR/CD28-induced proximal signalling events like phosphorylation of Zap-70 and protein kinase-C (PKC) activity. Study of TCR- and TCR/CD28-induced downstream signals revealed that M. leprae antigens curtail phosphorylation of both Erk1/2 and p38MAPK, consequently altering terminal signalling events like reduced binding of NFAT on IL-2 promoter and transcription of IL-2 gene, diminished expression of activation markers (CD25 and CD69). Furthermore, M. leprae fractions significantly inhibited IL-2 secretion and T-cell blastogenesis in healthy individuals. Altogether, results suggest that M. leprae interferes with TCR/CD28-induced upstream as well as downstream signalling events resulting in reduced IL-2 production and thus inhibition in T-cell proliferation, which might be responsible for T-cell unresponsiveness leading to stage of immunosuppression and consequently, for the progression of disease.
Collapse
|
57
|
Ou CC, Hsiao YM, Wu WJ, Tasy GJ, Ko JL, Lin MY. FIP-fve stimulates interferon-gamma production via modulation of calcium release and PKC-alpha activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:11008-11013. [PMID: 19919129 DOI: 10.1021/jf902725s] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Fungal immunomodulatory protein, FIP-fve, has been isolated from Flammulina velutipes, and its immunomodulatory effects are believed to be associated with the enhanced activation of IFN-gamma-releasing Th1 cells. However, the mechanisms of FIP-fve-mediated signal transduction in the regulation of interferon-gamma (IFN-gamma) gene expression in human peripheral blood mononuclear cells (PBMCs) are still poorly understood. Using fluo-3 AM, we found that FIP-fve induces a rapid elevation in calcium concentration. ELISA, RT-PCR and Western blot assays demonstrated significant increases in the production and mRNA expression of IFN-gamma and protein kinase C-alpha (PKC-alpha) activation in activated PBMCs, which were abolished by EGTA, nifedipine and GO6976. In conclusion, Ca2+ release and PKC-alpha activation are required for IFN-gamma production induced by FIP-fve in PBMCs.
Collapse
Affiliation(s)
- Chu-Chyn Ou
- School of Nutrition, Chung Shan Medical University, 110, Sec. 1, Chien-kuo N. Road, Taichung 40203, Taiwan
| | | | | | | | | | | |
Collapse
|
58
|
Ramakrishnan R, Dow EC, Rice AP. Characterization of Cdk9 T-loop phosphorylation in resting and activated CD4(+) T lymphocytes. J Leukoc Biol 2009; 86:1345-50. [PMID: 19741158 DOI: 10.1189/jlb.0509309] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The cellular kinase complex P-TEFb is composed of Cdk9 and cyclin T, and it is required for expression of most protein-coding genes by RNAP II. Cdk9 has been shown recently to be activated in cis by autophosphorylation of Thr186 in its T-loop. Using a phosphospecific Cdk9 antibody, we examined the level of Cdk9 T-loop phosphorylation in resting and activated CD4(+) T lymphocytes. Cdk9 T-loop phosphorylation was found to be low-to-undetectable in resting CD4(+) T lymphocytes, and upon activation by distinct stimuli, there is a rapid (<1 h) increase in pCdk9 that does not require protein synthesis. The low level of Cdk9 T-loop phosphorylation was not to be a result of the absence of an associated regulatory cyclin partner. These observations suggest that autophosphorylation of the Cdk9 T-loop is repressed in resting CD4(+) T lymphocytes. The low level of T-loop phosphorylation in resting cells is also reflected in a low level of phosphorylation of Ser2 in the carboxyl terminal domain of RNAP II, suggesting that lack of Cdk9 T-loop autophosphorylation may limit RNAP II elongation in quiescent CD4(+) T lymphocytes.
Collapse
Affiliation(s)
- Rajesh Ramakrishnan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
59
|
Barski A, Jothi R, Cuddapah S, Cui K, Roh TY, Schones DE, Zhao K. Chromatin poises miRNA- and protein-coding genes for expression. Genome Res 2009; 19:1742-51. [PMID: 19713549 DOI: 10.1101/gr.090951.109] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chromatin modifications have been implicated in the regulation of gene expression. While association of certain modifications with expressed or silent genes has been established, it remains unclear how changes in chromatin environment relate to changes in gene expression. In this article, we used ChIP-seq (chromatin immunoprecipitation with massively parallel sequencing) to analyze the genome-wide changes in chromatin modifications during activation of total human CD4(+) T cells by T-cell receptor (TCR) signaling. Surprisingly, we found that the chromatin modification patterns at many induced and silenced genes are relatively stable during the short-term activation of resting T cells. Active chromatin modifications were already in place for a majority of inducible protein-coding genes, even while the genes were silent in resting cells. Similarly, genes that were silenced upon T-cell activation retained positive chromatin modifications even after being silenced. To investigate if these observations are also valid for miRNA-coding genes, we systematically identified promoters for known miRNA genes using epigenetic marks and profiled their expression patterns using deep sequencing. We found that chromatin modifications can poise miRNA-coding genes as well. Our data suggest that miRNA- and protein-coding genes share similar mechanisms of regulation by chromatin modifications, which poise inducible genes for activation in response to environmental stimuli.
Collapse
Affiliation(s)
- Artem Barski
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Zeini M, Hang CT, Lehrer-Graiwer J, Dao T, Zhou B, Chang CP. Spatial and temporal regulation of coronary vessel formation by calcineurin-NFAT signaling. Development 2009; 136:3335-45. [PMID: 19710169 DOI: 10.1242/dev.037903] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Formation of the coronary vasculature requires reciprocal signaling between endothelial, epicardially derived smooth muscle and underlying myocardial cells. Our studies show that calcineurin-NFAT signaling functions in endothelial cells within specific time windows to regulate coronary vessel development. Mouse embryos exposed to cyclosporin A (CsA), which inhibits calcineurin phosphatase activity, failed to develop normal coronary vasculature. To determine the cellular site at which calcineurin functions for coronary angiogenesis, we deleted calcineurin in endothelial, epicardial and myocardial cells. Disruption of calcineurin-NFAT signaling in endothelial cells resulted in the failure of coronary angiogenesis, recapitulating the coronary phenotype observed in CsA-treated embryos. By contrast, deletion of calcineurin in either epicardial or myocardial cells had no effect on coronary vasculature during early embryogenesis. To define the temporal requirement for NFAT signaling, we treated developing embryos with CsA at overlapping windows from E9.5 to E12.5 and examined coronary development at E12.5. These experiments demonstrated that calcineurin-NFAT signaling functions between E10.5 and E11.5 to regulate coronary angiogenesis. Consistent with these in vivo observations, endothelial cells exposed to CsA within specific time windows in tissue culture were unable to form tubular structures and their cellular responses to VEGF-A were blunted. Thus, our studies demonstrate specific temporal and spatial requirements of NFAT signaling for coronary vessel angiogenesis. These requirements are distinct from the roles of NFAT signaling in the angiogenesis of peripheral somatic vessels, providing an example of the environmental influence of different vascular beds on the in vivo endothelial responses to angiogenic stimuli.
Collapse
Affiliation(s)
- Miriam Zeini
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
61
|
White JD, Deerberg J, Toske SG, Yakura T. Application of stereocontrolled aldol coupling to synthesis of segments of immunosuppressants FK-506 and rapamycin. Tetrahedron 2009. [DOI: 10.1016/j.tet.2009.06.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
62
|
Pandey VN, Upadhyay A, Chaubey B. Prospects for antisense peptide nucleic acid (PNA) therapies for HIV. Expert Opin Biol Ther 2009; 9:975-989. [PMID: 19534584 PMCID: PMC2792880 DOI: 10.1517/14712590903052877] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Since the discovery and synthesis of a novel DNA mimic, peptide nucleic acid (PNA) in 1991, PNAs have attracted tremendous interest and have shown great promise as potential antisense drugs. They have been used extensively as tools for specific modulation of gene expression by targeting translation or transcription processes. This review discusses the present and future therapeutic potential of this class of compound as anti-HIV-1 drugs.
Collapse
Affiliation(s)
- Virendra N Pandey
- University of Medicine and Dentistry, New Jersey-New Jersey Medical School, Department of Biochemistry and Molecular Biology, Newark, NJ 07103, USA.
| | | | | |
Collapse
|
63
|
Abstract
The postoperative management of a patient undergoing lung transplantation involves many components of care. These components include ventilatory and hemodynamic management, immunosuppression, wound care, rehabilitation, infection control and treatment, and early detection of rejection.
Collapse
|
64
|
Bright JJ, Walline CC, Kanakasabai S, Chakraborty S. Targeting PPAR as a therapy to treat multiple sclerosis. Expert Opin Ther Targets 2009; 12:1565-75. [PMID: 19007323 DOI: 10.1517/14728220802515400] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a neurological disorder that causes chronic paralysis and immense socio-economic problem among young adults. The etiology of MS is not known but it is generally viewed as an autoimmune inflammatory disease of the CNS. Over the past decade, several anti-inflammatory drugs have been developed to control MS symptoms but there is no medical cure. OBJECTIVE To evaluate the use and mechanism of action of agonists of PPAR, a family of nuclear receptor transcription factors that regulate inflammation, in treatment of MS. METHODS There are several reports showing beneficial effects of PPAR agonists in treating MS-like disease in animal models. We review recent advances in this field. RESULTS/CONCLUSIONS PPAR agonists regulate MS-like disease in animal models by blocking inflammatory signaling pathways, suggesting their use in treatment of MS. Current human trials are likely to confirm the safety and efficacy of PPAR agonists for MS treatment.
Collapse
Affiliation(s)
- John J Bright
- Methodist Research Institute, Neuroscience Research Laboratory, 1800 N Capitol Avenue, Noyes Bldg E-504C, Indianapolis, IN 46202, USA.
| | | | | | | |
Collapse
|
65
|
Ji J, Cloyd MW. HIV-1 binding to CD4 on CD4+CD25+ regulatory T cells enhances their suppressive function and induces them to home to, and accumulate in, peripheral and mucosal lymphoid tissues: an additional mechanism of immunosuppression. Int Immunol 2009; 21:283-94. [PMID: 19208751 DOI: 10.1093/intimm/dxn146] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The establishment and persistence of many chronic infections have been demonstrated to depend on restraint of the vigor of the anti-microbial immune responses by CD4+CD25+ regulatory T (Treg) cells. In HIV-infected individuals, Treg cells suppress both HIV-specific and general CD4+ and CD8+ T cell responses. Increases of CD4+CD25+ Treg cell function during viral infections might be mediated by host-derived pro-inflammatory molecules or directly by viral infection or binding. We examined the effect HIV has upon binding to CD4+CD25+ Treg cells by exposing human purified CD4+CD25+ T cells from healthy donors to HIV-1 in vitro and assessing their Treg-associated functional marker profile and suppressive activities. We found that HIV-1 binding increased their suppressor activities by 2- to 5-fold, which was accompanied by enhanced expression of Treg-associated functional markers sCTLA-4, glucocorticoid-induced tumor necrosis factor receptor and FoxP3. Moreover, HIV-1 binding extended the survival of CD4+CD25+ Treg cells and up-regulated the expression of homing receptors CD62L and integrin alpha4beta7, which in turn would result in Treg cells migrating more rapidly to the peripheral lymph nodes and mucosal lymphoid tissues where anti-HIV immune responses are occurring. Importantly, CD4+CD25+ Treg cells exposed to HIV were not susceptible to homing-induced apoptosis like are other resting CD4+ cells following HIV-1 binding. We show that CD4+CD25+ Treg cells respond directly to HIV-1 itself through HIV gp120 interactions with CD4 molecules. Collectively, our findings explain a mechanism that contributes to the abnormal accumulation of intensified Treg cells in lymphoid and mucosal tissues in HIV patients, resulting in impairment of immune responses which would greatly help HIV persistence.
Collapse
Affiliation(s)
- Jiaxiang Ji
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | |
Collapse
|
66
|
Choi JM, Kim HJ, Lee KY, Choi HJ, Lee IS, Kang BY. Increased IL-2 production in T cells by xanthohumol through enhanced NF-AT and AP-1 activity. Int Immunopharmacol 2009; 9:103-7. [DOI: 10.1016/j.intimp.2008.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 10/15/2008] [Accepted: 10/15/2008] [Indexed: 10/21/2022]
|
67
|
Hematopoietic fingerprints: an expression database of stem cells and their progeny. Cell Stem Cell 2008; 1:578-91. [PMID: 18371395 DOI: 10.1016/j.stem.2007.10.003] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 07/04/2007] [Accepted: 10/09/2007] [Indexed: 12/15/2022]
Abstract
Hematopoietic stem cells (HSCs) continuously regenerate the hematologic system, yet few genes regulating this process have been defined. To identify candidate factors involved in differentiation and self-renewal, we have generated an expression database of hematopoietic stem cells and their differentiated progeny, including erythrocytes, granulocytes, monocytes, NK cells, activated and naive T cells, and B cells. Bioinformatic analysis revealed HSCs were more transcriptionally active than their progeny and shared a common activation mechanism with T cells. Each cell type also displayed unique biases in the regulation of particular genetic pathways, with Wnt signaling particularly enhanced in HSCs. We identified approximately 100-400 genes uniquely expressed in each cell type, termed lineage "fingerprints." In overexpression studies, two of these genes, Zfp 105 from the NK cell lineage, and Ets2 from the monocyte lineage, were able to significantly influence differentiation toward their respective lineages, demonstrating the utility of the fingerprints for identifying genes that regulate differentiation.
Collapse
|
68
|
Maddess ML, Tackett MN, Ley SV. Total synthesis studies on macrocyclic pipecolic acid natural products: FK506, the antascomicins and rapamycin. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2008; 66:13, 15-186. [PMID: 18416305 DOI: 10.1007/978-3-7643-8595-8_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This chapter derives its inspiration from the challenges presented to total synthesis chemists, by a particular group of macrocyclic pipecolic acid natural products. Although there is considerable emphasis on the completed syntheses of the main characters (FK506 (1), the antascomycins (4 and 5) and rapamycin (7)), the overall complexity of the molecular problem has stimulated a wealth of new knowledge, including the development of novel strategies and the invention of new synthetic methods. The ingenious and innovative approaches to these targets have enabled new generations of analogues, and provided material to further probe the biology of these fascinating molecules. With pharmaceutical application as an immunosuppressant, as well as potential use for the treatment of cancer and neurodegenerative diseases, this family of natural products continues to inspire new and interesting science while providing solutions to healthcare problems of the world.
Collapse
Affiliation(s)
- Matthew L Maddess
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | | |
Collapse
|
69
|
Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB. Proliferating cells express mRNAs with shortened 3' untranslated regions and fewer microRNA target sites. Science 2008; 320:1643-7. [PMID: 18566288 DOI: 10.1126/science.1155390] [Citation(s) in RCA: 1048] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Messenger RNA (mRNA) stability, localization, and translation are largely determined by sequences in the 3' untranslated region (3'UTR). We found a conserved increase in expression of mRNAs terminating at upstream polyadenylation sites after activation of primary murine CD4+ T lymphocytes. This program, resulting in shorter 3'UTRs, is a characteristic of gene expression during immune cell activation and correlates with proliferation across diverse cell types and tissues. Forced expression of full-length 3'UTRs conferred reduced protein expression. In some cases the reduction in protein expression could be reversed by deletion of predicted microRNA target sites in the variably included region. Our data indicate that gene expression is coordinately regulated, such that states of increased proliferation are associated with widespread reductions in the 3'UTR-based regulatory capacity of mRNAs.
Collapse
Affiliation(s)
- Rickard Sandberg
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
70
|
MacKenzie EL, Tsuji Y. Elevated intracellular calcium increases ferritin H expression through an NFAT-independent post-transcriptional mechanism involving mRNA stabilization. Biochem J 2008; 411:107-13. [PMID: 18076382 PMCID: PMC2702759 DOI: 10.1042/bj20071544] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An increase in intracellular Ca2+ is one of the initiating events in T-cell activation. A calcium-mediated signalling cascade in T-cells involves activation of calcineurin and the dephosphorylation and translocation of NFAT (nuclear factor of activated T-cells), resulting in the transcriptional activation of target genes such as IL-2 (interleukin-2). In the present study, we found that increased intracellular calcium leads to induction of the antioxidant protein ferritin H. We previously reported that the ferritin H gene is transcriptionally activated under oxidative stress conditions through an ARE (antioxidant-responsive element). The facts that the ferritin H ARE contains a composite AP-1 (activator protein 1) site and that NFAT collaborates with AP-1 transcription factors led us to test whether calcium-activated NFAT is involved in the ferritin H induction through the ARE. Treatment of Jurkat T-cells with the calcium ionophore, ionomycin, increased ferritin H mRNA and protein expression. Although NFAT translocated to the nucleus and bound a consensus NFAT sequence located in the IL-2 promoter after ionomycin treatment, it did not activate ferritin H transcription despite the presence of a putative NFAT-binding sequence in the ferritin H ARE. In addition, the calcineurin inhibitor cyclosporin A treatment blocked ionomycin-mediated NFAT nuclear translocation but failed to abrogate the increase in ferritin H mRNA. Analysis of mRNA stability after actinomycin D treatment revealed that ionomycin prolongs ferritin H mRNA half-life. Taken together, these results suggest that ionomycin-mediated induction of ferritin H may occur in an NFAT-independent manner but through post-transcriptional stabilization of the ferritin H mRNA.
Collapse
Affiliation(s)
- Elizabeth L. MacKenzie
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Yoshiaki Tsuji
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
71
|
Kirk AD, Elster EA. Immunology of Transplantation. Surgery 2008. [DOI: 10.1007/978-0-387-68113-9_81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
72
|
A network analysis of the human T-cell activation gene network identifies JAGGED1 as a therapeutic target for autoimmune diseases. PLoS One 2007; 2:e1222. [PMID: 18030350 PMCID: PMC2077806 DOI: 10.1371/journal.pone.0001222] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 10/30/2007] [Indexed: 12/16/2022] Open
Abstract
Understanding complex diseases will benefit the recognition of the properties of the gene networks that control biological functions. Here, we set out to model the gene network that controls T-cell activation in humans, which is critical for the development of autoimmune diseases such as Multiple Sclerosis (MS). The network was established on the basis of the quantitative expression from 104 individuals of 20 genes of the immune system, as well as on biological information from the Ingenuity database and Bayesian inference. Of the 31 links (gene interactions) identified in the network, 18 were identified in the Ingenuity database and 13 were new and we validated 7 of 8 interactions experimentally. In the MS patients network, we found an increase in the weight of gene interactions related to Th1 function and a decrease in those related to Treg and Th2 function. Indeed, we found that IFN-ß therapy induces changes in gene interactions related to T cell proliferation and adhesion, although these gene interactions were not restored to levels similar to controls. Finally, we identify JAG1 as a new therapeutic target whose differential behaviour in the MS network was not modified by immunomodulatory therapy. In vitro treatment with a Jagged1 agonist peptide modulated the T-cell activation network in PBMCs from patients with MS. Moreover, treatment of mice with experimental autoimmune encephalomyelitis with the Jagged1 agonist ameliorated the disease course, and modulated Th2, Th1 and Treg function. This study illustrates how network analysis can predict therapeutic targets for immune intervention and identified the immunomodulatory properties of Jagged1 making it a new therapeutic target for MS and other autoimmune diseases.
Collapse
|
73
|
Marin DE, Gouze ME, Taranu I, Oswald IP. Fumonisin B1 alters cell cycle progression and interleukin-2 synthesis in swine peripheral blood mononuclear cells. Mol Nutr Food Res 2007; 51:1406-12. [DOI: 10.1002/mnfr.200700131] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
74
|
Cantrell DA, Graves JD, Izquierdo M, Lucas S, Downward J. T lymphocyte activation signals. CIBA FOUNDATION SYMPOSIUM 2007; 164:208-18; discussion 218-22. [PMID: 1395932 DOI: 10.1002/9780470514207.ch13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Activation of T lymphocytes results in immediate biochemical changes including increases in intracellular calcium levels, activation of protein kinase C (PKC) and changes in tyrosine phosphorylation. In T cells recent studies have indicated that activation of the guanine nucleotide-binding proteins p21ras is mediated by PKC, which suggests that the p21ras proteins may regulate intracellular signalling events downstream of PKC. The p21ras proteins can be activated in T cells by signals generated by triggering of the T cell antigen receptor (TCR), the CD2 antigen and the interleukin 2 receptor. Experiments using a PKC pseudosubstrate inhibitor indicate that PKC does not mediate TCR-induced activation of p21ras. These results imply that an alternative signal transduction pathway not involving PKC can regulate the activity of p21ras proteins in T cells.
Collapse
Affiliation(s)
- D A Cantrell
- Lymphocyte Activation Laboratory, Imperial Cancer Research Fund, London, UK
| | | | | | | | | |
Collapse
|
75
|
Oakes SA. Mitochondria control calcium entry at the immunological synapse. Proc Natl Acad Sci U S A 2007; 104:15171-2. [PMID: 17881558 PMCID: PMC2000514 DOI: 10.1073/pnas.0707798104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Scott A Oakes
- Department of Pathology, University of California, San Francisco, CA 94143-0511, USA.
| |
Collapse
|
76
|
Inhibition of Interleukin-2 Production by Myricetin in Mouse EL-4 T Cells. Arch Pharm Res 2007; 30:1075-9. [DOI: 10.1007/bf02980240] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
77
|
Abstract
Discovering the transcription factors that direct lineage commitment in the T helper cell was a formidable task. Laurie Glimcher describes how she and Susanne Szabo hunted down T-bet, a transcription factor that is a 'master regulator' of commitment to the T helper type 1 lineage.
Collapse
Affiliation(s)
- Laurie H Glimcher
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA.
| |
Collapse
|
78
|
Wu H, Peisley A, Graef IA, Crabtree GR. NFAT signaling and the invention of vertebrates. Trends Cell Biol 2007; 17:251-60. [PMID: 17493814 DOI: 10.1016/j.tcb.2007.04.006] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 03/27/2007] [Accepted: 04/25/2007] [Indexed: 01/08/2023]
Abstract
The calcium/calcineurin-dependent NFATc family is thought to have arisen following the recombination of an ancient precursor with a Rel domain about 500 million years ago, producing a new group of signaling and transcription factors (the NFATc genes) found only in the genomes of vertebrates. Cell biological, genetic and biochemical evidence indicates that the circuitry of this pathway is well suited for intercalation with older pathways. We propose that this recombination enabled Ca(2+) signals to be redirected to a new transcriptional program, which provided part of the groundwork for vertebrate morphogenesis and organogenesis. This notion predicts that calcineurin-NFAT signaling would be essential for much of vertebrate development. We review recent evidence supporting this prediction and propose a systematic approach to explore aspects of vertebrate morphogenesis.
Collapse
Affiliation(s)
- Hai Wu
- Stanford University and the Howard Hughes Medical Institute, Department of Pathology, Beckman Center, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
79
|
Mankidy B, Kesavan RB, Silay YS, Haddad TJ, Seethamraju H. Emerging drugs in lung transplantation. Expert Opin Emerg Drugs 2007; 12:61-73. [PMID: 17355214 DOI: 10.1517/14728214.12.1.61] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The balance between immunosuppression to ensure graft tolerance while preventing emergence of infectious complications is key in lung transplantation. Although opportunistic infection may appear to be the most important of these complications, malignancies and severe drug toxicities significantly affect the short- and long-term outcomes of the patients. The present practice is combination therapy using drugs with complementary immunosuppressive action, to achieve synergistic immunosuppression with the lowest possible toxicity. Components of immunosuppression include induction and maintenance regimens. Primary graft failure remains an important cause of mortality and morbidity in the immediate post-transplant period. Acute rejection is a common complication after lung transplant, but responds well to augmented immunosuppression and immunomodulation. Chronic rejection still is the major cause of mortality in patients who survive the initial year post-transplantation. Several new drugs have shown promise in decreasing the rate of loss of graft function. This review discusses the current and emerging therapeutic regimens.
Collapse
Affiliation(s)
- Babith Mankidy
- Baylor College of Medicine, Department of Medicine, Pulmonary and Critical Care, Lung transplant program, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
80
|
Chattree V, Khanna N, Rao DN. Alterations in T cell signal transduction by M. leprae antigens is associated with downregulation of second messengers PKC, calcium, calcineurin, MAPK and various transcription factors in leprosy patients. Mol Immunol 2007; 44:2066-77. [PMID: 17046060 DOI: 10.1016/j.molimm.2006.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 09/07/2006] [Accepted: 09/08/2006] [Indexed: 10/24/2022]
Abstract
Mycobacterium leprae, the causative agent of leprosy, challenges host defense mechanism by impairing the signal transduction of T cells which leads to downregulation of T cell proliferation, mainly as a consequence of interference with IL-2 production. In this study we sought to identify how soluble forms of M. leprae antigen(s) or particulate (liposome) delivery of the same antigens with two immunomodulators Murabutide and T cell peptide of Trat protein influence the transcription of IL-2 gene in anergic T cells of lepromatous patients. It was demonstrated that MLCwA/ManLAM stimulated cells of BL/LL patients showed defects in both jun-NH2-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) activities there by resulting in decreased AP-1 activity. Additionally these cells showed reduced calcium levels, PKC activity and calcineurin (CN) activity. This led to impaired nuclear translocation of NFkappaB and NFAT in these patients. In contrast, when same M. leprae antigen(s) were incorporated with the two immunomodulators in liposomal form, increased transcription of IL-2 gene was observed especially in BL/LL patients which appears to be due to, at least in part, to increased expression of AP-1 Fos and Jun family members, NFkappaB and NFAT1 proteins. The increased expression of these transcription factors correlated with increased ERK/JNK, PKC and CN activities in these patients. Since activation of ERK/JNK/PKC kinases and CN phosphatase are required for stimulation of IL-2 transcription, these data provide a molecular explanation for the block in IL-2 production by M. leprae antigens. Thus the above study revealed suppression of all the three distinct biochemical pathways, viz. Ca-CN-NFAT pathway, PKC-NF-kappaB pathway, and MAPK-AP-1 pathway by M. leprae antigen(s) in anergized T cells of lepromatous patients which were activated by liposomal delivery of M. leprae antigens containing the two immunomodulators leading to optimal induction of IL-2 gene expression, which was required for the activation, and proliferation of T cells in lepromatous patients.
Collapse
Affiliation(s)
- Vineeta Chattree
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | | |
Collapse
|
81
|
Liu CP, Kuo YC, Shen CC, Wu MH, Liao JF, Lin YL, Chen CF, Tsai WJ. (S)-Armepavine inhibits human peripheral blood mononuclear cell activation by regulating Itk and PLCγ activation in a PI-3K-dependent manner. J Leukoc Biol 2007; 81:1276-86. [PMID: 17284681 DOI: 10.1189/jlb.0106056] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Chinese herbs are useful edible and medicinal plants for their immune modulatory functions. We have proven that (S)-armepavine (C19H23O3N; MW313) from Nelumbo nucifera inhibits the proliferation of human PBMCs activated with PHA and improves autoimmune diseases in MRL/MpJ-lpr/lpr mice. In the present study, the pharmacological activities of (S)-armepavine were evaluated in PHA-activated PBMCs. The results showed that (S)-armepavine suppressed PHA-induced PBMC proliferation and genes expression of IL-2 and IFN-gamma without direct cytotoxicity. Inhibition of NF-AT and NF-kappaB activation suggested phospholipase Cgamma (PLCgamma)-mediated Ca2+ mobilization and protein kinase C activation were blocked by (S)-armepavine. Phosphorylation of PLCgamma is regulated by lymphocyte-specific kinase (Lck), ZAP-70, and IL-2-inducible T cell kinase (Itk). We found (S)-armepavine inhibited PHA-induced phosphorylation of Itk and PLCgamma efficiently but did not influence Lck or ZAP-70 phosphorylation. In addition, ZAP-70-mediated pathways, such as the association of linker for activation of T cells with PLCgamma and activation of ERK, were also intact in the presence of (S)-armepavine. Finally, reduction of phosphoinositide 3,4,5-trisphosphate formation and Akt phosphorylation suggested that (S)-armepavine inhibited Itk, and PLCgamma phosphorylation might be a result of the influence of PI-3K activation. Addition of exogenous IL-2 or PMA/A23187 rescued PBMC proliferation in the presence of (S)-armepavine. Therefore, we concluded that (S)-armepavine inhibited PHA-induced cell proliferation and cytokine production in a major way by blocking membrane-proximal effectors such as Itk and PLCgamma in a PI-3K-dependent manner.
Collapse
Affiliation(s)
- Chih-Peng Liu
- Institute of Pharmacology, National Yang-Ming University, Laboratory of Biochemistry, National Research Institute of Chinese Medicine, No. 155-1, Sec. 2, Li-Nung St., Shih-Pai, 112, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Akiyoshi K, Hikida S, Inoue H, Asagiri K, Tanaka Y, Yagi M. Extracellular Ca2+ uptake by T cells might help to make a diagnosis of acute rejection. Pediatr Surg Int 2007; 23:149-53. [PMID: 17160685 DOI: 10.1007/s00383-006-1842-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2006] [Indexed: 10/23/2022]
Abstract
To more non-invasively diagnose acute rejection, we focused on the uptake of extracellular Ca2+ by T cells as a result of the activation of Ca2+ release activated Ca2+ channels. A full thickness of the skin allograft model was established using BN rats as the donors and LEW rats as the recipients, and similar LEW rats as both donors and recipients in the control group. After transplantation, the grafts were staged histopathologically in both rats. The uptake of extaracellular 45Ca pre T cell was measured in the macrophage-treated and non-treated groups, and the ratios between the two groups were calculated and the results were compared according to the post-operative day. No histopathological findings of acute rejection were observed in the control group. The allograft model group showed acute rejection histopathologically beginning on day 2 and increased through day 5. The macrophage-treated model/non-treated model 45Ca uptake ratio (CAR) was significantly higher in the allograft rats on day 2. No significant difference was observed on day 4. Measuring the uptake of extracellular Ca2+ by recipient T cells using donor macrophages might be useful for making a diagnosis of acute rejection.
Collapse
Affiliation(s)
- Kenjiro Akiyoshi
- Department of Pediatric Surgery, Kurume University School of Medicine, 67 Asahimachi, Kurume-City, Fukuoka, 830-0011, Japan.
| | | | | | | | | | | |
Collapse
|
83
|
Han S, Lu J, Zhang Y, Cheng C, Li L, Han L, Huang B. HDAC inhibitors TSA and sodium butyrate enhanced the human IL-5 expression by altering histone acetylation status at its promoter region. Immunol Lett 2007; 108:143-50. [PMID: 17270283 DOI: 10.1016/j.imlet.2006.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 12/10/2006] [Accepted: 12/11/2006] [Indexed: 11/24/2022]
Abstract
The expression of IL-5 correlated tightly with the maturation and differentiation of eosinophils, and is considered as a cytokine responsible for allergic inflammation. We report here that inhibition of HDAC activity by Trichostatin A (TSA) and sodium butyrate (NaBu), the two specific HDAC inhibitors, resulted in the elevation of both endogenous and exogenous activity of IL-5 promoter. We demonstrated that both the mRNA expression and protein production of IL-5 were stimulated by TSA and NaBu treatments. ChIP assays showed that treatments of TSA and NaBu caused hyperacetylation of histones H3 and H4 on IL-5 promoter in Jurkat cells, which consequently promoted the exogenous luciferase activity driven by this promoter. Moreover, site-directed mutagenesis studies showed that the binding sites for transcription factors NFAT, GATA3 and YY1 on IL-5 promoter were critical for the effects of TSA and NaBu, suggesting that the transcriptional activation of IL-5 gene by these inhibitors was achieved by affecting HDAC function on IL-5 promoter via transcription factors. These data will contribute to elucidating the unique mechanism of IL-5 transcriptional control and to the therapy of allergic disorders related to IL-5.
Collapse
Affiliation(s)
- Songyan Han
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130022, China
| | | | | | | | | | | | | |
Collapse
|
84
|
Wang JX, Tang W, Shi LP, Wan J, Zhou R, Ni J, Fu YF, Yang YF, Li Y, Zuo JP. Investigation of the immunosuppressive activity of artemether on T-cell activation and proliferation. Br J Pharmacol 2007; 150:652-61. [PMID: 17262016 PMCID: PMC2189761 DOI: 10.1038/sj.bjp.0707137] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Artemisinin and its derivatives exhibit potent immunosuppressive activity. The purpose of the current study was to examine the immunosuppressive activity of artemether directly on T lymphocytes and to explore its potential mode of action. EXPERIMENTAL APPROACH In vitro, T-cell proliferation was measured using [(3)H]-thymidine incorporation assay in cells stimulated with ConA, alloantigen and anti-CD3 antibody. CFSE-labeled cell division and cell cycle distribution were monitored by flow cytometry. In vivo, the effects of artemether were evaluated in delayed-type hypersensitivity (DTH) and purified T-cell responses to ovalbumin in ovalbumin-immunized mice. The activation of extracellular signal-regulated kinase1/2 (ERK1/2) and Raf1 were assessed by Western blot analysis and the activation of Ras was tested in pull-down assays. KEY RESULTS We show that, in vitro, artemether suppressed ConA- or alloantigen-induced splenocyte proliferation, influenced production of the cytokines IL-2 and IFN-gamma and inhibited cell cycle progression through the G0/G1 transition. In vivo, administration of artemether attenuated CD4 T-cell-mediated DTH reaction, and suppressed antigen-specific T-cell response in immunized mice. Further experiments showed that, treatment with artemether impaired both antigen- and anti-CD3-induced phosphorylation of ERK. In primary T cells, artemether profoundly inhibited anti-CD3-induced phosphorylation of Raf1 and activation of Ras. CONCLUSIONS AND IMPLICATIONS This study provided experimental evidence of the immunosuppressive effects of artemether directly on T cells both in vitro and in vivo. Its immunosuppressive mechanism involved inhibition of the activation of the Ras-Raf1-ERK1/2 protein kinase cascade in T cells.
Collapse
Affiliation(s)
- J-X Wang
- First Department of Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, People's Republic of China
| | - W Tang
- First Department of Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, People's Republic of China
| | - L-P Shi
- First Department of Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, People's Republic of China
| | - J Wan
- First Department of Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, People's Republic of China
| | - R Zhou
- First Department of Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, People's Republic of China
| | - J Ni
- First Department of Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, People's Republic of China
| | - Y-F Fu
- First Department of Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, People's Republic of China
| | - Y-F Yang
- First Department of Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, People's Republic of China
| | - Y Li
- Department of Synthetic Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, People's Republic of China
| | - J-P Zuo
- First Department of Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, People's Republic of China
- Author for correspondence:
| |
Collapse
|
85
|
Bulwin GC, Heinemann T, Bugge V, Winter M, Lohan A, Schlawinsky M, Schulze A, Wälter S, Sabat R, Schülein R, Wiesner B, Veh RW, Löhler J, Blumberg RS, Volk HD, Utku N. TIRC7 inhibits T cell proliferation by modulation of CTLA-4 expression. THE JOURNAL OF IMMUNOLOGY 2007; 177:6833-41. [PMID: 17082597 DOI: 10.4049/jimmunol.177.10.6833] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ab targeting of TIRC7 has been shown previously to inhibit T cell proliferation and Th1 lymphocyte-associated cytokine production. In this study, we demonstrate that Ab targeting of TIRC7 induces early cell surface expression of CTLA-4. The majority of stimulated CD4+ and CD8+ human T cells coexpress CTLA-4 and TIRC7. Similar to CTLA-4, TIRC7 rapidly accumulates at the site of Ag adhesion upon T cell activation. TIRC7 seems to colocalize with CTLA-4 in human T cells, and both molecules are associated with clathrin-coated vesicles, indicating they share intracellular transport systems. Moreover, Ab targeting of TIRC7 results in an early activation of CTLA-4 transcription. The inhibition of cell proliferation mediated by TIRC7 is dependent on CTLA-4 expression because the TIRC7-mediated inhibitory effects on cell proliferation and cytokine expression are abolished by Ab blockade of CTLA-4. Splenocytes obtained from CTLA-4-deficient mice are not responsive to TIRC7 Ab targeting. Thus, TIRC7 acts as an upstream regulatory molecule of CTLA-4 expression.
Collapse
Affiliation(s)
- Grit-Carsta Bulwin
- Institut für Medizinische Immunologie, Campus Charité Mitte, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Han S, Lu J, Zhang Y, Cheng C, Han L, Wang X, Li L, Liu C, Huang B. Recruitment of histone deacetylase 4 by transcription factors represses interleukin-5 transcription. Biochem J 2006; 400:439-48. [PMID: 16922677 PMCID: PMC1698606 DOI: 10.1042/bj20061085] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The critical role of IL-5 (interleukin-5) in eosinophilic inflammation implicates it as a therapeutic target for allergic diseases. The aim of the present study was to elucidate the molecular basis for the involvement of reversible histone acetylation in IL-5 transcriptional regulation. We provide evidence that HDAC4 (histone deacetylase 4) and p300, a known HAT (histone acetyltransferase), reversibly controlled the activity of the IL-5 promoter in vivo and in vitro, with a concurrent alteration of histone H3 acetylation status at the promoter regions. The nucleo-cytoplasmic shuttling of HDAC4 was shown to play an important role in the suppressive function of HDAC4 in IL-5 gene expression. Point mutation and reporter ChIP (chromatin immunoprecipitation) studies determined that the four transcription factors binding on the IL-5 promoter, i.e. C/EBPbeta (CAAT/enhancer-binding protein beta), GATA3 (GATA binding protein 3), NFAT (nuclear factor of activated T cells) and YY1 (Yin and Yang 1), were essential for the recruitment of HDAC4. Consistent with these observations, HDAC4 was found to form protein complexes with GATA3 and YY1, and to co-exist in the nuclei with GATA3. We propose that the unique regulatory mechanism of IL-5 gene transcription involves the reversible histone modification catalysed by HDAC4 and p300, which are recruited by the transcription factors. The dynamic balance in IL-5 transcriptional regulation is achieved through interactions among HATs/HDACs, histones and transcription factors. These data contribute to understanding the molecular mechanisms of IL-5 regulation, which is crucial to the development of new therapeutic strategies for IL-5-related allergic diseases.
Collapse
Affiliation(s)
- Songyan Han
- *Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Jun Lu
- *Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Yu Zhang
- *Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Cao Cheng
- *Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Liping Han
- *Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Xiuli Wang
- *Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Lin Li
- *Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Chunyan Liu
- †Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100000, China
| | - Baiqu Huang
- *Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
- To whom correspondence should be addressed (email )
| |
Collapse
|
87
|
Ye X, Zhang Z, Jiang Y, Han X, Wang Y, Zhang M, Liu J, Geng W, Dai D, Shi W, Shang H. Expression of human CD226 on T cells and natural killer cells and of soluble CD226 in plasma of HIV-1-infected Chinese patients. Viral Immunol 2006; 19:576-81. [PMID: 16987076 DOI: 10.1089/vim.2006.19.576] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Our objective was to detect the expression of CD226 on natural killer (NK) cells and T cells, and to measure the amount of soluble CD226 in the plasma of HIV-infected individuals, in order to evaluate the function of CD226 in HIV infection. Thirty-four untreated HIV-1-infected patients and 26 normal controls were enrolled and three-color flow cytometry was used to detect the expression of CD226 on T lymphocytes and NK cells in whole blood samples taken from the patients and normal controls, and in HIV-1SF33-infected peripheral blood mononuclear cells (PBMCs). An enzymelinked immunosorbent assay (ELISA) was used to detect the level of soluble CD226 in the plasma of HIV-infected patients and normal controls and in the supernatant of HIV-1SF33-infected cells. The level of CD226 expression on CD3+, CD4+, and CD8+ T cells and on CD3- CD16+ NK cells of HIV-infected patients was significantly higher than that of normal controls (p < 0.01). The level of soluble CD226 in the plasma of HIV-infected patients was also significantly higher than that of normal controls (p < 0.01). After stimulation with HIV-1SF33, the level of CD226 expression on CD3+ T cells and CD3- CD16+ NK cells of cultured PBMCs reached peak values at 48 h, which was earlier than in uninfected control cells (72 h). The level of soluble CD226 in the supernatant of HIV- 1SF33-infected cell culture was higher than that of uninfected cells, and the level of soluble CD226 in the supernatant of HIV-1SF33-infected cells reached the peak value at 72 h, which was earlier than in uninfected control cells (96 h) but later than the time of peak CD226 expression on CD3+ T lymphocytes (48 h). We conclude that CD226 may be involved in the immune response to HIV infection and that further experiments are needed to find the function of CD226 in the pathogenesis of HIV infection.
Collapse
Affiliation(s)
- Xiaohui Ye
- Key Laboratory of Immunology of AIDS, Ministry of Health, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Grimm D, Bauer J, Infanger M, Cogoli A. The use of the random positioning machine for the study of gravitational effects on signal transduction in mammalian cells. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/sita.200600103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
89
|
Satoh E, Edamatsu H, Omata Y. Acute restraint stress enhances calcium mobilization and proliferative response in splenic lymphocytes from mice. Stress 2006; 9:223-30. [PMID: 17175508 DOI: 10.1080/10253890601095794] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Calcium (Ca2+ ) plays an essential role in lymphocyte activation and maturation. Acute and chronic stress has been shown to modulate the lymphocyte immune response; but the relationship between cytosolic free Ca2+ concentration ([Ca2+ ]i) and the immune response in lymphocytes following exposure to stress has not been examined. In the present study, we investigated the effects of acute restraint stress on [Ca2+ ]i and the proliferation of splenic lymphocytes from mice. We observed that 2 h of restraint significantly increased plasma corticosterone levels in mice. On examining [Ca2+ ]i and the proliferation ex vivo of splenic lymphocytes isolated from restraint-stressed mice using fura-2 and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide, respectively, we found that acute restraint stress caused a significant increase in resting [Ca2+ ]i and significantly enhanced the ability of concanavalin A (Con A; a T-cell-selective mitogen) to increase [Ca2+ ]i but not that of lipopolysaccharide (LPS; a B-cell-selective mitogen). In addition, acute restraint stress significantly enhanced Con A-stimulated but not LPS-stimulated lymphocyte proliferation. Overall, there was a positive correlation between [Ca2+ ]i and T-cell proliferation following acute restraint stress. The enhancements of [Ca2+ ]i and T-cell proliferation were completely suppressed by verapamil (a Ca2+ channel blocker). These results suggest that acute restraint stress enhances Con A-stimulated T-cell proliferation by increasing [Ca2+ ]i via stimulation of Ca2+ entry.
Collapse
Affiliation(s)
- Eiki Satoh
- Department of Pathobiological Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Japan.
| | | | | |
Collapse
|
90
|
Fantini MC, Becker C, Kiesslich R, Neurath MF. Drug insight: novel small molecules and drugs for immunosuppression. ACTA ACUST UNITED AC 2006; 3:633-44. [PMID: 17068501 DOI: 10.1038/ncpgasthep0611] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Accepted: 07/27/2006] [Indexed: 12/31/2022]
Abstract
Gastrointestinal diseases can result from the inadequate or excessive response of the immune system to self or innocuous antigens. Moreover, the physiologic activation of the immune system against non-self antigens is a major clinical problem in liver organ transplantation. At present, many drugs are available that suppress the activation of the immune system, although most of the currently used immunosuppressive drugs lack specificity in terms of their molecular targets and, therefore, have the potential to generate numerous side effects. The advances that have been made in understanding the molecular events that underlie the activation of the immune system have led to the development of a new generation of 'small molecules' that are endowed with immunosuppressive properties and can serve as immunomodulatory agents. Among these new small molecules, inhibitors of Janus kinase 3, p21-Rac1 and p38 mitogen-activated protein kinase represent the most innovative approach to immunosuppression, and could be a promising alternative to current immunosuppressive therapies. Here, we report on the progress that has been made in the development of small molecules in the field of gastroenterology.
Collapse
|
91
|
Jhun BS, Lee JY, Oh YT, Lee JH, Choe W, Baik HH, Kim SS, Yoon KS, Ha J, Kang I. Inhibition of AMP-activated protein kinase suppresses IL-2 expression through down-regulation of NF-AT and AP-1 activation in Jurkat T cells. Biochem Biophys Res Commun 2006; 351:986-92. [PMID: 17097050 DOI: 10.1016/j.bbrc.2006.10.138] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 10/26/2006] [Indexed: 12/17/2022]
Abstract
AMP-activated protein kinase (AMPK) is a key regulator of energy homeostasis and its activation during T cell receptor stimulation has recently been reported. In this study, we examined the role of AMPK in interleukin (IL)-2 production in T cells. Inhibition of AMPK by compound C, a specific inhibitor of AMPK or small interfering RNA of AMPKalpha1 suppressed IL-2 production in Jurkat T cells and peripheral blood lymphocytes stimulated with PMA plus ionomycin (PMA/Io) or with monoclonal anti-CD3 plus anti-CD28. We then showed that AMPK inhibition reduced PMA/Io-induced IL-2 mRNA expression and IL-2 promoter activation. Moreover, inhibition of AMPK suppressed transcriptional activation of NF-AT and AP-1, but not NF-kappaB, in PMA/Io-activated Jurkat cells. Finally, we found that compound C inhibited PMA/Io-induced phosphorylation of p38, JNK, and GSK-3beta but not of ERK. These results suggest that AMPK mediates IL-2 production by regulating NF-AT and AP-1activation during T cell stimulation.
Collapse
Affiliation(s)
- Bong Sook Jhun
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Ahn YT, Huang B, McPherson L, Clayberger C, Krensky AM. Dynamic interplay of transcriptional machinery and chromatin regulates "late" expression of the chemokine RANTES in T lymphocytes. Mol Cell Biol 2006; 27:253-66. [PMID: 17074812 PMCID: PMC1800668 DOI: 10.1128/mcb.01071-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chemokine RANTES (regulated upon activation normal T cell expressed and secreted) is expressed "late" (3 to 5 days) after activation in T lymphocytes. In order to understand the molecular events that accompany changes in gene expression, a detailed analysis of the interplay between transcriptional machinery and chromatin on the RANTES promoter over time was undertaken. Krüppel-like factor 13 (KLF13), a sequence-specific DNA binding transcription factor, orchestrates the induction of RANTES expression in T lymphocytes by ordered recruitment of effector molecules, including Nemo-like kinase, p300/cyclic AMP response element binding protein (CBP), p300/CBP-associated factor, and Brahma-related gene 1, that initiate sequential changes in phosphorylation and acetylation of histones and ATP-dependent chromatin remodeling near the TATA box of the RANTES promoter. These events recruit RNA polymerase II to the RANTES promoter and are responsible for late expression of RANTES in T lymphocytes. Therefore, KLF13 is a key regulator of late RANTES expression in T lymphocytes.
Collapse
Affiliation(s)
- Yong-Tae Ahn
- Division of Immunology and Transplantation Biology, Department of Pediatrics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5164, USA
| | | | | | | | | |
Collapse
|
93
|
Davé V, Childs T, Xu Y, Ikegami M, Besnard V, Maeda Y, Wert SE, Neilson JR, Crabtree GR, Whitsett JA. Calcineurin/Nfat signaling is required for perinatal lung maturation and function. J Clin Invest 2006; 116:2597-609. [PMID: 16998587 PMCID: PMC1570374 DOI: 10.1172/jci27331] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Accepted: 07/25/2006] [Indexed: 01/11/2023] Open
Abstract
Pulmonary surfactant proteins and lipids are required for lung function after birth. Lung immaturity and resultant surfactant deficiency cause respiratory distress syndrome, a common disorder contributing to morbidity and mortality in preterm infants. Surfactant synthesis increases prior to birth in association with formation of the alveoli that mediate efficient gas exchange. To identify mechanisms controlling perinatal lung maturation, the Calcineurin b1 (Cnb1) gene was deleted in the respiratory epithelium of the fetal mouse. Deletion of Cnb1 caused respiratory failure after birth and inhibited the structural maturation of the peripheral lung. Synthesis of surfactant and a lamellar body-associated protein, ABC transporter A3 (ABCA3), was decreased prior to birth. Nuclear factor of activated T cells (Nfat) calcineurin-dependent 3 (Nfatc3), a transcription factor modulated by calcineurin, was identified as a direct activator of Sftpa, Sftpb, Sftpc, Abca3, Foxa1, and Foxa2 genes. The calcineurin/Nfat pathway controls the morphologic maturation of lungs prior to birth and regulates expression of genes involved in surfactant homeostasis that are critical for adaptation to air breathing.
Collapse
Affiliation(s)
- Vrushank Davé
- Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Lassen KG, Ramyar KX, Bailey JR, Zhou Y, Siliciano RF. Nuclear retention of multiply spliced HIV-1 RNA in resting CD4+ T cells. PLoS Pathog 2006; 2:e68. [PMID: 16839202 PMCID: PMC1487174 DOI: 10.1371/journal.ppat.0020068] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Accepted: 05/25/2006] [Indexed: 01/01/2023] Open
Abstract
HIV-1 latency in resting CD4+ T cells represents a major barrier to virus eradication in patients on highly active antiretroviral therapy (HAART). We describe here a novel post-transcriptional block in HIV-1 gene expression in resting CD4+ T cells from patients on HAART. This block involves the aberrant localization of multiply spliced (MS) HIV-1 RNAs encoding the critical positive regulators Tat and Rev. Although these RNAs had no previously described export defect, we show that they exhibit strict nuclear localization in resting CD4+ T cells from patients on HAART. Overexpression of the transcriptional activator Tat from non-HIV vectors allowed virus production in these cells. Thus, the nuclear retention of MS HIV-1 RNA interrupts a positive feedback loop and contributes to the non-productive nature of infection of resting CD4+ T cells. To define the mechanism of nuclear retention, proteomic analysis was used to identify proteins that bind MS HIV-1 RNA. Polypyrimidine tract binding protein (PTB) was identified as an HIV-1 RNA-binding protein differentially expressed in resting and activated CD4+ T cells. Overexpression of PTB in resting CD4+ T cells from patients on HAART allowed cytoplasmic accumulation of HIV-1 RNAs. PTB overexpression also induced virus production by resting CD4+ T cells. Virus culture experiments showed that overexpression of PTB in resting CD4+ T cells from patients on HAART allowed release of replication-competent virus, while preserving a resting cellular phenotype. Whether through effects on RNA export or another mechanism, the ability of PTB to reverse latency without inducing cellular activation is a result with therapeutic implications.
Collapse
MESH Headings
- Acquired Immunodeficiency Syndrome/genetics
- Acquired Immunodeficiency Syndrome/physiopathology
- Antiretroviral Therapy, Highly Active
- CD4-Positive T-Lymphocytes/chemistry
- CD4-Positive T-Lymphocytes/physiology
- CD4-Positive T-Lymphocytes/virology
- Cell Nucleus/chemistry
- Cell Nucleus/physiology
- Cell Nucleus/virology
- Gene Expression Regulation, Viral
- Gene Products, rev/analysis
- Gene Products, rev/genetics
- Gene Products, rev/physiology
- Gene Products, tat/analysis
- Gene Products, tat/genetics
- Gene Products, tat/physiology
- HIV-1/genetics
- HIV-1/pathogenicity
- HIV-1/physiology
- Humans
- Lymphocyte Activation/genetics
- Lymphocyte Activation/physiology
- Polypyrimidine Tract-Binding Protein/analysis
- Polypyrimidine Tract-Binding Protein/genetics
- Polypyrimidine Tract-Binding Protein/physiology
- RNA Splicing
- RNA, Viral/analysis
- RNA, Viral/genetics
- Virus Latency/physiology
- Virus Replication/genetics
- Virus Replication/physiology
- rev Gene Products, Human Immunodeficiency Virus
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Kara G Lassen
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kasra X Ramyar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Justin R Bailey
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Yan Zhou
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Baltimore, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
95
|
Muthian G, Raikwar HP, Johnson C, Rajasingh J, Kalgutkar A, Marnett LJ, Bright JJ. COX-2 inhibitors modulate IL-12 signaling through JAK-STAT pathway leading to Th1 response in experimental allergic encephalomyelitis. J Clin Immunol 2006; 26:73-85. [PMID: 16418805 DOI: 10.1007/s10875-006-8787-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 09/27/2005] [Indexed: 11/27/2022]
Abstract
Experimental allergic encephalomyelitis (EAE) is a Th1 cell-mediated autoimmune disease model of multiple sclerosis (MS). IL-12 plays a crucial role in the pathogenesis of EAE/MS and inhibition of IL-12 production or IL-12 signaling was effective in preventing EAE. Cyclooxygenase (COX-2) is a key enzyme promoting inflammation in rheumatoid arthritis and tumor induced angiogenesis. Recent studies have shown that COX-2 inhibitors prevent EAE, however, their mechanism of action is not fully understood. In this study, we show that in vivo treatment (i.p.) with 100 mug COX-2 selective inhibitors (LM01, LM08, LM11, and NS398), on every other day from day 0 to 30, significantly reduced the incidence and severity of EAE in SJL/J and C57BL/6 mice. Further analyses showed that the COX-2 inhibitors reduced neural antigen-induced IL-12 production, T cell proliferation and Th1 differentiation ex vivo and in vitro. The COX-2 inhibitors also decreased IL-12-induced T cell responses through blocking tyrosine phosphorylation of JAK2, TYK2, STAT3, and STAT4 proteins in T cells. These results demonstrate that COX-2 inhibitors ameliorate EAE in association with the modulation of IL-12 signaling through JAK-STAT pathway leading to Th1 differentiation and suggest their use in the treatment of MS and other Th1 cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Gladson Muthian
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | | | | | | | | |
Collapse
|
96
|
Fu YF, Zhu YN, Ni J, Zhong XG, Tang W, Zhou R, Zhou Y, Dong JR, He PL, Wan H, Li YC, Yang YF, Zuo JP. (5R)-5-Hydroxytriptolide (LLDT-8), a novel triptolide derivative, prevents experimental autoimmune encephalomyelitis via inhibiting T cell activation. J Neuroimmunol 2006; 175:142-51. [PMID: 16712960 DOI: 10.1016/j.jneuroim.2006.03.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 03/14/2006] [Accepted: 03/20/2006] [Indexed: 11/16/2022]
Abstract
A novel triptolide derivative (5R)-5-hydroxytriptolide (LLDT-8) has been shown to have potent immunosuppressive activities. Here LLDT-8 was evaluated in experimental autoimmune encephalomyelitis (EAE), the model of multiple sclerosis (MS). LLDT-8 reduced the incidence and severity of EAE, which was associated with the inhibition of the MOG 35-55 lymphocyte recall response, anti-MOG 35-55 T cell responses, interleukin (IL)-2 and interferon (IFN)-gamma production. In vitro, LLDT-8 inhibited primary T cells proliferation, division, IL-2 and IFN-gamma production stimulated with anti-CD3/28. These findings highlight the fact that LLDT-8 prevents EAE by suppressing T cell proliferation and activation, with a potential for treatment of MS.
Collapse
Affiliation(s)
- Yun-Feng Fu
- Laboratories of Immunopharmacology and Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Wang JG, Collinge M, Ramgolam V, Ayalon O, Fan XC, Pardi R, Bender JR. LFA-1-dependent HuR nuclear export and cytokine mRNA stabilization in T cell activation. THE JOURNAL OF IMMUNOLOGY 2006; 176:2105-13. [PMID: 16455966 DOI: 10.4049/jimmunol.176.4.2105] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lymphokine gene expression is a precisely regulated process in T cell-mediated immune responses. In this study we demonstrate that engagement of the beta(2) integrin LFA-1 in human peripheral T cells markedly extends the half-life of TNF-alpha, GM-CSF, and IL-3 mRNA, as well as a chimeric beta-globin mRNA reporter construct containing a strongly destabilizing class II AU-rich element from the GM-CSF mRNA 3'-untranslated region. This integrin-enhanced mRNA stability leads to augmented protein production, as determined by TNF-alpha ELISPOT assays. Furthermore, T cell stimulation by LFA-1 promotes rapid nuclear-to-cytoplasmic translocation of the mRNA-stabilizing protein HuR, which in turn is capable of binding an AU-rich element sequence in vitro. Abrogation of HuR function by use of inhibitory peptides, or marked reduction of HuR levels by RNA interference, prevents LFA-1 engagement-mediated stabilization of T cell TNF-alpha or IFN-gamma transcripts, respectively. Thus, HuR-mediated mRNA stabilization, stimulated by integrin engagement and controlled at the level of HuR nuclear export, is critically involved in T cell activation.
Collapse
Affiliation(s)
- Jin Gene Wang
- Sections of Cardiovascular Medicine and Immunobiology, Vascular Biology and Transplant Program, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, CT 06536, USA
| | | | | | | | | | | | | |
Collapse
|
98
|
Coughlin JJ, Stang SL, Dower NA, Stone JC. RasGRP1 and RasGRP3 regulate B cell proliferation by facilitating B cell receptor-Ras signaling. THE JOURNAL OF IMMUNOLOGY 2006; 175:7179-84. [PMID: 16301621 DOI: 10.4049/jimmunol.175.11.7179] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The RasGRPs are a family of Ras activators that possess diacylglycerol-binding C1 domains. In T cells, RasGRP1 links TCR signaling to Ras. B cells coexpress RasGRP1 and RasGRP3. Using Rasgrp1 and Rasgrp3 single and double null mutant mice, we analyzed the role of these proteins in signaling to Ras and Erk in B cells. RasGRP1 and RasGRP3 both contribute to BCR-induced Ras activation, although RasGRP3 alone is responsible for maintaining basal Ras-GTP levels in unstimulated cells. Surprisingly, RasGRP-mediated Ras activation is not essential for B cell development because this process occurs normally in double-mutant mice. However, RasGRP-deficient mice do exhibit humoral defects. Loss of RasGRP3 led to isotype-specific deficiencies in Ab induction in immunized young mice. As reported previously, older Rasgrp1-/- mice develop splenomegaly and antinuclear Abs as a result of a T cell defect. We find that such mice have elevated serum Ig levels of several isotypes. In contrast, Rasgrp3-/- mice exhibit hypogammaglobulinemia and show no signs of splenomegaly or autoimmunity. Double-mutant mice exhibit intermediate serum Ab titers, albeit higher than wild-type mice. Remarkably, double-mutant mice exhibit no signs of autoimmunity or splenomegaly. B cell proliferation induced by BCR ligation with or without IL-4 was found to be RasGRP1- and RasGRP3-dependent. However, the RasGRPs are not required for B cell proliferation per se, because LPS-induced proliferation is unaffected in double-mutant mice.
Collapse
Affiliation(s)
- Jason J Coughlin
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
99
|
Bunting K, Wang J, Shannon MF. Control of interleukin-2 gene transcription: a paradigm for inducible, tissue-specific gene expression. VITAMINS AND HORMONES 2006; 74:105-45. [PMID: 17027513 DOI: 10.1016/s0083-6729(06)74005-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Interleukin-2 (IL-2) is a key cytokine that controls immune cell function, in particular the adaptive arm of the immune system, through its ability to control the clonal expansion and homeostasis of peripheral T cells. IL-2 is produced almost exclusively by T cells in response to antigenic stimulation and thus provides an excellent example of a cell-specific inducible gene. The mechanisms that control IL-2 gene transcription have been studied in detail for the past 20 years and our current understanding of the nature of the inducible and tissue-specific controls will be discussed.
Collapse
Affiliation(s)
- Karen Bunting
- Division of Molecular Bioscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | | | | |
Collapse
|
100
|
Gallo EM, Canté-Barrett K, Crabtree GR. Lymphocyte calcium signaling from membrane to nucleus. Nat Immunol 2005; 7:25-32. [PMID: 16357855 DOI: 10.1038/ni1295] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 11/14/2005] [Indexed: 12/14/2022]
Abstract
Ca(2+) signals control a variety of lymphocyte responses, ranging from short-term cytoskeletal modifications to long-term changes in gene expression. The identification of molecules and channels that modulate Ca(2+) entry into T and B lymphocytes has both provided details of the molecular events leading to immune responses and raised controversy. Here we review studies of the pathways that allow Ca(2+) entry, the function of Ca(2+) in the regulation of cell polarity and motility and the principles by which Ca(2+)-dependent transcription regulates lymphocyte function.
Collapse
Affiliation(s)
- Elena M Gallo
- Program in Immunology, Stanford University, Stanford, California 94305, USA
| | | | | |
Collapse
|