51
|
Zhang LK, Liu L, Li Z, Zhang Y, Zhai L, Zhang L, Li CH, Guan YQ. Polyphenylalanine-Baicalein Nanomicelles Reduce Nerve Cell Apoptosis and Inflammation to Enhance Neuroprotection and Poststroke Rehabilitation. Biomacromolecules 2025; 26:1149-1160. [PMID: 39874462 DOI: 10.1021/acs.biomac.4c01473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Cerebral ischemic stroke, neuronal death, and inflammation bring difficulties in neuroprotection and rehabilitation. In this study, we developed and designed the ability of natural lactoferrin-polyethylene glycol-polyphenylalanine-baicalein nanomicelles (LF-PEG-PPhe-Bai) to target and reduce these pathological processes, such as neurological damage and cognitive impairment in the stages of poststroke. Nanomicelles made from biocompatible materials have improved bioavailability and targeted distribution to afflicted brain areas. The results showed that LF-PEG-PPhe-Bai greatly improved the antioxidation, antiapoptosis, and anti-inflammation activity in vitro. Meanwhile, LF-PEG-PPhe-Bai improved the behavioral and cognitive impairment of 2-VO model mice, protected nerve cells in the hippocampus, and reduced inflammation at the brain injury site in vivo. In conclusion, LF-PEG-PPhe-Bai nanomicelles are employed for enhancing neuroprotection and poststroke rehabilitation. The development of this technology might provide a new technique for neural repair after ischemia in the future.
Collapse
Affiliation(s)
- Ling-Kun Zhang
- School of Life Science, South China Normal University, Guangzhou 510631, China
- School of Engineering, Westlake University, Hangzhou 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Li Liu
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Ziqing Li
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yiquan Zhang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Limin Zhai
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Luna Zhang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Chu-Hua Li
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yan-Qing Guan
- School of Life Science, South China Normal University, Guangzhou 510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China
| |
Collapse
|
52
|
Guayasamin M, Depaauw-Holt LR, Adedipe II, Ghenissa O, Vaugeois J, Duquenne M, Rogers B, Latraverse-Arquilla J, Peyrard S, Bosson A, Murphy-Royal C. Early-life stress induces persistent astrocyte dysfunction associated with fear generalisation. eLife 2025; 13:RP99988. [PMID: 39906962 PMCID: PMC11798576 DOI: 10.7554/elife.99988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
Early-life stress can have lifelong consequences, enhancing stress susceptibility and resulting in behavioural and cognitive deficits. While the effects of early-life stress on neuronal function have been well-described, we still know very little about the contribution of non-neuronal brain cells. Investigating the complex interactions between distinct brain cell types is critical to fully understand how cellular changes manifest as behavioural deficits following early-life stress. Here, using male and female mice we report that early-life stress induces anxiety-like behaviour and fear generalisation in an amygdala-dependent learning and memory task. These behavioural changes were associated with impaired synaptic plasticity, increased neural excitability, and astrocyte hypofunction. Genetic perturbation of amygdala astrocyte function by either reducing astrocyte calcium activity or reducing astrocyte network function was sufficient to replicate cellular, synaptic, and fear memory generalisation associated with early-life stress. Our data reveal a role of astrocytes in tuning emotionally salient memory and provide mechanistic links between early-life stress, astrocyte hypofunction, and behavioural deficits.
Collapse
Affiliation(s)
- Mathias Guayasamin
- Département de Neurosciences, Université de MontréalMontréalCanada
- Centre de Recherche du Centre Hospitalier de l’Université de MontréalMontréalCanada
| | - Lewis R Depaauw-Holt
- Département de Neurosciences, Université de MontréalMontréalCanada
- Centre de Recherche du Centre Hospitalier de l’Université de MontréalMontréalCanada
| | - Ifeoluwa I Adedipe
- Département de Neurosciences, Université de MontréalMontréalCanada
- Centre de Recherche du Centre Hospitalier de l’Université de MontréalMontréalCanada
| | - Ossama Ghenissa
- Département de Neurosciences, Université de MontréalMontréalCanada
- Centre de Recherche du Centre Hospitalier de l’Université de MontréalMontréalCanada
| | - Juliette Vaugeois
- Département de Neurosciences, Université de MontréalMontréalCanada
- Centre de Recherche du Centre Hospitalier de l’Université de MontréalMontréalCanada
| | - Manon Duquenne
- Département de Neurosciences, Université de MontréalMontréalCanada
- Centre de Recherche du Centre Hospitalier de l’Université de MontréalMontréalCanada
| | - Benjamin Rogers
- Département de Neurosciences, Université de MontréalMontréalCanada
- Centre de Recherche du Centre Hospitalier de l’Université de MontréalMontréalCanada
| | | | - Sarah Peyrard
- Centre de Recherche du Centre Hospitalier de l’Université de MontréalMontréalCanada
| | - Anthony Bosson
- Centre de Recherche du Centre Hospitalier de l’Université de MontréalMontréalCanada
| | - Ciaran Murphy-Royal
- Département de Neurosciences, Université de MontréalMontréalCanada
- Centre de Recherche du Centre Hospitalier de l’Université de MontréalMontréalCanada
| |
Collapse
|
53
|
Chen L, Jiao J, Lei F, Zhou B, Li H, Liao P, Li X, Kang Y, Liu J, Jiang R. Ezrin-mediated astrocyte-synapse signaling regulates cognitive function via astrocyte morphological changes in fine processes in male mice. Brain Behav Immun 2025; 124:177-191. [PMID: 39580057 DOI: 10.1016/j.bbi.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024] Open
Abstract
Astrocytes, which actively participate in cognitive processes, have a complex spongiform morphology, highlighted by extensive ramified fine processes that closely enwrap the pre- and post-synaptic compartments, forming tripartite synapses. However, the role of astrocyte morphology in cognitive processes remains incompletely understood and even controversial. The actin-binding protein Ezrin is highly expressed in astrocytes and is a key structural determinant of astrocyte morphology. Here, we found that Ezrin expression and astrocyte fine process volume in the hippocampus of male mice increased after learning but decreased after lipopolysaccharide injection and in a mouse model of postoperative cognitive dysfunction, both of which involved models with impaired cognitive function. Additionally, astrocytic Ezrin knock-out led to significantly decreased astrocytic fine process volumes, decreased astrocyte-neuron proximity, and induced anxiety-like behaviors and cognitive dysfunction. Astrocytic Ezrin deficiency in the hippocampus was achieved by using a microRNA silencing technique delivered by adeno-associated viruses. Down-regulation of Ezrin in hippocampal astrocytes led to disrupted astrocyte-synapse interactions and impaired synaptic functions, including synaptic transmission and synaptic plasticity, which could be rescued by exogenous administration of D-serine. Remarkably, decreased Ezrin expression and reduced astrocyte fine processes volumes were also observed in aged mice with decreased cognitive function. Moreover, overexpression of astrocytic Ezrin increased astrocyte fine process volumes and improved cognitive function in aged mice. Overall, our results indicate Ezrin-mediated astrocyte fine processes integrity shapes astrocyte-synapse signaling contributing to cognitive function.
Collapse
Affiliation(s)
- Lingmin Chen
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiao Jiao
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fan Lei
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bin Zhou
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hong Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ping Liao
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Kang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Ruotian Jiang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
54
|
Ji J, Chen YF, Hong C, Ren XW, Xu H, Cai ZY, Dong YF, Sun XL. PPARβ/δ Activation Improves Corticosterone-Induced Oxidative Stress Damage in Astrocytes by Targeting UBR5/ATM Signaling. J Neurochem 2025; 169:e70013. [PMID: 39921374 DOI: 10.1111/jnc.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/10/2025]
Abstract
Oxidative stress-mediated astrocytic damage contributes to nerve injury and the development of depression, especially under stress conditions. Peroxisomes and pexophagy are essential for balancing oxidative stress and protein degradation products. Our previous findings suggest that peroxisome proliferators-activated receptor β/δ (PPARβ/δ) activation significantly alleviates depressive behaviors by preventing astrocytic injury. However, the underlying mechanisms remain unclear. In the present study, we established oxidative injury by treating astrocytes with corticosterone. Subsequently, PPARβ/δ agonists and antagonists were applied to determine the effects of PPARβ/δ on balancing peroxisomes and pexophagy in astrocytes. The PPARβ/δ agonist (GW0742) significantly improved cell viability and decreased intracellular reactive oxygen species (ROS) production induced by corticosterone, while pretreatment with the PPARβ/δ, antagonist GSK3787 reversed the effects of GW0742. Moreover, activating PPARβ/δ promoted peroxisomal biogenesis factor 5 (PEX5)-mediated pexophagy by enhancing the phosphorylation of ataxia-telangiectasia mutated (ATM) kinase. Conversely, blocking PPARβ/δ with GSK3787 partially abolished the effects of GW0742. Further investigations demonstrated that activation of PPARβ/δ not only induced transcription of the ubiquitin protein ligase E3 component n-recognin 5 (UBR5) but also enhanced the interaction between PPARβ/δ and UBR5, contributing to ATM interactor (ATMIN) degradation, and increased phosphorylated ATM kinase levels. Therefore, this study revealed that activating PPARβ/δ improves corticosterone-induced oxidative damage in astrocytes by enhancing pexophagy. PPARβ/δ directly interacts with UBR5 to facilitate ATMIN degradation and promotes ATM phosphorylation, thereby maintaining the balance between peroxisomes and pexophagy. These findings suggest that PPARβ/δ is a potential target for promoting pexophagy in astrocytes upon stress.
Collapse
Affiliation(s)
- Juan Ji
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Ye-Fan Chen
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Chen Hong
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Xue-Wei Ren
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Hang Xu
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Zhen-Yu Cai
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Yin-Feng Dong
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiu-Lan Sun
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
55
|
Veiga A, Abreu DS, Dias JD, Azenha P, Barsanti S, Oliveira JF. Calcium-Dependent Signaling in Astrocytes: Downstream Mechanisms and Implications for Cognition. J Neurochem 2025; 169:e70019. [PMID: 39992167 DOI: 10.1111/jnc.70019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/25/2025]
Abstract
Astrocytes are glial cells recognized for their diverse roles in regulating brain circuit structure and function. They can sense and adapt to changes in the microenvironment due to their unique structural and biochemical properties. A key aspect of astrocytic function involves calcium (Ca2+)-dependent signaling, which serves as a fundamental mechanism for their interactions with neurons and other cells in the brain. However, while significant progress has been made in understanding the spatio-temporal properties of astrocytic Ca2+ signals, the downstream molecular pathways and exact mechanisms through which astrocytes decode these signals to regulate homeostatic and physiological processes remain poorly understood. To address this topic, we review here the available literature on the sources of intracellular Ca2+, as well as its downstream mechanisms and signaling pathways. We review the well-studied Ca2+-dependent exocytosis but draw attention to additional intracellular Ca2+-dependent mechanisms that are less understood and are, most likely, highly influential for many other cellular functions. Finally, we review how intracellular Ca2+ is thought to underlie neuron-astrocyte signaling in brain regions involved in cognitive processing.
Collapse
Affiliation(s)
- Alexandra Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Daniela Sofia Abreu
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - José Duarte Dias
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrícia Azenha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sara Barsanti
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João Filipe Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
56
|
Riou A, Broeglin A, Grimm A. Mitochondrial transplantation in brain disorders: Achievements, methods, and challenges. Neurosci Biobehav Rev 2025; 169:105971. [PMID: 39638101 DOI: 10.1016/j.neubiorev.2024.105971] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/08/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Mitochondrial transplantation is a new treatment strategy aimed at repairing cellular damage by introducing healthy mitochondria into injured cells. The approach shows promise in protecting brain function in various neurological disorders such as traumatic brain injury/ischemia, neurodegenerative diseases, cognitive disorders, and cancer. These conditions are often characterized by mitochondrial dysfunction, leading to impaired energy production and neuronal death. The review highlights promising preclinical studies where mitochondrial transplantation has been shown to restore mitochondrial function, reduce inflammation, and improve cognitive and motor functions in several animal models. It also addresses significant challenges that must be overcome before this therapy can be clinically applied. Current efforts to overcome these challenges, including advancements in isolation techniques, cryopreservation methods, finding an appropriate mitochondria source, and potential delivery routes, are discussed. Considering the rising incidence of neurological disorders and the limited effectiveness of current treatments, this review offers a comprehensive overview of the current state of mitochondrial transplantation research and critically assesses the remaining obstacles. It provides valuable insights that could steer future studies and potentially lead to more effective treatments for various brain disorders.
Collapse
Affiliation(s)
- Aurélien Riou
- Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, Basel 4055, Switzerland
| | - Aline Broeglin
- Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, Basel 4055, Switzerland
| | - Amandine Grimm
- Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, Basel 4055, Switzerland; Neurobiology Lab for Brain Aging and Mental Health, University Psychiatric Clinics Basel, Basel 4002, Switzerland.
| |
Collapse
|
57
|
Palazzo C, Nutarelli S, Mastrantonio R, Tamagnone L, Viscomi MT. Glia-glia crosstalk via semaphorins: Emerging implications in neurodegeneration. Ageing Res Rev 2025; 104:102618. [PMID: 39638095 DOI: 10.1016/j.arr.2024.102618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
The central nervous system (CNS) is wired by a complex network of integrated glial and neuronal signals, which is critical for its development and homeostasis. In this context, glia-glia communication is a complex and dynamic process that is essential for ensuring optimal CNS function. Semaphorins, which include secreted and transmembrane molecules, and their receptors, mainly found in the plexin and neuropilin families, are expressed in a wide range of cell types, including glia. In the CNS, semaphorin signalling is involved in a spectrum of processes, including neurogenesis, neuronal migration and wiring, and glial cell recruitment. Recently, semaphorins and plexins have attracted intense research aimed at elucidating their roles in instructing glial cell behavior during development or in response to inflammatory stimuli. In this review, we provide an overview of the multifaceted role of semaphorins in glia-glia communication, highlighting recent discoveries about semaphoring-dependent regulation of glia functions in healthy conditions. We also discuss the mechanisms of gliaglia crosstalk mediated by semaphorins under pathological conditions, and how these interactions may provide potential avenues for therapeutic intervention in neuroinflammation-mediated neurodegeneration.
Collapse
Affiliation(s)
- Claudia Palazzo
- Department of Life Sciences and Public Health, Section of Histology and Embryology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sofia Nutarelli
- Department of Life Sciences and Public Health, Section of Histology and Embryology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Roberta Mastrantonio
- Department of Life Sciences and Public Health, Section of Histology and Embryology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Tamagnone
- Department of Life Sciences and Public Health, Section of Histology and Embryology, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli, Rome, Italy.
| | - Maria Teresa Viscomi
- Department of Life Sciences and Public Health, Section of Histology and Embryology, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli, Rome, Italy.
| |
Collapse
|
58
|
Bosquez Huerta NA, Lee ZF, Christine Song EA, Woo J, Cheng YT, Sardar D, Sert O, Maleki E, Yu K, Akdemir ES, Sanchez K, Jo J, Rasband MN, Lee HK, Harmanci AS, Deneen B. Sex-specific astrocyte regulation of spinal motor circuits by Nkx6.1. Cell Rep 2025; 44:115121. [PMID: 39731735 PMCID: PMC11932065 DOI: 10.1016/j.celrep.2024.115121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 09/30/2024] [Accepted: 12/06/2024] [Indexed: 12/30/2024] Open
Abstract
Astrocytes exhibit diverse cellular and molecular properties across the central nervous system (CNS). Recent studies identified region-specific transcription factors (TF) that oversee these diverse properties; how sex differences intersect with region-specific transcriptional programs to regulate astrocyte function is unknown. Here, we show that the TF Nkx6.1 is specifically expressed in ventral astrocytes of the spinal cord and that its deletion results in sex-specific effects on astrocyte morphology. Astrocytes from males exhibit enhanced morphological complexity, accompanied by increased motor function and cholinergic synapses. In contrast, female astrocytes exhibit reduced complexity and no changes in motor function. Mechanistically, we found that Nkx6.1 exhibits sex-specific DNA-binding properties and epigenomic remodeling, identifying Semaphorin 4A (Sema4A) and Gabbr1 as targets regulating astrocyte morphology and cholinergic synapse formation. Collectively, our studies identify astrocytic Nkx6.1 as a key regulator of astrocyte properties in the spinal cord while adding sexual dimorphism as a layer of transcriptional regulation to astrocyte function and circuit activity.
Collapse
Affiliation(s)
- Navish A Bosquez Huerta
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Program in Development, Disease, Models, and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhung-Fu Lee
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Program in Development, Disease, Models, and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eun-Ah Christine Song
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Junsung Woo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yi-Ting Cheng
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Debosmita Sardar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ozlem Sert
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ehson Maleki
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kwanha Yu
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ekin Su Akdemir
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kaitlyn Sanchez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Juyeon Jo
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Matthew N Rasband
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Program in Development, Disease, Models, and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hyun Kyoung Lee
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Program in Development, Disease, Models, and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Akdes Serin Harmanci
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Benjamin Deneen
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Program in Development, Disease, Models, and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
59
|
Pietrobon D, Brennan KC. Mechanisms underlying CSD initiation implicated by genetic mouse models of migraine. J Headache Pain 2025; 26:17. [PMID: 39871148 PMCID: PMC11773941 DOI: 10.1186/s10194-025-01948-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/06/2025] [Indexed: 01/29/2025] Open
Abstract
A key unanswered question in migraine neurobiology concerns the mechanisms that make the brain of migraineurs susceptible to cortical spreading depression (CSD, a spreading depolarization that underlies migraine aura and may trigger the migraine pain mechanisms). Important insights into this question can be obtained by studying the mechanisms of facilitation of CSD initiation in genetic mouse models of the disease. These models, all generated from families with hereditary migraine, allow the investigation of the functional consequences of disease-causing mutations at the molecular, cellular, synaptic and neural circuit levels. In this review, after describing the available genetic mouse models of migraine, which all share increased susceptibility to experimentally induced CSD, we will discuss the functional alterations in their cerebral cortex and the mechanisms underlying the facilitation of CSD initiation in their cortex, as well as the insights that these mechanisms may give into the mechanisms of initiation of spontaneous CSDs in migraine.
Collapse
Affiliation(s)
- Daniela Pietrobon
- Department of Biomedical Sciences and Padova Neuroscience Center, University of Padova, Via Ugo Bassi 58, 35131, Padua, Italy.
| | - K C Brennan
- Department of Neurology, University of Utah, 383 Colorow Drive, Salt Lake City, UT, 84108, USA.
| |
Collapse
|
60
|
Poongodi R, Hsu YW, Yang TH, Huang YH, Yang KD, Lin HC, Cheng JK. Stem Cell-Derived Extracellular Vesicle-Mediated Therapeutic Signaling in Spinal Cord Injury. Int J Mol Sci 2025; 26:723. [PMID: 39859437 PMCID: PMC11765593 DOI: 10.3390/ijms26020723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have emerged as a promising therapeutic strategy for spinal cord injury (SCI). These nanosized vesicles possess unique properties such as low immunogenicity and the ability to cross biological barriers, making them ideal carriers for delivering bioactive molecules to injured tissues. MSC-EVs have been demonstrated to exert multiple beneficial effects in SCI, including reducing inflammation, promoting neuroprotection, and enhancing axonal regeneration. Recent studies have delved into the molecular mechanisms underlying MSC-EV-mediated therapeutic effects. Exosomal microRNAs (miRNAs) have been identified as key regulators of various cellular processes involved in SCI pathogenesis and repair. These miRNAs can influence inflammation, oxidative stress, and apoptosis by modulating gene expression. This review summarized the current state of MSC-EV-based therapies for SCI, highlighting the underlying mechanisms and potential clinical applications. We discussed the challenges and limitations of translating these therapies into clinical practice, such as inconsistent EV production, complex cargo composition, and the need for targeted delivery strategies. Future research should focus on optimizing EV production and characterization, identifying key therapeutic miRNAs, and developing innovative delivery systems to maximize the therapeutic potential of MSC-EVs in SCI.
Collapse
Affiliation(s)
- Raju Poongodi
- Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan; (R.P.); (T.-H.Y.)
| | - Yung-Wei Hsu
- Department of Anesthesiology, MacKay Memorial Hospital, Taipei 10449, Taiwan; (Y.-W.H.); (Y.-H.H.)
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
| | - Tao-Hsiang Yang
- Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan; (R.P.); (T.-H.Y.)
| | - Ya-Hsien Huang
- Department of Anesthesiology, MacKay Memorial Hospital, Taipei 10449, Taiwan; (Y.-W.H.); (Y.-H.H.)
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
| | - Kuender D. Yang
- Institute of Long-Term Care, MacKay Medical College, New Taipei City 25245, Taiwan;
- MacKay Children’s Hospital, Taipei 10449, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Hsin-Chieh Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan;
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Jen-Kun Cheng
- Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan; (R.P.); (T.-H.Y.)
- Department of Anesthesiology, MacKay Memorial Hospital, Taipei 10449, Taiwan; (Y.-W.H.); (Y.-H.H.)
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
| |
Collapse
|
61
|
Dai R, Sun Y. Altered GnRH neuron-glia networks close to interface of polycystic ovary syndrome: Molecular mechanism and clinical perspectives. Life Sci 2025; 361:123318. [PMID: 39719166 DOI: 10.1016/j.lfs.2024.123318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/24/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024]
Abstract
Polycystic ovary syndrome (PCOS) has been noticed as a neuroendocrine syndrome manifested by reproductive hormone dysregulation involving increased luteinizing hormone (LH) pulse frequency and an increased LH to follicle-stimulating hormone ratio, yet theory is just beginning to be established. Neuroglia located in the arcuate nucleus and median eminence (ARC-ME) that are close to gonadotropin-releasing hormone (GnRH) axon terminals, comprise the blood-brain barrier and fenestrated vessels implying their putative roles in the modulation of the abnormal GnRH pulse in PCOS. This review outlines the disturbances of neuron-glia networks that underlie hypothetically the deregulation of GnRH-LH release and impaired sex hormone negative feedback in PCOS. We then discuss chronic and low-grade inflammatory status together with gut dysbiosis and how the detriments may intrude the hypothalamus by virtue of violating interfaces between the brain and periphery, which might contribute to the etiology of the impaired neural circuits in the ARC-ME to induce PCOS.
Collapse
Affiliation(s)
- Ruoxi Dai
- Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200081, China
| | - Yan Sun
- Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200081, China; The Academy of Integrative Medicine, Fudan University, Shanghai 200081, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Disease, Shanghai 200081, China.
| |
Collapse
|
62
|
Oladapo A, Deshetty UM, Callen S, Buch S, Periyasamy P. Single-Cell RNA-Seq Uncovers Robust Glial Cell Transcriptional Changes in Methamphetamine-Administered Mice. Int J Mol Sci 2025; 26:649. [PMID: 39859365 PMCID: PMC11766323 DOI: 10.3390/ijms26020649] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/07/2025] [Accepted: 01/12/2025] [Indexed: 01/30/2025] Open
Abstract
Methamphetamine is a highly addictive stimulant known to cause neurotoxicity, cognitive deficits, and immune dysregulation in the brain. Despite significant research, the molecular mechanisms driving methamphetamine-induced neurotoxicity and glial cell dysfunction remain poorly understood. This study investigates how methamphetamine disrupts glial cell function and contributes to neurodevelopmental and neurodegenerative processes. Using single-cell RNA sequencing (scRNA-seq), we analyzed the transcriptomes of 4000 glial cell-associated genes from the cortical regions of mice chronically administered methamphetamine. Methamphetamine exposure altered the key pathways in astrocytes, including the circadian rhythm and cAMP signaling; in microglia, affecting autophagy, ubiquitin-mediated proteolysis, and mitophagy; and in oligodendrocytes, disrupting lysosomal function, cytoskeletal regulation, and protein processing. Notably, several transcription factors, such as Zbtb16, Hif3a, Foxo1, and Klf9, were significantly dysregulated in the glial cells. These findings reveal profound methamphetamine-induced changes in the glial transcriptomes, particularly in the cortical regions, highlighting potential molecular pathways and transcription factors as targets for therapeutic intervention. This study provides novel insights into the glial-mediated mechanisms of methamphetamine toxicity, contributing to our understanding of its effects on the central nervous system and laying the groundwork for future strategies to mitigate its neurotoxic consequences.
Collapse
Affiliation(s)
| | | | | | | | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.O.); (U.M.D.); (S.C.); (S.B.)
| |
Collapse
|
63
|
Choi JJ, Cohen Kalafut N, Gruenloh T, Engelman CD, Lu T, Wang D. COSIME: Cooperative multi-view integration and Scalable and Interpretable Model Explainer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.11.632570. [PMID: 39868220 PMCID: PMC11761389 DOI: 10.1101/2025.01.11.632570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Single-omics approaches often provide a limited view of complex biological systems, whereas multiomics integration offers a more comprehensive understanding by combining diverse data views. However, integrating heterogeneous data types and interpreting the intricate relationships between biological features-both within and across different data views-remains a bottleneck. To address these challenges, we introduce COSIME (Cooperative Multi-view Integration and Scalable Interpretable Model Explainer). COSIME uses backpropagation of Learnable Optimal Transport (LOT) to deep neural networks, enabling the learning of latent features from multiple views to predict disease phenotypes. In addition, COSIME incorporates Monte Carlo sampling to efficiently estimate Shapley values and Shapley-Taylor indices, enabling the assessment of both feature importance and their pairwise interactions-synergistically or antagonistically-in predicting disease phenotypes. We applied COSIME to both simulated data and real-world datasets, including single-cell transcriptomics, single-cell spatial transcriptomics, epigenomics, and metabolomics, specifically for Alzheimer's disease-related phenotypes. Our results demonstrate that COSIME significantly improves prediction performance while offering enhanced interpretability of feature relationships. For example, we identified that synergistic interactions between microglia and astrocyte genes associated with AD are more likely to be active at the edges of the middle temporal gyrus as indicated by spatial locations. Finally, COSIME is open-source and available for general use.
Collapse
|
64
|
Labarta-Bajo L, Allen NJ. Astrocytes in aging. Neuron 2025; 113:109-126. [PMID: 39788083 PMCID: PMC11735045 DOI: 10.1016/j.neuron.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/05/2024] [Accepted: 12/11/2024] [Indexed: 01/12/2025]
Abstract
The mammalian nervous system is impacted by aging. Aging alters brain architecture, is associated with molecular damage, and can manifest with cognitive and motor deficits that diminish the quality of life. Astrocytes are glial cells of the CNS that regulate the development, function, and repair of neural circuits during development and adulthood; however, their functions in aging are less understood. Astrocytes change their transcriptome during aging, with astrocytes in areas such as the cerebellum, the hypothalamus, and white matter-rich regions being the most affected. While numerous studies describe astrocyte transcriptional changes in aging, many questions still remain. For example, how is astrocyte function altered by transcriptional changes that occur during aging? What are the mechanisms promoting astrocyte aged states? How do aged astrocytes impact brain function? This review discusses features of aged astrocytes and their potential triggers and proposes ways in which they may impact brain function and health span.
Collapse
Affiliation(s)
- Lara Labarta-Bajo
- Salk Institute for Biological Studies, Molecular Neurobiology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Nicola J Allen
- Salk Institute for Biological Studies, Molecular Neurobiology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
65
|
Golf SR, Trotter JH, Wang J, Nakahara G, Han X, Wernig M, Südhof TC. Deletion of Neuroligins from Astrocytes Does Not Detectably Alter Synapse Numbers or Astrocyte Cytoarchitecture by Maturity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.04.10.536254. [PMID: 37090508 PMCID: PMC10120619 DOI: 10.1101/2023.04.10.536254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Astrocytes perform multifarious roles in the formation, regulation, and function of synapses in the brain, but the mechanisms involved are incompletely understood. Interestingly, astrocytes abundantly express neuroligins, postsynaptic adhesion molecules that function as synaptic organizers by binding to presynaptic neurexins. Here we examined the function of neuroligins in astrocytes with a rigorous genetic approach that uses the conditional deletion of all major neuroligins (Nlgn1-3) in astrocytes in vivo and complemented this approach by a genetic deletion of neuroligins in glia cells that are co-cultured with human neurons. Our results show that early postnatal deletion of neuroligins from astrocytes in vivo has no detectable effect on cortical or hippocampal synapses and does not alter the cytoarchitecture of astrocytes when evaluated in young adult mice. Moreover, deletion of astrocytic neuroligins in co-cultures of human neurons produced no detectable consequences for the formation and function of synapses. Thus, astrocytic neuroligins are unlikely to fundamentally shape synapse formation or astrocyte morphogenesis but likely perform other important roles that remain to be discovered.
Collapse
Affiliation(s)
- Samantha R. Golf
- Dept. of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Justin H. Trotter
- Dept. of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Dept. of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
- Dept. of Neurobiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Jinzhao Wang
- Dept. of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pathology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - George Nakahara
- Dept. of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xiao Han
- Dept. of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Marius Wernig
- Department of Pathology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Thomas C. Südhof
- Dept. of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
66
|
Lana D, Ugolini F, Iovino L, Attorre S, Giovannini MG. Astrocytes phenomics as new druggable targets in healthy aging and Alzheimer's disease progression. Front Cell Neurosci 2025; 18:1512985. [PMID: 39835288 PMCID: PMC11743640 DOI: 10.3389/fncel.2024.1512985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
For over a century after their discovery astrocytes were regarded merely as cells located among other brain cells to hold and give support to neurons. Astrocytes activation, "astrocytosis" or A1 functional state, was considered a detrimental mechanism against neuronal survival. Recently, the scientific view on astrocytes has changed. Accumulating evidence indicate that astrocytes are not homogeneous, but rather encompass heterogeneous subpopulations of cells that differ from each other in terms of transcriptomics, molecular signature, function and response in physiological and pathological conditions. In this review, we report and discuss the recent literature on the phenomic differences of astrocytes in health and their modifications in disease conditions, focusing mainly on the hippocampus, a region involved in learning and memory encoding, in the age-related memory impairments, and in Alzheimer's disease (AD) dementia. The morphological and functional heterogeneity of astrocytes in different brain regions may be related to their different housekeeping functions. Astrocytes that express diverse transcriptomics and phenomics are present in strictly correlated brain regions and they are likely responsible for interactions essential for the formation of the specialized neural circuits that drive complex behaviors. In the contiguous and interconnected hippocampal areas CA1 and CA3, astrocytes show different, finely regulated, and region-specific heterogeneity. Heterogeneous astrocytes have specific activities in the healthy brain, and respond differently to physiological or pathological stimuli, such as inflammaging present in normal brain aging or beta-amyloid-dependent neuroinflammation typical of AD. To become reactive, astrocytes undergo transcriptional, functional, and morphological changes that transform them into cells with different properties and functions. Alterations of astrocytes affect the neurovascular unit, the blood-brain barrier and reverberate to other brain cell populations, favoring or dysregulating their activities. It will be of great interest to understand whether the differential phenomics of astrocytes in health and disease can explain the diverse vulnerability of the hippocampal areas to aging or to different damaging insults, in order to find new astrocyte-targeted therapies that might prevent or treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Daniele Lana
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Filippo Ugolini
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, Florence, Italy
| | - Ludovica Iovino
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
| | - Selene Attorre
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, Florence, Italy
| | - Maria Grazia Giovannini
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
67
|
Yuan Y, Liu H, Dai Z, He C, Qin S, Su Z. From Physiology to Pathology of Astrocytes: Highlighting Their Potential as Therapeutic Targets for CNS Injury. Neurosci Bull 2025; 41:131-154. [PMID: 39080102 PMCID: PMC11748647 DOI: 10.1007/s12264-024-01258-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/15/2024] [Indexed: 01/19/2025] Open
Abstract
In the mammalian central nervous system (CNS), astrocytes are the ubiquitous glial cells that have complex morphological and molecular characteristics. These fascinating cells play essential neurosupportive and homeostatic roles in the healthy CNS and undergo morphological, molecular, and functional changes to adopt so-called 'reactive' states in response to CNS injury or disease. In recent years, interest in astrocyte research has increased dramatically and some new biological features and roles of astrocytes in physiological and pathological conditions have been discovered thanks to technological advances. Here, we will review and discuss the well-established and emerging astroglial biology and functions, with emphasis on their potential as therapeutic targets for CNS injury, including traumatic and ischemic injury. This review article will highlight the importance of astrocytes in the neuropathological process and repair of CNS injury.
Collapse
Affiliation(s)
- Yimin Yuan
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
- Department of Pain Medicine, School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Hong Liu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
| | - Ziwei Dai
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
| | - Cheng He
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
| | - Shangyao Qin
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China.
| | - Zhida Su
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
68
|
Castro MML, Amaral Junior FLD, Mendes FDCCDS, Anthony DC, Brites DMTDO, Diniz CWP, Sosthenes MCK. Intriguing astrocyte responses in CA1 to reduced and rehabilitated masticatory function: Dorsal and ventral distinct perspectives in adult mice. Arch Oral Biol 2025; 169:106097. [PMID: 39395318 DOI: 10.1016/j.archoralbio.2024.106097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/05/2024] [Accepted: 09/26/2024] [Indexed: 10/14/2024]
Abstract
OBJECTIVE We sought to investigate the plasticity of diet-induced changes in astrocyte morphology of stratum lacunosum-moleculare (SLM) in CA1. DESIGN Three diet regimes were adopted in 15 mice, from the 21st postnatal day to 6 months. The first diet regimen was pellet feed, called Hard Diet (HD). The second, with reduced masticatory, received a pellet-diet followed by a powdered-diet, and it was identified as Hard Diet/Soft Diet (HD/SD). Finally, the group with rehabilitated masticatory was named Hard Diet/Soft Diet/Hard Diet (HD/SD/HD). In the end, euthanasia and brain histological processing were performed, in which astrocytic immunoreactivity to glial-fibrillary-acidic-protein (GFAP) was tested. In reconstructed astrocytes, morphometric analysis was performed. RESULTS Astrocyte morphometric revealed that changes in masticatory regimens impact astrocyte morphology. In the dorsal CA1, switching from a hard diet to a soft diet led to reductions in most variables, whereas in the ventral, fewer variables were affected, highlighting regional differences in astrocyte responses. Cluster analysis further showed that diet-induced changes in astrocyte morphology were reversible in the dorsal region, but not in the ventral region, indicating a persistent impact on astrocyte diversity and complexity in the ventral even after rehabilitation. Correlation tests between astrocyte morphology and behavioral performance demonstrated disrupted relationships under masticatory stress, with effects persisting after rehabilitation. CONCLUSION Changes in the diet result in significant alterations in astrocyte morphology, suggesting a direct link between dietary modulation and cellular structure. Morphometric analyses revealed distinct alterations in astrocyte morphology in response to changes in the masticatory regimen, with both dorsal/ventral regions displaying notable changes. Moreover, the regional differential effects on astrocytes underscore the complexity of mastication on neuroplasticity and cognitive function.
Collapse
Affiliation(s)
- Micaele Maria Lopes Castro
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA 66073-005, Brazil
| | - Fabio Leite do Amaral Junior
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA 66073-005, Brazil
| | - Fabíola de Carvalho Chaves de Siqueira Mendes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA 66073-005, Brazil; Curso de Medicina, Centro Universitário do Estado do Pará, Belém, PA 66613-903, Brazil
| | - Daniel Clive Anthony
- University of Oxford, Laboratory of Experimental Neuropathology, Department of Pharmacology, Oxford OX13QT, United Kingdom
| | - Dora Maria Tuna de Oliveira Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA 66073-005, Brazil
| | - Marcia Consentino Kronka Sosthenes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA 66073-005, Brazil.
| |
Collapse
|
69
|
Schuurmans IME, Mordelt A, de Witte LD. Orchestrating the neuroglial compartment: Ontogeny and developmental interaction of astrocytes, oligodendrocytes, and microglia. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:27-47. [PMID: 40122629 DOI: 10.1016/b978-0-443-19104-6.00011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Neuroglial cells serve as the master regulators of the central nervous system, making it imperative for glial development to be tightly regulated both spatially and temporally to ensure optimal brain function. In this chapter, we will discuss the origin and development of the three major glia cells such as astrocytes, oligodendrocytes, and microglia in the central nervous system. While much of our understanding of neuroglia development stems from studies using animal models, we will also explore recent insights into human glial development and potential differences from rodent models. Finally, the extensive crosstalk between glia cells will be highlighted, discussing how interactions among astrocyte, oligodendrocyte, and microglial influence their respective developmental pathways.
Collapse
Affiliation(s)
- Imke M E Schuurmans
- Department of Pediatrics, Radboud University Medical Center, Amalia Children's Hospital, Nijmegen, The Netherlands; Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Annika Mordelt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Lot D de Witte
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands; Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
70
|
Zinsmaier AK, Nestler EJ, Dong Y. Astrocytic G Protein-Coupled Receptors in Drug Addiction. ENGINEERING (BEIJING, CHINA) 2025; 44:256-265. [PMID: 40109668 PMCID: PMC11922559 DOI: 10.1016/j.eng.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Understanding the cellular mechanisms of drug addiction remains a key task in current brain research. While neuron-based mechanisms have been extensively explored over the past three decades, recent evidence indicates a critical involvement of astrocytes, the main type of non-neuronal cells in the brain. In response to extracellular stimuli, astrocytes modulate the activity of neurons, synaptic transmission, and neural network properties, collectively influencing brain function. G protein-coupled receptors (GPCRs) expressed on astrocyte surfaces respond to neuron- and environment-derived ligands by activating or inhibiting astrocytic signaling, which in turn regulates adjacent neurons and their circuitry. In this review, we focus on the dopamine D1 receptors (D1R) and metabotropic glutamate receptor 5 (mGLUR5 or GRM5)-two GPCRs that have been critically implicated in the acquisition and maintenance of addiction-related behaviors. Positioned as an introductory-level review, this article briefly discusses astrocyte biology, outlines earlier discoveries about the role of astrocytes in substance-use disorders (SUDs), and provides detailed discussion about astrocytic D1Rs and mGLUR5s in regulating synapse and network functions in the nucleus accumbens (NAc)-a brain region that mediates addiction-related emotional and motivational responses. This review serves as a stepping stone for readers of Engineering to explore links between astrocytic GPCRs and drug addiction and other psychiatric disorders.
Collapse
Affiliation(s)
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
71
|
Ngoc KH, Jeon Y, Ko J, Um JW. Multifarious astrocyte-neuron dialog in shaping neural circuit architecture. Trends Cell Biol 2025; 35:74-87. [PMID: 38853082 DOI: 10.1016/j.tcb.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/11/2024]
Abstract
Astrocytes are multifaceted glial cell types that perform structural, functional, metabolic, and homeostatic roles in the brain. Recent studies have revealed mechanisms underlying the diversity of bidirectional communication modes between astrocytes and neurons - the fundamental organizing principle shaping synaptic properties at tripartite synapses. These astrocyte-neuron interactions are critical for the proper functioning of synapses and neural circuits. This review focuses on molecular mechanisms that direct these interactions, highlighting the versatile roles of multiple adhesion-based paths that likely modulate them, often in a context-dependent manner. It also describes how astrocyte-mediated processes go awry in certain brain disorders and provides a timely insight on the pivotal roles of astrocyte-neuron interactions in synaptic integrity and their relevance to understanding and treating neurological disorders.
Collapse
Affiliation(s)
- Khai H Ngoc
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Younghyeon Jeon
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jaewon Ko
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea; Center for Synapse Diversity and Specificity, DGIST, Daegu 42988, Republic of Korea.
| | - Ji Won Um
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea; Center for Synapse Diversity and Specificity, DGIST, Daegu 42988, Republic of Korea.
| |
Collapse
|
72
|
Williamson MR, Kwon W, Woo J, Ko Y, Maleki E, Yu K, Murali S, Sardar D, Deneen B. Learning-associated astrocyte ensembles regulate memory recall. Nature 2025; 637:478-486. [PMID: 39506118 PMCID: PMC11924044 DOI: 10.1038/s41586-024-08170-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 10/08/2024] [Indexed: 11/08/2024]
Abstract
The physical manifestations of memory formation and recall are fundamental questions that remain unresolved1. At the cellular level, ensembles of neurons called engrams are activated by learning events and control memory recall1-5. Astrocytes are found in close proximity to neurons and engage in a range of activities that support neurotransmission and circuit plasticity6-10. Moreover, astrocytes exhibit experience-dependent plasticity11-13, although whether specific ensembles of astrocytes participate in memory recall remains obscure. Here we show that learning events induce c-Fos expression in a subset of hippocampal astrocytes, and that this subsequently regulates the function of the hippocampal circuit in mice. Intersectional labelling of astrocyte ensembles with c-Fos after learning events shows that they are closely affiliated with engram neurons, and reactivation of these astrocyte ensembles stimulates memory recall. At the molecular level, learning-associated astrocyte (LAA) ensembles exhibit elevated expression of nuclear factor I-A, and its selective deletion from this population suppresses memory recall. Taken together, our data identify LAA ensembles as a form of plasticity that is sufficient to provoke memory recall and indicate that astrocytes are an active component of the engram.
Collapse
Affiliation(s)
- Michael R Williamson
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Wookbong Kwon
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Junsung Woo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Yeunjung Ko
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Ehson Maleki
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kwanha Yu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Sanjana Murali
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Program in Cancer Cell Biology, Baylor College of Medicine, Houston, TX, USA
| | - Debosmita Sardar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA.
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.
- Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
- Program in Cancer Cell Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
73
|
Endo F. Deciphering the spectrum of astrocyte diversity: Insights into molecular, morphological, and functional dimensions in health and neurodegenerative diseases. Neurosci Res 2025; 210:1-10. [PMID: 39098767 DOI: 10.1016/j.neures.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/11/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Astrocytes are the most abundant and morphologically complex glial cells that play active roles in the central nervous system (CNS). Recent research has identified shared and region-specific astrocytic genes and functions, elucidated the cellular origins of their regional diversity, and uncovered the molecular networks for astrocyte morphology, which are essential for their functional complexity. Reactive astrocytes exhibit a wide range of functional diversity in a context-specific manner in CNS disorders. This review discusses recent advances in understanding the molecular and morphological diversity of astrocytes in healthy individuals and those with neurodegenerative diseases, such as Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Fumito Endo
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan.
| |
Collapse
|
74
|
Zhou Q, Zhong Q, Liu Z, Zhao Z, Wang J, Zhang Z. Modulating Anxiety-Like Behaviors in Neuropathic Pain: Role of Anterior Cingulate Cortex Astrocytes Activation. CNS Neurosci Ther 2025; 31:e70227. [PMID: 39838823 PMCID: PMC11751476 DOI: 10.1111/cns.70227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
AIMS The comorbidity of anxiety-like symptoms in neuropathic pain (NP) is a significant yet often overlooked health concern. Anxiety sufferers may have a lower tolerance for pain, but which is difficult to treat. Accumulating evidence suggests a strong link between astrocytes and the manifestation of NP with concurrent anxiety-like behaviors. And the anterior cingulate cortex (ACC) has emerged as a key player in pain modulation and related emotional processing. However, the complex mechanisms that astrocytes in ACC influence anxiety behavior in mouse models of NP remain largely unexplored. METHODS Utilizing the traditional spared nerve injury (SNI) surgical model, we employed chemogenetic approaches, immunofluorescence, and western blot to investigate the functional significance and interactive dynamics between ACC astrocytes and excitatory neurons. RESULTS Our results revealed that SNI surgery induces NP and delayed anxiety-like behaviors, accompanied by increased astrocyte activity in the ACC. Chemogenetic manipulation demonstrated that inhibiting astrocytes alleviates anxiety symptoms, while activating them exacerbates anxiety-like behaviors, affecting local excitatory neurons and synapse density. Direct manipulation of ACC excitatory neurons also significantly impacted anxiety-like behaviors. CONCLUSION Our results highlight the pivotal role of ACC astrocytes in modulating anxiety-like behavior, suggesting a novel therapeutic strategy for anxiety associated with NP by targeting astrocyte function.
Collapse
Affiliation(s)
- Qingqing Zhou
- Department of AnesthesiologyZhongnan Hospital, Wuhan UniversityWuhanChina
| | - Qi Zhong
- Department of AnesthesiologyZhongnan Hospital, Wuhan UniversityWuhanChina
| | - Zhuang Liu
- Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective DisordersSongjiang Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in WuhanInnovation Academy for Precision Measurement Science and Technology, Chinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ziyue Zhao
- Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective DisordersSongjiang Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in WuhanInnovation Academy for Precision Measurement Science and Technology, Chinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jie Wang
- Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective DisordersSongjiang Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zongze Zhang
- Department of AnesthesiologyZhongnan Hospital, Wuhan UniversityWuhanChina
| |
Collapse
|
75
|
Cheong E, Lee CJ. Gliotransmission in physiologic and pathologic conditions. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:93-116. [PMID: 40122634 DOI: 10.1016/b978-0-443-19104-6.00003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
This chapter explores the roles of gliotransmission in physiologic and pathologic conditions, including psychiatric and neurologic disorders. Gliotransmission, facilitated by astrocytes through the release of gliotransmitters such as glutamate, d-serine, and GABA, regulates neuronal activity and synaptic transmission. Under physiologic conditions, astrocytic gliotransmission maintains the balance of tonic excitation and inhibition, influencing synaptic plasticity and cognitive functions. In psychiatric disorders, the chapter examines how dysregulated gliotransmission contributes to major depression and schizophrenia. In major depression, changes in astrocytic glutamate and adenosine signaling impact mood regulation and cognitive functions. Schizophrenia involves complex astrocyte-neuron interactions, with dysregulated astrocytic activity affecting synaptic function and contributing to symptoms. The chapter also delves into neurologic disorders. In Alzheimer disease, aberrant GABA release from reactive astrocytes impairs memory and cognitive functions. Parkinson disease features alterations in glutamatergic and GABAergic systems, affecting motor and nonmotor symptoms. Epilepsy involves a disruption in the balance between excitatory and inhibitory neurotransmission, with astrocytic GABA accumulation helping to maintain neuronal stability. Autism spectrum disorder (ASD) is linked to imbalances in glutamatergic and GABAergic neurotransmission, underlying sensory, cognitive, and social impairments. Overall, the chapter underscores the pivotal role of gliotransmission in maintaining neural homeostasis and highlights its potential as a therapeutic target in various disorders.
Collapse
Affiliation(s)
- Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, South Korea.
| |
Collapse
|
76
|
Hou Y, Ye W, Tang Z, Li F. Anesthetics in pathological cerebrovascular conditions. J Cereb Blood Flow Metab 2025; 45:32-47. [PMID: 39450477 PMCID: PMC11563546 DOI: 10.1177/0271678x241295857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/21/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
The increasing prevalence of pathological cerebrovascular conditions, including stroke, hypertensive encephalopathy, and chronic disorders, underscores the importance of anesthetic considerations for affected patients. Preserving cerebral oxygenation and blood flow during anesthesia is paramount to prevent neurological deterioration. Furthermore, protecting vulnerable neurons from damage is crucial for optimal outcomes. Recent research suggests that anesthetic agents may provide a potentially therapeutic approach for managing pathological cerebrovascular conditions. Anesthetics target neural mechanisms underlying cerebrovascular dysfunction, thereby modulating neuroinflammation, protecting neurons against ischemic injury, and improving cerebral hemodynamics. However, optimal strategies regarding mechanisms, dosage, and indications remain uncertain. This review aims to clarify the physiological effects, mechanisms of action, and reported neuroprotective benefits of anesthetics in patients with various pathological cerebrovascular conditions. Investigating anesthetic effects in cerebrovascular disease holds promise for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Yuhui Hou
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Wei Ye
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Ziyuan Tang
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Fengxian Li
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, China
| |
Collapse
|
77
|
Zhao Z, Fu Q, Guo X, He H, Yang G. Potential Biomarkers and Treatment of Neuroinflammation in Parkinson's Disease. ACTAS ESPANOLAS DE PSIQUIATRIA 2025; 53:181-188. [PMID: 39801407 PMCID: PMC11726199 DOI: 10.62641/aep.v53i1.1779] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/05/2024] [Accepted: 09/04/2024] [Indexed: 01/16/2025]
Abstract
Parkinson's disease (PD) is a degenerative disease of the central nervous system primarily affecting middle-aged and elderly individuals, significantly compromising their quality of life. Neuroinflammation is now recognized as a key feature in the pathogenesis of PD. This study reviews recent advances in the identification of potential biomarkers associated with neuroinflammation in PD and their significance for therapeutic strategies. These findings suggest that inflammatory factors play a pivotal role in PD treatment, and interventions involving anti-inflammatory drugs, physical exercise, and dietary modifications have shown promising results in mitigating disease progression.
Collapse
Affiliation(s)
- Ziqi Zhao
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, 130117 Changchun, Jilin, China
| | - Qiang Fu
- Department of Geriatrics, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, 130021 Changchun, Jilin, China
| | - Xiangyu Guo
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, 130117 Changchun, Jilin, China
| | - Huihan He
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, 130117 Changchun, Jilin, China
| | - Ge Yang
- Department of Geriatrics, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, 130021 Changchun, Jilin, China
| |
Collapse
|
78
|
Luo C, Wu G, Xiao Z, Hu R, Qiao M, Li W, Liu C, Li Z, Lan C, Huang Z. Role of miRNA regulation in IGFBP-2 overexpression and neuronal ferroptosis: Insights into the Nrf2/SLC7A11/GPX4 pathway in Alzheimer's disease. Int J Biol Macromol 2025; 287:138537. [PMID: 39653234 DOI: 10.1016/j.ijbiomac.2024.138537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease with pathological features including amyloid plaque deposits and neurofibrillary tangles. In this study, the expressions of miRNA, IGFBP-2 and neuronal ferritin were detected by qPCR, Western blot and immunohistochemistry. The regulatory effects of miRNA on IGFBP-2 and neuronal ferritin were further verified by intervention experiments with miRNA mimics and inhibitors. Double luciferase reporter gene assay and RNA immunoprecipitation were used to investigate the interaction between miRNA and target genes. Finally, the effect of miRNA on Nrf2/SLC7A11/GPX4 pathway was evaluated by antioxidant enzyme activity and oxidative stress marker detection. The overexpression of IGFBP-2 was found to be significantly increased with the deposition of neuronal ferritin. Expression levels of specific mirnas were significantly down-regulated in AD models and negatively correlated with IGFBP-2 and neuronal ferritin expression. Intervention experiments with miRNA mimics and inhibitors have confirmed that these mirnas can regulate the expression of IGFBP-2 and neuronal ferritin. Further studies revealed that these mirnas affect antioxidant enzyme activity and oxidative stress levels by targeting key genes in the Nrf2/SLC7A11/GPX4 pathway, thereby regulating the deposition of neuronal ferritin.
Collapse
Affiliation(s)
- Chenliang Luo
- Graduate School of Guangxi University of Chinese Medicine, Qingxiu District, Nanning City 530200, Guangxi, China
| | - Guiyou Wu
- Graduate School of Guangxi University of Chinese Medicine, Qingxiu District, Nanning City 530200, Guangxi, China
| | - Zhen Xiao
- College of Basic Medical Sciences, Youjiang Medical University For Nationalities, Youjiang District, Baise City 533000, Guangxi, China
| | - Rui Hu
- College of Basic Medical Sciences, Youjiang Medical University For Nationalities, Youjiang District, Baise City 533000, Guangxi, China
| | - Mingyu Qiao
- College of Basic Medical Sciences, Youjiang Medical University For Nationalities, Youjiang District, Baise City 533000, Guangxi, China
| | - Weineng Li
- College of Pharmacy, Youjiang Medical University For Nationalities, Youjiang District, Baise City 533000, Guangxi, China
| | - Chaoyu Liu
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City 533000, Guangxi, China; Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise City 533000, Guangxi, China
| | - Zhenzhong Li
- College of Pharmacy, Youjiang Medical University For Nationalities, Youjiang District, Baise City 533000, Guangxi, China
| | - Changgong Lan
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City 533000, Guangxi, China; Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise City 533000, Guangxi, China.
| | - Zhongshi Huang
- College of Basic Medical Sciences, Youjiang Medical University For Nationalities, Youjiang District, Baise City 533000, Guangxi, China.
| |
Collapse
|
79
|
Natale D, Holt M. Retro-Orbital Delivery of AAVs for CNS Wide Astrocyte Targeting. Methods Mol Biol 2025; 2896:13-31. [PMID: 40111594 DOI: 10.1007/978-1-0716-4366-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Viral vector-mediated astrocyte targeting in live mice is a popular and valuable method to investigate astrocyte function in the context of intact neural circuits and complex brain physiology. Targeted genetic manipulation and functional investigation of this cell population can be accomplished by utilizing cell type-specific promoters to drive adeno-associated virus (AAV)-mediated transgene expression specifically in astrocytes. Here, we provide a comprehensive protocol for non-invasive retro-orbital (RO) administration of blood-brain barrier (BBB)-crossing AAVs in neonatal and adult mice, such as AAV-PHP.B, AAV-PHP.eB, and AAV.CAP-B22, which results in central nervous system (CNS)-wide transduction. Key procedures outlined include the preparation of AAV solutions for injection, a modified two-handed injection technique for precise and consistent RO injections, and a training strategy to practice mock RO injections using non-toxic dyes. This protocol serves as a valuable resource for researchers interested in exploring the roles of astrocytes in brain functions and neurological disorders.
Collapse
Affiliation(s)
- Domenico Natale
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Leuven, Belgium.
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| | - Matthew Holt
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
80
|
Sokolova D, Ghansah SA, Puletti F, Georgiades T, De Schepper S, Zheng Y, Crowley G, Wu L, Rueda-Carrasco J, Koutsiouroumpa A, Muckett P, Freeman OJ, Khakh BS, Hong S. Astrocyte-derived MFG-E8 facilitates microglial synapse elimination in Alzheimer's disease mouse models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.31.606944. [PMID: 39257734 PMCID: PMC11383703 DOI: 10.1101/2024.08.31.606944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Region-specific synapse loss is an early pathological hallmark in Alzheimer's disease (AD). Emerging data in mice and humans highlight microglia, the brain-resident macrophages, as cellular mediators of synapse loss; however, the upstream modulators of microglia-synapse engulfment remain elusive. Here, we report a distinct subset of astrocytes, which are glial cells essential for maintaining synapse homeostasis, appearing in a region-specific manner with age and amyloidosis at onset of synapse loss. These astrocytes are distinguished by their peri-synaptic processes which are 'bulbous' in morphology, contain accumulated p62-immunoreactive bodies, and have reduced territorial domains, resulting in a decrease of astrocyte-synapse coverage. Using integrated in vitro and in vivo approaches, we show that astrocytes upregulate and secrete phagocytic modulator, milk fat globule-EGF factor 8 (MFG-E8), which is sufficient and necessary for promoting microglia-synapse engulfment in their local milieu. Finally, we show that knocking down Mfge8 specifically from astrocytes using a viral CRISPR-saCas9 system prevents microglia-synapse engulfment and ameliorates synapse loss in two independent amyloidosis mouse models of AD. Altogether, our findings highlight astrocyte-microglia crosstalk in determining synapse fate in amyloid models and nominate astrocytic MFGE8 as a potential target to ameliorate synapse loss during the earliest stages of AD.
Collapse
Affiliation(s)
- Dimitra Sokolova
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
- Neuroscience BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Shari Addington Ghansah
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Francesca Puletti
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Tatiana Georgiades
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Sebastiaan De Schepper
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Yongjing Zheng
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Gerard Crowley
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Ling Wu
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Javier Rueda-Carrasco
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Angeliki Koutsiouroumpa
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Philip Muckett
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Oliver J. Freeman
- Neuroscience BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Baljit S. Khakh
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Soyon Hong
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| |
Collapse
|
81
|
Liu Y, Peng H, Liu Q, Hao J, Tang C, Yan H. Differential Expression of GABA Receptor-Related Genes in Alzheimer's Disease and the Positive Regulatory Role of Aerobic Exercise-From Genetic Screening to D-gal-induced AD-like Pathology Model. Neuromolecular Med 2024; 27:1. [PMID: 39752101 DOI: 10.1007/s12017-024-08821-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder. The neuropathology of AD appears in the hippocampus. The purpose of this work was to reveal key differentially expressed genes (DEGs) in the hippocampus of AD patients and healthy individuals. Furthermore, we established an in vivo AD-like model to validate and explore the effects of exercise on these risky genes. The datasets GSE36980 and GSE48350 were downloaded from the GEO database and visualized using R packages to obtain DEGs. Subsequently, the potential biological functions of these DEGs were predicted, PPI network interactions were screened for core genes, and Pearson correlation analysis was performed. Additionally, we determined the diagnostic value of core DEGs using ROC curves. Single-cell analysis was used to verify the cell type specificity of hub genes. Finally, we used RT-qPCR, immunohistochemistry, and immunofluorescence to validate the expression of core DEGs in model mice and to explore the beneficial mechanisms of exercise. A total of 13 differentially expressed genes (DEGs) associated with the development of AD were identified, comprising 11 down-regulated genes and 2 up-regulated genes. PPI network visualization acquired four down-regulated core DEGs with good diagnostic value. The findings from the in vivo study indicated that the mRNA expression of GABRA1, GABRG2, and SVOP decreased, and the astrocyte marker GFAP notably increased in AD mice. Surprisingly, exercise increased hippocampal GABRA1 and GABRG2 expression and decreased GFAP-positive intensity of GABRG1 localization, reducing expression of inflammatory markers TNF-α and IL-1β. In addition, exercise improved the spatial exploration ability but had little effect on the preference index in AD mice. Our data highlighted the mechanism by which exercise improves memory performance in AD patients by reducing astrocyte neurotoxicity inducing decreased hippocampal GABA receptor expression.
Collapse
Affiliation(s)
- Yang Liu
- College of Physical Education, Nanchang Institute of Technology, Nanchang, 330044, China.
- Department of Neurology, People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China.
| | - Haoran Peng
- Department of Neurology, People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Qi Liu
- College of Physical Education, Nanchang Institute of Technology, Nanchang, 330044, China
| | - Jianying Hao
- College of Physical Education, Nanchang Institute of Technology, Nanchang, 330044, China
| | - Chao Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, 410012, China
| | - Hanhui Yan
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, 410012, China
- School of Sports Science Division of Sport Physiology, Beijing Sport University, Beijing, 100084, China
| |
Collapse
|
82
|
Liu Z, Xia Q, Wang C, Xu J, Tian K, Wang Z, Li L, Li Y, Shang H, Liu Q, Xin T. Biomimetic astrocyte cell membrane-fused nanovesicles for protecting neurovascular units in hypoxic ischemic encephalopathy. J Nanobiotechnology 2024; 22:766. [PMID: 39695691 DOI: 10.1186/s12951-024-03053-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
Hypoxic ischemic encephalopathy (HIE) refers to neonatal hypoxic brain injury caused by severe asphyxia during the perinatal period. With a high incidence rate and poor prognosis, HIE accounts for 2.4% of the global disease burden, imposing a heavy burden on families and society. Current clinical treatment for HIE primarily focuses on symptomatic management and supportive care. Therefore, the developments of effective treatment strategies and new drug formulations are critical for improving the prognosis of HIE patients. In order to protect the compromised neurovascular units after HIE, we prepared membrane-fused nanovesicles for delivering rapamycin and si EDN1 (TRCAM@RAPA@si EDN1). Due to the homotypic targeting feature of membrane-fused nanovesicles, we employed astrocyte membranes as synthetic materials to improve the targeting of astrocytes in brain while reducing the clearance of nanovesicles by circulatory system. Additionally, the surface of cell membrane was modified with CXCR3 receptors, enhancing the homing of nanovesicles to infarcted lesions. Lipid vesicles were modified with TK and RVG29 transmembrane peptides, enabling responsive release of internal drugs and blood-brain barrier penetration. Internally loaded rapamycin could promote protective autophagy in astrocytes, improve cellular oxidative stress, while si EDN1 could reduce the expression level of endothelin gene, thereby reducing secondary damage to neurovascular units.
Collapse
Affiliation(s)
- Zihao Liu
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong First Medical University, Jinan, 250021, China
| | - Qian Xia
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Chanyue Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jiacan Xu
- Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Kangqian Tian
- Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Zhihai Wang
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Longji Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Yuchen Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Hao Shang
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Qian Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Tao Xin
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China.
| |
Collapse
|
83
|
Luo D, Sun B, Wang W, Zhang A. The Role of the cGAS/STING Pathway in Arsenic-Induced Neurotoxicity: Insights from the Crosstalk Between Astrocytes and Neurons. Biol Trace Elem Res 2024:10.1007/s12011-024-04475-z. [PMID: 39693001 DOI: 10.1007/s12011-024-04475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/28/2024] [Indexed: 12/19/2024]
Abstract
Arsenic is a detrimental environmental toxicant linked to neurological damage; however, the mechanisms involved remain incompletely understood. Chronic proinflammatory responses are thought to play a central role in arsenic-induced neurotoxicity. Astrocytes, which are the predominant glial cells in the central nervous system (CNS), release significant amounts of proinflammatory cytokines upon overactivation. However, the molecular mechanisms driving this response remain to be elucidated. This study aimed to elucidate the mechanisms underlying arsenic-induced astrocyte activation and the subsequent neuronal damage, both in vivo and in vitro. In a rat model of arsenic exposure, significant neuropathological damage was detected in the CA3 region of the hippocampus. Specifically, markers of astrocyte activation, such as glial fibrillary acidic protein (GFAP) and inducible nitric oxide synthase (iNOS), as well as the inflammatory cytokine interleukin (IL)-1β, were significantly upregulated, and apoptosis was markedly increased, indicating neurotoxic damage. Furthermore, in vitro experiments revealed that arsenic exposure induced substantial upregulation of cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING), GFAP, iNOS, and IL-1β in astrocytes, accompanied by an increase in IL-1β secretion into the culture supernatant. In addition, co-culturing neurons with conditioned medium from arsenic-exposed astrocytes resulted in significant neuronal apoptosis. Importantly, the cGAS-STING pathway inhibitor H-151 effectively suppressed the arsenic-induced astrocyte activation and IL-1β secretion, while also reducing neuronal apoptosis in the conditioned medium. Collectively, these results indicate that arsenic exposure activates the cGAS-STING signaling pathway in astrocytes, enhancing proinflammatory activation and IL-1β expression, which in turn mediates neuronal apoptosis, representing a critical mechanism underlying arsenic-induced neurotoxicity.
Collapse
Affiliation(s)
- Daopeng Luo
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases, Co-Constructed By the Province and Ministry, Guizhou Medical University, Guiyang, 561113, China
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases, Co-Constructed By the Province and Ministry, Guizhou Medical University, Guiyang, 561113, China
| | - Wenjuan Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases, Co-Constructed By the Province and Ministry, Guizhou Medical University, Guiyang, 561113, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 561113, China.
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases, Co-Constructed By the Province and Ministry, Guizhou Medical University, Guiyang, 561113, China.
| |
Collapse
|
84
|
Meng F, Cui J, Wang P, Wang J, Sun J, Li L. The Phenotype Changes of Astrocyte During Different Ischemia Conditions. Brain Sci 2024; 14:1256. [PMID: 39766455 PMCID: PMC11674399 DOI: 10.3390/brainsci14121256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVES Dementia is becoming a major health problem in the world, and chronic brain ischemia is an established important risk factor in predisposing this disease. Astrocytes, as one major part of the blood-brain barrier (BBB), are activated during chronic cerebral blood flow hypoperfusion. Reactive astrocytes have been classified into phenotype pro-inflammatory type A1 or neuroprotective type A2. However, the specific subtype change of astrocyte and the mechanisms of chronic brain ischemia are still unknown. METHODS In order to depict the phenotype changes and their possible roles during this process, a rat bilateral common carotid artery occlusion model (BCAO) was employed in the present study. Meanwhile, the signaling pathways that possibly regulate these changes were investigated as well. RESULTS After four-week occlusion, astrocytes in the cortex of BCAO rats were shown to be the A2 phenotype, identified by the significant up-regulation of S100a10 accompanied by the down-regulation of Connexin 43 (CX43) protein. Next, we established in vitro hypoxia models, which were set up by stimulating primary astrocyte cultures from rat cortex with cobalt chloride, low glucose, or/and fibrinogen. Consistent with in vivo data, the cultured astrocytes also transformed into the A2 phenotype with the up-regulation of S100a10 and the down-regulation of CX43. In order to explore the mechanism of CX43 protein changes, C6 astrocyte cells were handled in both hypoxia and low-glucose stimulus, in which decreased pERK and pJNK expression were found. CONCLUSIONS In conclusion, our data suggest that in chronic cerebral ischemia conditions, the gradual ischemic insults could promote the transformation of astrocytes into A2 type instead of A1 type, and the phosphorylation of CX43 was negatively regulated by the phosphorylation of ERK and JNK. Also, our data could provide some new evidence of how to leverage the endogenous astrocytes phenotype changes during CNS injury by promoting them to be "protector" and not "culprit".
Collapse
Affiliation(s)
- Fei Meng
- Cardiac Valve Center, Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 101100, China;
| | - Jing Cui
- Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (J.C.); (J.S.)
| | - Peng Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Shandong University, Jinan 250012, China;
| | - Junhui Wang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada;
| | - Jing Sun
- Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (J.C.); (J.S.)
| | - Liang Li
- Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (J.C.); (J.S.)
| |
Collapse
|
85
|
Li J, Jin H, Zhao X, Sun X, Zhong J, Zhao J, Yan M. Effect of β-1,4-GalTI on the biological function of astrocytes treated by LPS. BIOMOLECULES & BIOMEDICINE 2024; 25:226-239. [PMID: 39284278 PMCID: PMC11647251 DOI: 10.17305/bb.2024.11088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 12/14/2024]
Abstract
Inflammation of the central nervous system (CNS) is a common feature of neurological disorders and infections, playing a crucial role in the development of CNS-related conditions. CNS inflammation is primarily regulated by glial cells, with astrocytes being the most abundant type in the mammalian CNS. Numerous studies have demonstrated that astrocytes, as immunocompetent cells, perform diverse and complex functions in both health and disease. Glycosylation, a critical post-translational modification of proteins, regulates numerous biological functions. The expression and activity of glycosyltransferases, the enzymes responsible for glycosylation, are closely associated with the pathogenesis of various diseases. β-1,4-GalTI, a mammalian glycosyltransferase, plays a significant role in cell-cell interactions, adhesion, and migration. Although many studies have focused on β-1,4-GalTI, few have explored its effects on astrocyte function. In this study, we constructed lentiviral vectors for both interference and overexpression of β-1,4-GalTI and discovered that β-1,4-GalTI knockdown inhibited astrocyte migration and proliferation, while its overexpression promoted these processes. Concurrently, β-1,4-GalTI knockdown reduced the expression of TNF-α, IL-1β, and IL-6, whereas overexpression enhanced the expression of these cytokines. These findings suggest that modulating β-1,4-GalTI activity can influence the molecular functions of astrocytes and provide a theoretical foundation for further research into β-1,4-GalTI as a potential therapeutic target in astrocyte-mediated inflammation.
Collapse
Affiliation(s)
- Jiyu Li
- Department of Orthopedic Oncology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Hui Jin
- The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Xinmin Zhao
- The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Xinran Sun
- The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Jiyuan Zhong
- The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Jian Zhao
- Department of Orthopedic Oncology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Meijuan Yan
- The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
86
|
Preman P, Moechars D, Fertan E, Wolfs L, Serneels L, Shah D, Lamote J, Poovathingal S, Snellinx A, Mancuso R, Balusu S, Klenerman D, Arranz AM, Fiers M, De Strooper B. APOE from astrocytes restores Alzheimer's Aβ-pathology and DAM-like responses in APOE deficient microglia. EMBO Mol Med 2024; 16:3113-3141. [PMID: 39528861 PMCID: PMC11628604 DOI: 10.1038/s44321-024-00162-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
The major genetic risk factor for Alzheimer's disease (AD), APOE4, accelerates beta-amyloid (Aβ) plaque formation, but whether this is caused by APOE expressed in microglia or astrocytes is debated. We express here the human APOE isoforms in astrocytes in an Apoe-deficient AD mouse model. This is not only sufficient to restore the amyloid plaque pathology but also induces the characteristic transcriptional pathological responses in Apoe-deficient microglia surrounding the plaques. We find that both APOE4 and the protective APOE2 from astrocytes increase fibrillar plaque deposition, but differentially affect soluble Aβ aggregates. Microglia and astrocytes show specific alterations in function of APOE genotype expressed in astrocytes. Our experiments indicate a central role of the astrocytes in APOE mediated amyloid plaque pathology and in the induction of associated microglia responses.
Collapse
Affiliation(s)
- Pranav Preman
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Daan Moechars
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Emre Fertan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Leen Wolfs
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Lutgarde Serneels
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Disha Shah
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Jochen Lamote
- VIB FACS Expertise Center, Center for Cancer Biology, Leuven, Belgium
| | | | - An Snellinx
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB-UAntwerp, Centre for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sriram Balusu
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Amaia M Arranz
- Laboratory of Humanized Models of Disease, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque Basque Foundation for Science, Bilbao, Spain
| | - Mark Fiers
- VIB Center for Brain & Disease Research, Leuven, Belgium.
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium.
| | - Bart De Strooper
- VIB Center for Brain & Disease Research, Leuven, Belgium.
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium.
- UK Dementia Research Institute, University College London, London, UK.
| |
Collapse
|
87
|
Séjourné G, Eroglu C. Astrocyte-neuron crosstalk in neurodevelopmental disorders. Curr Opin Neurobiol 2024; 89:102925. [PMID: 39357429 DOI: 10.1016/j.conb.2024.102925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 10/04/2024]
Abstract
A fundamental feature shared across neurodevelopmental disorders (NDDs) is the disruption of synaptic circuit formation and homeostasis. During early life, non-neuronal cells called astrocytes tightly regulate the establishment of circuits by controlling formation, remodeling, stabilization, and maturation of synapses. Concurrently, astrocytes mature to meet the evolving needs of the developing brain. Bidirectional astrocyte-neuron communication synchronizes astrocyte maturation with synapse development. An emerging body of evidence supports the hypothesis that in NDDs, deficits in astrocyte-neuron communication underlie errors in synaptic circuit development. Here we will review and discuss these findings, with the aim of inspiring future research and guiding translational studies.
Collapse
Affiliation(s)
- Gabrielle Séjourné
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
| | - Cagla Eroglu
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA; The Department of Neurobiology, Duke University Medical Center, Durham, NC, USA; Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
88
|
Zhu Y, Ma J, Li Y, Gu M, Feng X, Shao Y, Tan L, Lou HF, Sun L, Liu Y, Zeng LH, Qiu Z, Li XM, Duan S, Yu YQ. Adenosine-Dependent Arousal Induced by Astrocytes in a Brainstem Circuit. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407706. [PMID: 39494592 DOI: 10.1002/advs.202407706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/20/2024] [Indexed: 11/05/2024]
Abstract
Astrocytes play a crucial role in regulating sleep-wake behavior. However, how astrocytes govern a specific sleep-arousal circuit remains unknown. Here, the authors show that parafacial zone (PZ) astrocytes responded to sleep-wake cycles with state-differential Ca2+ activity, peaking during transitions from sleep to wakefulness. Using chemogenetic and optogenetic approaches, they find that activating PZ astrocytes elicited and sustained wakefulness by prolonging arousal episodes while impeding transitions from wakefulness to non-rapid eye movement (NREM) sleep. Activation of PZ astrocytes specially induced the elevation of extracellular adenosine through the ATP hydrolysis pathway but not equilibrative nucleoside transporter (ENT) mediated transportation. Strikingly, the rise in adenosine levels induced arousal by activating A1 receptors, suggesting a distinct role for adenosine in the PZ beyond its conventional sleep homeostasis modulation observed in the basal forebrain (BF) and cortex. Moreover, at the circuit level, PZ astrocyte activation induced arousal by suppressing the GABA release from the PZGABA neurons, which promote NREM sleep and project to the parabrachial nucleus (PB). Thus, their study unveils a distinctive arousal-promoting effect of astrocytes within the PZ through extracellular adenosine and elucidates the underlying mechanism at the neural circuit level.
Collapse
Affiliation(s)
- Yuwei Zhu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
| | - Jiale Ma
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China
| | - Yulan Li
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Mengyang Gu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xiang Feng
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
| | - Yujin Shao
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Lei Tan
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hui-Fang Lou
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Li Sun
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
| | - Yijun Liu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
| | - Ling-Hui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Zilong Qiu
- Department of Neurology, Songjiang Hospital, Songjiang Research Institute, MOE-Shanghai Key Laboratory for Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiao-Ming Li
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Shumin Duan
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
- Department of Neurology, Songjiang Hospital, Songjiang Research Institute, MOE-Shanghai Key Laboratory for Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Yan-Qin Yu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
89
|
Serrano-Pozo A, Li H, Li Z, Muñoz-Castro C, Jaisa-Aad M, Healey MA, Welikovitch LA, Jayakumar R, Bryant AG, Noori A, Connors TR, Hu M, Zhao K, Liao F, Lin G, Pastika T, Tamm J, Abdourahman A, Kwon T, Bennett RE, Woodbury ME, Wachter A, Talanian RV, Biber K, Karran EH, Hyman BT, Das S. Astrocyte transcriptomic changes along the spatiotemporal progression of Alzheimer's disease. Nat Neurosci 2024; 27:2384-2400. [PMID: 39528672 PMCID: PMC11614739 DOI: 10.1038/s41593-024-01791-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 09/17/2024] [Indexed: 11/16/2024]
Abstract
Astrocytes are crucial to brain homeostasis, yet their changes along the spatiotemporal progression of Alzheimer's disease (AD) neuropathology remain unexplored. Here we performed single-nucleus RNA sequencing of 628,943 astrocytes from five brain regions representing the stereotypical progression of AD pathology across 32 donors spanning the entire normal aging to severe AD continuum. We mapped out several unique astrocyte subclusters that exhibited varying responses to neuropathology across the AD-vulnerable neural network (spatial axis) or AD pathology stage (temporal axis). The proportion of homeostatic, intermediate and reactive astrocytes changed only along the spatial axis, whereas two other subclusters changed along the temporal axis. One of these, a trophic factor-rich subcluster, declined along pathology stages, whereas the other increased in the late stage but returned to baseline levels in the end stage, suggesting an exhausted response with chronic exposure to neuropathology. Our study underscores the complex dynamics of astrocytic responses in AD.
Collapse
Affiliation(s)
- Alberto Serrano-Pozo
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Huan Li
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Zhaozhi Li
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
| | - Clara Muñoz-Castro
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Methasit Jaisa-Aad
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Molly A Healey
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
| | - Lindsay A Welikovitch
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Annie G Bryant
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
| | - Ayush Noori
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
| | - Theresa R Connors
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA
| | - Miwei Hu
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
| | - Karen Zhao
- AbbVie, Cambridge Research Center, Cambridge, MA, USA
| | - Fan Liao
- AbbVie, Cambridge Research Center, Cambridge, MA, USA
| | - Gen Lin
- AbbVie Deutschland GmbH & Co. KG, Genomics Research Center, Ludwigshafen, Germany
| | | | - Joseph Tamm
- AbbVie, Cambridge Research Center, Cambridge, MA, USA
| | | | - Taekyung Kwon
- AbbVie, Cambridge Research Center, Cambridge, MA, USA
| | - Rachel E Bennett
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Astrid Wachter
- AbbVie Deutschland GmbH & Co. KG, Genomics Research Center, Ludwigshafen, Germany
| | | | - Knut Biber
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Ludwigshafen, Germany
| | - Eric H Karran
- AbbVie, Cambridge Research Center, Cambridge, MA, USA
| | - Bradley T Hyman
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sudeshna Das
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA.
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
90
|
Degl'Innocenti E, Poloni TE, Medici V, Olimpico F, Finamore F, Profka X, Bascarane K, Morrone C, Pastore A, Escartin C, McDonnell LA, Dell'Anno MT. Astrocytic centrin-2 expression in entorhinal cortex correlates with Alzheimer's disease severity. Glia 2024; 72:2158-2177. [PMID: 39145525 DOI: 10.1002/glia.24603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
Astrogliosis is a condition shared by acute and chronic neurological diseases and includes morphological, proteomic, and functional rearrangements of astroglia. In Alzheimer's disease (AD), reactive astrocytes frame amyloid deposits and exhibit structural changes associated with the overexpression of specific proteins, mostly belonging to intermediate filaments. At a functional level, amyloid beta triggers dysfunctional calcium signaling in astrocytes, which contributes to the maintenance of chronic neuroinflammation. Therefore, the identification of intracellular players that participate in astrocyte calcium signaling can help unveil the mechanisms underlying astrocyte reactivity and loss of function in AD. We have recently identified the calcium-binding protein centrin-2 (CETN2) as a novel astrocyte marker in the human brain and, in order to determine whether astrocytic CETN2 expression and distribution could be affected by neurodegenerative conditions, we examined its pattern in control and sporadic AD patients. By immunoblot, immunohistochemistry, and targeted-mass spectrometry, we report a positive correlation between entorhinal CETN2 immunoreactivity and neurocognitive impairment, along with the abundance of amyloid depositions and neurofibrillary tangles, thus highlighting a linear relationship between CETN2 expression and AD progression. CETN2-positive astrocytes were dispersed in the entorhinal cortex with a clustered pattern and colocalized with reactive glia markers STAT3, NFATc3, and YKL-40, indicating a human-specific role in AD-induced astrogliosis. Collectively, our data provide the first evidence that CETN2 is part of the astrocytic calcium toolkit undergoing rearrangements in AD and adds CETN2 to the list of proteins that could play a role in disease evolution.
Collapse
Affiliation(s)
- Elisa Degl'Innocenti
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Tino Emanuele Poloni
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation & ASP Golgi-Redaelli, Abbiategrasso, Italy
| | - Valentina Medici
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation & ASP Golgi-Redaelli, Abbiategrasso, Italy
| | | | | | - Xhulja Profka
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation & ASP Golgi-Redaelli, Abbiategrasso, Italy
| | - Karouna Bascarane
- Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, MIRCen, Fontenay-aux-Roses, France
| | - Castrese Morrone
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
| | - Aldo Pastore
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
- Laboratorio NEST, Scuola Normale Superiore, Pisa, Italy
| | - Carole Escartin
- Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, MIRCen, Fontenay-aux-Roses, France
| | - Liam A McDonnell
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
| | | |
Collapse
|
91
|
Kong J, Zhang Q, Zheng H, Tang D, Fang L, An S, Li J, Fan Z. TGN-020 ameliorates motor dysfunction post-spinal cord injury via enhancing astrocyte autophagy and mitigating inflammation by activating AQP4/PPAR-γ/mTOR pathway. Exp Neurol 2024; 382:114975. [PMID: 39326822 DOI: 10.1016/j.expneurol.2024.114975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Spinal Cord Injury (SCI) is a severe condition that often leads to substantial neurological impairments. This study aimed to explore the role of Aquaporin-4 (AQP4) in regulating astrocyte autophagy and neuroinflammation post-SCI, as well as to evaluate the therapeutic potential of AQP4 inhibition using the specific inhibitor TGN-020. Using Western blot, CCK8 assays, immunofluorescence staining, histopathological assessments, and behavioral analyses, we investigated the effects of TGN-020 on SCI-induced alterations in autophagy, neuroinflammation, astrocyte proliferation, neuronal damage, and motor function recovery in both rat and astrocyte models. Our findings indicate that TGN-020 significantly enhances astrocyte autophagy, reduces neuroinflammation, thereby leading to mitigated astrocyte activation by suppressing AQP4 expression. These beneficial effects are associated with the activation of the peroxisome proliferator-activated receptor-γ/mammalian target of rapamycin (PPAR-γ/mTOR) signaling pathway. Notably, the introduction of the PPAR-γ specific inhibitor GW9662 abrogated the positive regulatory effects of TGN-020 on SCI-induced autophagy and neuroinflammation. Collectively, our in vivo and in vitro experiments demonstrate that TGN-020, by down-regulating AQP4, activates the PPAR-γ/mTOR pathway, ameliorates astrocyte autophagy, diminishes neuroinflammation, and ultimately enhances motor function recovery.
Collapse
Affiliation(s)
- Jundong Kong
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Qiangqiang Zhang
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Haohong Zheng
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Diandong Tang
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Li Fang
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Shuaihao An
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Jian Li
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China.
| | - Zhongkai Fan
- Jinzhou Medical University, Jinzhou 121000, China.
| |
Collapse
|
92
|
Ciani C, Falcone C. Interlaminar and varicose-projection astrocytes: toward a new understanding of the primate brain. Front Cell Neurosci 2024; 18:1477753. [PMID: 39655243 PMCID: PMC11626530 DOI: 10.3389/fncel.2024.1477753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
In the last years, science started to move toward a more glio-neurocentric view, in which astrocytes are hypothesized to be directly involved in cognitive functions. Indeed, astrocytes show a variety of shapes with species-specific characteristics, suggesting a specialization of roles during evolution. Interlaminar (ILA) and varicose-projection (VP-As) astrocytes show an anatomical organization that is different compared to the classical horizontal net typically formed by protoplasmic and fibrous astrocytes. ILAs show a modular architecture with the soma in the first cortical layer and processes toward the deep layers with species-specific length. VP-As reside in the deep layers of the cortex, are characterized by varicosities on the longest processes, and are individual-specific. These characteristics suggest roles that are more complex than what was theorized until now. Here, we recapitulate what we know so far from literature from the first time ILAs were described to the most recent discoveries, spanning from morphology description, hypothesis on the development to their features in diseases. For a complete glance on this topic, we included a final paragraph on which techniques and models were used to study ILAs and VP-As, and what new avenues may be opened thanks to more novel methods.
Collapse
Affiliation(s)
| | - Carmen Falcone
- Department of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
93
|
Zhang R, Zhang M, Chen L, Jiang L, Zou C, Li N, Zhou H, Feng S. Dual-phase SilMA hydrogel: a dynamic scaffold for sequential drug release and enhanced spinal cord repair via neural differentiation and immunomodulation. Front Bioeng Biotechnol 2024; 12:1501488. [PMID: 39640066 PMCID: PMC11617199 DOI: 10.3389/fbioe.2024.1501488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Spinal cord injury (SCI) is a severe central nervous system disorder that results in significant sensory, motor, and autonomic dysfunctions. Current surgical techniques and high-dose hormone therapies have not achieved satisfactory clinical outcomes, highlighting the need for innovative therapeutic strategies. Methods In this study, we developed a Dual-Phase Silk Fibroin Methacryloyl (SilMA) hydrogel scaffold (DPSH) that incorporates PLGA microspheres encapsulating neurotrophin-3 (NT-3) and angiotensin (1-7) (Ang-(1-7)). The DPSH is designed for temporally controlled release of therapeutic agents to reduce inflammation during the acute phase of SCI and to promote neuronal differentiation and axonal regeneration in later stages. Results Comprehensive characterization of the DPSH revealed a highly porous architecture, suitable mechanical properties for spinal cord tissue, and stability unaffected by the incorporation of microspheres and drugs. In vitro studies demonstrated that Ang-(1-7) significantly induced M2 microglia polarization by 1.8-fold (p < 0.0001), effectively reducing inflammation. Additionally, NT-3 enhanced neural stem cell differentiation into neurons by 3.6-fold (p < 0.0001). In vivo experiments showed that the DPSH group exhibited significantly higher Basso Mouse Scale (BMS) scores (p < 0.0001), enhanced motor function, reduced astrocyte scarring by 54% (p < 0.05), and improved neuronal survival and regeneration. Discussion These findings underscore the therapeutic potential of the DPSH scaffold for SCI repair, presenting a novel strategy to enhance neural recovery through a combination of immunomodulation and neuroprotection.
Collapse
Affiliation(s)
- Ruizhi Zhang
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mingzhe Zhang
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- The 960th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Jinan, China
| | - Lu Chen
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Linlin Jiang
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chenbo Zou
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Na Li
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hengxing Zhou
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
| | - Shiqing Feng
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Orthopaedics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
94
|
Lu X, Xiong W, Chen Z, Li Y, Xu F, Yang X, Long M, Guo W, Wu S, Sun L, Wang G. Exercise-conditioned plasma ameliorates postoperative cognitive dysfunction by activating hippocampal cholinergic circuit and enhancing BDNF/TrkB signaling. Cell Commun Signal 2024; 22:551. [PMID: 39558340 PMCID: PMC11572510 DOI: 10.1186/s12964-024-01938-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/10/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is a prevalent complication following anesthesia and surgery, particularly in the elderly, leading to increased mortality and reduced quality of life. Despite its prevalence, there are no effective clinical treatments. Exercise has shown cognitive benefits in aging and various diseases, which can be transferred to sedentary animals through plasma. However, it is unclear if exercise-conditioned plasma can replicate these benefits in the context of POCD. METHODS Sixteen-month-old male C57BL/6J mice underwent 30 days of voluntary running wheel training or received systemic administration of exercise-conditioned plasma, followed by tibial fracture surgery under general anesthesia at 17 months of age. Cognitive performance, hippocampal synaptic deficits, neuroinflammation, BDNF/TrkB signaling, and medial septum (MS)-hippocampal cholinergic activity were evaluated through immunohistochemical staining, transmission electron microscopy, Western blotting, and biochemical assays. To investigate the role of hippocampal BDNF signaling and cholinergic activity in the therapeutic effects, the TrkB antagonist ANA-12 and the cholinergic receptor muscarinic 1 (CHRM1) antagonist trihexyphenidyl (THP) were administered via intraperitoneal injection, and adeno-associated virus (AAV) vectors expressing Chrm1 shRNA were delivered via intrahippocampal stereotaxic microinjection. RESULTS Exercise-conditioned plasma mimicked the benefits of exercise, alleviating cognitive decline induced by anesthesia/surgery, restoring hippocampal synapse formation and levels of regulators for synaptic plasticity, inhibiting neuroinflammatory responses to surgery by microglia and astrocytes, augmenting BDNF production and TrkB phosphorylation in hippocampal neurons, astrocytes, and microglia, upregulating MS expression of choline acetyltransferase (CHAT) and hippocampal expression of CHRM1 in neurons and astrocytes, and enhancing hippocampal cholinergic innervation and acetylcholine release. Conversely, ANA-12 administration blocked TrkB activation and reduced the protective effects on cognition, synaptic deficits, and neuroinflammatory reactivity of glial cells post-surgery. Similarly, THP administration or intrahippocampal delivery of AAV-Chrm1 shRNA inhibited the activation of the hippocampal cholinergic circuit by exercise plasma, negating the cognitive and neuropathological benefits and reducing BDNF/TrkB signaling enhancements. CONCLUSION Exercise-conditioned plasma can replicate the protective effects of exercise against anesthesia/surgery-induced neuroinflammation, synaptic, and cognitive impairments, at least partly, through CHRM1-dependent regulation of hippocampal cholinergic activity and BDNF/TrkB signaling.
Collapse
Affiliation(s)
- Xiaodi Lu
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Weijie Xiong
- Department of Human Anatomy, School of Basic Medicine, Harbin Medical University, Harbin, 150081, China
| | - Zhuo Chen
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yurou Li
- Department of Human Anatomy, School of Basic Medicine, Harbin Medical University, Harbin, 150081, China
| | - Fengyan Xu
- Department of Human Anatomy, School of Basic Medicine, Harbin Medical University, Harbin, 150081, China
| | - Xue Yang
- Department of Human Anatomy, School of Basic Medicine, Harbin Medical University, Harbin, 150081, China
| | - Meiwen Long
- Department of Human Anatomy, School of Basic Medicine, Harbin Medical University, Harbin, 150081, China
| | - Wenhan Guo
- Department of Human Anatomy, School of Basic Medicine, Harbin Medical University, Harbin, 150081, China
| | - Shuliang Wu
- Department of Human Anatomy, School of Basic Medicine, Harbin Medical University, Harbin, 150081, China.
| | - Liang Sun
- Department of Human Anatomy, School of Basic Medicine, Harbin Medical University, Harbin, 150081, China.
| | - Guonian Wang
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
95
|
Shi Y, Shi Y, Jie R, He J, Luo Z, Li J. Vitamin D: The crucial neuroprotective factor for nerve cells. Neuroscience 2024; 560:272-285. [PMID: 39343160 DOI: 10.1016/j.neuroscience.2024.09.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/11/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
Vitamin D is well known for its role in regulating the absorption and utilization of calcium and phosphorus as well as bone formation, and a growing number of studies have shown that vitamin D also has important roles in the nervous system, such as maintaining neurological homeostasis and protecting normal brain function, and that neurons and glial cells may be the targets of these effects. Most reviews of vitamin D's effects on the nervous system have focused on its overall effects, without distinguishing the contributors to these effects. In this review, we mainly focus on the cells of the central nervous system, summarizing the effects of vitamin D on them and the related pathways. With this review, we hope to elucidate the role of vitamin D in the nervous system at the cellular level and provide new insights into the prevention and treatment of neurodegenerative diseases in the direction of neuroprotection, myelin regeneration, and so on.
Collapse
Affiliation(s)
- Yuxin Shi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Research Center for Neuroimmune and Neuromuscular Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Yuchen Shi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Research Center for Neuroimmune and Neuromuscular Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Rao Jie
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jiawei He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Research Center for Neuroimmune and Neuromuscular Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha 410008, Hunan, PR China; Research Center for Neuroimmune and Neuromuscular Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China.
| | - Jing Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Research Center for Neuroimmune and Neuromuscular Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China.
| |
Collapse
|
96
|
Shao J, Deng Q, Feng S, Wu C, Liu X, Yang L. Role of astrocytes in Alzheimer's disease pathogenesis and the impact of exercise-induced remodeling. Biochem Biophys Res Commun 2024; 732:150418. [PMID: 39032410 DOI: 10.1016/j.bbrc.2024.150418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Alzheimer's disease (AD) is a prevalent and debilitating brain disorder that worsens progressively with age, characterized by cognitive decline and memory impairment. The accumulation of amyloid-beta (Aβ) leading to amyloid plaques and hyperphosphorylation of Tau, resulting in intracellular neurofibrillary tangles (NFTs), are primary pathological features of AD. Despite significant research investment and effort, therapies targeting Aβ and NFTs have proven limited in efficacy for treating or slowing AD progression. Consequently, there is a growing interest in non-invasive therapeutic strategies for AD prevention. Exercise, a low-cost and non-invasive intervention, has demonstrated promising neuroprotective potential in AD prevention. Astrocytes, among the most abundant glial cells in the brain, play essential roles in various physiological processes and are implicated in AD initiation and progression. Exercise delays pathological progression and mitigates cognitive dysfunction in AD by modulating astrocyte morphological and phenotypic changes and fostering crosstalk with other glial cells. This review aims to consolidate the current understanding of how exercise influences astrocyte dynamics in AD, with a focus on elucidating the molecular and cellular mechanisms underlying astrocyte remodeling. The review begins with an overview of the neuropathological changes observed in AD, followed by an examination of astrocyte dysfunction as a feature of the disease. Lastly, the review explores the potential therapeutic implications of exercise-induced astrocyte remodeling in the context of AD.
Collapse
Affiliation(s)
- Jie Shao
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Xiaocao Liu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
97
|
Bai Y, Zhou Z, Han B, Xiang X, Huang W, Yao H. Revisiting astrocytic calcium signaling in the brain. FUNDAMENTAL RESEARCH 2024; 4:1365-1374. [PMID: 39734522 PMCID: PMC11670731 DOI: 10.1016/j.fmre.2023.11.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/31/2024] Open
Abstract
Astrocytes, characterized by complex spongiform morphology, participate in various physiological processes, and abnormal changes in their calcium (Ca2+) signaling are implicated in central nervous system disorders. However, medications targeting the control of Ca2+ have fallen short of the anticipated therapeutic outcomes in clinical applications. This underscores the fact that our comprehension of this intricate regulation of calcium ions remains considerably incomplete. In recent years, with the advancement of Ca2+ labeling, imaging, and analysis techniques, Ca2+ signals have been found to exhibit high specificity at different spatial locations within the intricate structure of astrocytes. This has ushered the study of Ca2+ signaling in astrocytes into a new phase, leading to several groundbreaking research achievements. Despite this, the comprehensive understanding of astrocytic Ca2+ signaling and their implications remains challenging area for future research.
Collapse
Affiliation(s)
- Ying Bai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhongqiu Zhou
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Bing Han
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xianyuan Xiang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenhui Huang
- Molecular Physiology, CIPMM, University of Saarland, Homburg 66421, Germany
| | - Honghong Yao
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
- Center for Global Health, School of Public Health, Nanjig Medical University, Nanjing 211166, China
| |
Collapse
|
98
|
Lorin C, Guiet R, Chiaruttini N, Ambrosini G, Boci E, Abdellah M, Markram H, Keller D. Structural and molecular characterization of astrocyte and vasculature connectivity in the mouse hippocampus and cortex. Glia 2024; 72:2001-2021. [PMID: 39007459 DOI: 10.1002/glia.24594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
The relation of astrocytic endfeet to the vasculature plays a key functional role in the neuro-glia-vasculature unit. We characterize the spatial organization of astrocytes and the structural aspects that facilitate their involvement in molecular exchanges. Using double transgenic mice, we performed co-immunostaining, confocal microscopy, and three-dimensional digital segmentation to investigate the biophysical and molecular organization of astrocytes and their intricate endfoot network at the micrometer level in the isocortex and hippocampus. The results showed that hippocampal astrocytes had smaller territories, reduced endfoot dimensions, and fewer contacts with blood vessels compared with those in the isocortex. Additionally, we found that both connexins 43 and 30 have a higher density in the endfoot and the former is overexpressed relative to the latter. However, due to the limitations of the method, further studies are needed to determine the exact localization on the endfoot. The quantitative information obtained in this study will be useful for modeling the interactions of astrocytes with the vasculature.
Collapse
Affiliation(s)
- Charlotte Lorin
- Blue Brain Project, Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Romain Guiet
- Bioimaging and Optics Platform, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Nicolas Chiaruttini
- Bioimaging and Optics Platform, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Giovanna Ambrosini
- Bioinformatics Competence Center, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
| | - Elvis Boci
- Blue Brain Project, Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Marwan Abdellah
- Blue Brain Project, Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Henry Markram
- Blue Brain Project, Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Daniel Keller
- Blue Brain Project, Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| |
Collapse
|
99
|
Bartels T, Rowitch DH, Bayraktar OA. Generation of Mammalian Astrocyte Functional Heterogeneity. Cold Spring Harb Perspect Biol 2024; 16:a041351. [PMID: 38692833 PMCID: PMC11529848 DOI: 10.1101/cshperspect.a041351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Mammalian astrocytes have regional roles within the brain parenchyma. Indeed, the notion that astrocytes are molecularly heterogeneous could help explain how the central nervous system (CNS) retains embryonic positional information through development into specialized regions into adulthood. A growing body of evidence supports the concept of morphological and molecular differences between astrocytes in different brain regions, which might relate to their derivation from regionally patterned radial glia and/or local neuron inductive cues. Here, we review evidence for regionally encoded functions of astrocytes to provide an integrated concept on lineage origins and heterogeneity to understand regional brain organization, as well as emerging technologies to identify and further investigate novel roles for astrocytes.
Collapse
Affiliation(s)
- Theresa Bartels
- Department of Paediatrics and Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - David H Rowitch
- Department of Paediatrics and Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - Omer Ali Bayraktar
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
100
|
Saliu IO, Zhao G. New insights into astrocyte diversity from the lens of transcriptional regulation and their implications for neurodegenerative disease treatments. Neural Regen Res 2024; 19:2335-2336. [PMID: 38526262 PMCID: PMC11090421 DOI: 10.4103/nrr.nrr-d-23-01790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 12/30/2023] [Indexed: 03/26/2024] Open
Affiliation(s)
| | - Guoyan Zhao
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|