51
|
Scull KE, Pandey K, Ramarathinam SH, Purcell AW. Immunopeptidogenomics: Harnessing RNA-Seq to Illuminate the Dark Immunopeptidome. Mol Cell Proteomics 2021; 20:100143. [PMID: 34509645 PMCID: PMC8724885 DOI: 10.1016/j.mcpro.2021.100143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/10/2021] [Accepted: 08/24/2021] [Indexed: 01/08/2023] Open
Abstract
Human leukocyte antigen (HLA) molecules are cell-surface glycoproteins that present peptide antigens on the cell surface for surveillance by T lymphocytes, which contemporaneously seek signs of disease. Mass spectrometric analysis allows us to identify large numbers of these peptides (the immunopeptidome) following affinity purification of solubilized HLA-peptide complexes. However, in recent years, there has been a growing awareness of the "dark side" of the immunopeptidome: unconventional peptide epitopes, including neoepitopes, which elude detection by conventional search methods because their sequences are not present in reference protein databases (DBs). Here, we establish a bioinformatics workflow to aid identification of peptides generated by noncanonical translation of mRNA or by genome variants. The workflow incorporates both standard transcriptomics software and novel computer programs to produce cell line-specific protein DBs based on three-frame translation of the transcriptome. The final protein DB also includes sequences resulting from variants determined by variant calling on the same RNA-Seq data. We then searched our experimental data against both transcriptome-based and standard DBs using PEAKS Studio (Bioinformatics Solutions, Inc). Finally, further novel software helps to compare the various result sets arising for each sample, pinpoint putative genomic origins for unconventional sequences, and highlight potential neoepitopes. We applied the workflow to study the immunopeptidome of the acute myeloid leukemia cell line THP-1, using RNA-Seq and immunopeptidome data. We confidently identified over 14,000 peptides from three replicates of purified HLA peptides derived from THP-1 cells using the conventional UniProt human proteome. Using the transcriptome-based DB generated using our workflow, we recapitulated >85% of these and also identified 1029 unconventional peptides not explained by UniProt, including 16 sequences caused by nonsynonymous variants. Our workflow, which we term "immunopeptidogenomics," can provide DBs, which include pertinent unconventional sequences and allow neoepitope discovery, without becoming too large to search. Immunopeptidogenomics is a step toward unbiased search approaches that are needed to illuminate the dark side of the immunopeptidome.
Collapse
Affiliation(s)
- Katherine E Scull
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kirti Pandey
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sri H Ramarathinam
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
52
|
Reed B, Crawford F, Hill RC, Jin N, White J, Krovi SH, Marrack P, Hansen K, Kappler JW. Lysosomal cathepsin creates chimeric epitopes for diabetogenic CD4 T cells via transpeptidation. J Exp Med 2021; 218:211485. [PMID: 33095259 PMCID: PMC7590512 DOI: 10.1084/jem.20192135] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 08/06/2020] [Accepted: 09/10/2020] [Indexed: 01/15/2023] Open
Abstract
The identification of the peptide epitopes presented by major histocompatibility complex class II (MHCII) molecules that drive the CD4 T cell component of autoimmune diseases has presented a formidable challenge over several decades. In type 1 diabetes (T1D), recent insight into this problem has come from the realization that several of the important epitopes are not directly processed from a protein source, but rather pieced together by fusion of different peptide fragments of secretory granule proteins to create new chimeric epitopes. We have proposed that this fusion is performed by a reverse proteolysis reaction called transpeptidation, occurring during the catabolic turnover of pancreatic proteins when secretory granules fuse with lysosomes (crinophagy). Here, we demonstrate several highly antigenic chimeric epitopes for diabetogenic CD4 T cells that are produced by digestion of the appropriate inactive fragments of the granule proteins with the lysosomal protease cathepsin L (Cat-L). This pathway has implications for how self-tolerance can be broken peripherally in T1D and other autoimmune diseases.
Collapse
Affiliation(s)
- Brendan Reed
- Department of Biomedical Research, National Jewish Health, Denver, CO.,Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, CO.,Research Division, Barbara Davis Center for Diabetes, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | - Frances Crawford
- Department of Biomedical Research, National Jewish Health, Denver, CO
| | - Ryan C Hill
- Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | - Niyun Jin
- Department of Biomedical Research, National Jewish Health, Denver, CO.,Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, CO.,Research Division, Barbara Davis Center for Diabetes, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | - Janice White
- Department of Biomedical Research, National Jewish Health, Denver, CO
| | - S Harsha Krovi
- Department of Biomedical Research, National Jewish Health, Denver, CO.,Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | - Philippa Marrack
- Department of Biomedical Research, National Jewish Health, Denver, CO.,Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, CO.,Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | - Kirk Hansen
- Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | - John W Kappler
- Department of Biomedical Research, National Jewish Health, Denver, CO.,Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, CO.,Research Division, Barbara Davis Center for Diabetes, Anschutz Medical Campus, University of Colorado, Aurora, CO.,Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO
| |
Collapse
|
53
|
Chen L, Zhang Y, Yang Y, Yang Y, Li H, Dong X, Wang H, Xie Z, Zhao Q. An Integrated Approach for Discovering Noncanonical MHC-I Peptides Encoded by Small Open Reading Frames. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2346-2357. [PMID: 34260243 DOI: 10.1021/jasms.1c00076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
MHC-I peptides are a group of important immunopeptides presented by major histocompatibility complex (MHC) on the cell surface for immune recognition. The majority of reported MHC-I peptides are derived from protein coding sequences, and noncanonical peptides translated from small open reading frames (sORF) are largely unknown due to the lack of accurate and sensitive detection methods. Herein we report an efficient approach that implements complementary bioinformatic strategies to improve the identification of noncanonical MHC-I peptides. In a database search strategy, noncanonical immunopeptides mapping was optimized by combining three complementary pipelines to construct predicted sORF databases from Ribo-seq data. In a de novo peptide sequencing strategy, MS data search results were filtered against sORF databases to pin down additional noncanonical immunopeptides. In total, 308 noncanonical immunopeptides were identified from two tumor cell lines with selected ones vigorously validated. Our approach is a handy solution to identify noncanonical MHC peptides with Ribo-seq and MS data. Meanwhile, the novel noncanonical immunopeptides identified with this method could shed insights on fundamental immunology as well as cancer immunotherapies.
Collapse
Affiliation(s)
- Lei Chen
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong SAR 999077, China
| | - Yuanliang Zhang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Ying Yang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Yang Yang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Huihui Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China
| | - Xuan Dong
- BGI-Shenzhen, Shenzhen 518083, China
| | - Hongwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China
| | - Qian Zhao
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| |
Collapse
|
54
|
Tran MT, Faridi P, Lim JJ, Ting YT, Onwukwe G, Bhattacharjee P, Jones CM, Tresoldi E, Cameron FJ, La Gruta NL, Purcell AW, Mannering SI, Rossjohn J, Reid HH. T cell receptor recognition of hybrid insulin peptides bound to HLA-DQ8. Nat Commun 2021; 12:5110. [PMID: 34433824 PMCID: PMC8387461 DOI: 10.1038/s41467-021-25404-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/05/2021] [Indexed: 12/20/2022] Open
Abstract
HLA-DQ8, a genetic risk factor in type I diabetes (T1D), presents hybrid insulin peptides (HIPs) to autoreactive CD4+ T cells. The abundance of spliced peptides binding to HLA-DQ8 and how they are subsequently recognised by the autoreactive T cell repertoire is unknown. Here we report, the HIP (GQVELGGGNAVEVLK), derived from splicing of insulin and islet amyloid polypeptides, generates a preferred peptide-binding motif for HLA-DQ8. HLA-DQ8-HIP tetramer+ T cells from the peripheral blood of a T1D patient are characterised by repeated TRBV5 usage, which matches the TCR bias of CD4+ T cells reactive to the HIP peptide isolated from the pancreatic islets of a patient with T1D. The crystal structure of three TRBV5+ TCR-HLA-DQ8-HIP complexes shows that the TRBV5-encoded TCR β-chain forms a common landing pad on the HLA-DQ8 molecule. The N- and C-termini of the HIP is recognised predominantly by the TCR α-chain and TCR β-chain, respectively, in all three TCR ternary complexes. Accordingly, TRBV5 + TCR recognition of HIP peptides might occur via a 'polarised' mechanism, whereby each chain within the αβTCR heterodimer recognises distinct origins of the spliced peptide presented by HLA-DQ8.
Collapse
Affiliation(s)
- Mai T Tran
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| | - Pouya Faridi
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jia Jia Lim
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Yi Tian Ting
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Goodluck Onwukwe
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Pushpak Bhattacharjee
- Immunology and Diabetes Unit, St Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Claerwen M Jones
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Eleonora Tresoldi
- Immunology and Diabetes Unit, St Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Fergus J Cameron
- Department of Endocrinology and Diabetes, Royal Children's Hospital, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Nicole L La Gruta
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Anthony W Purcell
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Stuart I Mannering
- Immunology and Diabetes Unit, St Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia. .,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia. .,Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK.
| | - Hugh H Reid
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia. .,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
55
|
Abstract
T cells must recognize pathogen-derived peptides bound to major histocompatibility complexes (MHCs) in order to initiate a cell-mediated immune response against an infection, or to support the development of high-affinity antibody responses. Identifying antigens presented on MHCs by infected cells and professional antigen-presenting cells (APCs) during infection may therefore provide a route toward developing new vaccines. Peptides bound to MHCs can be identified at whole-proteome scale using mass spectrometry-a technique referred to as "immunopeptidomics." This technique has emerged as a powerful tool for identifying potential vaccine targets in the context of many infectious diseases. In this review, we discuss the contributions immunopeptidomic studies have made to understanding antigen presentation and T cell priming in the context of infection and the potential for immunopeptidomics to inform the development of vaccines to address pressing global health problems in infectious disease.
Collapse
|
56
|
Purcell AW. Is the Immunopeptidome Getting Darker?: A Commentary on the Discussion around Mishto et al., 2019. Front Immunol 2021; 12:720811. [PMID: 34326850 PMCID: PMC8315041 DOI: 10.3389/fimmu.2021.720811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 06/17/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Anthony W Purcell
- Department of Biochemistry and Molecular Biology, and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
57
|
Mishto M, Rodriguez-Hernandez G, Neefjes J, Urlaub H, Liepe J. Response: Commentary: An In Silico-In Vitro Pipeline Identifying an HLA-A*02:01+ KRAS G12V+ Spliced Epitope Candidate for a Broad Tumor-Immune Response in Cancer Patients. Front Immunol 2021; 12:679836. [PMID: 34326838 PMCID: PMC8315000 DOI: 10.3389/fimmu.2021.679836] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/17/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
- Francis Crick Institute, London, United Kingdom
| | - Guillermo Rodriguez-Hernandez
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
- Francis Crick Institute, London, United Kingdom
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Henning Urlaub
- Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
- Bioanalytics, Institute of Clinical Chemistry, University Medical Center, Göttingen, Germany
| | - Juliane Liepe
- Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
58
|
Kubo T, Shinkawa T, Kikuchi Y, Murata K, Kanaseki T, Tsukahara T, Hirohashi Y, Torigoe T. Fundamental and Essential Knowledge for Pathologists Engaged in the Research and Practice of Immune Checkpoint Inhibitor-Based Cancer Immunotherapy. Front Oncol 2021; 11:679095. [PMID: 34290982 PMCID: PMC8289279 DOI: 10.3389/fonc.2021.679095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022] Open
Abstract
Extensive research over 100 years has demonstrated that tumors can be eliminated by the autologous immune system. Without doubt, immunotherapy is now a standard treatment along with surgery, chemotherapy, and radiotherapy; however, the field of cancer immunotherapy is continuing to develop. The current challenges for the use of immunotherapy are to enhance its clinical efficacy, reduce side effects, and develop predictive biomarkers. Given that histopathological analysis provides molecular and morphological information on humans in vivo, its importance will continue to grow. This review article outlines the basic knowledge that is essential for the research and daily practice of immune checkpoint inhibitor-based cancer immunotherapy from the perspective of histopathology.
Collapse
Affiliation(s)
- Terufumi Kubo
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Tomoyo Shinkawa
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Yasuhiro Kikuchi
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Kenji Murata
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Takayuki Kanaseki
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Tomohide Tsukahara
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Toshihiko Torigoe
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
59
|
Amdare N, Purcell AW, DiLorenzo TP. Noncontiguous T cell epitopes in autoimmune diabetes: From mice to men and back again. J Biol Chem 2021; 297:100827. [PMID: 34044020 PMCID: PMC8233151 DOI: 10.1016/j.jbc.2021.100827] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 11/30/2022] Open
Abstract
Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease that affects the insulin-producing beta cells of the pancreatic islets. The nonobese diabetic mouse is a widely studied spontaneous model of the disease that has contributed greatly to our understanding of T1D pathogenesis. This is especially true in the case of antigen discovery. Upon review of existing knowledge concerning the antigens and peptide epitopes that are recognized by T cells in this model, good concordance is observed between mouse and human antigens. A fascinating recent illustration of the contribution of the nonobese diabetic mouse in the area of epitope identification is the discovery of noncontiguous CD4+ T cell epitopes. This novel epitope class is characterized by the linkage of an insulin-derived peptide to, most commonly, a fragment of a natural cleavage product of another beta cell secretory granule constituent. These so-called hybrid insulin peptides are also recognized by T cells in patients with T1D, although the precise mechanism for their generation has yet to be defined and is the subject of active investigation. Although evidence from the tumor immunology arena documented the existence of noncontiguous CD8+ T cell epitopes, generated by proteasome-mediated peptide splicing involving transpeptidation, such CD8+ T cell epitopes were thought to be a rare immunological curiosity. However, recent advances in bioinformatics and mass spectrometry have challenged this view. These developments, coupled with the discovery of hybrid insulin peptides, have spurred a search for noncontiguous CD8+ T cell epitopes in T1D, an exciting frontier area still in its infancy.
Collapse
Affiliation(s)
- Nitin Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Anthony W Purcell
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Teresa P DiLorenzo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA; Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA; Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA; The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
60
|
Wilhelm M, Zolg DP, Graber M, Gessulat S, Schmidt T, Schnatbaum K, Schwencke-Westphal C, Seifert P, de Andrade Krätzig N, Zerweck J, Knaute T, Bräunlein E, Samaras P, Lautenbacher L, Klaeger S, Wenschuh H, Rad R, Delanghe B, Huhmer A, Carr SA, Clauser KR, Krackhardt AM, Reimer U, Kuster B. Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics. Nat Commun 2021; 12:3346. [PMID: 34099720 PMCID: PMC8184761 DOI: 10.1038/s41467-021-23713-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/11/2021] [Indexed: 12/30/2022] Open
Abstract
Characterizing the human leukocyte antigen (HLA) bound ligandome by mass spectrometry (MS) holds great promise for developing vaccines and drugs for immune-oncology. Still, the identification of non-tryptic peptides presents substantial computational challenges. To address these, we synthesized and analyzed >300,000 peptides by multi-modal LC-MS/MS within the ProteomeTools project representing HLA class I & II ligands and products of the proteases AspN and LysN. The resulting data enabled training of a single model using the deep learning framework Prosit, allowing the accurate prediction of fragment ion spectra for tryptic and non-tryptic peptides. Applying Prosit demonstrates that the identification of HLA peptides can be improved up to 7-fold, that 87% of the proposed proteasomally spliced HLA peptides may be incorrect and that dozens of additional immunogenic neo-epitopes can be identified from patient tumors in published data. Together, the provided peptides, spectra and computational tools substantially expand the analytical depth of immunopeptidomics workflows.
Collapse
Affiliation(s)
- Mathias Wilhelm
- Computational Mass Spectrometry, Technical University of Munich (TUM), Freising, Germany.
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany.
| | - Daniel P Zolg
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Michael Graber
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Siegfried Gessulat
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Tobias Schmidt
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | | | - Celina Schwencke-Westphal
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Philipp Seifert
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Niklas de Andrade Krätzig
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | | | | | - Eva Bräunlein
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Patroklos Samaras
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Ludwig Lautenbacher
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Susan Klaeger
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Roland Rad
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | | | | | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Angela M Krackhardt
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Ulf Reimer
- JPT Peptide Technologies GmbH, Berlin, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany.
- Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), Technical University of Munich (TUM), Freising, Germany.
| |
Collapse
|
61
|
Mayer RL, Impens F. Immunopeptidomics for next-generation bacterial vaccine development. Trends Microbiol 2021; 29:1034-1045. [PMID: 34030969 DOI: 10.1016/j.tim.2021.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022]
Abstract
Antimicrobial resistance is an increasing global threat and alternative treatments substituting failing antibiotics are urgently needed. Vaccines are recognized as highly effective tools to mitigate antimicrobial resistance; however, the selection of bacterial antigens as vaccine candidates remains challenging. In recent years, advances in mass spectrometry-based proteomics have led to the development of so-called immunopeptidomics approaches that allow the untargeted discovery of bacterial epitopes that are presented on the surface of infected cells. Especially for intracellular bacterial pathogens, immunopeptidomics holds great promise to uncover antigens that can be encoded in viral vector- or nucleic acid-based vaccines. This review provides an overview of immunopeptidomics studies on intracellular bacterial pathogens and considers future directions and challenges in advancing towards next-generation vaccines.
Collapse
Affiliation(s)
- Rupert L Mayer
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB Proteomics Core, VIB, Ghent, Belgium
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB Proteomics Core, VIB, Ghent, Belgium.
| |
Collapse
|
62
|
Admon A. Are There Indeed Spliced Peptides in the Immunopeptidome? Mol Cell Proteomics 2021; 20:100099. [PMID: 34022431 PMCID: PMC8724635 DOI: 10.1016/j.mcpro.2021.100099] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/13/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
The claims that a large fraction of the immunopeptidome is composed of spliced major histocompatibility complex (MHC) peptides have stirred significant excitement and raised controversy. Here, I suggest that there are likely no spliced peptides in the immunopeptidome, and if they exist at all, they are extremely rare. I base this claim on both biochemical and bioinformatics considerations. First, as a reactant in normal proteolytic reactions, water will compete with transpeptidation, which has been suggested as the mechanism of peptide splicing. The high mobility and abundance of water in aqueous solutions renders transpeptidation very inefficient and therefore unlikely to occur. Second, new studies have refuted the bioinformatics assignments to spliced peptides of most of the immunopeptidome MS data, suggesting that the correct assignments are likely other canonical, noncanonical, and post-translationally modified peptides. Therefore, I call for rigorous experimental methodology using heavy stable isotope peptides spiking into the immunoaffinity-purified mixtures of natural MHC peptides and analysis by the highly reliable targeted MS, to claim that MHC peptides are indeed spliced. Peptide splicing was suggested to contribute to the immunopeptidome. I suggest that this idea should be reconsidered based on new evidences. Both biochemical and bioinformatics considerations argue against peptide splicing.
Collapse
Affiliation(s)
- Arie Admon
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
63
|
Falta MT, Crawford JC, Tinega AN, Landry LG, Crawford F, Mack DG, Martin AK, Atif SM, Li L, Santos RG, Nakayama M, Kappler JW, Maier LA, Thomas PG, Pinilla C, Fontenot AP. Beryllium-specific CD4+ T cells induced by chemokine neoantigens perpetuate inflammation. J Clin Invest 2021; 131:144864. [PMID: 33630763 PMCID: PMC8087207 DOI: 10.1172/jci144864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Discovering dominant epitopes for T cells, particularly CD4+ T cells, in human immune-mediated diseases remains a significant challenge. Here, we used bronchoalveolar lavage (BAL) cells from HLA-DP2-expressing patients with chronic beryllium disease (CBD), a debilitating granulomatous lung disorder characterized by accumulations of beryllium-specific (Be-specific) CD4+ T cells in the lung. We discovered lung-resident CD4+ T cells that expressed a disease-specific public CDR3β T cell receptor motif and were specific to Be-modified self-peptides derived from C-C motif ligand 4 (CCL4) and CCL3. HLA-DP2-CCL/Be tetramer staining confirmed that these chemokine-derived peptides represented major antigenic targets in CBD. Furthermore, Be induced CCL3 and CCL4 secretion in the lungs of mice and humans. In a murine model of CBD, the addition of LPS to Be oxide exposure enhanced CCL4 and CCL3 secretion in the lung and significantly increased the number and percentage of CD4+ T cells specific for the HLA-DP2-CCL/Be epitope. Thus, we demonstrate a direct link between Be-induced innate production of chemokines and the development of a robust adaptive immune response to those same chemokines presented as Be-modified self-peptides, creating a cycle of innate and adaptive immune activation.
Collapse
Affiliation(s)
- Michael T. Falta
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jeremy C. Crawford
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Alex N. Tinega
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Laurie G. Landry
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Douglas G. Mack
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Allison K. Martin
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Shaikh M. Atif
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Li Li
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Radleigh G. Santos
- Department of Mathematics, Nova Southeastern University, Ft. Lauderdale, Florida, USA
| | - Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - John W. Kappler
- Department of Biomedical Research and
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lisa A. Maier
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | | | - Andrew P. Fontenot
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
64
|
Faridi P, Dorvash M, Purcell AW. Spliced HLA-bound peptides: a Black Swan event in immunology. Clin Exp Immunol 2021; 204:179-188. [PMID: 33644851 PMCID: PMC8062993 DOI: 10.1111/cei.13589] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Peptides that bind to and are presented on the cell surface by human leucocyte antigen (HLA) molecules play a critical role in adaptive immunity. For a long time it was believed that all the HLA-bound peptides were generated through simple proteolysis of linear sequences of cellular proteins, and therefore are templated in the genome and proteome. However, evidence for untemplated peptide ligands of HLA molecules has accumulated during the last two decades, with a recent global analysis of HLA-bound peptides suggesting that a considerable proportion of HLA-bound peptides are potentially generated through splicing/fusion of discontinuous peptide segments from one or two distinct proteins. In this review, we will evaluate recent discoveries and debates on the contribution of spliced peptides to the HLA class I immunopeptidome, consider biochemical rules for splicing and the potential role of these spliced peptides in immune recognition.
Collapse
Affiliation(s)
- P. Faridi
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular BiologyMonash UniversityViewbankVICAustralia
| | - M. Dorvash
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular BiologyMonash UniversityViewbankVICAustralia
| | - A. W. Purcell
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular BiologyMonash UniversityViewbankVICAustralia
| |
Collapse
|
65
|
Mannering SI, Rubin AF, Wang R, Bhattacharjee P. Identifying New Hybrid Insulin Peptides (HIPs) in Type 1 Diabetes. Front Immunol 2021; 12:667870. [PMID: 33995402 PMCID: PMC8120023 DOI: 10.3389/fimmu.2021.667870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/15/2021] [Indexed: 11/13/2022] Open
Abstract
In 2016 Delong et al. discovered a new type of neoepitope formed by the fusion of two unrelated peptide fragments. Remarkably these neoepitopes, called hybrid insulin peptides, or HIPs, are recognized by pathogenic CD4+ T cells in the NOD mouse and human pancreatic islet-infiltrating T cells in people with type 1 diabetes. Current data implicates CD4+ T-cell responses to HIPs in the immune pathogenesis of human T1D. Because of their role in the immune pathogenesis of human T1D it is important to identify new HIPs that are recognized by CD4+ T cells in people at risk of, or with, T1D. A detailed knowledge of T1D-associated HIPs will allow HIPs to be used in assays to monitor changes in T cell mediated beta-cell autoimmunity. They will also provide new targets for antigen-specific therapies for T1D. However, because HIPs are formed by the fusion of two unrelated peptides there are an enormous number of potential HIPs which makes it technically challenging to identify them. Here we review the discovery of HIPs, how they form and discuss approaches to identifying new HIPs relevant to the immune pathogenesis of human type 1 diabetes.
Collapse
Affiliation(s)
- Stuart I Mannering
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medicine, University of Melbourne, St. Vincent's Hospital, Melbourne, VIC, Australia
| | - Alan F Rubin
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Ruike Wang
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Melbourne, VIC, Australia
| | - Pushpak Bhattacharjee
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Melbourne, VIC, Australia
| |
Collapse
|
66
|
Reed BK, Kappler JW. Hidden in Plain View: Discovery of Chimeric Diabetogenic CD4 T Cell Neo-Epitopes. Front Immunol 2021; 12:669986. [PMID: 33986758 PMCID: PMC8111216 DOI: 10.3389/fimmu.2021.669986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/01/2021] [Indexed: 11/13/2022] Open
Abstract
The T cell antigens driving autoimmune Type 1 Diabetes (T1D) have been pursued for more than three decades. When diabetogenic CD4 T cell clones and their relevant MHCII antigen presenting alleles were first identified in rodents and humans, the path to discovering the peptide epitopes within pancreatic beta cell proteins seemed straightforward. However, as experimental results accumulated, definitive data were often absent or controversial. Work within the last decade has helped to clear up some of the controversy by demonstrating that a number of the important MHCII presented epitopes are not encoded in the natural beta cell proteins, but in fact are fusions between peptide fragments derived from the same or different proteins. Recently, the mechanism for generating these MHCII diabetogenic chimeric epitopes has been attributed to a form of reverse proteolysis, called transpeptidation, a process that has been well-documented in the production of MHCI presented epitopes. In this mini-review we summarize these data and their implications for T1D and other autoimmune responses.
Collapse
Affiliation(s)
- Brendan K Reed
- Research Division, Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO, United States.,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado, Aurora, CO, United States
| | - John W Kappler
- Research Division, Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO, United States.,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado, Aurora, CO, United States.,Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO, United States
| |
Collapse
|
67
|
Rodriguez-Calvo T, Johnson JD, Overbergh L, Dunne JL. Neoepitopes in Type 1 Diabetes: Etiological Insights, Biomarkers and Therapeutic Targets. Front Immunol 2021; 12:667989. [PMID: 33953728 PMCID: PMC8089389 DOI: 10.3389/fimmu.2021.667989] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
The mechanisms underlying type 1 diabetes (T1D) pathogenesis remain largely unknown. While autoantibodies to pancreatic beta-cell antigens are often the first biological response and thereby a useful biomarker for identifying individuals in early stages of T1D, their role in T1D pathogenesis is not well understood. Recognition of these antigenic targets by autoreactive T-cells plays a pathological role in T1D development. Recently, several beta-cell neoantigens have been described, indicating that both neoantigens and known T1D antigens escape central or peripheral tolerance. Several questions regarding the mechanisms by which tolerance is broken in T1D remain unanswered. Further delineating the timing and nature of antigenic responses could allow their use as biomarkers to improve staging, as targets for therapeutic intervention, and lead to a better understanding of the mechanisms leading to loss of tolerance. Multiple factors that contribute to cellular stress may result in the generation of beta-cell derived neoepitopes and contribute to autoimmunity. Understanding the cellular mechanisms that induce beta-cells to produce neoantigens has direct implications on development of therapies to intercept T1D disease progression. In this perspective, we will discuss evidence for the role of neoantigens in the pathogenesis of T1D, including antigenic responses and cellular mechanisms. We will additionally discuss the pathways leading to neoepitope formation and the cross talk between the immune system and the beta-cells in this regard. Ultimately, delineating the timing of neoepitope generation in T1D pathogenesis will determine their role as biomarkers as well as therapeutic targets.
Collapse
Affiliation(s)
- Teresa Rodriguez-Calvo
- Institute of Diabetes Research, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Munich, Germany
| | - James D. Johnson
- Diabetes Research Group, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Lut Overbergh
- Laboratory Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Jessica L. Dunne
- Janssen Research and Development, LLC, Raritan, NJ, United States
| |
Collapse
|
68
|
Mishto M, Mansurkhodzhaev A, Rodriguez-Calvo T, Liepe J. Potential Mimicry of Viral and Pancreatic β Cell Antigens Through Non-Spliced and cis-Spliced Zwitter Epitope Candidates in Type 1 Diabetes. Front Immunol 2021; 12:656451. [PMID: 33936085 PMCID: PMC8082463 DOI: 10.3389/fimmu.2021.656451] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/26/2021] [Indexed: 12/31/2022] Open
Abstract
Increasing evidence suggests that post-translational peptide splicing can play a role in the immune response under pathological conditions. This seems to be particularly relevant in Type 1 Diabetes (T1D) since post-translationally spliced epitopes derived from T1D-associated antigens have been identified among those peptides bound to Human Leucocyte Antigen (HLA) class I and II complexes. Their immunogenicity has been confirmed through CD4+ and CD8+ T cell-mediated responses in T1D patients. Spliced peptides theoretically have a large sequence variability. This might increase the frequency of viral-human zwitter peptides, i.e. peptides that share a complete sequence homology irrespective of whether they originate from human or viral antigens, thereby impinging upon the discrimination between self and non-self antigens by T cells. This might increase the risk of autoimmune responses triggered by viral infections. Since enteroviruses and other viral infections have historically been associated with T1D, we investigated whether cis-spliced peptides derived from selected viruses might be able to trigger CD8+ T cell-mediated autoimmunity. We computed in silico viral-human non-spliced and cis-spliced zwitter epitope candidates, and prioritized peptide candidates based on: (i) their binding affinity to HLA class I complexes, (ii) human pancreatic β cell and medullary thymic epithelial cell (mTEC) antigens' mRNA expression, (iii) antigen association with T1D, and (iv) potential hotspot regions in those antigens. Neglecting potential T cell receptor (TCR) degeneracy, no viral-human zwitter non-spliced peptide was found to be an optimal candidate to trigger a virus-induced CD8+ T cell response against human pancreatic β cells. Conversely, we identified some zwitter peptide candidates, which may be produced by proteasome-catalyzed peptide splicing, and might increase the likelihood of pancreatic β cells recognition by virus-specific CD8+ T cell clones, therefore promoting β cell destruction in the context of viral infections.
Collapse
Affiliation(s)
- Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King’s College London, London, United Kingdom
- Francis Crick Institute, London, United Kingdom
| | | | - Teresa Rodriguez-Calvo
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Juliane Liepe
- Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
69
|
Hammond S, Thomson P, Meng X, Naisbitt D. In-Vitro Approaches to Predict and Study T-Cell Mediated Hypersensitivity to Drugs. Front Immunol 2021; 12:630530. [PMID: 33927714 PMCID: PMC8076677 DOI: 10.3389/fimmu.2021.630530] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/17/2021] [Indexed: 01/11/2023] Open
Abstract
Mitigating the risk of drug hypersensitivity reactions is an important facet of a given pharmaceutical, with poor performance in this area of safety often leading to warnings, restrictions and withdrawals. In the last 50 years, efforts to diagnose, manage, and circumvent these obscure, iatrogenic diseases have resulted in the development of assays at all stages of a drugs lifespan. Indeed, this begins with intelligent lead compound selection/design to minimize the existence of deleterious chemical reactivity through exclusion of ominous structural moieties. Preclinical studies then investigate how compounds interact with biological systems, with emphasis placed on modeling immunological/toxicological liabilities. During clinical use, competent and accurate diagnoses are sought to effectively manage patients with such ailments, and pharmacovigilance datasets can be used for stratification of patient populations in order to optimise safety profiles. Herein, an overview of some of the in-vitro approaches to predict intrinsic immunogenicity of drugs and diagnose culprit drugs in allergic patients after exposure is detailed, with current perspectives and opportunities provided.
Collapse
Affiliation(s)
- Sean Hammond
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
- ApconiX, Alderley Park, Alderley Edge, United Kingdom
| | - Paul Thomson
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Xiaoli Meng
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Dean Naisbitt
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
70
|
Computationally instrument-resolution-independent de novo peptide sequencing for high-resolution devices. NAT MACH INTELL 2021. [DOI: 10.1038/s42256-021-00304-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
71
|
Lichti CF. Identification of spliced peptides in pancreatic islets uncovers errors leading to false assignments. Proteomics 2021; 21:e2000176. [PMID: 33548107 DOI: 10.1002/pmic.202000176] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/11/2021] [Accepted: 01/29/2021] [Indexed: 12/24/2022]
Abstract
Proteasomal spliced peptides (PSPs) have been identified in the class I major histocompatibility complex (MHC) peptidomes of several tumors and have emerged as novel neoantigens that can stimulate highly specific T cells. Much debate has surrounded the percentage of PSPs in the immunopeptidome; reported numbers have ranged from <1-5% to 12-45%. Recently, our laboratory demonstrated in nonobese diabetic (NOD) mice that hybrid insulin peptides (HIPs), a special class of spliced peptides, are formed during insulin granule degradation in crinosomes of the pancreatic β cells and that modified peptides comprised a significant source of false positive HIP assignments. Herein, this study is extended to crinosomes isolated from other mouse strains and to two recent MHC class I studies, to see if modified peptides explained discrepancies in reported percentages of PSPs. This analysis revealed that both MHC-I peptidomes contained many spectra erroneously assigned as PSPs. While many false positive PSPs did arise from modified peptides, others arose from probable data processing errors. Thus, the reported numbers of PSPs in the literature are likely elevated due to errors associated with data processing and analysis.
Collapse
Affiliation(s)
- Cheryl F Lichti
- Department of Pathology & Immunology, Division of Immunobiology and Bursky Center for Human Immunology and Immunotherapy Programs, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
72
|
Mansurkhodzhaev A, Barbosa CRR, Mishto M, Liepe J. Proteasome-Generated cis-Spliced Peptides and Their Potential Role in CD8 + T Cell Tolerance. Front Immunol 2021; 12:614276. [PMID: 33717099 PMCID: PMC7943738 DOI: 10.3389/fimmu.2021.614276] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/28/2021] [Indexed: 01/09/2023] Open
Abstract
The human immune system relies on the capability of CD8+ T cells to patrol body cells, spot infected cells and eliminate them. This cytotoxic response is supposed to be limited to infected cells to avoid killing of healthy cells. To enable this, CD8+ T cells have T Cell Receptors (TCRs) which should discriminate between self and non-self through the recognition of antigenic peptides bound to Human Leukocyte Antigen class I (HLA-I) complexes-i.e., HLA-I immunopeptidomes-of patrolled cells. The majority of these antigenic peptides are produced by proteasomes through either peptide hydrolysis or peptide splicing. Proteasome-generated cis-spliced peptides derive from a given antigen, are immunogenic and frequently presented by HLA-I complexes. Theoretically, they also have a very large sequence variability, which might impinge upon our model of self/non-self discrimination and central and peripheral CD8+ T cell tolerance. Indeed, a large variety of cis-spliced epitopes might enlarge the pool of viral-human zwitter epitopes, i.e., peptides that may be generated with the exact same sequence from both self (human) and non-self (viral) antigens. Antigenic viral-human zwitter peptides may be recognized by CD8+ thymocytes and T cells, induce clonal deletion or other tolerance processes, thereby restraining CD8+ T cell response against viruses. To test this hypothesis, we computed in silico the theoretical frequency of zwitter non-spliced and cis-spliced epitope candidates derived from human proteome (self) and from the proteomes of a large pool of viruses (non-self). We considered their binding affinity to the representative HLA-A*02:01 complex, self-antigen expression in Medullary Thymic Epithelial cells (mTECs) and the relative frequency of non-spliced and cis-spliced peptides in HLA-I immunopeptidomes. Based on the present knowledge of proteasome-catalyzed peptide splicing and neglecting CD8+ TCR degeneracy, our study suggests that, despite their frequency, the portion of the cis-spliced peptides we investigated could only marginally impinge upon the variety of functional CD8+ cytotoxic T cells (CTLs) involved in anti-viral response.
Collapse
Affiliation(s)
- Artem Mansurkhodzhaev
- Quantitative and Systems Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Camila R. R. Barbosa
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) and Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
| | - Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) and Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
- Francis Crick Institute, London, United Kingdom
| | - Juliane Liepe
- Quantitative and Systems Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
73
|
Mei S, Li F, Xiang D, Ayala R, Faridi P, Webb GI, Illing PT, Rossjohn J, Akutsu T, Croft NP, Purcell AW, Song J. Anthem: a user customised tool for fast and accurate prediction of binding between peptides and HLA class I molecules. Brief Bioinform 2021; 22:6102669. [PMID: 33454737 DOI: 10.1093/bib/bbaa415] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/29/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
Neopeptide-based immunotherapy has been recognised as a promising approach for the treatment of cancers. For neopeptides to be recognised by CD8+ T cells and induce an immune response, their binding to human leukocyte antigen class I (HLA-I) molecules is a necessary first step. Most epitope prediction tools thus rely on the prediction of such binding. With the use of mass spectrometry, the scale of naturally presented HLA ligands that could be used to develop such predictors has been expanded. However, there are rarely efforts that focus on the integration of these experimental data with computational algorithms to efficiently develop up-to-date predictors. Here, we present Anthem for accurate HLA-I binding prediction. In particular, we have developed a user-friendly framework to support the development of customisable HLA-I binding prediction models to meet challenges associated with the rapidly increasing availability of large amounts of immunopeptidomic data. Our extensive evaluation, using both independent and experimental datasets shows that Anthem achieves an overall similar or higher area under curve value compared with other contemporary tools. It is anticipated that Anthem will provide a unique opportunity for the non-expert user to analyse and interpret their own in-house or publicly deposited datasets.
Collapse
Affiliation(s)
- Shutao Mei
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Australia
| | - Fuyi Li
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Australia
| | - Dongxu Xiang
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Australia
| | - Rochelle Ayala
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Australia
| | - Pouya Faridi
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Australia
| | | | - Patricia T Illing
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Australia
| | - Jamie Rossjohn
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Australia
| | - Tatsuya Akutsu
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Japan
| | - Nathan P Croft
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Australia
| | - Anthony W Purcell
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Australia
| | - Jiangning Song
- Monash Biomedicine Discovery Institute and Biochemistry and Molecular Biology, Monash University, Australia
| |
Collapse
|
74
|
Zinsli LV, Stierlin N, Loessner MJ, Schmelcher M. Deimmunization of protein therapeutics - Recent advances in experimental and computational epitope prediction and deletion. Comput Struct Biotechnol J 2020; 19:315-329. [PMID: 33425259 PMCID: PMC7779837 DOI: 10.1016/j.csbj.2020.12.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
Biotherapeutics, and antimicrobial proteins in particular, are of increasing interest for human medicine. An important challenge in the development of such therapeutics is their potential immunogenicity, which can induce production of anti-drug-antibodies, resulting in altered pharmacokinetics, reduced efficacy, and potentially severe anaphylactic or hypersensitivity reactions. For this reason, the development and application of effective deimmunization methods for protein drugs is of utmost importance. Deimmunization may be achieved by unspecific shielding approaches, which include PEGylation, fusion to polypeptides (e.g., XTEN or PAS), reductive methylation, glycosylation, and polysialylation. Alternatively, the identification of epitopes for T cells or B cells and their subsequent deletion through site-directed mutagenesis represent promising deimmunization strategies and can be accomplished through either experimental or computational approaches. This review highlights the most recent advances and current challenges in the deimmunization of protein therapeutics, with a special focus on computational epitope prediction and deletion tools.
Collapse
Key Words
- ABR, Antigen-binding region
- ADA, Anti-drug antibody
- ANN, Artificial neural network
- APC, Antigen-presenting cell
- Anti-drug-antibody
- B cell epitope
- BCR, B cell receptor
- Bab, Binding antibody
- CDR, Complementarity determining region
- CRISPR, Clustered regularly interspaced short palindromic repeats
- DC, Dendritic cell
- ELP, Elastin-like polypeptide
- EPO, Erythropoietin
- ER, Endoplasmatic reticulum
- GLK, Gelatin-like protein
- HAP, Homo-amino-acid polymer
- HLA, Human leukocyte antigen
- HMM, Hidden Markov model
- IL, Interleukin
- Ig, Immunoglobulin
- Immunogenicity
- LPS, Lipopolysaccharide
- MHC, Major histocompatibility complex
- NMR, Nuclear magnetic resonance
- Nab, Neutralizing antibody
- PAMP, Pathogen-associated molecular pattern
- PAS, Polypeptide composed of proline, alanine, and/or serine
- PBMC, Peripheral blood mononuclear cell
- PD, Pharmacodynamics
- PEG, Polyethylene glycol
- PK, Pharmacokinetics
- PRR, Pattern recognition receptor
- PSA, Sialic acid polymers
- Protein therapeutic
- RNN, Recurrent artificial neural network
- SVM, Support vector machine
- T cell epitope
- TAP, Transporter associated with antigen processing
- TCR, T cell receptor
- TLR, Toll-like receptor
- XTEN, “Xtended” recombinant polypeptide
Collapse
Affiliation(s)
- Léa V. Zinsli
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Noël Stierlin
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Martin J. Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Mathias Schmelcher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
75
|
Kuznetsov A, Voronina A, Govorun V, Arapidi G. Critical Review of Existing MHC I Immunopeptidome Isolation Methods. Molecules 2020; 25:E5409. [PMID: 33228004 PMCID: PMC7699222 DOI: 10.3390/molecules25225409] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
Major histocompatibility complex class I (MHC I) plays a crucial role in the development of adaptive immune response in vertebrates. MHC molecules are cell surface protein complexes loaded with short peptides and recognized by the T-cell receptors (TCR). Peptides associated with MHC are named immunopeptidome. The MHC I immunopeptidome is produced by the proteasome degradation of intracellular proteins. The knowledge of the immunopeptidome repertoire facilitates the creation of personalized antitumor or antiviral vaccines. A huge number of publications on the immunopeptidome diversity of different human and mouse biological samples-plasma, peripheral blood mononuclear cells (PBMCs), and solid tissues, including tumors-appeared in the scientific journals in the last decade. Significant immunopeptidome identification efficiency was achieved by advances in technology: the immunoprecipitation of MHC and mass spectrometry-based approaches. Researchers optimized common strategies to isolate MHC-associated peptides for individual tasks. They published many protocols with differences in the amount and type of biological sample, amount of antibodies, type and amount of insoluble support, methods of post-fractionation and purification, and approaches to LC-MS/MS identification of immunopeptidome. These parameters have a large impact on the final repertoire of isolated immunopeptidome. In this review, we summarize and compare immunopeptidome isolation techniques with an emphasis on the results obtained.
Collapse
Affiliation(s)
- Alexandr Kuznetsov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (A.K.); (A.V.); (V.G.)
| | - Alice Voronina
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (A.K.); (A.V.); (V.G.)
| | - Vadim Govorun
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (A.K.); (A.V.); (V.G.)
- Department of Molecular and Translational Medicine, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
| | - Georgij Arapidi
- Department of Molecular and Translational Medicine, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
76
|
Personalized deep learning of individual immunopeptidomes to identify neoantigens for cancer vaccines. NAT MACH INTELL 2020. [DOI: 10.1038/s42256-020-00260-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
77
|
Single-cell derived tumor organoids display diversity in HLA class I peptide presentation. Nat Commun 2020; 11:5338. [PMID: 33087703 PMCID: PMC7577990 DOI: 10.1038/s41467-020-19142-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor heterogeneity is a major cause of therapeutic resistance. Immunotherapy may exploit alternative vulnerabilities of drug-resistant cells, where tumor-specific human leukocyte antigen (HLA) peptide ligands are promising leads to invoke targeted anti-tumor responses. Here, we investigate the variability in HLA class I peptide presentation between different clonal cells of the same colorectal cancer patient, using an organoid system. While clone-specific differences in HLA peptide presentation were observed, broad inter-clone variability was even more prevalent (15–25%). By coupling organoid proteomics and HLA peptide ligandomics, we also found that tumor-specific ligands from DNA damage control and tumor suppressor source proteins were prominently presented by tumor cells, coinciding likely with the silencing of such cytoprotective functions. Collectively, these data illustrate the heterogeneous HLA peptide presentation landscape even within one individual, and hint that a multi-peptide vaccination approach against highly conserved tumor suppressors may be a viable option in patients with low tumor-mutational burden. Immunotherapy may exploit alternative vulnerabilities of drug resistant cells. Here, the authors show that the HLA peptide presentation landscape is heterogeneous even within one individual, hinting that a multi-peptide vaccination approach against highly conserved tumor suppressors may be needed.
Collapse
|
78
|
Buonaguro L, Tagliamonte M. Selecting Target Antigens for Cancer Vaccine Development. Vaccines (Basel) 2020; 8:vaccines8040615. [PMID: 33080888 PMCID: PMC7711972 DOI: 10.3390/vaccines8040615] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
One of the principal goals of cancer immunotherapy is the development of efficient therapeutic cancer vaccines that are able to elicit an effector as well as memory T cell response specific to tumor antigens. In recent years, the attention has been focused on the personalization of cancer vaccines. However, the efficacy of therapeutic cancer vaccines is still disappointing despite the large number of vaccine strategies targeting different tumors that have been evaluated in recent years. While the preclinical data have frequently shown encouraging results, clinical trials have not provided satisfactory data to date. The main reason for such failures is the complexity of identifying specific target tumor antigens that should be unique or overexpressed only by the tumor cells compared to normal cells. Most of the tumor antigens included in cancer vaccines are non-mutated overexpressed self-antigens, eliciting mainly T cells with low-affinity T cell receptors (TCR) unable to mediate an effective anti-tumor response. In this review, the target tumor antigens employed in recent years in the development of therapeutic cancer vaccine strategies are described, along with potential new classes of tumor antigens such as the human endogenous retroviral elements (HERVs), unconventional antigens, and/or heteroclitic peptides.
Collapse
|
79
|
Leko V, Rosenberg SA. Identifying and Targeting Human Tumor Antigens for T Cell-Based Immunotherapy of Solid Tumors. Cancer Cell 2020; 38:454-472. [PMID: 32822573 PMCID: PMC7737225 DOI: 10.1016/j.ccell.2020.07.013] [Citation(s) in RCA: 268] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
Abstract
Cancer elimination in humans can be achieved with immunotherapy that relies on T lymphocyte-mediated recognition of tumor antigens. Several types of these antigens have been recognized based on their cellular origins and expression patterns, while their detection has been greatly facilitated by recent achievements in next-generation sequencing and immunopeptidomics. Some of them have been targeted in clinical trials with various immunotherapy approaches, while many others remain untested. Here, we discuss molecular identification of different tumor antigen types, and the clinical safety and efficacy of targeting them with immunotherapy. Additionally, we suggest strategies to increase the efficacy and availability of antigen-directed immunotherapies for treatment of patients with metastatic cancer.
Collapse
Affiliation(s)
- Vid Leko
- Surgery Branch, National Cancer Institute, National Institutes of Health, Building 10-CRC, Room 3-3942, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Steven A Rosenberg
- Surgery Branch, National Cancer Institute, National Institutes of Health, Building 10-CRC, Room 3-3942, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
80
|
Wiles TA, Saba LM, Delong T. Peptide-Spectrum Match Validation with Internal Standards (P-VIS): Internally-Controlled Validation of Mass Spectrometry-Based Peptide Identifications. J Proteome Res 2020; 20:236-249. [PMID: 32924495 DOI: 10.1021/acs.jproteome.0c00355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Liquid chromatography-tandem mass spectrometry is an increasingly powerful tool for studying proteins in the context of disease. As technological advances in instrumentation and data analysis have enabled deeper profiling of proteomes and peptidomes, the need for a rigorous, standardized approach to validate individual peptide-spectrum matches (PSMs) has emerged. To address this need, we developed a novel and broadly applicable workflow: PSM validation with internal standards (P-VIS). In this approach, the fragmentation spectrum and chromatographic retention time of a peptide within a biological sample are compared with those of a synthetic version of the putative peptide sequence match. Similarity measurements obtained for a panel of internal standard peptides are then used to calculate a prediction interval for valid matches. If the observed degree of similarity between the biological and the synthetic peptide falls within this prediction interval, then the match is considered valid. P-VIS enables systematic and objective assessment of the validity of individual PSMs, providing a measurable degree of confidence when identifying peptides by mass spectrometry.
Collapse
Affiliation(s)
- Timothy Aaron Wiles
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045-0508, United States States
| | - Laura M Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045-0508, United States States
| | - Thomas Delong
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045-0508, United States States
| |
Collapse
|
81
|
Zaitoua AJ, Kaur A, Raghavan M. Variations in MHC class I antigen presentation and immunopeptidome selection pathways. F1000Res 2020; 9. [PMID: 33014341 PMCID: PMC7525337 DOI: 10.12688/f1000research.26935.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Major histocompatibility class I (MHC-I) proteins mediate immunosurveillance against pathogens and cancers by presenting antigenic or mutated peptides to antigen receptors of CD8+ T cells and by engaging receptors of natural killer (NK) cells. In humans, MHC-I molecules are highly polymorphic. MHC-I variations permit the display of thousands of distinct peptides at the cell surface. Recent mass spectrometric studies have revealed unique and shared characteristics of the peptidomes of individual MHC-I variants. The cell surface expression of MHC-I–peptide complexes requires the functions of many intracellular assembly factors, including the transporter associated with antigen presentation (TAP), tapasin, calreticulin, ERp57, TAP-binding protein related (TAPBPR), endoplasmic reticulum aminopeptidases (ERAPs), and the proteasomes. Recent studies provide important insights into the structural features of these factors that govern MHC-I assembly as well as the mechanisms underlying peptide exchange. Conformational sensing of MHC-I molecules mediates the quality control of intracellular MHC-I assembly and contributes to immune recognition by CD8 at the cell surface. Recent studies also show that several MHC-I variants can follow unconventional assembly routes to the cell surface, conferring selective immune advantages that can be exploited for immunotherapy.
Collapse
Affiliation(s)
- Anita J Zaitoua
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Amanpreet Kaur
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Malini Raghavan
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
82
|
Paes W, Leonov G, Partridge T, Nicastri A, Ternette N, Borrow P. Elucidation of the Signatures of Proteasome-Catalyzed Peptide Splicing. Front Immunol 2020; 11:563800. [PMID: 33072102 PMCID: PMC7541919 DOI: 10.3389/fimmu.2020.563800] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/26/2020] [Indexed: 01/10/2023] Open
Abstract
Proteasomes catalyze the degradation of endogenous proteins into oligopeptides, but can concurrently create spliced oligopeptides through ligation of previously non-contiguous peptide fragments. Recent studies have uncovered a formerly unappreciated role for proteasome-catalyzed peptide splicing (PCPS) in the generation of non-genomically templated human leukocyte antigen class I (HLA-I)-bound cis-spliced peptides that can be targeted by CD8+ T cells in cancer and infection. However, the mechanisms defining PCPS reactions are poorly understood. Here, we experimentally define the biochemical constraints of proteasome-catalyzed cis-splicing reactions by examination of in vitro proteasomal digests of a panel of viral- and self-derived polypeptide substrates using a tailored mass-spectrometry-based de novo sequencing workflow. We show that forward and reverse PCPS reactions display unique splicing signatures, defined by preferential fusion of distinct amino acid residues with stringent peptide length distributions, suggesting sequence- and size-dependent accessibility of splice reactants for proteasomal substrate binding pockets. Our data provide the basis for a more informed mechanistic understanding of PCPS that will facilitate future prediction of spliced peptides from protein sequences.
Collapse
Affiliation(s)
- Wayne Paes
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - German Leonov
- York Cross-Disciplinary Center for Systems Analysis, University of York, York, United Kingdom
| | - Thomas Partridge
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Annalisa Nicastri
- Nuffield Department of Clinical Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Nicola Ternette
- Nuffield Department of Clinical Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
83
|
Faridi P, Woods K, Ostrouska S, Deceneux C, Aranha R, Duscharla D, Wong SQ, Chen W, Ramarathinam SH, Lim Kam Sian TCC, Croft NP, Li C, Ayala R, Cebon JS, Purcell AW, Schittenhelm RB, Behren A. Spliced Peptides and Cytokine-Driven Changes in the Immunopeptidome of Melanoma. Cancer Immunol Res 2020; 8:1322-1334. [PMID: 32938616 DOI: 10.1158/2326-6066.cir-19-0894] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/20/2020] [Accepted: 08/20/2020] [Indexed: 11/16/2022]
Abstract
Antigen recognition by CD8+ T cells is governed by the pool of peptide antigens presented on the cell surface in the context of HLA class I complexes. Studies have shown not only a high degree of plasticity in the immunopeptidome, but also that a considerable fraction of all presented peptides is generated through proteasome-mediated splicing of noncontiguous regions of proteins to form novel peptide antigens. Here, we used high-resolution mass spectrometry combined with new bioinformatic approaches to characterize the immunopeptidome of melanoma cells in the presence or absence of IFNγ. In total, we identified more than 60,000 peptides from a single patient-derived cell line (LM-MEL-44) and demonstrated that IFNγ induced changes in the peptidome, with an overlap of only approximately 50% between basal and treated cells. Around 6% to 8% of the peptides were identified as cis-spliced peptides, and 2,213 peptides (1,827 linear and 386 cis-spliced peptides) were derived from known melanoma-associated antigens. These peptide antigens were equally distributed between the constitutive- and IFNγ-induced peptidome. We next examined additional HLA-matched patient-derived cell lines to investigate how frequently these peptides were identified and found that a high proportion of both linear and spliced peptides was conserved between individual patient tumors, drawing on data amassing to more than 100,000 peptide sequences. Several of these peptides showed in vitro immunogenicity across multiple patients with melanoma. These observations highlight the breadth and complexity of the repertoire of immunogenic peptides that can be exploited therapeutically and suggest that spliced peptides are a major class of tumor antigens.
Collapse
Affiliation(s)
- Pouya Faridi
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Katherine Woods
- Cancer Immunobiology, Olivia Newton-John Cancer Research Institute, Austin Hospital, Heidelberg, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - Simone Ostrouska
- Cancer Immunobiology, Olivia Newton-John Cancer Research Institute, Austin Hospital, Heidelberg, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - Cyril Deceneux
- Cancer Immunobiology, Olivia Newton-John Cancer Research Institute, Austin Hospital, Heidelberg, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - Ritchlynn Aranha
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Divya Duscharla
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Stephen Q Wong
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Sri H Ramarathinam
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Terry C C Lim Kam Sian
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Nathan P Croft
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Chen Li
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Rochelle Ayala
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jonathan S Cebon
- Cancer Immunobiology, Olivia Newton-John Cancer Research Institute, Austin Hospital, Heidelberg, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| | - Ralf B Schittenhelm
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia. .,Monash Proteomics & Metabolomics Facility, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Andreas Behren
- Cancer Immunobiology, Olivia Newton-John Cancer Research Institute, Austin Hospital, Heidelberg, Victoria, Australia. .,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
84
|
A few good peptides: MHC class I-based cancer immunosurveillance and immunoevasion. Nat Rev Immunol 2020; 21:116-128. [PMID: 32820267 DOI: 10.1038/s41577-020-0390-6] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2020] [Indexed: 12/25/2022]
Abstract
The remarkable success of immune checkpoint inhibitors demonstrates the potential of tumour-specific CD8+ T cells to prevent and treat cancer. Although the number of lives saved by immunotherapy mounts, only a relatively small fraction of patients are cured. Here, we review two of the factors that limit the application of CD8+ T cell immunotherapies: difficulties in identifying tumour-specific peptides presented by MHC class I molecules and the ability of tumour cells to impair antigen presentation as they evolve under T cell selection. We describe recent advances in understanding how peptides are generated from non-canonical translation of defective ribosomal products, relate this to the dysregulated translation that is a feature of carcinogenesis and propose dysregulated translation as an important new source of tumour-specific peptides. We discuss how the synthesis and function of components of the antigen-processing and presentation pathway, including the recently described immunoribosome, are manipulated by tumours for immunoevasion and point to common druggable targets that may enhance immunotherapy.
Collapse
|
85
|
Kumar A, Suryadevara NC, Wolf KJ, Wilson JT, Di Paolo RJ, Brien JD, Joyce S. Heterotypic immunity against vaccinia virus in an HLA-B*07:02 transgenic mousepox infection model. Sci Rep 2020; 10:13167. [PMID: 32759969 PMCID: PMC7406653 DOI: 10.1038/s41598-020-69897-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022] Open
Abstract
Vaccination with vaccinia virus (VACV) elicits heterotypic immunity to smallpox, monkeypox, and mousepox, the mechanistic basis for which is poorly understood. It is generally assumed that heterotypic immunity arises from the presentation of a wide array of VACV-derived, CD8+ T cell epitopes that share homology with other poxviruses. Herein this assumption was tested using a large panel of VACV-derived peptides presented by HLA-B*07:02 (B7.2) molecules in a mousepox/ectromelia virus (ECTV)-infection, B7.2 transgenic mouse model. Most dominant epitopes recognized by ECTV- and VACV-reactive CD8+ T cells overlapped significantly without altering immunodominance hierarchy. Further, several epitopes recognized by ECTV-reactive CD8+ T cells were not recognized by VACV-reactive CD8+ T cells, and vice versa. In one instance, the lack of recognition owed to a N72K variation in the ECTV C4R70-78 variant of the dominant VACV B8R70-78 epitope. C4R70-78 does not bind to B7.2 and, hence, it was neither immunogenic nor antigenic. These findings provide a mechanistic basis for VACV vaccination-induced heterotypic immunity which can protect against Variola and Monkeypox disease. The understanding of how cross-reactive responses develop is essential for the rational design of a subunit-based vaccine that would be safe, and effectively protect against heterologous infection.
Collapse
Affiliation(s)
- Amrendra Kumar
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Centre, Nashville, TN, USA
| | - Naveen Chandra Suryadevara
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Centre, Nashville, TN, USA
| | - Kyle J Wolf
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - John T Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Richard J Di Paolo
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - James D Brien
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Centre, Nashville, TN, USA.
| |
Collapse
|
86
|
Mishto M. What We See, What We Do Not See, and What We Do Not Want to See in HLA Class I Immunopeptidomes. Proteomics 2020; 20:e2000112. [PMID: 32533627 DOI: 10.1002/pmic.202000112] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Indexed: 12/14/2022]
Abstract
The identification of peptides bound to human leukocyte antigen class I (HLA-I) molecules-that is, the HLA-I immunopeptidome-is a useful tool in the hunt for epitopes suitable for vaccinations and immunotherapies. These peptides are mainly generated by proteasomes through peptide hydrolysis and peptide splicing. In this issue, Nicastri and colleagues compared different methods for the elution of HLA class I-associated peptides. It is demonstrated that the choice of HLA-associated peptide enrichment and purification strategy affects peptide yields and creates a bias in detected sequence repertoire. The author carried out this technical brief through the analysis of canonical non-spliced peptides. However, their study left out any analysis of post-translationally spliced peptides, thereby missing an opportunity to shed light on the persistent debate of the frequency of these unconventional peptides.
Collapse
Affiliation(s)
- Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London, London, SE1 1UL, UK
| |
Collapse
|
87
|
Abstract
Immunoinformatics is a discipline that applies methods of computer science to study and model the immune system. A fundamental question addressed by immunoinformatics is how to understand the rules of antigen presentation by MHC molecules to T cells, a process that is central to adaptive immune responses to infections and cancer. In the modern era of personalized medicine, the ability to model and predict which antigens can be presented by MHC is key to manipulating the immune system and designing strategies for therapeutic intervention. Since the MHC is both polygenic and extremely polymorphic, each individual possesses a personalized set of MHC molecules with different peptide-binding specificities, and collectively they present a unique individualized peptide imprint of the ongoing protein metabolism. Mapping all MHC allotypes is an enormous undertaking that cannot be achieved without a strong bioinformatics component. Computational tools for the prediction of peptide-MHC binding have thus become essential in most pipelines for T cell epitope discovery and an inescapable component of vaccine and cancer research. Here, we describe the development of several such tools, from pioneering efforts to the current state-of-the-art methods, that have allowed for accurate predictions of peptide binding of all MHC molecules, even including those that have not yet been characterized experimentally.
Collapse
Affiliation(s)
- Morten Nielsen
- Department of Health Technology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, CP 1650 San Martin, Buenos Aires, Argentina
| | - Massimo Andreatta
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, CP 1650 San Martin, Buenos Aires, Argentina
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California 92037, USA
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Søren Buus
- Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
88
|
Mei S, Ayala R, Ramarathinam SH, Illing PT, Faridi P, Song J, Purcell AW, Croft NP. Immunopeptidomic Analysis Reveals That Deamidated HLA-bound Peptides Arise Predominantly from Deglycosylated Precursors. Mol Cell Proteomics 2020; 19:1236-1247. [PMID: 32357974 PMCID: PMC7338083 DOI: 10.1074/mcp.ra119.001846] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/20/2020] [Indexed: 12/20/2022] Open
Abstract
The presentation of post-translationally modified (PTM) peptides by cell surface HLA molecules has the potential to increase the diversity of targets for surveilling T cells. Although immunopeptidomics studies routinely identify thousands of HLA-bound peptides from cell lines and tissue samples, in-depth analyses of the proportion and nature of peptides bearing one or more PTMs remains challenging. Here we have analyzed HLA-bound peptides from a variety of allotypes and assessed the distribution of mass spectrometry-detected PTMs, finding deamidation of asparagine or glutamine to be highly prevalent. Given that asparagine deamidation may arise either spontaneously or through enzymatic reaction, we assessed allele-specific and global motifs flanking the modified residues. Notably, we found that the N-linked glycosylation motif NX(S/T) was highly abundant across asparagine-deamidated HLA-bound peptides. This finding, demonstrated previously for a handful of deamidated T cell epitopes, implicates a more global role for the retrograde transport of nascently N-glycosylated polypeptides from the ER and their subsequent degradation within the cytosol to form HLA-ligand precursors. Chemical inhibition of Peptide:N-Glycanase (PNGase), the endoglycosidase responsible for the removal of glycans from misfolded and retrotranslocated glycoproteins, greatly reduced presentation of this subset of deamidated HLA-bound peptides. Importantly, there was no impact of PNGase inhibition on peptides not containing a consensus NX(S/T) motif. This indicates that a large proportion of HLA-I bound asparagine deamidated peptides are generated from formerly glycosylated proteins that have undergone deglycosylation via the ER-associated protein degradation (ERAD) pathway. The information herein will help train deamidation prediction models for HLA-peptide repertoires and aid in the design of novel T cell therapeutic targets derived from glycoprotein antigens.
Collapse
Affiliation(s)
- Shutao Mei
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Rochelle Ayala
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Sri H Ramarathinam
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Patricia T Illing
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Pouya Faridi
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Jiangning Song
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Anthony W Purcell
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Melbourne, VIC, Australia.
| | - Nathan P Croft
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
89
|
Towards new horizons: characterization, classification and implications of the tumour antigenic repertoire. Nat Rev Clin Oncol 2020; 17:595-610. [PMID: 32572208 PMCID: PMC7306938 DOI: 10.1038/s41571-020-0387-x] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2020] [Indexed: 12/21/2022]
Abstract
Immune-checkpoint inhibition provides an unmatched level of durable clinical efficacy in various malignancies. Such therapies promote the activation of antigen-specific T cells, although the precise targets of these T cells remain unknown. Exploiting these targets holds great potential to amplify responses to treatment, such as by combining immune-checkpoint inhibition with therapeutic vaccination or other antigen-directed treatments. In this scenario, the pivotal hurdle remains the definition of valid HLA-restricted tumour antigens, which requires several levels of evidence before targets can be established with sufficient confidence. Suitable antigens might include tumour-specific antigens with alternative or wild-type sequences, tumour-associated antigens and cryptic antigens that exceed exome boundaries. Comprehensive antigen classification is required to enable future clinical development and the definition of innovative treatment strategies. Furthermore, clinical development remains challenging with regard to drug manufacturing and regulation, as well as treatment feasibility. Despite these challenges, treatments based on diligently curated antigens combined with a suitable therapeutic platform have the potential to enable optimal antitumour efficacy in patients, either as monotherapies or in combination with other established immunotherapies. In this Review, we summarize the current state-of-the-art approaches for the identification of candidate tumour antigens and provide a structured terminology based on their underlying characteristics. Immune-checkpoint inhibition has transformed the treatment of patients with advanced-stage cancers. Nonetheless, the specific antigens targeted by T cells that are activated or reactivated by these agents remain largely unknown. In this Review, the authors describe the characterization and classification of tumour antigens including descriptions of the most appropriate detection methods, and discuss potential regulatory issues regarding the use of tumour antigen-based therapeutics. Immune-checkpoint inhibition has profoundly changed the paradigm for the care of several malignancies. Although these therapies activate antigen-specific T cells, the precise mechanisms of action and their specific targets remain largely unknown. Anticancer immunotherapies encompass two fundamentally different therapeutic principles based on knowledge of their therapeutic targets, that either have been characterized (antigen-aware) or have remained elusive (antigen-unaware). HLA-presented tumour antigens of potential therapeutic relevance can comprise alternative or wild-type amino acid sequences and can be subdivided into different categories based on their mechanisms of formation. The available methods for the detection of HLA-presented antigens come with intrinsic challenges and limitations and, therefore, warrant multiple lines of evidence of robust tumour specificity before being considered for clinical use. Knowledge obtained using various antigen-detection strategies can be combined with different therapeutic platforms to create individualized therapies that hold great promise, including when combined with already established immunotherapies. Tailoring immunotherapies while taking into account the substantial heterogeneity of malignancies as well as that of HLA loci not only requires innovative science, but also demands innovative approaches to trial design and drug regulation.
Collapse
|
90
|
Erhard F, Dölken L, Schilling B, Schlosser A. Identification of the Cryptic HLA-I Immunopeptidome. Cancer Immunol Res 2020; 8:1018-1026. [PMID: 32561536 DOI: 10.1158/2326-6066.cir-19-0886] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/11/2020] [Accepted: 06/10/2020] [Indexed: 11/16/2022]
Abstract
The success of cancer immunotherapy relies on the ability of cytotoxic T cells to specifically recognize and eliminate tumor cells based on peptides presented by HLA-I. Although the peptide epitopes that elicit the corresponding immune response often remain unidentified, it is generally assumed that neoantigens, due to tumor-specific mutations, are the most common targets. Here, we used a mass spectrometric approach to show an underappreciated class of epitopes that accounts for up to 15% of HLA-I peptides for certain HLA alleles in various tumors and patients. These peptides are translated from cryptic open reading frames in supposedly noncoding regions in the genome and are mostly unidentifiable with conventional computational analyses of mass spectrometry (MS) data. Our approach, Peptide-PRISM, identified thousands of such cryptic peptides in tumor immunopeptidomes. About 20% of these HLA-I peptides represented the C-terminus of the corresponding translation product, suggesting frequent proteasome-independent processing. Our data also revealed HLA-I allele-dependent presentation of cryptic peptides, with HLA-A*03 and HLA-A*11 presenting the highest percentage of cryptic peptides. Our analyses refute the reported frequent presentation of HLA peptides generated by proteasome-catalyzed peptide splicing. Thus, Peptide-PRISM represents an important step toward comprehensive identification of HLA-I immunopeptidomes and reveals cryptic peptides as an abundant class of epitopes with potential relevance for novel immunotherapeutic approaches.
Collapse
Affiliation(s)
- Florian Erhard
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
| | - Lars Dölken
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Bastian Schilling
- Department of Dermatology, Venereology, and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
| |
Collapse
|
91
|
Specht G, Roetschke HP, Mansurkhodzhaev A, Henklein P, Textoris-Taube K, Urlaub H, Mishto M, Liepe J. Large database for the analysis and prediction of spliced and non-spliced peptide generation by proteasomes. Sci Data 2020; 7:146. [PMID: 32415162 PMCID: PMC7228940 DOI: 10.1038/s41597-020-0487-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/16/2020] [Indexed: 11/10/2022] Open
Abstract
Proteasomes are the main producers of antigenic peptides presented to CD8+ T cells. They can cut proteins and release their fragments or recombine non-contiguous fragments thereby generating novel sequences, i.e. spliced peptides. Understanding which are the driving forces and the sequence preferences of both reactions can streamline target discovery in immunotherapies against cancer, infection and autoimmunity. Here, we present a large database of spliced and non-spliced peptides generated by proteasomes in vitro, which is available as simple CSV file and as a MySQL database. To generate the database, we performed in vitro digestions of 55 unique synthetic polypeptide substrates with different proteasome isoforms and experimental conditions. We measured the samples using three mass spectrometers, filtered and validated putative peptides, identified 22,333 peptide product sequences (15,028 spliced and 7,305 non-spliced product sequences). Our database and datasets have been deposited to the Mendeley (doi:10.17632/nr7cs764rc.1) and PRIDE (PXD016782) repositories. We anticipate that this unique database can be a valuable source for predictors of proteasome-catalyzed peptide hydrolysis and splicing, with various future translational applications.
Collapse
Affiliation(s)
- Gerd Specht
- Max-Planck-Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Hanna P Roetschke
- Max-Planck-Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | | | - Petra Henklein
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, D-10117, Berlin, Germany
| | - Kathrin Textoris-Taube
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Shared Facility for Mass Spectrometry, D-10117, Berlin, Germany
| | - Henning Urlaub
- Max-Planck-Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Michele Mishto
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, D-10117, Berlin, Germany.
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL, London, United Kingdom.
| | - Juliane Liepe
- Max-Planck-Institute for Biophysical Chemistry, 37077, Göttingen, Germany.
| |
Collapse
|
92
|
Kula T, Dezfulian MH, Wang CI, Abdelfattah NS, Hartman ZC, Wucherpfennig KW, Lyerly HK, Elledge SJ. T-Scan: A Genome-wide Method for the Systematic Discovery of T Cell Epitopes. Cell 2020; 178:1016-1028.e13. [PMID: 31398327 PMCID: PMC6939866 DOI: 10.1016/j.cell.2019.07.009] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/20/2019] [Accepted: 07/09/2019] [Indexed: 12/20/2022]
Abstract
T cell recognition of specific antigens mediates protection from pathogens and controls neoplasias, but can also cause autoimmunity. Our knowledge of T cell antigens and their implications for human health is limited by the technical limitations of T cell profiling technologies. Here, we present T-Scan, a high-throughput platform for identification of antigens productively recognized by T cells. T-Scan uses lentiviral delivery of antigen libraries into cells for endogenous processing and presentation on major histocompatibility complex (MHC) molecules. Target cells functionally recognized by T cells are isolated using a reporter for granzyme B activity, and the antigens mediating recognition are identified by next-generation sequencing. We show T-Scan correctly identifies cognate antigens of T cell receptors (TCRs) from viral and human genome-wide libraries. We apply T-Scan to discover new viral antigens, perform high-resolution mapping of TCR specificity, and characterize the reactivity of a tumor-derived TCR. T-Scan is a powerful approach for studying T cell responses.
Collapse
Affiliation(s)
- Tomasz Kula
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard University Medical School, Boston, MA, USA
| | - Mohammad H Dezfulian
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard University Medical School, Boston, MA, USA
| | - Charlotte I Wang
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard University Medical School, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Nouran S Abdelfattah
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard University Medical School, Boston, MA, USA
| | - Zachary C Hartman
- Departments of Surgery and Pathology, Duke University Medical Center, 571 Research Drive, Suite 433, Box 2606, Durham, NC 27710, USA
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Herbert Kim Lyerly
- Departments of Surgery, Immunology, and Pathology, Duke University Medical Center, 571 Research Drive, Suite 433, Box 2606, Durham, NC 27710, USA
| | - Stephen J Elledge
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard University Medical School, Boston, MA, USA.
| |
Collapse
|
93
|
Abstract
Throughout the body, T cells monitor MHC-bound ligands expressed on the surface of essentially all cell types. MHC ligands that trigger a T cell immune response are referred to as T cell epitopes. Identifying such epitopes enables tracking, phenotyping, and stimulating T cells involved in immune responses in infectious disease, allergy, autoimmunity, transplantation, and cancer. The specific T cell epitopes recognized in an individual are determined by genetic factors such as the MHC molecules the individual expresses, in parallel to the individual's environmental exposure history. The complexity and importance of T cell epitope mapping have motivated the development of computational approaches that predict what T cell epitopes are likely to be recognized in a given individual or in a broader population. Such predictions guide experimental epitope mapping studies and enable computational analysis of the immunogenic potential of a given protein sequence region.
Collapse
Affiliation(s)
- Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California 92037, USA; ,
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Morten Nielsen
- Department of Health Technology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark;
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, B1650 Buenos Aires, Argentina
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California 92037, USA; ,
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
94
|
Faridi P, Li C, Ramarathinam SH, Illing PT, Mifsud NA, Ayala R, Song J, Gearing LJ, Croft NP, Purcell AW. Response to Comment on "A subset of HLA-I peptides are not genomically templated: Evidence for cis- and trans-spliced peptide ligands". Sci Immunol 2020; 4:4/38/eaaw8457. [PMID: 31420321 DOI: 10.1126/sciimmunol.aaw8457] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022]
Abstract
This is our response to the Technical Comment by Rolfs et al. where we point out errors in their reanalysis of our data.
Collapse
Affiliation(s)
- Pouya Faridi
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Chen Li
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Department of Biology, Institute of Molecular Systems Biology, ETH-Zürich, Zürich 8093, Switzerland
| | - Sri H Ramarathinam
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Patricia T Illing
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Nicole A Mifsud
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Rochelle Ayala
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jiangning Song
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, Victoria 3800, Australia
| | - Linden J Gearing
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Department of Molecular and Translational Science, School of Clinical Science, Monash University, Clayton, Victoria 3168, Australia
| | - Nathan P Croft
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| | - Anthony W Purcell
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
95
|
Rolfs Z, Müller M, Shortreed MR, Smith LM, Bassani-Sternberg M. Comment on "A subset of HLA-I peptides are not genomically templated: Evidence for cis- and trans-spliced peptide ligands". Sci Immunol 2020; 4:4/38/eaaw1622. [PMID: 31420320 DOI: 10.1126/sciimmunol.aaw1622] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 07/16/2019] [Indexed: 12/21/2022]
Abstract
There is still no convincing evidence for the frequent occurrence of posttranslationally spliced HLA-I peptides.
Collapse
Affiliation(s)
- Zach Rolfs
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Markus Müller
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Michael R Shortreed
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Michal Bassani-Sternberg
- Ludwig Cancer Research Center, University of Lausanne, 1066 Epalinges, Switzerland. .,Department of Oncology, University Hospital of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
96
|
Kote S, Pirog A, Bedran G, Alfaro J, Dapic I. Mass Spectrometry-Based Identification of MHC-Associated Peptides. Cancers (Basel) 2020; 12:cancers12030535. [PMID: 32110973 PMCID: PMC7139412 DOI: 10.3390/cancers12030535] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/15/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023] Open
Abstract
Neoantigen-based immunotherapies promise to improve patient outcomes over the current standard of care. However, detecting these cancer-specific antigens is one of the significant challenges in the field of mass spectrometry. Even though the first sequencing of the immunopeptides was done decades ago, today there is still a diversity of the protocols used for neoantigen isolation from the cell surface. This heterogeneity makes it difficult to compare results between the laboratories and the studies. Isolation of the neoantigens from the cell surface is usually done by mild acid elution (MAE) or immunoprecipitation (IP) protocol. However, limited amounts of the neoantigens present on the cell surface impose a challenge and require instrumentation with enough sensitivity and accuracy for their detection. Detecting these neopeptides from small amounts of available patient tissue limits the scope of most of the studies to cell cultures. Here, we summarize protocols for the extraction and identification of the major histocompatibility complex (MHC) class I and II peptides. We aimed to evaluate existing methods in terms of the appropriateness of the isolation procedure, as well as instrumental parameters used for neoantigen detection. We also focus on the amount of the material used in the protocols as the critical factor to consider when analyzing neoantigens. Beyond experimental aspects, there are numerous readily available proteomics suits/tools applicable for neoantigen discovery; however, experimental validation is still necessary for neoantigen characterization.
Collapse
|
97
|
Mosedale M, Watkins PB. Understanding Idiosyncratic Toxicity: Lessons Learned from Drug-Induced Liver Injury. J Med Chem 2020; 63:6436-6461. [PMID: 32037821 DOI: 10.1021/acs.jmedchem.9b01297] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Idiosyncratic adverse drug reactions (IADRs) encompass a diverse group of toxicities that can vary by drug and patient. The complex and unpredictable nature of IADRs combined with the fact that they are rare makes them particularly difficult to predict, diagnose, and treat. Common clinical characteristics, the identification of human leukocyte antigen risk alleles, and drug-induced proliferation of lymphocytes isolated from patients support a role for the adaptive immune system in the pathogenesis of IADRs. Significant evidence also suggests a requirement for direct, drug-induced stress, neoantigen formation, and stimulation of an innate response, which can be influenced by properties intrinsic to both the drug and the patient. This Perspective will provide an overview of the clinical profile, mechanisms, and risk factors underlying IADRs as well as new approaches to study these reactions, focusing on idiosyncratic drug-induced liver injury.
Collapse
Affiliation(s)
- Merrie Mosedale
- Institute for Drug Safety Sciences and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| | - Paul B Watkins
- Institute for Drug Safety Sciences and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
98
|
Acevedo GR, Juiz NA, Ziblat A, Pérez Perri L, Girard MC, Ossowski MS, Fernández M, Hernández Y, Chadi R, Wittig M, Franke A, Nielsen M, Gómez KA. In Silico Guided Discovery of Novel Class I and II Trypanosoma cruzi Epitopes Recognized by T Cells from Chagas' Disease Patients. THE JOURNAL OF IMMUNOLOGY 2020; 204:1571-1581. [PMID: 32060134 DOI: 10.4049/jimmunol.1900873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/29/2019] [Indexed: 11/19/2022]
Abstract
T cell-mediated immune response plays a crucial role in controlling Trypanosoma cruzi infection and parasite burden, but it is also involved in the clinical onset and progression of chronic Chagas' disease. Therefore, the study of T cells is central to the understanding of the immune response against the parasite and its implications for the infected organism. The complexity of the parasite-host interactions hampers the identification and characterization of T cell-activating epitopes. We approached this issue by combining in silico and in vitro methods to interrogate patients' T cells specificity. Fifty T. cruzi peptides predicted to bind a broad range of class I and II HLA molecules were selected for in vitro screening against PBMC samples from a cohort of chronic Chagas' disease patients, using IFN-γ secretion as a readout. Seven of these peptides were shown to activate this type of T cell response, and four out of these contain class I and II epitopes that, to our knowledge, are first described in this study. The remaining three contain sequences that had been previously demonstrated to induce CD8+ T cell response in Chagas' disease patients, or bind HLA-A*02:01, but are, in this study, demonstrated to engage CD4+ T cells. We also assessed the degree of differentiation of activated T cells and looked into the HLA variants that might restrict the recognition of these peptides in the context of human T. cruzi infection.
Collapse
Affiliation(s)
- Gonzalo R Acevedo
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Dr. Héctor N. Torres, CONICET, C1428ADN Ciudad Autónoma de Buenos Aires, Argentina
| | - Natalia A Juiz
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Dr. Héctor N. Torres, CONICET, C1428ADN Ciudad Autónoma de Buenos Aires, Argentina
| | - Andrea Ziblat
- Instituto de Biología y Medicina Experimental, CONICET, C1428ADN Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucas Pérez Perri
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Dr. Héctor N. Torres, CONICET, C1428ADN Ciudad Autónoma de Buenos Aires, Argentina
| | - Magalí C Girard
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Dr. Héctor N. Torres, CONICET, C1428ADN Ciudad Autónoma de Buenos Aires, Argentina
| | - Micaela S Ossowski
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Dr. Héctor N. Torres, CONICET, C1428ADN Ciudad Autónoma de Buenos Aires, Argentina
| | - Marisa Fernández
- Instituto Nacional de Parasitología Dr. Mario Fatala Chabén, C1063ACS Ciudad Autónoma de Buenos Aires, Argentina
| | - Yolanda Hernández
- Instituto Nacional de Parasitología Dr. Mario Fatala Chabén, C1063ACS Ciudad Autónoma de Buenos Aires, Argentina
| | - Raúl Chadi
- Hospital General de Agudos Dr. Ignacio Pirovano, C1430BKC Ciudad Autónoma de Buenos Aires, Argentina
| | - Michael Wittig
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Morten Nielsen
- Instituto de Investigaciones Biotecnológicas, CONICET, 1650 San Martín, Argentina; and.,Department of Health Technology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Karina A Gómez
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Dr. Héctor N. Torres, CONICET, C1428ADN Ciudad Autónoma de Buenos Aires, Argentina;
| |
Collapse
|
99
|
Sarkizova S, Klaeger S, Le PM, Li LW, Oliveira G, Keshishian H, Hartigan CR, Zhang W, Braun DA, Ligon KL, Bachireddy P, Zervantonakis IK, Rosenbluth JM, Ouspenskaia T, Law T, Justesen S, Stevens J, Lane WJ, Eisenhaure T, Lan Zhang G, Clauser KR, Hacohen N, Carr SA, Wu CJ, Keskin DB. A large peptidome dataset improves HLA class I epitope prediction across most of the human population. Nat Biotechnol 2020; 38:199-209. [PMID: 31844290 PMCID: PMC7008090 DOI: 10.1038/s41587-019-0322-9] [Citation(s) in RCA: 322] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022]
Abstract
Prediction of HLA epitopes is important for the development of cancer immunotherapies and vaccines. However, current prediction algorithms have limited predictive power, in part because they were not trained on high-quality epitope datasets covering a broad range of HLA alleles. To enable prediction of endogenous HLA class I-associated peptides across a large fraction of the human population, we used mass spectrometry to profile >185,000 peptides eluted from 95 HLA-A, -B, -C and -G mono-allelic cell lines. We identified canonical peptide motifs per HLA allele, unique and shared binding submotifs across alleles and distinct motifs associated with different peptide lengths. By integrating these data with transcript abundance and peptide processing, we developed HLAthena, providing allele-and-length-specific and pan-allele-pan-length prediction models for endogenous peptide presentation. These models predicted endogenous HLA class I-associated ligands with 1.5-fold improvement in positive predictive value compared with existing tools and correctly identified >75% of HLA-bound peptides that were observed experimentally in 11 patient-derived tumor cell lines.
Collapse
Affiliation(s)
- Siranush Sarkizova
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Susan Klaeger
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Phuong M Le
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Letitia W Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Giacomo Oliveira
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | - Wandi Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David A Braun
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Keith L Ligon
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Center for Patient Derived Models, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Neuropathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Pavan Bachireddy
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | - Travis Law
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jonathan Stevens
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - William J Lane
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Guang Lan Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Computer Science, Metropolitan College, Boston University, Boston, MA, USA
| | | | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Center for Cancer Immunology, Massachusetts General Hospital, Boston, MA, USA.
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Catherine J Wu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| | - Derin B Keskin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Computer Science, Metropolitan College, Boston University, Boston, MA, USA.
| |
Collapse
|
100
|
|