51
|
Sun Y, Wang L, Zhu Z, Li X, Sun H, Zhao Y, Peng C, Liu J, Zhang S, Li M. A 3D-Printed Ferromagnetic Liquid Crystal Elastomer with Programmed Dual-Anisotropy and Multi-Responsiveness. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302824. [PMID: 37437184 DOI: 10.1002/adma.202302824] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/14/2023]
Abstract
Liquid crystal elastomers (LCE) and magnetic soft materials are promising active materials in many emerging fields, such as soft robotics. Despite the high demand for developing active materials that combine the advantages of LCE and magnetic actuation, the lack of independent programming of the LCE nematic order and magnetization in a single material still hinders the desired multi-responsiveness. In this study, a ferromagnetic LCE (magLCE) ink with nematic order and magnetization is developed that can be independently programmed to be anisotropic, referred to as "dual anisotropy", via a customized 3D-printing platform. The magLCE ink is fabricated by dispersing ferromagnetic microparticles in the LCE matrix, and a 3D-printing platform is created by integrating a magnet with 3-DoF motion into an extrusion-based 3D printer. In addition to magnetic fields, magLCEs can also be actuated by heating sources (either environmental heating or photo-heating of the embedded ferromagnetic microparticles) with a high energy density and tunable actuation temperature. A programmed magLCE strip robot is demonstrated with enhanced adaptability to complex environments (different terrains, magnetic fields, and temperatures) using a multi-actuation strategy. The magLCE also has potential applications in mechanical memory, as demonstrated by the multistable mechanical metastructure array with remote writability and stable memory.
Collapse
Affiliation(s)
- Yuxuan Sun
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Liu Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Science, 15 Beisihuan West Road, Beijing, 100190, P. R. China
| | - Zhengqing Zhu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xingxiang Li
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hong Sun
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yong Zhao
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Chenhui Peng
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology of China, Shenzhen, 518055, P. R. China
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Shiwu Zhang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Mujun Li
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
52
|
Qiu W, He X, Fang Z, Wang Y, Dong K, Zhang G, Xu X, Ge Q, Xiong Y. Shape-Tunable 4D Printing of LCEs via Cooling Rate Modulation: Stimulus-Free Locking of Actuated State at Room Temperature. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47509-47519. [PMID: 37769329 DOI: 10.1021/acsami.3c10210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Liquid crystal elastomers (LCEs) have garnered considerable attention in the field of four-dimensional (4D) printing due to their large, reversible, and anisotropic shape-morphing capabilities. By utilizing direct ink writing, intricate LCE structures with programmable shape morphing can be achieved. However, the maintenance of the actuated state for LCEs requires continuous and substantial external stimuli, presenting challenges for practical applications, particularly under ambient conditions. This study reports a straightforward and effective physical approach to lock the actuated state of LCEs through rapid cooling while preserving their reversible performance. Rapid cooling significantly reduces the mobility of the lightly cross-linked network in LCEs, resulting in a notably slow recovery of mesogen alignment. As a result, the locked LCE structures retain their actuated state even at room temperature. Moreover, we demonstrate the ability to achieve tunable shapes between the original and actuated states by modulating the cooling rate, i.e., varying the temperature and type of cooling medium. The proposed method opens up new possibilities to achieve stable and tunable shape locking of soft devices for engineering applications.
Collapse
Affiliation(s)
- Wanglin Qiu
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Xiangnan He
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Zeming Fang
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Yaohui Wang
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Ke Dong
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Guoquan Zhang
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Xuguang Xu
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Qi Ge
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Yi Xiong
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
53
|
Sun J, Lerner E, Tighe B, Middlemist C, Zhao J. Embedded shape morphing for morphologically adaptive robots. Nat Commun 2023; 14:6023. [PMID: 37758737 PMCID: PMC10533550 DOI: 10.1038/s41467-023-41708-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Shape-morphing robots can change their morphology to fulfill different tasks in varying environments, but existing shape-morphing capability is not embedded in a robot's body, requiring bulky supporting equipment. Here, we report an embedded shape-morphing scheme with the shape actuation, sensing, and locking, all embedded in a robot's body. We showcase this embedded scheme using three morphing robotic systems: 1) self-sensing shape-morphing grippers that can adapt to objects for adaptive grasping; 2) a quadrupedal robot that can morph its body shape for different terrestrial locomotion modes (walk, crawl, or horizontal climb); 3) an untethered robot that can morph its limbs' shape for amphibious locomotion. We also create a library of embedded morphing modules to demonstrate the versatile programmable shapes (e.g., torsion, 3D bending, surface morphing, etc.). Our embedded morphing scheme offers a promising avenue for robots to reconfigure their morphology in an embedded manner that can adapt to different environments on demand.
Collapse
Affiliation(s)
- Jiefeng Sun
- Adaptive Robotics Lab, Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA.
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, USA.
| | - Elisha Lerner
- Adaptive Robotics Lab, Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Brandon Tighe
- Adaptive Robotics Lab, Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Clint Middlemist
- Adaptive Robotics Lab, Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Jianguo Zhao
- Adaptive Robotics Lab, Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
54
|
Skačej G, Querciagrossa L, Zannoni C. On the Effects of Different trans and cis Populations in Azobenzene Liquid Crystal Elastomers: A Monte Carlo Investigation. ACS APPLIED POLYMER MATERIALS 2023; 5:5805-5815. [PMID: 37588085 PMCID: PMC10426334 DOI: 10.1021/acsapm.3c00361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/13/2023] [Indexed: 08/18/2023]
Abstract
We investigate main-chain liquid crystal elastomers (LCEs) formed by photoresponsive azobenzene units with different populations of trans and cis conformers (from fully trans to fully cis). We study their macroscopic properties as well as their molecular organization using extensive Monte Carlo simulations of a simple coarse-grained model where the trans and cis conformers are represented by soft-core biaxial Gay-Berne particles with size and interaction energy parameters obtained by fitting a bare bone azobenzene moiety represented at atomistic level. We find that increasing the fraction of cis conformers, as could be obtained by near-UV irradiation, shifts the nematic-isotropic transition to a lower temperature, consistently with experiment, while generating internal stress in a clamped sample. An analysis of pair distributions shows that the immediate surroundings of a bent cis molecule are slightly less dense and more orientationally disordered in comparison with that of a trans conformer. Comparing nematic and smectic LCEs, actuation in the smectic phase proved less effective, disrupting the smectic layers to some extent but preserving orientational order of the azobenzene moieties.
Collapse
Affiliation(s)
- Gregor Skačej
- Faculty
of Mathematics and Physics, University of
Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Lara Querciagrossa
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
- CINECA, Via Magnanelli 6/3, I-40033 Casalecchio di Reno, Italy
| | - Claudio Zannoni
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| |
Collapse
|
55
|
Zhao J, Meng F. Modeling Viscoelasticity and Dynamic Nematic Order of Exchangeable Liquid Crystal Elastomers. PHYSICAL REVIEW LETTERS 2023; 131:068101. [PMID: 37625059 DOI: 10.1103/physrevlett.131.068101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/26/2023] [Indexed: 08/27/2023]
Abstract
Exchangeable liquid crystal elastomers (XLCEs), an emerging class of recyclable polymer materials, consist of liquid crystalline polymers which are dynamically crosslinked. We develop a macroscopic continuum model by incorporating the microscopic dynamic features of the cross-links, which can be utilized to understand the viscoelasticity of the materials together with the dynamic nematic order. As applications of the model, we study the rheological responses of XLCEs in three cases: stress relaxation, strain ramp, and creep compliance, where the materials show interesting rheology as an interplay between the dynamic nematic order of the mesogenic units, the elasticity from the network structure, and the dissipation due to chain exchange reactions. Not only being useful in understanding the physical mechanism underlying the fascinating characteristics of XLCEs, this work can also guide their future fabrications with desired rheological properties.
Collapse
Affiliation(s)
- Jiameng Zhao
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fanlong Meng
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
56
|
Alves S, Babcinschi M, Silva A, Neto D, Fonseca D, Neto P. Integrated Design Fabrication and Control of a Bioinspired Multimaterial Soft Robotic Hand. CYBORG AND BIONIC SYSTEMS 2023; 4:0051. [PMID: 37559941 PMCID: PMC10408382 DOI: 10.34133/cbsystems.0051] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023] Open
Abstract
Machines that mimic humans have inspired scientists for centuries. Bioinspired soft robotic hands are a good example of such an endeavor, featuring intrinsic material compliance and continuous motion to deal with uncertainty and adapt to unstructured environments. Recent research led to impactful achievements in functional designs, modeling, fabrication, and control of soft robots. Nevertheless, the full realization of life-like movements is still challenging to achieve, often based on trial-and-error considerations from design to fabrication, consuming time and resources. In this study, a soft robotic hand is proposed, composed of soft actuator cores and an exoskeleton, featuring a multimaterial design aided by finite element analysis (FEA) to define the hand geometry and promote finger's bendability. The actuators are fabricated using molding, and the exoskeleton is 3D-printed in a single step. An ON-OFF controller keeps the set fingers' inner pressures related to specific bending angles, even in the presence of leaks. The FEA numerical results were validated by experimental tests, as well as the ability of the hand to grasp objects with different shapes, weights, and sizes. This integrated solution will make soft robotic hands more available to people, at a reduced cost, avoiding the time-consuming design-fabrication trial-and-error processes.
Collapse
Affiliation(s)
- Samuel Alves
- University of Coimbra, CEMMPRE, ARISE, Department of Mechanical Engineering, 3030-788 Coimbra, Portugal
| | - Mihail Babcinschi
- University of Coimbra, CEMMPRE, ARISE, Department of Mechanical Engineering, 3030-788 Coimbra, Portugal
| | - Afonso Silva
- University of Coimbra, CEMMPRE, ARISE, Department of Mechanical Engineering, 3030-788 Coimbra, Portugal
| | - Diogo Neto
- University of Coimbra, CEMMPRE, ARISE, Department of Mechanical Engineering, 3030-788 Coimbra, Portugal
| | - Diogo Fonseca
- University of Coimbra, CEMMPRE, ARISE, Department of Mechanical Engineering, 3030-788 Coimbra, Portugal
| | - Pedro Neto
- University of Coimbra, CEMMPRE, ARISE, Department of Mechanical Engineering, 3030-788 Coimbra, Portugal
| |
Collapse
|
57
|
Wang J, Sotzing M, Lee M, Chortos A. Passively addressed robotic morphing surface (PARMS) based on machine learning. SCIENCE ADVANCES 2023; 9:eadg8019. [PMID: 37478174 PMCID: PMC10361599 DOI: 10.1126/sciadv.adg8019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/21/2023] [Indexed: 07/23/2023]
Abstract
Reconfigurable morphing surfaces provide new opportunities for advanced human-machine interfaces and bio-inspired robotics. Morphing into arbitrary surfaces on demand requires a device with a sufficiently large number of actuators and an inverse control strategy. Developing compact, efficient control interfaces and algorithms is vital for broader adoption. In this work, we describe a passively addressed robotic morphing surface (PARMS) composed of matrix-arranged ionic actuators. To reduce the complexity of the physical control interface, we introduce passive matrix addressing. Matrix addressing allows the control of N2 independent actuators using only 2N control inputs, which is substantially lower than traditional direct addressing (N2 control inputs). Using machine learning with finite element simulations for training, our control algorithm enables real-time, high-precision forward and inverse control, allowing PARMS to dynamically morph into arbitrary achievable predefined surfaces on demand. These innovations may enable the future implementation of PARMS in wearables, haptics, and augmented reality/virtual reality.
Collapse
Affiliation(s)
- Jue Wang
- Department of Mechanical Engineering, Purdue University, 500 Central Dr, Lafayette, IN 47907, USA
| | - Michael Sotzing
- Department of Mechanical Engineering, Purdue University, 500 Central Dr, Lafayette, IN 47907, USA
| | - Mina Lee
- Department of Mechanical Engineering, Purdue University, 500 Central Dr, Lafayette, IN 47907, USA
| | - Alex Chortos
- Department of Mechanical Engineering, Purdue University, 500 Central Dr, Lafayette, IN 47907, USA
| |
Collapse
|
58
|
He Q, Yin R, Hua Y, Jiao W, Mo C, Shu H, Raney JR. A modular strategy for distributed, embodied control of electronics-free soft robots. SCIENCE ADVANCES 2023; 9:eade9247. [PMID: 37418520 DOI: 10.1126/sciadv.ade9247] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 06/02/2023] [Indexed: 07/09/2023]
Abstract
Robots typically interact with their environments via feedback loops consisting of electronic sensors, microcontrollers, and actuators, which can be bulky and complex. Researchers have sought new strategies for achieving autonomous sensing and control in next-generation soft robots. We describe here an electronics-free approach for autonomous control of soft robots, whose compositional and structural features embody the sensing, control, and actuation feedback loop of their soft bodies. Specifically, we design multiple modular control units that are regulated by responsive materials such as liquid crystal elastomers. These modules enable the robot to sense and respond to different external stimuli (light, heat, and solvents), causing autonomous changes to the robot's trajectory. By combining multiple types of control modules, complex responses can be achieved, such as logical evaluations that require multiple events to occur in the environment before an action is performed. This framework for embodied control offers a new strategy toward autonomous soft robots that operate in uncertain or dynamic environments.
Collapse
Affiliation(s)
- Qiguang He
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rui Yin
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yucong Hua
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Weijian Jiao
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chengyang Mo
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hang Shu
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jordan R Raney
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
59
|
Shklyaev OE, Laskar A, Balazs AC. Engineering confined fluids to autonomously assemble hierarchical 3D structures. PNAS NEXUS 2023; 2:pgad232. [PMID: 37497047 PMCID: PMC10367439 DOI: 10.1093/pnasnexus/pgad232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 06/22/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
The inherent coupling of chemical and mechanical behavior in fluid-filled microchambers enables the fluid to autonomously perform work, which in turn can direct the self-organization of objects immersed in the solution. Using theory and simulations, we show that the combination of diffusioosmotic and buoyancy mechanisms produce independently controlled, respective fluid flows: one generated by confining surfaces and the other in the bulk of the solution. With both flows present, the fluid can autonomously join 2D, disconnected pieces to a chemically active, "sticky" base and then fold the resulting layer into regular 3D shapes (e.g. pyramids, tetrahedrons, and cubes). Here, the fluid itself performs the work of construction and thus, this process does not require extensive external machinery. If several sticky bases are localized on the bottom surface, the process can be parallelized, with the fluid simultaneously forming multiple structures of the same or different geometries. Hence, this approach can facilitate the relatively low-cost, mass production of 3D micron to millimeter-sized structures. Formed in an aqueous solution, the assembled structures could be compatible with biological environments, and thus, potentially useful in medical and biochemical applications.
Collapse
Affiliation(s)
- Oleg E Shklyaev
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, 3700 O'Hara Street Benedum Hall of Engineering, Pittsburgh, PA 15261, USA
| | - Abhrajit Laskar
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, 3700 O'Hara Street Benedum Hall of Engineering, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
60
|
Chen E, Yang Y, Li M, Li B, Liu G, Mu W, Yin R. Bio-Mimic, Fast-Moving, and Flippable Soft Piezoelectric Robots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300673. [PMID: 37163730 PMCID: PMC10369280 DOI: 10.1002/advs.202300673] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/09/2023] [Indexed: 05/12/2023]
Abstract
Cheetahs achieve high-speed movement and unique athletic gaits through the contraction and expansion of their limbs during the gallop. However, few soft robots can mimic their gaits and achieve the same speed of movement. Inspired by the motion gait of cheetahs, here the resonance of double spiral structure for amplified motion performance and environmental adaptability in a soft-bodied hopping micro-robot is exploited. The 0.058 g, 10 mm long tethered soft robot is capable of achieving a maximum motion speed of 42.8 body lengths per second (BL/s) and a maximum average turning speed of 482° s-1 . In addition, this robot can maintain high speed movement even after flipping. The soft robot's ability to move over complex terrain, climb hills, and carry heavy loads as well as temperature sensors is demonstrated. This research opens a new structural design for soft robots: a double spiral configuration that efficiently translates the deformation of soft actuators into swift motion of the robot with high environmental adaptability.
Collapse
Affiliation(s)
- Erdong Chen
- College of EngineeringOcean University of ChinaQingdao266100China
- Textile Engineering, Chemistry and ScienceWilson College of TextilesNorth Carolina State UniversityRaleighNC27695USA
| | - Yiduo Yang
- Textile Engineering, Chemistry and ScienceWilson College of TextilesNorth Carolina State UniversityRaleighNC27695USA
| | - Mengjiao Li
- College of EngineeringOcean University of ChinaQingdao266100China
- Textile Engineering, Chemistry and ScienceWilson College of TextilesNorth Carolina State UniversityRaleighNC27695USA
| | - Binghang Li
- College of EngineeringOcean University of ChinaQingdao266100China
- Textile Engineering, Chemistry and ScienceWilson College of TextilesNorth Carolina State UniversityRaleighNC27695USA
| | - Guijie Liu
- College of EngineeringOcean University of ChinaQingdao266100China
| | - Weilei Mu
- College of EngineeringOcean University of ChinaQingdao266100China
| | - Rong Yin
- Textile Engineering, Chemistry and ScienceWilson College of TextilesNorth Carolina State UniversityRaleighNC27695USA
| |
Collapse
|
61
|
Wang Q, Tian X, Zhang D, Zhou Y, Yan W, Li D. Programmable spatial deformation by controllable off-center freestanding 4D printing of continuous fiber reinforced liquid crystal elastomer composites. Nat Commun 2023; 14:3869. [PMID: 37391425 DOI: 10.1038/s41467-023-39566-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 06/16/2023] [Indexed: 07/02/2023] Open
Abstract
Owing to their high deformation ability, 4D printed structures have various applications in origami structures, soft robotics and deployable mechanisms. As a material with programmable molecular chain orientation, liquid crystal elastomer is expected to produce the freestanding, bearable and deformable three-dimensional structure. However, majority of the existing 4D printing methods for liquid crystal elastomers can only fabricate planar structures, which limits their deformation designability and bearing capacity. Here we propose a direct ink writing based 4D printing method for freestanding continuous fiber reinforced composites. Continuous fibers can support freestanding structures during the printing process and improve the mechanical property and deformation ability of 4D printed structures. In this paper, the integration of 4D printed structures with fully impregnated composite interfaces, programmable deformation ability and high bearing capacity are realized by adjusting the off-center distribution of the fibers, and the printed liquid crystal composite can carry a load of up to 2805 times its own weight and achieve a bending deformation curvature of 0.33 mm-1 at 150 °C. This research is expected to open new avenues for creating soft robotics, mechanical metamaterials and artificial muscles.
Collapse
Affiliation(s)
- Qingrui Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Xiaoyong Tian
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| | - Daokang Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Yanli Zhou
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Wanquan Yan
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| |
Collapse
|
62
|
Sihite E, Kalantari A, Nemovi R, Ramezani A, Gharib M. Multi-Modal Mobility Morphobot (M4) with appendage repurposing for locomotion plasticity enhancement. Nat Commun 2023; 14:3323. [PMID: 37369710 PMCID: PMC10300070 DOI: 10.1038/s41467-023-39018-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Robot designs can take many inspirations from nature, where there are many examples of highly resilient and fault-tolerant locomotion strategies to navigate complex terrains by recruiting multi-functional appendages. For example, birds such as Chukars and Hoatzins can repurpose wings for quadrupedal walking and wing-assisted incline running. These animals showcase impressive dexterity in employing the same appendages in different ways and generating multiple modes of locomotion, resulting in highly plastic locomotion traits which enable them to interact and navigate various environments and expand their habitat range. The robotic biomimicry of animals' appendage repurposing can yield mobile robots with unparalleled capabilities. Taking inspiration from animals, we have designed a robot capable of negotiating unstructured, multi-substrate environments, including land and air, by employing its components in different ways as wheels, thrusters, and legs. This robot is called the Multi-Modal Mobility Morphobot, or M4 in short. M4 can employ its multi-functional components composed of several actuator types to (1) fly, (2) roll, (3) crawl, (4) crouch, (5) balance, (6) tumble, (7) scout, and (8) loco-manipulate. M4 can traverse steep slopes of up to 45 deg. and rough terrains with large obstacles when in balancing mode. M4 possesses onboard computers and sensors and can autonomously employ its modes to negotiate an unstructured environment. We present the design of M4 and several experiments showcasing its multi-modal capabilities.
Collapse
Affiliation(s)
- Eric Sihite
- Aerospace Engineering Department, California Institute of Technology, 1200 E California Blvd, Pasadena, CA, USA
| | - Arash Kalantari
- Jet Propulsion Laboratory (JPL), 4800 Oak Grove Drive, M/S 82-105, Pasadena, CA, USA
| | - Reza Nemovi
- Aerospace Engineering Department, California Institute of Technology, 1200 E California Blvd, Pasadena, CA, USA
| | - Alireza Ramezani
- Electrical and Computer Engineering Department, Northeastern University, 360 Huntington Ave, Boston, MA, USA.
| | - Morteza Gharib
- Aerospace Engineering Department, California Institute of Technology, 1200 E California Blvd, Pasadena, CA, USA
| |
Collapse
|
63
|
Chen M, Gao M, Bai L, Zheng H, Qi HJ, Zhou K. Recent Advances in 4D Printing of Liquid Crystal Elastomers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209566. [PMID: 36461147 DOI: 10.1002/adma.202209566] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/22/2022] [Indexed: 06/09/2023]
Abstract
Liquid crystal elastomers (LCEs) are renowned for their large, reversible, and anisotropic shape change in response to various external stimuli due to their lightly cross-linked polymer networks with an oriented mesogen direction, thus showing great potential for applications in robotics, bio-medics, electronics, optics, and energy. To fully take advantage of the anisotropic stimuli-responsive behaviors of LCEs, it is preferable to achieve a locally controlled mesogen alignment into monodomain orientations. In recent years, the application of 4D printing to LCEs opens new doors for simultaneously programming the mesogen alignment and the 3D geometry, offering more opportunities and higher feasibility for the fabrication of 4D-printed LCE objects with desirable stimuli-responsive properties. Here, the state-of-the-art advances in 4D printing of LCEs are reviewed, with emphasis on both the mechanisms and potential applications. First, the fundamental properties of LCEs and the working principles of the representative 4D printing techniques are briefly introduced. Then, the fabrication of LCEs by 4D printing techniques and the advantages over conventional manufacturing methods are demonstrated. Finally, perspectives on the current challenges and potential development trends toward the 4D printing of LCEs are discussed, which may shed light on future research directions in this new field.
Collapse
Affiliation(s)
- Mei Chen
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ming Gao
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Lichun Bai
- School of Traffic and Transportation Engineering, Central South University, Changsha, 410075, China
| | - Han Zheng
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - H Jerry Qi
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
64
|
Vinciguerra MR, Patel DK, Zu W, Tavakoli M, Majidi C, Yao L. Multimaterial Printing of Liquid Crystal Elastomers with Integrated Stretchable Electronics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24777-24787. [PMID: 37163362 DOI: 10.1021/acsami.2c23028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Liquid crystal elastomers (LCEs) have grown in popularity in recent years as a stimuli-responsive material for soft actuators and shape reconfigurable structures. To make these material systems electrically responsive, they must be integrated with soft conductive materials that match the compliance and deformability of the LCE. This study introduces a design and manufacturing methodology for combining direct ink write (DIW) 3D printing of soft, stretchable conductive inks with DIW-based "4D printing" of LCE to create fully integrated, electrically responsive, shape programmable matter. The conductive ink is composed of a soft thermoplastic elastomer, a liquid metal alloy (eutectic gallium indium, EGaIn), and silver flakes, exhibiting both high stretchability and conductivity (order of 105 S m-1). Empirical tuning of the LCE printing parameters gives rise to a smooth surface (<10 μm) for patterning the conductive ink with controlled trace dimensions. This multimaterial printing method is used to create shape reconfigurable LCE devices with on-demand circuit patterning that could otherwise not be easily fabricated through traditional means, such as an LCE bending actuator able to blink a Morse code signal and an LCE crawler with an on/off photoresistor controller. In contrast to existing fabrication methodologies, the inclusion of the conductive ink allows for stable power delivery to surface mount devices and Joule heating traces in a highly dynamic LCE system. This digital fabrication approach can be leveraged to push LCE actuators closer to becoming functional devices, such as shape programmable antennas and actuators with integrated sensing.
Collapse
Affiliation(s)
- Michael R Vinciguerra
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, United States
| | - Dinesh K Patel
- Human Computer Interaction Institute, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, United States
| | - Wuzhou Zu
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, United States
| | - Mahmoud Tavakoli
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra 3090-290, Portugal
| | - Carmel Majidi
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, United States
| | - Lining Yao
- Human Computer Interaction Institute, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
65
|
Wang Z, Zhang X, Wang Y, Fang Z, Jiang H, Yang Q, Zhu X, Liu M, Fan X, Kong J. Untethered Soft Microrobots with Adaptive Logic Gates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206662. [PMID: 36809583 PMCID: PMC10161047 DOI: 10.1002/advs.202206662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/16/2023] [Indexed: 05/06/2023]
Abstract
Integrating adaptative logic computation directly into soft microrobots is imperative for the next generation of intelligent soft microrobots as well as for the smart materials to move beyond stimulus-response relationships and toward the intelligent behaviors seen in biological systems. Acquiring adaptivity is coveted for soft microrobots that can adapt to implement different works and respond to different environments either passively or actively through human intervention like biological systems. Here, a novel and simple strategy for constructing untethered soft microrobots based on stimuli-responsive hydrogels that can switch logic gates according to the surrounding stimuli of environment is introduced. Different basic logic gates and combinational logic gates are integrated into a microrobot via a straightforward method. Importantly, two kinds of soft microrobots with adaptive logic gates are designed and fabricated, which can smartly switch logic operation between AND gate and OR gate under different surrounding environmental stimuli. Furthermore, a same magnetic microrobot with adaptive logic gate is used to capture and release the specified objects through the change of the surrounding environmental stimuli based on AND or OR logic gate. This work contributes an innovative strategy to integrate computation into small-scale untethered soft robots with adaptive logic gates.
Collapse
Affiliation(s)
- Zichao Wang
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary ConditionsShaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Xuan Zhang
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary ConditionsShaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Yang Wang
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary ConditionsShaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Ziyi Fang
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary ConditionsShaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - He Jiang
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary ConditionsShaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Qinglin Yang
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary ConditionsShaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Xuefeng Zhu
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary ConditionsShaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Mingze Liu
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary ConditionsShaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Xiaodong Fan
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary ConditionsShaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Jie Kong
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary ConditionsShaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'an710072P. R. China
| |
Collapse
|
66
|
Su J, Zhang Y, Cheng L, Zhu L, Yang R, Niu F, Yang K, Duan Y. Oribron: An Origami-Inspired Deformable Rigid Bronchoscope for Radial Support. MICROMACHINES 2023; 14:822. [PMID: 37421055 DOI: 10.3390/mi14040822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 07/09/2023]
Abstract
The structure of a traditional rigid bronchoscope includes proximal, distal, and body, representing an important means to treat hypoxic diseases. However, the body structure is too simple, resulting in the utilization rate of oxygen being usually low. In this work, we reported a deformable rigid bronchoscope (named Oribron) by adding a Waterbomb origami structure to the body. The Waterbomb's backbone is made of films, and the pneumatic actuators are placed inside it to achieve rapid deformation at low pressure. Experiments showed that Waterbomb has a unique deformation mechanism, which can transform from a small-diameter configuration (#1) to a large-diameter configuration (#2), showing excellent radial support capability. When Oribron entered or left the trachea, the Waterbomb remained in #1. When Oribron is working, the Waterbomb transforms from #1 to #2. Since #2 reduces the gap between the bronchoscope and the tracheal wall, it effectively slows down the rate of oxygen loss, thus promoting the absorption of oxygen by the patient. Therefore, we believe that this work will provide a new strategy for the integrated development of origami and medical devices.
Collapse
Affiliation(s)
- Junjie Su
- School of Biomedical Engineering, Anhui Medical University, Hefei 230009, China
| | - Yangyang Zhang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230009, China
| | - Liang Cheng
- School of Biomedical Engineering, Anhui Medical University, Hefei 230009, China
| | - Ling Zhu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Runhuai Yang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230009, China
| | - Fuzhou Niu
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Ke Yang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Yuping Duan
- School of Biomedical Engineering, Anhui Medical University, Hefei 230009, China
| |
Collapse
|
67
|
Kroo LA, Bull MS, Prakash M. Active foam: the adaptive mechanics of 2D air-liquid foam under cyclic inflation. SOFT MATTER 2023; 19:2539-2553. [PMID: 36942719 DOI: 10.1039/d3sm00019b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Foam is a canonical example of disordered soft matter where local force balance leads to the competition of many metastable configurations. We present an experimental and theoretical framework for "active foam" where an individual voxel inflates and deflates periodically. Local periodic activity leads to irreversible and reversible T1 transitions throughout the foam, eventually reaching a reversible limit cycle. Individual vertices displace outwards and subsequently return back to their approximate original radial position; this radial displacement follows an inverse law. Surprisingly, each return trajectory does not retrace its outbound path but encloses a finite area, with a clockwise (CW) or counterclockwise (CCW) direction, which we define as a local swirl. These swirls form coherent patterns spanning the scale of the material. Using a dynamical model, we demonstrate that swirl arises from disorder in the local micro-structure. We demonstrate that disorder and strain-rate control a crossover between cooperation and competition between swirls in adjacent vertices. Over 5-10 cycles, the region around the active voxel structurally adapts from a higher-energy metastable state to a lower-energy state, locally ordering and stiffening the structure. The coherent domains of CW/CCW swirl become smaller as the system stabilizes, indicative of a process similar to the Hall-Petch effect. Finally, we introduce a statistical model that evolves edge lengths with a set of rules to explore how this class of materials adapts as a function of initial structure. Adding activity to foam couples structural disorder and adaptive dynamics to encourage the development of a new class of abiotic, cellularized active matter.
Collapse
Affiliation(s)
- L A Kroo
- Department of Mechanical Engineering, Stanford University, USA
| | | | - Manu Prakash
- Department of Bioengineering, Stanford University, USA.
| |
Collapse
|
68
|
Li CY, Jiao D, Hao XP, Hong W, Zheng Q, Wu ZL. Bistable Joints Enable the Morphing of Hydrogel Sheets with Multistable Configurations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211802. [PMID: 36680376 DOI: 10.1002/adma.202211802] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Joints, as a flexing element to connect different parts, are widespread in natural systems. Various joints exist in the body and play crucial roles to execute gestures and gaits. These scenarios have inspired the design of mechanical joints with passive, hard materials, which usually need an external power supply to drive the transformations. The incorporation of soft and active joints provides a modular strategy to devise soft actuators and robots. However, transformations of responsive joints under external stimuli are usually in uni-mode with a pre-determined direction. Here, hydrogel joints capable of folding and twisting transformation in bi-mode are reported, which enable the composite hydrogel to form multiple configurations under constant conditions. These joints have an in-plane gradient structure and comprise stiff, passive gel as the frame and soft, active gel as the actuating unit. Under external stimuli, the response mismatch between different gels leads to out-of-plane folding or twisting deformation with the feature of bistability. These joints can be modularly integrated with other gels to afford complex deformations and multistable configurations. This approach favors selective control of hydrogel's architectures and versatile design of hydrogel devices, as demonstrated by proof-of-concept examples. It shall also merit the development of metamaterials, soft actuators, and robots, etc.
Collapse
Affiliation(s)
- Chen Yu Li
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dejin Jiao
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xing Peng Hao
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wei Hong
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
69
|
Silva PES, Lin X, Vaara M, Mohan M, Vapaavuori J, Terentjev EM. Active Textile Fabrics from Weaving Liquid Crystalline Elastomer Filaments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210689. [PMID: 36639143 DOI: 10.1002/adma.202210689] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Active fabrics, responding autonomously to environmental changes, are the "Holy Grail" of the development of smart textiles. Liquid crystal elastomers (LCEs) promise to be the base materials for large-stroke reversible actuation. The mechanical behavior of LCEs matches almost exactly the human muscle. Yet, it has not been possible to produce filaments from LCEs that will be suitable for standard textile production methods, such as weaving. Based on the recent development of LCE fibers, here, the crafting of active fabrics incorporating LCE yarn, woven on a standard loom, giving control over the weave density and structure, is presented. Two types of LCE yarns (soft and stiff) and their incorporation into several weaving patterns are tested, and the "champions" identified: the twill pattern with stiffer LCE yarn that shows the greatest blocking force of 1-2 N cm-1 , and the weft rib pattern with over 10% reversible actuation strain on repeated heating cycles. Reversible 3D shape changes of active fabric utilize the circular weaving patterns that lead to cone shapes upon heating. The seamless combination of active LCE yarns into the rich portfolio of existing passive yarns can be transformative in creating new stimuli-responsive actuating textiles.
Collapse
Affiliation(s)
- Pedro E S Silva
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, Espoo, 02150, Finland
| | - Xueyan Lin
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Maija Vaara
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, Espoo, 02150, Finland
| | - Mithila Mohan
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, Espoo, 02150, Finland
| | - Jaana Vapaavuori
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, Espoo, 02150, Finland
| | - Eugene M Terentjev
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| |
Collapse
|
70
|
Javadzadeh M, Del Barrio J, Sánchez-Somolinos C. Melt Electrowriting of Liquid Crystal Elastomer Scaffolds with Programmed Mechanical Response. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209244. [PMID: 36459991 DOI: 10.1002/adma.202209244] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Recently, significant advances have been achieved to precisely program the response of liquid crystal elastomers (LCEs) through extrusion-based additive manufacturing techniques; however, important challenges remain, especially when well-defined scaffolds based on ultrafine fibers are required. Here the melt electrowriting of reactive liquid crystalline inks, leading, after ultraviolet-light-induced crosslinking, to digitally positioned uniform LCE fibers with diameters ranging from hundreds of nanometers to tens of micrometers is presented, which is hardly accessible with conventional extrusion-based printing techniques. The electrowriting process induces the preferential alignment of the mesogens parallel to the fiber's axis. Such an alignment, defined by the printing path, determines the mechanical response of the crosslinked material upon stimulation. This manufacturing platform allows the preparation of open square lattice scaffolds with ultrafine fibers (a few micrometers in diameter), periods as small as 90 µm, and well-defined morphology. Additionally, the combination of accurate fiber stacking (up to 50 layers) and fiber fusion between layers leads to unprecedented microstructures composed of high-aspect-ratio LCE thin walls. The possibility of digitally controlling the printing of fibers allows the preparation complex fiber-based scaffolds with programmed and reversible shape-morphing, thus opening new avenues to prepare miniaturized actuators and smart structures for soft robotics and biomedical applications.
Collapse
Affiliation(s)
- Mehrzad Javadzadeh
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Departamento de Física de la Materia Condensada, Zaragoza, 50009, Spain
| | - Jesús Del Barrio
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Departamento de Química Orgánica, Zaragoza, 50009, Spain
| | - Carlos Sánchez-Somolinos
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Departamento de Física de la Materia Condensada, Zaragoza, 50009, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Zaragoza, 50018, Spain
| |
Collapse
|
71
|
Wu S, Hong Y, Zhao Y, Yin J, Zhu Y. Caterpillar-inspired soft crawling robot with distributed programmable thermal actuation. SCIENCE ADVANCES 2023; 9:eadf8014. [PMID: 36947625 PMCID: PMC10032605 DOI: 10.1126/sciadv.adf8014] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/21/2023] [Indexed: 06/14/2023]
Abstract
Many inspirations for soft robotics are from the natural world, such as octopuses, snakes, and caterpillars. Here, we report a caterpillar-inspired, energy-efficient crawling robot with multiple crawling modes, enabled by joule heating of a patterned soft heater consisting of silver nanowire networks in a liquid crystal elastomer (LCE)-based thermal bimorph actuator. With patterned and distributed heaters and programmable heating, different temperature and hence curvature distribution along the body of the robot are achieved, enabling bidirectional locomotion as a result of the friction competition between the front and rear end with the ground. The thermal bimorph behavior is studied to predict and optimize the local curvature of the robot under thermal stimuli. The bidirectional actuation modes with the crawling speeds are investigated. The capability of passing through obstacles with limited spacing are demonstrated. The strategy of distributed and programmable heating and actuation with thermal responsive materials offers unprecedented capabilities for smart and multifunctional soft robots.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Yaoye Hong
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Yao Zhao
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Jie Yin
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill and NC State University, Chapel Hill, NC 27599, USA
| |
Collapse
|
72
|
Zheng X, Ma Q, Tao Y, Huang Y, Li M, Ji H. Ultrasonic-Excited Ultrafast Seamless Integration of Heterostructured Liquid Crystalline Elastomers for Multi-responsive Soft Actuators. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13609-13617. [PMID: 36857738 DOI: 10.1021/acsami.2c21888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Multicomponent/heterostructured liquid crystalline elastomers (LCEs) have recently garnered extensive attention for the design of soft robots with high dexterity and flexibility. However, the reported integration strategies of LCEs seriously suffer from high welding temperature, long processing time, and poor joint quality. Herein, the high-efficiency seamless ultrasonic welding (UW) of reprogrammable silver nanowire-LCE composites (AgNW-LCEs) have been realized without any auxiliary reagents based on the dynamic silver-disulfide coordination interactions. The elaborate combination of silver-disulfide coordination interactions and UW technology establishes an effective double-network welding mechanism of AgNWs and dynamic LC networks due to the high-frequency vibration at the welding interface. During the UW process, monolithic AgNW-LCEs can be integrated into heterostructured actuators at room temperature for 0.68 s. Furthermore, the welded AgNW-LCEs demonstrate an exceptional strain healing efficiency of ∼100%, a stress healing efficiency of ∼85%, and a maintained orientation of the LC alignment. Taking advantage of the high-efficiency UW technology, the heterostructured AgNW-LCE actuators with different LC alignments or LC monomers have been successfully implemented for a multi-degree-of-freedom soft robotic arm and a time-modulated flower-mimic actuator. This work provides an efficient approach toward the development of multi-responsive entirely soft actuators based on smart polymers.
Collapse
Affiliation(s)
- Xiaoxiong Zheng
- The State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Qiuchen Ma
- The State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Yuan Tao
- The State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Yan Huang
- The State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Mingyu Li
- The State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Hongjun Ji
- The State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| |
Collapse
|
73
|
Yang J, Zhang H, Berdin A, Hu W, Zeng H. Dandelion-Inspired, Wind-Dispersed Polymer-Assembly Controlled by Light. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206752. [PMID: 36574479 PMCID: PMC9982548 DOI: 10.1002/advs.202206752] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/08/2022] [Indexed: 06/01/2023]
Abstract
The rise of stimuli-responsive polymers has brought about a wealth of materials for small-scale, wirelessly controlled soft-bodied robots. Thinking beyond conventional robotic mobilities already demonstrated in synthetic systems, such as walking, swimming and jumping, flying in air by dispersal, gliding, or even hovering is a frontier yet to be explored by responsive materials. The demanding requirements for actuator's performance, lightweight, and effective aerodynamic design underlie the grand challenges. Here, a soft matter-based porous structure capable of wind-assisted dispersal and lift-off/landing action under the control of a light beam is reported. The design is inspired by the seed of dandelion, resembling several biomimetic features, i.e., high porosity, lightweight, and separated vortex ring generation under a steady wind flow. Superior to its natural counterparts, this artificial seed is equipped with a soft actuator made of light-responsive liquid crystalline elastomer, which induces reversible opening/closing actions of the bristles upon visible light excitation. This shape-morphing enables manual tuning of terminal velocity, drag coefficient, and wind threshold for dispersal. Optically controlled wind-assisted lift-off and landing actions, and a light-induced local accumulation in descending structures are demonstrated. The results offer novel approaches for wirelessly controlled, miniatured devices that can passively navigate over a large aerial space.
Collapse
Affiliation(s)
- Jianfeng Yang
- Faculty of Engineering and Natural SciencesTampere UniversityP.O. Box 541TampereFI‐33101Finland
| | - Hang Zhang
- Department of Applied PhysicsAalto UniversityP.O. Box 15100EspooFI‐02150Finland
| | - Alex Berdin
- Faculty of Engineering and Natural SciencesTampere UniversityP.O. Box 541TampereFI‐33101Finland
| | - Wenqi Hu
- Max Planck Institute for Intelligent Systems, Stuttgart70569StuttgartGermany
| | - Hao Zeng
- Faculty of Engineering and Natural SciencesTampere UniversityP.O. Box 541TampereFI‐33101Finland
| |
Collapse
|
74
|
Feng Y, Wei J, Qin L, Yu Y. Three-dimensional liquid crystal polymer actuators assembled by athermal photo-welding. SOFT MATTER 2023; 19:999-1007. [PMID: 36645083 DOI: 10.1039/d2sm01476a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Photodeformable liquid crystal polymers (LCPs) exhibit shape changes of different modes like bending, twisting, and oscillation, which depend on the orientation of liquid crystals. However, it is challenging to create a three-dimensional (3D) actuator with distinct actuation modes due to the difficulty of local orientation in a complex bulk architecture. Here we propose a strategy based on athermal photo-welding to integrate different orientations into a single flexible actuator by the photofluidization of azobenzene-containing linear LCPs. Stretch-induced uniaxial films are cut in different directions and subsequently welded via local photofluidization, during which the LCP transitions from a high-modulus glassy state to a rubbery state upon photoisomerization of azobenzene at room temperature. As a consequence, a cucumber vine-like structure with the opposite handedness and a lifting gripper are constructed by such a cut-and-weld process, demonstrating diverse deformation modes of winding, unwinding, and curling. This strategy provides an athermal process for the fabrication of seamless 3D flexible actuators without structural defects, which have potential applications in micromechanical systems, soft robotics, and artificial muscles.
Collapse
Affiliation(s)
- Yaoqing Feng
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Jia Wei
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Lang Qin
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Yanlei Yu
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai, 200433, China.
- Yiwu Research Institute of Fudan University, Chengbei Road, Yiwu City, Zhejiang 322000, P. R. China
| |
Collapse
|
75
|
Zou B, Liang Z, Zhong D, Cui Z, Xiao K, Shao S, Ju J. Magneto-Thermomechanically Reprogrammable Mechanical Metamaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207349. [PMID: 36385420 DOI: 10.1002/adma.202207349] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Future active metamaterials for reconfigurable structural applications require fast, untethered, reversible, and reprogrammable (multimodal) transformability with shape locking. Magnetic control has a superior advantage for fast and remotely controlled deployment; however, a significant drawback is needed to maintain the magnetic force to hold the transformation, limiting its use in structural applications. The shape-locking property of shape-memory polymers (SMPs) can resolve this issue. However, the intrinsic irreversibility of SMPs may limit their reconfigurability as active metamaterials. Moreover, to date, reprogrammable methods have required high power with laser and arc welding proving to be energy-inefficient control methods. In this work, a magneto-thermomechanical tool is constructed and demonstrated, which enables a single material system to transform with untethered, reversible, low-powered reprogrammable deformations, and shape locking via the application of magneto-thermomechanically triggered prestress on the SMP and structural instability with asymmetric magnetic torque. The mutual assistance of two physics concepts-magnetic control combined with the thermomechanical behavior of SMPs is demonstrated, without requiring new materials synthesis and high-power energy for reprogramming. This approach can open a new path of active metamaterials, flexible yet stiff soft robots, multimodal morphing structures, and mechanical computing devices where it can be designed in reversible and reprogrammable ways.
Collapse
Affiliation(s)
- Bihui Zou
- UM-SJTU Joint Institute, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zihe Liang
- UM-SJTU Joint Institute, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Dijia Zhong
- UM-SJTU Joint Institute, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhiming Cui
- UM-SJTU Joint Institute, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Kai Xiao
- UM-SJTU Joint Institute, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shuang Shao
- UM-SJTU Joint Institute, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jaehyung Ju
- UM-SJTU Joint Institute, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
76
|
Liu M, Jin L, Yang S, Wang Y, Murray CB, Yang S. Shape Morphing Directed by Spatially Encoded, Dually Responsive Liquid Crystalline Elastomer Micro-Actuators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208613. [PMID: 36341507 DOI: 10.1002/adma.202208613] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Liquid crystalline elastomers (LCEs) with intrinsic molecular anisotropy can be programmed to morph shapes under external stimuli. However, it is difficult to program the position and orientation of individual mesogenic units separately and locally, whether in-plane or out-of-plane, since each mesogen is linked to adjacent ones through the covalently bonded polymer chains. Here, dually responsive, spindle-shaped micro-actuators are synthesized from LCE composites, which can reorient under a magnetic field and change the shape upon heating. When the discrete micro-actuators are embedded in a conventional and nonresponsive elastomer with programmed height distribution and in-plane orientation in local regions, robust and complex shape morphing induced by the cooperative actuations of the locally distributed micro-actuators, which corroborates with finite element analysis, are shown. The spatial encoding of discrete micro-actuators in a nonresponsive matrix allows to decouple the actuators and the matrix, broadening the material palette to program local and global responses to stimuli for applications including soft robotics, smart wearables, and sensors.
Collapse
Affiliation(s)
- Mingzhu Liu
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lishuai Jin
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shengsong Yang
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yuchen Wang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Christopher B Murray
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shu Yang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
77
|
Lewis KL, Herbert KM, Matavulj VM, Hoang JD, Ellison ET, Bauman GE, Herman JA, White TJ. Programming Orientation in Liquid Crystalline Elastomers Prepared with Intra-Mesogenic Supramolecular Bonds. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3467-3475. [PMID: 36598490 DOI: 10.1021/acsami.2c18993] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The large, directional stimuli-response of aligned liquid crystalline elastomers (LCEs) could enable functional utility in robotics, medicine, consumer goods, and photonics. The alignment of LCEs has historically been realized via mechanical alignment of a two-stage reaction. Recent reports widely utilize chain extension reactions of liquid crystal monomers (LCM) to form LCEs that are subject to either surface-enforced or mechanical alignment. Here, we prepare LCEs that contain intra-mesogenic supramolecular bonds synthesized via direct free-radical chain transfer photopolymerization processible by a distinctive mechanical alignment mechanism. The LCEs were prepared by the polymerization of a benzoic acid monomer (11OBA), which dimerized to form a liquid crystal monomer, with a diacrylate LCM (C6M). The incorporation of the intra-mesogenic hydrogen bonds increases the achievable nematic order from mechanical programming. Accordingly, LCEs prepared with larger 11OBA concentration exhibit higher magnitude thermomechanical strain values when compared to a LCE containing only covalent bonds. These LCEs can be reprogrammed with heat to return the aligned film to the polydomain state. The LCE can then be subsequently programmed to orient in a different direction. The facile preparation of (re)programmable LCEs with supramolecular bonds opens new avenues for the implementation of these materials as shape deployable elements.
Collapse
Affiliation(s)
- Kristin L Lewis
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado80309, United States
| | - Katie M Herbert
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado80309, United States
| | - Valentina M Matavulj
- Material Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado80309, United States
| | - Jonathan D Hoang
- Material Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado80309, United States
| | - Eric T Ellison
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado80309, United States
| | - Grant E Bauman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado80309, United States
| | - Jeremy A Herman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado80309, United States
| | - Timothy J White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado80309, United States
- Material Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado80309, United States
| |
Collapse
|
78
|
Brighenti R, Cosma MP. Multiphysics modelling of light-actuated liquid crystal elastomers. Proc Math Phys Eng Sci 2023. [DOI: 10.1098/rspa.2022.0417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Liquid crystalline elastomers (LCEs) represent a promising class of responsive polymers whose physical properties are peculiar to both fluids and solids. Thanks to their microscale structure made of elongated rigid molecules (mesogens)—characterized by their capability to reversibly switch from an isotropic to an ordered state—LCEs exhibit a number of remarkable physical effects, such as self-deformation and mechanical actuation triggered by external stimuli. Efficient and physics-based modelling, aimed at designing and optimizing LCE-based devices (such as artificial muscles, deployable structures, soft actuators, etc.), is a fundamental tool to quantitatively describe their mechanical behaviour in real applications. In the present study, we illustrate the multi-physics modelling of light-driven deformation of LCEs, based on the photo-thermal energy conversion. The role played by the light diffusion and heat transfer within the medium is considered and their effect on the obtainable actuation is studied through numerical simulations based on the multi-physics theory developed.
Collapse
Affiliation(s)
- Roberto Brighenti
- Department of Engineering and Architecture, University of Parma, Viale delle Scienze 181/A, 43124 Parma, Italy
| | - Mattia P. Cosma
- Department of Engineering and Architecture, University of Parma, Viale delle Scienze 181/A, 43124 Parma, Italy
| |
Collapse
|
79
|
Tasmim S, Yousuf Z, Rahman FS, Seelig E, Clevenger AJ, VandenHeuvel SN, Ambulo CP, Raghavan S, Zimmern PE, Romero-Ortega MI, Ware TH. Liquid crystal elastomer based dynamic device for urethral support: Potential treatment for stress urinary incontinence. Biomaterials 2023; 292:121912. [PMID: 36434829 PMCID: PMC9772118 DOI: 10.1016/j.biomaterials.2022.121912] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/11/2022] [Indexed: 11/20/2022]
Abstract
Stress urinary incontinence (SUI) is characterized by the involuntary loss of urine due to increased intra-abdominal pressure during coughing, sneezing, or exercising. SUI affects 20-40% of the female population and is exacerbated by aging. Severe SUI is commonly treated with surgical implantation of an autologous or a synthetic sling underneath the urethra for support. These slings, however, are static, and their tension cannot be non-invasively adjusted, if needed, after implantation. This study reports the fabrication of a novel device based on liquid crystal elastomers (LCEs) capable of changing shape in response to temperature increase induced by transcutaneous IR light. The shape change of the LCE-based device was characterized in a scar tissue phantom model. An in vitro urinary tract model was designed to study the efficacy of the LCE-based device to support continence and adjust sling tension with IR illumination. Finally, the device was acutely implanted and tested for induced tension changes in female multiparous New Zealand white rabbits. The LCE device achieved 5.6% ± 1.1% actuation when embedded in an agar gel with an elastic modulus of 100 kPa. The corresponding device temperature was 44.9 °C ± 0.4 °C, and the surrounding agar temperature stayed at 42.1 °C ± 0.4 °C. Leaking time in the in vitro urinary tract model significantly decreased (p < 0.0001) when an LCE-based cuff was sutured around the model urethra from 5.2min ± 1min to 2min ±0.5min when the cuff was illuminated with IR light. Normalized leak point force (LPF) increased significantly (p = 0.01) with the implantation of an LCE-CB cuff around the bladder neck of multiparous rabbits. It decreased significantly (p = 0.023) when the device was actuated via IR light illumination. These results demonstrate that LCE material could be used to fabricate a dynamic device for treating SUI in women.
Collapse
Affiliation(s)
- Seelay Tasmim
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Zuha Yousuf
- Departments of Bioengineering and Biomedical Science, University of Houston, Houston, TX, 77004, USA
| | - Farial S Rahman
- Departments of Bioengineering and Biomedical Science, University of Houston, Houston, TX, 77004, USA
| | - Emily Seelig
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Abigail J Clevenger
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Sabrina N VandenHeuvel
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Cedric P Ambulo
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Dayton, OH, 45433, USA
| | - Shreya Raghavan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Philippe E Zimmern
- Department of Urology, The University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Mario I Romero-Ortega
- Departments of Bioengineering and Biomedical Science, University of Houston, Houston, TX, 77004, USA
| | - Taylor H Ware
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
80
|
Zhao J, Kazemi H, Kim HA, Bae J. Effect of variations in manufacturing and material properties on the self-folding behaviors of hydrogel and elastomer bilayer structures. SOFT MATTER 2022; 18:8771-8778. [PMID: 36349899 DOI: 10.1039/d2sm01104b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The stimuli-responsive self-folding structure is ubiquitous in nature, for instance, the mimosa folds its leaves in response to external touch or heat, and the Venus flytrap snaps shut to trap the insect inside. Thus, modeling self-folding structures has been of great interest to predict the final configuration and understand the folding mechanism. Here, we apply a simple yet effective method to predict the folding angle of the temperature-responsive nanocomposite hydrogel/elastomer bilayer structure manufactured by 3D printing, which facilitates the study of the effect of the inevitable variations in manufacturing and material properties on folding angles by comparing the simulation results with the experimentally measured folding angles. The defining feature of our method is to use thermal expansion to model the temperature-responsive nanocomposite hydrogel rather than the nonlinear field theory of diffusion model that was previously applied. The resulted difference between the simulation and experimentally measured folding angle (i.e., error) is around 5%. We anticipate that our method could provide insight into the design, control, and prediction of 3D printing of stimuli-responsive shape morphing (i.e., 4D printing) that have potential applications in soft actuators, robots, and biomedical devices.
Collapse
Affiliation(s)
- Jiayu Zhao
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Hesaneh Kazemi
- Structural Engineering Department University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - H Alicia Kim
- Structural Engineering Department University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Material Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Sustainable Power and Energy Center (SPEC), University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Jinhye Bae
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
- Chemical Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Material Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Sustainable Power and Energy Center (SPEC), University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
81
|
Chi Y, Hong Y, Zhao Y, Li Y, Yin J. Snapping for high-speed and high-efficient butterfly stroke-like soft swimmer. SCIENCE ADVANCES 2022; 8:eadd3788. [PMID: 36399554 PMCID: PMC9674291 DOI: 10.1126/sciadv.add3788] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Natural selection has tuned many flying and swimming animals to share the same narrow design space for high power efficiency, e.g., their dimensionless Strouhal numbers St that relate flapping frequency and amplitude and forward speed fall within the range of 0.2 < St < 0.4 for peak propulsive efficiency. It is rather challenging to achieve both comparably fast-speed and high-efficient soft swimmers to marine animals due to the naturally selected narrow design space and soft body compliance. Here, bioinspired by the flapping motion in swimming animals, we report leveraging snapping instabilities for soft flapping-wing swimmers with comparable high performance to biological counterparts. The lightweight, butterfly stroke-like soft swimmer (2.8 g) demonstrates a record-high speed of 3.74 body length/s (4.8 times faster than the reported fastest flapping soft swimmer), high power efficiency (0.2 < St = 0.25 < 0.4), low energy consumption cost, and high maneuverability (a high turning speed of 157°/s).
Collapse
|
82
|
Zhu H, Wang Y, Ge Y, Zhao Y, Jiang C. Kirigami-Inspired Programmable Soft Magnetoresponsive Actuators with Versatile Morphing Modes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203711. [PMID: 36180420 PMCID: PMC9661843 DOI: 10.1002/advs.202203711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/12/2022] [Indexed: 05/31/2023]
Abstract
Untethered soft magnetoresponsive actuators (SMRAs), which can realize rapid shape transformation, have attracted widespread attention for their strategic applications in exploration, transportation, and minimally invasive medicine. It remains a challenge to fabricate SMRAs with complicated morphing modes (more than bending and folding), limiting their applications to simple shape-morphing and locomotion. Herein, a method integrating the ancient kirigami art and an advanced mechanical assembly method is proposed, which realizes 2D-to-3D and 3D-to-3D complicated shape-morphing and precise magnetization programming through cut-guided deformation. The kirigami-inspired SMRAs exhibit good robustness after actuating more than 10000 times. An integrated finite element analysis method is developed to quantitatively predict the shape transformation of SMRAs under magnetic actuation. By leveraging this method, a set of 3D curved responsive morphologies with programmed Gaussian curvature are fabricated (e.g., ellipsoid and saddle structures), specifically 3D multilayer structures and face-like shapes with different expressions, which are difficult to realize using previous approaches. Furthermore, a bionic-scaled soft crawling robot with significant obstacle surmounting ability is fabricated using the kirigami-inspired method. The ability of the method to achieve programmable SMRAs with versatile morphing modes may broaden its applications in soft robotics, color-switchable devices, and clinical treatments.
Collapse
Affiliation(s)
- Hanlin Zhu
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle BodyCollege of Mechanical and Vehicle EngineeringHunan UniversityChangsha410082P. R. China
| | - Yuan Wang
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle BodyCollege of Mechanical and Vehicle EngineeringHunan UniversityChangsha410082P. R. China
| | - Yangwen Ge
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle BodyCollege of Mechanical and Vehicle EngineeringHunan UniversityChangsha410082P. R. China
| | - Yan Zhao
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle BodyCollege of Mechanical and Vehicle EngineeringHunan UniversityChangsha410082P. R. China
| | - Chao Jiang
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle BodyCollege of Mechanical and Vehicle EngineeringHunan UniversityChangsha410082P. R. China
| |
Collapse
|
83
|
Son H, Park Y, Na Y, Yoon C. 4D Multiscale Origami Soft Robots: A Review. Polymers (Basel) 2022; 14:polym14194235. [PMID: 36236182 PMCID: PMC9571758 DOI: 10.3390/polym14194235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Time-dependent shape-transferable soft robots are important for various intelligent applications in flexible electronics and bionics. Four-dimensional (4D) shape changes can offer versatile functional advantages during operations to soft robots that respond to external environmental stimuli, including heat, pH, light, electric, or pneumatic triggers. This review investigates the current advances in multiscale soft robots that can display 4D shape transformations. This review first focuses on material selection to demonstrate 4D origami-driven shape transformations. Second, this review investigates versatile fabrication strategies to form the 4D mechanical structures of soft robots. Third, this review surveys the folding, rolling, bending, and wrinkling mechanisms of soft robots during operation. Fourth, this review highlights the diverse applications of 4D origami-driven soft robots in actuators, sensors, and bionics. Finally, perspectives on future directions and challenges in the development of intelligent soft robots in real operational environments are discussed.
Collapse
Affiliation(s)
- Hyegyo Son
- Department of Mechanical Systems Engineering, Sookmyung Women’s University, Seoul 04310, Korea
| | - Yunha Park
- Department of Mechanical Systems Engineering, Sookmyung Women’s University, Seoul 04310, Korea
| | - Youngjin Na
- Department of Mechanical Systems Engineering, Sookmyung Women’s University, Seoul 04310, Korea
- Correspondence: (Y.N.); (C.Y.)
| | - ChangKyu Yoon
- Department of Mechanical Systems Engineering, Sookmyung Women’s University, Seoul 04310, Korea
- Institute of Advanced Materials and Systems, Sookmyung Women’s University, Seoul 04310, Korea
- Correspondence: (Y.N.); (C.Y.)
| |
Collapse
|
84
|
Ni X, Luan H, Kim JT, Rogge SI, Bai Y, Kwak JW, Liu S, Yang DS, Li S, Li S, Li Z, Zhang Y, Wu C, Ni X, Huang Y, Wang H, Rogers JA. Soft shape-programmable surfaces by fast electromagnetic actuation of liquid metal networks. Nat Commun 2022; 13:5576. [PMID: 36151092 PMCID: PMC9508113 DOI: 10.1038/s41467-022-31092-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/01/2022] [Indexed: 11/15/2022] Open
Abstract
Low modulus materials that can shape-morph into different three-dimensional (3D) configurations in response to external stimuli have wide-ranging applications in flexible/stretchable electronics, surgical instruments, soft machines and soft robotics. This paper reports a shape-programmable system that exploits liquid metal microfluidic networks embedded in an elastomer matrix, with electromagnetic forms of actuation, to achieve a unique set of properties. Specifically, this materials structure is capable of fast, continuous morphing into a diverse set of continuous, complex 3D surfaces starting from a two-dimensional (2D) planar configuration, with fully reversible operation. Computational, multi-physics modeling methods and advanced 3D imaging techniques enable rapid, real-time transformations between target shapes. The liquid-solid phase transition of the liquid metal allows for shape fixation and reprogramming on demand. An unusual vibration insensitive, dynamic 3D display screen serves as an application example of this type of morphable surface.
Collapse
Affiliation(s)
- Xinchen Ni
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Haiwen Luan
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Jin-Tae Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Sam I Rogge
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Yun Bai
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Jean Won Kwak
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Shangliangzi Liu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Da Som Yang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Shuo Li
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Shupeng Li
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Zhengwei Li
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Yamin Zhang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Changsheng Wu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Xiaoyue Ni
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA.
| | - Yonggang Huang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA.
| | - Heling Wang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA.
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Neurological Surgery, Northwestern University, Evanston, IL, USA.
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
85
|
Peng X, Wu S, Sun X, Yue L, Montgomery SM, Demoly F, Zhou K, Zhao RR, Qi HJ. 4D Printing of Freestanding Liquid Crystal Elastomers via Hybrid Additive Manufacturing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204890. [PMID: 35962737 DOI: 10.1002/adma.202204890] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Liquid crystal elastomers (LCE) are appealing candidates among active materials for 4D printing, due to their reversible, programmable and rapid actuation capabilities. Recent progress has been made on direct ink writing (DIW) or Digital Light Processing (DLP) to print LCEs with certain actuation. However, it remains a challenge to achieve complicated structures, such as spatial lattices with large actuation, due to the limitation of printing LCEs on the build platform or the previous layer. Herein, a novel method to 4D print freestanding LCEs on-the-fly by using laser-assisted DIW with an actuation strain up to -40% is proposed. This process is further hybridized with the DLP method for optional structural or removable supports to create active 3D architectures in a one-step additive process. Various objects, including hybrid active lattices, active tensegrity, an actuator with tunable stability, and 3D spatial LCE lattices, can be additively fabricated. The combination of DIW-printed functionally freestanding LCEs with the DLP-printed supporting structures thus provides new design freedom and fabrication capability for applications including soft robotics, smart structures, active metamaterials, and smart wearable devices.
Collapse
Affiliation(s)
- Xirui Peng
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Renewable Bioproduct Institute, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Shuai Wu
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Xiaohao Sun
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Liang Yue
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - S Macrae Montgomery
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Frédéric Demoly
- ICB UMR 6303 CNRS, Univ. Bourgogne Franche-Comté, UTBM, Belfort, 90010, France
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ruike Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - H Jerry Qi
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Renewable Bioproduct Institute, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
86
|
Lee-Trimble ME, Kang JH, Hayward RC, Santangelo CD. Robust folding of elastic origami. SOFT MATTER 2022; 18:6384-6391. [PMID: 35979602 DOI: 10.1039/d2sm00369d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Self-folding origami, structures that are engineered flat to fold into targeted, three-dimensional shapes, have many potential engineering applications. Though significant effort in recent years has been devoted to designing fold patterns that can achieve a variety of target shapes, recent work has also made clear that many origami structures exhibit multiple folding pathways, with a proliferation of geometric folding pathways as the origami structure becomes complex. The competition between these pathways can lead to structures that are programmed for one shape, yet fold incorrectly. To disentangle the features that lead to misfolding, we introduce a model of self-folding origami that accounts for the finite stretching rigidity of the origami faces and allows the computation of energy landscapes that lead to misfolding. We find that, in addition to the geometrical features of the origami, the finite elasticity of the nearly-flat origami configurations regulates the proliferation of potential misfolded states through a series of saddle-node bifurcations. We apply our model to one of the most common origami motifs, the symmetric "bird's foot," a single vertex with four folds. We show that though even a small error in programmed fold angles induces metastability in rigid origami, elasticity allows one to tune resilience to misfolding. In a more complex design, the "Randlett flapping bird," which has thousands of potential competing states, we further show that the number of actual observed minima is strongly determined by the structure's elasticity. In general, we show that elastic origami with both stiffer folds and less bendable faces self-folds better.
Collapse
Affiliation(s)
- M E Lee-Trimble
- Department of Physics, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Ji-Hwan Kang
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Department of Chemical Engineering, California State University Long Beach, Long Beach, CA, 90840, USA
| | - Ryan C Hayward
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA.
| | - Christian D Santangelo
- Department of Physics, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Department of Physics, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
87
|
Choi S, Kim B, Park S, Seo JH, Ahn SK. Slidable Cross-Linking Effect on Liquid Crystal Elastomers: Enhancement of Toughness, Shape-Memory, and Self-Healing Properties. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32486-32496. [PMID: 35792581 DOI: 10.1021/acsami.2c06462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The network structures of liquid crystal elastomers (LCEs) are crucial to impart rubbery behavior to LCEs and enable reversible actuation. Most LCEs developed to date are covalently linked, implying that the cross-links are fixed at a particular position. Herein, we report a new class of LCEs integrating polyrotaxanes (PRs) as slidable cross-links (PR-LCEs). Interestingly, the incorporation of a low loading (0.3-2.0 wt %) of the PR cross-linkers to the LCE causes a significant impact on various properties of the resulting PR-LCEs due to the pulley effect. The optimum PR loading is determined to be 0.5 wt %, at which point the toughness and damping behavior are maximized. The robust mechanical properties of the PR-LCE offers a superior actuation performance to that of the pristine LCE along with an excellent quadruple shape-memory effect. Furthermore, the incorporation of PR is useful to enhance the efficiency of shape-memory-assisted self-healing when heating above the nematic-isotropic transition.
Collapse
Affiliation(s)
- Subi Choi
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Bitgaram Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sungmin Park
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Ji-Hun Seo
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Suk-Kyun Ahn
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
88
|
Bauman GE, McCracken JM, White TJ. Actuation of Liquid Crystalline Elastomers at or Below Ambient Temperature. Angew Chem Int Ed Engl 2022; 61:e202202577. [PMID: 35482590 DOI: 10.1002/anie.202202577] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Indexed: 11/09/2022]
Abstract
Liquid crystal elastomers (LCE) are an emerging class of material actuators. LCE undergo macroscopic dimensional changes when subjected to a stimulus. The large stimuli-response of LCE is associated with thermotropic disruption of order. Historically, comparatively high temperatures are required to disrupt orientation in LCE to achieve meaningful work output. Here, we introduce an approach to prepare LCE via thiol-Michael/thiol-ene reactions that actuate at or below ambient temperature. Alignment was imparted to the LCE by mechanical alignment and 3D printing. The LCE materials detailed here achieve strains of 40 % with a maximum deformation rate of 6.5 % °C-1 . The functional utility of the tunability of the thermotropic response of these materials is illustrated in reconfiguration triggered via body heat and sequential actuation of a multi-material element.
Collapse
Affiliation(s)
- Grant E Bauman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO 80309, USA
| | - Joselle M McCracken
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO 80309, USA
| | - Timothy J White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO 80309, USA
| |
Collapse
|
89
|
Lugger SJD, Verbroekken RMC, Mulder DJ, Schenning APHJ. Direct Ink Writing of Recyclable Supramolecular Soft Actuators. ACS Macro Lett 2022; 11:935-940. [PMID: 35802869 PMCID: PMC9301911 DOI: 10.1021/acsmacrolett.2c00359] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Direct ink writing (DIW) of liquid crystal elastomers
(LCEs) has
rapidly paved its way into the field of soft actuators and other stimuli-responsive
devices. However, currently used LCE systems for DIW require postprinting
(photo)polymerization, thereby forming a covalent network, making
the process time-consuming and the material nonrecyclable. In this
work, a DIW approach is developed for printing a supramolecular poly(thio)urethane
LCE to overcome these drawbacks of permanent cross-linking. The thermo-reversible
nature of the supramolecular cross-links enables the interplay between
melt-processable behavior required for extrusion and formation of
the network to fix the alignment. After printing, the actuators demonstrated
a reversible contraction of 12.7% or bending and curling motions when
printed on a passive substrate. The thermoplastic ink enables recyclability,
as shown by cutting and printing the actuators five times. However,
the actuation performance diminishes. This work highlights the potential
of supramolecular LCE inks for DIW soft circular actuators and other
devices.
Collapse
Affiliation(s)
- Sean J D Lugger
- Laboratory of Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ruth M C Verbroekken
- Laboratory of Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Dirk J Mulder
- Laboratory of Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Albert P H J Schenning
- Laboratory of Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology (TU/e), P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
90
|
Guan Z, Wang L, Bae J. Advances in 4D printing of liquid crystalline elastomers: materials, techniques, and applications. MATERIALS HORIZONS 2022; 9:1825-1849. [PMID: 35504034 DOI: 10.1039/d2mh00232a] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Liquid crystalline elastomers (LCEs) are polymer networks exhibiting anisotropic liquid crystallinity while maintaining elastomeric properties. Owing to diverse polymeric forms and self-alignment molecular behaviors, LCEs have fascinated state-of-the-art efforts in various disciplines other than the traditional low-molar-mass display market. By patterning order to structures, LCEs demonstrate reversible high-speed and large-scale actuations in response to external stimuli, allowing for close integration with 4D printing and architectures of digital devices, which is scarcely observed in homogeneous soft polymer networks. In this review, we collect recent advances in 4D printing of LCEs, with emphases on synthesis and processing methods that enable microscopic changes in the molecular orientation and hence macroscopic changes in the properties of end-use objects. Promising potentials of printed complexes include fields of soft robotics, optics, and biomedical devices. Within this scope, we elucidate the relationships among external stimuli, tailorable morphologies in mesophases of liquid crystals, and programmable topological configurations of printed parts. Lastly, perspectives and potential challenges facing 4D printing of LCEs are discussed.
Collapse
Affiliation(s)
- Zhecun Guan
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Jinhye Bae
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA.
- Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
91
|
Guo H, Saed MO, Terentjev EM. Thiol-acrylate side-chain liquid crystal elastomers. SOFT MATTER 2022; 18:4803-4809. [PMID: 35713099 PMCID: PMC9241586 DOI: 10.1039/d2sm00547f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
The Michael addition 'click' chemistry was used to graft acrylate-terminated mesogenic groups onto the polysiloxane backbone polymer chain with thiol functional groups, with a constant 15% fraction of diacrylate reacting monomers as crosslinkers. Three different types of mesogens were used, and also their 50 : 50 mixtures, and in all cases we have obtained the smectic-A phase of the resulting liquid crystalline elastomer. Using X-ray diffraction, calorimetry and dynamic mechanical analysis, we investigated the relationship between the molecular structure of mesogenic side groups and the structure and properties of the elastomers. The shape-memory of smectic elastomers was verified. The unusual features were the semi-crystalline nature of elastomers with non-polar mesogens and the clear role of side-by-side rod dimerization of polar mesogens leading to a higher smectic layer spacing. We investigated the evolution of the smectic alignment on uniaxial stretching along the layer normal and identified two distinct ways in which the elastomer responds: the coarsened Helfrich-Hurault zig-zag layer texture and the large-scale stripe domains of uniform layer rotation in the systems with lower order parameter and the associated layer constraints.
Collapse
Affiliation(s)
- Hongye Guo
- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK.
| | - Mohand O Saed
- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK.
| | - Eugene M Terentjev
- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK.
| |
Collapse
|
92
|
Ze Q, Wu S, Dai J, Leanza S, Ikeda G, Yang PC, Iaccarino G, Zhao RR. Spinning-enabled wireless amphibious origami millirobot. Nat Commun 2022; 13:3118. [PMID: 35701405 PMCID: PMC9198078 DOI: 10.1038/s41467-022-30802-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 12/22/2022] Open
Abstract
Wireless millimeter-scale origami robots have recently been explored with great potential for biomedical applications. Existing millimeter-scale origami devices usually require separate geometrical components for locomotion and functions. Additionally, none of them can achieve both on-ground and in-water locomotion. Here we report a magnetically actuated amphibious origami millirobot that integrates capabilities of spinning-enabled multimodal locomotion, delivery of liquid medicine, and cargo transportation with wireless operation. This millirobot takes full advantage of the geometrical features and folding/unfolding capability of Kresling origami, a triangulated hollow cylinder, to fulfill multifunction: its geometrical features are exploited for generating omnidirectional locomotion in various working environments through rolling, flipping, and spinning-induced propulsion; the folding/unfolding is utilized as a pumping mechanism for controlled delivery of liquid medicine; furthermore, the spinning motion provides a sucking mechanism for targeted solid cargo transportation. We anticipate the amphibious origami millirobots can potentially serve as minimally invasive devices for biomedical diagnoses and treatments. Wireless millirobots are promising as minimally invasive biomedical devices. Here, the authors design a magnetically actuated amphibious millirobot that integrates spinning-enabled locomotion, targeted drug delivery, and cargo transportation by utilizing geometrical features and folding/unfolding capability of the Kresling origami.
Collapse
Affiliation(s)
- Qiji Ze
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Shuai Wu
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Jize Dai
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Sophie Leanza
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Gentaro Ikeda
- Stanford Cardiovascular Institute and Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Phillip C Yang
- Stanford Cardiovascular Institute and Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Gianluca Iaccarino
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA.,Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Ruike Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
93
|
Meng Z, Liu M, Yan H, Genin GM, Chen CQ. Deployable mechanical metamaterials with multistep programmable transformation. SCIENCE ADVANCES 2022; 8:eabn5460. [PMID: 35675398 PMCID: PMC9176747 DOI: 10.1126/sciadv.abn5460] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Transformations in shape are critical to actuation in engineered metamaterials. Existing engineering metamaterials are typically limited to a small number of shape transformations that must be built-in during material synthesis. Here, inspired by the multistability and programmability of kirigami-based self-folding elements, a robust framework is introduced for the construction of sequentially programmable and reprogrammable mechanical metamaterials. The materials can be locked into multiple stable deployed configurations and then, using tunable bistability enabled by temperature-responsive constituent materials, return to their original reference configurations or undergo mode bifurcation. The framework provides a platform to design metamaterials with multiple deployable and reversible configurations in response to external stimuli.
Collapse
Affiliation(s)
- Zhiqiang Meng
- Department of Engineering Mechanics, CNMM and AML, Tsinghua University, Beijing 100084, PR China
| | - Mingchao Liu
- Mathematical Institute, University of Oxford, Woodstock Rd., Oxford OX2 6GG, UK
| | - Hujie Yan
- Department of Engineering Mechanics, CNMM and AML, Tsinghua University, Beijing 100084, PR China
| | - Guy M. Genin
- Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130, USA
- NSF Science and Technology Center for Engineering Mechanobiology, St. Louis, MO 63130, USA
| | - Chang Qing Chen
- Department of Engineering Mechanics, CNMM and AML, Tsinghua University, Beijing 100084, PR China
- Corresponding author.
| |
Collapse
|
94
|
Zadan M, Patel DK, Sabelhaus AP, Liao J, Wertz A, Yao L, Majidi C. Liquid Crystal Elastomer with Integrated Soft Thermoelectrics for Shape Memory Actuation and Energy Harvesting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200857. [PMID: 35384096 DOI: 10.1002/adma.202200857] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Liquid crystal elastomers (LCEs) have attracted tremendous interest as actuators for soft robotics due to their mechanical and shape memory properties. However, LCE actuators typically respond to thermal stimulation through active Joule heating and passive cooling, which make them difficult to control. In this work, LCEs are combined with soft, stretchable thermoelectrics to create transducers capable of electrically controlled actuation, active cooling, and thermal-to-electrical energy conversion. The thermoelectric layers are composed of semiconductors embedded within a 3D printed elastomer matrix and wired together with eutectic gallium-indium (EGaIn) liquid metal interconnects. This layer is covered on both sides with LCE, which alternately heats and cools to achieve cyclical bending actuation in response to voltage-controlled Peltier activation. Moreover, the thermoelectric layer can harvest energy from thermal gradients between the two LCE layers through the Seebeck effect, allowing for regenerative energy harvesting. As demonstrations, first, closed-loop control of the transducer is performed to rapidly track a changing actuator position. Second, a soft robotic walker that is capable of walking toward a heat source and harvesting energy is introduced. Lastly, phototropic-inspired autonomous deflection of the limbs toward a heat source is shown, demonstrating an additional method to increase energy recuperation efficiency for soft systems.
Collapse
Affiliation(s)
- Mason Zadan
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Dinesh K Patel
- Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Andrew P Sabelhaus
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Jiahe Liao
- The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Anthony Wertz
- The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Lining Yao
- Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Carmel Majidi
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
95
|
Twisting for soft intelligent autonomous robot in unstructured environments. Proc Natl Acad Sci U S A 2022; 119:e2200265119. [PMID: 35605115 DOI: 10.1073/pnas.2200265119] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
SignificanceAutonomy is crucial for soft robotics that are constructed of soft materials. It remains challenging to create autonomous soft robots that can intelligently interact with and adapt to changing environments without external controls. To do so, it often requires an analogical soft "brain" that integrates on-board sensing, control, computation, and decision-making. Here, we report an autonomous soft robot embodied with physical intelligence for decision-making via adaptive soft body-environment interactions and snap-through instability, without integrated sensing and external controls. This study harnesses physical intelligence as a new paradigm for designing autonomous soft robots that can interact intelligently with their environments, thus potentially reducing the burdens on the conventional integrated sensing, control, computations, and decision-making systems in designing intelligent soft robots.
Collapse
|
96
|
Wu Y, Dong X, Kim JK, Wang C, Sitti M. Wireless soft millirobots for climbing three-dimensional surfaces in confined spaces. SCIENCE ADVANCES 2022; 8:eabn3431. [PMID: 35622917 PMCID: PMC9140972 DOI: 10.1126/sciadv.abn3431] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/11/2022] [Indexed: 06/01/2023]
Abstract
Wireless soft-bodied robots at the millimeter scale allow traversing very confined unstructured terrains with minimal invasion and safely interacting with the surrounding environment. However, existing untethered soft millirobots still lack the ability of climbing, reversible controlled surface adhesion, and long-term retention on unstructured three-dimensional (3D) surfaces, limiting their use in biomedical and environmental applications. Here, we report a fundamental peeling-and-loading mechanism to allow untethered soft-bodied robots to climb 3D surfaces by using both the soft-body deformation and whole-body motion of the robot under external magnetic fields. This generic mechanism is implemented with different adhesive robot footpad designs, allowing vertical and inverted surface climbing on diverse 3D surfaces with complex geometries and different surface properties. With the unique robot footpad designs that integrate microstructured adhesives and tough bioadhesives, the soft climbing robot could achieve controllable adhesion and friction to climb 3D soft and wet surfaces including porcine tissues, which paves the way for future environmental inspection and minimally invasive medicine applications.
Collapse
Affiliation(s)
- Yingdan Wu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Germany
| | - Xiaoguang Dong
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Germany
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Jae-kang Kim
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Germany
| | - Chunxiang Wang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Germany
- Institute for Biomedical Engineering, ETH Zürich, Zürich 8092, Switzerland
- School of Medicine and College of Engineering, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
97
|
Bauman GE, McCracken JM, White TJ. Actuation of Liquid Crystalline Elastomers at or Below Ambient Temperature. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Grant E. Bauman
- Department of Chemical and Biological Engineering University of Colorado Boulder 596 UCB Boulder CO 80309 USA
| | - Joselle M. McCracken
- Department of Chemical and Biological Engineering University of Colorado Boulder 596 UCB Boulder CO 80309 USA
| | - Timothy J. White
- Department of Chemical and Biological Engineering University of Colorado Boulder 596 UCB Boulder CO 80309 USA
| |
Collapse
|
98
|
Fu L, Zhao W, Ma J, Yang M, Liu X, Zhang L, Chen Y. A Humidity-Powered Soft Robot with Fast Rolling Locomotion. RESEARCH 2022; 2022:9832901. [PMID: 35651597 PMCID: PMC9125428 DOI: 10.34133/2022/9832901] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/18/2022] [Indexed: 11/06/2022]
Abstract
A range of soft robotic systems have recently been developed that use soft, flexible materials and respond to environmental stimulus. The greatest challenge in their design is the integration of the actuator, energy sources, and body of robots while achieving fast locomotion and well-defined programmable trajectories. This work presents such a design that operates under constant conditions without the need for an externally modulated stimulus. By using a humidity-sensitive agarose film and overcoming the isotropic and random bending of the film, the robot, which we call the Hydrollbot, harnesses energy from evaporation for spontaneous and continuous fast self-rolling locomotion with a programmable trajectory in a constant-humidity environment. Moreover, the geometric parameters of the film were fine-tuned to maximize the rolling speed, and the optimised hydrollbot is capable of carrying a payload up to 100% of its own weight. The ability to self-propel fast under constant conditions with programmable trajectories will confer practical advantages to this robot in the applications for sensors, medical robots, actuation, etc.
Collapse
Affiliation(s)
- Lei Fu
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Weiqiang Zhao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Jiayao Ma
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Mingyuan Yang
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Xinmeng Liu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Yan Chen
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350, China
| |
Collapse
|
99
|
Pan Y, Yang Z, Li C, Hassan SU, Shum HC. Plant-inspired TransfOrigami microfluidics. SCIENCE ADVANCES 2022; 8:eabo1719. [PMID: 35507654 PMCID: PMC9067916 DOI: 10.1126/sciadv.abo1719] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The healthy functioning of the plants' vasculature depends on their ability to respond to environmental changes. In contrast, synthetic microfluidic systems have rarely demonstrated this environmental responsiveness. Plants respond to environmental stimuli through nastic movement, which inspires us to introduce transformable microfluidics: By embedding stimuli-responsive materials, the microfluidic device can respond to temperature, humidity, and light irradiance. Furthermore, by designing a foldable geometry, these responsive movements can follow the preset origami transformation. We term this device TransfOrigami microfluidics (TOM) to highlight the close connection between its transformation and the origami structure. TOM can be used as an environmentally adaptive photomicroreactor. It senses the environmental stimuli and feeds them back positively into photosynthetic conversion through morphological transformation. The principle behind this morphable microsystem can potentially be extended to applications that require responsiveness between the environment and the devices, such as dynamic artificial vascular networks and shape-adaptive flexible electronics.
Collapse
Affiliation(s)
- Yi Pan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Zhenyu Yang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Chang Li
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Sammer Ul Hassan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
- Corresponding author.
| |
Collapse
|
100
|
Wang Y, Cui H, Esworthy T, Mei D, Wang Y, Zhang LG. Emerging 4D Printing Strategies for Next-Generation Tissue Regeneration and Medical Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109198. [PMID: 34951494 DOI: 10.1002/adma.202109198] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/17/2021] [Indexed: 06/14/2023]
Abstract
The rapid development of 3D printing has led to considerable progress in the field of biomedical engineering. Notably, 4D printing provides a potential strategy to achieve a time-dependent physical change within tissue scaffolds or replicate the dynamic biological behaviors of native tissues for smart tissue regeneration and the fabrication of medical devices. The fabricated stimulus-responsive structures can offer dynamic, reprogrammable deformation or actuation to mimic complex physical, biochemical, and mechanical processes of native tissues. Although there is notable progress made in the development of the 4D printing approach for various biomedical applications, its more broad-scale adoption for clinical use and tissue engineering purposes is complicated by a notable limitation of printable smart materials and the simplistic nature of achievable responses possible with current sources of stimulation. In this review, the recent progress made in the field of 4D printing by discussing the various printing mechanisms that are achieved with great emphasis on smart ink mechanisms of 4D actuation, construct structural design, and printing technologies, is highlighted. Recent 4D printing studies which focus on the applications of tissue/organ regeneration and medical devices are then summarized. Finally, the current challenges and future perspectives of 4D printing are also discussed.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Fluid Power and Mechatronics Systems, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Deqing Mei
- State Key Laboratory of Fluid Power and Mechatronics Systems, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yancheng Wang
- State Key Laboratory of Fluid Power and Mechatronics Systems, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Electrical and Computer Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Biomedical Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Medicine, The George Washington University, Washington, DC, 20052, USA
| |
Collapse
|