51
|
Increased EphB2 expression predicts cholangiocarcinoma metastasis. Tumour Biol 2014; 35:10031-41. [DOI: 10.1007/s13277-014-2295-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/30/2014] [Indexed: 11/26/2022] Open
|
52
|
Greene AC, Lord SJ, Tian A, Rhodes C, Kai H, Groves JT. Spatial organization of EphA2 at the cell-cell interface modulates trans-endocytosis of ephrinA1. Biophys J 2014; 106:2196-205. [PMID: 24853748 PMCID: PMC4052362 DOI: 10.1016/j.bpj.2014.03.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 03/26/2014] [Accepted: 03/31/2014] [Indexed: 11/21/2022] Open
Abstract
EphA2 is a receptor tyrosine kinase (RTK) that is sensitive to spatial and mechanical aspects of the cell's microenvironment. Misregulation of EphA2 occurs in many aggressive cancers. Although its juxtacrine signaling geometry (EphA2's cognate ligand ephrinA1 is expressed on the surface of an apposing cell) provides a mechanism by which the receptor may experience extracellular forces, this also renders the system challenging to decode. By depositing living cells on synthetic supported lipid membranes displaying ephrinA1, we have reconstituted key features of the juxtacrine EphA2-ephrinA1 signaling system while maintaining the ability to perturb the spatial and mechanical properties of the membrane-cell interface with precision. In addition, we developed a trans-endocytosis assay to monitor internalization of ephrinA1 from a supported membrane into the apposing cell using a quantitative three-dimensional fluorescence microscopy assay. Using this experimental platform to mimic a cell-cell junction, we found that the signaling complex is not efficiently internalized when lateral reorganization at the membrane-cell contact sites is physically hindered. This suggests that EphA2-ephrinA1 trans-endocytosis is sensitive to the mechanical properties of a cell's microenvironment and may have implications in physical aspects of tumor biology.
Collapse
Affiliation(s)
- Adrienne C Greene
- Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, California; Physical Biosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California; Department of Molecular and Cell Biology, University of California, Berkeley, California
| | - Samuel J Lord
- Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, California; Physical Biosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California
| | - Aiwei Tian
- Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, California; Physical Biosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California
| | - Christopher Rhodes
- Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, California; Physical Biosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California; Department of Mechanical Engineering, University of California, Berkeley, California
| | - Hiroyuki Kai
- Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, California; Physical Biosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California
| | - Jay T Groves
- Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, California; Physical Biosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California; Mechanobiology Institute, National University of Singapore, Singapore.
| |
Collapse
|
53
|
Zhu YZ, Qian XJ, Zhao P, Qi ZT. How hepatitis C virus invades hepatocytes: The mystery of viral entry. World J Gastroenterol 2014; 20:3457-3467. [PMID: 24707128 PMCID: PMC3974512 DOI: 10.3748/wjg.v20.i13.3457] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/03/2013] [Accepted: 01/05/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection is a global health problem, with an estimated 170 million people being chronically infected. HCV cell entry is a complex multi-step process, involving several cellular factors that trigger virus uptake into the hepatocytes. The high- density lipoprotein receptor scavenger receptor class B type I, tetraspanin CD81, tight junction protein claudin-1, and occludin are the main receptors that mediate the initial step of HCV infection. In addition, the virus uses cell receptor tyrosine kinases as entry regulators, such as epidermal growth factor receptor and ephrin receptor A2. This review summarizes the current understanding about how cell surface molecules are involved in HCV attachment, internalization, and membrane fusion, and how host cell kinases regulate virus entry. The advances of the potential antiviral agents targeting this process are introduced.
Collapse
|
54
|
Barton WA, Dalton AC, Seegar TCM, Himanen JP, Nikolov DB. Tie2 and Eph receptor tyrosine kinase activation and signaling. Cold Spring Harb Perspect Biol 2014; 6:cshperspect.a009142. [PMID: 24478383 DOI: 10.1101/cshperspect.a009142] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Eph and Tie cell surface receptors mediate a variety of signaling events during development and in the adult organism. As other receptor tyrosine kinases, they are activated on binding of extracellular ligands and their catalytic activity is tightly regulated on multiple levels. The Eph and Tie receptors display some unique characteristics, including the requirement of ligand-induced receptor clustering for efficient signaling. Interestingly, both Ephs and Ties can mediate different, even opposite, biological effects depending on the specific ligand eliciting the response and on the cellular context. Here we discuss the structural features of these receptors, their interactions with various ligands, as well as functional implications for downstream signaling initiation. The Eph/ephrin structures are already well reviewed and we only provide a brief overview on the initial binding events. We go into more detail discussing the Tie-angiopoietin structures and recognition.
Collapse
Affiliation(s)
- William A Barton
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | | | | | | | | |
Collapse
|
55
|
Jiang H, Li X, Zhang X, Liu Y, Huang S, Wang X. EphA2 knockdown attenuates atherosclerotic lesion development in ApoE(-/-) mice. Cardiovasc Pathol 2014; 23:169-74. [PMID: 24561077 DOI: 10.1016/j.carpath.2014.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 01/15/2014] [Accepted: 01/15/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The inflammatory response of vascular endothelial cells plays important roles in the initiation and progression of atherosclerotic lesions. EphA2 receptor activation promotes the endothelial cell inflammatory response, and its expression is increased in the endothelial cell layer of atherosclerotic plaques. However, the association between EphA2 and atherosclerosis has not been determined. METHODS Eight-week-old male ApoE(-/-) mice were systemically infected with adenoassociated virus serotype 9 carrying a small hairpin RNA specifically targeting the EphA2 gene to knock down EphA2 expression in aortic endothelial cells. These mice were then fed a high-cholesterol diet for 12 weeks. Blood was collected for the measurement of plasma lipids. The aortas were harvested to evaluate the atherosclerotic lesion size, macrophage components, and expression of proinflammatory genes using Oil Red O staining, immunofluorescence staining, and molecular biology analysis. RESULTS The lesions formed in the entire aorta and aortic sinus of the ApoE(-/-) mice with EphA2 knockdown were significantly smaller than those in the control mice (10.7%±3.1% versus 25.1%±4.2%; 0.51±0.02mm(2) versus 0.85±0.03mm(2); n=10; P<.05). Furthermore, the lesions in the ApoE(-/-) mice with EphA2 knockdown displayed reduced inflammation compared with the control mice, as reflected by the decreased macrophage infiltration (8.2%±2.9% versus 22.7%±4%; n=10; P<.05); decreased nuclear factor-κβ activation; and diminished expression of vascular cell adhesion molecule-1, E-selectin, and monocyte chemotactic protein-1 (all P<.05). CONCLUSIONS Our data demonstrate that the EphA2 receptor silencing attenuates the extent and inflammation of atherosclerotic lesions in ApoE(-/-) mice. Thus, EphA2 knockdown in endothelial cells represents a novel therapeutic strategy for patients with atherosclerosis.
Collapse
Affiliation(s)
- Hong Jiang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China.
| | - Xinyun Li
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Xiaoli Zhang
- Department of Histology and Embryology, School of Medicine, Shandong University, Jinan, China
| | - Yan Liu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Shanying Huang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Xiaowei Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
56
|
|
57
|
Cavodeassi F, Ivanovitch K, Wilson SW. Eph/Ephrin signalling maintains eye field segregation from adjacent neural plate territories during forebrain morphogenesis. Development 2013; 140:4193-202. [PMID: 24026122 PMCID: PMC3787759 DOI: 10.1242/dev.097048] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2013] [Indexed: 02/02/2023]
Abstract
During forebrain morphogenesis, there is extensive reorganisation of the cells destined to form the eyes, telencephalon and diencephalon. Little is known about the molecular mechanisms that regulate region-specific behaviours and that maintain the coherence of cell populations undergoing specific morphogenetic processes. In this study, we show that the activity of the Eph/Ephrin signalling pathway maintains segregation between the prospective eyes and adjacent regions of the anterior neural plate during the early stages of forebrain morphogenesis in zebrafish. Several Ephrins and Ephs are expressed in complementary domains in the prospective forebrain and combinatorial abrogation of their activity results in incomplete segregation of the eyes and telencephalon and in defective evagination of the optic vesicles. Conversely, expression of exogenous Ephs or Ephrins in regions of the prospective forebrain where they are not usually expressed changes the adhesion properties of the cells, resulting in segregation to the wrong domain without changing their regional fate. The failure of eye morphogenesis in rx3 mutants is accompanied by a loss of complementary expression of Ephs and Ephrins, suggesting that this pathway is activated downstream of the regional fate specification machinery to establish boundaries between domains undergoing different programmes of morphogenesis.
Collapse
Affiliation(s)
| | - Kenzo Ivanovitch
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Stephen W. Wilson
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
58
|
Nussinov R, Ma B, Tsai CJ, Csermely P. Allosteric conformational barcodes direct signaling in the cell. Structure 2013; 21:1509-21. [PMID: 24010710 PMCID: PMC6361540 DOI: 10.1016/j.str.2013.06.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/23/2013] [Accepted: 06/05/2013] [Indexed: 01/01/2023]
Abstract
The cellular network is highly interconnected. Pathways merge and diverge. They proceed through shared proteins and may change directions. How are cellular pathways controlled and their directions decided, coded, and read? These questions become particularly acute when we consider that a small number of pathways, such as signaling pathways that regulate cell fates, cell proliferation, and cell death in development, are extensively exploited. This review focuses on these signaling questions from the structural standpoint and discusses the literature in this light. All co-occurring allosteric events (including posttranslational modifications, pathogen binding, and gain-of-function mutations) collectively tag the protein functional site with a unique barcode. The barcode shape is read by an interacting molecule, which transmits the signal. A conformational barcode provides an intracellular address label, which selectively favors binding to one partner and quenches binding to others, and, in this way, determines the pathway direction, and, eventually, the cell's response and fate.
Collapse
Affiliation(s)
- Ruth Nussinov
- Basic Science Program, SAIC-Frederick, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA; Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | | | | | | |
Collapse
|
59
|
Lisabeth EM, Falivelli G, Pasquale EB. Eph receptor signaling and ephrins. Cold Spring Harb Perspect Biol 2013; 5:5/9/a009159. [PMID: 24003208 DOI: 10.1101/cshperspect.a009159] [Citation(s) in RCA: 314] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Eph receptors are the largest of the RTK families. Like other RTKs, they transduce signals from the cell exterior to the interior through ligand-induced activation of their kinase domain. However, the Eph receptors also have distinctive features. Instead of binding soluble ligands, they generally mediate contact-dependent cell-cell communication by interacting with surface-associated ligands-the ephrins-on neighboring cells. Eph receptor-ephrin complexes emanate bidirectional signals that affect both receptor- and ephrin-expressing cells. Intriguingly, ephrins can also attenuate signaling by Eph receptors coexpressed in the same cell. Additionally, Eph receptors can modulate cell behavior independently of ephrin binding and kinase activity. The Eph/ephrin system regulates many developmental processes and adult tissue homeostasis. Its abnormal function has been implicated in various diseases, including cancer. Thus, Eph receptors represent promising therapeutic targets. However, more research is needed to better understand the many aspects of their complex biology that remain mysterious.
Collapse
Affiliation(s)
- Erika M Lisabeth
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
60
|
Nikolov DB, Xu K, Himanen JP. Eph/ephrin recognition and the role of Eph/ephrin clusters in signaling initiation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2160-5. [PMID: 23628727 DOI: 10.1016/j.bbapap.2013.04.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/17/2013] [Accepted: 04/19/2013] [Indexed: 11/15/2022]
Abstract
The Eph receptors and their ephrin ligands play crucial roles in a large number of cell-cell interaction events, including those associated with axon pathfinding, neuronal cell migration and vasculogenesis. They are also involved in the patterning of most tissues and overall cell positioning in the development of the vertebrate body plan. The Eph/ephrin signaling system manifests several unique features that differentiate it from other receptor tyrosine kinases, including initiation of bi-directional signaling cascades and the existence of ligand and receptor subclasses displaying promiscuous intra-subclass interactions, but very rare inter-subclass interactions. In this review we briefly discuss these features and focus on recent studies of the unique and expansive high-affinity Eph/ephrin assemblies that form at the sites of cell-cell contact and are required for Eph signaling initiation. This article is part of a Special Issue entitled: Emerging recognition and activation mechanisms of receptor tyrosine kinases.
Collapse
Affiliation(s)
- Dimitar B Nikolov
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | | | | |
Collapse
|
61
|
Abstract
Allosteric propagation results in communication between distinct sites in the protein structure; it also encodes specific effects on cellular pathways, and in this way it shapes cellular response. One example of long-range effects is binding of morphogens to cell surface receptors, which initiates a cascade of protein interactions that leads to genome activation and specific cellular action. Allosteric propagation results from combinations of multiple factors, takes place through dynamic shifts of conformational ensembles, and affects the equilibria of macromolecular interactions. Here, we (a) emphasize the well-known yet still underappreciated role of allostery in conveying explicit signals across large multimolecular assemblies and distances to specify cellular action; (b) stress the need for quantitation of the allosteric effects; and finally, (c) propose that each specific combination of allosteric effectors along the pathway spells a distinct function. The challenges are colossal; the inspiring reward will be predicting function, misfunction, and outcomes of drug regimes.
Collapse
Affiliation(s)
- Ruth Nussinov
- Basic Research Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, Maryland 21702, USA.
| | | | | |
Collapse
|
62
|
Shentu XC, Zhao SJ, Zhang L, Miao Q. A novel p.R890C mutation in EPHA2 gene associated with progressive childhood posterior cataract in a Chinese family. Int J Ophthalmol 2013; 6:34-8. [PMID: 23447127 DOI: 10.3980/j.issn.2222-3959.2013.01.07] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/10/2013] [Indexed: 01/28/2023] Open
Abstract
AIM To identify the genetic defect in a Chinese family with bilateral progressive childhood posterior cataract. METHODS A two-generation family was recruited in this study. Family history and clinical data were recorded. All reported candidate genes associated with congenital posterior cataract were screened by direct DNA sequencing. RESULTS All affected individuals presented posterior opacities in the lens. Direct sequencing of the candidate genes showed a heterozygous c. 2668C>T variation in EPHA2 gene, which resulted in the replacement of arginine by cysteine at codon 890 (p. R890C). This mutation was found in two affected individuals, but was not observed in 200 normal controls. CONCLUSION We report a novel mutation (p. R890C) in the EPHA2 receptor tyrosine kinase gene. The finding expands the mutation spectrum of EPHA2 in association with posterior cataract.
Collapse
Affiliation(s)
- Xing-Chao Shentu
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| | | | | | | |
Collapse
|
63
|
Gael B, Julie D, Shao Z, Xuan Z, Ren Y, Xu J, Arbez N, Mauger G, Bruban J, Georgakopoulos A, Shioi J, Robakis NK. Presenilin mediates neuroprotective functions of ephrinB and brain-derived neurotrophic factor and regulates ligand-induced internalization and metabolism of EphB2 and TrkB receptors. Neurobiol Aging 2013; 34:499-510. [PMID: 22475621 PMCID: PMC3394882 DOI: 10.1016/j.neurobiolaging.2012.02.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 02/21/2012] [Accepted: 02/24/2012] [Indexed: 10/28/2022]
Abstract
Activation of EphB receptors by ephrinB (efnB) ligands on neuronal cell surface regulates important functions, including neurite outgrowth, axonal guidance, and synaptic plasticity. Here, we show that efnB rescues primary cortical neuronal cultures from necrotic cell death induced by glutamate excitotoxicity and that this function depends on EphB receptors. Importantly, the neuroprotective function of the efnB/EphB system depends on presenilin 1 (PS1), a protein that plays crucial roles in Alzheimer's disease (AD) neurodegeneration. Furthermore, absence of one PS1 allele results in significantly decreased neuroprotection, indicating that both PS1 alleles are necessary for full expression of the neuroprotective activity of the efnB/EphB system. We also show that the ability of brain-derived neurotrophic factor (BDNF) to protect neuronal cultures from glutamate-induced cell death depends on PS1. Neuroprotective functions of both efnB and BDNF, however, were independent of γ-secretase activity. Absence of PS1 decreases cell surface expression of neuronal TrkB and EphB2 without affecting total cellular levels of the receptors. Furthermore, PS1-knockout neurons show defective ligand-dependent internalization and decreased ligand-induced degradation of TrkB and Eph receptors. Our data show that PS1 mediates the neuroprotective activities of efnB and BDNF against excitotoxicity and regulates surface expression and ligand-induced metabolism of their cognate receptors. Together, our observations indicate that PS1 promotes neuronal survival by regulating neuroprotective functions of ligand-receptor systems.
Collapse
Affiliation(s)
- Barthet Gael
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Dunys Julie
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Zhiping Shao
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Zhao Xuan
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Ymin Ren
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Jindong Xu
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Nicolas Arbez
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Gweltas Mauger
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Julien Bruban
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Anastasios Georgakopoulos
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Junichi Shioi
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Nikolaos K. Robakis
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| |
Collapse
|
64
|
Lahtela J, Corson LB, Hemmes A, Brauer MJ, Koopal S, Lee J, Hunsaker TL, Jackson PK, Verschuren EW. A high-content cellular senescence screen identifies candidate tumor suppressors, including EPHA3. Cell Cycle 2013; 12:625-34. [PMID: 23324396 PMCID: PMC3594263 DOI: 10.4161/cc.23515] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Activation of a cellular senescence program is a common response to prolonged oncogene activation or tumor suppressor loss, providing a physiological mechanism for tumor suppression in premalignant cells. The link between senescence and tumor suppression supports the hypothesis that a loss-of-function screen measuring bona fide senescence marker activation should identify candidate tumor suppressors. Using a high-content siRNA screening assay for cell morphology and proliferation measures, we identify 12 senescence-regulating kinases and determine their senescence marker signatures, including elevation of senescence-associated β-galactosidase, DNA damage and p53 or p16INK4a expression. Consistent with our hypothesis, SNP array CGH data supports loss of gene copy number of five senescence-suppressing genes across multiple tumor samples. One such candidate is the EPHA3 receptor tyrosine kinase, a gene commonly mutated in human cancer. We demonstrate that selected intracellular EPHA3 tumor-associated point mutations decrease receptor expression level and/or receptor tyrosine kinase (RTK) activity. Our study therefore describes a new strategy to mine for novel candidate tumor suppressors and provides compelling evidence that EPHA3 mutations may promote tumorigenesis only when key senescence-inducing pathways have been inactivated.
Collapse
Affiliation(s)
- Jenni Lahtela
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Proteomics analysis of contact-initiated eph receptor-ephrin signaling. Methods Mol Biol 2013; 1066:1-16. [PMID: 23955729 DOI: 10.1007/978-1-62703-604-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Large-scale biochemical analysis of cell-specific signaling can be interrogated in cocultures of Eph receptor- and ephrin-expressing cells by combining proteomics analysis with cell-specific metabolic labeling. In this chapter, we describe how to perform such large-scale analysis, including the generation of cells stably expressing the receptors and ligands of interest, optimization steps for Eph-ephrin coculture, and the proteomics analysis. As the experimental details may vary depending on the specific system that is being interrogated, the goal of the chapter is mainly to provide sufficient experimental context for experienced researchers to set up and conduct these experiments.
Collapse
|
66
|
Abstract
EphA2 is a receptor tyrosine kinase (RTK) that triggers keratinocyte differentiation upon activation and subsequent downregulation by ephrin-A1 ligand. The objective of this study was to determine whether the EphA2/ephrin-A1 signaling axis was altered in psoriasis, an inflammatory skin condition in which keratinocyte differentiation is abnormal. Microarray analysis of skin biopsies from psoriasis patients revealed increased mRNA transcripts for several members of this RTK family in plaques, including the EphA1, EphA2, and EphA4 subtypes prominently expressed by keratinocytes. Of these, EphA2 showed the greatest upregulation, a finding that was confirmed by quantitative reverse-transcriptase-PCR, immunohistochemistry (IHC), and ELISA. In contrast, psoriatic lesions exhibited reduced ephrin-A ligand immunoreactivity. Exposure of primary keratinocytes induced to differentiate in high calcium or a three-dimensional (3D) raft culture of human epidermis to a combination of growth factors and cytokines elevated in psoriasis increased EphA2 mRNA and protein expression while inducing S100A7 and disrupting differentiation. Pharmacological delivery of a soluble ephrin-A1 peptidomimetic ligand led to a reduction in EphA2 expression and ameliorated proliferation and differentiation in raft cultures exposed to EGF and IL-1α. These findings suggest that ephrin-A1-mediated downregulation of EphA2 supports keratinocyte differentiation in the context of cytokine perturbation.
Collapse
|
67
|
Coulthard MG, Morgan M, Woodruff TM, Arumugam TV, Taylor SM, Carpenter TC, Lackmann M, Boyd AW. Eph/Ephrin signaling in injury and inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1493-503. [PMID: 23021982 DOI: 10.1016/j.ajpath.2012.06.043] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 06/28/2012] [Indexed: 12/20/2022]
Abstract
The Eph/ephrin receptor-ligand system plays an important role in embryogenesis and adult life, principally by influencing cell behavior through signaling pathways, resulting in modification of the cell cytoskeleton and cell adhesion. There are 10 EphA receptors, and six EphB receptors, distinguished on sequence difference and binding preferences, that interact with the six glycosylphosphatidylinositol-linked ephrin-A ligands and the three transmembrane ephrin-B ligands, respectively. The Eph/ephrin proteins, originally described as developmental regulators that are expressed at low levels postembryonically, are re-expressed after injury to the optic nerve, spinal cord, and brain in fish, amphibians, rodents, and humans. In rodent spinal cord injury, the up-regulation of EphA4 prevents recovery by inhibiting axons from crossing the injury site. Eph/ephrin proteins may be partly responsible for the phenotypic changes to the vascular endothelium in inflammation, which allows fluid and inflammatory cells to pass from the vascular space into the interstitial tissues. Specifically, EphA2/ephrin-A1 signaling in the lung may be responsible for pulmonary inflammation in acute lung injury. A role in T-cell maturation and chronic inflammation (heart failure, inflammatory bowel disease, and rheumatoid arthritis) is also reported. Although there remains much to learn about Eph/ephrin signaling in human disease, and specifically in injury and inflammation, this area of research raises the exciting prospect that novel therapies will be developed that precisely target these pathways.
Collapse
Affiliation(s)
- Mark G Coulthard
- Academic Discipline of Paediatrics and Child Health, University of Queensland, Royal Children's Hospital, Herston, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Mendes-da-Cruz DA, Stimamiglio MA, Muñoz JJ, Alfaro D, Terra-Granado E, Garcia-Ceca J, Alonso-Colmenar LM, Savino W, Zapata AG. Developing T-cell migration: role of semaphorins and ephrins. FASEB J 2012; 26:4390-9. [PMID: 22815386 DOI: 10.1096/fj.11-202952] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cell migration is a crucial event for normal T-cell development, and various ligand/receptor pairs have been implicated. Most of them, including chemokines and extracellular matrix proteins, have attractant properties on thymocytes. We discuss herein two further groups of ligand/receptor pairs, semaphorins/neuropilins and ephs/ephrins, which are constitutively expressed by thymocytes and thymic microenvironmental cells. Evidence shows that the corresponding interactions are relevant for developing T-cell migration, including the entry of bone marrow progenitor cells, migration of CD4/CD8-defined thymocyte subpopulations triggered by chemokines and/or extracellular matrix proteins, and thymocyte export. Conceptually, the data summarized here show that thymocyte migration results from a complex network of molecular interactions, which generate not only attraction, but also repulsion of migrating T-cell precursors.
Collapse
|
69
|
Nievergall E, Lackmann M, Janes PW. Eph-dependent cell-cell adhesion and segregation in development and cancer. Cell Mol Life Sci 2012; 69:1813-42. [PMID: 22204021 PMCID: PMC11114713 DOI: 10.1007/s00018-011-0900-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 11/06/2011] [Accepted: 11/28/2011] [Indexed: 01/23/2023]
Abstract
Numerous studies attest to essential roles for Eph receptors and their ephrin ligands in controlling cell positioning and tissue patterning during normal and oncogenic development. These studies suggest multiple, sometimes contradictory, functions of Eph-ephrin signalling, which under different conditions can promote either spreading and cell-cell adhesion or cytoskeletal collapse, cell rounding, de-adhesion and cell-cell segregation. A principle determinant of the balance between these two opposing responses is the degree of receptor/ligand clustering and activation. This equilibrium is likely altered in cancers and modulated by somatic mutations of key Eph family members that have emerged as candidate cancer markers in recent profiling studies. In addition, cross-talk amongst Ephs and with other signalling pathways significantly modulates cell-cell adhesion, both between and within Eph- and ephrin-expressing cell populations. This review summarises our current understanding of how Eph receptors control cell adhesion and morphology, and presents examples demonstrating the importance of these events in normal development and cancer.
Collapse
Affiliation(s)
- Eva Nievergall
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, VIC 3800 Australia
- Present Address: Haematology Department, SA Pathology, Frome Road, Adelaide, SA 5000 Australia
| | - Martin Lackmann
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, VIC 3800 Australia
| | - Peter W. Janes
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, VIC 3800 Australia
| |
Collapse
|
70
|
Xu Q, Lin WC, Petit RS, Groves JT. EphA2 receptor activation by monomeric Ephrin-A1 on supported membranes. Biophys J 2012; 101:2731-9. [PMID: 22261062 DOI: 10.1016/j.bpj.2011.10.039] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 10/07/2011] [Accepted: 10/31/2011] [Indexed: 01/22/2023] Open
Abstract
The receptor tyrosine kinase EphA2 interacts with its glycosylphosphatidylinositol (GPI)-linked ephrin-A1 ligand in a juxtacrine configuration. The soluble ephrin-A1 protein, without its GPI membrane linker, fails to activate EphA2. However, preclustered ephrin-A1 protein is active in solution and has been frequently used to trigger the EphA2 receptor. Although this approach has yielded insights into EphA2 signaling, preclustered ligands bypass natural receptor clustering processes and thus mask any role of clustering as a signal regulatory mechanism. Here, we present EphA2-expressing cells with a fusion protein of monomeric ephrin-A1 (mEA1) and enhanced monomeric yellow fluorescent protein that is linked to a supported lipid bilayer via a nickel-decahistidine anchor. The mEA1 is homogeneously dispersed, laterally mobile, and monomeric as measured by fluorescence imaging, correlation spectroscopy, and photon counting histogram analysis, respectively. Ephrin-A1 presented in this manner activates EphA2 on the surface of MDA-MB-231 human breast cancer cells, as measured by EphA2 phosphorylation and degradation. Spatial mutation experiments in which nanopatterns on the underlying substrate restrict mEA1 movement in the supported lipid bilayer reveal spatio-mechanical regulation of this signaling pathway, consistent with recently reported observations using a synthetically cross-linked ephrin-A1 dimer.
Collapse
Affiliation(s)
- Qian Xu
- Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, California, USA
| | | | | | | |
Collapse
|
71
|
Rodger J, Salvatore L, Migani P. Should I stay or should I go? Ephs and ephrins in neuronal migration. Neurosignals 2012; 20:190-201. [PMID: 22456188 DOI: 10.1159/000333784] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In neuroscience, Ephs and ephrins are perhaps best known for their role in axon guidance. It was first shown in the visual system that graded expression of these proteins is instrumental in providing molecular coordinates that define topographic maps, particularly in the visual system, but also in the auditory, vomeronasal and somatosensory systems as well as in the hippocampus, cerebellum and other structures. Perhaps unsurprisingly, the role of these proteins in regulating cell-cell interactions also has an impact on cell mobility, with evidence that Eph-ephrin interactions segregate cell populations based on contact-mediated attraction or repulsion. Consistent with these studies, evidence has accumulated that Ephs and ephrins play important roles in the migration of specific cell populations in the developing and adult brain. This review focusses on two examples of neuronal migration that require Eph/ephrin signalling - radial and tangential migration of neurons in cortical development and the migration of newly generated neurons along the rostral migratory stream to the olfactory bulb in the adult brain. We discuss the challenge involved in understanding how cells determine whether they respond to signals by migration or axon guidance.
Collapse
Affiliation(s)
- Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Animal Biology M317, University of Western Australia, Crawley, WA, Australia
| | | | | |
Collapse
|
72
|
Broder CC. Henipavirus outbreaks to antivirals: the current status of potential therapeutics. Curr Opin Virol 2012; 2:176-87. [PMID: 22482714 DOI: 10.1016/j.coviro.2012.02.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/22/2012] [Accepted: 02/25/2012] [Indexed: 12/29/2022]
Abstract
The henipaviruses, Hendra virus and Nipah virus, are classic examples of recently emerged viral zoonoses. In a relatively short time since their discoveries in the mid and late 1990s, respectively, a great deal of new information has been accumulated detailing their biology and certain unique characteristics. Their broad species tropism and abilities to cause severe and often fatal respiratory and/or neurologic disease in both animals and humans has sparked considerable interest in developing effective antiviral strategies to prevent or treat henipavirus infection and disease. Here, recent findings on the few most advanced henipavirus countermeasures are summarized and discussed.
Collapse
Affiliation(s)
- Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, United States.
| |
Collapse
|
73
|
Abstract
The family of Eph tyrosine kinase receptors is an important part of signaling pathways involved in development, tissue homeostasis and tumorigenesis. Binding and activation of the receptors by their ligands, the ephrins, result in bidirectional signaling into both receptor and ligand expressing cells. Adult stem cell niches and tumors frequently express receptors and ligands, although their function is only beginning to be understood. Thus, Eph receptors and ephrins have become important molecules for understanding basic biological processes as well as tumorigenesis, and are promising targets for potential therapeutic intervention in human disease.
Collapse
Affiliation(s)
- Maria Genander
- Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology & Development, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
74
|
Kaplan N, Fatima A, Peng H, Bryar PJ, Lavker RM, Getsios S. EphA2/Ephrin-A1 signaling complexes restrict corneal epithelial cell migration. Invest Ophthalmol Vis Sci 2012; 53:936-45. [PMID: 22247486 DOI: 10.1167/iovs.11-8685] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Eph/ephrin signaling proteins are present in the corneal epithelium, where their function remains unknown. The authors examined the role of the EphA2 receptor and ephrin-A1 ligand in human corneal epithelial cell migration. METHODS Immunohistochemical analysis of EphA2 and ephrin-A1 in healthy and diabetic corneas was performed in concert with linear scratch wound healing studies in primary and telomerase-immortalized human corneal epithelial cells. Corneal epithelial cells were exposed to a soluble ephrin-A1-Fc peptide mimetic that targets EphA2 to trigger receptor phosphorylation and subsequent downregulation. Genetic modulation of EphA2 and ephrin-A1 levels was combined with manipulation of Erk1/2 or Akt signaling during wound healing. RESULTS EphA2 was immunolocalized to human corneal epithelial cells in vivo and in vitro. Ephrin-A1 ligand targeting of EphA2 restricted the ability of corneal epithelial cells to seal linear scratch wounds in a manner that was associated with a transient reduction in Erk1/2 and Akt activation state. Ephrin-A1-Fc treatment delayed wound healing independently of Mek-Erk1/2 signaling but was no longer capable of restricting migration after pharmacologic blockade of the PI3K-Akt pathway. Interestingly, ephrin-A1 immunoreactivity was increased in the corneal epithelia of diabetic individuals, mice maintained on a high-fat diet, or cultured corneal epithelial cells exposed to high glucose, which exhibit impaired Akt signaling and slower wound healing responses. CONCLUSIONS EphA2 attenuates corneal epithelial cell migration when stimulated by ephrin-A1 ligand in a manner that involves the suppression of Akt. Elevated levels of ephrin-A1 may contribute to diabetic keratopathies by persistently engaging EphA2 and prohibiting Akt-dependent corneal epithelial repair processes.
Collapse
Affiliation(s)
- Nihal Kaplan
- Department of Dermatology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
75
|
Steffen DL, Xu K, Nikolov DB, Broder CC. Henipavirus mediated membrane fusion, virus entry and targeted therapeutics. Viruses 2012; 4:280-308. [PMID: 22470837 PMCID: PMC3315217 DOI: 10.3390/v4020280] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 01/30/2012] [Accepted: 01/30/2012] [Indexed: 11/23/2022] Open
Abstract
The Paramyxoviridae genus Henipavirus is presently represented by the type species Hendra and Nipah viruses which are both recently emerged zoonotic viral pathogens responsible for repeated outbreaks associated with high morbidity and mortality in Australia, Southeast Asia, India and Bangladesh. These enveloped viruses bind and enter host target cells through the coordinated activities of their attachment (G) and class I fusion (F) envelope glycoproteins. The henipavirus G glycoprotein interacts with host cellular B class ephrins, triggering conformational alterations in G that lead to the activation of the F glycoprotein, which facilitates the membrane fusion process. Using the recently published structures of HeV-G and NiV-G and other paramyxovirus glycoproteins, we review the features of the henipavirus envelope glycoproteins that appear essential for mediating the viral fusion process, including receptor binding, G-F interaction, F activation, with an emphasis on G and the mutations that disrupt viral infectivity. Finally, recent candidate therapeutics for henipavirus-mediated disease are summarized in light of their ability to inhibit HeV and NiV entry by targeting their G and F glycoproteins.
Collapse
Affiliation(s)
- Deborah L. Steffen
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA;
| | - Kai Xu
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA; (K.X.); (D.B.N.)
| | - Dimitar B. Nikolov
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA; (K.X.); (D.B.N.)
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA;
- Author to whom correspondence should be addressed; ; Tel.: +1-301-295-3401; Fax: +1-301-295-1545
| |
Collapse
|
76
|
Lisabeth EM, Fernandez C, Pasquale EB. Cancer somatic mutations disrupt functions of the EphA3 receptor tyrosine kinase through multiple mechanisms. Biochemistry 2012; 51:1464-75. [PMID: 22242939 DOI: 10.1021/bi2014079] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Eph receptor tyrosine kinases make up an important family of signal transduction molecules that control many cellular processes, including cell adhesion and movement, cell shape, and cell growth. All of these are important aspects of cancer progression, but the relationship between Eph receptors and cancer is complex and not fully understood. Genetic screens of tumor specimens from cancer patients have revealed somatic mutations in many Eph receptors. The most highly mutated Eph receptor is EphA3, but its functional role in cancer is currently not well established. Here we show that many EphA3 mutations identified in lung, colorectal, and hepatocellular cancers, melanoma, and glioblastoma impair kinase activity or ephrin ligand binding and/or decrease the level of receptor cell surface localization. These results suggest that EphA3 has ephrin- and kinase-dependent tumor suppressing activities, which are disrupted by somatic cancer mutations.
Collapse
Affiliation(s)
- Erika M Lisabeth
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | |
Collapse
|
77
|
Nussinov R, Ma B. Protein dynamics and conformational selection in bidirectional signal transduction. BMC Biol 2012; 10:2. [PMID: 22277130 PMCID: PMC3266202 DOI: 10.1186/1741-7007-10-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 01/25/2012] [Indexed: 11/10/2022] Open
Abstract
Protein conformational dynamics simultaneously allow promiscuity and specificity in binding. The multiple conformations of the free EphA4 ligand-binding domain observed in two new EphA4 crystal structures provide a unique insight into the conformational dynamics of EphA4 and its signaling pathways. The heterogeneous ensemble and loop dynamics explain how the EphA4 receptor is able to bind multiple A- and B-ephrin ligands and small molecules via conformational selection, which helps to fine-tune cellular signal response in both receptor and ligand cells. See research article http://www.biomedcentral.com/2046-1682/5/2
Collapse
Affiliation(s)
- Ruth Nussinov
- Basic Research Program, SAIC-Frederick, Inc,, Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA.
| | | |
Collapse
|
78
|
Tournoij E, Koekman CA, Du VX, Roest M, Ruijtenbeek R, Moll FL, Akkerman JWN. The platelet P2Y12 receptor contributes to granule secretion through Ephrin A4 receptor. Platelets 2012; 23:617-25. [PMID: 22273509 DOI: 10.3109/09537104.2011.645924] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The main responses of P2Y(1) ligation are platelet shape change and transient aggregation while P2Y(12) ligation amplifies P2Y(1)-induced aggregation and accelerates aggregation, secretion and thromboxane A(2) production induced by other agonist-receptor complexes. We searched for new targets of P2Y signalling using micro-arrays with 144 peptides representing known phosphosites of protein tyrosine kinases. ADP induced phosphorylation of peptides representing surface receptors, second messenger enzymes and cytoskeletal proteins. Strong phosphorylation was found in peptides representing Ephrin-receptor family members. Blockade of P2Y(1/12) inhibited phosphorylation of EphA4- and EphB1-peptides on micro-arrays. The EphA2/4 inhibitor 2,5-dimethylpyrrolyl benzoic acid derivative interfered with P2Y(1/12)-induced EphA4 phosphorylation, left P2Y(1)-induced aggregation unchanged but inhibited with P2Y(12)-induced secretion, second phase aggregation and thrombus formation on collagen at 1600 s(-1). These results show that platelet EphA4 is an important intermediate in P2Y(12)-induced granule secretion.
Collapse
Affiliation(s)
- Erik Tournoij
- Laboratory for Thrombosis and Haemostasis, Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
79
|
Concepts and consequences of Eph receptor clustering. Semin Cell Dev Biol 2012; 23:43-50. [PMID: 22261642 DOI: 10.1016/j.semcdb.2012.01.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 01/04/2012] [Indexed: 12/31/2022]
Abstract
Polymeric receptor-ligand complexes between interacting Eph and ephrin-expressing cells are regarded as dynamic intercellular signalling scaffolds that control cell-to-cell contact: the resulting Eph-ephrin signalling clusters function as positional cues that facilitate cell navigation and tissue patterning during normal and oncogenic development. The considerable complexity of this task, coordinating a multitude of cell movements and cellular interactions, is achieved by accurate translation of spatial information from Eph and ephrin expression gradients into fine-tuned changes in cell-cell adhesion and position. Here we review emerging evidence suggesting that the required combinatorial diversity is not only achieved by the large number of possible Eph-ephrin interactions and selective use of Eph forward and ephrin reverse signals, but in particular through the composition and signal capacity of Eph-ephrin clusters, which is adjusted dynamically to reflect overall Eph and ephrin surface densities on interacting cells. Fine-tuning is provided through multi-layered cluster assembly, where homo- and heterotypic Eph and ephrin interactions define the composition - whilst intracellular signalling feedbacks determine the size and lifetime - of signalling clusters.
Collapse
|
80
|
Funk SD, Yurdagul A, Albert P, Traylor JG, Jin L, Chen J, Orr AW. EphA2 activation promotes the endothelial cell inflammatory response: a potential role in atherosclerosis. Arterioscler Thromb Vasc Biol 2012; 32:686-95. [PMID: 22247258 DOI: 10.1161/atvbaha.111.242792] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Endothelial cell activation results in altered cell-cell interactions with adjacent endothelial cells and with infiltrating leukocytes. Eph receptors and their ephrin ligands regulate cell-cell interactions during tissue remodeling, and multiple proinflammatory mediators induce endothelial EphA receptor and ephrinA ligand expression. Therefore, we sought to elucidate the role of EphA receptors and ephrinA ligands in endothelial cell activation and atherosclerosis. METHODS AND RESULTS Quantitative reverse transcription-polymerase chain reaction screening for EphA/ephrinA expression in atherosclerosis-prone macrovascular endothelium identified EphA2, EphA4, and ephrinA1 as the dominant isoforms. Endothelial activation with oxidized low-density lipoprotein and proinflammatory cytokines induced EphA2 and ephrinA1 expression and sustained EphA2 activation, whereas EphA4 expression was unaffected. Atherosclerotic plaques from mice and humans showed enhanced EphA2 and ephrinA1 expression colocalizing in the endothelial cell layer. EphA2 activation with recombinant Fc-ephrinA1 induced proinflammatory gene expression (eg vascular cell adhesion molecule-1, E-selectin) and stimulated monocyte adhesion, whereas inhibiting EphA2 (small interfering RNA, pharmacological inhibitors) abrogated both ephrinA1-induced and oxidized low-density lipoprotein-induced vascular cell adhesion molecule-1 expression. CONCLUSION The current data suggest that enhanced EphA2 signaling during endothelial cell activation perpetuates proinflammatory gene expression. Coupled with EphA2 expression in mouse and human atherosclerotic plaques, these data implicate EphA2 as a novel proinflammatory mediator and potential regulator of atherosclerotic plaque development.
Collapse
Affiliation(s)
- Steven Daniel Funk
- Department of Pathology, Louisiana State University Health Science Center, 1501 King's Hwy, Shreveport, LA 71130, USA
| | | | | | | | | | | | | |
Collapse
|
81
|
Broder CC, Geisbert TW, Xu K, Nikolov DB, Wang LF, Middleton D, Pallister J, Bossart KN. Immunization strategies against henipaviruses. Curr Top Microbiol Immunol 2012; 359:197-223. [PMID: 22481140 PMCID: PMC4465348 DOI: 10.1007/82_2012_213] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hendra virus and Nipah virus are recently discovered and closely related emerging viruses that now comprise the genus henipavirus within the sub-family Paramyxoviridae and are distinguished by their broad species tropism and in addition to bats can infect and cause fatal disease in a wide variety of mammalian hosts including humans. The high mortality associated with human and animal henipavirus infections has highlighted the importance and necessity of developing effective immunization strategies. The development of suitable animal models of henipavirus infection and pathogenesis has been critical for testing the efficacy of potential therapeutic approaches. Several henipavirus challenge models have been used and recent successes in both active and passive immunization strategies against henipaviruses have been reported which have all targeted the viral envelope glycoproteins.
Collapse
Affiliation(s)
- Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Thomas W. Geisbert
- Galveston National Laboratory and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Kai Xu
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Dimitar B. Nikolov
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Lin-Fa Wang
- CSIRO Livestock Industries, Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC 3220, Australia
| | - Deborah Middleton
- CSIRO Livestock Industries, Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC 3220, Australia
| | - Jackie Pallister
- CSIRO Livestock Industries, Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC 3220, Australia
| | - Katharine N. Bossart
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA. National Emerging Infectious Diseases Laboratories Institute, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
82
|
Janes PW, Griesshaber B, Atapattu L, Nievergall E, Hii LL, Mensinga A, Chheang C, Day BW, Boyd AW, Bastiaens PI, Jørgensen C, Pawson T, Lackmann M. Eph receptor function is modulated by heterooligomerization of A and B type Eph receptors. ACTA ACUST UNITED AC 2011; 195:1033-45. [PMID: 22144690 PMCID: PMC3241718 DOI: 10.1083/jcb.201104037] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Beyond homotypic receptor interactions that are required for Eph signaling, ligand-independent association and crosstalk between members of the EphA and -B subclasses determine cell signaling outcomes. Eph receptors interact with ephrin ligands on adjacent cells to facilitate tissue patterning during normal and oncogenic development, in which unscheduled expression and somatic mutations contribute to tumor progression. EphA and B subtypes preferentially bind A- and B-type ephrins, respectively, resulting in receptor complexes that propagate via homotypic Eph–Eph interactions. We now show that EphA and B receptors cocluster, such that specific ligation of one receptor promotes recruitment and cross-activation of the other. Remarkably, coexpression of a kinase-inactive mutant EphA3 with wild-type EphB2 can cause either cross-activation or cross-inhibition, depending on relative expression. Our findings indicate that cellular responses to ephrin contact are determined by the EphA/EphB receptor profile on a given cell rather than the individual Eph subclass. Importantly, they imply that in tumor cells coexpressing different Ephs, functional mutations in one subtype may cause phenotypes that are a result of altered signaling from heterotypic rather from homotypic Eph clusters.
Collapse
Affiliation(s)
- Peter W Janes
- Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Himanen JP. Ectodomain structures of Eph receptors. Semin Cell Dev Biol 2011; 23:35-42. [PMID: 22044883 DOI: 10.1016/j.semcdb.2011.10.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 10/17/2011] [Indexed: 11/25/2022]
Abstract
Eph receptors, the largest subfamily of receptor tyrosine kinases (RTKs), and their ephrin ligands are important mediators of cell-cell communication that regulate axon guidance, long-term potentiation, and stem cell development, among others. By now, many Eph receptors and ephrins have also been found to play important roles in the progression of cancer. Since both the receptor and the ligand are membrane-bound, their interaction leads to the multimerization of both molecules to distinct clusters within their respective plasma membranes, resulting in the formation of discrete signaling centers. In addition, and unique to Eph receptors and ephrins, their interaction initiates bi-directional signaling cascades where information is transduced in the direction of both the receptor- and the ligand-bearing cells. The Ephs and the ephrins are divided into two subclasses, A and B, based on their affinities for each other and on sequence conservation. Crystal structures and other biophysical studies have indicated that isolated extracellular Eph and ephrin domains initially form high-affinity heterodimers around a hydrophobic loop of the ligand that is buried in a hydrophobic pocket on the surface of the receptor. The dimers can then further arrange by weaker interactions into higher-order Eph/ephrin clusters observed in vivo at the sites of cell-cell contact. Although the hetero-dimerization is a universal way to initiate signaling, other extracellular domains of Ephs are involved in the formation of higher-order clusters. The structures also show important differences defining the unique partner preferences of the two ligand and receptor subclasses, namely, how subclass specificity is determined both by individual interacting residues and by the precise architectural arrangement of ligands and receptors within the complexes.
Collapse
Affiliation(s)
- Juha P Himanen
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
84
|
Miao H, Wang B. EphA receptor signaling--complexity and emerging themes. Semin Cell Dev Biol 2011; 23:16-25. [PMID: 22040915 DOI: 10.1016/j.semcdb.2011.10.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/17/2011] [Indexed: 01/09/2023]
Abstract
The impact of Eph and ephrin signaling on cell behavior is complex and highly context dependent. Forward signaling initiated by Eph receptor activation and reverse signaling initiated by ephrin activation often mediate opposite effects. The apparent ligand-independent functions of Eph receptors recognized recently add another layer of complexity. This review will attempt to sort out the information generated recently on signaling by the A subfamily of Eph receptors and ephrin ligands. We will focus on EphA/ephrin-A signaling in the context of several physiological and disease processes, where new progresses have been made lately and unifying themes are emerging amid previous confusions. For more comprehensive survey of literature on Eph/ephrin signaling pathways and networks, readers are referred to outstanding reviews both in this volume and in other recent publications.
Collapse
Affiliation(s)
- Hui Miao
- Rammelkamp Center for Research, MetroHealth Campus, Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, OH 44109, USA.
| | | |
Collapse
|
85
|
Sloniowski S, Ethell IM. Looking forward to EphB signaling in synapses. Semin Cell Dev Biol 2011; 23:75-82. [PMID: 22040917 DOI: 10.1016/j.semcdb.2011.10.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 10/17/2011] [Indexed: 11/24/2022]
Abstract
Eph receptors and their ligands ephrins comprise a complex signaling system with diverse functions that span a wide range of tissues and developmental stages. The variety of Eph receptor functions stems from their ability to mediate bidirectional signaling through trans-cellular Eph/ephrin interactions. Initially thought to act by directing repulsion between cells, Ephs have also been demonstrated to induce and maintain cell adhesive responses at excitatory synapses in the central nervous system. EphB receptors are essential to the development and maintenance of dendritic spines, which accommodate the postsynaptic sites of most glutamatergic excitatory synapses in the brain. Functions of EphB receptors are not limited to control of the actin cytoskeleton in dendritic spines, as EphB receptors are also involved in the formation of functional synaptic specializations through the regulation of glutamate receptor trafficking and functions. In addition, EphB receptors have recently been linked to the pathophysiology of Alzheimer's disease and neuropathic pain, thus becoming promising targets for therapeutic interventions. In this review, we discuss recent findings on EphB receptor functions in synapses, as well as the mechanisms of bidirectional trans-synaptic ephrin-B/EphB receptor signaling that shape dendritic spines and influence post-synaptic differentiation.
Collapse
Affiliation(s)
- Slawomir Sloniowski
- Division of Biomedical Sciences and Graduate Program in Neuroscience, University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| | | |
Collapse
|
86
|
Eph/ephrin signaling in epidermal differentiation and disease. Semin Cell Dev Biol 2011; 23:92-101. [PMID: 22040910 DOI: 10.1016/j.semcdb.2011.10.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 10/17/2011] [Indexed: 01/09/2023]
Abstract
Eph receptor tyrosine kinases mediate cell-cell communication by interacting with ephrin ligands residing on adjacent cell surfaces. In doing so, these juxtamembrane signaling complexes provide important contextual information about the cellular microenvironment that helps orchestrate tissue morphogenesis and maintain homeostasis. Eph/ephrin signaling has been implicated in various aspects of mammalian skin physiology, with several members of this large family of receptor tyrosine kinases and their ligands present in the epidermis, hair follicles, sebaceous glands, and underlying dermis. This review focuses on the emerging role of Eph receptors and ephrins in epidermal keratinocytes where they can modulate proliferation, migration, differentiation, and death. The activation of Eph receptors by ephrins at sites of cell-cell contact also appears to play a key role in the maturation of intercellular junctional complexes as keratinocytes move out of the basal layer and differentiate in the suprabasal layers of this stratified, squamous epithelium. Furthermore, alterations in the epidermal Eph/ephrin axis have been associated with cutaneous malignancy, wound healing defects and inflammatory skin conditions. These collective observations suggest that the Eph/ephrin cell-cell communication pathway may be amenable to therapeutic intervention for the purpose of restoring epidermal tissue homeostasis and integrity in dermatological disorders.
Collapse
|
87
|
Eph/ephrin profiling in human breast cancer reveals significant associations between expression level and clinical outcome. PLoS One 2011; 6:e24426. [PMID: 21935409 PMCID: PMC3174170 DOI: 10.1371/journal.pone.0024426] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 08/08/2011] [Indexed: 12/26/2022] Open
Abstract
Pre-clinical studies provide compelling evidence that Eph family receptor tyrosine kinases (RTKs) and ligands promote cancer growth, neovascularization, invasion, and metastasis. Tumor suppressive roles have also been reported for the receptors, however, creating a potential barrier for clinical application. Determining how these observations relate to clinical outcome is a crucial step for translating the biological and mechanistic data into new molecularly targeted therapies. We investigated eph and ephrin expression in human breast cancer relative to endpoints of overall and/or recurrence-free survival in large microarray datasets. We also investigated protein expression in commercial human breast tissue microarrays (TMA) and Stage I prognostic TMAs linked to recurrence outcome data. We found significant correlations between ephA2, ephA4, ephA7, ephB4, and ephB6 and overall and/or recurrence-free survival in large microarray datasets. Protein expression in TMAs supported these trends. While observed no correlation between ephrin ligand expression and clinical outcome in microarray datasets, ephrin-A1 and EphA2 protein co-expression was significantly associated with recurrence in Stage I prognostic breast cancer TMAs. Our data suggest that several Eph family members are clinically relevant and tractable targets for intervention in human breast cancer. Moreover, profiling Eph receptor expression patterns in the context of relevant ligands and in the context of stage may be valuable in terms of diagnostics and treatment.
Collapse
|
88
|
Lee H, Jang Y, Seo J, Nam JM, Char K. Nanoparticle-functionalized polymer platform for controlling metastatic cancer cell adhesion, shape, and motility. ACS NANO 2011; 5:5444-5456. [PMID: 21702475 DOI: 10.1021/nn202103z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Controlling and understanding the changes in metastatic cancer cell adhesion, shape, and motility are of paramount importance in cancer research, diagnosis, and treatment. Here, we used gold nanoparticles (AuNPs) as nanotopological structures and protein nanocluster forming substrates. Cell adhesion controlling proteins [in this case, fibronection (Fn) and ephrinB3] were modified to AuNPs, and these particles were then modified to the layer-by-layer (LbL) polymer surface that offers a handle for tuning surface charge and mechanical property of a cell-interfacing substrate. We found that metastatic cancer cell adhesion is affected by nanoparticle density on a surface, and ∼140 particles per 400 μm(2) (∼1.7 μm spacing between AuNPs) is optimal for effective metastatic cell adhesion. It was also shown that the AuNP surface density and protein nanoclustering on a spherical AuNP are controlling factors for the efficient interfacing and signaling of metastatic cancer cells. Importantly, the existence of nanotopological features (AuNPs in this case) is much more critical in inducing more dramatic changes in metastatic cell adhesion, protrusion, polarity, and motility than the presence of a cell adhesion protein, Fn, on the surface. Moreover, cell focal adhesion and motility-related paxillin clusters were heavily formed in cell lamellipodia and filopodia and high expression of phospho-paxillins were observed when the cells were cultured on either an AuNP or Fn-modified AuNP polymer surface. The ephrin signaling that results in the decreased expression of paxillin was found to be more effective when ephrins were modified to the AuNP surface than when ephrinB3 was directly attached to the polymer film. The overall trend for cell motility change is such that a nanoparticle-modified LbL surface induces higher cell motility and the AuNP modification to the LbL surface results in more pronounced change in cell motility than Fn or ephrin modification to the LbL surface.
Collapse
Affiliation(s)
- Hyojin Lee
- Department of Chemistry, Seoul National University, Seoul, 151-747, Korea
| | | | | | | | | |
Collapse
|
89
|
A semisynthetic Eph receptor tyrosine kinase provides insight into ligand-induced kinase activation. ACTA ACUST UNITED AC 2011; 18:361-71. [PMID: 21439481 DOI: 10.1016/j.chembiol.2011.01.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 12/19/2010] [Accepted: 01/05/2011] [Indexed: 01/04/2023]
Abstract
We have developed a methodology for generating milligram amounts of functional Eph tyrosine kinase receptor using the protein engineering approach of expressed protein ligation. Stimulation with ligand induces efficient autophosphorylation of the semisynthetic Eph construct. The in vitro phosphorylation of key Eph tyrosine residues upon ligand-induced activation was monitored via time-resolved, quantitative phosphoproteomics, suggesting a precise and unique order of phosphorylation of the Eph tyrosines in the kinase activation process. To our knowledge, this work represents the first reported semisynthesis of a receptor tyrosine kinase and provides a potentially general method for producing single-pass membrane proteins for structural and biochemical characterization.
Collapse
|
90
|
Salaita K, Groves JT. Roles of the cytoskeleton in regulating EphA2 signals. Commun Integr Biol 2011; 3:454-7. [PMID: 21057639 DOI: 10.4161/cib.3.5.12418] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 05/13/2010] [Indexed: 11/19/2022] Open
Abstract
The lateral organizations of receptors in the cell membrane display a tremendous amount of complexity. In some cases, receptor functions can be attributed to specific spatial arrangements in the plasma membrane. We recently found that one member of the largest subfamily of receptor tyrosine kinases (RTKs), EphA2, is organized over micrometer length scales by the cell's own cytoskeleton, and that this can regulate receptor signaling functions. Spatial organization of the receptor was found to be highly associated with invasive character, and mechanical disruption of receptor organization altered key down-stream events in the EphA2 signaling pathway. In this Addendum article, we put forth possible models for why EphA2 and other receptors may employ mechanical and spatial inputs mediated by the cytoskeleton. We speculate that this class of input may be common, and contributes to the intricacies of cellular signaling.
Collapse
Affiliation(s)
- Khalid Salaita
- Department of Chemistry; Emory University; Atlanta, GA USA
| | | |
Collapse
|
91
|
Hartman NC, Groves JT. Signaling clusters in the cell membrane. Curr Opin Cell Biol 2011; 23:370-6. [PMID: 21665455 DOI: 10.1016/j.ceb.2011.05.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 05/14/2011] [Accepted: 05/17/2011] [Indexed: 10/25/2022]
Abstract
Large-scale molecular assemblies, or signaling clusters, at the cell membrane are emerging as important regulators of cell signaling. Here, we review new findings and describe shared characteristics common to signaling clusters from a diverse set of cellular systems. The well-known T cell receptor cluster serves as our paradigmatic model. Specifically, each cluster initiates recruitment of hundreds of molecules to the membrane, interacts with the actin cytoskeleton, and contains a significant fraction of the entire signaling process. Probed by recent advancements in patterning and microscopy techniques, the signaling clusters display functional outcomes that are not readily predictable from the individual components.
Collapse
Affiliation(s)
- Niña C Hartman
- Department of Chemistry, University of California, 424 Stanley Hall, Berkeley, CA 94720-3220, USA
| | | |
Collapse
|
92
|
Lupberger J, Zeisel MB, Xiao F, Thumann C, Fofana I, Zona L, Davis C, Mee CJ, Turek M, Gorke S, Royer C, Fischer B, Zahid MN, Lavillette D, Fresquet J, Cosset FL, Rothenberg SM, Pietschmann T, Patel AH, Pessaux P, Doffoël M, Raffelsberger W, Poch O, Mckeating JA, Brino L, Baumert TF. EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nat Med 2011; 17:589-95. [PMID: 21516087 PMCID: PMC3938446 DOI: 10.1038/nm.2341] [Citation(s) in RCA: 567] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 03/03/2011] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) is a major cause of liver disease, but therapeutic options are limited and there are no prevention strategies. Viral entry is the first step of infection and requires the cooperative interaction of several host cell factors. Using a functional RNAi kinase screen, we identified epidermal growth factor receptor and ephrin receptor A2 as host cofactors for HCV entry. Blocking receptor kinase activity by approved inhibitors broadly impaired infection by all major HCV genotypes and viral escape variants in cell culture and in a human liver chimeric mouse model in vivo. The identified receptor tyrosine kinases (RTKs) mediate HCV entry by regulating CD81-claudin-1 co-receptor associations and viral glycoprotein-dependent membrane fusion. These results identify RTKs as previously unknown HCV entry cofactors and show that tyrosine kinase inhibitors have substantial antiviral activity. Inhibition of RTK function may constitute a new approach for prevention and treatment of HCV infection.
Collapse
Affiliation(s)
- Joachim Lupberger
- Interaction Virus-Hôte et Maladies du Foie
INSERM : U748Université de Strasbourg - Faculté de Médecine 3 Rue Koeberle 67000 Strasbourg, FR
| | - Mirjam B. Zeisel
- Interaction Virus-Hôte et Maladies du Foie
INSERM : U748Université de Strasbourg - Faculté de Médecine 3 Rue Koeberle 67000 Strasbourg, FR
| | - Fei Xiao
- Interaction Virus-Hôte et Maladies du Foie
INSERM : U748Université de Strasbourg - Faculté de Médecine 3 Rue Koeberle 67000 Strasbourg, FR
| | - Christine Thumann
- Interaction Virus-Hôte et Maladies du Foie
INSERM : U748Université de Strasbourg - Faculté de Médecine 3 Rue Koeberle 67000 Strasbourg, FR
| | - Isabel Fofana
- Interaction Virus-Hôte et Maladies du Foie
INSERM : U748Université de Strasbourg - Faculté de Médecine 3 Rue Koeberle 67000 Strasbourg, FR
| | - Laetitia Zona
- Interaction Virus-Hôte et Maladies du Foie
INSERM : U748Université de Strasbourg - Faculté de Médecine 3 Rue Koeberle 67000 Strasbourg, FR
| | - Christopher Davis
- Hepatitis C Research Group
University of BirminghamDivision of Immunity and InfectionEdgbaston, Birmingham B15 2TT, GB
| | - Christopher J. Mee
- Hepatitis C Research Group
University of BirminghamDivision of Immunity and InfectionEdgbaston, Birmingham B15 2TT, GB
| | - Marine Turek
- Interaction Virus-Hôte et Maladies du Foie
INSERM : U748Université de Strasbourg - Faculté de Médecine 3 Rue Koeberle 67000 Strasbourg, FR
| | - Sebastian Gorke
- Interaction Virus-Hôte et Maladies du Foie
INSERM : U748Université de Strasbourg - Faculté de Médecine 3 Rue Koeberle 67000 Strasbourg, FR
- Department of Medicine II
University of FreiburgFahnenbergplatz, 79085 Freiburg im Breisgau, DE
| | - Cathy Royer
- Interaction Virus-Hôte et Maladies du Foie
INSERM : U748Université de Strasbourg - Faculté de Médecine 3 Rue Koeberle 67000 Strasbourg, FR
| | - Benoit Fischer
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire
INSERM : U964CNRS : UMR7104Université de StrasbourgParc D'Innovation - 1 Rue Laurent Fries - BP 10142 - 67404 Illkirch Cedex, FR
| | - Muhammad N. Zahid
- Interaction Virus-Hôte et Maladies du Foie
INSERM : U748Université de Strasbourg - Faculté de Médecine 3 Rue Koeberle 67000 Strasbourg, FR
| | - Dimitri Lavillette
- Virologie Humaine
INSERM : U758IFR128École Normale Supérieure - Lyon46, Allee D'Italie 69364 Lyon Cedex 07, FR
| | - Judith Fresquet
- Virologie Humaine
INSERM : U758IFR128École Normale Supérieure - Lyon46, Allee D'Italie 69364 Lyon Cedex 07, FR
| | - François-Loïc Cosset
- Virologie Humaine
INSERM : U758IFR128École Normale Supérieure - Lyon46, Allee D'Italie 69364 Lyon Cedex 07, FR
| | - S Michael Rothenberg
- Massachusetts General Hospital Cancer Center
Howard Hughes Medical InstituteHarvard Medical School55 Fruit St, Boston, MA 02114, US
| | - Thomas Pietschmann
- TWINCORE, Division of Experimental Virology
Centre for Experimental and Clinical Infection Research HannoverMedical School Hannover (MHH)Helmholtz Centre for Infection Research (HZI)Feodor-Lynen-Straße 7 D-30625 Hannover, DE
| | - Arvind H. Patel
- MRC Virology Unit
University of Glasgow - Institute of VirologyGlasgow, Glasgow City G12 8QQ, GB
| | - Patrick Pessaux
- Service d'Hépato-Gastroentérologie
Nouvel Hôpital CivilHôpitaux Universitaires de Strasbourg (HUS)1 Place de l'Hôpital 67000 Strasbourg, FR
| | - Michel Doffoël
- Interaction Virus-Hôte et Maladies du Foie
INSERM : U748Université de Strasbourg - Faculté de Médecine 3 Rue Koeberle 67000 Strasbourg, FR
- Service d'Hépato-Gastroentérologie
Nouvel Hôpital CivilHôpitaux Universitaires de Strasbourg (HUS)1 Place de l'Hôpital 67000 Strasbourg, FR
| | - Wolfgang Raffelsberger
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire
INSERM : U964CNRS : UMR7104Université de StrasbourgParc D'Innovation - 1 Rue Laurent Fries - BP 10142 - 67404 Illkirch Cedex, FR
| | - Olivier Poch
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire
INSERM : U964CNRS : UMR7104Université de StrasbourgParc D'Innovation - 1 Rue Laurent Fries - BP 10142 - 67404 Illkirch Cedex, FR
| | - Jane A. Mckeating
- Hepatitis C Research Group
University of BirminghamDivision of Immunity and InfectionEdgbaston, Birmingham B15 2TT, GB
| | - Laurent Brino
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire
INSERM : U964CNRS : UMR7104Université de StrasbourgParc D'Innovation - 1 Rue Laurent Fries - BP 10142 - 67404 Illkirch Cedex, FR
| | - Thomas F. Baumert
- Interaction Virus-Hôte et Maladies du Foie
INSERM : U748Université de Strasbourg - Faculté de Médecine 3 Rue Koeberle 67000 Strasbourg, FR
- Service d'Hépato-Gastroentérologie
Nouvel Hôpital CivilHôpitaux Universitaires de Strasbourg (HUS)1 Place de l'Hôpital 67000 Strasbourg, FR
| |
Collapse
|
93
|
Nair PM, Salaita K, Petit RS, Groves JT. Using patterned supported lipid membranes to investigate the role of receptor organization in intercellular signaling. Nat Protoc 2011; 6:523-39. [PMID: 21455188 DOI: 10.1038/nprot.2011.302] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Physical inputs, both internal and external to a cell, can directly alter the spatial organization of cell surface receptors and their associated functions. Here we describe a protocol that combines solid-state nanolithography and supported lipid membrane techniques to trigger and manipulate specific receptors on the surface of living cells and to develop an understanding of the interplay between spatial organization and receptor function. While existing protein-patterning techniques are capable of presenting cells with well-defined clusters of protein, this protocol uniquely allows for the control of the spatial organization of laterally fluid receptor-ligand complex at an intermembrane junction. A combination of immunofluorescence and single-cell microscopy methods and complementary biochemical analyses are used to characterize receptor signaling pathways and cell functions. The protocol requires 2-5 d to complete depending on the parameters to be studied. In principle, this protocol is widely applicable to eukaryotic cells and herein is specifically developed to study the role of physical organization and translocation of the EphA2 receptor tyrosine kinase across a library of model breast cancer cell lines.
Collapse
Affiliation(s)
- Pradeep M Nair
- Department of Chemistry, Howard Hughes Medical Institute, University of California, Berkeley, California, USA
| | | | | | | |
Collapse
|
94
|
Becker CFW. Ambiguous origin: two sides of an ephrin receptor tyrosine kinase. CHEMISTRY & BIOLOGY 2011; 18:279-281. [PMID: 21439470 DOI: 10.1016/j.chembiol.2011.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The assembly of a functional receptor tyrosine kinase via expressed protein ligation using receptor segments produced in two different organisms by Singla et al. (2011) provides a tool for monitoring the order of tyrosine phosphorylation events upon ligand activation.
Collapse
Affiliation(s)
- Christian F W Becker
- Center for Integrated Protein Science Munich and Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching b. München, Germany.
| |
Collapse
|
95
|
Goichberg P, Bai Y, D'Amario D, Ferreira-Martins J, Fiorini C, Zheng H, Signore S, del Monte F, Ottolenghi S, D'Alessandro DA, Michler RE, Hosoda T, Anversa P, Kajstura J, Rota M, Leri A. The ephrin A1-EphA2 system promotes cardiac stem cell migration after infarction. Circ Res 2011; 108:1071-83. [PMID: 21415392 DOI: 10.1161/circresaha.110.239459] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Understanding the mechanisms that regulate trafficking of human cardiac stem cells (hCSCs) may lead to development of new therapeutic approaches for the failing heart. OBJECTIVE We tested whether the motility of hCSCs in immunosuppressed infarcted animals is controlled by the guidance system that involves the interaction of Eph receptors with ephrin ligands. METHODS AND RESULTS Within the cardiac niches, cardiomyocytes expressed preferentially the ephrin A1 ligand, whereas hCSCs possessed the EphA2 receptor. Treatment of hCSCs with ephrin A1 resulted in the rapid internalization of the ephrin A1-EphA2 complex, posttranslational modifications of Src kinases, and morphological changes consistent with the acquisition of a motile cell phenotype. Ephrin A1 enhanced the motility of hCSCs in vitro, and their migration in vivo following acute myocardial infarction. At 2 weeks after infarction, the volume of the regenerated myocardium was 2-fold larger in animals injected with ephrin A1-activated hCSCs than in animals receiving control hCSCs; this difference was dictated by a greater number of newly formed cardiomyocytes and coronary vessels. The increased recovery in myocardial mass with ephrin A1-treated hCSCs was characterized by further restoration of cardiac function and by a reduction in arrhythmic events. CONCLUSIONS Ephrin A1 promotes the motility of EphA2-positive hCSCs, facilitates their migration to the area of damage, and enhances cardiac repair. Thus, in situ stimulation of resident hCSCs with ephrin A1 or their ex vivo activation before myocardial delivery improves cell targeting to sites of injury, possibly providing a novel strategy for the management of the diseased heart.
Collapse
Affiliation(s)
- Polina Goichberg
- Department of Anesthesia, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Ehlken C, Martin G, Lange C, Gogaki EG, Fiedler U, Schaffner F, Hansen LL, Augustin HG, Agostini HT. Therapeutic interference with EphrinB2 signalling inhibits oxygen-induced angioproliferative retinopathy. Acta Ophthalmol 2011; 89:82-90. [PMID: 19764912 DOI: 10.1111/j.1755-3768.2009.01609.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE To investigate whether EphrinB2 (EfnB2) or EphB4 influence retinal angiogenesis under physiological or pathological conditions. METHODS Using the mouse model of oxygen-induced proliferative retinopathy (OIR), the expression of EfnB2, EphB4, vascular endothelial growth factor (VEGF), VEGFR1 and VEGFR2 was quantified by quantitative polymerase chain reaction (qPCR) and localized in EfnB2- and EphB4-lacZ mice. Angioproliferative retinopathy was manipulated by intravitreal injection of dimeric EfnB2 and monomeric or dimeric EphB4. RESULTS Dimeric EphB4 (EphB4-Fc) and EfnB2 (EfnB2-Fc) enhanced hypoxia-induced angioproliferative retinopathy but not physiological angiogenesis. Monomeric EphB4 (sEphB4) reduced angiogenesis. The messenger RNA (mRNA) level of EfnB2 increased significantly in the hyperoxic phase (P7-P12), while EphB4, VEGF, VEGFR1 and VEGFR2 showed a significant - up to fivefold - increased expression at P14, the start of morphologically visible vasoproliferation caused by relative hypoxia. CONCLUSION The ephrin/Eph system is involved in angioproliferative retinopathy. Stimulation of EphB4 and EfnB2 signalling using EfnB2-Fc and EphB4-Fc, respectively, enhanced hypoxia-induced angiogenesis. In contrast, sEphB4 inhibited hypoxia-induced angiogenesis. Therefore, angiogenesis is enhanced by signalling through both EphB4 (forward) and EfnB2 (reverse). The distinction in the expression kinetics of EphB4 and EfnB2 indicates that they govern two different signalling pathways and are regulated in diverse ways. sEphB4 might be a useful drug for antiangiogenic therapy.
Collapse
|
97
|
Nievergall E, Janes PW, Stegmayer C, Vail ME, Haj FG, Teng SW, Neel BG, Bastiaens PI, Lackmann M. PTP1B regulates Eph receptor function and trafficking. ACTA ACUST UNITED AC 2010; 191:1189-203. [PMID: 21135139 PMCID: PMC3002030 DOI: 10.1083/jcb.201005035] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Changes in protein tyrosine phosphatase 1B expression affect duration and amplitude of EphA3 phosphorylation and cell surface concentration. Eph receptors orchestrate cell positioning during normal and oncogenic development. Their function is spatially and temporally controlled by protein tyrosine phosphatases (PTPs), but the underlying mechanisms are unclear and the identity of most regulatory PTPs are unknown. We demonstrate here that PTP1B governs signaling and biological activity of EphA3. Changes in PTP1B expression significantly affect duration and amplitude of EphA3 phosphorylation and biological function, whereas confocal fluorescence lifetime imaging microscopy (FLIM) reveals direct interactions between PTP1B and EphA3 before ligand-stimulated receptor internalization and, subsequently, on endosomes. Moreover, overexpression of wild-type (w/t) PTP1B and the [D-A] substrate–trapping mutant decelerate ephrin-induced EphA3 trafficking in a dose-dependent manner, which reveals its role in controlling EphA3 cell surface concentration. Furthermore, we provide evidence that in areas of Eph/ephrin-mediated cell–cell contacts, the EphA3–PTP1B interaction can occur directly at the plasma membrane. Our studies for the first time provide molecular, mechanistic, and functional insights into the role of PTP1B controlling Eph/ephrin-facilitated cellular interactions.
Collapse
Affiliation(s)
- Eva Nievergall
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Bush JO, Soriano P. Ephrin-B1 forward signaling regulates craniofacial morphogenesis by controlling cell proliferation across Eph-ephrin boundaries. Genes Dev 2010; 24:2068-80. [PMID: 20844017 DOI: 10.1101/gad.1963210] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mutations in the X-linked human EPHRIN-B1 gene result in cleft palate and other craniofacial anomalies as part of craniofrontonasal syndrome (CFNS), but the molecular and developmental mechanisms by which ephrin-B1 controls the underlying developmental processes are not clear. Here we demonstrate that ephrin-B1 plays an intrinsic role in palatal shelf outgrowth in the mouse by regulating cell proliferation in the anterior palatal shelf mesenchyme. In ephrin-B1 heterozygous mutants, X inactivation generates ephrin-B1-expressing and -nonexpressing cells that sort out, resulting in mosaic ephrin-B1 expression. We now show that this process leads to mosaic disruption of cell proliferation and post-transcriptional up-regulation of EphB receptor expression through relief of endocytosis and degradation. The alteration in proliferation rates resulting from ectopic Eph-ephrin expression boundaries correlates with the more severe dysmorphogenesis of ephrin-B1(+/-) heterozygotes that is a hallmark of CFNS. Finally, by integrating phosphoproteomic and transcriptomic approaches, we show that ephrin-B1 controls proliferation in the palate by regulating the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signal transduction pathway.
Collapse
Affiliation(s)
- Jeffrey O Bush
- Program in Developmental Biology and Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|
99
|
Parrinello S, Napoli I, Ribeiro S, Digby PW, Fedorova M, Parkinson DB, Doddrell RD, Nakayama M, Adams RH, Lloyd AC. EphB signaling directs peripheral nerve regeneration through Sox2-dependent Schwann cell sorting. Cell 2010; 143:145-55. [PMID: 20869108 PMCID: PMC3826531 DOI: 10.1016/j.cell.2010.08.039] [Citation(s) in RCA: 401] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 07/15/2010] [Accepted: 08/09/2010] [Indexed: 01/06/2023]
Abstract
The peripheral nervous system has astonishing regenerative capabilities in that cut nerves are able to reconnect and re-establish their function. Schwann cells are important players in this process, during which they dedifferentiate to a progenitor/stem cell and promote axonal regrowth. Here, we report that fibroblasts also play a key role. Upon nerve cut, ephrin-B/EphB2 signaling between fibroblasts and Schwann cells results in cell sorting, followed by directional collective cell migration of Schwann cells out of the nerve stumps to guide regrowing axons across the wound. Mechanistically, we find that cell-sorting downstream of EphB2 is mediated by the stemness factor Sox2 through N-cadherin relocalization to Schwann cell-cell contacts. In vivo, loss of EphB2 signaling impaired organized migration of Schwann cells, resulting in misdirected axonal regrowth. Our results identify a link between Ephs and Sox proteins, providing a mechanism by which progenitor cells can translate environmental cues to orchestrate the formation of new tissue.
Collapse
Affiliation(s)
- Simona Parrinello
- MRC Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College London, Gower Street, London WC1E 6BT, UK
| | - Ilaria Napoli
- MRC Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College London, Gower Street, London WC1E 6BT, UK
| | - Sara Ribeiro
- MRC Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College London, Gower Street, London WC1E 6BT, UK
| | - Patrick Wingfield Digby
- MRC Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College London, Gower Street, London WC1E 6BT, UK
| | - Marina Fedorova
- MRC Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College London, Gower Street, London WC1E 6BT, UK
| | - David B. Parkinson
- Peninsula College of Medicine and Dentistry, University of Plymouth, Plymouth PL6 8BU, UK
| | - Robin D.S. Doddrell
- Peninsula College of Medicine and Dentistry, University of Plymouth, Plymouth PL6 8BU, UK
| | - Masanori Nakayama
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, and Faculty of Medicine, University of Münster, Münster D-48149, Germany
| | - Ralf H. Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, and Faculty of Medicine, University of Münster, Münster D-48149, Germany
| | - Alison C. Lloyd
- MRC Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
100
|
Ting MJ, Day BW, Spanevello MD, Boyd AW. Activation of ephrin A proteins influences hematopoietic stem cell adhesion and trafficking patterns. Exp Hematol 2010; 38:1087-98. [PMID: 20655977 DOI: 10.1016/j.exphem.2010.07.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2009] [Revised: 07/09/2010] [Accepted: 07/14/2010] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine if Eph receptors and ephrins can modulate the homing of hematopoietic cells in a murine bone marrow transplantation model. MATERIALS AND METHODS EphA and ephrin A gene expression by mouse hematopoietic stem cells and the progenitor cell line FDCP-1 was determined by real-time reverse transcription polymerase chain reaction and flow cytometry. The effect of ephrin A activation on adhesion of hematopoietic progenitors was determined by in vitro adhesion assays in which cells were exposed to fibronectin or vascular cell adhesion molecule-1 (VCAM-1) and an increasing gradient of immobilized EphA3-Fc. Adhesion to fibronectin and VCAM-1 was further investigated using soluble preclustered EphA3-Fc. We used soluble unclustered EphA3-Fc as an antagonist to block endogenous EphA-ephrin A interactions in vivo. The effect of injecting soluble EphA3-Fc on the mobilization of hematopoietic progenitor cells was examined. We determined the effect on short-term homing by pretreating bone marrow cells with EphA3-Fc or the control IgG before infusion into lethally irradiated mice. RESULTS Preclustered and immobilized EphA3-Fc increased adhesion of progenitor cells and FDCP-1 to fibronectin and VCAM-1 (1.6- to 2-fold higher adhesion; p < 0.05) relative to control (0 μ/cm(2) EphA3-Fc extracellular molecule alone). Injection of the antagonist soluble EphA3-Fc increased progenitor cell and colony-forming unit-spleen cells in the peripheral blood (42% greater colony-forming unit in culture; p < 0.05, 3.8-fold higher colony-forming unit-spleen) relative to control. CONCLUSION Treating bone marrow cells with EphA3-Fc resulted in a reduction by 31% in donor stem cells homing to the bone marrow and accumulation of donor cells in recipient spleens (50% greater than control) and greater recovery of donor stem cells from the peripheral blood.
Collapse
Affiliation(s)
- Michael J Ting
- Leukaemia Foundation of Queensland Research Unit, Queensland Institute of Medical Research, Brisbane, Australia.
| | | | | | | |
Collapse
|