51
|
Spermatogenesis in humans and its affecting factors. Semin Cell Dev Biol 2016; 59:10-26. [PMID: 27143445 DOI: 10.1016/j.semcdb.2016.04.009] [Citation(s) in RCA: 322] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 12/13/2022]
Abstract
Spermatogenesis is an extraordinary complex process. The differentiation of spermatogonia into spermatozoa requires the participation of several cell types, hormones, paracrine factors, genes and epigenetic regulators. Recent researches in animals and humans have furthered our understanding of the male gamete differentiation, and led to clinical tools for the better management of male infertility. There is still much to be learned about this intricate process. In this review, the critical steps of human spermatogenesis are discussed together with its main affecting factors.
Collapse
|
52
|
Roach BL, Kelmendi-Doko A, Balutis EC, Marra KG, Ateshian GA, Hung CT. Dexamethasone Release from Within Engineered Cartilage as a Chondroprotective Strategy Against Interleukin-1α. Tissue Eng Part A 2016; 22:621-32. [PMID: 26956216 DOI: 10.1089/ten.tea.2016.0018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
While significant progress has been made toward engineering functional cartilage constructs with mechanical properties suitable for in vivo loading, the impact on these grafts of inflammatory cytokines, chemical factors that are elevated with trauma or osteoarthritis, is poorly understood. Previous work has shown dexamethasone to be a critical compound for cultivating cartilage with functional properties, while also providing chondroprotection from proinflammatory cytokines. This study tested the hypothesis that the incorporation of poly(lactic-co-glycolic acid) (PLGA) (75:25) microspheres that release dexamethasone from within chondrocyte-seeded agarose hydrogel constructs would promote development of constructs with functional properties and protect constructs from the deleterious effects of interleukin-1α (IL-1α). After 28 days of growth culture, experimental groups were treated with IL-1α (10 ng/mL) for 7 days. Reaching native equilibrium moduli and proteoglycan levels, dexamethasone-loaded microsphere constructs exhibited tissue properties similar to microsphere-free control constructs cultured in dexamethasone-supplemented culture media and were insensitive to IL-1α exposure. These findings are in stark contrast to constructs containing dexamethasone-free microspheres or no microspheres, cultured without dexamethasone, where IL-1α exposure led to significant tissue degradation. These results support the use of dexamethasone delivery from within engineered cartilage, through biodegradable microspheres, as a strategy to produce mechanically functional tissues that can also combat the deleterious effects of local proinflammatory cytokine exposure.
Collapse
Affiliation(s)
- Brendan L Roach
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Arta Kelmendi-Doko
- 2 Department of Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Elaine C Balutis
- 3 Department of Orthopedics and Sports Medicine, Mount Sinai Health System , New York, New York
| | - Kacey G Marra
- 2 Department of Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania.,4 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,5 Department of Plastic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Gerard A Ateshian
- 1 Department of Biomedical Engineering, Columbia University , New York, New York.,6 Department of Mechanical Engineering, Columbia University , New York, New York
| | - Clark T Hung
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| |
Collapse
|
53
|
Liao RS, Ma S, Miao L, Li R, Yin Y, Raj GV. Androgen receptor-mediated non-genomic regulation of prostate cancer cell proliferation. Transl Androl Urol 2016; 2:187-96. [PMID: 26816736 PMCID: PMC4708176 DOI: 10.3978/j.issn.2223-4683.2013.09.07] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Androgen receptor (AR)-mediated signaling is necessary for prostate cancer cell proliferation and an important target for therapeutic drug development. Canonically, AR signals through a genomic or transcriptional pathway, involving the translocation of androgen-bound AR to the nucleus, its binding to cognate androgen response elements on promoter, with ensuing modulation of target gene expression, leading to cell proliferation. However, prostate cancer cells can show dose-dependent proliferation responses to androgen within minutes, without the need for genomic AR signaling. This proliferation response known as the non-genomic AR signaling is mediated by cytoplasmic AR, which facilitates the activation of kinase-signaling cascades, including the Ras-Raf-1, phosphatidyl-inositol 3-kinase (PI3K)/Akt and protein kinase C (PKC), which in turn converge on mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) activation, leading to cell proliferation. Further, since activated ERK may also phosphorylate AR and its coactivators, the non-genomic AR signaling may enhance AR genomic activity. Non-genomic AR signaling may occur in an ERK-independent manner, via activation of mammalian target of rapamycin (mTOR) pathway, or modulation of intracellular Ca2+ concentration through plasma membrane G protein-coupled receptors (GPCRs). These data suggest that therapeutic strategies aimed at preventing AR nuclear translocation and genomic AR signaling alone may not completely abrogate AR signaling. Thus, elucidation of mechanisms that underlie non-genomic AR signaling may identify potential mechanisms of resistance to current anti-androgens and help developing novel therapies that abolish all AR signaling in prostate cancer.
Collapse
Affiliation(s)
- Ross S Liao
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Shihong Ma
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Lu Miao
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Rui Li
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Yi Yin
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Ganesh V Raj
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| |
Collapse
|
54
|
Chen WC, Chen HH, Chiang CH, Lee YC, Yang KY. Effect of salmeterol/fluticasone combination on the dynamic changes of lung mechanics in mechanically ventilated COPD patients: a prospective pilot study. Int J Chron Obstruct Pulmon Dis 2016; 11:167-74. [PMID: 26869782 PMCID: PMC4734735 DOI: 10.2147/copd.s94709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The combined therapy of inhaled corticosteroids and long-acting beta-2 agonists for mechanically ventilated patients with COPD has never been explored. Therefore, the aim of this study was to investigate their dynamic effects on lung mechanics and gas exchange. MATERIALS AND METHODS Ten mechanically ventilated patients with resolution of the causes of acute exacerbations of COPD were included. Four puffs of salmeterol 25 μg/fluticasone 125 μg combination therapy were administered. Lung mechanics, including maximum resistance of the respiratory system (Rrs), end-inspiratory static compliance, peak inspiratory pressure (PIP), plateau pressure, and mean airway pressure along with gas exchange function were measured and analyzed. RESULTS Salmeterol/fluticasone produced a significant improvement in Rrs and PIP after 30 minutes. With regard to changes in baseline values, salmeterol/fluticasone inhalation had a greater effect on PIP than Rrs. However, the therapeutic effects seemed to lose significance after 3 hours of inhaled corticosteroid/long-acting beta-2 agonist administration. CONCLUSION The combination of salmeterol/fluticasone-inhaled therapy in mechanically ventilated patients with COPD had a significant benefit in reducing Rrs and PIP.
Collapse
Affiliation(s)
- Wei-Chih Chen
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hung-Hsing Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chi-Huei Chiang
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Chin Lee
- Sijhih Cathay General Hospital, Taipei, Taiwan
| | - Kuang-Yao Yang
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
55
|
Abstract
Great strides have been made in the treatment of castration-resistant prostate cancer (CRPC) with the development of new antiandrogens (enzalutamide) and more potent androgen synthesis inhibitors (abiraterone) that have both improved patient outcomes. These new drugs have also helped unravel the complex biology of androgen-androgen receptor driven prostate cancer and brought into prominence various mechanisms triggering the development of drug resistance and tumour cell survival despite use of androgen deprivation therapy (ADT). The complex role of glucocorticoids in the treatment, management and progression of patients with CRPC is integral to these advances. Historically, glucocorticoid treatment has resulted in both subjective and objective responses in patients with advanced-stage prostate cancer. With the use of these new therapeutic agents, however, unexpected glucocorticoid-related mechanisms that can cause iatrogenic stimulation of prostate cancer growth have emerged, which might contribute to drug resistance and disease progression despite optimal ADT. For example, the upregulation of glucocorticoid receptors (GRs) during enzalutamide therapy results in glucocorticoid-GR-mediated regulation of androgen target genes, leading to escape from enzalutamide blockade. Thus, understanding the biological role of glucocorticoids in patients with prostate cancer is of major importance in the era of new and evolving antiandrogen therapies.
Collapse
|
56
|
Urrutia RA, Kalinec F. Biology and pathobiology of lipid droplets and their potential role in the protection of the organ of Corti. Hear Res 2015; 330:26-38. [PMID: 25987503 PMCID: PMC5391798 DOI: 10.1016/j.heares.2015.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/17/2015] [Accepted: 04/21/2015] [Indexed: 12/20/2022]
Abstract
The current review article seeks to extend our understanding on the role of lipid droplets within the organ of Corti. In addition to presenting an overview of the current information about the origin, structure and function of lipid droplets we draw inferences from the collective body of knowledge about this cellular organelle to build a conceptual framework to better understanding their role in auditory function. This conceptual model considers that lipid droplets play a significant role in the synthesis, storage, and release of lipids and proteins for energetic use and/or modulating cell signaling pathways. We describe the role and mechanism by which LD play a role in human diseases, and we also review emerging data from our laboratory revealing the potential role of lipid droplets from Hensen cells in the auditory organ. We suggest that lipid droplets might help to develop rapidly and efficiently the resolution phase of inflammatory responses in the mammalian cochlea, preventing inflammatory damage of the delicate inner ear structures and, consequently, sensorineural hearing loss.
Collapse
Affiliation(s)
- Raul A Urrutia
- Epigenetics and Chromatin Dynamics Laboratory, Translational Epigenomic Program, Center for Individualized Medicine (CIM) Mayo Clinic, Rochester, MN 55905, USA
| | - Federico Kalinec
- Laboratory of Auditory Cell Biology, Department of Head & Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
57
|
Caratti G, Matthews L, Poolman T, Kershaw S, Baxter M, Ray D. Glucocorticoid receptor function in health and disease. Clin Endocrinol (Oxf) 2015; 83:441-8. [PMID: 25627931 DOI: 10.1111/cen.12728] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 12/17/2014] [Accepted: 01/19/2015] [Indexed: 12/20/2022]
Abstract
Glucocorticoid hormones are essential for life in vertebrates. They act through the glucocorticoid receptor (GR), which is expressed in virtually all cells of the human body. Yet the actions of glucocorticoids (GCs) are specific to particular cell types. Broadly GCs regulate carbohydrate metabolism, inflammation, stress and cell fate. Synthetic GCs are widely used in medicine and are by far the most frequent cause of Cushing's syndrome in routine practice. The advent of novel drugs targeting the GR offers new opportunities to treat patients with immune, or malignant disease, and may also offer new opportunities to manage patients with adrenal insufficiency also. This review covers the latest understanding of how GCs work, how their actions are affected by disease, and where the new drugs may take us.
Collapse
Affiliation(s)
- Giorgio Caratti
- Centre for Endocrinology and Diabetes, University of Manchester, Manchester, UK
| | - Laura Matthews
- Centre for Endocrinology and Diabetes, University of Manchester, Manchester, UK
| | - Toryn Poolman
- Centre for Endocrinology and Diabetes, University of Manchester, Manchester, UK
| | | | - Matthew Baxter
- Centre for Endocrinology and Diabetes, University of Manchester, Manchester, UK
| | - David Ray
- Centre for Endocrinology and Diabetes, University of Manchester, Manchester, UK
| |
Collapse
|
58
|
Wu VS, Kanaya N, Lo C, Mortimer J, Chen S. From bench to bedside: What do we know about hormone receptor-positive and human epidermal growth factor receptor 2-positive breast cancer? J Steroid Biochem Mol Biol 2015; 153:45-53. [PMID: 25998416 PMCID: PMC4568143 DOI: 10.1016/j.jsbmb.2015.05.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/08/2015] [Accepted: 05/12/2015] [Indexed: 12/11/2022]
Abstract
Breast cancer is a heterogeneous disease. Thanks to extensive efforts from research scientists and clinicians, treatment for breast cancer has advanced into the era of targeted medicine. With the use of several well-established biomarkers, such as hormone receptors (HRs) (i.e., estrogen receptor [ER] and progesterone receptor [PgR]) and human epidermal growth factor receptor-2 (HER2), breast cancer patients can be categorized into multiple subgroups with specific targeted treatment strategies. Although therapeutic strategies for HR-positive (HR+) HER2-negative (HER2-) breast cancer and HR-negative (HR-) HER2-positive (HER2+) breast cancer are well-defined, HR+ HER2+ breast cancer is still an overlooked subgroup without tailored therapeutic options. In this review, we have summarized the molecular characteristics, etiology, preclinical tools and therapeutic options for HR+ HER2+ breast cancer. We hope to raise the attention of both the research and the medical community on HR+ HER2+ breast cancer, and to advance patient care for this subtype of disease.
Collapse
Affiliation(s)
- Victoria Shang Wu
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Noriko Kanaya
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Chiao Lo
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Joanne Mortimer
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Medical Center Duarte, CA, United States
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, United States.
| |
Collapse
|
59
|
Montanaro D, Santoro M, Carpino A, Perrotta I, De Amicis F, Sirianni R, Rago V, Gervasi S, Aquila S. Human sperm liver receptor homolog-1 (LRH-1) acts as a downstream target of the estrogen signaling pathway. J Anat 2015; 227:541-9. [PMID: 26241668 DOI: 10.1111/joa.12352] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2015] [Indexed: 01/25/2023] Open
Abstract
In the last decade, the study of human sperm anatomy, at molecular level, has revealed the presence of several nuclear protein receptors. In this work, we examined the expression profile and the ultrastructural localization of liver receptor homolog-1 (LRH-1) in human spermatozoa. We evidenced the presence of the receptor by Western blotting and real time-RT-PCR. Furthermore, we used immunogold electron microscopy to investigate the sperm anatomical regions containing LRH-1. The receptor was mainly located in the sperm head, whereas its expression was reduced in the neck and across the tail. Interestingly, we observed the presence of LRH-1 in different stages of testicular germ cell development by immunohistochemistry. In somatic cells, it has been suggested that the LRH-1 pathway is tightly linked with estrogen signaling and the important role of estradiol has been widely studied in sperm cells. To assess the significance of LRH-1 in male gametes and to deepen understanding of the role of estrogens in these cells, we investigated important sperm features such as motility, survival and capacitation. Spermatozoa were treated with 10 nm estradiol and the inhibition of LRH-1 reversed the estradiol stimulatory action. From our data, we discovered that human spermatozoa can be considered a new site of expression for LRH-1, evidencing its role in sperm motility, survival and cholesterol efflux. Furthermore, we may presume that in spermatozoa the LRH-1 effects are closely integrated with the estrogen signaling, supporting LRH-1 as a downstream effector of the estradiol pathway on some sperm functions.
Collapse
Affiliation(s)
- Daniela Montanaro
- Centro Sanitario, University of Calabria, Arcavacata di Rende (Cosenza), Italy
| | - Marta Santoro
- Centro Sanitario, University of Calabria, Arcavacata di Rende (Cosenza), Italy.,Post-graduate School in Clinical Pathology, University of Calabria, Arcavacata di Rende (Cosenza), Italy
| | - Amalia Carpino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (Cosenza), Italy
| | - Ida Perrotta
- Department of Di BEST, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Francesca De Amicis
- Centro Sanitario, University of Calabria, Arcavacata di Rende (Cosenza), Italy.,Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (Cosenza), Italy
| | - Rosa Sirianni
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (Cosenza), Italy
| | - Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (Cosenza), Italy
| | | | - Saveria Aquila
- Centro Sanitario, University of Calabria, Arcavacata di Rende (Cosenza), Italy.,Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (Cosenza), Italy
| |
Collapse
|
60
|
Raquet MA, Measey GJ, Exbrayat JM. Annual variation of ovarian structures of Boulengerula taitana (Loveridge 1935), a Kenyan caecilian. AFR J HERPETOL 2015; 64:116-134. [DOI: 10.1080/21564574.2015.1103787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/01/2015] [Indexed: 02/07/2023]
Affiliation(s)
- M. A. Raquet
- Université de Lyon, UMRS 449, Laboratoire de Biologie générale, UCLy, Reproduction et développement comparé, EPHE, 25 rue du Plat, F-69288 Lyon cedex, France
| | - G. J. Measey
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - J. M. Exbrayat
- Université de Lyon, UMRS 449, Laboratoire de Biologie générale, UCLy, Reproduction et développement comparé, EPHE, 25 rue du Plat, F-69288 Lyon cedex, France
| |
Collapse
|
61
|
Laryea G, Muglia L, Arnett M, Muglia LJ. Dissection of glucocorticoid receptor-mediated inhibition of the hypothalamic-pituitary-adrenal axis by gene targeting in mice. Front Neuroendocrinol 2015; 36:150-64. [PMID: 25256348 PMCID: PMC4342273 DOI: 10.1016/j.yfrne.2014.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/05/2014] [Accepted: 09/11/2014] [Indexed: 12/17/2022]
Abstract
Negative feedback regulation of glucocorticoid (GC) synthesis and secretion occurs through the function of glucocorticoid receptor (GR) at sites in the hypothalamic-pituitary-adrenal (HPA) axis, as well as in brain regions such as the hippocampus, prefrontal cortex, and sympathetic nervous system. This function of GRs in negative feedback coordinates basal glucocorticoid secretion and stress-induced increases in secretion that integrate GC production with the magnitude and duration of the stressor. This review describes the effects of GR loss along major sites of negative feedback including the entire brain, the paraventricular nucleus of the hypothalamus (PVN), and the pituitary. In genetic mouse models, we evaluate circadian regulation of the HPA axis, stress-stimulated neuroendocrine response and behavioral activity, as well as the integrated response of organism metabolism. Our analysis provides information on contributions of region-specific GR-mediated negative feedback to provide insight in understanding HPA axis dysregulation and the pathogenesis of psychiatric and metabolic disorders.
Collapse
Affiliation(s)
- Gloria Laryea
- Neuroscience Graduate Program, School of Medicine, Vanderbilt University, Nashville, TN, United States; Center for Preterm Birth Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, ML 7009, Cincinnati, OH 45229, United States.
| | - Lisa Muglia
- Center for Preterm Birth Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, ML 7009, Cincinnati, OH 45229, United States.
| | - Melinda Arnett
- Center for Preterm Birth Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, ML 7009, Cincinnati, OH 45229, United States.
| | - Louis J Muglia
- Center for Preterm Birth Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, ML 7009, Cincinnati, OH 45229, United States; Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, ML 7009, Cincinnati, OH 45229, United States.
| |
Collapse
|
62
|
Liu X, Shi H. Regulation of Estrogen Receptor α Expression in the Hypothalamus by Sex Steroids: Implication in the Regulation of Energy Homeostasis. Int J Endocrinol 2015; 2015:949085. [PMID: 26491443 PMCID: PMC4600542 DOI: 10.1155/2015/949085] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/18/2015] [Accepted: 07/22/2015] [Indexed: 12/16/2022] Open
Abstract
Sex differences exist in the complex regulation of energy homeostasis that utilizes central and peripheral systems. It is widely accepted that sex steroids, especially estrogens, are important physiological and pathological components in this sex-specific regulation. Estrogens exert their biological functions via estrogen receptors (ERs). ERα, a classic nuclear receptor, contributes to metabolic regulation and sexual behavior more than other ER subtypes. Physiological and molecular studies have identified multiple ERα-rich nuclei in the hypothalamus of the central nervous system (CNS) as sites of actions that mediate effects of estrogens. Much of our understanding of ERα regulation has been obtained using transgenic models such as ERα global or nuclei-specific knockout mice. A fundamental question concerning how ERα is regulated in wild-type animals, including humans, in response to alterations in steroid hormone levels, due to experimental manipulation (i.e., castration and hormone replacement) or physiological stages (i.e., puberty, pregnancy, and menopause), lacks consistent answers. This review discusses how different sex hormones affect ERα expression in the hypothalamus. This information will contribute to the knowledge of estrogen action in the CNS, further our understanding of discrepancies in correlation of altered sex hormone levels with metabolic disturbances when comparing both sexes, and improve health issues in postmenopausal women.
Collapse
Affiliation(s)
- Xian Liu
- Department of Biology, Miami University, 700 E. High Street, Oxford, OH 45056, USA
| | - Haifei Shi
- Department of Biology, Miami University, 700 E. High Street, Oxford, OH 45056, USA
- *Haifei Shi:
| |
Collapse
|
63
|
Oliver VL, Poulios K, Ventura S, Haynes JM. A novel androgen signalling pathway uses dihydrotestosterone, but not testosterone, to activate the EGF receptor signalling cascade in prostate stromal cells. Br J Pharmacol 2014; 170:592-601. [PMID: 23869618 DOI: 10.1111/bph.12307] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 06/26/2013] [Accepted: 07/08/2013] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND PURPOSE Human prostate growth and function are tightly controlled by androgens that are generally thought to exert their effects by regulating gene transcription. However, a rapid, non-genomic steroid action, often involving an elevation of intracellular calcium ([Ca(2+) ]i ), has also been described in a number of cell types. In this study we investigate whether androgens acutely regulate [Ca(2+) ]i in stromal cells derived from the human prostate. EXPERIMENTAL APPROACH Human-cultured prostatic stromal cells (HCPSCs) were loaded with the calcium-sensitive fluorophore, fura-2-acetoxymethyl ester (FURA-2AM) (10 μM). Changes in [Ca(2+) ]i in response to the androgens, dihydrotestosterone (DHT) and testosterone, as well as EGF were measured by fluorescence microscopy. KEY RESULTS DHT, but not testosterone (0.03-300 nM), elicited concentration-dependent elevations of [Ca(2+) ]i within 1 min of addition. These responses were blocked by the androgen receptor antagonist, flutamide (10 μM); the sarcoplasmic reticulum ATPase pump inhibitor, thapsigargin (1 μM); the inositol trisphosphate receptor inhibitor, 2-aminoethyldiphenyl borate (50 μM) and the PLC inhibitor, U-73122 (1 μM). Responses were also blocked by the L-type calcium channel blocker, nifedipine (1 μM), and by removal of extracellular calcium. A similar transient elevation of [Ca(2+) ]i was elicited by EGF (100 ng·mL(-1) ). The EGF receptor inhibitor, AG 1478 (30 nM), and the MMP inhibitor, marimastat (100 nM), blocked the DHT-induced elevation of [Ca(2+) ]i . CONCLUSIONS AND IMPLICATIONS These studies show that DHT elicits an androgen receptor-dependent acute elevation of [Ca(2+) ]i in HCPSC, most likely by activating EGF receptor signalling.
Collapse
Affiliation(s)
- V L Oliver
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Parkville, Vic., Australia
| | | | | | | |
Collapse
|
64
|
Sun W, Gu C, Xia M, Zhong G, Song H, Guo J. Significance of estrogen receptor subtypes in breast tumorigenesis and progression. Tumour Biol 2014; 35:9111-7. [PMID: 25027393 DOI: 10.1007/s13277-014-2152-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/26/2014] [Indexed: 02/06/2023] Open
Abstract
The aim of the study was to investigate the effects of estrogen receptor (ER) subtypes (ERα and ERβ) on breast cancer development and progression. The expression level of ERα and ERβ in breast cancer tissues and paired normal breast tissues were detected by Western blot analysis and immunohistochemistry (IHC) staining. The features of ERα and ERβ status in cancer tissues or normal breast tissues and the correlations between clinicopathological characteristics and prognosis were analyzed. The expression levels of ERα and ERβ in breast cancer tissues are significantly lower than those in the paired normal tissues. The expression of ERβ is decreased more than that of ERα. ERα expression levels in cancer tissues are associated with tumor diameter, tumor-node-metastasis (TNM) stage, and progesterone receptor (PR) status. However, ERβ expression levels in cancer tissues are not correlated with clinicopathological factors of patients with breast cancer. In conclusion, ER subtypes might play different roles in the development of breast cancer.
Collapse
Affiliation(s)
- Weiliang Sun
- Ningbo Yinzhou People's Hospital and the Affiliated Hospital, Ningbo University School of Medicine, 315040, Ningbo, China,
| | | | | | | | | | | |
Collapse
|
65
|
Schmitz B, Brand SM, Brand E. Aldosterone signaling and soluble adenylyl cyclase-a nexus for the kidney and vascular endothelium. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2601-9. [PMID: 24907563 DOI: 10.1016/j.bbadis.2014.05.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/23/2014] [Accepted: 05/28/2014] [Indexed: 12/14/2022]
Abstract
The steroid hormone aldosterone regulates the reabsorption of water and ions in the kidney and plays a central role in blood pressure regulation and homeostasis. In recent years, the vascular endothelium has been established as an important aldosterone target organ with major implications in renal and cardiovascular health and disease. Different lines of evidence suggest that the calcium- and bicarbonate-activated soluble adenylyl cyclase (sAC) is a novel mediator of aldosterone signaling in both the kidney and vascular endothelium. This review summarizes our current understanding of the molecular mechanisms of sAC gene expression regulation in the kidney and vascular endothelium and outlines the potential clinical implications of sAC in chronic kidney disease and cardiovascular disease. This review is part of a special issue entitled: The role of soluble adenylyl cyclase in health and disease. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease.
Collapse
Affiliation(s)
- Boris Schmitz
- Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Muenster, Horstmarer Landweg 39, 48149 Muenster, Germany; Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Stefan-Martin Brand
- Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Muenster, Horstmarer Landweg 39, 48149 Muenster, Germany
| | - Eva Brand
- Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany.
| |
Collapse
|
66
|
Alexandre-Pires G, Martins C, Galvão AM, Correia M, Ramilo D, Quaresma M, Ligeiro D, Nunes T, Caldeira RM, Ferreira-Dias G. Morphological aspects and expression of estrogen and progesterone receptors in the interdigital sinus in cyclic ewes. Microsc Res Tech 2014; 77:313-25. [PMID: 24779038 DOI: 10.1002/jemt.22345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Many species that belong to Artiodactyls order show an interdigital sinus (IS), as it occurs in sheep, in all four extremities. These are considered to be scent glands responsible for sexual communication having strong attractiveness to mature males at the peak of the breeding season. The aim of this study was to evaluate, in IS in cyclic ewes, the microscopic and ultrastructure (scanning and transmission electron microscopy) anatomy, secretion composition, and mRNA and protein expression of estrogen receptors a and b and progesterone receptors. Glandular sebaceous structures occupy a superficial area of the pouch. The other glands present in the IS show a coiled tubular structure and tall and polyhedral secretory cells with irregular luminal surface resulting from the secretory process. Protein and mRNA gene transcription studies were performed to determine the presence of ER (a and b) and P4r in IS. At the follicular phase, IS cell populations analyzed using flow cytometry expressed higher levels of ERb compared with ERa (P<0.05), whereas no difference was observed between them in the luteal phase. The IS amount of secretion was the highest in the follicular phase compared with luteal phase (P<0.05) or pregnancy (P<0.001).To the best of our knowledge, for the first time, the presence of ER (a and b) within the IS was demonstrated. As estrogen action is mediated by specific receptors in target cells, the presence of these receptors in IS might be needed to trigger signaling pathways involved in conspecific chemical (sexual) communication attributed to this area.
Collapse
|
67
|
Zhang N, Van Crombruggen K, Holtappels G, Lan F, Katotomichelakis M, Zhang L, Högger P, Bachert C. Suppression of cytokine release by fluticasone furoate vs. mometasone furoate in human nasal tissue ex-vivo. PLoS One 2014; 9:e93754. [PMID: 24710117 PMCID: PMC3977874 DOI: 10.1371/journal.pone.0093754] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 03/09/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Topical glucocorticosteroids are the first line therapy for airway inflammation. Modern compounds with higher efficacy have been developed, but head-to-head comparison studies are sparse. OBJECTIVE To compare the activity of two intranasal glucocorticoids, fluticasone furoate (FF) and mometasone furoate (MF) with respect to the inhibition of T helper (Th)1, Th2 and Th17 cytokine release in airway mucosa. METHODS We used an ex-vivo human nasal mucosal tissue model and employed pre- and post- Staphylococcus aureus enterotoxin B (SEB)-challenge incubations with various time intervals and drug concentrations to mimic typical clinical situations of preventive or therapeutic use. RESULTS At a fixed concentration of 10-10 M, FF had significantly higher suppressive effects on interferon (IFN)-γ, interleukin (IL)-2 and IL-17 release, but not IL-5 or tumor necrosis factor (TNF)-α, vs. MF. While the maximal suppressive activity was maintained when FF was added before or after tissue stimulation, the cytokine suppression capacity of MF appeared to be compromised when SEB-induced cell activation preceded the addition of the drug. In a pre-challenge incubation setting with removal of excess drug concentrations, MF approached inhibition of IL-5 and TNF-α after 6 and 24 hours while FF maximally blocked the release of these cytokines right after pre-incubation. Furthermore, FF suppressed a wider range of T helper cytokines compared to MF. CONCLUSION The study demonstrates the potential of our human mucosal model and shows marked differences in the ability to suppress the release of various cytokines in pre- and post-challenge settings between FF and MF mimicking typical clinical situations of preventive or therapeutic use.
Collapse
Affiliation(s)
- Nan Zhang
- Upper Airway Research Laboratory, Ghent University Hospital, Ghent, Belgium
- * E-mail:
| | | | | | - Feng Lan
- Upper Airway Research Laboratory, Ghent University Hospital, Ghent, Belgium
| | - Michail Katotomichelakis
- Department of Otorhinolaryngology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, P.R.China
| | - Petra Högger
- Institute for Pharmacy and Food Chemistry, Julius-Maximilians-Universitity, Würzburg, Germany
| | - Claus Bachert
- Upper Airway Research Laboratory, Ghent University Hospital, Ghent, Belgium
- Division of ENT Diseases, Clintec, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
68
|
Abstract
Two populations of cells within the hypothalamus exert opposite actions on food intake: proopiomelanocortin (POMC) neurons decrease it, while neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurons increase it. 17β-Estradiol (E2) is a potent anorexigenic hormone that exerts both genomic and non-genomic, rapid actions on these metabolic neurons. This review focuses on the rapid membrane effects of E2 in both POMC and NPY/AgRP neurons and how these combined effects mediate the anorexigenic effects of this steroid.
Collapse
Affiliation(s)
- A W Smith
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA
| | - O K Rønnekleiv
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA; Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - M J Kelly
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA; Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA.
| |
Collapse
|
69
|
Strehl C, Buttgereit F. Unraveling the functions of the membrane-bound glucocorticoid receptors: first clues on origin and functional activity. Ann N Y Acad Sci 2014; 1318:1-6. [PMID: 24611742 DOI: 10.1111/nyas.12364] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glucocorticoids (GCs) are routinely used to treat a wide range of rheumatic and other inflammatory diseases. GCs are steroidal drugs that exert their strong anti-inflammatory and immunosuppressive effects via genomic mechanisms, primarily by signaling through the cytosolic glucocorticoid receptor. In addition, rapid, nongenomic responses following GC treatment have been reported to involve signaling via the membrane-bound glucocorticoid receptor (mGR). Since an important clinical role of this receptor has been proposed, investigations regarding the origin and function of the mGR are currently performed in order to understand rapid GC signaling and to optimize treatment strategies with GCs. Here, we summarize the current knowledge on the mGR and compare these findings to results obtained for other membrane-bound receptors, such as membrane forms of the estrogen and progesterone receptors.
Collapse
Affiliation(s)
- Cindy Strehl
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | | |
Collapse
|
70
|
Clark S, Rainville J, Zhao X, Katzenellenbogen BS, Pfaff D, Vasudevan N. Estrogen receptor-mediated transcription involves the activation of multiple kinase pathways in neuroblastoma cells. J Steroid Biochem Mol Biol 2014; 139:45-53. [PMID: 24121066 DOI: 10.1016/j.jsbmb.2013.09.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 09/15/2013] [Accepted: 09/20/2013] [Indexed: 11/22/2022]
Abstract
While many physiological effects of estrogens (E) are due to regulation of gene transcription by liganded estrogen receptors (ERs), several effects are also mediated, at least in part, by rapid non-genomic actions of E. Though the relative importance of rapid versus genomic effects in the central nervous system is controversial, we showed previously that membrane-limited effects of E, initiated by an estradiol bovine serum albumin conjugate (E2-BSA), could potentiate transcriptional effects of 17β-estradiol from an estrogen response element (ERE)-reporter in neuroblastoma cells. Here, using specific inhibitors and activators in a pharmacological approach, we show that activation of phosphatidylinositol-3-phosphate kinase (PI3K) and mitogen activated protein kinase (MAPK) pathways, dependent on a Gαq coupled receptor signaling are important in this transcriptional potentiation. We further demonstrate, using ERα phospho-deficient mutants, that E2-BSA mediated phosphorylation of ERα is one mechanism to potentiate transcription from an ERE reporter construct. This study provides a possible mechanism by which signaling from the membrane is coupled to transcription in the nucleus, providing an integrated view of hormone signaling in the brain.
Collapse
Affiliation(s)
- Sara Clark
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA 70118, United States
| | | | | | | | | | | |
Collapse
|
71
|
Sex differences in anxiety and depression: role of testosterone. Front Neuroendocrinol 2014; 35:42-57. [PMID: 24076484 PMCID: PMC3946856 DOI: 10.1016/j.yfrne.2013.09.001] [Citation(s) in RCA: 317] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 07/31/2013] [Accepted: 09/06/2013] [Indexed: 01/30/2023]
Abstract
Compelling evidence exists for pervasive sex differences in pathological conditions, including anxiety and depressive disorders, with females more than twice as likely to be afflicted. Gonadal hormones may be a major factor in this disparity, given that women are more likely to experience mood disturbances during times of hormonal flux, and testosterone may have protective benefits against anxiety and depression. In this review we focus on the effects of testosterone in males and females, revealed in both human and animal studies. We also present possible neurobiological mechanisms underlying testosterone's mostly protective benefits, including the brain regions, neural circuits, and cellular and molecular pathways involved. While the precise underlying mechanisms remain unclear, both activational and organizational effects of testosterone appear to contribute to these effects. Future clinical studies are necessary in order to better understand when and how testosterone therapy may be effective in both sexes.
Collapse
|
72
|
Jung Y, Abdel-Fatah TM, Chan SY, Nolan CC, Green AR, Ellis IO, Li L, Huang B, Lu J, Xu B, Chen L, Ma RZ, Zhang M, Wang J, Wu Z, Zhu T, Perry JK, Lobie PE, Liu DX. SHON Is a Novel Estrogen-Regulated Oncogene in Mammary Carcinoma That Predicts Patient Response to Endocrine Therapy. Cancer Res 2013; 73:6951-62. [DOI: 10.1158/0008-5472.can-13-0982] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
73
|
Strehl C, Buttgereit F. Optimized glucocorticoid therapy: teaching old drugs new tricks. Mol Cell Endocrinol 2013; 380:32-40. [PMID: 23403055 DOI: 10.1016/j.mce.2013.01.026] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/31/2013] [Accepted: 01/31/2013] [Indexed: 01/01/2023]
Abstract
Glucocorticoids (GCs) are commonly used in the treatment of a wide range of rheumatic and other inflammatory diseases. They exert their potent anti-inflammatory and immunosuppressive effects primarily via so called genomic mechanisms, mediated by the cytosolic glucocorticoid receptor (cGR). This mechanism of GC action can be divided into the transactivation and the transrepression processes. However, also rapid effects of GCs exist which are mediated by specific and unspecific non-genomic mechanisms. A clinical relevance of this mode of GC action is assumed for effects mediated by membrane-bound glucocorticoid receptors, but detailed knowledge on the underlying mechanisms is still missing. Great efforts have been made in the past to diminish GC-induced adverse effects, thus improving the benefit/risk ratio of the drugs. Besides approaches to improve the treatment with conventional glucocorticoids currently available to clinicians, new innovative GCs or GC receptor ligands are also being developed.
Collapse
Affiliation(s)
- Cindy Strehl
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany.
| | | |
Collapse
|
74
|
Oppong E, Flink N, Cato ACB. Molecular mechanisms of glucocorticoid action in mast cells. Mol Cell Endocrinol 2013; 380:119-26. [PMID: 23707629 DOI: 10.1016/j.mce.2013.05.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 05/13/2013] [Indexed: 01/07/2023]
Abstract
Glucocorticoids are compounds that have successfully been used over the years in the treatment of inflammatory disorders. They are known to exhibit their effects through the glucocorticoid receptor (GR) that acts to downregulate the action of proinflammatory transcription factors such as AP-1 and NF-κB. The GR also exerts anti-inflammatory effects through activation of distinct genes. In addition to their anti-inflammatory actions, glucocorticoids are also potent antiallergic compounds that are widely used in conditions such as asthma and anaphylaxis. Nevertheless the mechanism of action of this hormone in these disorders is not known. In this article, we have reviewed reports on the effects of glucocorticoids in mast cells, one of the important immune cells in allergy. Building on the knowledge of the molecular action of glucocorticoids and the GR in the treatment of inflammation in other cell types, we have made suggestions as to the likely mechanisms of action of glucocorticoids in mast cells. We have further identified some important questions and research directions that need to be addressed in future studies to improve the treatment of allergic disorders.
Collapse
Affiliation(s)
- Emmanuel Oppong
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | | | | |
Collapse
|
75
|
Payne AS, Freishtat RJ. Conserved steroid hormone homology converges on nuclear factor κB to modulate inflammation in asthma. J Investig Med 2013; 60:13-7. [PMID: 22183120 DOI: 10.2310/jim.0b013e31823d7989] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Asthma is a complex, multifactorial disease comprising multiple different subtypes, rather than a single disease entity, yet it has a consistent clinical phenotype: recurring episodes of chest tightness, wheezing, and difficulty breathing (Pediatr Pulmonol Suppl. 1997;15:9-12). Despite the complex pathogenesis of asthma, steroid hormones (eg, glucocorticoids) are ubiquitous in the short-term and long-term management of all types of asthma. Overall, steroid hormones are a class of widely relevant, biologically active compounds originating from cholesterol and altered in a stepwise fashion, but maintain a basic 17-carbon, 4-ring structure. Steroids are lipophilic molecules that diffuse readily through cell membranes to directly and/or indirectly affect gene transcription. In addition, they use rapid, nongenomic actions to affect cellular products. Steroid hormones comprise several groups (including glucocorticoids, sex steroid hormones, and secosteroids) with critical divergent biological and physiological functions relevant to health and disease. However, the conserved homology of steroid hormone molecules, receptors, and signaling pathways suggests that each of these is part of a dynamic system of hormone interaction, likely involving an overlap of downstream signaling mechanisms. Therefore, we will review the similarities and differences of these 3 groups of steroid hormones (ie, glucocorticoids, sex steroid hormones, and secosteroids), identifying nuclear factor κB as a common inflammatory mediator. Despite our understanding of the impact of individual steroids (eg, glucocorticoids, sex steroids and secosteroids) on asthma, research has yet to explain the interplay of the dynamic system in which these hormones function. To do so, there needs to be a better understanding of the interplay of classic, nonclassic, and nongenomic steroid hormone functions. However, clues from the conserved homology steroid hormone structure and function and signaling pathways offer insight into a possible model of steroid hormone regulation of inflammation in asthma through common nuclear factor κB-mediated downstream events.
Collapse
Affiliation(s)
- Asha S Payne
- Division of Emergency Medicine, Children's National Medical Center, Washington, DC, USA
| | | |
Collapse
|
76
|
Kelly MJ, Rønnekleiv OK. A selective membrane estrogen receptor agonist maintains autonomic functions in hypoestrogenic states. Brain Res 2013; 1514:75-82. [PMID: 23535448 PMCID: PMC5432040 DOI: 10.1016/j.brainres.2013.03.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 03/09/2013] [Accepted: 03/19/2013] [Indexed: 12/14/2022]
Abstract
It is well known that many of the actions of estrogens in the central nervous system are mediated via intracellular receptor/transcription factors that interact with steroid response elements on target genes. But there is also a compelling evidence for the involvement of membrane estrogen receptors in hypothalamic and other CNS functions. However, it is not well understood how estrogens signal via membrane receptors, and how these signals impact not only membrane excitability but also gene transcription in neurons. Indeed, it has been known for sometime that estrogens can rapidly alter neuronal activity within seconds, indicating that some cellular effects can occur via membrane delimited events. In addition, estrogens can affect second messenger systems including calcium mobilization and a plethora of kinases within neurons to alter cellular functions. Therefore, this brief review will summarize our current understanding of rapid membrane-initiated and intracellular signaling by estrogens in the hypothalamus, the nature of receptors involved and how these receptors contribute to maintenance of homeostatic functions, many of which go awry in menopausal states. This article is part of a Special Issue entitled Hormone Therapy.
Collapse
Affiliation(s)
- Martin J Kelly
- Department of Physiology and Pharmacology, L334, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239-3098, USA.
| | | |
Collapse
|
77
|
Kil SH, Kalinec F. Expression and dexamethasone-induced nuclear translocation of glucocorticoid and mineralocorticoid receptors in guinea pig cochlear cells. Hear Res 2013; 299:63-78. [PMID: 23403298 PMCID: PMC3633732 DOI: 10.1016/j.heares.2013.01.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/14/2013] [Accepted: 01/27/2013] [Indexed: 12/20/2022]
Abstract
Glucocorticoids (GC) are powerful anti-inflammatory agents frequently used to protect the auditory organ against damage associated with a variety of conditions, including noise exposure and ototoxic drugs as well as bacterial and viral infections. In addition to glucocorticoid receptors (GC-R), natural and synthetic GC are known to bind mineralocorticoid receptors (MC-R) with great affinity. We used light and laser scanning confocal microscopy to investigate the expression of GC-R and MC-R in different cell populations of the guinea pig cochlea, and their translocation to different cell compartments after treatment with the synthetic GC dexamethasone. We found expression of both types of receptors in the cytoplasm and nucleus of sensory inner and outer hair cells as well as pillar, Hensen and Deiters cells in the organ of Corti, inner and outer sulcus cells, spiral ganglion neurons and several types of spiral ligament and spiral limbus cells; stria vascularis cells expressed mostly MC-R whereas fibrocytes type IV were positive for GC-R only. GC-R and MC-R were also localized at or near the plasma membrane of pillar cells and outer hair cells, whereas GC-R were found at or near the plasma membrane of Hensen cells only. We investigated the relative levels of receptor expression in the cytoplasm and the nucleus of Hensen cells treated with dexamethasone, and found they varied in a way suggestive of dose-induced translocation. These results suggest that the oto-protective effects of GC could be associated with the concerted activation of genomic and non-genomic, GC-R and MC-R mediated signaling pathways in different regions of the cochlea.
Collapse
Affiliation(s)
- Sung-Hee Kil
- Division of Cell Biology and Genetics, House Research Institute, Los Angeles, CA, 90057, USA
| | - Federico Kalinec
- Division of Cell Biology and Genetics, House Research Institute, Los Angeles, CA, 90057, USA
- Departments of Cell & Neurobiology and Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| |
Collapse
|
78
|
Kuljis DA, Loh DH, Truong D, Vosko AM, Ong ML, McClusky R, Arnold AP, Colwell CS. Gonadal- and sex-chromosome-dependent sex differences in the circadian system. Endocrinology 2013; 154:1501-12. [PMID: 23439698 PMCID: PMC3602630 DOI: 10.1210/en.2012-1921] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Compelling reasons to study the role of sex in the circadian system include the higher rates of sleep disorders in women than in men and evidence that sex steroids modulate circadian control of locomotor activity. To address the issue of sex differences in the circadian system, we examined daily and circadian rhythms in wheel-running activity, electrical activity within the suprachiasmatic nucleus, and PER2::LUC-driven bioluminescence of gonadally-intact adult male and female C57BL/6J mice. We observed greater precision of activity onset in 12-hour light, 12-hour dark cycle for male mice, longer activity duration in 24 hours of constant darkness for female mice, and phase-delayed PER2::LUC bioluminescence rhythm in female pituitary and liver. Next, in order to investigate whether sex differences in behavior are sex chromosome or gonadal sex dependent, we used the 4 core genotypes (FCG) mouse model, in which sex chromosome complement is independent of gonadal phenotype. Gonadal males had more androgen receptor expression in the suprachiasmatic nucleus and behaviorally reduced photic phase shift response compared with gonadal female FCG mice. Removal of circulating gonadal hormones in adults, to test activational vs organizational effects of sex revealed that XX animals have longer activity duration than XY animals regardless of gonadal phenotype. Additionally, we observed that the activational effects of gonadal hormones were more important for regulating activity levels in gonadal male mice than in gonadal female FCG mice. Taken together, sex differences in the circadian rhythms of activity, neuronal physiology, and gene expression were subtle but provide important clues for understanding the pathophysiology of the circadian system.
Collapse
Affiliation(s)
- Dika A Kuljis
- Department of Neurobiology, University of California LosAngeles, Los Angeles, California 90024, USA
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Vernocchi S, Battello N, Schmitz S, Revets D, Billing AM, Turner JD, Muller CP. Membrane glucocorticoid receptor activation induces proteomic changes aligning with classical glucocorticoid effects. Mol Cell Proteomics 2013; 12:1764-79. [PMID: 23339905 DOI: 10.1074/mcp.m112.022947] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Glucocorticoids exert rapid nongenomic effects by several mechanisms including the activation of a membrane-bound glucocorticoid receptor (mGR). Here, we report the first proteomic study on the effects of mGR activation by BSA-conjugated cortisol (Cort-BSA). A subset of target proteins in the proteomic data set was validated by Western blot and we found them responding to mGR activation by BSA-conjugated cortisol in three additional cell lines, indicating a conserved effect in cells originating from different tissues. Changes in the proteome of BSA-conjugated cortisol treated CCRF-CEM leukemia cells were associated with early and rapid pro-apoptotic, immune-modulatory and metabolic effects aligning with and possibly "priming" classical activities of the cytosolic glucocorticoid receptor (cGR). PCR arrays investigating target genes of the major signaling pathways indicated that the mGR does not exert its effects through the transcriptional activity of any of the most common kinases in these leukemic cells, but RhoA signaling emerged from our pathway analysis. All cell lines tested displayed very low levels of mGR on their surface. Highly sensitive and specific in situ proximity ligation assay visualized low numbers of mGR even in cells previously thought to be mGR negative. We obtained similar results when using three distinct anti-GR monoclonal antibodies directed against the N-terminal half of the cGR. This strongly suggests that the mGR and the cGR have a high sequence homology and most probably originate from the same gene. Furthermore, the mGR appears to reside in caveolae and its association with caveolin-1 (Cav-1) was clearly detected in two of the four cell lines investigated using double recognition proximity ligation assay. Our results indicate however that Cav-1 is not necessary for membrane localization of the GR since CCRF-CEM and Jurkat cells have a functional mGR, but did not express this caveolar protein. However, if expressed, this membrane protein dimerizes with the mGR modulating its function.
Collapse
Affiliation(s)
- Sara Vernocchi
- Institute of Immunology, Centre de Recherche Public de la Santé/Laboratoire National de Santé, Luxembourg, Grand-Duchy of Luxembourg
| | | | | | | | | | | | | |
Collapse
|
80
|
Abstract
Aldosterone and its receptor the mineralocorticoid receptor (MR) are best known for their regulation of fluid and electrolyte homeostasis in epithelial cells. However, it is now clear that MR are also expressed in a broad range of nonepithelial tissues including the cardiovascular system. In the heart and vascular tissues, pathological activation of MR promotes cardiovascular inflammation and remodeling for which there is increasing evidence that macrophages and other immune cells (e.g. T cells and dendritic cells) play a significant role. While the glucocorticoids and their receptors have well-described antiinflammatory actions in immune cells, a role for aldosterone and/or the MR in these cells is largely undefined. Emerging evidence, however, suggests that MR signaling may directly or indirectly promote proinflammatory responses in these immune cells. This review will discuss the current understanding of the role of corticosteroid receptors in macrophages and their effect on cardiovascular diseases involving inflammation.
Collapse
Affiliation(s)
- Jimmy Z Shen
- Prince Henry's Institute, of Medical Research. P.O. Box 5152, Clayton 3168, Australia
| | | |
Collapse
|
81
|
Yamagata S, Tomita K, Sano H, Itoh Y, Fukai Y, Okimoto N, Watatani N, Inbe S, Miyajima H, Tsukamoto K, Santoh H, Ichihashi H, Sano A, Sato R, Tohda Y. Non-genomic inhibitory effect of glucocorticoids on activated peripheral blood basophils through suppression of lipid raft formation. Clin Exp Immunol 2012; 170:86-93. [PMID: 22943204 DOI: 10.1111/j.1365-2249.2012.04636.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We investigated the non-genomic effects of glucocorticoids (GCs) on inhibition of plasma membrane lipid raft formation in activated human basophils. Human basophils obtained from house dust mite (HDM)-sensitive volunteers were pretreated with hydrocortisone (CORT) or dexamethasone (Dex) for 30 min and then primed with phorbol 12-myristate 13-acetate (PMA, 10 ng/ml) or HDM (10 µg/ml). The expression of CD63, a basophil activation marker, was assessed by flow cytometry. Membrane-bound GC receptors (mGCRs) were analysed by flow cytometry and confocal laser microscopy. Lipid rafts were assessed using a GM1 ganglioside probe and visualization by confocal laser microscopy. Pretreatment of basophils with CORT (10(-4) M and 10(-5) M) and Dex (10(-7) M) significantly inhibited CD63 expression 20 min after addition of PMA or HDM. The inhibitory effects of GCs were not altered by the nuclear GC receptor (GCR) antagonist RU486 (10(-5) M) or the protein synthesis inhibitor cycloheximide (10(-4) M) (P < 0·05). CORT coupled to bovine serum albumin (BSA-CORT) mimicked the rapid inhibitory effects of CORT, suggesting the involvement of mGCRs. mGCRs were detectable on the plasma membrane of resting basophils and formed nanoclusters following treatment with PMA or HDM. Pretreatment of cells with BSA-CORT inhibited the expression of mGCRs and nanoclustering of ganglioside GM1 in lipid rafts. The study provides evidence that non-genomic mechanisms are involved in the rapid inhibitory effect of GCs on the formation of lipid raft nanoclusters, through binding to mGCRs on the plasma membrane of activated basophils.
Collapse
Affiliation(s)
- S Yamagata
- Department of Respiratory Medicine and Allergology, Kinki University Faculty of Medicine, Osaka-Sayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Santoro M, Guido C, De Amicis F, Sisci D, Vizza D, Gervasi S, Carpino A, Aquila S. Sperm metabolism in pigs: a role for peroxisome proliferator-activated receptor gamma (PPARγ). ACTA ACUST UNITED AC 2012; 216:1085-92. [PMID: 23155087 DOI: 10.1242/jeb.079327] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear hormone receptor expressed predominantly in adipose tissue, also implicated in energy homeostasis. In this study, we used western blotting and immunofluorescence techniques to demonstrate for the first time that pig spermatozoa express PPARγ. To investigate the functional role of PPARγ in pig sperm, we evaluated its action on different events that characterize the biology of sperm cells, i.e. motility, capacitation, viability and acrosome reaction, using the PPARγ-agonist 15-deoxy-12,14-prostaglandin J2 (PGJ2). In responses to PGJ2 treatment, motility, cholesterol efflux and tyrosine phosphorylation were increased, which broadens the role of PPARγ from that previously described in the literature, as it also acts to improve sperm functionality. To further our understanding of the significance of PPARγ in pig sperm, we focused its effects on lipid and glucose metabolism. Evaluation of triglyceride content and lipase, acyl-CoA dehydrogenase and G6PDH activities suggests that PPARγ induces energy expenditure in pig spermatozoa. These data represent a meaningful advance in the field of sperm energy metabolism. Taken together, our results demonstrate for the first time that PPARγ is expressed by pig sperm, thus improving its functionalities in terms of motility, capacitation, acrosome reaction, survival and metabolism.
Collapse
Affiliation(s)
- M Santoro
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Kelly MJ, Rønnekleiv OK. Membrane-initiated actions of estradiol that regulate reproduction, energy balance and body temperature. Front Neuroendocrinol 2012; 33:376-87. [PMID: 22871514 PMCID: PMC3618441 DOI: 10.1016/j.yfrne.2012.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/07/2012] [Accepted: 07/11/2012] [Indexed: 12/21/2022]
Abstract
It is well known that many of the actions of estrogens in the central nervous system are mediated via intracellular receptor/transcription factors that interact with steroid response elements on target genes. However, there now exists compelling evidence for membrane estrogen receptors in hypothalamic and other brain neurons. But, it is not well understood how estrogens signal via membrane receptors, and how these signals impact not only membrane excitability but also gene transcription in neurons. Indeed, it has been known for sometime that estrogens can rapidly alter neuronal activity within seconds, indicating that some cellular effects can occur via membrane delimited events. In addition, estrogens can affect second messenger systems including calcium mobilization and a plethora of kinases to alter cell signaling. Therefore, this review will consider our current knowledge of rapid membrane-initiated and intracellular signaling by estrogens in the hypothalamus, the nature of receptors involved and how they contribute to homeostatic functions.
Collapse
Affiliation(s)
- Martin J. Kelly
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239
- Division of Neuroscience, Oregon Regional Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Oline K. Rønnekleiv
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239
- Division of Neuroscience, Oregon Regional Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
84
|
Lee SR, Kim HK, Youm JB, Dizon LA, Song IS, Jeong SH, Seo DY, Ko KS, Rhee BD, Kim N, Han J. Non-genomic effect of glucocorticoids on cardiovascular system. Pflugers Arch 2012; 464:549-59. [PMID: 23001133 DOI: 10.1007/s00424-012-1155-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 09/05/2012] [Indexed: 01/01/2023]
Abstract
Glucocorticoids (GCs) are essential steroid hormones for homeostasis, development, metabolism, and cognition and possess anti-inflammatory and immunosuppressive actions. Since glucocorticoid receptor II (GR) is nearly ubiquitous, chronic activation or depletion of GCs leads to dysfunction of diverse organs, including the heart and blood vessels, resulting predominantly from changes in gene expression. Most studies, therefore, have focused on the genomic effects of GC to understand its related pathophysiological manifestations. The nongenomic effects of GCs clearly differ from well-known genomic effects, with the former responding within several minutes without the need for protein synthesis. There is increasing evidence that the nongenomic actions of GCs influence various physiological functions. To develop a GC-mediated therapeutic target for the treatment of cardiovascular disease, understanding the genomic and nongenomic effects of GC on the cardiovascular system is needed. This article reviews our current understanding of the underlying mechanisms of GCs on cardiovascular diseases and stress, as well as how nongenomic GC signaling contributes to these conditions. We suggest that manipulation of GC action based on both GC and GR metabolism, mitochondrial impact, and the action of serum- and glucocorticoid-dependent kinase 1 may provide new information with which to treat cardiovascular diseases.
Collapse
Affiliation(s)
- Sung Ryul Lee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, 633-165 Gaegeum-Dong, Busanjin-Gu, Busan, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Samarasinghe RA, Witchell SF, DeFranco DB. Cooperativity and complementarity: synergies in non-classical and classical glucocorticoid signaling. Cell Cycle 2012; 11:2819-27. [PMID: 22801547 DOI: 10.4161/cc.21018] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Glucocorticoids (GCs) are an ubiquitous class of steroid hormones that exert a wide array of physiological effects. Traditionally, GC action has been considered to primarily involve transcriptional effects following the binding of hormone to the glucocorticoid receptor (GR) and subsequent activation or repression of target genes. However, a number of findings suggest that cellular responses following GC exposure may be mediated by transcription-independent, or "non-classical," mechanisms. We have added to this growing body of work by recently uncovering a novel GC signaling pathway that operates through plasma membrane GRs to limit gap junction intercellular signaling and limit the proliferation of neural progenitor cells (NPCs). In this review, we highlight our current state of knowledge of non-classical GR signaling, in particular as it applies to neuronal function. Using NPCs as a cellular model, we speculate on the components of this non-classical pathway and the mechanisms whereby a number of cytoplasmic and nuclear signaling events may be integrated.
Collapse
Affiliation(s)
- Ranmal A Samarasinghe
- Department of Neuroscience, University of Pittsburgh, School of Medicine, and Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | | | | |
Collapse
|
86
|
Bartella V, Rizza P, Barone I, Zito D, Giordano F, Giordano C, Catalano S, Mauro L, Sisci D, Panno ML, Fuqua SAW, Andò S. Estrogen receptor beta binds Sp1 and recruits a corepressor complex to the estrogen receptor alpha gene promoter. Breast Cancer Res Treat 2012; 134:569-81. [PMID: 22622808 DOI: 10.1007/s10549-012-2090-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 05/03/2012] [Indexed: 02/06/2023]
Abstract
Human estrogen receptors alpha and beta are crucially involved in the regulation of mammary growth and development. Normal breast tissues display a relative higher expression of ER beta than ER alpha, which drastically changes during breast tumorogenesis. Thus, it is reasonable to suggest that a dysregulation of the two estrogen receptor subtypes may induce breast cancer development. However, the molecular mechanisms underlying the potential opposing roles played by the two estrogen receptors on tumor cell growth remain to be elucidated. In the present study, we have demonstrated that ER beta overexpression in breast cancer cells decreases cell proliferation and down-regulates ER alpha mRNA and protein content, along with a concomitant repression of estrogen-regulated genes. Transient transfection experiments, using a vector containing the human ER alpha promoter region, showed that elevated levels of ER beta down-regulated basal ER alpha promoter activity. Furthermore, site-directed mutagenesis and deletion analysis revealed that the proximal GC-rich motifs at -223 and -214 are critical for the ER beta-induced ER alpha down-regulation in breast cancer cells. This occurred through ER beta-Sp1 protein-protein interactions within the ER alpha promoter region and the recruitment of a corepressor complex containing the nuclear receptor corepressor NCoR, accompanied by hypoacetylation of histone H4 and displacement of RNA-polymerase II. Silencing of NCoR gene expression by RNA interference reversed the down-regulatory effects of ER beta on ER alpha gene expression and cell proliferation. Our results provide evidence for a novel mechanism by which overexpression of ER beta through NCoR is able to down regulate ER alpha gene expression, thus blocking ER alpha's driving role on breast cancer cell growth.
Collapse
Affiliation(s)
- V Bartella
- Department of Pharmaco-Biology, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Dubois V, Laurent M, Boonen S, Vanderschueren D, Claessens F. Androgens and skeletal muscle: cellular and molecular action mechanisms underlying the anabolic actions. Cell Mol Life Sci 2012; 69:1651-67. [PMID: 22101547 PMCID: PMC11115174 DOI: 10.1007/s00018-011-0883-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 10/27/2011] [Accepted: 11/07/2011] [Indexed: 12/14/2022]
Abstract
Androgens increase both the size and strength of skeletal muscle via diverse mechanisms. The aim of this review is to discuss the different cellular targets of androgens in skeletal muscle as well as the respective androgen actions in these cells leading to changes in proliferation, myogenic differentiation, and protein metabolism. Androgens bind and activate a specific nuclear receptor which will directly affect the transcription of target genes. These genes encode muscle-specific transcription factors, enzymes, structural proteins, as well as microRNAs. In addition, anabolic action of androgens is partly established through crosstalk with other signaling molecules such as Akt, myostatin, IGF-I, and Notch. Finally, androgens may also exert non-genomic effects in muscle by increasing Ca(2+) uptake and modulating kinase activities. In conclusion, the anabolic effect of androgens on skeletal muscle is not only explained by activation of the myocyte androgen receptor but is also the combined result of many genomic and non-genomic actions.
Collapse
Affiliation(s)
- Vanessa Dubois
- Molecular Endocrinology Laboratory, Department of Molecular Cell Biology, K.U. Leuven, Campus Gasthuisberg, O&N1, Herestraat 49, Leuven, Belgium
| | | | | | | | | |
Collapse
|
88
|
Abstract
The skin-blanching assay is used for the determination and bioequivalence of dermatologic glucocorticoids (GCs). The exact mechanism of the production of blanching is not fully understood, but it is considered that local vasoconstriction of the skin microvasculature and the consequent blood-flow reduction cause this phenomenon. Several factors influence skin blanching, including drug concentration, duration of application, nature of vehicle, occlusion, posture and location. The intensity of vasoconstriction can be measured in several ways: visual or quantitative methods, such as reflectance spectroscopy, thermography, laser Doppler velocimetry and chromametry. In literature, contradicting results in the correlation of the skin-blanching assay with different tests to determine GC sensitivity have been reported, limiting its clinical usefulness.
Collapse
Affiliation(s)
- P Smit
- Department of Dermatology and Venereology, Erasmus MC, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
89
|
Uva L, Miguel D, Pinheiro C, Antunes J, Cruz D, Ferreira J, Filipe P. Mechanisms of action of topical corticosteroids in psoriasis. Int J Endocrinol 2012; 2012:561018. [PMID: 23213332 PMCID: PMC3508578 DOI: 10.1155/2012/561018] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/14/2012] [Accepted: 10/20/2012] [Indexed: 11/17/2022] Open
Abstract
Psoriasis is a lifelong, chronic, and immune-mediated systemic disease, which affects approximately 1-3% of the Caucasian population. The different presentations of psoriasis require different approaches to treatment and appropriate prescriptions according to disease severity. The use of topical therapy remains a key component of the management of almost all psoriasis patients, and while mild disease is commonly treated only with topical agents, the use of topical therapy as adjuvant therapy in moderate-to-severe disease may also be helpful. This paper focuses on the cutaneous mechanisms of action of corticosteroids and on the currently available topical treatments, taking into account adverse effects, bioavailability, new combination treatments, and strategies to improve the safety of corticosteroids. It is established that the treatment choice should be tailored to match the individual patient's needs and his/her expectations, prescribing to each patient the most suitable vehicle.
Collapse
Affiliation(s)
- Luís Uva
- Clínica Universitária de Dermatologia, Faculdade de Medicina de Lisboa, Av. Professor Egas Moniz, 1649-035 Lisbon, Portugal
- *Luís Uva:
| | - Diana Miguel
- Clínica Universitária de Dermatologia, Faculdade de Medicina de Lisboa, Av. Professor Egas Moniz, 1649-035 Lisbon, Portugal
| | - Catarina Pinheiro
- Clínica Universitária de Dermatologia, Faculdade de Medicina de Lisboa, Av. Professor Egas Moniz, 1649-035 Lisbon, Portugal
| | - Joana Antunes
- Clínica Universitária de Dermatologia, Faculdade de Medicina de Lisboa, Av. Professor Egas Moniz, 1649-035 Lisbon, Portugal
| | - Diogo Cruz
- Clínica Universitária de Dermatologia, Faculdade de Medicina de Lisboa, Av. Professor Egas Moniz, 1649-035 Lisbon, Portugal
| | - João Ferreira
- Clínica Universitária de Dermatologia, Faculdade de Medicina de Lisboa, Av. Professor Egas Moniz, 1649-035 Lisbon, Portugal
| | - Paulo Filipe
- Clínica Universitária de Dermatologia, Faculdade de Medicina de Lisboa, Av. Professor Egas Moniz, 1649-035 Lisbon, Portugal
| |
Collapse
|
90
|
Moghadam SJ, Hanks AM, Keyomarsi K. Breaking the cycle: An insight into the role of ERα in eukaryotic cell cycles. J Carcinog 2011; 10:25. [PMID: 22190867 PMCID: PMC3243079 DOI: 10.4103/1477-3163.90440] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 10/07/2011] [Indexed: 12/31/2022] Open
Abstract
There have been numerous reviews written to date on estrogen receptor (ER), focusing on topics such as its role in the etiology of breast cancer, its mode of regulation, its role as a transcriptional activator and how to target it therapeutically, just to name a few. One reason for so much attention on this nuclear receptor is that it acts not only as a prognostic marker, but also as a target for therapy. However, a relatively undiscovered area in the literature regarding ER is how its activity in the presence and absence of ligand affects its role in proliferation and cell cycle transition. In this review, we provide a brief overview of ER signaling, ligand dependent and independent, genomic and non-genomic, and how these signaling events affect the role of ER in the mammalian cell cycle.
Collapse
Affiliation(s)
- Sonia Javan Moghadam
- Department of Experimental Radiation Oncology at University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
91
|
Strehl C, Gaber T, Löwenberg M, Hommes DW, Verhaar AP, Schellmann S, Hahne M, Fangradt M, Wagegg M, Hoff P, Scheffold A, Spies CM, Burmester GR, Buttgereit F. Origin and functional activity of the membrane-bound glucocorticoid receptor. ACTA ACUST UNITED AC 2011; 63:3779-88. [PMID: 21898343 DOI: 10.1002/art.30637] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Cindy Strehl
- Charité University Hospital and German Rheumatism Research Centre, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Rezaul K, Thumar JK, Lundgren DH, Eng JK, Claffey KP, Wilson L, Han DK. Differential protein expression profiles in estrogen receptor-positive and -negative breast cancer tissues using label-free quantitative proteomics. Genes Cancer 2011; 1:251-71. [PMID: 21779449 DOI: 10.1177/1947601910365896] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Identification of the proteins that are associated with estrogen receptor (ER) status is a first step towards better understanding of the hormone-dependent nature of breast carcinogenesis. Although a number of gene expression analyses have been conducted, protein complement has not been systematically investigated to date. Because proteins are primary targets of therapeutic drugs, in this study, we have attempted to identify proteomic signatures that demarcate ER-positive and -negative breast cancers. Using highly enriched breast tumor cells, replicate analyses from 3 ERα+ and 3 ERα- human breast tumors resulted in the identification of 2,995 unique proteins with ≥2 peptides. Among these, a number of receptor tyrosine kinases and intracellular kinases that are abundantly expressed in ERα+ and ERα- breast cancer tissues were identified. Further, label-free quantitative proteome analysis revealed that 236 proteins were differentially expressed in ERα+ and ERα- breast tumors. Among these, 141 proteins were selectively up-regulated in ERα+, and 95 proteins were selectively up-regulated in ERα- breast tumors. Comparison of differentially expressed proteins with a breast cancer database revealed 98 among these have been previously reported to be involved in breast cancer. By Gene Ontology molecular function, dehydrogenase, reductase, cytoskeletal proteins, extracellular matrix, hydrolase, and lyase categories were significantly enriched in ERα+, whereas selected calcium-binding protein, membrane traffic protein, and cytoskeletal protein were enriched in ERα- breast tumors. Biological process and pathway analysis revealed that up-regulated proteins of ERα+ were overrepresented by proteins involved in amino acid metabolism, proteasome, and fatty acid metabolism, while up-regulated proteins of ERα- were overrepresented by proteins involved in glycolysis pathway. The presence and relative abundance of 4 selected differentially abundant proteins (liprin-α1, fascin, DAP5, and β-arrestin-1) were quantified and validated by immunohistochemistry. In conclusion, unlike in vitro cell culture models, the in vivo signaling proteins and pathways that we have identified directly from human breast cancer tissues may serve as relevant therapeutic targets for the pharmacological intervention of breast cancer.
Collapse
Affiliation(s)
- Karim Rezaul
- Department of Cell Biology, Center for Vascular Biology, University of Connecticut School of Medicine, Farmington, CT, USA
| | | | | | | | | | | | | |
Collapse
|
93
|
Nongenomic glucocorticoid receptor action regulates gap junction intercellular communication and neural progenitor cell proliferation. Proc Natl Acad Sci U S A 2011; 108:16657-62. [PMID: 21930911 DOI: 10.1073/pnas.1102821108] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoids (GCs) are used to treat pregnant women at risk for preterm delivery; however, prenatal exposure to GCs may trigger adverse neurological side effects due to reduced neural progenitor cell (NPC) proliferation. Whereas many established cell-cycle regulators impact NPC proliferation, other signaling molecules, such as the gap junction protein connexin-43 (Cx43), also influence proliferation. Gap junction intercellular communication (GJIC) is influenced by GCs in some cells, but such hormone effects have not been examined in coupled stem cells. We found that both continuous and transient exposure of embryonic day 14.5 mouse neurosphere cultures to dexamethasone (DEX) limits proliferation of coupled NPCs, which is manifested by both a reduction in S-phase progression and enhanced cell-cycle exit. A short (i.e., 1-h) DEX treatment also reduced GJIC as measured by live-cell fluorescence recovery after photobleaching, and altered the synchrony of spontaneous calcium transients in coupled NPCs. GC effects on GJIC in NPCs are transcription-independent and mediated through plasma membrane glucocorticoid receptors (GRs). This nongenomic pathway operates through lipid raft-associated GRs via a site-specific, MAPK-dependent phosphorylation of Cx43, which is linked to GR via caveolin-1 (Cav-1) and c-src. Cav-1 is essential for this nongenomic action of GR, as DEX effects on GJIC, Cx43 phosphorylation, and MAPK activation are not observed in Cav-1 knockout NPCs. As transient pharmacologic inhibition of GJIC triggers reduced S-phase progression but not enhanced cell-cycle exit, the nongenomic GR signaling pathway may operate via distinct downstream effectors to alter the proliferative capacity of NPCs.
Collapse
|
94
|
Evans TG, Somero GN. Protein-protein interactions enable rapid adaptive response to osmotic stress in fish gills. Commun Integr Biol 2011; 2:94-6. [PMID: 19704899 DOI: 10.4161/cib.7601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 12/09/2008] [Indexed: 11/19/2022] Open
Abstract
Cells respond to changes in osmolality with compensatory adaptations that re-establish ion homeostasis and repair disturbed aspects of cell structure and function. These physiologically complex processes can be separated into two functionally distinct cellular phases. The first phase operates to temporarily minimize cellular damage and stabilize critical cell functions necessary for survival. This phase is contingent upon the ability to generate a rapid adaptive response. For this reason, it occurs largely in the absence of de novo protein synthesis and instead relies upon modifying the activity of existing cellular proteins through protein-protein interactions and post-translational modifications. The second phase of the osmotic stress response is centered upon adjusting the expression of specific effector proteins required to re-establish cellular homeostasis. This phase is dependent on the completion of signal transduction events; as well the transcription and translation of target genes, and is therefore characterized by a significant temporal delay and not detected until several hours post exposure. Osmotic effector proteins central to the second phase, such as ion transporting proteins and organic osmolyte generating enzymes, have been studied in considerable detail. However, knowledge surrounding the first phase of the osmotic stress response is limited. This article focuses on recent insights into the players and interactions governing the first phase of the osmotic stress response with specific emphasis on protein-protein interactions.
Collapse
Affiliation(s)
- Tyler G Evans
- Hopkins Marine Station; Stanford University; Pacific Grove, CA USA
| | | |
Collapse
|
95
|
Walker CL. Epigenomic reprogramming of the developing reproductive tract and disease susceptibility in adulthood. ACTA ACUST UNITED AC 2011; 91:666-71. [PMID: 21656660 DOI: 10.1002/bdra.20827] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 03/08/2011] [Accepted: 03/14/2011] [Indexed: 11/09/2022]
Abstract
During development, epigenetic programs are "installed" on the genome that direct differentiation and normal tissue and organ function in adulthood. Consequently, development is also a period of susceptibility to reprogramming of the epigenome. Developmental reprogramming occurs when an adverse stimulus or insult interrupts the proper "install" of epigenetic programs during development, reprogramming normal physiologic responses in such a way as to promote disease later in life. Some of the best examples of developmental reprogramming involve the reproductive tract, where early life exposures to environmental estrogens can increase susceptibility to benign and malignant tumors in adulthood including leiomyoma (fibroids), endometrial, and prostate cancer. Although specific mechanism(s) by which environmental estrogens reprogram the developing epigenome were unknown, both DNA and histone methylation were considered likely targets for epigenetic reprogramming. We have now identified a mechanism by which developmental exposures to environmental estrogens reprogram the epigenome by inducing inappropriate activation of nongenomic estrogen receptor (ER) signaling. Activation of nongenomic ER signaling via the phosphotidylinositol-3-kinase (PI3K) pathway activates the kinase AKT/PKB in the developing reproductive tract, which phosphorylates the histone lysine methyltransferase (HKMT) EZH2, the key "installer" of epigenetic histone H3 lysine 27 trimethylation (H3K27me3). AKT phosphorylation inactivates EZH2, decreasing levels of H3K27 methylation, a repressive mark that inhibits gene expression, in the developing uterus. As a result of this developmental reprogramming, many estrogen-responsive genes become hypersensitive to estrogen in adulthood, exhibiting elevated expression throughout the estrus cycle, and resulting in a "hyper-estrogenized" phenotype in the adult uterus that promotes development of hormone-dependent tumors.
Collapse
Affiliation(s)
- Cheryl Lyn Walker
- The University of Texas MD Anderson Cancer Center, Department of Molecular Carcinogenesis, Smithville, TX 78957, USA.
| |
Collapse
|
96
|
Tillis CC, Huang HW, Bi W, Pan S, Bruce SR, Alcorn JL. Glucocorticoid regulation of human pulmonary surfactant protein-B (SP-B) mRNA stability is independent of activated glucocorticoid receptor. Am J Physiol Lung Cell Mol Physiol 2011; 300:L940-50. [PMID: 21398497 DOI: 10.1152/ajplung.00420.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Adequate expression of surfactant protein-B (SP-B) is critical in the function of pulmonary surfactant to reduce alveolar surface tension. Expression of SP-B mRNA is restricted to specific lung-airway epithelial cells, and human SP-B mRNA stability is increased in the presence of the synthetic glucocorticoid dexamethasone (DEX). Although the mechanism of SP-B mRNA stabilization by DEX is unknown, studies suggest involvement of the glucocorticoid receptor (GR). We developed a dual-cistronic plasmid-based expression assay in which steady-state levels of SP-B mRNA, determined by Northern analysis, reproducibly reflect changes in SP-B mRNA stability. Using this assay, we found that steady-state levels of SP-B mRNA increased greater than twofold in transfected human-airway epithelial cells (A549) incubated with DEX (10(-7) M). DEX-mediated changes in SP-B mRNA levels required the presence of the SP-B mRNA 3'-untranslated region but did not require ongoing protein synthesis. The effect of DEX on SP-B mRNA levels was dose dependent, with maximal effect at 10(-7) M. DEX increased levels of SP-B mRNA in cells lacking GR, and the presence of the GR antagonist RU486 did not interfere with the effect of DEX. Surprisingly, other steroid hormones (progesterone, estradiol, and vitamin D; 10(-7) M) significantly increased SP-B mRNA levels, suggesting a common pathway of steroid hormone action on SP-B mRNA stability. These results indicate that the effect of DEX to increase SP-B mRNA stability is independent of activated GR and suggests that the mechanism is mediated by posttranscriptional or nongenomic effects of glucocorticoids.
Collapse
Affiliation(s)
- Ceá C Tillis
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Texas Health Sciences Center at Houston, USA
| | | | | | | | | | | |
Collapse
|
97
|
Pi M, Parrill AL, Quarles LD. GPRC6A mediates the non-genomic effects of steroids. J Biol Chem 2010; 285:39953-64. [PMID: 20947496 PMCID: PMC3000977 DOI: 10.1074/jbc.m110.158063] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 09/10/2010] [Indexed: 12/11/2022] Open
Abstract
The identity of the putative G-protein coupled receptor (GPCR) that mediates the non-genomic effects of androgens is unknown. We present in vitro and in vivo evidence that the orphan GPRC6A receptor, a widely expressed calcium and amino acid sensing GPCR, transduces the non-genomic effects of testosterone and other steroids. Overexpression of GPRC6A imparts the ability of extracellular testosterone to illicit a rapid, non-genomic signaling response in HEK-293 cells lacking the androgen receptor. Conversely, testosterone-stimulated rapid signaling and phosphorylation of ERK is attenuated in bone marrow stromal cells derived from GPRC6A(-/-) mice and in 22Rv1 prostate cancer cells after siRNA-mediated knockdown of GPRC6A. Compared with wild-type controls, GPRC6A(-/-) null mice exhibit significantly less ERK activation and Egr-1 expression in both bone marrow and testis in response to pharmacological doses of testosterone in vivo. In addition, testosterone administration results in suppression of luteinizing hormone in wild-type male mice, but paradoxically stimulates serum luteinizing hormone levels in GPRC6A(-/-) null mice. These results suggest that GPRC6A is functionally important in regulating non-genomic effects of androgens in multiple tissues.
Collapse
Affiliation(s)
- Min Pi
- From the Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38103 and
| | - Abby L. Parrill
- the Department of Chemistry and the Computational Research on Materials Institute, University of Memphis, Memphis, Tennessee 38152
| | - L. Darryl Quarles
- From the Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38103 and
| |
Collapse
|
98
|
Kelly MJ, Qiu J. Estrogen signaling in hypothalamic circuits controlling reproduction. Brain Res 2010; 1364:44-52. [PMID: 20807512 PMCID: PMC3070154 DOI: 10.1016/j.brainres.2010.08.082] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/22/2010] [Accepted: 08/24/2010] [Indexed: 12/14/2022]
Abstract
It is well known that many of the actions of 17β-estradiol (E2) in the central nervous system are mediated via intracellular receptor/transcription factors that interact with steroid response elements on target genes. However, there is compelling evidence for membrane steroid receptors for estrogen in hypothalamic and other brain neurons. Yet, it is not well understood how estrogen signals via membrane receptors and how these signals impact not only membrane excitability but also gene transcription in neurons that modulate GnRH neuronal excitability. Indeed, it has been known for some time that E2 can rapidly alter neuronal activity within seconds, indicating that some cellular effects can occur via membrane delimited events. In addition, E2 can affect second messenger systems including calcium mobilization and a plethora of kinases to alter cell signaling. Therefore, this review will consider our current knowledge of rapid membrane-initiated and intracellular signaling by E2 in hypothalamic neurons critical for reproductive function.
Collapse
Affiliation(s)
- Martin J Kelly
- Department of Physiology and Pharmacology, Portland, OR 97239, USA.
| | | |
Collapse
|
99
|
González-Montelongo MC, Marín R, Gómez T, Díaz M. Androgens are powerful non-genomic inducers of calcium sensitization in visceral smooth muscle. Steroids 2010; 75:533-8. [PMID: 19800357 DOI: 10.1016/j.steroids.2009.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 09/23/2009] [Accepted: 09/24/2009] [Indexed: 11/16/2022]
Abstract
Androgens are recognized as genotropic inducers of a number of physiological functions mainly associated with the development of sexual characteristics. However, as in the case of estrogens, the number of studies evidencing androgen actions in non-reproductive tissues has steadily grown over the past years. Here, we show that androgens acutely ( approximately 30min) alter the frequency spectrum of peristaltic activity of intestinal smooth muscle and augment the amplitude agonist-induced contractile activity. Maximal stimulation occurred at physiological concentrations of androgens with EC(50) values in the picomolar range. Androgen-induced potentiation was prevented by preincubation with androgen receptor (AR) antagonists but unaffected by cycloheximide plus actinomycin D, indicating that potentiation was mediated by ARs via a non-genomic mechanism. The effects of androgens were mimicked by polyamines and were completely blocked by inhibitors of polyamine synthesis. Using ionomycin-permeabilized intestinal smooth muscle preparations, we demonstrate that androgens exert their effects by inducing a mechanism of sensitization to calcium and not by altering intracellular calcium homeostasis. Correspondingly, the potentiation of mechanical activity induced by androgens was accompanied by an increase in the phosphorylation of the regulatory myosin light chain (LC(20)) within the same time-course than calcium sensitization and mechanical potentiation. The pursuit of potential signalling pathways linking androgen receptor activation with calcium sensitization revealed that mechanical potentiation of intestinal muscle by androgens involve activation of the Rho pathway, whose downstream effector, Rho-associated kinase (ROCK), is eventually responsible for displacement of the phosphorylation/dephosphorylation state of LC(20) towards its phosphorylated form.
Collapse
Affiliation(s)
- Maria C González-Montelongo
- Departments of Animal Biology, Institute of Biomedical Technologies (ITB), University of La Laguna, 38206, Tenerife, Spain
| | | | | | | |
Collapse
|
100
|
Mancinelli R, Onori P, DeMorrow S, Francis H, Glaser S, Franchitto A, Carpino G, Alpini G, Gaudio E. Role of sex hormones in the modulation of cholangiocyte function. World J Gastrointest Pathophysiol 2010; 1:50-62. [PMID: 21607142 PMCID: PMC3097944 DOI: 10.4291/wjgp.v1.i2.50] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 05/28/2010] [Accepted: 06/04/2010] [Indexed: 02/06/2023] Open
Abstract
Over the last years, cholangiocytes, the cells that line the biliary tree, have been considered an important object of study for their biological properties which involves bile formation, proliferation, injury repair, fibrosis and angiogenesis. Cholangiocyte proliferation occurs in all pathologic conditions of liver injury where it is associated with inflammation and regeneration. During these processes, biliary cells start to secrete different cytokines, growth factors, neuropeptides and hormones which represent potential mechanisms for cross talk with other liver cells. Several studies suggest that hormones, and in particular, sex hormones, play a fundamental role in the modulation of the growth of this compartment in the injured liver which functionally conditions the progression of liver disease. Understanding the mechanisms of action and the intracellular pathways of these compounds on cholangiocyte pathophysiology will provide new potential strategies for the management of chronic liver diseases. The purpose of this review is to summarize the recent findings on the role of sex hormones in cholangiocyte proliferation and biology.
Collapse
|