51
|
Yanagihara S, Goto H, Hirota T, Fukuda S, Ohno H, Yamamoto N. Lactobacillus acidophilus L-92 Cells Activate Expression of Immunomodulatory Genes in THP-1 Cells. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2014; 33:157-64. [PMID: 25379363 PMCID: PMC4219982 DOI: 10.12938/bmfh.33.157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 07/03/2014] [Indexed: 12/24/2022]
Abstract
To understand the immunomodulatory effects of Lactobacillus acidophilus L-92 cells suggested from our previous
study of in vivo anti-allergy and anti-virus effects, host immune responses in macrophage-like THP-1 cells after
4 h (the early phase) and 24 h (the late phase) of cocultivation with L-92 cells were investigated by transcriptome analysis. In
the early phase of L-92 treatment, various transcription regulator genes, such as, NFkB1, NFkB2, JUN, HIVEP2 and
RELB, and genes encoding chemokines and cytokines, such as CCL4, CXCL11, CCL3 and
TNF, were upregulated. Two transmembrane receptor genes, TLR7 and ICAM1, were
also upregulated in the early phase of treatment. In contrast, many transmembrane receptor genes, such as IL7R, CD80,
CRLF2, CD86, CD5, HLA-DQA1, IL2RA, IL15RA and CSF2RA, and some cytokine genes, including IL6,
IL23A and CCL22, were significantly upregulated in the late phase after L-92 exposure. Some genes
encoding cytokines, such as IL1A, IL1B and IL8, and the enzyme IDO1 were
upregulated at both the early and the late phases of treatment. These results suggest that probiotic L-92 might promote Th1 and
regulatory T-cell responses by activation of the MAPK signaling pathway, followed by the NOD-like receptor signaling pathway in
THP-1 cells.
Collapse
Affiliation(s)
- Sae Yanagihara
- Microbiology and Fermentation Laboratory, Calpis Co. Ltd., 5-11-10 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-0206, Japan
| | - Hiroaki Goto
- Microbiology and Fermentation Laboratory, Calpis Co. Ltd., 5-11-10 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-0206, Japan
| | - Tatsuhiko Hirota
- Microbiology and Fermentation Laboratory, Calpis Co. Ltd., 5-11-10 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-0206, Japan
| | - Shinji Fukuda
- Intestinal Microbe Symbiosis Laboratory, RIKEN, Wako, Saitama 351-0198, Japan ; Laboratory for Intestinal Ecosystem, RCAI, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan ; Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan ; Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Hiroshi Ohno
- Intestinal Microbe Symbiosis Laboratory, RIKEN, Wako, Saitama 351-0198, Japan ; Laboratory for Intestinal Ecosystem, RCAI, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan ; Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Naoyuki Yamamoto
- Intestinal Microbe Symbiosis Laboratory, RIKEN, Wako, Saitama 351-0198, Japan ; Research and Development Planning Department, Calpis Co. Ltd., 5-11-10 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-0206, Japan
| |
Collapse
|
52
|
Lactobacilli regulate Staphylococcus aureus 161:2-induced pro-inflammatory T-cell responses in vitro. PLoS One 2013; 8:e77893. [PMID: 24205015 PMCID: PMC3799733 DOI: 10.1371/journal.pone.0077893] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 09/05/2013] [Indexed: 11/19/2022] Open
Abstract
There seems to be a correlation between early gut microbiota composition and postnatal immune development. Alteration in the microbial composition early in life has been associated with immune mediated diseases, such as autoimmunity and allergy. We have previously observed associations between the presence of lactobacilli and Staphylococcus (S.) aureus in the early-life gut microbiota, cytokine responses and allergy development in children. Consistent with the objective to understand how bacteria modulate the cytokine response of intestinal epithelial cell (IEC) lines and immune cells, we exposed IEC lines (HT29, SW480) to UV-killed bacteria and/or culture supernatants (-sn) from seven Lactobacillus strains and three S. aureus strains, while peripheral blood mononuclear cells (PBMC) and cord blood mononuclear cells (CBMC) from healthy donors were stimulated by bacteria-sn or with bacteria conditioned IEC-sn. Although the overall IEC response to bacterial exposure was characterized by limited sets of cytokine and chemokine production, S. aureus 161:2-sn induced an inflammatory response in the IEC, characterized by CXCL1/GROα and CXCL8/IL-8 production, partly in a MyD88-dependent manner. UV-killed bacteria did not induce a response in the IEC line, and a combination of both UV-killed bacteria and the bacteria-sn had no additive effect to that of the supernatant alone. In PBMC, most of the Lactobacillus-sn and S. aureus-sn strains were able to induce a wide array of cytokines, but only S. aureus-sn induced the T-cell associated cytokines IL-2, IL-17 and IFN-γ, independently of IEC-produced factors, and induced up regulation of CTLA-4 expression and IL-10 production by T-regulatory cells. Notably, S. aureus-sn-induced T-cell production of IFN- γ and IL-17 was down regulated by the simultaneous presence of any of the different Lactobacillus strains, while the IEC CXCL8/IL-8 response was unaltered. Thus these studies present a possible role for lactobacilli in induction of immune cell regulation, although the mechanisms need to be further elucidated.
Collapse
|
53
|
You J, Dong H, Mann ER, Knight SC, Yaqoob P. Probiotic modulation of dendritic cell function is influenced by ageing. Immunobiology 2013; 219:138-48. [PMID: 24094416 PMCID: PMC4064698 DOI: 10.1016/j.imbio.2013.08.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 07/30/2013] [Accepted: 08/27/2013] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs) are critical for the generation of T-cell responses. DC function may be modulated by probiotics, which confer health benefits in immunocompromised individuals, such as the elderly. This study investigated the effects of four probiotics, Bifidobacterium longum bv. infantis CCUG 52486, B. longum SP 07/3, Lactobacillus rhamnosus GG (L.GG) and L. casei Shirota (LcS), on DC function in an allogeneic mixed leucocyte reaction (MLR) model, using DCs and T-cells from young and older donors in different combinations. All four probiotics enhanced expression of CD40, CD80 and CCR7 on both young and older DCs, but enhanced cytokine production (TGF-β, TNF-α) by old DCs only. LcS induced IL-12 and IFNγ production by DC to a greater degree than other strains, while B. longum bv. infantis CCUG 52486 favoured IL-10 production. Stimulation of young T cells in an allogeneic MLR with DC was enhanced by probiotic pretreatment of old DCs, which demonstrated greater activation (CD25) than untreated controls. However, pretreatment of young or old DCs with LPS or probiotics failed to enhance the proliferation of T-cells derived from older donors. In conclusion, this study demonstrates that ageing increases the responsiveness of DCs to probiotics, but this is not sufficient to overcome the impact of immunosenescence in the MLR.
Collapse
Affiliation(s)
- Jialu You
- Department of Food and Nutritional Sciences, The University of Reading, Reading, UK
| | - Honglin Dong
- Department of Food and Nutritional Sciences, The University of Reading, Reading, UK
| | - Elizabeth R Mann
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, HA1 3UJ, UK
| | - Stella C Knight
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, HA1 3UJ, UK
| | - Parveen Yaqoob
- Department of Food and Nutritional Sciences, The University of Reading, Reading, UK.
| |
Collapse
|
54
|
Martner A, Ostman S, Lundin S, Rask C, Björnsson V, Telemo E, Collins LV, Axelsson L, Wold AE. Stronger T cell immunogenicity of ovalbumin expressed intracellularly in Gram-negative than in Gram-positive bacteria. PLoS One 2013; 8:e65124. [PMID: 23741469 PMCID: PMC3669294 DOI: 10.1371/journal.pone.0065124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/22/2013] [Indexed: 11/18/2022] Open
Abstract
This study aimed to clarify whether Gram-positive (G+) and Gram-negative (G−) bacteria affect antigen-presenting cells differently and thereby influence the immunogenicity of proteins they express. Lactobacilli, lactococci and Escherichia coli strains were transformed with plasmids conferring intracellular ovalbumin (OVA) production. Murine splenic antigen presenting cells (APCs) were pulsed with washed and UV-inactivated OVA-producing bacteria, control bacteria, or soluble OVA. The ability of the APCs to activate OVA-specific DO11.10 CD4+ T cells was assessed by measurments of T cell proliferation and cytokine (IFN-γ, IL-13, IL-17, IL-10) production. OVA expressed within E. coli was strongly immunogenic, since 500 times higher concentrations of soluble OVA were needed to achieve a similar level of OVA-specific T cell proliferation. Furthermore, T cells responding to soluble OVA produced mainly IL-13, while T cells responding to E. coli-expressed OVA produced high levels of both IFN-γ and IL-13. Compared to E. coli, G+ lactobacilli and lactococci were poor inducers of OVA-specific T cell proliferation and cytokine production, despite efficient intracellular expression and production of OVA and despite being efficiently phagocytosed. These results demonstrate a pronounced difference in immunogenicity of intracellular antigens in G+ and G− bacteria and may be relevant for the use of bacterial carriers in vaccine development.
Collapse
Affiliation(s)
- Anna Martner
- Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Raman M, Ambalam P, Kondepudi KK, Pithva S, Kothari C, Patel AT, Purama RK, Dave J, Vyas B. Potential of probiotics, prebiotics and synbiotics for management of colorectal cancer. Gut Microbes 2013; 4:181-92. [PMID: 23511582 PMCID: PMC3669163 DOI: 10.4161/gmic.23919] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Colorectal Cancer (CRC) is the second leading cause of cancer-related mortality and is the fourth most common malignant neoplasm in USA. Escaping apoptosis and cell mutation are the prime hallmarks of cancer. It is apparent that balancing the network between DNA damage and DNA repair is critical in preventing carcinogenesis. One-third of cancers might be prevented by nutritious healthy diet, maintaining healthy weight and physical activity. In this review, an attempt is made to abridge the role of carcinogen in colorectal cancer establishment and prognosis, where special attention has been paid to food-borne mutagens and functional role of beneficial human gut microbiome in evading cancer. Further the significance of tailor-made prebiotics, probiotics and synbiotics in cancer management by bio-antimutagenic and desmutagenic activity has been elaborated. Probiotic bacteria are live microorganisms that, when administered in adequate amounts, confer a healthy benefit on the host. Prebiotics are a selectively fermentable non-digestible oligosaccharide or ingredient that brings specific changes, both in the composition and/or activity of the gastrointestinal microflora, conferring health benefits. Synbiotics are a combination of probiotic bacteria and the growth promoting prebiotic ingredients that purport "synergism."
Collapse
Affiliation(s)
- Maya Raman
- Department of Biotechnology; Bhupat and Jyoti Mehta School of Biosciences and Bioengineering; Indian Institute of Technology; Chennai, India
| | - Padma Ambalam
- Department of Biotechnology; Christ College; Rajkot, India,Correspondence to: Padma Ambalam,
| | | | - Sheetal Pithva
- Department of Biosciences; Saurashtra University; Rajkot, India
| | - Charmy Kothari
- Department of Biotechnology; Christ College; Rajkot, India
| | - Arti T. Patel
- SMC College of Dairy Science; Anand Agricultural University; Anand, India
| | | | | | - B.R.M. Vyas
- Department of Biosciences; Saurashtra University; Rajkot, India
| |
Collapse
|
56
|
Giahi L, Elmadfa I, Hoseini M, Klein P. Heat-inactivatedLactobacillus rhamnosusandLactobacillus delbrueckiiinduce efficient maturation and differential cytokine production in human monocyte derived dendritic cells. FOOD AGR IMMUNOL 2013. [DOI: 10.1080/09540105.2011.651445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
57
|
Lê KA, Li Y, Xu X, Yang W, Liu T, Zhao X, Tang YG, Cai D, Go VLW, Pandol S, Hui H. Alterations in fecal Lactobacillus and Bifidobacterium species in type 2 diabetic patients in Southern China population. Front Physiol 2013; 3:496. [PMID: 23386831 PMCID: PMC3560362 DOI: 10.3389/fphys.2012.00496] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 12/28/2012] [Indexed: 02/03/2023] Open
Abstract
Background: The connection between gut microbiota and metabolism and its role in the pathogenesis of diabetes are increasingly recognized. The objective of this study was to quantitatively measure Bifidobacterium and Lactobacillus species, members of commensal bacteria found in human gut, in type 2 diabetic patients (T2D) patients from Southern China. Methods: Fifty patients with T2D and thirty control individuals of similar body mass index (BMI) were recruited from Southern China. T2D and control subjects were confirmed with both oral glucose tolerance test (OGTT) and HbA1c measurements. Bifidobacterium and Lactobacillus species in feces were measured by real-time quantitative PCR. Data were analyzed with STATA 11.0 statistical software. Results: In comparison to control subjects T2D patients had significantly more total Lactobacillus (+18%), L. bugaricus (+13%), L. rhamnosum (+37%) and L. acidophilus (+48%) (P < 0.05). In contrast, T2D patients had less amounts of total Bifidobacteria (−7%) and B. adolescentis (−12%) (P < 0.05). Cluster analysis showed that gut microbiota pattern of T2D patients is characterized by greater numbers of L. rhamnosus and L. acidophillus, together with lesser numbers of B. adolescentis (P < 0.05). Conclusion: The gut microflora in T2D patients is characterized by greater numbers of Lactobacillus and lesser numbers of Bifidobacterium species.
Collapse
Affiliation(s)
- Kim-Anne Lê
- International Center for Metabolic Diseases, Southern Medical University Guangzhou, China ; Nutrition and Health Department, Nestec Ltd., Nestlé Research Center Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Frøkiær H, Henningsen L, Metzdorff SB, Weiss G, Roller M, Flanagan J, Fromentin E, Ibarra A. Astragalus root and elderberry fruit extracts enhance the IFN-β stimulatory effects of Lactobacillus acidophilus in murine-derived dendritic cells. PLoS One 2012; 7:e47878. [PMID: 23118903 PMCID: PMC3484152 DOI: 10.1371/journal.pone.0047878] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 09/24/2012] [Indexed: 01/22/2023] Open
Abstract
Many foods and food components boost the immune system, but little data are available regarding the mechanisms by which they do. Bacterial strains have disparate effects in stimulating the immune system. Indendritic cells, the gram-negative bacteria Escherichia coli upregulates proinflammatory cytokines, whereas gram-positive Lactobacillus acidophilus induces a robust interferon (IFN)-β response. The immune-modulating effects of astragalus root and elderberry fruit extracts were examined in bone marrow-derived murine dendritic cells that were stimulated with L. acidophilus or E. coli. IFN-β and other cytokines were measured by ELISA and RT-PCR. Endocytosis of fluorescence-labeled dextran and L. acidophilus in the presence of elderberry fruit or astragalus root extract was evaluated in dendritic cells. Our results show that both extracts enhanced L. acidophilus-induced IFN-β production and slightly decreased the proinflammatory response to E. coli. The enhanced IFN-β production was associated with upregulation of toll-like receptor 3 and to a varying degree, the cytokines IL-12, IL-6, IL-1β and TNF-α. Both extracts increased endocytosis in immature dendritic cells, and only slightly influenced the viability of the cells. In conclusion, astragalus root and elderberry fruit extracts increase the IFN-β inducing activity of L. acidophilus in dendritic cells, suggesting that they may exert antiviral and immune-enhancing activity.
Collapse
Affiliation(s)
- Hanne Frøkiær
- Department of Veterinary Disease Biology, Copenhagen University, Frederiksberg, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Hwang JS, Im CR, Im SH. Immune disorders and its correlation with gut microbiome. Immune Netw 2012; 12:129-38. [PMID: 23091436 PMCID: PMC3467411 DOI: 10.4110/in.2012.12.4.129] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 07/19/2012] [Accepted: 07/27/2012] [Indexed: 01/05/2023] Open
Abstract
Allergic disorders such as atopic dermatitis and asthma are common hyper-immune disorders in industrialized countries. Along with genetic association, environmental factors and gut microbiota have been suggested as major triggering factors for the development of atopic dermatitis. Numerous studies support the association of hygiene hypothesis in allergic immune disorders that a lack of early childhood exposure to diverse microorganism increases susceptibility to allergic diseases. Among the symbiotic microorganisms (e.g. gut flora or probiotics), probiotics confer health benefits through multiple action mechanisms including modification of immune response in gut associated lymphoid tissue (GALT). Although many human clinical trials and mouse studies demonstrated the beneficial effects of probiotics in diverse immune disorders, this effect is strain specific and needs to apply specific probiotics for specific allergic diseases. Herein, we briefly review the diverse functions and regulation mechanisms of probiotics in diverse disorders.
Collapse
Affiliation(s)
- Ji-Sun Hwang
- School of Life Sciences and Immune Synapse Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Korea
| | | | | |
Collapse
|
60
|
Manuzak J, Dillon S, Wilson C. Differential interleukin-10 (IL-10) and IL-23 production by human blood monocytes and dendritic cells in response to commensal enteric bacteria. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1207-17. [PMID: 22695160 PMCID: PMC3416095 DOI: 10.1128/cvi.00282-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 06/05/2012] [Indexed: 02/07/2023]
Abstract
Human peripheral blood contains antigen-presenting cells (APC), including dendritic cells (DC) and monocytes, that may encounter microbes that have translocated from the intestine to the periphery in disease states like HIV-1 infection and inflammatory bowel disease. We investigated the response of DC and monocytes in peripheral blood mononuclear cells (PBMC) to a panel of representative commensal enteric bacteria, including Escherichia coli, Enterococcus sp., and Bacteroides fragilis. All three bacteria induced significant upregulation of the maturation and activation markers CD40 and CD83 on myeloid dendritic cells (mDC) and plasmacytoid dendritic cells (pDC). However, only mDC produced cytokines, including interleukin-10 (IL-10), IL-12p40/70, and tumor necrosis factor alpha (TNF-α), in response to bacterial stimulation. Cytokine profiles in whole PBMC differed depending on the stimulating bacterial species: B. fragilis induced production of IL-23, IL-12p70, and IL-10, whereas E. coli and Enterococcus induced an IL-10-predominant response. mDC and monocyte depletion experiments indicated that these cell types differentially produced IL-10 and IL-23 in response to E. coli and B. fragilis. Bacteroides thetaiotaomicron did not induce levels of IL-23 similar to those of B. fragilis, suggesting that B. fragilis may have unique proinflammatory properties among Bacteroides species. The addition of recombinant human IL-10 to PBMC cultures stimulated with commensal bacteria abrogated the IL-23 response, whereas blocking IL-10 significantly enhanced IL-23 production, suggesting that IL-10 controls the levels of IL-23 produced. These results indicate that blood mDC and monocytes respond differentially to innate stimulation with whole commensal bacteria and that IL-10 may play a role in controlling the proinflammatory response to translocated microbes.
Collapse
Affiliation(s)
- Jennifer Manuzak
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | | | | |
Collapse
|
61
|
Murine gut microbiota is defined by host genetics and modulates variation of metabolic traits. PLoS One 2012; 7:e39191. [PMID: 22723961 PMCID: PMC3377628 DOI: 10.1371/journal.pone.0039191] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 05/16/2012] [Indexed: 12/16/2022] Open
Abstract
The gastrointestinal tract harbors a complex and diverse microbiota that has an important role in host metabolism. Microbial diversity is influenced by a combination of environmental and host genetic factors and is associated with several polygenic diseases. In this study we combined next-generation sequencing, genetic mapping, and a set of physiological traits of the BXD mouse population to explore genetic factors that explain differences in gut microbiota and its impact on metabolic traits. Molecular profiling of the gut microbiota revealed important quantitative differences in microbial composition among BXD strains. These differences in gut microbial composition are influenced by host-genetics, which is complex and involves many loci. Linkage analysis defined Quantitative Trait Loci (QTLs) restricted to a particular taxon, branch or that influenced the variation of taxa across phyla. Gene expression within the gastrointestinal tract and sequence analysis of the parental genomes in the QTL regions uncovered candidate genes with potential to alter gut immunological profiles and impact the balance between gut microbial communities. A QTL region on Chr 4 that overlaps several interferon genes modulates the population of Bacteroides, and potentially Bacteroidetes and Firmicutes–the predominant BXD gut phyla. Irak4, a signaling molecule in the Toll-like receptor pathways is a candidate for the QTL on Chr15 that modulates Rikenellaceae, whereas Tgfb3, a cytokine modulating the barrier function of the intestine and tolerance to commensal bacteria, overlaps a QTL on Chr 12 that influence Prevotellaceae. Relationships between gut microflora, morphological and metabolic traits were uncovered, some potentially a result of common genetic sources of variation.
Collapse
|
62
|
Azevedo MSP, Zhang W, Wen K, Gonzalez AM, Saif LJ, Yousef AE, Yuan L. Lactobacillus acidophilus and Lactobacillus reuteri modulate cytokine responses in gnotobiotic pigs infected with human rotavirus. Benef Microbes 2012; 3:33-42. [PMID: 22348907 DOI: 10.3920/bm2011.0041] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Probiotic lactic acid bacteria (LAB) have been shown to alleviate inflammation, enhance the immunogenicity of rotavirus vaccines, or reduce the severity of rotavirus diarrhoea. Although the mechanisms are not clear, the differential Th1/Th2/Th3-driving capacities and modulating effects on cytokine production of different LAB strains may be the key. Our goal was to delineate the influence of combining two probiotic strains of Lactobacillus acidophilus and Lactobacillus reuteri on the development of cytokine responses in neonatal gnotobiotic pigs infected with human rotavirus (HRV). We demonstrated that HRV alone, or HRV plus LAB, but not LAB alone, initiated serum cytokine responses, as indicated by significantly higher concentrations of IFN-α, IFN-γ, IL-12, and IL-10 at postinoculation day (PID) 2 in the HRV only and LAB+HRV+ pigs compared to LAB only and LAB-HRV- pigs. Peak cytokine responses coincided with the peak of HRV replication. LAB further enhanced the Th1 and Th2 cytokine responses to HRV infection as indicated by significantly higher concentrations of IL-12, IFN-γ, IL-4 and IL-10 in the LAB+HRV+ pigs compared to the LAB-HRV+ pigs. The LAB+HRV+ pigs maintained relatively constant concentrations of TGF-β compared to the HRV only group which had a significant increase at PID 2 and decrease at PID 7, suggesting a regulatory role of LAB in maintaining gut homeostasis. At PID 28, cytokine secreting cell (CSC) responses, measured by ELISpot, showed increased Th1 (IL-12, IFN-γ) CSC numbers in the LAB+HRV+ and LAB-HRV+ groups compared to LAB only and LAB-HRV- pigs, with significantly increased IL-12 CSCs in spleen and PBMCs and IFN-γ CSCs in spleen of the LAB+HRV+ group. Thus, HRV infection alone, but not LAB alone was effective in inducing cytokine responses but LAB significantly enhanced both Th1 and Th2 cytokines in HRV-infected pigs. LAB may also help to maintain immunological homeostasis during HRV infection by regulating TGF-β production.
Collapse
Affiliation(s)
- M S P Azevedo
- US Food and Drug Administration, National Center for Toxicological Research, Division of Microbiology, Jefferson, AR 72079, USA
| | | | | | | | | | | | | |
Collapse
|
63
|
Liu TT, Cai DH. Real-time quantitative PCR analysis of intestinal Lactobacillus species in type 2 diabetic patients. Shijie Huaren Xiaohua Zazhi 2012; 20:1359-1365. [DOI: 10.11569/wcjd.v20.i15.1359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To assess the differences in Lactobacillus species between patients with type 2 diabetes mellitus (T2DM) and healthy individuals, and to determine the association between metabolic parameters and Lactobacillus species in T2DM patients.
METHODS: This study included 50 T2DM patients and 30 healthy individuals of similar age, gender and BMI. Blood samples were collected from T2DM to measure metabolic parameters. Bacterial DNA was extracted from fecal samples to assess the quantities of bacteria using real-time quantitative PCR with primers specifically targeting V3 region of the 16s rRNA.
RESULTS: The quantities of Lactobacillus (P < 0.001), L. acidophilus (P < 0.001), L. bugaricus (P < 0.001), L. cacei (P = 0.008) and L. Rahmnosumand (P < 0.001) were significantly increased in the T2DM group compared to the control group. The quantity of Lactobacillus was significantly negatively associated with LDL cholesterol levels (P = 0.04).
CONCLUSION: T2DM patients are characterized by an increase in the quantity of Lactobacillus species in the guts compared to normal controls. Lactobacillus in the guts play a role in influencing cholesterol metabolism in T2DM patients. Modification of the gut microflora by dietary means may help control metabolic diseases such as dyslipidemia and diabetes.
Collapse
|
64
|
Verbeek R, Bsibsi M, Plomp A, van Neerven RJJ, te Biesebeke R, van Noort JM. Late rather than early responses of human dendritic cells highlight selective induction of cytokines, chemokines and growth factors by probiotic bacteria. Benef Microbes 2011; 1:109-19. [PMID: 21840799 DOI: 10.3920/bm2009.0026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The probiotic properties of commensal bacteria including lactobacilli and bifidobacteria are likely to be determined at least in part by their effects on dendritic cells. Like traditional immune stimulants such as lipopolysaccharides (LPS), probiotic bacteria promote maturation of cultured human dendritic cells (DC) by inducing elevated expression of MHC-II and co-stimulatory molecules. Different effects have been reported on cytokine induction, especially of major regulatory cytokines such as TNF-α, IL-12 and IL-10. Yet, these previous analyses have failed to reveal consistent differences between such effects of probiotics on the one hand, and of LPS on the other. Selective response markers for probiotics, however, would be important for our understanding of their biological properties and for a rational selection of strains for in vivo studies. In this study, we compared in detail both early and late effects on cultured human DC of 4 different probiotics with those of LPS. At the early stages of stimulation, all stimuli induced qualitatively very similar responses in DC at the level of surface markers and secretion of cytokines and chemokines. A lower immune stimulatory effect was observed by Bifidobacterium animalis BB-12 as compared to lactobacilli. Late responses, on the other hand, tended to diverge. Microarray transcript profiling for 268 cytokines, chemokines, growth factors and their receptors after 2 days of culture revealed various transcripts to be selectively induced by certain probiotics but not LPS. Our data indicate that late rather than early DC responses may be helpful to clarify the divergent biological effects of probiotics on human innate immune responses.
Collapse
Affiliation(s)
- R Verbeek
- TNO Quality of Life, Leiden, the Netherlands
| | | | | | | | | | | |
Collapse
|
65
|
Abstract
There is considerable interest in the strain specificity of immune modulation by probiotics. The present study compared the immunomodulatory properties of six probiotic strains of different species and two genera in a human peripheral blood mononuclear cell (PBMC) model in vitro. Live cells of lactobacilli (Lactobacillus casei Shirota, L. rhamnosus GG, L. plantarum NCIMB 8826 and L. reuteri NCIMB 11951) and bifidobacteria (Bifidobacterium longum SP 07/3 and B. bifidum MF 20/5) were individually incubated with PBMC from seven healthy subjects for 24 h. Probiotic strains increased the proportion of CD69+ on lymphocytes, T cells, T cell subsets and natural killer (NK) cells, and increased the proportion of CD25+, mainly on lymphocytes and NK cells. The effects on activation marker expression did not appear to be strain specific. NK cell activity was significantly increased by all six strains, without any significant difference between strains. Probiotic strains increased production of IL-1β, IL-6, IL-10, TNF-α, granulocyte-macrophage colony-stimulating factor and macrophage inflammatory protein 1α to different extents, but had no effect on the production of IL-2, IL-4, IL-5 or TNF-β. The cytokines that showed strain-specific modulation included IL-10, interferon-γ, TNF-α, IL-12p70, IL-6 and monocyte chemotactic protein-1. The Lactobacillus strains tended to promote T helper 1 cytokines, whereas bifidobacterial strains tended to produce a more anti-inflammatory profile. The results suggest that there was limited evidence of strain-specific effects of probiotics with respect to T cell and NK cell activation or NK cell activity, whereas production of some cytokines was differentially influenced by probiotic strains.
Collapse
|
66
|
López P, González-Rodríguez I, Gueimonde M, Margolles A, Suárez A. Immune response to Bifidobacterium bifidum strains support Treg/Th17 plasticity. PLoS One 2011; 6:e24776. [PMID: 21966367 PMCID: PMC3178565 DOI: 10.1371/journal.pone.0024776] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 08/17/2011] [Indexed: 12/20/2022] Open
Abstract
In this work we analyzed the immune activation properties of different Bifidobacterium strains in order to establish their ability as inductors of specific effector (Th) or regulatory (Treg) responses. First, we determined the cytokine pattern induced by 21 Bifidobacterium strains in peripheral blood mononuclear cells (PBMCs). Results showed that four Bifidobacterium bifidum strains showed the highest production of IL-17 as well as a poor secretion of IFNγ and TNFα, suggesting a Th17 profile whereas other Bifidobacterium strains exhibited a Th1-suggestive profile. Given the key role of Th17 subsets in mucosal defence, strains suggestive of Th17 responses and the putative Th1 Bifidobacterium breve BM12/11 were selected to stimulate dendritic cells (DC) to further determine their capability to induce the differentiation of naïve CD4+ lymphocytes toward different Th or Treg cells. All selected strains were able to induce phenotypic DC maturation, but showed differences in cytokine stimulation, DC treated with the putative Th17 strains displaying high IL-1β/IL-12 and low IL-12/IL-10 index, whereas BM12/11-DC exhibited the highest IL-12/IL-10 ratio. Differentiation of naïve lymphocytes confirmed Th1 polarization by BM12/11. Unexpectedly, any B. bifidum strain showed significant capability for Th17 generation, and they were able to generate functional Treg, thus suggesting differences between in vivo and vitro responses. In fact, activation of memory lymphocytes present in PBMCS with these bacteria, point out the presence in vivo of specific Th17 cells, supporting the plasticity of Treg/Th17 populations and the key role of commensal bacteria in mucosal tolerance and T cell reprogramming when needed.
Collapse
Affiliation(s)
- Patricia López
- Immunology Area, Department of Functional Biology, University of Oviedo, Oviedo, Asturias, Spain
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Villaviciosa, Asturias, Spain
| | - Irene González-Rodríguez
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Villaviciosa, Asturias, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Villaviciosa, Asturias, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Villaviciosa, Asturias, Spain
- * E-mail:
| | - Ana Suárez
- Immunology Area, Department of Functional Biology, University of Oviedo, Oviedo, Asturias, Spain
| |
Collapse
|
67
|
Weiss G, Christensen HR, Zeuthen LH, Vogensen FK, Jakobsen M, Frøkiær H. Lactobacilli and bifidobacteria induce differential interferon-β profiles in dendritic cells. Cytokine 2011; 56:520-30. [PMID: 21889358 DOI: 10.1016/j.cyto.2011.07.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 07/04/2011] [Accepted: 07/25/2011] [Indexed: 12/20/2022]
Abstract
The health promoting effects of probiotics are well-documented; however, current knowledge on immunostimulatory effects is based on data from a single strain or a limited selection of strains or species. Here, we compared the capacity of 27 lactobacilli and 16 bifidobacteria strains to stimulate bone marrow-derived dendritic cells (DC). Most lactobacilli strains, including Lactobacillus acidophilus, Lactobacillus gasseri, Lactobacillus casei and Lactobacillus plantarum, induced strong IL-12 and TNF-α production and up-regulation of maturation markers. In contrast, all bifidobacteria and certain lactobacilli strains were low IL-12 and TNF-α inducers. IL-10 and IL-6 levels showed less variation and no correlation with IL-12 and TNF-α. DC matured by strong IL-12-inducing strains also produced high levels of interferon (IFN)-β. When combining two strains, low IL-12 inducers inhibited this IFN-β production as well as IL-12 and Th1-skewing chemokines. The IFN-β induction was mediated through c-Jun N-terminal kinase (JNK) irrespective of the stimulating strain. The inhibitory bacteria induced higher levels of the transcription factor c-Jun dimerization protein (JDP)-2, thereby counteracting the effect of JNK. Our data demonstrate that lactobacilli can be divided into two groups of bacteria featuring contrasting effects, while all bifidobacteria exhibit uniform effects. This underlines the importance of selecting the proper strain(s) for probiotic purposes.
Collapse
Affiliation(s)
- Gudrun Weiss
- Department of Basic Sciences and Environment, Molecular Immunology, Faculty of Life Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | | | | | | | | |
Collapse
|
68
|
Gad M, Ravn P, Søborg DA, Lund-Jensen K, Ouwehand AC, Jensen SS. Regulation of the IL-10/IL-12 axis in human dendritic cells with probiotic bacteria. ACTA ACUST UNITED AC 2011; 63:93-107. [PMID: 21707779 DOI: 10.1111/j.1574-695x.2011.00835.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this study, we have used monocyte-derived dendritic cells (DCs) to design a screening model for the selection of microorganisms with the ability to suppress DC-secreted IL-12p70, a critical cytokine for the induction of T-helper cell type 1 immune responses under inflammatory conditions. By the treatment of DCs with cocktails containing TLR agonists and proinflammatory cytokines, the cells increased the secretion of the Th1-promoting cytokine IL-12p70. Clinically used probiotics were tested for their IL-10- and IL-12p70-stimulating properties in immature DCs, and showed a dose-dependent change in the IL-10/IL-12p70 balance. Lactobacillus acidophilus NCFM(™) and the probiotic mixture VSL#3 showed a strong induction of IL-12p70, whereas Lactobacillus salivarius Ls-33 and Bifidobacterium infantis 35624 preferentially induced IL-10. Escherichia coli Nissle 1917 induced both IL-10 and IL-12p70, whereas the probiotic yeast Saccharomyces boulardii induced low levels of cytokines. When combining these microorganisms with the Th1-promoting cocktails, E. coli Nissle 1917 and B. infantis 35624 were potent suppressors of IL-12p70 secretion in an IL-10-independent manner, indicating a suppressive effect on Th1-inducing antigen-presenting cells. The present model, using cocktail-stimulated DCs with potent IL-12p70-stimulating capacity, may be used as an efficient tool to assess the anti-inflammatory properties of microorganisms for potential clinical use.
Collapse
Affiliation(s)
- Monika Gad
- Bioneer A/S, Kogle Allé 2, Hørsholm, Denmark
| | | | | | | | | | | |
Collapse
|
69
|
Waligora-Dupriet A, Campeotto F, Romero K, Mangin I, Rouzaud G, Ménard O, Suau A, Soulaines P, Nicolis I, Kapel N, Dupont C, Butel M. Diversity of gut Bifidobacterium species is not altered between allergic and non-allergic French infants. Anaerobe 2011; 17:91-6. [DOI: 10.1016/j.anaerobe.2011.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 04/14/2011] [Indexed: 12/11/2022]
|
70
|
Li CY, Lin HC, Lai CH, Lu JJY, Wu SF, Fang SH. Immunomodulatory effects of lactobacillus and Bifidobacterium on both murine and human mitogen-activated T cells. Int Arch Allergy Immunol 2011; 156:128-36. [PMID: 21576983 DOI: 10.1159/000322350] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 10/26/2010] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Beneficial effects of probiotics have been reported for patients with allergic diseases and intestinal disorders. There is increasing interest in studying the role of different strains or combined probiotic administration on immunoregulation. In this study, we investigated whether probiotics modulate the immune response through regulating T cell proliferation and differentiation. METHODS We examined the effect of probiotic I (a combination of Lactobacillus acidophilus and Bifidobacterium bifidus) and probiotic II (a combination of L. acidophilus and B. infantis) on cell survival and proliferation, the progression of the cell cycle, and the production of Th1/Th2 cytokines by mitogen-stimulated murine spleen cells and human peripheral blood mononuclear cells (PBMCs). RESULTS Our experimental results showed that high concentrations (≥ 1 × 10(6) CFU/ml) of probiotic I or II inhibited mitogen-induced cell proliferation and arrested the cell cycle at the G0/G1 stage in both mitogen-stimulated spleen cells and PBMCs. In the results of low concentrations (<1 × 10(6) CFU/ml), probiotic I or II enhanced the production of IFN-γ but inhibited the production of IL-4. Our results indicated that high concentrations of probiotic I or II treatment could attenuate mitogen-induced overactive immune responses. On the other hand, low concentrations of probiotic I or II treatment could promote a shift in the Th1/Th2 balance toward Th1-skewed immunity. CONCLUSION Dose selection is an important issue for probiotic studies. Our results indicated that probiotics have beneficial effects on regulating T cell-mediated immune responses by attenuating mitogen-induced overactive immune responses and promoting Th1 immune responses.
Collapse
Affiliation(s)
- Chia-Yang Li
- Division of Infectious Diseases, National Health Research Institutes, Miaoli, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
71
|
Role of natural killer and dendritic cell crosstalk in immunomodulation by commensal bacteria probiotics. J Biomed Biotechnol 2011; 2011:473097. [PMID: 21660136 PMCID: PMC3110311 DOI: 10.1155/2011/473097] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 03/01/2011] [Indexed: 02/07/2023] Open
Abstract
A cooperative dialogue between natural killer (NK) cells and dendritic cells (DCs) has been elucidated in the last years. They help each other to acquire their complete functions, both in the periphery and in the secondary lymphoid organs. Thus, NK cells' activation by dendritic cells allows the killing of transformed or infected cells in the periphery but may also be important for the generation of adaptive immunity. Indeed, it has been shown that NK cells may play a key role in polarizing a Th1 response upon interaction with DCs exposed to microbial products. This regulatory role of DC/NK cross-talk is of particular importance at mucosal surfaces such as the intestine, where the immune system exists in intimate association with commensal bacteria such as lactic acid bacteria (LAB). We here review NK/DC interactions in the presence of gut-derived commensal bacteria and their role in bacterial strain-dependent immunomodulatory effects. We particularly aim to highlight the ability of distinct species of commensal bacterial probiotics to differently affect the outcome of DC/NK cross-talk and consequently to differently influence the polarization of the adaptive immune response.
Collapse
|
72
|
Dose-dependent immunomodulation of human dendritic cells by the probiotic Lactobacillus rhamnosus Lcr35. PLoS One 2011; 6:e18735. [PMID: 21533162 PMCID: PMC3078917 DOI: 10.1371/journal.pone.0018735] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 03/10/2011] [Indexed: 12/23/2022] Open
Abstract
The response of the immune system to probiotics remains controversial. Some strains modulate the cytokine production of dendritic cells (DCs) in vitro and induce a regulatory response, while others induce conversely a pro-inflammatory response. These strain-dependent effects are thought to be linked to specific interactions between bacteria and pattern recognition receptors. We investigated the effects of a well characterized probiotic strain, Lactobacillus rhamnosus Lcr35, on human monocyte-derived immature DCs, using a wide range of bacterial concentrations (multiplicity of infection, MOI, from 0.01 to 100). DNA microarray and qRT-PCR analysis showed that the probiotic induced a large-scale change in gene expression (nearly 1,700 modulated genes, with 3-fold changes), but only with high doses (MOI, 100). The upregulated genes were mainly involved in immune response and identified a molecular signature of inflammation according to the model of Torri. Flow cytometry analysis also revealed a dose-dependent maturation of the DC membrane phenotype, until DCs reached a semi-mature state, with an upregulation of the membrane expression of CD86, CD83, HLA-DR and TLR4, associated with a down-regulation of DC-SIGN, MR and CD14. Measurement of the DC-secreted cytokines showed that Lcr35 induced a strong dose-dependent increase of the pro-Th1/Th17 cytokine levels (TNFα, IL-1β, IL-12p70, IL-12p40 and IL-23), but only a low increase in IL-10 concentration. The probiotic L. rhamnosus Lcr35 therefore induce a dose-dependent immunomodulation of human DCs leading, at high doses, to the semi-maturation of the cells and to a strong pro-inflammatory effect. These results contribute to a fuller understanding of the mechanism of action of this probiotic, and thus of its potential clinical indications in the treatment of either infectious or IgE-dependent allergic diseases.
Collapse
|
73
|
Weiss G, Rasmussen S, Zeuthen LH, Nielsen BN, Jarmer H, Jespersen L, Frøkiaer H. Lactobacillus acidophilus induces virus immune defence genes in murine dendritic cells by a Toll-like receptor-2-dependent mechanism. Immunology 2011; 131:268-81. [PMID: 20545783 DOI: 10.1111/j.1365-2567.2010.03301.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Lactobacilli are probiotics that, among other health-promoting effects, have been ascribed immunostimulating and virus-preventive properties. Certain Lactobacillus spp. have been shown to possess strong interleukin-12 (IL-12) -inducing properties. As IL-12 production depends on the up-regulation of type I interferons (IFNs), we hypothesized that the strong IL-12-inducing capacity of Lactobacillus acidophilus NCFM in murine bone-marrow-derived dendritic cells (DCs) is caused by an up-regulation of IFN-β, which subsequently induces IL-12 and the double-stranded RNA binding Toll-like receptor-3 (TLR-3). The expression of the genes encoding IFN-β, TLR-3, IL-12 and IL-10 in DCs upon stimulation with L. acidophilus NCFM was determined. Lactobacillus acidophilus NCFM induced a much stronger expression of Ifn-β, Il-12 and Il-10 compared with the synthetic double-stranded RNA ligand Poly I:C, whereas the levels of expressed Tlr-3 were similar. Whole genome microarray gene expression analysis revealed that other genes related to viral defence were significantly up-regulated and among the strongest induced genes in DCs stimulated with L. acidophilus NCFM. The ability to induce IFN-β was also detected in another L. acidophilus strain (X37), but was not a property of other probiotic strains tested, i.e. Bifidobacterium bifidum Z9 and Escherichia coli Nissle 1917. The IFN-β expression was markedly reduced in TLR-2(-/-) DCs, dependent on endocytosis, and the major cause of the induction of Il-12 and Tlr-3 in DCs stimulated with L. acidophilus NCFM. Collectively, our results reveal that certain lactobacilli trigger the expression of viral defence genes in DCs in a TLR-2 manner dependent on IFN-β.
Collapse
Affiliation(s)
- Gudrun Weiss
- Faculty of Life Sciences, Department of Basic Sciences and Environment, University of Copenhagen, Frederiksberg C, Denmark
| | | | | | | | | | | | | |
Collapse
|
74
|
Guglielmetti S, Taverniti V, Minuzzo M, Arioli S, Zanoni I, Stuknyte M, Granucci F, Karp M, Mora D. A dairy bacterium displays in vitro probiotic properties for the pharyngeal mucosa by antagonizing group A streptococci and modulating the immune response. Infect Immun 2010; 78:4734-43. [PMID: 20732995 PMCID: PMC2976356 DOI: 10.1128/iai.00559-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 06/25/2010] [Accepted: 08/13/2010] [Indexed: 01/04/2023] Open
Abstract
The probiotic approach represents an alternative strategy in the prevention and treatment of infectious diseases, not only at the intestinal level but also at other sites of the body where the microbiota plays a role in the maintenance of physiological homeostasis. In this context, we evaluated in vitro the potential abilities of probiotic and dairy bacteria in controlling Streptococcus pyogenes infections at the pharyngeal level. Initially, we analyzed bacterial adhesion to FaDu hypopharyngeal carcinoma cells and the ability to antagonize S. pyogenes on FaDu cell layers and HaCat keratinocytes. Due to its promising adhesive and antagonistic features, we studied the dairy strain Lactobacillus helveticus MIMLh5, also through in vitro immunological experiments. First, we performed quantification of several cytokines and measurement of NF-κB activation in FaDu cells. MIMLh5 efficiently reduced the induction of interleukin-6 (IL-6), IL-8, and tumor necrosis factor alpha (TNF-α), in a dose-dependent manner. After stimulation of cells with IL-1β, active NF-κB was still markedly lowered. Nevertheless, we observed an increased secretion of IL-6, gamma interferon (IFN-γ), and granulocyte-macrophage colony-stimulating factor (GM-CSF) under these conditions. These effects were associated with the ability of MIMLh5 to enhance the expression of the heat shock protein coding gene hsp70. In addition, MIMLh5 increased the GM-CSF/G-CSF ratio. This is compatible with a switch of the immune response toward a TH1 pathway, as supported by our observation that MIMLh5, once in contact with bone marrow-derived dendritic cells, triggered the secretion of TNF-α and IL-2. In conclusion, we propose MIMLh5 as a potential probiotic bacterium for the human pharynx, with promising antagonistic and immunomodulatory properties.
Collapse
Affiliation(s)
- Simone Guglielmetti
- Dipartimento di Scienze e Tecnologie Alimentari, Università degli Studi di Milano, Milano, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Meijerink M, Wells J. Probiotic modulation of dendritic cells and T cell responses in the intestine. Benef Microbes 2010; 1:317-26. [DOI: 10.3920/bm2010.0029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Over the past decade it has become clear that probiotic and commensal interactions with mucosal dendritic cells in the lamina propria or epithelial cells lining the mucosa can modulate specific functions of the mucosal immune system. Innate pattern-recognition receptors such as TLRs, NLRs and CLRs play a crucial role in the host recognition of probiotics and other microorganism. Signalling via these receptors directly influences the chemokine and cytokine response of dendritic cells as well as the crosstalk between the epithelium and the immune cells in the lamina propria. This can influence the population of effector and regulatory T cell subsets in the mucosa. Immune assays with probiotics have shown that the in vitro immune response is both species and strain-specific. Such assays may be useful for the selection of probiotic strains that have beneficial effects on the regulation of intestinal inflammation but more comparative studies are needed to confirm recent findings. A better understanding of the molecular mechanisms of probiotics, the effect of dose, and frequency of administration on microbial sampling by mucosal APC will also help to clarify the value of immune assays as selection criteria for probiotics.
Collapse
Affiliation(s)
- M. Meijerink
- Top Institute Food and Nutrition, Nieuwe Kanaal 9A, 6709 PA, Wageningen, the Netherlands
- Host-Microbe Interactomics, Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, the Netherlands
| | - J. Wells
- Top Institute Food and Nutrition, Nieuwe Kanaal 9A, 6709 PA, Wageningen, the Netherlands
- Host-Microbe Interactomics, Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, the Netherlands
| |
Collapse
|
76
|
Taniguchi S, Fujimori M, Sasaki T, Tsutsui H, Shimatani Y, Seki K, Amano J. Targeting solid tumors with non-pathogenic obligate anaerobic bacteria. Cancer Sci 2010; 101:1925-32. [PMID: 20579076 PMCID: PMC11158574 DOI: 10.1111/j.1349-7006.2010.01628.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Molecular-targeting drugs with fewer severe adverse effects are attracting great attention as the next wave of cancer treatment. There exist, however, populations of cancer cells resistant to these drugs that stem from the instability of tumor cells and/or the existence of cancer stem cells, and thus specific toxicity is required to destroy them. If such selectivity is not available, these targets may be sought out not by the cancer cell types themselves, but rather in their adjacent cancer microenvironments by means of hypoxia, low pH, and so on. The anaerobic conditions present in malignant tumor tissues have previously been regarded as a source of resistance in cancer cells against conventional therapy. However, there now appears to be a way to make use of these limiting factors as a selective target. In this review, we will refer to several trials, including our own, to direct attention to the utilizable anaerobic conditions present in malignant tumor tissues and the use of bacteria as carriers to target them. Specifically, we have been developing a method to attack solid cancers using the non-pathogenic obligate anaerobic bacterium Bifidobacterium longum as a vehicle to selectively recognize and target the anaerobic conditions in solid cancer tissues. We will also discuss the existence of low oxygen pressure in tumor masses in spite of generally enhanced angiogenesis, overview current cancer therapies, especially the history and present situation of bacterial utility to treat solid tumors, and discuss the rationality and future possibilities of this novel mode of cancer treatment.
Collapse
Affiliation(s)
- Shun'ichiro Taniguchi
- Department of Molecular Oncology, Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
77
|
Liu F, Li G, Wen K, Bui T, Cao D, Zhang Y, Yuan L. Porcine small intestinal epithelial cell line (IPEC-J2) of rotavirus infection as a new model for the study of innate immune responses to rotaviruses and probiotics. Viral Immunol 2010; 23:135-49. [PMID: 20373994 DOI: 10.1089/vim.2009.0088] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Previous studies of epithelial immune responses to rotavirus infection have been conducted in transformed cell lines. In this study, we evaluated a non-transformed porcine jejunum epithelial cell line (IPEC-J2) as an in-vitro model of rotavirus infection and probiotic treatment. Cell-culture-adapted porcine rotavirus (PRV) OSU strain, or human rotavirus (HRV) Wa strain, along with Lactobacillus acidophilus (LA) or Lactobacillus rhamnosus GG (LGG) were used to inoculate IPEC-J2 cells. LA or LGG treatment was applied pre- or post-rotavirus infection. We demonstrated that IPEC-J2 cells were productively infected by PRV. LA or LGG treatment of the cells did not reduce virus replication. PRV infection increased MUC3 mucin secretion. LGG treatment post-rotavirus infection reduced the mucin secretion response induced by PRV; LGG alone increased the production of membrane-associated MUC3 mucin. LA treatment prior to rotavirus infection significantly increased PRV replication and the IL-6 response to PRV infection, which is consistent with the adjuvant effect of LA. LGG treatment post-rotavirus infection downregulated the IL-6 response, confirming the anti-inflammatory effect of LGG. IPEC-J2 cells expressed toll-like receptor (TLR) 2, TLR3, and TLR9 constitutively. TLR2 expression was upregulated by LGG and peptidoglycan, corresponding to the decreased IL-6 response, indicating that the protective effect of LGG is associated with upregulation of TLR2 expression on intestinal epithelial cells. The IPEC-J2 cell model of PRV infection is a completely homologous system. It is a valuable model for studying the interactions among rotavirus-host-probiotics, and the mechanisms behind the immunomodulating effect of probiotic bacteria on innate immune responses.
Collapse
Affiliation(s)
- Fangning Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | | | | | | | | | | | | |
Collapse
|
78
|
Chiba Y, Shida K, Nagata S, Wada M, Bian L, Wang C, Shimizu T, Yamashiro Y, Kiyoshima-Shibata J, Nanno M, Nomoto K. Well-controlled proinflammatory cytokine responses of Peyer's patch cells to probiotic Lactobacillus casei. Immunology 2010; 130:352-62. [PMID: 20636824 DOI: 10.1111/j.1365-2567.2009.03204.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
SUMMARY In order to clarify the probiotic features of immunomodulation, cytokine production by murine spleen and Peyer's patch (PP) cells was examined in response to probiotic and pathogenic bacteria. In spleen cells, probiotic Lactobacillus casei induced interleukin (IL)-12 production by CD11b(+) cells more strongly than pathogenic Gram-positive and Gram-negative bacteria and effectively promoted the development of T helper (Th) type 1 cells followed by high levels of secretion of interferon (IFN)-gamma. Although the levels of IL-12 secreted by PP cells in response to L. casei were lower in comparison with spleen cells, Th1 cells developed as a result of this low-level induction of IL-12. However, IFN-gamma secretion by the L. casei-induced Th1 cells stimulated with a specific antigen was down-regulated in PP cells. Development of IL-17-producing Th17 cells was efficiently induced in PP cells by antigen stimulation. Lactobacillus casei slightly, but significantly, inhibited the antigen-induced secretion of IL-17 without a decrease in the proportion of Th17 cells. No bacteria tested induced the development of IL-10-producing, transforming growth factor-beta-producing or Foxp3-expressing regulatory T cells, thus suggesting that certain probiotics might regulate proinflammatory responses through as yet unidentified mechanisms in PP cells. These data show probiotic L. casei to have considerable potential to induce IL-12 production and promote Th1 cell development, but the secretion of proinflammatory cytokines such as IL-12 and IL-17 may be well controlled in PP cells.
Collapse
Affiliation(s)
- Yukihide Chiba
- Department of Pediatrics, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
|
80
|
Weiss G, Rasmussen S, Nielsen Fink L, Jarmer H, Nøhr Nielsen B, Frøkiær H. Bifidobacterium bifidum actively changes the gene expression profile induced by Lactobacillus acidophilus in murine dendritic cells. PLoS One 2010; 5:e11065. [PMID: 20548777 PMCID: PMC2883554 DOI: 10.1371/journal.pone.0011065] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 05/12/2010] [Indexed: 01/12/2023] Open
Abstract
Dendritic cells (DC) play a pivotal regulatory role in activation of both the innate as well as the adaptive immune system by responding to environmental microorganisms. We have previously shown that Lactobacillus acidophilus induces a strong production of the pro-inflammatory and Th1 polarizing cytokine IL-12 in DC, whereas bifidobacteria do not induce IL-12 but inhibit the IL-12 production induced by lactobacilli. In the present study, genome-wide microarrays were used to investigate the gene expression pattern of murine DC stimulated with Lactobacillus acidophilus NCFM and Bifidobacterium bifidum Z9. L. acidophilus NCFM strongly induced expression of interferon (IFN)-β, other virus defence genes, and cytokine and chemokine genes related to the innate and the adaptive immune response. By contrast, B. bifidum Z9 up-regulated genes encoding cytokines and chemokines related to the innate immune response. Moreover, B. bifidum Z9 inhibited the expression of the Th1-promoting genes induced by L. acidophilus NCFM and had an additive effect on genes of the innate immune response and Th2 skewing genes. The gene encoding Jun dimerization protein 2 (JDP2), a transcription factor regulating the activation of JNK, was one of the few genes only induced by B. bifidum Z9. Neutralization of IFN-β abrogated L. acidophilus NCFM-induced expression of Th1-skewing genes, and blocking of the JNK pathway completely inhibited the expression of IFN-β. Our results indicate that B. bifidum Z9 actively inhibits the expression of genes related to the adaptive immune system in murine dendritic cells and that JPD2 via blocking of IFN-β plays a central role in this regulatory mechanism.
Collapse
Affiliation(s)
- Gudrun Weiss
- Department of Basic Sciences and Environment, Faculty of Life Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Simon Rasmussen
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lisbeth Nielsen Fink
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Hanne Jarmer
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Birgit Nøhr Nielsen
- Department of Basic Sciences and Environment, Faculty of Life Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Hanne Frøkiær
- Department of Basic Sciences and Environment, Faculty of Life Sciences, University of Copenhagen, Frederiksberg, Denmark
- * E-mail:
| |
Collapse
|
81
|
Dong H, Rowland I, Tuohy KM, Thomas LV, Yaqoob P. Selective effects of Lactobacillus casei Shirota on T cell activation, natural killer cell activity and cytokine production. Clin Exp Immunol 2010; 161:378-88. [PMID: 20456417 DOI: 10.1111/j.1365-2249.2010.04173.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Modulation of host immunity is an important potential mechanism by which probiotics confer health benefits. This study was designed to investigate the effects of a probiotic strain, Lactobacillus casei Shirota (LcS), on immune function using human peripheral blood mononuclear cells (PBMC) in vitro. In addition, the role of monocytes in LcS-induced immunity was also explored. LcS promoted natural killer (NK) cell activity and preferentially induced expression of CD69 and CD25 on CD8(+) and CD56(+) subsets in the absence of any other stimulus. LcS also induced production of interleukin (IL)-1beta, IL-6, tumour necrosis factor (TNF)-alpha, IL-12 and IL-10 in the absence of lipopolysaccharide (LPS). In the presence of LPS, LcS enhanced IL-1beta production but inhibited LPS-induced IL-10 and IL-6 production, and had no further effect on TNF-alpha and IL-12 production. Monocyte depletion reduced significantly the impact of LcS on lymphocyte activation, cytokine production and natural killer (NK) cell activity. In conclusion, LcS activated cytotoxic lymphocytes preferentially in both the innate and specific immune systems, which suggests that LcS could potentiate the destruction of infected cells in the body. LcS also induced both proinflammatory and anti-inflammatory cytokine production in the absence of LPS, but in some cases inhibited LPS-induced cytokine production. Monocytes play an important role in LcS-induced immunological responses.
Collapse
Affiliation(s)
- H Dong
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | | | | | | | | |
Collapse
|
82
|
Schmidt EGW, Claesson MH, Jensen SS, Ravn P, Kristensen NN. Antigen-presenting cells exposed to Lactobacillus acidophilus NCFM, Bifidobacterium bifidum BI-98, and BI-504 reduce regulatory T cell activity. Inflamm Bowel Dis 2010; 16:390-400. [PMID: 19714743 DOI: 10.1002/ibd.21068] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The effect in vitro of six different probiotic strains including Lactobacillus acidophilus NCFM, Lactobacillus salivarius Ls-33, Lactobacillus paracasei subsp. paracasei YS8866441, Lactobacillus plantarum Lp-115, Bifidobacterium bifidum BI-504 and BI-98 was studied on splenic enteroantigen-presenting cells (APC) and CD4(+)CD25(+) T-regulatory cells (Tregs) in splenocyte-T cell proliferation assays. METHODS Splenocytes exposed to enteroantigen +/- probiotics were used to stimulate cultured CD4(+)CD25(-) T cells to which titrated numbers of Tregs were added. Cytokine assays were performed by use of neutralizing antibodies and ELISA. RESULTS Exposure of APCs to enteroantigens and the series of probiotic strains mentioned above did not influence the stimulatory capacity of APCs on proliferative enteroantigen-specific T cells. However, exposure to B. bifidum BI-98, BI-504 and L. acidophilus NCFM consistently reduced the suppressive activity of Tregs. The suppressive activity was analyzed using fractionated components of the probiotics, and showed that a component of the cell wall is responsible for the decreased Treg activity in the system. The probiotic-induced suppression of Treg function is not mediated by changes in APC-secretion of the inflammatory cytokines IL-6 or IL-1b. CONCLUSION We conclude that certain probiotic strains can modify APCs to cause reduced Treg activity. This effect apparently depends on a direct APC-to-Treg cell contact. The APC-mediated suppressive effect on Treg function of certain probiotic strains may constrain the anti-inflammatory activity, which is often desired from probiotic therapy. This unexpected function of certain probiotic strains should be taken into consideration when designing adjuvant therapies with these bacteria, or when probiotic strains are selected for improvement of gut-associated inflammation like IBD.
Collapse
|
83
|
Kaji R, Kiyoshima-Shibata J, Nagaoka M, Nanno M, Shida K. Bacterial teichoic acids reverse predominant IL-12 production induced by certain lactobacillus strains into predominant IL-10 production via TLR2-dependent ERK activation in macrophages. THE JOURNAL OF IMMUNOLOGY 2010; 184:3505-13. [PMID: 20190136 DOI: 10.4049/jimmunol.0901569] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cytokine response of macrophages to probiotic lactobacilli varies between strains, and the balance of IL-10/IL-12 production is crucial for determination of the direction of the immune response. To clarify the mechanism whereby Lactobacillus strains differentially induce production of IL-10 and IL-12, we examined the potential relationship between cytokine production and MAPK activation. In mouse peritoneal macrophages, Lactobacillus plantarum potently induced IL-10 but weakly induced IL-12 production, whereas L. casei potently induced IL-12 but weakly induced IL-10 production. Kinetic analysis of the activation of ERK, p38, and JNK showed that L. plantarum induced a more rapid and intense activation of MAPKs, especially of ERK, than L. casei. A selective blockade of ERK activation induced by L. plantarum resulted in a decrease in IL-10 production and a simultaneous increase in IL-12 production. Interestingly, when macrophages were stimulated with a combination of L. plantarum and L. casei, IL-10 production was induced synergistically. We identified cell wall teichoic acid and lipoteichoic acid as key factors for triggering the synergistic induction of IL-10 production, although these teichoic acids alone only weakly induced IL-10 production. The effect of these teichoic acids on IL-10 production was mediated by TLR2-dependent ERK activation. Our data demonstrate that activation of the ERK pathway is critical for determination of the balance of the IL-10/IL-12 response of macrophages to lactobacilli and that predominant IL-12 production induced by certain lactobacilli such as L. casei can be converted into predominant IL-10 production when stimulated in the presence of teichoic acids.
Collapse
Affiliation(s)
- Rumi Kaji
- Yakult Central Institute for Microbiological Research, Tokyo, Japan
| | | | | | | | | |
Collapse
|
84
|
Larsen N, Vogensen FK, van den Berg FWJ, Nielsen DS, Andreasen AS, Pedersen BK, Al-Soud WA, Sørensen SJ, Hansen LH, Jakobsen M. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 2010; 5:e9085. [PMID: 20140211 PMCID: PMC2816710 DOI: 10.1371/journal.pone.0009085] [Citation(s) in RCA: 2063] [Impact Index Per Article: 137.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 01/17/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Recent evidence suggests that there is a link between metabolic diseases and bacterial populations in the gut. The aim of this study was to assess the differences between the composition of the intestinal microbiota in humans with type 2 diabetes and non-diabetic persons as control. METHODS AND FINDINGS The study included 36 male adults with a broad range of age and body-mass indices (BMIs), among which 18 subjects were diagnosed with diabetes type 2. The fecal bacterial composition was investigated by real-time quantitative PCR (qPCR) and in a subgroup of subjects (N = 20) by tag-encoded amplicon pyrosequencing of the V4 region of the 16S rRNA gene. The proportions of phylum Firmicutes and class Clostridia were significantly reduced in the diabetic group compared to the control group (P = 0.03). Furthermore, the ratios of Bacteroidetes to Firmicutes as well as the ratios of Bacteroides-Prevotella group to C. coccoides-E. rectale group correlated positively and significantly with plasma glucose concentration (P = 0.04) but not with BMIs. Similarly, class Betaproteobacteria was highly enriched in diabetic compared to non-diabetic persons (P = 0.02) and positively correlated with plasma glucose (P = 0.04). CONCLUSIONS The results of this study indicate that type 2 diabetes in humans is associated with compositional changes in intestinal microbiota. The level of glucose tolerance should be considered when linking microbiota with metabolic diseases such as obesity and developing strategies to control metabolic diseases by modifying the gut microbiota.
Collapse
Affiliation(s)
- Nadja Larsen
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Bleau C, Monges A, Rashidan K, Laverdure JP, Lacroix M, Van Calsteren MR, Millette M, Savard R, Lamontagne L. Intermediate chains of exopolysaccharides fromLactobacillus rhamnosusRW-9595M increase IL-10 production by macrophages. J Appl Microbiol 2010; 108:666-75. [DOI: 10.1111/j.1365-2672.2009.04450.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
86
|
Shida K, Kiyoshima-Shibata J, Kaji R, Nagaoka M, Nanno M. Peptidoglycan from lactobacilli inhibits interleukin-12 production by macrophages induced by Lactobacillus casei through Toll-like receptor 2-dependent and independent mechanisms. Immunology 2010; 128:e858-69. [PMID: 19740347 DOI: 10.1111/j.1365-2567.2009.03095.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We previously showed that Lactobacillus strains having a rigid cell wall resistant to intracellular digestion can stimulate macrophages to induce large a quantity of interleukin-12 (IL-12). In this study, we examined the influence of lactobacilli and bacterial cell wall components on IL-12 production by macrophages that was induced by Lactobacillus casei, which has a rigid cell wall. Easily digestible lactobacilli such as Lactobacillus johnsonii and Lactobacillus plantarum or their intact cell walls (ICWs) weakly or very weakly induced IL-12 production by macrophages, and inhibitedL. casei-induced IL-12 production. While the ICW of L. casei was resistant to intracellular digestion and did not inhibit L. casei-induced IL-12 production, its polysaccharide-depleted ICW, i.e. intact peptidoglycan, was sensitive to intracellular digestion and inhibited L. casei-induced IL-12 production. Furthermore, the peptidoglycans of L. johnsonii, L. plantarum and Staphylococcus aureus also inhibited L. casei-induced IL-12 production. Peptidoglycans from lactobacilli suppressed L. casei-induced expression of IL-12p40 but not IL-12p35 mRNA. Inhibition of IL-12 production by peptidoglycan was mitigated in Toll-like receptor 2 (TLR2)-deficient macrophages compared with the inhibition in wild-type macrophages. A derivative of the minimal structural unit of peptidoglycan (6-O-stearoyl-muramyl dipeptide) recognized by nucleotide-binding oligomerization domain 2 (NOD2) could also suppress L. casei-induced IL-12 production. These findings demonstrate that easily digestible bacteria and peptidoglycan suppress IL-12 production through pattern recognition receptors such as TLR2 and NOD2. IL-12 production in the gut may be negatively regulated by the simultaneous inhibitory actions of various resident bacteria that are susceptible to intracellular digestion.
Collapse
Affiliation(s)
- Kan Shida
- Yakult Central Institute for Microbiological Research, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
87
|
Distinct Bifidobacterium strains drive different immune responses in vitro. Int J Food Microbiol 2010; 138:157-65. [PMID: 20071048 DOI: 10.1016/j.ijfoodmicro.2009.12.023] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Revised: 11/18/2009] [Accepted: 12/19/2009] [Indexed: 11/23/2022]
Abstract
In this work we evaluated the specific immune activation properties of different Bifidobacterium strains, some of the most relevant intestinal microorganisms. To this end, we examined the in vitro effect of 12 Bifidobacterium strains belonging to 4 different species, Bifidobacterium longum, Bifidobacterium breve, Bifidobacterium bifidum and Bifidobacterium animalis subsp. lactis, on the maturation pattern of human monocyte-derived dendritic cells (DCs), as well as in their ability to induce cytokine secretion. In addition, we determined peripheral blood mononuclear cell (PBMC) proliferation and cytokine expression after exposure to bacterial strains. All bifidobacteria tested were able to induce full DC maturation but showed differences in the levels of cytokine production, especially IL-12, IL-10, TNFalpha and IL-1beta, suggesting that specific cytokine ratios could be used to predict the type of Th response that they may promote. In fact, analysis of cytokine production by PBMC showed that most of the tested B. animalis and B. longum strains induced the secretion of large amounts of IFNgamma and TNFalpha, in agreement with the Th1 profile suggested by DC cytokine production. Remarkably, three of four B. bifidum strains induced poor secretion of these cytokines and significant amounts of IL-17, the main product of Th17 cells, in accordance with the high IL-1beta/IL-12 ratio observed after DC stimulation. In conclusion, this work shows species and strain-specific immune effects of bifidobacteria and describes a valuable method for screening possible probiotic strains with different immunomodulatory properties. Notably, some B. bifidum strains seem to promote Th17 polarization, which could be useful for future probiotic applications.
Collapse
|
88
|
Brix S, Lund P, Kjaer TMR, Straarup EM, Hellgren LI, Frøkiaer H. CD4(+) T-cell activation is differentially modulated by bacteria-primed dendritic cells, but is generally down-regulated by n-3 polyunsaturated fatty acids. Immunology 2009; 129:338-50. [PMID: 19909377 DOI: 10.1111/j.1365-2567.2009.03163.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Appropriate activation of CD4(+) T cells is fundamental for efficient initiation and progression of acquired immune responses. Here, we showed that CD4(+) T-cell activation is dependent on changes in membrane n-3 polyunsaturated fatty acids (PUFAs) and is dynamically regulated by the type of signals provided by dendritic cells (DCs). Upon interaction with DCs primed by different concentrations and species of gut bacteria, CD4(+) T cells were activated according to the type of DC stimulus. The levels of CD80 were found to correlate to the levels of expression of CD28 and to the proliferation of CD4(+) T cells, while the presence of CD40 and CD86 on DCs inversely affected inducible costimulator (ICOS) and cytotoxic T-lymphocyte antigen-4 (CTLA-4) levels in CD4(+) T cells. For all DC stimuli, cells high in n-3 PUFAs showed reduced ability to respond to CD28 stimulation, to proliferate, and to express ICOS and CTLA-4. Diminished T-cell receptor (TCR) and CD28 signalling was found to be responsible for n-3 PUFA effects. Thus, the dietary fatty acid composition influences the overall level of CD4(+) T-cell activation induced by DCs, while the priming effect of the DC stimuli modulates CD80, CD86 and CD40 levels, thereby affecting and shaping activation of acquired immunity by differential regulation of proliferation and costimulatory molecule expression in CD4(+) T cells.
Collapse
Affiliation(s)
- Susanne Brix
- Nutritional Immunology Group, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark.
| | | | | | | | | | | |
Collapse
|
89
|
Borchers AT, Selmi C, Meyers FJ, Keen CL, Gershwin ME. Probiotics and immunity. J Gastroenterol 2009; 44:26-46. [PMID: 19159071 DOI: 10.1007/s00535-008-2296-0] [Citation(s) in RCA: 307] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 09/03/2008] [Indexed: 02/04/2023]
Abstract
Probiotics are defined as live microorganisms that, when administered in adequate amounts, confer a health benefit on the host, including the gastrointestinal tract. While this beneficial effect was originally thought to stem from improvements in the intestinal microbial balance, there is now substantial evidence that probiotics can also provide benefits by modulating immune functions. In animal models, probiotic supplementation is able to provide protection from spontaneous and chemically induced colitis by downregulating inflammatory cytokines or inducing regulatory mechanisms in a strain-specific manner. In animal models of allergen sensitization and murine models of asthma and allergic rhinitis, orally administered probiotics can strain-dependently decrease allergen-specific IgE production, in part by modulating systemic cytokine production. Certain probiotics have been shown to decrease airway hyperresponsiveness and inflammation by inducing regulatory mechanisms. Promising results have been obtained with probiotics in the treatment of human inflammatory diseases of the intestine and in the prevention and treatment of atopic eczema in neonates and infants. However, the findings are too variable to allow firm conclusions as to the effectiveness of specific probiotics in these conditions.
Collapse
Affiliation(s)
- Andrea T Borchers
- Department of Nutrition, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | | | | | | | | |
Collapse
|
90
|
Loos M, Remaut E, Rottiers P, De Creus A. Genetically engineered Lactococcus lactis secreting murine IL-10 modulates the functions of bone marrow-derived dendritic cells in the presence of LPS. Scand J Immunol 2008; 69:130-9. [PMID: 19144079 DOI: 10.1111/j.1365-3083.2008.02206.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oral delivery of IL-10 by genetically modified Lactococcus lactis (LL-pTmIL10) has been shown to efficiently reduce intestinal inflammation in mice with chronic colitis, but the mechanisms involved have not been elucidated. It has been suggested that IL-10 controls intestinal inflammation by inhibiting microbe-induced activation of dendritic cells. We therefore investigated whether LL-pTmIL10 can modulate the functions of bone marrow-derived dendritic cells (BM-DC) responding to LPS. Incubation of these cells with LL-pTmIL10 or with the control strain LL-pTREX reduced their ability to activate allogeneic T-cell proliferation. However, in contrast to LL-pTREX, LL-pTmIL10 inhibited the LPS-stimulated secretion of MCP-1 by BM-DC and reduced the synergistic up-regulation of IL-12/IL-23p40. In addition, LL-pTmIL10 treatment of LPS-stimulated BM-DC significantly inhibited their capacity to induce strong secretion of IL-17 by CD4+ T cells. Our data suggest that the beneficial effects of LL-pTmIL10 treatment during chronic colitis might involve inhibition of CD4+ Th17 cells and a reduced accumulation of these cells as well as other immune cells at the site of inflammation.
Collapse
Affiliation(s)
- M Loos
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
| | | | | | | |
Collapse
|
91
|
Ya T, Zhang Q, Chu F, Merritt J, Bilige M, Sun T, Du R, Zhang H. Immunological evaluation of Lactobacillus casei Zhang: a newly isolated strain from koumiss in Inner Mongolia, China. BMC Immunol 2008; 9:68. [PMID: 19019236 PMCID: PMC2596084 DOI: 10.1186/1471-2172-9-68] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 11/19/2008] [Indexed: 11/20/2022] Open
Abstract
Background There is increasing evidence to suggest an immunomodulation function both within the intestines and systemically upon consuming probiotic species. We recently isolated a novel LAB, Lactobacillus caseiZhang (LcZhang) from koumiss. LcZhang exhibited favorable probiotic properties, such as acid resistance, bile resistance, gastrointestinal (GI) colonization ability, etc. In order to examine the immunomodulatory qualities of LcZhang, we administered LcZhang to healthy mice with varying doses of either live or heat-killed LcZhang and measured various parameters of the host immune response. Results The study was performed in four separate experiments via oral administration of live and heat-killed LcZhang to BALB/c mice for several consecutive days. We investigated the immunomodulating capacity of LcZhang in vivo by analyzing the profile of cytokines, T cell subpopulations, and immunoglobulin concentrations induced in blood serum and intestinal fluid in BALB/c mice. Only live bacteria elicited a wide range of immune responses, which include the increased production of interferon-γ (IFN-γ), and depression of tumor necrosis factor-α (TNF-α) levels. In addition, interleukin-2 (IL-2) and IL-2 receptor gene transcription increased significantly, but the proportion of T cell subsets appeared to be unaffected. We also observed that LcZhang was capable of inducing gut mucosal responses by enhancing the production of secretory Immunoglobulin A (sIgA) as well influencing the systemic immunity via the cytokines released to the circulating blood. Conclusion The present work shows that the dose-dependent administration of LcZhang is capable of influencing immune responses, implying that it may be a valuable strain for probiotic use in humans.
Collapse
Affiliation(s)
- Tuo Ya
- The Key Laboratory of Dairy Biotechnology and Bioengineering, Education Ministry of PR China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Medina M, De Palma G, Ribes-Koninckx C, Calabuig M, Sanz Y. Bifidobacterium strains suppress in vitro the pro-inflammatory milieu triggered by the large intestinal microbiota of coeliac patients. JOURNAL OF INFLAMMATION-LONDON 2008; 5:19. [PMID: 18980693 PMCID: PMC2640389 DOI: 10.1186/1476-9255-5-19] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2008] [Accepted: 11/03/2008] [Indexed: 01/01/2023]
Abstract
Background Coeliac disease (CD) is an enteropathy characterized by an aberrant immune response to cereal-gluten proteins. Although gluten peptides and microorganisms activate similar pro-inflammatory pathways, the role the intestinal microbiota may play in this disorder is unknown. The purpose of this study was to assess whether the faecal microbiota of coeliac patients could contribute to the pro-inflammatory milieu characteristic of CD and the possible benefits of bifidobacteria. Methods The effect of faeces of 26 CD patients with active disease (mean age 5.5 years, range 2.1–12.0 years), 18 symptom-free coeliac disease (SFCD) patients (mean age 5.5 years, range 1.0–12.3 years) on a gluten-free diet for 1–2 years; and 20 healthy children (mean age 5.3 years, range 1.8–10.8 years) on induction of cytokine production and surface antigen expression in peripheral blood mononuclear cells (PBMCs) were determined. The possible regulatory roles of Bifidobacterium longum ES1 and B. bifidum ES2 co-incubated with faecal samples were also assessed in vitro. Results Faeces of both active CD and SFCD patients, representing an imbalanced microbiota, significantly increased TNF-α production and CD86 expression in PBMCs, while decreased IL-10 cytokine production and CD4 expression compared with control samples. Active CD-patient samples also induced significantly higher IFN-γ production compared with controls. However, Bifidobacterium strains suppressed the pro-inflammatory cytokine pattern induced by the large intestinal content of CD patients and increased IL-10 production. Cytokine effects induced by faecal microbiota seemed to be mediated by the NFκB pathway. Conclusion The intestinal microbiota of CD patients could contribute to the Th1 pro-inflammatory milieu characteristic of the disease, while B. longum ES1 and B. bifidum ES2 could reverse these deleterious effects. These findings hold future perspectives of interest in CD therapy.
Collapse
Affiliation(s)
- Marcela Medina
- Microbial Ecophysiology and Nutrition, Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Apartado 73, 46100 Burjassot, Valencia, Spain.
| | | | | | | | | |
Collapse
|
93
|
Latvala S, Pietilä TE, Veckman V, Kekkonen RA, Tynkkynen S, Korpela R, Julkunen I. Potentially probiotic bacteria induce efficient maturation but differential cytokine production in human monocyte-derived dendritic cells. World J Gastroenterol 2008; 14:5570-83; discussion 5581-2. [PMID: 18810777 PMCID: PMC2746346 DOI: 10.3748/wjg.14.5570] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To analyze the ability of nine different potentially probiotic bacteria to induce maturation and cytokine production in human monocyte-derived dendritic cells (moDCs).
METHODS: Cytokine production and maturation of moDCs in response to bacterial stimulation was analyzed with enzyme-linked immunosorbent assay (ELISA) and flow cytometric analysis (FACS), respectively. The kinetics of mRNA expression of cytokine genes was determined by Northern blotting. The involvement of different signaling pathways in cytokine gene expression was studied using specific pharmacological signaling inhibitors.
RESULTS: All studied bacteria induced the maturation of moDCs in a dose-dependent manner. More detailed analysis with S. thermophilus THS, B. breve Bb99, and L. lactis subsp. cremoris ARH74 indicated that these bacteria induced the expression of moDC maturation markers HLA class II and CD86 as efficiently as pathogenic bacteria. However, these bacteria differed in their ability to induce moDC cytokine gene expression. S. thermophilus induced the expression of pro-inflammatory (TNF-α, IL-12, IL-6, and CCL20) and Th1 type (IL-12 and IFN-γ) cytokines, while B. breve and L. lactis were also potent inducers of anti-inflammatory IL-10. Mitogen-activated protein kinase (MAPK) p38, phosphatidylinositol 3 (PI3) kinase, and nuclear factor-kappa B (NF-κB) signaling pathways were shown to be involved in bacteria-induced cytokine production.
CONCLUSION: Our results indicate that potentially probiotic bacteria are able to induce moDC maturation, but their ability to induce cytokine gene expression varies significantly from one bacterial strain to another.
Collapse
|
94
|
Zhang W, Azevedo MS, Wen K, Gonzalez A, Saif LJ, Li G, Yousef AE, Yuan L. Probiotic Lactobacillus acidophilus enhances the immunogenicity of an oral rotavirus vaccine in gnotobiotic pigs. Vaccine 2008; 26:3655-61. [PMID: 18524434 PMCID: PMC2491559 DOI: 10.1016/j.vaccine.2008.04.070] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2008] [Revised: 04/17/2008] [Accepted: 04/28/2008] [Indexed: 01/08/2023]
Abstract
We evaluated virus-specific B and T cell responses induced by the attenuated Wa (P1A[8]G1) human rotavirus (AttHRV) oral 2-dose vaccine with or without Lactobacillus acidophilus (LA) colonization in neonatal gnotobiotic (Gn) pigs. The AttHRV vaccinated and LA-fed pigs had a significantly higher magnitude of HRV-specific IFN-gamma producing CD8+ T cell responses in ileum and spleen, IgA and IgG antibody-secreting cell responses in ileum, and serum IgM, IgA and IgG antibody and virus neutralizing antibody titers compared to the AttHRV vaccinated pigs without LA colonization. These findings suggest that L. acidophilus has significant immunopotentiating effects and may be used as a safe oral adjuvant for rotavirus vaccines in neonates.
Collapse
Affiliation(s)
- Wei Zhang
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691-4096, USA
| | - Marli S.P. Azevedo
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691-4096, USA
| | - Ke Wen
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, 1410 Prices Fork Road (0342), Blacksburg, VA 24061, USA
| | - Ana Gonzalez
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691-4096, USA
| | - Linda J. Saif
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691-4096, USA
| | - Guohua Li
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, 1410 Prices Fork Road (0342), Blacksburg, VA 24061, USA
| | - Ahmed E. Yousef
- Department of Food Science and Technology, College of Food, Agriculture and Environmental Science, The Ohio State University, Parker Building, 2015 Fyffe Road, Columbus, OH 43210, USA
| | - Lijuan Yuan
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, 1410 Prices Fork Road (0342), Blacksburg, VA 24061, USA
| |
Collapse
|
95
|
Fink LN, Frøkiaer H. Dendritic cells from Peyer's patches and mesenteric lymph nodes differ from spleen dendritic cells in their response to commensal gut bacteria. Scand J Immunol 2008; 68:270-9. [PMID: 18565117 DOI: 10.1111/j.1365-3083.2008.02136.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Commensal gut bacteria have potent effects on the immune system, which are partially mediated by intestinal dendritic cells (DC). Distinct commensals confer different properties to in vitro-generated DC. The aim of the present study was to reveal strain-dependent maturation patterns in primary DC. To this end, we compared the response of mouse Peyer's patch (PP) DC, mesenteric lymph node (MLN) DC and spleen DC to the commensal bacteria, Bifidobacterium longum Q46, Lactobacillus acidophilus X37 and Escherichia coli Nissle 1917. Bacterial maturation of DC occurred independently of tissue origin. Expression of CCR7 and CD103 on the surface of MLN DC, necessary for the induction of gut-homing regulatory T cells, increased with stimulation by Gram-positive commensals. Bacteria-dependent cytokine production (IL-6, IL-10 and TNF-alpha) was similar in spleen and MLN DC, and contaminant cells in these DC preparations produced IFN-gamma in response to L. acidophilus. In contrast, PP DC produced IL-6 only in response to E. coli, little IL-10 and no TNF-alpha, and this low cytokine production was not due to inhibition by IL-10 or TGF-beta. Bifidobacteria downregulate IL-6, TNF-alpha and IL-12 production induced in in vitro-generated DC by L. acidophilus. Similar inhibition was observed in splenic DC, but not in MLN DC. MLN cells responded to bacterial stimulation with higher IFN-gamma production than spleen cells, possibly due to the presence of more responsive natural killer cells. Commensal bacteria therefore play specific roles in the gut immune system distinguishable from the effect they would have if recognized by the systemic immune system.
Collapse
Affiliation(s)
- L N Fink
- Nutritional Immunology Group, Department of Systems Biology, Technical University of Denmark, Kgs, Lyngby, Denmark.
| | | |
Collapse
|
96
|
Yam KK, Pouliot P, N’diaye MM, Fournier S, Olivier M, Cousineau B. Innate inflammatory responses to the Gram-positive bacterium Lactococcus lactis. Vaccine 2008; 26:2689-99. [DOI: 10.1016/j.vaccine.2008.03.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 03/13/2008] [Accepted: 03/13/2008] [Indexed: 12/24/2022]
|
97
|
Zeuthen LH, Fink LN, Frøkiaer H. Toll-like receptor 2 and nucleotide-binding oligomerization domain-2 play divergent roles in the recognition of gut-derived lactobacilli and bifidobacteria in dendritic cells. Immunology 2008; 124:489-502. [PMID: 18217947 DOI: 10.1111/j.1365-2567.2007.02800.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The gut microbiota is vital in the maintenance of homeostasis in the gut immune system. Its diversity and composition play major roles in relation to allergies and inflammatory bowel diseases, and administration of lactic acid bacteria (LAB), such as lactobacilli and bifidobacteria, has positive effects on these pathologies. However, the mechanisms behind the beneficial effects are largely unknown. Here we reveal divergent roles played by Toll-like receptor-2 (TLR2) and nucleotide-binding oligomerization domain-2 (NOD2) in dendritic cell (DC) recognition of LAB. Murine bone-marrow-derived DC lacking NOD2 produce higher levels of interleukin-10 (IL-10) and reduced levels of IL-12 and tumour necrosis factor-alpha (TNF-alpha) in response to LAB. This indicates that peptidoglycan is partly responsible for the T helper type 1 skewing effect of certain LAB. Dendritic cells that are TLR2-/- produce less IL-12 and TNF-alpha and more IL-10 in response to some strains of lactobacilli, while they produce more IL-12 and less IL-10 in response to bifidobacteria. The same tendency was found in human monocyte-derived DC. We have previously reported that the weak IL-12-inducing and TNF-alpha-inducing bifidobacteria inhibit the T helper type 1 skewing effect induced by strong immunostimulatory lactobacilli. Here we show that this immunoinhibitory effect of bifidobacteria is dependent on TLR2 and independent of NOD2. Moreover, independently of the cytokine pattern induced by intact LAB, cell wall fractions of all LAB, as well as synthetic lipoproteins possess immunoinhibitory capacities in both human and murine DC. These novel findings suggest that LAB act as immunoregulators through interaction of lipoprotein with TLR2 and as immunostimulators through interaction of peptidoglycan with NOD2.
Collapse
Affiliation(s)
- Louise Hjerrild Zeuthen
- BioCentrum-DTU, Nutritional Immunology Group, Center for Biological Sequence Analysis, Technical University of Denmark, Kgs. Lyngby, Denmark.
| | | | | |
Collapse
|
98
|
Chuang L, Wu KG, Pai C, Hsieh PS, Tsai JJ, Yen JH, Lin MY. Heat-killed cells of lactobacilli skew the immune response toward T helper 1 polarization in mouse splenocytes and dendritic cell-treated T cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:11080-11086. [PMID: 18038979 DOI: 10.1021/jf071786o] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
It is believed that probiotics play an important role for the health of the host, including modulation of immune responses. Most studies have focused on the immunomodulatory effects of viable cells of lactic acid bacteria; however, we investigated those of heat-killed cells of lactic acid bacteria in this study. We first observed the effects on immune functions via stimulating splenocytes with three heat-killed Lactobacillus strains. Furthermore, we also investigated the effect of mouse dendritic cells (DCs) treated with these heat-killed Lactobacillus strains on T cell responses. The results showed that these Lactobacillus strains were able to stimulate cell proliferation and interleukin (IL)-10, IL-12 p70, and interferon (IFN)-gamma production but not transforming growth factor (TGF)-beta in splenocytes. In addition, these heat-killed Lactobacillus strains also stimulated high-level secretion of IL-12 p70 in DCs and switched T cells to T helper (Th) 1 immune responses, as evidenced by the elevated secretion of IFN-gamma but not IL-5, IL-13, and TGF-beta. These results showed that lactobacilli play a potentially important role in modulating immune responses and allergic reactions.
Collapse
Affiliation(s)
- Lisa Chuang
- Department of Food Science and Biotechnology, National Chung Hsing University, and Department of Medical Education and Research, Taichung Veterans General Hospital, Taiwan
| | | | | | | | | | | | | |
Collapse
|
99
|
Fink LN, Zeuthen LH, Christensen HR, Morandi B, Frokiaer H, Ferlazzo G. Distinct gut-derived lactic acid bacteria elicit divergent dendritic cell-mediated NK cell responses. Int Immunol 2007; 19:1319-27. [DOI: 10.1093/intimm/dxm103] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
100
|
Brisbin JT, Zhou H, Gong J, Sabour P, Akbari MR, Haghighi HR, Yu H, Clarke A, Sarson AJ, Sharif S. Gene expression profiling of chicken lymphoid cells after treatment with Lactobacillus acidophilus cellular components. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2007; 32:563-574. [PMID: 17981327 DOI: 10.1016/j.dci.2007.09.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 09/06/2007] [Accepted: 09/18/2007] [Indexed: 05/25/2023]
Abstract
Lactobacillus acidophilus has been shown to exert immunostimulating activities in a number of species, including the chicken. To examine the molecular mechanisms of this phenomenon, we investigated spatial and temporal expression of immune system genes in chicken cecal tonsil and spleen mononuclear cells in response to structural constituents of L. acidophilus. Using a low-density chicken immune system microarray, we found that cecal tonsil cells responded more rapidly than spleen cells to the bacterial stimuli, with the most potent stimulus for cecal tonsil cells being DNA and for splenocytes being the bacterial cell wall components. We also discovered that in both splenocytes and cecal tonsil cells, STAT2 and STAT4 genes were highly induced. Given the close interactions between cecal tonsil cells and commensal bacteria, we further examined the involvement of STAT2 and STAT4 signaling pathways in cellular responses to bacterial DNA. Our results revealed that the expression of STAT2, STAT4, IL-18, MyD88, IFN-alpha, and IFN-gamma genes were up-regulated in cecal tonsil cells after treatment with L. acidophilus DNA.
Collapse
Affiliation(s)
- Jennifer T Brisbin
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | | | | | | | | | | | |
Collapse
|