51
|
Prusińska JM, Boniecka J, Dąbrowska GB, Goc A. Identification and characterization of the Ipomoea nil RelA/SpoT Homologs (InRSHs) and potential directions of their transcriptional regulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 284:161-176. [PMID: 31084869 DOI: 10.1016/j.plantsci.2019.01.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/13/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Although the stringent response has been known for more than half a century and has been well studied in bacteria, only the research of the past 19 years revealed that the homologous mechanism is conserved in plants. The plant RelA/SpoT Homolog (RSH) genes have been identified and characterized in a limited number of plant species, whereas products of their catalytic activities, (p)ppGpp (alarmones), have been shown to accumulate mainly in chloroplasts. Here, we identified full-length sequences of the Ipomoea nil RSH genes (InRSH1, InRSH2 and InCRSH), determined their copy number in the I. nil genome as well as the structural conservancy between InRSHs and their Arabidopsis and rice orthologs. We showed that InRSHs are differentially expressed in I. nil organ tissues and that only InRSH2 is upregulated in response to salt, osmotic and drought stress. Our results of the E. coli relA/spoT mutant complementation test suggest that InRSH1 is likely a (p)ppGpp hydrolase, InCRSH - synthetase and InRSH2 shows both activities. Finally, we referred our results to the recently published I. nil genomic and proteomic data and uncovered the complexity of the I. nil RSH family as well as potential ways of the InRSH transcriptional regulation.
Collapse
Affiliation(s)
- Justyna M Prusińska
- Nicolaus Copernicus University in Toruń, Department of Genetics, Lwowska 1, 87-100, Toruń, Poland.
| | - Justyna Boniecka
- Nicolaus Copernicus University in Toruń, Department of Genetics, Lwowska 1, 87-100, Toruń, Poland
| | - Grażyna B Dąbrowska
- Nicolaus Copernicus University in Toruń, Department of Genetics, Lwowska 1, 87-100, Toruń, Poland
| | - Anna Goc
- Nicolaus Copernicus University in Toruń, Department of Genetics, Lwowska 1, 87-100, Toruń, Poland
| |
Collapse
|
52
|
Sobala M, Bruhn-Olszewska B, Cashel M, Potrykus K. Methylobacterium extorquens RSH Enzyme Synthesizes (p)ppGpp and pppApp in vitro and in vivo, and Leads to Discovery of pppApp Synthesis in Escherichia coli. Front Microbiol 2019; 10:859. [PMID: 31068922 PMCID: PMC6491832 DOI: 10.3389/fmicb.2019.00859] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/03/2019] [Indexed: 01/12/2023] Open
Abstract
In bacteria, the so-called stringent response is responsible for adaptation to changing environmental conditions. This response is mediated by guanosine derivatives [(p)ppGpp], synthesized by either large mono-functional RelA or bi-functional SpoT (synthesis and hydrolysis) enzymes in β- and γ-proteobacteria, such as Escherichia coli. In Firmicutes and α-, δ-, and 𝜀-proteobacteria, large bifunctional Rel-SpoT-homologs (RSH), often accompanied by small (p)ppGpp synthetases and/or hydrolases devoid of regulatory domains, are responsible for (p)ppGpp turnover. Here, we report on surprising in vitro and in vivo properties of an RSH enzyme from Methylobacterium extorquens (RSHMex). We find that this enzyme possesses some unique features, e.g., it requires cobalt cations for the most efficient (p)ppGpp synthesis, in contrast to all other known specific (p)ppGpp synthetases that require Mg2+. In addition, it can synthesize pppApp, which has not been demonstrated in vitro for any Rel/SpoT/RSH enzyme so far. In vivo, our studies also show that RSHMex is active in Escherichia coli cells, as it can complement E. coli ppGpp0 growth defects and affects rrnB P1-lacZ fusion activity in a way expected for an RSH enzyme. These studies also led us to discover pppApp synthesis in wild type E. coli cells (not carrying the RSHMex enzyme), which to our knowledge has not been demonstrated ever before. In the light of our recent discovery that pppApp directly regulates E. coli RNAP transcription in vitro in a manner opposite to (p)ppGpp, this leads to a possibility that pppApp is a new member of the nucleotide second-messenger family that is widely present in bacterial species.
Collapse
Affiliation(s)
- Michał Sobala
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Bożena Bruhn-Olszewska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Michael Cashel
- Intramural Program, Eunice Kennedy Shriver Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Katarzyna Potrykus
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
53
|
Co-regulation of CodY and (p)ppGpp synthetases on morphology and pathogenesis of Streptococcus suis. Microbiol Res 2019; 223-225:88-98. [PMID: 31178056 DOI: 10.1016/j.micres.2019.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/28/2019] [Accepted: 04/06/2019] [Indexed: 01/04/2023]
Abstract
CodY and (p)ppGpp synthetases are two important global regulators of bacteria. In some pathogens, such as Listeria monocytogenes, the GTP pool links these two regulatory systems, and introducing a codY mutant into the ΔrelA strain restored the pathogenicity of the attenuated ΔrelA mutant. In previous studies, we identified the (p)ppGpp synthetases (RelA and RelQ) and CodY of Streptococcus suis. To understand the interrelationships between these two regulators in S. suis, a ΔrelAΔrelQΔcodY mutant was constructed, and its growth, morphology, and pathogenicity were evaluated. Compared with ΔrelAΔrelQ, ΔcodY, its growth was very slow, but its chain length was partly restored to the wild-type length and its capsule became thick and rough. The adherence, invasion ability, and resistance to whole-blood killing in vitro of ΔrelAΔrelQΔcodY and its lethality and colonization ability in mice were clearly reduced, which differs from the effects of these mutations in L. monocytogenes. An analysis of gene expression showed that CodY interacted with the relA promoter in a GTP-independent manner to positively regulate the expression of relA. The introduction of a codY mutant into the ΔrelAΔrelQ strain further reduced the expression of virulence factors, which suggests a novel interaction between the (p)ppGpp synthetases and CodY. This study extends our understanding of the relationship between the (p)ppGpp-mediated stringent response and the regulation of CodY in S. suis.
Collapse
|
54
|
Bhawini A, Pandey P, Dubey AP, Zehra A, Nath G, Mishra MN. RelQ Mediates the Expression of β-Lactam Resistance in Methicillin-Resistant Staphylococcus aureus. Front Microbiol 2019; 10:339. [PMID: 30915038 PMCID: PMC6421274 DOI: 10.3389/fmicb.2019.00339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/08/2019] [Indexed: 11/18/2022] Open
Abstract
An induced stringent response, which is established by an increased level of (p)ppGpp, is required for the expression of β-lactam resistance in methicillin-resistant Staphylococcus aureus (MRSA). However, it is not clear whether RSH (enzyme mediating stringent response to amino acid starvation) or small alarmone synthetases (SASs) are involved in the maintenance of (p)ppGpp level in response to β-lactams. Since the S. aureus genome encodes two active SASs (RelP and RelQ), their contribution to the expression of β-lactam resistance in MRSA was investigated. It was determined that relQ deletion renders community-associated MRSA (CA-MRSA) sensitive to β-lactams by negatively affecting the expression of mecA, and induction of (p)ppGpp synthesis by mupirocin bypasses the requirement of relQ for the expression of high-level β-lactam resistance. Surprisingly, relP deletion increased the level of β-lactam resistance. Such contradictory observations could be attributed to the fact that relQ promoter is ~5-fold stronger than the relP and is induced by oxacillin as well as deletion of either of the SASs, while relP promoter responds only to oxacillin. The stronger promoter activity of relQ, coupled with the inducibility of the relQ promoter in response to the lack of relP, results in efficient expression of relQ in the relP-deleted background. This positively affects mecA expression and renders the ΔrelP strain highly resistant. These findings indicate an important role for RelQ in the expression of high-level β-lactam resistance in MRSA.
Collapse
Affiliation(s)
- Ajita Bhawini
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Parul Pandey
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi, India
| | | | - Aafreen Zehra
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Gopal Nath
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Mukti Nath Mishra
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.,Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
55
|
Genetic and Transcriptomic Analyses of Ciprofloxacin-Tolerant Staphylococcus aureus Isolated by the Replica Plating Tolerance Isolation System (REPTIS). Antimicrob Agents Chemother 2019; 63:AAC.02019-18. [PMID: 30509938 DOI: 10.1128/aac.02019-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/21/2018] [Indexed: 12/31/2022] Open
Abstract
We developed a simple, efficient, and cost-effective method, named the replica plating tolerance isolation system (REPTIS), to detect the antibiotic tolerance potential of a bacterial strain. This method can also be used to quantify the antibiotic-tolerant subpopulation in a susceptible population. Using REPTIS, we isolated ciprofloxacin (CPFX)-tolerant mutants (mutants R2, R3, R5, and R6) carrying a total of 12 mutations in 12 different genes from methicillin-sensitive Staphylococcus aureus (MSSA) strain FDA209P. Each mutant carried multiple mutations, while few strains shared the same mutation. The R2 strain carried a nonsense mutation in the stress-mediating gene, relA Additionally, two strains carried the same point mutation in the leuS gene, encoding leucyl-tRNA synthetase. Furthermore, RNA sequencing of the R strains showed a common upregulation of relA Overall, transcriptome analysis showed downregulation of genes related to translation; carbohydrate, fat, and energy metabolism; nucleotide synthesis; and upregulation of amino acid biosynthesis and transportation genes in R2, R3, and R6, similar to the findings observed for the FDA209P strain treated with mupirocin (MUP0.03). However, R5 showed a unique transcription pattern that differed from that of MUP0.03. REPTIS is a unique and convenient method for quantifying the level of tolerance of a clinical isolate. Genomic and transcriptomic analyses of R strains demonstrated that CPFX tolerance in these S. aureus mutants occurs via at least two distinct mechanisms, one of which is similar to that which occurs with mupirocin treatment.
Collapse
|
56
|
Colomer-Winter C, Gaca AO, Chuang-Smith ON, Lemos JA, Frank KL. Basal levels of (p)ppGpp differentially affect the pathogenesis of infective endocarditis in Enterococcus faecalis. MICROBIOLOGY (READING, ENGLAND) 2018; 164:1254-1265. [PMID: 30091695 PMCID: PMC6600344 DOI: 10.1099/mic.0.000703] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022]
Abstract
The alarmone (p)ppGpp mediates the stringent response and has a recognized role in bacterial virulence. We previously reported a stringent response-like state in Enterococcus faecalis isolated from a rabbit foreign body abscess model and showed that E. faecalis mutants with varying levels of cellular (p)ppGpp [Δrel, ΔrelQ and the (p)ppGpp0 ΔrelΔrelQ] had differential abilities to persist within abscesses. In this study, we investigated whether (p)ppGpp contributes to the pathogenesis of E. faecalis infective endocarditis (IE), a biofilm infection of the heart valves. While the stringent response was not activated in heart valve-associated E. faecalis, deletion of the gene encoding the bifunctional (p)ppGpp synthetase/hydrolase Rel significantly impaired valve colonization. These results indicate that the presence of (p)ppGpp is dispensable for E. faecalis to cause IE, whereas the ability to regulate (p)ppGpp levels is critical for valve colonization. Next, we characterized how basal (p)ppGpp levels affect processes associated with IE pathogenesis. Despite being defective in binding to BSA-coated polystyrene surfaces, the Δrel strain bound to collagen- and fibronectin-coated surfaces and ex vivo porcine heart valves as well as the parent and ΔrelΔrelQ strains, ruling out the possibility that the impaired IE phenotype was due to an attachment defect. Moreover, differences in cellular (p)ppGpp levels did not affect extracellular gelatinase activity but significantly impaired enterococcal invasion of human coronary artery endothelial cells. Taken together, this study uncovers for the first time the fact that differences in basal (p)ppGpp levels, rather than the stringent response, differentially affect processes that contribute to the pathogenesis of IE.
Collapse
Affiliation(s)
- Cristina Colomer-Winter
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Anthony O. Gaca
- Center for Oral Biology and Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Present address: Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Olivia N. Chuang-Smith
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Present address: Bridge to MD and Pathway to American University of Antigua (AUA) Programs, Manipal Education Americas, LLC, New York, NY, USA
| | - José A. Lemos
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Kristi L. Frank
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
57
|
Branching Out: Alterations in Bacterial Physiology and Virulence Due to Branched-Chain Amino Acid Deprivation. mBio 2018; 9:mBio.01188-18. [PMID: 30181248 PMCID: PMC6123439 DOI: 10.1128/mbio.01188-18] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The branched-chain amino acids (BCAAs [Ile, Leu, and Val]) represent important nutrients in bacterial physiology, with roles that range from supporting protein synthesis to signaling and fine-tuning the adaptation to amino acid starvation. In some pathogenic bacteria, the adaptation to amino acid starvation includes induction of virulence gene expression: thus, BCAAs support not only proliferation during infection, but also the evasion of host defenses. The branched-chain amino acids (BCAAs [Ile, Leu, and Val]) represent important nutrients in bacterial physiology, with roles that range from supporting protein synthesis to signaling and fine-tuning the adaptation to amino acid starvation. In some pathogenic bacteria, the adaptation to amino acid starvation includes induction of virulence gene expression: thus, BCAAs support not only proliferation during infection, but also the evasion of host defenses. A body of research has accumulated over the years to describe the multifaceted physiological roles of BCAAs and the mechanisms bacteria use to maintain their intracellular levels. More recent studies have focused on understanding how fluctuations in their intracellular levels impact global regulatory pathways that coordinate the adaptation to nutrient limitation, especially in pathogenic bacteria. In this minireview, we discuss how these studies have refined the individual roles of BCAAs, shed light on how BCAA auxotrophy might promote higher sensitivity to exogenous BCAA levels, and revealed pathogen-specific responses to BCAA deprivation. These advancements improve our understanding of how bacteria meet their nutritional requirements for growth while simultaneously remaining responsive to changes in environmental nutrient availability to promote their survival in a range of environments.
Collapse
|
58
|
Mechanisms of Bacterial Tolerance and Persistence in the Gastrointestinal and Respiratory Environments. Clin Microbiol Rev 2018; 31:31/4/e00023-18. [PMID: 30068737 DOI: 10.1128/cmr.00023-18] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Pathogens that infect the gastrointestinal and respiratory tracts are subjected to intense pressure due to the environmental conditions of the surroundings. This pressure has led to the development of mechanisms of bacterial tolerance or persistence which enable microorganisms to survive in these locations. In this review, we analyze the general stress response (RpoS mediated), reactive oxygen species (ROS) tolerance, energy metabolism, drug efflux pumps, SOS response, quorum sensing (QS) bacterial communication, (p)ppGpp signaling, and toxin-antitoxin (TA) systems of pathogens, such as Escherichia coli, Salmonella spp., Vibrio spp., Helicobacter spp., Campylobacter jejuni, Enterococcus spp., Shigella spp., Yersinia spp., and Clostridium difficile, all of which inhabit the gastrointestinal tract. The following respiratory tract pathogens are also considered: Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, Burkholderia cenocepacia, and Mycobacterium tuberculosis Knowledge of the molecular mechanisms regulating the bacterial tolerance and persistence phenotypes is essential in the fight against multiresistant pathogens, as it will enable the identification of new targets for developing innovative anti-infective treatments.
Collapse
|
59
|
Gratani FL, Horvatek P, Geiger T, Borisova M, Mayer C, Grin I, Wagner S, Steinchen W, Bange G, Velic A, Maček B, Wolz C. Regulation of the opposing (p)ppGpp synthetase and hydrolase activities in a bifunctional RelA/SpoT homologue from Staphylococcus aureus. PLoS Genet 2018; 14:e1007514. [PMID: 29985927 PMCID: PMC6053245 DOI: 10.1371/journal.pgen.1007514] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/19/2018] [Accepted: 06/25/2018] [Indexed: 01/15/2023] Open
Abstract
The stringent response is characterized by (p)ppGpp synthesis resulting in repression of translation and reprogramming of the transcriptome. In Staphylococcus aureus, (p)ppGpp is synthesized by the long RSH (RelA/SpoT homolog) enzyme, RelSau or by one of the two short synthetases (RelP, RelQ). RSH enzymes are characterized by an N-terminal enzymatic domain bearing distinct motifs for (p)ppGpp synthetase or hydrolase activity and a C-terminal regulatory domain (CTD) containing conserved motifs (TGS, DC and ACT). The intramolecular switch between synthetase and hydrolase activity of RelSau is crucial for the adaption of S. aureus to stress (stringent) or non-stress (relaxed) conditions. We elucidated the role of the CTD in the enzymatic activities of RelSau. Growth pattern, transcriptional analyses and in vitro assays yielded the following results: i) in vivo, under relaxed conditions, as well as in vitro, the CTD inhibits synthetase activity but is not required for hydrolase activity; ii) under stringent conditions, the CTD is essential for (p)ppGpp synthesis; iii) RelSau lacking the CTD exhibits net hydrolase activity when expressed in S. aureus but net (p)ppGpp synthetase activity when expressed in E. coli; iv) the TGS and DC motifs within the CTD are required for correct stringent response, whereas the ACT motif is dispensable, v) Co-immunoprecipitation indicated that the CTD interacts with the ribosome, which is largely dependent on the TGS motif. In conclusion, RelSau primarily exists in a synthetase-OFF/hydrolase-ON state, the TGS motif within the CTD is required to activate (p)ppGpp synthesis under stringent conditions.
Collapse
Affiliation(s)
- Fabio Lino Gratani
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
| | - Petra Horvatek
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
| | - Tobias Geiger
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
| | - Marina Borisova
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
| | - Christoph Mayer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
| | - Iwan Grin
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
- German Centre for Infection Research, Partner Site Tuebingen, Tuebingen, Germany
| | - Samuel Wagner
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
- German Centre for Infection Research, Partner Site Tuebingen, Tuebingen, Germany
| | - Wieland Steinchen
- Center for Synthetic Microbiology (SYNMIKRO) & Dept. of Chemistry, Philipps-University, Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO) & Dept. of Chemistry, Philipps-University, Marburg, Germany
| | - Ana Velic
- Quantitative Proteomics and Proteome Center Tuebingen, Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Boris Maček
- Quantitative Proteomics and Proteome Center Tuebingen, Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
60
|
van Geelen L, Meier D, Rehberg N, Kalscheuer R. (Some) current concepts in antibacterial drug discovery. Appl Microbiol Biotechnol 2018; 102:2949-2963. [PMID: 29455386 DOI: 10.1007/s00253-018-8843-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 12/30/2022]
Abstract
The rise of multidrug resistance in bacteria rendering pathogens unresponsive to many clinical drugs is widely acknowledged and considered a critical global healthcare issue. There is broad consensus that novel antibacterial chemotherapeutic options are extremely urgently needed. However, the development pipeline of new antibacterial drug lead structures is poorly filled and not commensurate with the scale of the problem since the pharmaceutical industry has shown reduced interest in antibiotic development in the past decades due to high economic risks and low profit expectations. Therefore, academic research institutions have a special responsibility in finding novel treatment options for the future. In this mini review, we want to provide a broad overview of the different approaches and concepts that are currently pursued in this research field.
Collapse
Affiliation(s)
- Lasse van Geelen
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225, Dusseldorf, Germany
| | - Dieter Meier
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225, Dusseldorf, Germany
| | - Nidja Rehberg
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225, Dusseldorf, Germany
| | - Rainer Kalscheuer
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225, Dusseldorf, Germany.
| |
Collapse
|
61
|
The Streptococcus agalactiae Stringent Response Enhances Virulence and Persistence in Human Blood. Infect Immun 2017; 86:IAI.00612-17. [PMID: 29109175 PMCID: PMC5736797 DOI: 10.1128/iai.00612-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/30/2017] [Indexed: 12/13/2022] Open
Abstract
Streptococcus agalactiae (group B Streptococcus [GBS]) causes serious infections in neonates. We previously reported a transposon sequencing (Tn-seq) system for performing genomewide assessment of gene fitness in GBS. In order to identify molecular mechanisms required for GBS to transition from a mucosal commensal lifestyle to bloodstream invasion, we performed Tn-seq on GBS strain A909 with human whole blood. Our analysis identified 16 genes conditionally essential for GBS survival in blood, of which 75% were members of the capsular polysaccharide (cps) operon. Among the non-cps genes identified as conditionally essential was relA, which encodes an enzyme whose activity is central to the bacterial stringent response—a conserved adaptation to environmental stress. We used blood coincubation studies of targeted knockout strains to confirm the expected growth defects of GBS deficient in capsule or stringent response activation. Unexpectedly, we found that the relA knockout strains demonstrated decreased expression of β-hemolysin/cytolysin, an important cytotoxin implicated in facilitating GBS invasion. Furthermore, chemical activation of the stringent response with serine hydroxamate increased β-hemolysin/cytolysin expression. To establish a mechanism by which the stringent response leads to increased cytotoxicity, we performed transcriptome sequencing (RNA-seq) on two GBS strains grown under stringent response or control conditions. This revealed a conserved decrease in the expression of genes in the arginine deiminase pathway during stringent response activation. Through coincubation with supplemental arginine and the arginine antagonist canavanine, we show that arginine availability is a determinant of GBS cytotoxicity and that the pathway between stringent response activation and increased virulence is arginine dependent.
Collapse
|
62
|
Horn J, Stelzner K, Rudel T, Fraunholz M. Inside job: Staphylococcus aureus host-pathogen interactions. Int J Med Microbiol 2017; 308:607-624. [PMID: 29217333 DOI: 10.1016/j.ijmm.2017.11.009] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is a notorious opportunistic pathogen causing a plethora of diseases. Recent research established that once phagocytosed by neutrophils and macrophages, a certain percentage of S. aureus is able to survive within these phagocytes which thereby even may contribute to dissemination of the pathogen. S. aureus further induces its uptake by otherwise non-phagocytic cells and the ensuing intracellular cytotoxicity is suggested to lead to tissue destruction, whereas bacterial persistence within cells is thought to lead to immune evasion and chronicity of infections. We here review recent work on the S. aureus host pathogen interactions with a focus on the intracellular survival of the pathogen.
Collapse
Affiliation(s)
- Jessica Horn
- Chair of Microbiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Kathrin Stelzner
- Chair of Microbiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martin Fraunholz
- Chair of Microbiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
63
|
Xu T, Wang XY, Cui P, Zhang YM, Zhang WH, Zhang Y. The Agr Quorum Sensing System Represses Persister Formation through Regulation of Phenol Soluble Modulins in Staphylococcus aureus. Front Microbiol 2017; 8:2189. [PMID: 29163457 PMCID: PMC5681930 DOI: 10.3389/fmicb.2017.02189] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/25/2017] [Indexed: 12/30/2022] Open
Abstract
The opportunistic pathogen Staphylococcus aureus has become an increasing threat to public health. While the Agr quorum sensing (QS) system is a master regulator of S. aureus virulence, its dysfunction has been frequently reported to promote bacteremia and mortality in clinical infections. Here we show that the Agr system is involved in persister formation in S. aureus. Mutation of either agrCA or agrD but not RNAIII resulted in increased persister formation of stationary phase cultures. RNA-seq analysis showed that in stationary phase AgrCA/AgrD and RNAIII mutants showed consistent up-regulation of virulence associated genes (lip and splE, etc.) and down-regulation of metabolism genes (bioA and nanK, etc.). Meanwhile, though knockout of agrCA or agrD strongly repressed expression of phenol soluble modulin encoding genes psmα1-4, psmβ1-2 and phenol soluble modulins (PSM) transporter encoding genes in the pmt operon, mutation of RNAIII enhanced expression of the genes. We further found that knockout of psmα1-4 or psmβ1-2 augmented persister formation and that co-overexpression of PSMαs and PSMβs reversed the effects of AgrCA mutation on persister formation. We also detected the effects on persister formation by mutations of metabolism genes (arcA, hutU, narG, nanK, etc.) that are potentially regulated by Agr system. It was found that deletion of the ManNAc kinase encoding gene nanK decreased persister formation. Taken together, these results shed new light on the PSM dependent regulatory role of Agr system in persister formation and may have implications for clinical treatment of MRSA persistent infections.
Collapse
Affiliation(s)
- Tao Xu
- Key Laboratory of Medical Molecular Virology, Huashan Hospital, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xu-Yang Wang
- Key Laboratory of Medical Molecular Virology, Huashan Hospital, Shanghai Medical College of Fudan University, Shanghai, China
| | - Peng Cui
- Key Laboratory of Medical Molecular Virology, Huashan Hospital, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yu-Meng Zhang
- Key Laboratory of Medical Molecular Virology, Huashan Hospital, Shanghai Medical College of Fudan University, Shanghai, China
| | - Wen-Hong Zhang
- Key Laboratory of Medical Molecular Virology, Huashan Hospital, Shanghai Medical College of Fudan University, Shanghai, China
| | - Ying Zhang
- Key Laboratory of Medical Molecular Virology, Huashan Hospital, Shanghai Medical College of Fudan University, Shanghai, China
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
64
|
Arias Del Angel JA, Escalante AE, Martínez-Castilla LP, Benítez M. An Evo-Devo Perspective on Multicellular Development of Myxobacteria. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:165-178. [PMID: 28217903 DOI: 10.1002/jez.b.22727] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 12/12/2016] [Accepted: 12/25/2016] [Indexed: 11/07/2022]
Abstract
The transition to multicellularity, recognized as one the major transitions in evolution, has occurred independently several times. While multicellular development has been extensively studied in zygotic organisms including plant and animal groups, just a few aggregative multicellular organisms have been employed as model organisms for the study of multicellularity. Studying different evolutionary origins and modes of multicellularity enables comparative analyses that can help identifying lineage-specific aspects of multicellular evolution and generic factors and mechanisms involved in the transition to multicellularity. Among aggregative multicellular organisms, myxobacteria are a valuable system to explore the particularities that aggregation confers to the evolution of multicellularity and mechanisms shared with clonal organisms. Moreover, myxobacteria species develop fruiting bodies displaying a range of morphological diversity. In this review, we aim to synthesize diverse lines of evidence regarding myxobacteria development and discuss them in the context of Evo-Devo concepts and approaches. First, we briefly describe the developmental processes in myxobacteria, present an updated comparative analysis of the genes involved in their developmental processes and discuss these and other lines of evidence in terms of co-option and developmental system drift, two concepts key to Evo-Devo studies. Next, as has been suggested from Evo-Devo approaches, we discuss how broad comparative studies and integration of diverse genetic, physicochemical, and environmental factors into experimental and theoretical models can further our understanding of myxobacterial development, phenotypic variation, and evolution.
Collapse
Affiliation(s)
- Juan A Arias Del Angel
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecologiía, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ana E Escalante
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecologiía, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - León Patricio Martínez-Castilla
- Departamento de Bioquímica, Facultad de Quiímica, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mariana Benítez
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecologiía, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
65
|
Bacterial Signaling Nucleotides Inhibit Yeast Cell Growth by Impacting Mitochondrial and Other Specifically Eukaryotic Functions. mBio 2017; 8:mBio.01047-17. [PMID: 28743817 PMCID: PMC5527313 DOI: 10.1128/mbio.01047-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have engineered Saccharomyces cerevisiae to inducibly synthesize the prokaryotic signaling nucleotides cyclic di-GMP (cdiGMP), cdiAMP, and ppGpp in order to characterize the range of effects these nucleotides exert on eukaryotic cell function during bacterial pathogenesis. Synthetic genetic array (SGA) and transcriptome analyses indicated that, while these compounds elicit some common reactions in yeast, there are also complex and distinctive responses to each of the three nucleotides. All three are capable of inhibiting eukaryotic cell growth, with the guanine nucleotides exhibiting stronger effects than cdiAMP. Mutations compromising mitochondrial function and chromatin remodeling show negative epistatic interactions with all three nucleotides. In contrast, certain mutations that cause defects in chromatin modification and ribosomal protein function show positive epistasis, alleviating growth inhibition by at least two of the three nucleotides. Uniquely, cdiGMP is lethal both to cells growing by respiration on acetate and to obligately fermentative petite mutants. cdiGMP is also synthetically lethal with the ribonucleotide reductase (RNR) inhibitor hydroxyurea. Heterologous expression of the human ppGpp hydrolase Mesh1p prevented the accumulation of ppGpp in the engineered yeast and restored cell growth. Extensive in vivo interactions between bacterial signaling molecules and eukaryotic gene function occur, resulting in outcomes ranging from growth inhibition to death. cdiGMP functions through a mechanism that must be compensated by unhindered RNR activity or by functionally competent mitochondria. Mesh1p may be required for abrogating the damaging effects of ppGpp in human cells subjected to bacterial infection.IMPORTANCE During infections, pathogenic bacteria can release nucleotides into the cells of their eukaryotic hosts. These nucleotides are recognized as signals that contribute to the initiation of defensive immune responses that help the infected cells recover. Despite the importance of this process, the broader impact of bacterial nucleotides on the functioning of eukaryotic cells remains poorly defined. To address this, we genetically modified cells of the eukaryote Saccharomyces cerevisiae (baker's yeast) to produce three of these molecules (cdiAMP, cdiGMP, and ppGpp) and used the engineered strains as model systems to characterize the effects of the molecules on the cells. In addition to demonstrating that the nucleotides are each capable of adversely affecting yeast cell function and growth, we also identified the cellular functions important for mitigating the damage caused, suggesting possible modes of action. This study expands our understanding of the molecular interactions that can take place between bacterial and eukaryotic cells.
Collapse
|
66
|
Samuels DJ, Wang Z, Rhee KY, Brinsmade SR. A Tandem Liquid Chromatography-Mass Spectrometry-based Approach for Metabolite Analysis of Staphylococcus aureus. J Vis Exp 2017. [PMID: 28448019 DOI: 10.3791/55558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In an effort to thwart bacterial pathogens, hosts often limit the availability of nutrients at the site of infection. This limitation can alter the abundances of key metabolites to which regulatory factors respond, adjusting cellular metabolism. In recent years, a number of proteins and RNA have emerged as important regulators of virulence gene expression. For example, the CodY protein responds to levels of branched-chain amino acids and GTP and is widely conserved in low G+C Gram-positive bacteria. As a global regulator in Staphylococcus aureus, CodY controls the expression of dozens of virulence and metabolic genes. We hypothesize that S. aureus uses CodY, in part, to alter its metabolic state in an effort to adapt to nutrient-limiting conditions potentially encountered in the host environment. This manuscript describes a method for extracting and analyzing metabolites from S. aureus using liquid chromatography coupled with mass spectrometry, a protocol that was developed to test this hypothesis. The method also highlights best practices that will ensure rigor and reproducibility, such as maintaining biological steady state and constant aeration without the use of continuous chemostat cultures. Relative to the USA200 methicillin-susceptible S. aureus isolate UAMS-1 parental strain, the isogenic codY mutant exhibited significant increases in amino acids derived from aspartate (e.g., threonine and isoleucine) and decreases in their precursors (e.g., aspartate and O-acetylhomoserine). These findings correlate well with transcriptional data obtained with RNA-seq analysis: genes in these pathways were up-regulated between 10- and 800-fold in the codY null mutant. Coupling global analyses of the transcriptome and the metabolome can reveal how bacteria alter their metabolism when faced with environmental or nutritional stress, providing potential insight into the physiological changes associated with nutrient depletion experienced during infection. Such discoveries may pave the way for the development of novel anti-infectives and therapeutics.
Collapse
Affiliation(s)
| | - Zhe Wang
- Division of Infectious Diseases, Weill Cornell Medical College
| | - Kyu Y Rhee
- Division of Infectious Diseases, Weill Cornell Medical College; Department of Medicine, Weill Cornell Medical College
| | | |
Collapse
|
67
|
The ω Subunit Governs RNA Polymerase Stability and Transcriptional Specificity in Staphylococcus aureus. J Bacteriol 2016; 199:JB.00459-16. [PMID: 27799328 DOI: 10.1128/jb.00459-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/26/2016] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen that causes infection in a wide variety of sites within the human body. Its ability to adapt to the human host and to produce a successful infection requires precise orchestration of gene expression. While DNA-dependent RNA polymerase (RNAP) is generally well characterized, the roles of several small accessory subunits within the complex have yet to be fully explored. This is particularly true for the omega (ω or RpoZ) subunit, which has been extensively studied in Gram-negative bacteria but largely neglected in Gram-positive counterparts. In Escherichia coli, it has been shown that ppGpp binding, and thus control of the stringent response, is facilitated by ω. Interestingly, key residues that facilitate ppGpp binding by ω are not conserved in S. aureus, and consequently, survival under starvation conditions is unaffected by rpoZ deletion. Further to this, ω-lacking strains of S. aureus display structural changes in the RNAP complex, which result from increased degradation and misfolding of the β' subunit, alterations in δ and σ factor abundance, and a general dissociation of RNAP in the absence of ω. Through RNA sequencing analysis we detected a variety of transcriptional changes in the rpoZ-deficient strain, presumably as a response to the negative effects of ω depletion on the transcription machinery. These transcriptional changes translated to an impaired ability of the rpoZ mutant to resist stress and to fully form a biofilm. Collectively, our data underline, for the first time, the importance of ω for RNAP stability, function, and cellular physiology in S. aureus IMPORTANCE: In order for bacteria to adjust to changing environments, such as within the host, the transcriptional process must be tightly controlled. Transcription is carried out by DNA-dependent RNA polymerase (RNAP). In addition to its major subunits (α2ββ') a fifth, smaller subunit, ω, is present in all forms of life. Although this small subunit is well studied in eukaryotes and Gram-negative bacteria, only limited information is available for Gram-positive and pathogenic species. In this study, we investigated the structural and functional importance of ω, revealing key roles in subunit folding/stability, complex assembly, and maintenance of transcriptional integrity. Collectively, our data underline, for the first time, the importance of ω for RNAP function and cellular harmony in S. aureus.
Collapse
|
68
|
Brinsmade SR. CodY, a master integrator of metabolism and virulence in Gram-positive bacteria. Curr Genet 2016; 63:417-425. [PMID: 27744611 DOI: 10.1007/s00294-016-0656-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 09/27/2016] [Indexed: 12/22/2022]
Abstract
A growing body of evidence points to CodY, a global regulator in Gram-positive bacteria, as a critical link between microbial physiology and pathogenesis in diverse environments. Recent studies uncovering graded regulation of CodY gene targets reflect the true nature of this transcription factor controlled by ligands and reveal nutrient availability as a potentially critical factor in modulating pathogenesis. This review will serve to update the status of the field and raise new questions to be answered.
Collapse
|
69
|
Mansour SC, Pletzer D, de la Fuente-Núñez C, Kim P, Cheung GYC, Joo HS, Otto M, Hancock REW. Bacterial Abscess Formation Is Controlled by the Stringent Stress Response and Can Be Targeted Therapeutically. EBioMedicine 2016; 12:219-226. [PMID: 27658736 PMCID: PMC5078632 DOI: 10.1016/j.ebiom.2016.09.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/12/2016] [Accepted: 09/16/2016] [Indexed: 01/08/2023] Open
Abstract
Cutaneous abscess infections are difficult to treat with current therapies and alternatives to conventional antibiotics are needed. Understanding the regulatory mechanisms that govern abscess pathology should reveal therapeutic interventions for these recalcitrant infections. Here we demonstrated that the stringent stress response employed by bacteria to cope and adapt to environmental stressors was essential for the formation of lesions, but not bacterial growth, in a methicillin resistant Staphylococcus aureus (MRSA) cutaneous abscess mouse model. To pharmacologically confirm the role of the stringent response in abscess formation, a cationic peptide that causes rapid degradation of the stringent response mediator, guanosine tetraphosphate (ppGpp), was employed. The therapeutic application of this peptide strongly inhibited lesion formation in mice infected with Gram-positive MRSA and Gram-negative Pseudomonas aeruginosa. Overall, we provide insights into the mechanisms governing abscess formation and a paradigm for treating multidrug resistant cutaneous abscesses. Universal stringent stress response mediators drive abscess formation. Targeting stress response reduces the severity of cutaneous abscess infections. Pharmacological suppression of S. aureus cutaneous toxin production. Paradigm for treating Gram-positive and Gram-negative bacterial abscess infections.
Collapse
Affiliation(s)
- Sarah C Mansour
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Daniel Pletzer
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - César de la Fuente-Núñez
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Paul Kim
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Gordon Y C Cheung
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, United States
| | - Hwang-Soo Joo
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, United States
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, United States
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
70
|
Abstract
Pathogenic bacteria must withstand diverse host environments during infection. Environmental signals, such as pH, temperature, nutrient limitation, etc., not only trigger adaptive responses within bacteria to these specific stress conditions but also direct the expression of virulence genes at an appropriate time and place. An appreciation of stress responses and their regulation is therefore essential for an understanding of bacterial pathogenesis. This review considers specific stresses in the host environment and their relevance to pathogenesis, with a particular focus on the enteric pathogen Salmonella.
Collapse
Affiliation(s)
- Ferric C Fang
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195-7735, USA; Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA 98195-7735, USA.
| | - Elaine R Frawley
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA 98195-7735, USA
| | - Timothy Tapscott
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Andrés Vázquez-Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
71
|
Zhang T, Zhu J, Wei S, Luo Q, Li L, Li S, Tucker A, Shao H, Zhou R. The roles of RelA/(p)ppGpp in glucose-starvation induced adaptive response in the zoonotic Streptococcus suis. Sci Rep 2016; 6:27169. [PMID: 27255540 PMCID: PMC4891663 DOI: 10.1038/srep27169] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/16/2016] [Indexed: 01/02/2023] Open
Abstract
The (p)ppGpp signal molecules play a central role in the stringent response (SR) to adapt to nutrient starvation in bacteria, yet the carbohydrate starvation induced adaptive response and the roles of SR in this response is not well characterized, especially in Gram-positives. Here, two (p)ppGpp synthetases RelA and RelQ are identified in Streptococcus suis, an important emerging zoonotic Gram-positive bacterium, while only RelA is functional under glucose starvation. To characterize the roles of RelA/(p)ppGpp in glucose starvation response in S. suis, the growth curves and transcriptional profiles were compared between the mutant strain ΔrelA [a (p)ppGpp0 strain under glucose starvation] and its parental strain SC-19 [(p)ppGpp+]. The results showed great difference between SC-19 and ΔrelA on adaptive responses when suffering glucose starvation, and demonstrated that RelA/(p)ppGpp plays important roles in adaptation to glucose starvation. Besides the classic SR including inhibition of growth and related macromolecular synthesis, the extended adaptive response also includes inhibited glycolysis, and carbon catabolite repression (CCR)-mediated carbohydrate-dependent metabolic switches. Collectively, the pheno- and genotypic characterization of the glucose starvation induced adaptive response in S. suis makes a great contribution to understanding better the mechanism of SR.
Collapse
Affiliation(s)
- Tengfei Zhang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Veterinary Diagnosis (Ministry of Agriculture), College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Jiawen Zhu
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Veterinary Diagnosis (Ministry of Agriculture), College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Shun Wei
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Veterinary Diagnosis (Ministry of Agriculture), College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingping Luo
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Veterinary Diagnosis (Ministry of Agriculture), College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
| | - Shengqing Li
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Alexander Tucker
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Huabin Shao
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Veterinary Diagnosis (Ministry of Agriculture), College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
72
|
AlHoufie STS, Foster HA. Effects of sub-lethal concentrations of mupirocin on global transcription in Staphylococcus aureus 8325-4 and a model for the escape from inhibition. J Med Microbiol 2016; 65:858-866. [PMID: 27184545 DOI: 10.1099/jmm.0.000270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Staphylococcus aureus is a major pathogen in both hospital and community settings, causing infections ranging from mild skin and wound infections to life-threatening systemic illness. Gene expression changes due to the stringent response have been studied in S. aureus using lethal concentrations of mupirocin, but no studies have investigated the effects of sub-lethal concentrations. S. aureus 8325-4 was exposed to sub-inhibitory concentrations of mupirocin. The production of ppGpp was assessed via HPLC and the effects on global transcription were studied by RNAseq (RNA sequencing) analysis. Growth inhibition had occurred after 1 h of treatment and metabolic analysis revealed that the stringent response alarmone ppGpp was present and GTP concentrations decreased. Transcriptome profiles showed that global transcriptional alterations were similar to those for S. aureus after treatment with lethal concentrations of mupirocin, including the repression of genes involved in transcription, translation and replication machineries. Furthermore, up-regulation of genes involved in stress responses, and amino acid biosynthesis and transport, as well as some virulence factor genes, was observed. However, ppGpp was not detectable after 12 or 24 h and cell growth had resumed, although some transcriptional changes remained. Sub-lethal concentrations of mupirocin induce the stringent response, but cells adapt and resume growth once ppGpp levels decrease.
Collapse
Affiliation(s)
| | - Howard A Foster
- Biomedical Research Centre, School of Environment and Life Sciences, University of Salford, Salford, Lancashire M5 4WT, UK.,Biomedical Research Centre, University of Salford, Salford, Lancashire M5 4WT, UK
| |
Collapse
|
73
|
Effects of Low-Dose Amoxicillin on Staphylococcus aureus USA300 Biofilms. Antimicrob Agents Chemother 2016; 60:2639-51. [PMID: 26856828 DOI: 10.1128/aac.02070-15] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 01/31/2016] [Indexed: 01/01/2023] Open
Abstract
Previous studies showed that sub-MIC levels of β-lactam antibiotics stimulate biofilm formation in most methicillin-resistant Staphylococcus aureus (MRSA) strains. Here, we investigated this process by measuring the effects of sub-MIC amoxicillin on biofilm formation by the epidemic community-associated MRSA strain USA300. We found that sub-MIC amoxicillin increased the ability of USA300 cells to attach to surfaces and form biofilms under both static and flow conditions. We also found that USA300 biofilms cultured in sub-MIC amoxicillin were thicker, contained more pillar and channel structures, and were less porous than biofilms cultured without antibiotic. Biofilm formation in sub-MIC amoxicillin correlated with the production of extracellular DNA (eDNA). However, eDNA released by amoxicillin-induced cell lysis alone was evidently not sufficient to stimulate biofilm. Sub-MIC levels of two other cell wall-active agents with different mechanisms of action-d-cycloserine and fosfomycin-also stimulated eDNA-dependent biofilm, suggesting that biofilm formation may be a mechanistic adaptation to cell wall stress. Screening a USA300 mariner transposon library for mutants deficient in biofilm formation in sub-MIC amoxicillin identified numerous known mediators of S. aureus β-lactam resistance and biofilm formation, as well as novel genes not previously associated with these phenotypes. Our results link cell wall stress and biofilm formation in MRSA and suggest that eDNA-dependent biofilm formation by strain USA300 in low-dose amoxicillin is an inducible phenotype that can be used to identify novel genes impacting MRSA β-lactam resistance and biofilm formation.
Collapse
|
74
|
Abstract
Pathogenic bacteria must contend with immune systems that actively restrict the availability of nutrients and cofactors, and create a hostile growth environment. To deal with these hostile environments, pathogenic bacteria have evolved or acquired virulence determinants that aid in the acquisition of nutrients. This connection between pathogenesis and nutrition may explain why regulators of metabolism in nonpathogenic bacteria are used by pathogenic bacteria to regulate both metabolism and virulence. Such coordinated regulation is presumably advantageous because it conserves carbon and energy by aligning synthesis of virulence determinants with the nutritional environment. In Gram-positive bacterial pathogens, at least three metabolite-responsive global regulators, CcpA, CodY, and Rex, have been shown to coordinate the expression of metabolism and virulence genes. In this chapter, we discuss how environmental challenges alter metabolism, the regulators that respond to this altered metabolism, and how these regulators influence the host-pathogen interaction.
Collapse
|
75
|
Conlon BP, Rowe SE, Gandt AB, Nuxoll AS, Donegan NP, Zalis EA, Clair G, Adkins JN, Cheung AL, Lewis K. Persister formation in Staphylococcus aureus is associated with ATP depletion. Nat Microbiol 2016; 1:16051. [PMID: 27398229 PMCID: PMC4932909 DOI: 10.1038/nmicrobiol.2016.51] [Citation(s) in RCA: 455] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/15/2016] [Indexed: 01/06/2023]
Abstract
Persisters are dormant phenotypic variants of bacterial cells that are tolerant to killing by antibiotics1. Persisters are associated with chronic infections and antibiotic treatment failure1-3. In Escherichia coli, toxin/antitoxin (TA) modules have been linked to persister formation4-6. The mechanism of persister formation in Gram-positive bacteria is unknown. Staphylococcus aureus is a major human pathogen, responsible for a variety of chronic and relapsing infections such as osteomyelitis, endocarditis and infections of implanted devices. Deleting TA modules in S. aureus did not affect the level of persisters. Here we show that S. aureus persisters are produced due to a stochastic entrance into stationary phase accompanied by a drop in intracellular ATP. Cells expressing stationary state markers are present throughout the growth phase, increasing in frequency with cell density. Cell sorting revealed that expression of stationary markers is associated with a 100-1000 fold increase in the likelihood of survival to antibiotic challenge. The ATP level of the cell is predictive of bactericidal antibiotic efficacy and explains bacterial tolerance to antibiotics.
Collapse
Affiliation(s)
- Brian P. Conlon
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Massachusetts 02115
| | - Sarah E. Rowe
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Massachusetts 02115
- Synlogic, Cambridge, Massachusetts 02139
| | - Autumn Brown Gandt
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Massachusetts 02115
| | - Austin S. Nuxoll
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Massachusetts 02115
| | - Niles P. Donegan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, 03755
| | - Eliza A. Zalis
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Massachusetts 02115
| | - Geremy Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Joshua N. Adkins
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Ambrose L. Cheung
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, 03755
| | - Kim Lewis
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Massachusetts 02115
| |
Collapse
|
76
|
ppGpp negatively impacts ribosome assembly affecting growth and antimicrobial tolerance in Gram-positive bacteria. Proc Natl Acad Sci U S A 2016; 113:E1710-9. [PMID: 26951678 DOI: 10.1073/pnas.1522179113] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The stringent response is a survival mechanism used by bacteria to deal with stress. It is coordinated by the nucleotides guanosine tetraphosphate and pentaphosphate [(p)ppGpp], which interact with target proteins to promote bacterial survival. Although this response has been well characterized in proteobacteria, very little is known about the effectors of this signaling system in Gram-positive species. Here, we report on the identification of seven target proteins for the stringent response nucleotides in the Gram-positive bacterium Staphylococcus aureus We demonstrate that the GTP synthesis enzymes HprT and Gmk bind with a high affinity, leading to an inhibition of GTP production. In addition, we identified five putative GTPases--RsgA, RbgA, Era, HflX, and ObgE--as (p)ppGpp target proteins. We show that RsgA, RbgA, Era, and HflX are functional GTPases and that their activity is promoted in the presence of ribosomes but strongly inhibited by the stringent response nucleotides. By characterizing the function of RsgA in vivo, we ascertain that this protein is involved in ribosome assembly, with an rsgA deletion strain, or a strain inactivated for GTPase activity, displaying decreased growth, a decrease in the amount of mature 70S ribosomes, and an increased level of tolerance to antimicrobials. We additionally demonstrate that the interaction of ppGpp with cellular GTPases is not unique to the staphylococci, as homologs from Bacillus subtilis and Enterococcus faecalis retain this ability. Taken together, this study reveals ribosome inactivation as a previously unidentified mechanism through which the stringent response functions in Gram-positive bacteria.
Collapse
|
77
|
Li G, Xie F, Zhang Y, Bossé JT, Langford PR, Wang C. Role of (p)ppGpp in Viability and Biofilm Formation of Actinobacillus pleuropneumoniae S8. PLoS One 2015; 10:e0141501. [PMID: 26509499 PMCID: PMC4624843 DOI: 10.1371/journal.pone.0141501] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/08/2015] [Indexed: 12/04/2022] Open
Abstract
Actinobacillus pleuropneumoniae is a Gram-negative bacterium and the cause of porcine pleuropneumonia. When the bacterium encounters nutritional starvation, the relA-dependent (p)ppGpp-mediated stringent response is activated. The modified nucleotides guanosine 5’-diphosphate 3’-diphosphate (ppGpp) and guanosine 5’-triphosphate 3’-diphosphate (pppGpp) are known to be signaling molecules in other prokaryotes. Here, to investigate the role of (p)ppGpp in A. pleuropneumoniae, we created a mutant A. pleuropneumoniae strain, S8ΔrelA, which lacks the (p)ppGpp-synthesizing enzyme RelA, and investigated its phenotype in vitro. S8ΔrelA did not survive after stationary phase (starvation condition) and grew exclusively as non-extended cells. Compared to the wild-type (WT) strain, the S8ΔrelA mutant had an increased ability to form a biofilm. Transcriptional profiles of early stationary phase cultures revealed that a total of 405 bacterial genes were differentially expressed (including 380 up-regulated and 25 down-regulated genes) in S8ΔrelA as compared with the WT strain. Most of the up-regulated genes are involved in ribosomal structure and biogenesis, amino acid transport and metabolism, translation cell wall/membrane/envelope biogenesis. The data indicate that (p)ppGpp coordinates the growth, viability, morphology, biofilm formation and metabolic ability of A. pleuropneumoniae in starvation conditions. Furthermore, S8ΔrelA could not use certain sugars nor produce urease which has been associated with the virulence of A. pleuropneumoniae, suggesting that (p)ppGpp may directly or indirectly affect the pathogenesis of A. pleuropneumoniae during the infection process. In summary, (p)ppGpp signaling represents an essential component of the regulatory network governing stress adaptation and virulence in A. pleuropneumoniae.
Collapse
Affiliation(s)
- Gang Li
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fang Xie
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yanhe Zhang
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Janine T. Bossé
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary’s Campus, London, United Kingdom
| | - Paul R. Langford
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary’s Campus, London, United Kingdom
| | - Chunlai Wang
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- * E-mail:
| |
Collapse
|
78
|
Rosario-Cruz Z, Chahal HK, Mike LA, Skaar EP, Boyd JM. Bacillithiol has a role in Fe-S cluster biogenesis in Staphylococcus aureus. Mol Microbiol 2015; 98:218-42. [PMID: 26135358 DOI: 10.1111/mmi.13115] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2015] [Indexed: 01/20/2023]
Abstract
Staphylococcus aureus does not produce the low-molecular-weight (LMW) thiol glutathione, but it does produce the LMW thiol bacillithiol (BSH). To better understand the roles that BSH plays in staphylococcal metabolism, we constructed and examined strains lacking BSH. Phenotypic analysis found that the BSH-deficient strains cultured either aerobically or anaerobically had growth defects that were alleviated by the addition of exogenous iron (Fe) or the amino acids leucine and isoleucine. The activities of the iron-sulfur (Fe-S) cluster-dependent enzymes LeuCD and IlvD, which are required for the biosynthesis of leucine and isoleucine, were decreased in strains lacking BSH. The BSH-deficient cells also had decreased aconitase and glutamate synthase activities, suggesting a general defect in Fe-S cluster biogenesis. The phenotypes of the BSH-deficient strains were exacerbated in strains lacking the Fe-S cluster carrier Nfu and partially suppressed by multicopy expression of either sufA or nfu, suggesting functional overlap between BSH and Fe-S carrier proteins. Biochemical analysis found that SufA bound and transferred Fe-S clusters to apo-aconitase, verifying that it serves as an Fe-S cluster carrier. The results presented are consistent with the hypothesis that BSH has roles in Fe homeostasis and the carriage of Fe-S clusters to apo-proteins in S. aureus.
Collapse
Affiliation(s)
- Zuelay Rosario-Cruz
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Harsimranjit K Chahal
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Laura A Mike
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| |
Collapse
|
79
|
Lister JL, Horswill AR. Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front Cell Infect Microbiol 2015. [PMID: 25566513 DOI: 10.3389/fcimb201400178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Staphylococcus aureus is a major cause of nosocomial and community-acquired infections and represents a significant burden on the healthcare system. S. aureus attachment to medical implants and host tissue, and the establishment of a mature biofilm, play an important role in the persistence of chronic infections. The formation of a biofilm, and encasement of cells in a polymer-based matrix, decreases the susceptibility to antimicrobials and immune defenses, making these infections difficult to eradicate. During infection, dispersal of cells from the biofilm can result in spread to secondary sites and worsening of the infection. In this review, we discuss the current understanding of the pathways behind biofilm dispersal in S. aureus, with a focus on enzymatic and newly described broad-spectrum dispersal mechanisms. Additionally, we explore potential applications of dispersal in the treatment of biofilm-mediated infections.
Collapse
Affiliation(s)
- Jessica L Lister
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa Iowa City, IA, USA
| | - Alexander R Horswill
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa Iowa City, IA, USA
| |
Collapse
|
80
|
Kästle B, Geiger T, Gratani FL, Reisinger R, Goerke C, Borisova M, Mayer C, Wolz C. rRNA regulation during growth and under stringent conditions in Staphylococcus aureus. Environ Microbiol 2015; 17:4394-405. [PMID: 25845735 DOI: 10.1111/1462-2920.12867] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/31/2015] [Indexed: 12/01/2022]
Abstract
The control of rRNA synthesis and, thereby, translation is vital for adapting to changing environmental conditions. The decrease of rRNA is a common feature of the stringent response, which is elicited by the rapid synthesis of (p)ppGpp. Here we analysed the properties and regulation of one representative rRNA operon of Staphylococcus aureus under stringent conditions and during growth. The promoters, P1 and P2, are severely downregulated at low intracellular guanosine triphosphate (GTP) concentrations either imposed by stringent conditions or in a guanine auxotroph guaBA mutant. In a (p)ppGpp(0) strain, the GTP level increased under stringent conditions, and rRNA transcription was upregulated. The correlation of the intracellular GTP levels and rRNA promoter activity could be linked to GTP nucleotides in the initiation region of both promoters at positions between +1 and +4. This indicates that not only transcriptional initiation, but also the first steps of elongation, requires high concentrations of free nucleotides. However, the severe downregulation of rRNA in post-exponential growth phase is independent of (p)ppGpp, the composition of the initiation region and the intracellular nucleotide pool. In summary, rRNA transcription in S. aureus is only partially and presumably indirectly controlled by (p)ppGpp.
Collapse
Affiliation(s)
- Benjamin Kästle
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Elfriede-Aulhorn-Strasse 6, Tübingen, 72076, Germany
| | - Tobias Geiger
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Elfriede-Aulhorn-Strasse 6, Tübingen, 72076, Germany
| | - Fabio Lino Gratani
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Elfriede-Aulhorn-Strasse 6, Tübingen, 72076, Germany
| | - Rudolf Reisinger
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Elfriede-Aulhorn-Strasse 6, Tübingen, 72076, Germany
| | - Christiane Goerke
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Elfriede-Aulhorn-Strasse 6, Tübingen, 72076, Germany
| | - Marina Borisova
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Elfriede-Aulhorn-Strasse 6, Tübingen, 72076, Germany
| | - Christoph Mayer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Elfriede-Aulhorn-Strasse 6, Tübingen, 72076, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Elfriede-Aulhorn-Strasse 6, Tübingen, 72076, Germany
| |
Collapse
|
81
|
A mutation of RNA polymerase β' subunit (RpoC) converts heterogeneously vancomycin-intermediate Staphylococcus aureus (hVISA) into "slow VISA". Antimicrob Agents Chemother 2015; 59:4215-25. [PMID: 25941225 DOI: 10.1128/aac.00135-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/28/2015] [Indexed: 12/13/2022] Open
Abstract
Various mutations in the rpoB gene, which encodes the RNA polymerase β subunit, are associated with increased vancomycin (VAN) resistance in vancomycin-intermediate Staphylococcus aureus (VISA) and heterogeneously VISA (hVISA) strains. We reported that rpoB mutations are also linked to the expression of the recently found "slow VISA" (sVISA) phenotype (M. Saito, Y. Katayama, T. Hishinuma, A. Iwamoto, Y. Aiba, K Kuwahara-Arai, L. Cui, M. Matsuo, N. Aritaka, and K. Hiramatsu, Antimicrob Agents Chemother 58:5024-5035, 2014, http://dx.doi.org/10.1128/AAC.02470-13). Because RpoC and RpoB are components of RNA polymerase, we examined the effect of the rpoC(P440L) mutation on the expression of the sVISA phenotype in the Mu3fdh2*V6-5 strain (V6-5), which was derived from a previously reported hVISA strain with the VISA phenotype. V6-5 had an extremely prolonged doubling time (DT) (72 min) and high vancomycin MIC (16 mg/liter). However, the phenotype of V6-5 was unstable, and the strain frequently reverted to hVISA with concomitant loss of low growth rate, cell wall thickness, and reduced autolysis. Whole-genome sequencing of phenotypic revertant strain V6-5-L1 and comparison with V6-5 revealed a second mutation, F562L, in rpoC. Introduction of the wild-type (WT) rpoC gene using a multicopy plasmid resolved the sVISA phenotype of V6-5, indicating that the rpoC(P440L) mutant expressed the sVISA phenotype in hVISA. To investigate the mechanisms of resistance in the sVISA strain, we independently isolated an additional 10 revertants to hVISA and VISA. In subsequent whole-genome analysis, we identified compensatory mutations in the genes of three distinct functional categories: the rpoC gene itself as regulatory mutations, peptidoglycan biosynthesis genes, and relQ, which is involved in the stringent response. It appears that the rpoC(P440L) mutation causes the sVISA phenotype by augmenting cell wall peptidoglycan synthesis and through the control of the stringent response.
Collapse
|
82
|
Bugrysheva JV, Pappas CJ, Terekhova DA, Iyer R, Godfrey HP, Schwartz I, Cabello FC. Characterization of the RelBbu Regulon in Borrelia burgdorferi Reveals Modulation of Glycerol Metabolism by (p)ppGpp. PLoS One 2015; 10:e0118063. [PMID: 25688856 PMCID: PMC4331090 DOI: 10.1371/journal.pone.0118063] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 01/07/2015] [Indexed: 02/07/2023] Open
Abstract
The bacterial stringent response is triggered by deficiencies of available nutrients and other environmental stresses. It is mediated by 5'-triphosphate-guanosine-3'-diphosphate and 5'-diphosphate-guanosine-3'-diphosphate (collectively (p)ppGpp) and generates global changes in gene expression and metabolism that enable bacteria to adapt to and survive these challenges. Borrelia burgdorferi encounters multiple stressors in its cycling between ticks and mammals that could trigger the stringent response. We have previously shown that the B. burgdorferi stringent response is mediated by a single enzyme, RelBbu, with both (p)ppGpp synthase and hydrolase activities, and that a B. burgdorferi 297 relBbu null deletion mutant was defective in adapting to stationary phase, incapable of down-regulating synthesis of rRNA and could not infect mice. We have now used this deletion mutant and microarray analysis to identify genes comprising the rel regulon in B. burgdorferi cultured at 34°C, and found that transcription of genes involved in glycerol metabolism is induced by relBbu. Culture of the wild type parental strain, the relBbu deletion mutant and its complemented derivative at 34°C and 25°C in media containing glucose or glycerol as principal carbon sources revealed a growth defect in the mutant, most evident at the lower temperature. Transcriptional analysis of the glp operon for glycerol uptake and metabolism in these three strains confirmed that relBbu was necessary and sufficient to increase transcription of this operon in the presence of glycerol at both temperatures. These results confirm and extend previous findings regarding the stringent response in B. burgdorferi. They also demonstrate that the stringent response regulates glycerol metabolism in this organism and is likely crucial for its optimal growth in ticks.
Collapse
Affiliation(s)
- Julia V. Bugrysheva
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, 10595, United States of America
| | - Christopher J. Pappas
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, 10595, United States of America
| | - Darya A. Terekhova
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, 10595, United States of America
| | - Radha Iyer
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, 10595, United States of America
| | - Henry P. Godfrey
- Department of Pathology, New York Medical College, Valhalla, New York, 10595, United States of America
| | - Ira Schwartz
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, 10595, United States of America
| | - Felipe C. Cabello
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, 10595, United States of America
- * E-mail:
| |
Collapse
|
83
|
Liu K, Bittner AN, Wang JD. Diversity in (p)ppGpp metabolism and effectors. Curr Opin Microbiol 2015; 24:72-9. [PMID: 25636134 DOI: 10.1016/j.mib.2015.01.012] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/09/2015] [Accepted: 01/12/2015] [Indexed: 12/25/2022]
Abstract
Bacteria produce guanosine tetraphosphate and pentaphosphate, collectively named (p)ppGpp, in response to a variety of environmental stimuli. These two remarkable molecules regulate many cellular processes, including the central dogma processes and metabolism, to ensure survival and adaptation. Work in Escherichia coli laid the foundation for understanding the molecular details of (p)ppGpp and its cellular functions. As recent studies expand to other species, it is apparent that there exists considerable variation, with respect to not only (p)ppGpp metabolism, but also to its mechanism of action. From an evolutionary standpoint, this diversification is an elegant example of how different species adapt a particular regulatory network to their diverse lifestyles.
Collapse
Affiliation(s)
- Kuanqing Liu
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alycia N Bittner
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jue D Wang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
84
|
Many means to a common end: the intricacies of (p)ppGpp metabolism and its control of bacterial homeostasis. J Bacteriol 2015; 197:1146-56. [PMID: 25605304 DOI: 10.1128/jb.02577-14] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In nearly all bacterial species examined so far, amino acid starvation triggers the rapid accumulation of the nucleotide second messenger (p)ppGpp, the effector of the stringent response. While for years the enzymes involved in (p)ppGpp metabolism and the significance of (p)ppGpp accumulation to stress survival were considered well defined, a recent surge of interest in the field has uncovered an unanticipated level of diversity in how bacteria metabolize and utilize (p)ppGpp to rapidly synchronize a variety of biological processes important for growth and stress survival. In addition to the classic activation of the stringent response, it has become evident that (p)ppGpp exerts differential effects on cell physiology in an incremental manner rather than simply acting as a biphasic switch that controls growth or stasis. Of particular interest is the intimate relationship of (p)ppGpp with persister cell formation and virulence, which has spurred the pursuit of (p)ppGpp inhibitors as a means to control recalcitrant infections. Here, we present an overview of the enzymes responsible for (p)ppGpp metabolism, elaborate on the intricacies that link basal production of (p)ppGpp to bacterial homeostasis, and discuss the implications of targeting (p)ppGpp synthesis as a means to disrupt long-term bacterial survival strategies.
Collapse
|
85
|
Corrigan RM, Bowman L, Willis AR, Kaever V, Gründling A. Cross-talk between two nucleotide-signaling pathways in Staphylococcus aureus. J Biol Chem 2015; 290:5826-39. [PMID: 25575594 PMCID: PMC4342491 DOI: 10.1074/jbc.m114.598300] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nucleotide-signaling pathways are found in all kingdoms of life and are utilized to coordinate a rapid response to external stimuli. The stringent response alarmones guanosine tetra- (ppGpp) and pentaphosphate (pppGpp) control a global response allowing cells to adapt to starvation conditions such as amino acid depletion. One more recently discovered signaling nucleotide is the secondary messenger cyclic diadenosine monophosphate (c-di-AMP). Here, we demonstrate that this signaling nucleotide is essential for the growth of Staphylococcus aureus, and its increased production during late growth phases indicates that c-di-AMP controls processes that are important for the survival of cells in stationary phase. By examining the transcriptional profile of cells with high levels of c-di-AMP, we reveal a significant overlap with a stringent response transcription signature. Examination of the intracellular nucleotide levels under stress conditions provides further evidence that high levels of c-di-AMP lead to an activation of the stringent response through a RelA/SpoT homologue (RSH) enzyme-dependent increase in the (p)ppGpp levels. This activation is shown to be indirect as c-di-AMP does not interact directly with the RSH protein. Our data extend this interconnection further by showing that the S. aureus c-di-AMP phosphodiesterase enzyme GdpP is inhibited in a dose-dependent manner by ppGpp, which itself is not a substrate for this enzyme. Altogether, these findings add a new layer of complexity to our understanding of nucleotide signaling in bacteria as they highlight intricate interconnections between different nucleotide-signaling networks.
Collapse
Affiliation(s)
- Rebecca M Corrigan
- From the Section of Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom and
| | - Lisa Bowman
- From the Section of Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom and
| | - Alexandra R Willis
- From the Section of Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom and
| | - Volkhard Kaever
- the Research Core Unit Metabolomics, Hannover Medical School, Hannover D-306625, Germany
| | - Angelika Gründling
- From the Section of Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom and
| |
Collapse
|
86
|
Lister JL, Horswill AR. Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front Cell Infect Microbiol 2014; 4:178. [PMID: 25566513 PMCID: PMC4275032 DOI: 10.3389/fcimb.2014.00178] [Citation(s) in RCA: 420] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/05/2014] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus is a major cause of nosocomial and community-acquired infections and represents a significant burden on the healthcare system. S. aureus attachment to medical implants and host tissue, and the establishment of a mature biofilm, play an important role in the persistence of chronic infections. The formation of a biofilm, and encasement of cells in a polymer-based matrix, decreases the susceptibility to antimicrobials and immune defenses, making these infections difficult to eradicate. During infection, dispersal of cells from the biofilm can result in spread to secondary sites and worsening of the infection. In this review, we discuss the current understanding of the pathways behind biofilm dispersal in S. aureus, with a focus on enzymatic and newly described broad-spectrum dispersal mechanisms. Additionally, we explore potential applications of dispersal in the treatment of biofilm-mediated infections.
Collapse
Affiliation(s)
- Jessica L Lister
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa Iowa City, IA, USA
| | - Alexander R Horswill
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa Iowa City, IA, USA
| |
Collapse
|
87
|
Biros Y, Çokgör EU, Yağcı N, Pala-Ozkok I, Çakar ZP, Sözen S, Orhon D. Effect of acetate to biomass ratio on simultaneous polyhydroxybutyrate generation and direct microbial growth in fast growing microbial culture. BIORESOURCE TECHNOLOGY 2014; 171:314-322. [PMID: 25218203 DOI: 10.1016/j.biortech.2014.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/25/2014] [Accepted: 08/04/2014] [Indexed: 06/03/2023]
Abstract
The study investigated the effect of variations in the acetate to biomass ratio on substrate storage potential, and the kinetics of substrate utilization. A series of batch experiments were conducted with biomass taken from the fill and draw reactor operated at a sludge age of 2 d. One of the batch reactors duplicated the substrate loading in the main reactor. The others were started with different initial acetate to biomass ratios both in lower and higher ranges. Increasing available acetate did not totally divert excess substrate to storage; the microbial culture adjusted the kinetics of the metabolic reactions to a higher growth rate so that more substrate could be utilized for direct growth at high acetate levels. Conversely, storage rate was increased, utilizing a higher substrate fraction for polyhydroxybutyrate generation when acetate concentration was lowered. The physiological and molecular bases of storage at low substrate levels were discussed.
Collapse
Affiliation(s)
- Yester Biros
- Faculty of Civil Engineering, Environmental Engineering Department, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Emine Ubay Çokgör
- Faculty of Civil Engineering, Environmental Engineering Department, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Nevin Yağcı
- Faculty of Civil Engineering, Environmental Engineering Department, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Ilke Pala-Ozkok
- Faculty of Civil Engineering, Environmental Engineering Department, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Zeynep Petek Çakar
- Faculty of Science and Letters, Molecular Biology and Genetics Department, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey; Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Seval Sözen
- Faculty of Civil Engineering, Environmental Engineering Department, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey.
| | - Derin Orhon
- Faculty of Civil Engineering, Environmental Engineering Department, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey; The Science Academy, 34353 Beşiktaş, Istanbul, Turkey
| |
Collapse
|
88
|
Sadaka A, Palmer K, Suzuki T, Gilmore MS. In vitro and in vivo models of Staphylococcus aureus endophthalmitis implicate specific nutrients in ocular infection. PLoS One 2014; 9:e110872. [PMID: 25340474 PMCID: PMC4207797 DOI: 10.1371/journal.pone.0110872] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 09/18/2014] [Indexed: 01/28/2023] Open
Abstract
PURPOSE To define global transcriptional responses of Staphylococcus aureus and its codY mutant (CodY is a transcription regulator of virulence and metabolic genes in response to branched-chain amino acids) when growing in bovine aqueous (AH) and vitreous humor (VH) in vitro, and to investigate the impact of codY deletion on S. aureus virulence in a novel murine anterior chamber (AC) infection model. METHODS For the in vitro model, differential transcriptomic gene expression of S. aureus and its codY mutant grown in chemically defined medium (CDM), AH, and VH was analyzed. Furthermore, the strains were inoculated into the AC of mice. Changes in bacterial growth, electroretinography and inflammation scores were monitored. RESULTS Bovine AH and VH provide sufficient nutrition for S. aureus growth in vitro. Transcriptome analysis identified 72 unique open reading frames differentially regulated ≥10-fold between CDM, AH, and VH. In the AC model, we found comparable growth of the codY mutant and wild type strains in vivo. Average inflammation scores and retinal function were significantly worse for codY mutant-infected eyes at 24 h post-infection. CONCLUSION Our in vitro bovine AH and VH models identified likely nutrient sources for S. aureus in the ocular milieu. The in vivo model suggests that control of branched-chain amino acid availability has therapeutic potential in limiting S. aureus endophthalmitis severity.
Collapse
Affiliation(s)
- Ama Sadaka
- Departments of Ophthalmology, and Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- The Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
- Harvard Microbial Sciences Initiative, Cambridge, Massachusetts, United States of America
| | - Kelli Palmer
- Departments of Ophthalmology, and Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- The Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
- Harvard Microbial Sciences Initiative, Cambridge, Massachusetts, United States of America
| | - Takashi Suzuki
- Departments of Ophthalmology, and Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- The Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
- Harvard Microbial Sciences Initiative, Cambridge, Massachusetts, United States of America
| | - Michael S. Gilmore
- Departments of Ophthalmology, and Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- The Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
- Harvard Microbial Sciences Initiative, Cambridge, Massachusetts, United States of America
| |
Collapse
|
89
|
The effect of skin fatty acids on Staphylococcus aureus. Arch Microbiol 2014; 197:245-67. [PMID: 25325933 PMCID: PMC4326651 DOI: 10.1007/s00203-014-1048-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/19/2014] [Accepted: 10/06/2014] [Indexed: 12/14/2022]
Abstract
Staphylococcus aureus is a commensal of the human nose and skin. Human skin fatty acids, in particular cis-6-hexadecenoic acid (C-6-H), have high antistaphylococcal activity and can inhibit virulence determinant production. Here, we show that sub-MIC levels of C-6-H result in induction of increased resistance. The mechanism(s) of C-6-H activity was investigated by combined transcriptome and proteome analyses. Proteome analysis demonstrated a pleiotropic effect of C-6-H on virulence determinant production. In response to C-6-H, transcriptomics revealed altered expression of over 500 genes, involved in many aspects of virulence and cellular physiology. The expression of toxins (hla, hlb, hlgBC) was reduced, whereas that of host defence evasion components (cap, sspAB, katA) was increased. In particular, members of the SaeRS regulon had highly reduced expression, and the use of specific mutants revealed that the effect on toxin production is likely mediated via SaeRS.
Collapse
|
90
|
Hartmann T, Baronian G, Nippe N, Voss M, Schulthess B, Wolz C, Eisenbeis J, Schmidt-Hohagen K, Gaupp R, Sunderkötter C, Beisswenger C, Bals R, Somerville GA, Herrmann M, Molle V, Bischoff M. The catabolite control protein E (CcpE) affects virulence determinant production and pathogenesis of Staphylococcus aureus. J Biol Chem 2014; 289:29701-11. [PMID: 25193664 DOI: 10.1074/jbc.m114.584979] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Carbon metabolism and virulence determinant production are often linked in pathogenic bacteria, and several regulatory elements have been reported to mediate this linkage in Staphylococcus aureus. Previously, we described a novel protein, catabolite control protein E (CcpE) that functions as a regulator of the tricarboxylic acid cycle. Here we demonstrate that CcpE also regulates virulence determinant biosynthesis and pathogenesis. Specifically, deletion of ccpE in S. aureus strain Newman revealed that CcpE affects transcription of virulence factors such as capA, the first gene in the capsule biosynthetic operon; hla, encoding α-toxin; and psmα, encoding the phenol-soluble modulin cluster α. Electrophoretic mobility shift assays demonstrated that CcpE binds to the hla promoter. Mice challenged with S. aureus strain Newman or its isogenic ΔccpE derivative revealed increased disease severity in the ΔccpE mutant using two animal models; an acute lung infection model and a skin infection model. Complementation of the mutant with the ccpE wild-type allele restored all phenotypes, demonstrating that CcpE is negative regulator of virulence in S. aureus.
Collapse
Affiliation(s)
- Torsten Hartmann
- From the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany
| | - Grégory Baronian
- the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université Montpellier 2, CNRS, UMR 5235, 34090 Montpellier, France
| | - Nadine Nippe
- the Institute of Immunology, University of Münster, 48149 Münster, Germany
| | - Meike Voss
- the Department of Internal Medicine V-Pulmonology, Allergology and Critical Care Medicine, Saarland University Medical Centre, 66421 Homburg/Saar, Germany
| | - Bettina Schulthess
- the Institute of Medical Microbiology, University of Zürich, 8006 Zürich, Switzerland
| | - Christiane Wolz
- the Institute of Medical Microbiology and Hygiene, University Hospital of Tübingen, 72076 Tübingen, Germany
| | - Janina Eisenbeis
- From the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany
| | - Kerstin Schmidt-Hohagen
- the Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Rosmarie Gaupp
- From the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany
| | - Cord Sunderkötter
- the Department of Dermatology, University of Münster, 48149 Münster, Germany, and
| | - Christoph Beisswenger
- the Department of Internal Medicine V-Pulmonology, Allergology and Critical Care Medicine, Saarland University Medical Centre, 66421 Homburg/Saar, Germany
| | - Robert Bals
- the Department of Internal Medicine V-Pulmonology, Allergology and Critical Care Medicine, Saarland University Medical Centre, 66421 Homburg/Saar, Germany
| | - Greg A Somerville
- the School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska 68583-0903
| | - Mathias Herrmann
- From the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany
| | - Virginie Molle
- the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université Montpellier 2, CNRS, UMR 5235, 34090 Montpellier, France
| | - Markus Bischoff
- From the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany,
| |
Collapse
|
91
|
A broad-spectrum antibiofilm peptide enhances antibiotic action against bacterial biofilms. Antimicrob Agents Chemother 2014; 58:5363-71. [PMID: 24982074 DOI: 10.1128/aac.03163-14] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Biofilm-related infections account for at least 65% of all human infections, but there are no available antimicrobials that specifically target biofilms. Their elimination by available treatments is inefficient since biofilm cells are between 10- and 1,000-fold more resistant to conventional antibiotics than planktonic cells. Here we describe the synergistic interactions, with different classes of antibiotics, of a recently characterized antibiofilm peptide, 1018, to potently prevent and eradicate bacterial biofilms formed by multidrug-resistant ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens. Combinations of peptide 1018 and the antibiotic ceftazidime, ciprofloxacin, imipenem, or tobramycin were synergistic in 50% of assessments and decreased by 2- to 64-fold the concentration of antibiotic required to treat biofilms formed by Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, Salmonella enterica, and methicillin-resistant Staphylococcus aureus. Furthermore, in flow cell biofilm studies, combinations of low, subinhibitory levels of the peptide (0.8 μg/ml) and ciprofloxacin (40 ng/ml) decreased dispersal and triggered cell death in mature P. aeruginosa biofilms. In addition, short-term treatments with the peptide in combination with ciprofloxacin prevented biofilm formation and reduced P. aeruginosa PA14 preexisting biofilms. PCR studies indicated that the peptide suppressed the expression of various antibiotic targets in biofilm cells. Thus, treatment with the peptide represents a novel strategy to potentiate antibiotic activity against biofilms formed by multidrug-resistant pathogens.
Collapse
|
92
|
A (p)ppGpp-null mutant of Haemophilus ducreyi is partially attenuated in humans due to multiple conflicting phenotypes. Infect Immun 2014; 82:3492-502. [PMID: 24914217 DOI: 10.1128/iai.01994-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
(p)ppGpp responds to nutrient limitation through a global change in gene regulation patterns to increase survival. The stringent response has been implicated in the virulence of several pathogenic bacterial species. Haemophilus ducreyi, the causative agent of chancroid, has homologs of both relA and spoT, which primarily synthesize and hydrolyze (p)ppGpp in Escherichia coli. We constructed relA and relA spoT deletion mutants to assess the contribution of (p)ppGpp to H. ducreyi pathogenesis. Both the relA single mutant and the relA spoT double mutant failed to synthesize (p)ppGpp, suggesting that relA is the primary synthetase of (p)ppGpp in H. ducreyi. Compared to the parent strain, the double mutant was partially attenuated for pustule formation in human volunteers. The double mutant had several phenotypes that favored attenuation, including increased sensitivity to oxidative stress. The increased sensitivity to oxidative stress could be complemented in trans. However, the double mutant also exhibited phenotypes that favored virulence. When grown to the mid-log phase, the double mutant was significantly more resistant than its parent to being taken up by human macrophages and exhibited increased transcription of lspB, which is involved in resistance to phagocytosis. Additionally, compared to the parent, the double mutant also exhibited prolonged survival in the stationary phase. In E. coli, overexpression of DksA compensates for the loss of (p)ppGpp; the H. ducreyi double mutant expressed higher transcript levels of dksA than the parent strain. These data suggest that the partial attenuation of the double mutant is likely the net result of multiple conflicting phenotypes.
Collapse
|
93
|
Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Pathog 2014; 10:e1004152. [PMID: 24852171 PMCID: PMC4031209 DOI: 10.1371/journal.ppat.1004152] [Citation(s) in RCA: 390] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/14/2014] [Indexed: 11/22/2022] Open
Abstract
Bacteria form multicellular communities known as biofilms that cause two thirds of all infections and demonstrate a 10 to 1000 fold increase in adaptive resistance to conventional antibiotics. Currently, there are no approved drugs that specifically target bacterial biofilms. Here we identified a potent anti-biofilm peptide 1018 that worked by blocking (p)ppGpp, an important signal in biofilm development. At concentrations that did not affect planktonic growth, peptide treatment completely prevented biofilm formation and led to the eradication of mature biofilms in representative strains of both Gram-negative and Gram-positive bacterial pathogens including Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, methicillin resistant Staphylococcus aureus, Salmonella Typhimurium and Burkholderia cenocepacia. Low levels of the peptide led to biofilm dispersal, while higher doses triggered biofilm cell death. We hypothesized that the peptide acted to inhibit a common stress response in target species, and that the stringent response, mediating (p)ppGpp synthesis through the enzymes RelA and SpoT, was targeted. Consistent with this, increasing (p)ppGpp synthesis by addition of serine hydroxamate or over-expression of relA led to reduced susceptibility to the peptide. Furthermore, relA and spoT mutations blocking production of (p)ppGpp replicated the effects of the peptide, leading to a reduction of biofilm formation in the four tested target species. Also, eliminating (p)ppGpp expression after two days of biofilm growth by removal of arabinose from a strain expressing relA behind an arabinose-inducible promoter, reciprocated the effect of peptide added at the same time, leading to loss of biofilm. NMR and chromatography studies showed that the peptide acted on cells to cause degradation of (p)ppGpp within 30 minutes, and in vitro directly interacted with ppGpp. We thus propose that 1018 targets (p)ppGpp and marks it for degradation in cells. Targeting (p)ppGpp represents a new approach against biofilm-related drug resistance. Bacteria colonize most environments, including the host by forming biofilms, which are extremely (adaptively) resistant to conventional antibiotics. Biofilms cause at least 65% of all human infections, being particularly prevalent in device-related infections, infections on body surfaces and in chronic infections. Currently there is a severe problem with antibiotic-resistant organisms, given the explosion of antibiotic resistance whereby our entire arsenal of antibiotics is gradually losing effectiveness, combined with the paucity of truly novel compounds under development or entering the clinic. Thus the even greater resistance of biofilms adds to the major concerns being expressed by physicians and medical authorities. Consequently, there is an urgent need for new strategies to treat biofilm infections and we demonstrate in the present study an approach, based on the inhibition of (p)ppGpp by a small peptide, that eradicates biofilms formed by four of the so-called ESKAPE pathogens, identified by the Infectious Diseases Society of America as the most recalcitrant and resistant organisms in our society. The strategy presented here represents a significant advance in the search for new agents that specifically target bacterial biofilms.
Collapse
|
94
|
Lindsay CD, Griffiths GD. Addressing bioterrorism concerns: options for investigating the mechanism of action of Staphylococcus aureus enterotoxin B. Hum Exp Toxicol 2013; 32:606-19. [PMID: 23023027 DOI: 10.1177/0960327112458941] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Staphylococcal enterotoxin B (SEB) is of concern to military and civilian populations as a bioterrorism threat agent. It is a highly potent toxin produced by Staphylococcus aureus and is stable in storage and under aerosolisation; it is able to produce prolonged highly incapacitating illness at very low-inhaled doses and death at elevated doses. Concerns regarding SEB are compounded by the lack of effective medical countermeasures for mass treatment of affected populations. This article considers the mechanism of action of SEB, the availability of appropriate experimental models for evaluating the efficacy of candidate medical countermeasures with particular reference to the need to realistically model SEB responses in man and the availability of candidate countermeasures (with an emphasis on commercial off-the-shelf options). The proposed in vitro approaches would be in keeping with Dstl’s commitment to reduction, refinement and replacement of animal models in biomedical research, particularly in relation to identifying valid alternatives to the use of nonhuman primates in experimental studies.
Collapse
Affiliation(s)
- C D Lindsay
- Biomedical Sciences Department, Dstl Porton Down, Salisbury, Wiltshire, UK.
| | | |
Collapse
|
95
|
Two small (p)ppGpp synthases in Staphylococcus aureus mediate tolerance against cell envelope stress conditions. J Bacteriol 2013; 196:894-902. [PMID: 24336937 DOI: 10.1128/jb.01201-13] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The stringent response is a conserved global regulatory mechanism that is related to the synthesis of (p)ppGpp nucleotides. Gram-positive bacteria, such as Staphylococcus aureus, possess three (p)ppGpp synthases: the bifunctional RSH (RelA/SpoT homolog) protein, which consists of a (p)ppGpp synthase and a (p)ppGpp hydrolase domain, and two truncated (p)ppGpp synthases, designated RelP and RelQ. Here, we characterized these two small (p)ppGpp synthases. Biochemical analyses of purified proteins and in vivo studies revealed a stronger synthetic activity for RelP than for RelQ. However, both enzymes prefer GDP over GTP as the pyrophosphate recipient to synthesize ppGpp. Each of the enzymes was shown to be responsible for the essentiality of the (p)ppGpp hydrolase domain of the RSH protein. The staphylococcal RSH-hydrolase is an efficient enzyme that prevents the toxic accumulation of (p)ppGpp. Expression of (p)ppGpp synthases in a hydrolase-negative background leads not only to growth arrest but also to cell death. Transcriptional analyses showed that relP and relQ are strongly induced upon vancomycin and ampicillin treatments. Accordingly, mutants lacking relP and relQ showed a significantly reduced survival rate upon treatments with cell wall-active antibiotics. Thus, RelP and RelQ are active (p)ppGpp synthases in S. aureus that are induced under cell envelope stress to mediate tolerance against these conditions.
Collapse
|
96
|
Intersection of the stringent response and the CodY regulon in low GC Gram-positive bacteria. Int J Med Microbiol 2013; 304:150-5. [PMID: 24462007 DOI: 10.1016/j.ijmm.2013.11.013] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bacteria adapt efficiently to a wide range of nutritional environments. Therefore, they possess overlapping regulatory systems that detect intracellular pools of key metabolites. In low GC Gram-positive bacteria, two global regulators, the stringent response and the CodY repressor, respond to an intracellular decrease in amino acid content. Amino acid limitation leads to rapid synthesis of the alarmones pppGpp and ppGpp through the stringent response and inactivates the CodY repressor. Two cofactors, branched chain amino acids (BCAA) and GTP, are ligands for CodY and facilitate binding to the target DNA. Because (p)ppGpp synthesis and accumulation evidentially reduce the intracellular GTP pool, CodY is released from the DNA, and transcription of target genes is altered. Here, we focus on this intimate link between the stringent response and CodY regulation in different Gram-positive species.
Collapse
|
97
|
Basal levels of (p)ppGpp in Enterococcus faecalis: the magic beyond the stringent response. mBio 2013; 4:e00646-13. [PMID: 24065631 PMCID: PMC3781836 DOI: 10.1128/mbio.00646-13] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The stringent response (SR), mediated by the alarmone (p)ppGpp, is a conserved bacterial adaptation system controlling broad metabolic alterations necessary for survival under adverse conditions. In Enterococcus faecalis, production of (p)ppGpp is controlled by the bifunctional protein RSH (for "Rel SpoT homologue"; also known as RelA) and by the monofunctional synthetase RelQ. Previous characterization of E. faecalis strains lacking rsh, relQ, or both revealed that RSH is responsible for activation of the SR and that alterations in (p)ppGpp production negatively impact bacterial stress survival and virulence. Despite its well-characterized role as the effector of the SR, the significance of (p)ppGpp during balanced growth remains poorly understood. Microarrays of E. faecalis strains producing different basal amounts of (p)ppGpp identified several genes and pathways regulated by modest changes in (p)ppGpp. Notably, expression of numerous genes involved in energy generation were induced in the rsh relQ [(p)ppGpp(0)] strain, suggesting that a lack of basal (p)ppGpp places the cell in a "transcriptionally relaxed" state. Alterations in the fermentation profile and increased production of H2O2 in the (p)ppGpp(0) strain substantiate the observed transcriptional changes. We confirm that, similar to what is seen in Bacillus subtilis, (p)ppGpp directly inhibits the activity of enzymes involved in GTP biosynthesis, and complete loss of (p)ppGpp leads to dysregulation of GTP homeostasis. Finally, we show that the association of (p)ppGpp with antibiotic survival does not relate to the SR but rather relates to basal (p)ppGpp pools. Collectively, this study highlights the critical but still underappreciated role of basal (p)ppGpp pools under balanced growth conditions. IMPORTANCE Drug-resistant bacterial infections continue to pose a significant public health threat by limiting therapeutic options available to care providers. The stringent response (SR), mediated by the accumulation of two modified guanine nucleotides collectively known as (p)ppGpp, is a highly conserved stress response that broadly remodels bacterial physiology to a survival state. Given the strong correlation of the SR with the ability of bacteria to survive antibiotic treatment and the direct association of (p)ppGpp production with bacterial infectivity, understanding how bacteria produce and utilize (p)ppGpp may reveal potential targets for the development of new antimicrobial therapies. Using the multidrug-resistant pathogen Enterococcus faecalis as a model, we show that small alterations to (p)ppGpp levels, well below concentrations needed to trigger the SR, severely affected bacterial metabolism and antibiotic survival. Our findings highlight the often-underappreciated contribution of basal (p)ppGpp levels to metabolic balance and stress tolerance in bacteria.
Collapse
|
98
|
Schoenfelder SMK, Marincola G, Geiger T, Goerke C, Wolz C, Ziebuhr W. Methionine biosynthesis in Staphylococcus aureus is tightly controlled by a hierarchical network involving an initiator tRNA-specific T-box riboswitch. PLoS Pathog 2013; 9:e1003606. [PMID: 24068926 PMCID: PMC3771891 DOI: 10.1371/journal.ppat.1003606] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/24/2013] [Indexed: 12/03/2022] Open
Abstract
In line with the key role of methionine in protein biosynthesis initiation and many cellular processes most microorganisms have evolved mechanisms to synthesize methionine de novo. Here we demonstrate that, in the bacterial pathogen Staphylococcus aureus, a rare combination of stringent response-controlled CodY activity, T-box riboswitch and mRNA decay mechanisms regulate the synthesis and stability of methionine biosynthesis metICFE-mdh mRNA. In contrast to other Bacillales which employ S-box riboswitches to control methionine biosynthesis, the S. aureus metICFE-mdh mRNA is preceded by a 5′-untranslated met leader RNA harboring a T-box riboswitch. Interestingly, this T-box riboswitch is revealed to specifically interact with uncharged initiator formylmethionyl-tRNA (tRNAifMet) while binding of elongator tRNAMet proved to be weak, suggesting a putative additional function of the system in translation initiation control. met leader RNA/metICFE-mdh operon expression is under the control of the repressor CodY which binds upstream of the met leader RNA promoter. As part of the metabolic emergency circuit of the stringent response, methionine depletion activates RelA-dependent (p)ppGpp alarmone synthesis, releasing CodY from its binding site and thereby activating the met leader promoter. Our data further suggest that subsequent steps in metICFE-mdh transcription are tightly controlled by the 5′ met leader-associated T-box riboswitch which mediates premature transcription termination when methionine is present. If methionine supply is limited, and hence tRNAifMet becomes uncharged, full-length met leader/metICFE-mdh mRNA is transcribed which is rapidly degraded by nucleases involving RNase J2. Together, the data demonstrate that staphylococci have evolved special mechanisms to prevent the accumulation of excess methionine. We hypothesize that this strict control might reflect the limited metabolic capacities of staphylococci to reuse methionine as, other than Bacillus, staphylococci lack both the methionine salvage and polyamine synthesis pathways. Thus, methionine metabolism might represent a metabolic Achilles' heel making the pathway an interesting target for future anti-staphylococcal drug development. Prokaryote metabolism is key for our understanding of bacterial virulence and pathogenesis and it is also an area with huge opportunity to identify novel targets for antibiotic drugs. Here, we have addressed the so far poorly characterized regulation of methionine biosynthesis in S. aureus. We demonstrate that methionine biosynthesis control in staphylococci significantly differs from that predicted for other Bacillales. Notably, involvement of a T-box instead of an S-box riboswitch separates staphylococci from other bacteria in the order. We provide, for the first time, direct experimental proof for an interaction of a methionyl-tRNA-specific T-box with its cognate tRNA, and the identification of initiator tRNAifMet as the specific binding partner is an unexpected finding whose exact function in Staphylococcus metabolism remains to be established. The data further suggest that in staphylococci a range of regulatory elements are integrated to form a hierarchical network that elegantly limits costly (excess) methionine biosynthesis and, at the same time, reliably ensures production of the amino acid in a highly selective manner. Our findings open a perspective to exploit methionine biosynthesis and especially its T-box-mediated control as putative target(s) for the development of future anti-staphylococcal therapeutics.
Collapse
Affiliation(s)
- Sonja M. K. Schoenfelder
- Universität Würzburg, Institut für Molekulare Infektionsbiologie, Würzburg, Germany
- Queen's University Belfast, Centre for Infection and Immunity, Belfast, United Kingdom
| | - Gabriella Marincola
- Universität Tübingen, Interfakultäres Institut für Mikrobiologie & Infektionsmedizin, Tübingen, Germany
| | - Tobias Geiger
- Universität Tübingen, Interfakultäres Institut für Mikrobiologie & Infektionsmedizin, Tübingen, Germany
| | - Christiane Goerke
- Universität Tübingen, Interfakultäres Institut für Mikrobiologie & Infektionsmedizin, Tübingen, Germany
| | - Christiane Wolz
- Universität Tübingen, Interfakultäres Institut für Mikrobiologie & Infektionsmedizin, Tübingen, Germany
| | - Wilma Ziebuhr
- Universität Würzburg, Institut für Molekulare Infektionsbiologie, Würzburg, Germany
- * E-mail:
| |
Collapse
|
99
|
Abstract
Staphylococcus aureus is a human commensal that at times turns into a serious bacterial pathogen causing life-threatening infections. For the delicate control of virulence, S. aureus employs the agr quorum-sensing system that, via the intracellular effector molecule RNAIII, regulates virulence gene expression. We demonstrate that the presence of the agr locus imposes a fitness cost on S. aureus that is mediated by the expression of RNAIII. Further, we show that exposure to sublethal levels of the antibiotics ciprofloxacin, mupirocin, and rifampin, each targeting separate cellular functions, markedly increases the agr-mediated fitness cost by inducing the expression of RNAIII. Thus, the extensive use of antibiotics in hospitals may explain why agr-negative variants are frequently isolated from hospital-acquired S. aureus infections but rarely found among community-acquired S. aureus strains. Importantly, agr deficiency correlates with increased duration of and mortality due to bacteremia during antibiotic treatment and with a higher frequency of glycopeptide resistance than in agr-carrying strains. Our results provide an explanation for the frequent isolation of agr-defective strains from hospital-acquired S. aureus infections and suggest that the adaptability of S. aureus to antibiotics involves the agr locus. Staphylococcus aureus is the most frequently isolated pathogen in intensive care units and a common cause of nosocomial infections, resulting in a high degree of morbidity and mortality. Surprisingly, a large fraction (15 to 60%) of hospital-isolated S. aureus strains are agr defective and lack the main quorum-sensing-controlled virulence regulatory system. This is a problem, as agr-defective strains are associated with a mortality level in bacteremic infections and a probability of glycopeptide resistance greater than those of other strains. We show here that agr-negative strains have a fitness advantage over agr-positive strains in the presence of sublethal concentrations of some antibiotics and that the fitness defect of agr-positive cells is caused by antibiotic-mediated expression of the agr effector molecule RNAIII. These results offer an explanation of the frequent isolation of agr-defective S. aureus strains in hospitals and will influence how we treat S. aureus infections.
Collapse
|
100
|
Geiger T, Francois P, Liebeke M, Fraunholz M, Goerke C, Krismer B, Schrenzel J, Lalk M, Wolz C. The stringent response of Staphylococcus aureus and its impact on survival after phagocytosis through the induction of intracellular PSMs expression. PLoS Pathog 2012; 8:e1003016. [PMID: 23209405 PMCID: PMC3510239 DOI: 10.1371/journal.ppat.1003016] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 09/22/2012] [Indexed: 02/07/2023] Open
Abstract
The stringent response is initiated by rapid (p)ppGpp synthesis, which leads to a profound reprogramming of gene expression in most bacteria. The stringent phenotype seems to be species specific and may be mediated by fundamentally different molecular mechanisms. In Staphylococcus aureus, (p)ppGpp synthesis upon amino acid deprivation is achieved through the synthase domain of the bifunctional enzyme RSH (RelA/SpoT homolog). In several firmicutes, a direct link between stringent response and the CodY regulon was proposed. Wild-type strain HG001, rsh(Syn), codY and rsh(Syn), codY double mutants were analyzed by transcriptome analysis to delineate different consequences of RSH-dependent (p)ppGpp synthesis after induction of the stringent response by amino-acid deprivation. Under these conditions genes coding for major components of the protein synthesis machinery and nucleotide metabolism were down-regulated only in rsh positive strains. Genes which became activated upon (p)ppGpp induction are mostly regulated indirectly via de-repression of the GTP-responsive repressor CodY. Only seven genes, including those coding for the cytotoxic phenol-soluble modulins (PSMs), were found to be up-regulated via RSH independently of CodY. qtRT-PCR analyses of hallmark genes of the stringent response indicate that an RSH activating stringent condition is induced after uptake of S. aureus in human polymorphonuclear neutrophils (PMNs). The RSH activity in turn is crucial for intracellular expression of psms. Accordingly, rsh(Syn) and rsh(Syn), codY mutants were less able to survive after phagocytosis similar to psm mutants. Intraphagosomal induction of psmα1-4 and/or psmβ1,2 could complement the survival of the rsh(Syn) mutant. Thus, an active RSH synthase is required for intracellular psm expression which contributes to survival after phagocytosis.
Collapse
Affiliation(s)
- Tobias Geiger
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Patrice Francois
- Genomic Research Laboratory, Infectious Diseases Service, Geneva University Hospitals and the University of Geneva, Geneva, Switzerland
| | - Manuel Liebeke
- Institute of Pharmaceutical Biology, Ernst-Moritz-Arndt University of Greifswald, Greifswald, Germany
| | - Martin Fraunholz
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Christiane Goerke
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Bernhard Krismer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Jacques Schrenzel
- Genomic Research Laboratory, Infectious Diseases Service, Geneva University Hospitals and the University of Geneva, Geneva, Switzerland
| | - Michael Lalk
- Institute of Pharmaceutical Biology, Ernst-Moritz-Arndt University of Greifswald, Greifswald, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|