51
|
Rajakaruna GA, Negi M, Uchida K, Sekine M, Furukawa A, Ito T, Kobayashi D, Suzuki Y, Akashi T, Umeda M, Meinzer W, Izumi Y, Eishi Y. Localization and density of Porphyromonas gingivalis and Tannerella forsythia in gingival and subgingival granulation tissues affected by chronic or aggressive periodontitis. Sci Rep 2018; 8:9507. [PMID: 29934515 PMCID: PMC6014976 DOI: 10.1038/s41598-018-27766-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 06/08/2018] [Indexed: 12/16/2022] Open
Abstract
Porphyromonas gingivalis and Tannerella forsythia have been thought to be associated with periodontitis; however comprehensive histopathological localization of bacteria in affected human periodontal tissues is not well documented. In the present study, we examined formalin-fixed paraffin-embedded gingival and subgingival granulation tissues from 71 patients with chronic periodontitis and 11 patients with aggressive periodontitis, using immunohistochemistry with novel monoclonal antibodies specific to P. gingivalis or T. forsythia, together with quantitative real-time polymerase chain reaction for each bacterial DNA. Immunohistochemisty revealed both bacterial species extracellularly, as aggregates or within bacterial plaque, and intracellularly in stromal inflammatory cells, squamous epithelium, and capillary endothelium of granulation tissue. Combined analysis with the results from polymerase chain reaction suggested that localization and density of T. forsythia is closely associated with those of P. gingivalis, and that bacterial density is a factor responsible for the cell-invasiveness and tissue-invasiveness of these periodontal bacteria. Detection of these bacteria in the capillary endothelium in some samples suggested possible bacterial translocation into the systemic circulation from inflamed gingival and subgingival granulation tissues. Immunohistochemistry with the novel antibodies showed high specificity and sensitivity, and can be used to locate these periodontal bacteria in routinely-used formalin-fixed paraffin-embedded human tissue sections from systemic locations.
Collapse
Affiliation(s)
- G Amodini Rajakaruna
- Department of Periodontology, Graduate School and Faculty of Dentistry, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan.,Global Center of Excellence for Tooth and Bone Research, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan.,Research Fellow, International Scientific Exchange Fund Program, Japan Dental Association, Tokyo, Japan
| | - Mariko Negi
- Department of Human Pathology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Keisuke Uchida
- Division of Surgical Pathology, Tokyo Medical and Dental University Hospital, Tokyo, 113-8510, Japan
| | - Masaki Sekine
- Division of Surgical Pathology, Tokyo Medical and Dental University Hospital, Tokyo, 113-8510, Japan
| | - Asuka Furukawa
- Department of Human Pathology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Takashi Ito
- Department of Human Pathology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Daisuke Kobayashi
- Department of Human Pathology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Yoshimi Suzuki
- Department of Human Pathology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Takumi Akashi
- Division of Surgical Pathology, Tokyo Medical and Dental University Hospital, Tokyo, 113-8510, Japan
| | - Makoto Umeda
- Department of Periodontology, Osaka Dental University, Osaka, 540-0008, Japan
| | - Walter Meinzer
- Department of Periodontology, Graduate School and Faculty of Dentistry, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Yuichi Izumi
- Department of Periodontology, Graduate School and Faculty of Dentistry, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan.,Global Center of Excellence for Tooth and Bone Research, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Yoshinobu Eishi
- Department of Human Pathology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan. .,Division of Surgical Pathology, Tokyo Medical and Dental University Hospital, Tokyo, 113-8510, Japan.
| |
Collapse
|
52
|
Yamada M, Takahashi N, Matsuda Y, Sato K, Yokoji M, Sulijaya B, Maekawa T, Ushiki T, Mikami Y, Hayatsu M, Mizutani Y, Kishino S, Ogawa J, Arita M, Tabeta K, Maeda T, Yamazaki K. A bacterial metabolite ameliorates periodontal pathogen-induced gingival epithelial barrier disruption via GPR40 signaling. Sci Rep 2018; 8:9008. [PMID: 29899364 PMCID: PMC5998053 DOI: 10.1038/s41598-018-27408-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 06/04/2018] [Indexed: 01/15/2023] Open
Abstract
Several studies have demonstrated the remarkable properties of microbiota and their metabolites in the pathogenesis of several inflammatory diseases. 10-Hydroxy-cis-12-octadecenoic acid (HYA), a bioactive metabolite generated by probiotic microorganisms during the process of fatty acid metabolism, has been studied for its protective effects against epithelial barrier impairment in the intestines. Herein, we examined the effect of HYA on gingival epithelial barrier function and its possible application for the prevention and treatment of periodontal disease. We found that GPR40, a fatty acid receptor, was expressed on gingival epithelial cells; activation of GPR40 by HYA significantly inhibited barrier impairment induced by Porphyromonas gingivalis, a representative periodontopathic bacterium. The degradation of E-cadherin and beta-catenin, basic components of the epithelial barrier, was prevented in a GPR40-dependent manner in vitro. Oral inoculation of HYA in a mouse experimental periodontitis model suppressed the bacteria-induced degradation of E-cadherin and subsequent inflammatory cytokine production in the gingival tissue. Collectively, these results suggest that HYA exerts a protective function, through GPR40 signaling, against periodontopathic bacteria-induced gingival epithelial barrier impairment and contributes to the suppression of inflammatory responses in periodontal diseases.
Collapse
Affiliation(s)
- Miki Yamada
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoki Takahashi
- Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | - Yumi Matsuda
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Keisuke Sato
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Mai Yokoji
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Benso Sulijaya
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomoki Maekawa
- Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tatsuo Ushiki
- Division of Microscopic Anatomy and Bio-imaging, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yoshikazu Mikami
- Division of Microscopic Anatomy and Bio-imaging, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Manabu Hayatsu
- Division of Microscopic Anatomy and Bio-imaging, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yusuke Mizutani
- Division of Microscopic Anatomy and Bio-imaging, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shigenobu Kishino
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Koichi Tabeta
- Division of Periodontology, Department of Oral Biological Science, Niigata University Faculty of Dentistry, Niigata, Japan
| | - Takeyasu Maeda
- Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazuhisa Yamazaki
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
53
|
Abdulkareem AA, Shelton RM, Landini G, Cooper PR, Milward MR. Potential role of periodontal pathogens in compromising epithelial barrier function by inducing epithelial-mesenchymal transition. J Periodontal Res 2018; 53:565-574. [PMID: 29704258 DOI: 10.1111/jre.12546] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVE Epithelial-mesenchymal transition (EMT) is a process by which epithelial cells acquire a mesenchymal-like phenotype and this may be induced by exposure to gram-negative bacteria. It has been proposed that EMT is responsible for compromising epithelial barrier function in the pathogenesis of several diseases. However, the possible role of EMT in the pathogenesis of periodontitis has not previously been investigated. The aim of this study therefore was to investigate whether gram-negative, anaerobic periodontal pathogens could trigger EMT in primary oral keratinocytes in vitro. MATERIAL AND METHODS Primary oral keratinocytes were harvested from labial mandibular mucosa of Wistar Han rats. Cells were exposed to heat-killed Fusobacterium nucleatum and Porphyromonas gingivalis (100 bacteria/epithelial cell) and to 20 μg/mL of Escherichia coli lipopolysaccharide over an 8-day period. Exposure to bacteria did not significantly change epithelial cell number or vitality in comparison with unstimulated controls at the majority of time-points examined. Expression of EMT marker genes was determined by semiquantitative RT-PCR at 1, 5, and 8 days following stimulation. The expression of EMT markers was also assessed by immunofluorescence (E-cadherin and vimentin) and using immunocytochemistry to determine Snail activation. The loss of epithelial monolayer coherence, in response to bacterial challenge, was determined by measuring trans-epithelial electrical resistance. The induction of a migratory phenotype was investigated using scratch-wound and transwell migration assays. RESULTS Exposure of primary epithelial cell cultures to periodontal pathogens was associated with a significant decrease in transcription (~3-fold) of E-cadherin and the upregulation of N-cadherin, vimentin, Snail, matrix metalloproteinase-2 (~3-5 fold) and toll-like receptor 4. Bacterial stimulation (for 8 days) also resulted in an increased percentage of vimentin-positive cells (an increase of 20% after stimulation with P. gingivalis and an increase of 30% after stimulation with F. nucleatum, compared with controls). Furthermore, periodontal pathogens significantly increased the activation of Snail (60%) and cultures exhibited a decrease in electrical impedance (P < .001) in comparison with unexposed controls. The migratory ability of the cells increased significantly in response to bacterial stimulation, as shown by both the number of migrated cells and scratch-wound closure rates. CONCLUSION Prolonged exposure of primary rat oral keratinocyte cultures to periodontal pathogens generated EMT-like features, which introduces the possibility that this process may be involved in loss of epithelial integrity during periodontitis.
Collapse
Affiliation(s)
- A A Abdulkareem
- Department of Periodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - R M Shelton
- Biomaterials, School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, UK
| | - G Landini
- Oral Pathology, School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, UK
| | - P R Cooper
- Oral Biology & Periodontology, School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, UK
| | - M R Milward
- Periodontology, School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, UK
| |
Collapse
|
54
|
Lagha AB, Groeger S, Meyle J, Grenier D. Green tea polyphenols enhance gingival keratinocyte integrity and protect against invasion by Porphyromonas gingivalis. Pathog Dis 2018; 76:4961135. [DOI: 10.1093/femspd/fty030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/03/2018] [Indexed: 12/15/2022] Open
Affiliation(s)
- Amel Ben Lagha
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, 2420 rue de la Terrasse, Quebec City, QC G1V 0A6, Canada
| | - Sabine Groeger
- Department of Periodontology, Justus-Liebig-University of Giessen, Schlangenzahl 14, Giessen 35392, Germany
| | - Joerg Meyle
- Department of Periodontology, Justus-Liebig-University of Giessen, Schlangenzahl 14, Giessen 35392, Germany
| | - Daniel Grenier
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, 2420 rue de la Terrasse, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
55
|
Elmanfi S, Ma X, Sintim HO, Könönen E, Syrjänen S, Gursoy UK. Quorum-sensing molecule dihydroxy-2,3-pentanedione and its analogs as regulators of epithelial integrity. J Periodontal Res 2018; 53:414-421. [PMID: 29344966 DOI: 10.1111/jre.12528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Quorum-sensing molecules regulate the behavior of bacteria within biofilms and at the same time elicit an immune response in host tissues. Our aim was to investigate the regulatory role of dihydroxy-2,3-pentanedione (DPD), the precursor of universal autoinducer-2 (AI-2), and its analogs (ethyl-DPD, butyl-DPD and isobutyl-DPD) in the integrity of gingival epithelial cells. MATERIAL AND METHODS Human gingival keratinocytes were incubated with four concentrations (10 μmol L-1 , 1 μmol L-1 , 100 nmol L-1 and 10 nmol L-1 ) of DPD and its analogs for 24 hours. The numbers of viable cells were determined using a proliferation kit, matrix metalloproteinase (MMP)-2 and -9 activities were determined by gelatin zymography, and expression of occludin protein and occludin mRNA were determined by western blotting and RT-qPCR, respectively. RESULTS Increased cell proliferation was observed in gingival keratinocytes incubated with 100 nmol L-1 of butyl-DPD. MMP-9 activity was elevated in cells incubated with 10 μmol L-1 of ethyl-DPD. On the other hand, MMP-2 activity did not show any significant change when gingival keratinocytes were incubated with or without DPD or analogs. Western blot analyses demonstrated five forms (105, 61, 52.2, 44 and 37 kDa) of occludin. Incubation with 1 μmol L-1 and 100 nmol L-1 of DPD and with 10 nmol L-1 of ethyl-DPD increased dimeric (105 kDa) forms of occludin, while incubation with 100 nmol L-1 of isobutyl-DPD increased monomeric (61 kDa) forms. DPD and ethyl-DPD decreased, and 100 nmol L-1 of isobutyl-DPD and 10 nmol L-1 of butyl-DPD increased, the monomeric (52.2 kDa and 44 kDa) forms of occludin, whereas ethyl-DPD decreased and isobutyl-DPD increased, the low-molecular-weight (37 kDa) forms. According to RT-qPCR analysis, the exposure of gingival keratinocytes to 10 μmol L-1 of isobutyl-DPD up-regulated expression of occludin. CONCLUSION The results indicate that isobutyl-DPD has the potential to enhance the integrity of the epithelium by stimulating the formation of occluding, without affecting the proliferation or gelatinolytic enzyme activities of the exposed cells. The modulatory effect of an AI-2 analog on the epithelial cell response is shown for the first time.
Collapse
Affiliation(s)
- S Elmanfi
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | - X Ma
- Department of Chemistry, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN, USA.,Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - H O Sintim
- Department of Chemistry, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN, USA.,Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - E Könönen
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland.,Oral Health Care, Welfare Division, Turku, Finland
| | - S Syrjänen
- Department of Oral Pathology, Institute of Dentistry, University of Turku, Turku, Finland.,Department of Pathology, Turku University Hospital, Turku, Finland
| | - U K Gursoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
56
|
Fujita T, Yoshimoto T, Kajiya M, Ouhara K, Matsuda S, Takemura T, Akutagawa K, Takeda K, Mizuno N, Kurihara H. Regulation of defensive function on gingival epithelial cells can prevent periodontal disease. JAPANESE DENTAL SCIENCE REVIEW 2017; 54:66-75. [PMID: 29755617 PMCID: PMC5944110 DOI: 10.1016/j.jdsr.2017.11.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 11/10/2017] [Accepted: 11/14/2017] [Indexed: 02/06/2023] Open
Abstract
Periodontal disease is a bacterial biofilm-associated inflammatory disease that has been implicated in many systemic diseases. A new preventive method for periodontal disease needs to be developed in order to promote the health of the elderly in a super-aged society. The gingival epithelium plays an important role as a mechanical barrier against bacterial invasion and a part of the innate immune response to infectious inflammation in periodontal tissue. The disorganization of cell–cell interactions and subsequent inflammation contribute to the initiation of periodontal disease. These make us consider that regulation of host defensive functions, epithelial barrier and neutrophil activity, may become novel preventive methods for periodontal inflammation. Based on this concept, we have found that several agents regulate the barrier function of gingival epithelial cells and suppress the accumulation of neutrophils in the gingival epithelium. We herein introduce the actions of irsogladine maleate, azithromycin, amphotericin B, and Houttuynia cordata (dokudami in Japanese), which is commonly used in traditional medicine, on the epithelial barrier and neutrophil migration in gingival epithelial cells in vivo and in vitro, in order to provide support for the clinical application of these agents to the prevention of periodontal inflammation.
Collapse
Affiliation(s)
- Tsuyoshi Fujita
- Corresponding author at: Department of Periodontal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Carter CJ, France J, Crean S, Singhrao SK. The Porphyromonas gingivalis/Host Interactome Shows Enrichment in GWASdb Genes Related to Alzheimer's Disease, Diabetes and Cardiovascular Diseases. Front Aging Neurosci 2017; 9:408. [PMID: 29311898 PMCID: PMC5732932 DOI: 10.3389/fnagi.2017.00408] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/27/2017] [Indexed: 12/13/2022] Open
Abstract
Periodontal disease is of established etiology in which polymicrobial synergistic ecology has become dysbiotic under the influence of Porphyromonas gingivalis. Following breakdown of the host's protective oral tissue barriers, P. gingivalis migrates to developing inflammatory pathologies that associate with Alzheimer's disease (AD). Periodontal disease is a risk factor for cardiovascular disorders (CVD), type II diabetes mellitus (T2DM), AD and other chronic diseases, whilst T2DM exacerbates periodontitis. This study analyzed the relationship between the P. gingivalis/host interactome and the genes identified in genome-wide association studies (GWAS) for the aforementioned conditions using data from GWASdb (P < 1E-03) and, in some cases, from the NCBI/EBI GWAS database (P < 1E-05). Gene expression data from periodontitis or P. gingivalis microarray was compared to microarray datasets from the AD hippocampus and/or from carotid artery plaques. The results demonstrated that the host genes of the P. gingivalis interactome were significantly enriched in genes deposited in GWASdb genes related to cognitive disorders, AD and dementia, and its co-morbid conditions T2DM, obesity, and CVD. The P. gingivalis/host interactome was also enriched in GWAS genes from the more stringent NCBI-EBI database for AD, atherosclerosis and T2DM. The misregulated genes in periodontitis tissue or P. gingivalis infected macrophages also matched those in the AD hippocampus or atherosclerotic plaques. Together, these data suggest important gene/environment interactions between P. gingivalis and susceptibility genes or gene expression changes in conditions where periodontal disease is a contributory factor.
Collapse
Affiliation(s)
| | - James France
- Dementia and Neurodegenerative Diseases Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, United Kingdom
| | - StJohn Crean
- Dementia and Neurodegenerative Diseases Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, United Kingdom
| | - Sim K Singhrao
- Dementia and Neurodegenerative Diseases Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, United Kingdom
| |
Collapse
|
58
|
Abstract
The conversion of junctional epithelium to pocket epithelium is regarded as a hallmark in the development of periodontitis. Knowledge of factors contributing to the initiation and progression of pocket formation is important and may result in the development of better preventive measures and improve healing outcomes after therapeutic interventions. The periodontal pocket is a pathologically deepened gingival sulcus. In healthy periodontal conditions, the defense mechanisms are generally sufficient to control the constant microbiological challenge through a normally functioning junctional epithelium and the concentrated powerful mass of inflammatory and immune cells and macromolecules transmigrating through this epithelium. In contrast, destruction of the structural integrity of the junctional epithelium, which includes disruption of cell-to-cell contacts and detachment from the tooth surface, consequently leading to pocket formation, disequilibrates this delicate defense system. Deepening of the pocket apically, and also horizontal expansion of the biofilm on the tooth root, puts this system to a grueling test. There is no more this powerful concentration of defense cells and macromolecules that are discharged at the sulcus bottom and that face a relatively small biofilm surface in the gingival sulcus. In a pocket situation, the defense cells and the macromolecules are directly discharged into the periodontal pocket and the majority of epithelial cells directly face the biofilm. The thinning of the epithelium and its ulceration increase the chance for invasion of microorganisms and their products into the soft connective tissue and this aggravates the situation. Depending on the severity and duration of disease, a vicious circle may develop in the pocket environment, which is difficult or impossible to break without therapeutic intervention.
Collapse
|
59
|
Pritchard AB, Crean S, Olsen I, Singhrao SK. Periodontitis, Microbiomes and their Role in Alzheimer's Disease. Front Aging Neurosci 2017; 9:336. [PMID: 29114218 PMCID: PMC5660720 DOI: 10.3389/fnagi.2017.00336] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/02/2017] [Indexed: 12/11/2022] Open
Abstract
As far back as the eighteenth and early nineteenth centuries, microbial infections were responsible for vast numbers of deaths. The trend reversed with the introduction of antibiotics coinciding with longer life. Increased life expectancy however, accompanied the emergence of age related chronic inflammatory states including the sporadic form of Alzheimer's disease (AD). Taken together, the true challenge of retaining health into later years of life now appears to lie in delaying and/or preventing the progression of chronic inflammatory diseases, through identifying and influencing modifiable risk factors. Diverse pathogens, including periodontal bacteria have been associated with AD brains. Amyloid-beta (Aβ) hallmark protein of AD may be a consequence of infection, called upon due to its antimicrobial properties. Up to this moment in time, a lack of understanding and knowledge of a microbiome associated with AD brain has ensured that the role pathogens may play in this neurodegenerative disease remains unresolved. The oral microbiome embraces a range of diverse bacterial phylotypes, which especially in vulnerable individuals, will excite and perpetuate a range of inflammatory conditions, to a wide range of extra-oral body tissues and organs specific to their developing pathophysiology, including the brain. This offers the tantalizing opportunity that by controlling the oral-specific microbiome; clinicians may treat or prevent a range of chronic inflammatory diseases orally. Evolution has equipped the human host to combat infection/disease by providing an immune system, but Porphyromonas gingivalis and selective spirochetes, have developed immune avoidance strategies threatening the host-microbe homeostasis. It is clear from longitudinal monitoring of patients that chronic periodontitis contributes to declining cognition. The aim here is to discuss the contribution from opportunistic pathogens of the periodontal microbiome, and highlight the challenges, the host faces, when dealing with unresolvable oral infections that may lead to clinical manifestations that are characteristic for AD.
Collapse
Affiliation(s)
- Anna B. Pritchard
- Dementia & Neurodegenerative Diseases Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, United Kingdom
| | - StJohn Crean
- Dementia & Neurodegenerative Diseases Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, United Kingdom
| | - Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Sim K. Singhrao
- Dementia & Neurodegenerative Diseases Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, United Kingdom
| |
Collapse
|
60
|
Meyle J, Dommisch H, Groeger S, Giacaman RA, Costalonga M, Herzberg M. The innate host response in caries and periodontitis. J Clin Periodontol 2017; 44:1215-1225. [PMID: 28727164 DOI: 10.1111/jcpe.12781] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2017] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Innate immunity rapidly defends the host against infectious insults. These reactions are of limited specificity and exhaust without providing long-term protection. Functional fluids and effector molecules contribute to the defence against infectious agents, drive the immune response, and direct the cellular players. AIM To review the literature and present a summary of current knowledge about the function of tissues, cellular players and soluble mediators of innate immunity relevant to caries and periodontitis. METHODS Historical and recent literature was critically reviewed based on publications in peer-reviewed scientific journals. RESULTS The innate immune response is vital to resistance against caries and periodontitis and rapidly attempts to protect against infectious agents in the dental hard and soft tissues. Soluble mediators include specialized proteins and lipids. They function to signal to immune and inflammatory cells, provide antimicrobial resistance, and also induce mechanisms for potential repair of damaged tissues. CONCLUSIONS Far less investigated than adaptive immunity, innate immune responses are an emerging scientific and therapeutic frontier. Soluble mediators of the innate response provide a network of signals to organize the near immediate molecular and cellular response to infection, including direct and immediate antimicrobial activity. Further studies in human disease and animal models are generally needed.
Collapse
Affiliation(s)
- Joerg Meyle
- Department of Periodontology, University of Giessen, Giessen, Germany
| | - Henrik Dommisch
- Department of Periodontology and Synoptic Dentistry, Charité - Medical University Berlin, Berlin, Germany
| | - Sabine Groeger
- Department of Periodontology, University of Giessen, Giessen, Germany
| | - Rodrigo A Giacaman
- Cariology Unit, Department of Oral Rehabilitation and Interdisciplinary Excellence Research Program on Healthy Aging (PIEIES), University of Talca, Talca, Chile
| | - Massimo Costalonga
- Department of Developmental and Surgical Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Mark Herzberg
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
61
|
Carter CJ. Genetic, Transcriptome, Proteomic, and Epidemiological Evidence for Blood-Brain Barrier Disruption and Polymicrobial Brain Invasion as Determinant Factors in Alzheimer's Disease. J Alzheimers Dis Rep 2017; 1:125-157. [PMID: 30480234 PMCID: PMC6159731 DOI: 10.3233/adr-170017] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Diverse pathogens are detected in Alzheimer's disease (AD) brains. A bioinformatics survey showed that AD genome-wide association study (GWAS) genes (localized in bone marrow, immune locations and microglia) relate to multiple host/pathogen interactomes (Candida albicans, Cryptococcus neoformans, Bornavirus, Borrelia burgdorferri, cytomegalovirus, Ebola virus, HSV-1, HERV-W, HIV-1, Epstein-Barr, hepatitis C, influenza, Chlamydia pneumoniae, Porphyrymonas gingivalis, Helicobacter pylori, Toxoplasma gondii, Trypanosoma cruzi). These interactomes also relate to the AD hippocampal transcriptome and to plaque or tangle proteins. Upregulated AD hippocampal genes match those upregulated by multiple bacteria, viruses, fungi, or protozoa in immunocompetent cells. AD genes are enriched in GWAS datasets reflecting pathogen diversity, suggesting selection for pathogen resistance, as supported by the old age of AD patients, implying resistance to earlier infections. APOE4 is concentrated in regions of high parasitic burden and protects against childhood tropical infections and hepatitis C. Immune/inflammatory gain of function applies to APOE4, CR1, and TREM2 variants. AD genes are also expressed in the blood-brain barrier (BBB), which is disrupted by AD risk factors (age, alcohol, aluminum, concussion, cerebral hypoperfusion, diabetes, homocysteine, hypercholesterolemia, hypertension, obesity, pesticides, pollution, physical inactivity, sleep disruption, smoking) and by pathogens, directly or via olfactory routes to basal-forebrain BBB control centers. The BBB benefits from statins, NSAIDs, estrogen, melatonin, memantine, and the Mediterranean diet. Polymicrobial involvement is supported by upregulation of bacterial, viral, and fungal sensors/defenders in the AD brain, blood, or cerebrospinal fluid. AD serum amyloid-β autoantibodies may attenuate its antimicrobial effects favoring microbial survival and cerebral invasion leading to activation of neurodestructive immune/inflammatory processes, which may also be augmented by age-related immunosenescence. AD may thus respond to antibiotic, antifungal, or antiviral therapy.
Collapse
|
62
|
Phenotype and Function of Myeloid-Derived Suppressor Cells Induced by Porphyromonas gingivalis Infection. Infect Immun 2017; 85:IAI.00213-17. [PMID: 28533469 DOI: 10.1128/iai.00213-17] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/12/2017] [Indexed: 01/04/2023] Open
Abstract
Porphyromonas gingivalis, a major etiologic agent of periodontitis, has been reported to induce the expansion of myeloid-derived suppressor cells (MDSC); however, little is known regarding the subpopulations of MDSC expanded by P. gingivalis infection. Flow cytometry was used to evaluate bone marrow and spleen cells from mice infected with P. gingivalis and controls for surface expression of CD11b, Ly6G, and Ly6C. To characterize the phenotype of MDSC subpopulations induced by infection, cells were sorted based on the differential expression of Ly6G and Ly6C. Moreover, since MDSC are suppressors of T cell immune activity, we determined the effect of the induced subpopulations of MDSC on the proliferative response of OVA-specific CD4+ T cells. Lastly, the plasticity of MDSC to differentiate into osteoclasts was assessed by staining for tartrate-resistant acid phosphatase activity. P. gingivalis infection induced the expansion of three subpopulations of MDSC (Ly6G++ Ly6C+, Ly6G+ Ly6C++, and Ly6G+ Ly6C+); however, only CD11b+ Ly6G+ Ly6C++-expressing cells exerted a significant suppressive effect on T cell proliferation. Inhibition of proliferative responses required T cell-MDSC contact and was mediated by inducible nitric oxide synthase and cationic amino acid transporter 2 via gamma interferon. Furthermore, only the CD11b+ Ly6G+ Ly6C++ subpopulation of MDSC induced by P. gingivalis infection was able to differentiate into osteoclasts. Thus, the inflammatory response induced by P. gingivalis infection promotes the expansion of immune-suppressive cells and consequently the development of regulatory inhibitors that curtail the host response. Moreover, monocytic MDSC have the plasticity to differentiate into OC, thus perhaps contributing to the OC pool in states of periodontal disease.
Collapse
|
63
|
Abstract
Dysbiosis, or the imbalance in the structural and/or functional properties of the microbiome, is at the origin of important infectious inflammatory diseases such as inflammatory bowel disease (IBD) and periodontal disease. Periodontitis is a polymicrobial inflammatory disease that affects a large proportion of the world's population and has been associated with a wide variety of systemic health conditions, such as diabetes, cardiovascular and respiratory diseases. Dysbiosis has been identified as a key element in the development of the disease. However, the precise mechanisms and environmental signals that lead to the initiation of dysbiosis in the human microbiome are largely unknown. In a series of previous in vivo studies using metatranscriptomic analysis of periodontitis and its progression we identified several functional signatures that were highly associated with the disease. Among them, potassium ion transport appeared to be key in the process of pathogenesis. To confirm its importance we performed a series of in vitro experiments, in which we demonstrated that potassium levels a increased the virulence of the oral community as a whole and at the same time altering the immune response of gingival epithelium, increasing the production of TNF-α and reducing the expression of IL-6 and the antimicrobial peptide human β-defensin 3 (hBD-3). These results indicate that levels of potassium in the periodontal pocket could be an important element in of dysbiosis in the oral microbiome. They are a starting point for the identification of key environmental signals that modify the behavior of the oral microbiome from a symbiotic community to a dysbiotic one. Homeostasis of the human microbiome plays a key role in maintaining the healthy status of the human body. Changes in composition and function of the human microbiome (dysbiosis) are at the origin of important infectious inflammatory diseases such as inflammatory bowel disease (IBD) and periodontal disease. However, the environmental elements that trigger the development of dysbiotic diseases are largely unknown. In previous studies, using community-wide transcriptome analysis, we identified ion potassium transport as one of the most important functions in the pathogenesis of periodontitis and its progression. Here, we confirm with a series of in vitro experiments that potassium can act as an important signal in the dysbiotic process inducing pathogenesis in the oral microbiome and altering the host response in front of the microbial challenge that could lead to microbial immune subversion. Our study provides new insights into the important role that ion potassium plays a signal in oral dysbiosis during periodontitis.
Collapse
Affiliation(s)
- Susan Yost
- The Forsyth Institute, Cambridge, Massachusetts, United States of America
| | - Ana E. Duran-Pinedo
- Department of Oral Biology, University of Florida, Gainesville, Florida, United States of America
| | - Keerthana Krishnan
- The Forsyth Institute, Cambridge, Massachusetts, United States of America
| | - Jorge Frias-Lopez
- Department of Oral Biology, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
64
|
Jung YJ, Jun HK, Choi BK. Porphyromonas gingivalis suppresses invasion of Fusobacterium nucleatum into gingival epithelial cells. J Oral Microbiol 2017; 9:1320193. [PMID: 28748028 PMCID: PMC5508355 DOI: 10.1080/20002297.2017.1320193] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/01/2017] [Accepted: 04/13/2017] [Indexed: 01/12/2023] Open
Abstract
Invasion of periodontal pathogens into periodontal tissues is an important step that can cause tissue destruction in periodontal diseases. Porphyromonas gingivalis is a keystone pathogen and its gingipains are key virulence factors. Fusobacterium nucleatum is a bridge organism that mediates coadhesion of disease-causing late colonizers such as P. gingivalis and early colonizers during the development of dental biofilms. The aim of this study was to investigate how P. gingivalis, in particular its gingipains, influences the invasion of coinfecting F. nucleatum into gingival epithelial cells. When invasion of F. nucleatum was analyzed after 4 h of infection, invasion of F. nucleatum was suppressed in the presence of P. gingivalis compared with during monoinfection. However, coinfection with a gingipain-null mutant of P. gingivalis did not affect invasion of F. nucleatum. Inhibition of PI3K reduced invasion of F. nucleatum. P. gingivalis inactivated the PI3K/AKT pathway, which was also dependent on gingipains. Survival of intracellular F. nucleatum was promoted by P. gingivalis with Arg gingipain mutation. The results suggest that P. gingivalis, in particular its gingipains, can affect the invasion of coinfecting F. nucleatum through modulating intracellular signaling of the host cells.
Collapse
Affiliation(s)
- Young-Jung Jung
- Department of Oral Microbiology and Immunology, School of Dentistry, University of Louisville, KY, USA
| | - Hye-Kyoung Jun
- Department of Oral Microbiology and Immunology, School of Dentistry, University of Louisville, KY, USA
| | - Bong-Kyu Choi
- Department of Oral Microbiology and Immunology, School of Dentistry, University of Louisville, KY, USA.,Dental Research Institute;Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
65
|
Aggregatibacter actinomycetemcomitans regulates the expression of integrins and reduces cell adhesion via integrin α5 in human gingival epithelial cells. Mol Cell Biochem 2017; 436:39-48. [PMID: 28593565 DOI: 10.1007/s11010-017-3076-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/25/2017] [Indexed: 01/06/2023]
Abstract
Gingival epithelial cells form a physiological barrier against bacterial invasion. Excessive bacterial invasion destroys the attachment between the tooth surface and the epithelium, resulting in periodontitis. Integrins play a significant role in cell attachment; therefore, we hypothesized that bacterial infection might decrease the expressions of these integrins in gingival epithelial cells, resulting in reduced cell adhesion. Immortalized human gingival epithelial cells were co-cultured with Aggregatibacter actinomycetemcomitans Y4 (Aa Y4), and the gene expression levels of IL-8, proliferating cell nuclear antigen (PCNA), and integrins (α2, α3, α5, β4, and β6) were measured using quantitative reverse transcription polymerase chain reaction. Expression of PCNA and integrins, except integrin α5, was significantly downregulated, while expression of IL-8 and integrin α5 was significantly upregulated in the cells co-cultured with Aa Y4. The number of adherent cells significantly decreased when co-cultured with Aa Y4, as determined using cell adhesion assays. In the cells co-cultured with Aa Y4 and an integrin α5 neutralizing antibody, there was no effect on the expression of IL-8 and PCNA, while the expressions of integrins α2, α3, β4, and β6, and the number of adherent cells did not decrease. The number of invading bacteria in the cells was reduced in the presence of the antibody and increased in the presence of TLR2/4 inhibitor. Therefore, integrin α5 might be involved in Aa Y4 invasion into gingival epithelial cells, and the resulting signal transduction cascade reduces cell adhesion by decreasing the expression of integrins, while the TLR2/4 signaling cascade regulates IL-8 expression.
Collapse
|
66
|
Interferon Regulatory Factor 6 Promotes Keratinocyte Differentiation in Response to Porphyromonas gingivalis. Infect Immun 2017; 85:IAI.00858-16. [PMID: 28289145 DOI: 10.1128/iai.00858-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/06/2017] [Indexed: 02/07/2023] Open
Abstract
We recently demonstrated that the expression of the interferon regulatory factor 6 (IRF6) transcription factor in oral keratinocytes was stimulated by the periodontal pathogen Porphyromonas gingivalis Here, we have established that IRF6 promotes the differentiation of oral keratinocytes in response to P. gingivalis This was evidenced by the IRF6-dependent upregulation of specific markers of keratinocyte terminal differentiation (e.g., involucrin [IVL] and keratin 13 [KRT13]), together with additional transcriptional regulators of keratinocyte differentiation, including Grainyhead-like 3 (GRHL3) and Ovo-like zinc finger 1 (OVOL1). We have previously established that the transactivator function of IRF6 is activated by receptor-interacting protein kinase 4 (RIPK4). Consistently, the silencing of RIPK4 inhibited the stimulation of IVL, KRT13, GRHL3, and OVOL1 gene expression. IRF6 was shown to also regulate the stimulation of transglutaminase-1 (TGM1) gene expression by P. gingivalis, as well as that of small proline-rich proteins (e.g., SPRR1), which are covalently cross-linked by TGM1 to other proteins, including IVL, during cornification. The expression of the tight junction protein occludin (OCLN) was found to also be upregulated in an IRF6-dependent manner. IRF6 was demonstrated to be important for the barrier function of oral keratinocytes; specifically, silencing of IRF6 increased P. gingivalis-induced intercellular permeability and cell invasion. Taken together, our findings potentially position IRF6 as an important mediator of barrier defense against P. gingivalis.
Collapse
|
67
|
Jin Baek K, Choi YS, Kang CK, Choi Y. The Proteolytic Activity of Porphyromonas gingivalis Is Critical in a Murine Model of Periodontitis. J Periodontol 2017; 88:218-224. [DOI: 10.1902/jop.2016.160262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
68
|
Groeger SE, Meyle J. Epithelial barrier and oral bacterial infection. Periodontol 2000 2017; 69:46-67. [PMID: 26252401 DOI: 10.1111/prd.12094] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2015] [Indexed: 01/11/2023]
Abstract
The oral epithelial barrier separates the host from the environment and provides the first line of defense against pathogens, exogenous substances and mechanical stress. It consists of underlying connective tissue and a stratified keratinized epithelium with a basement membrane, whose cells undergo terminal differentiation resulting in the formation of a mechanically resistant surface. Gingival keratinocytes are connected by various transmembrane proteins, such as tight junctions, adherens junctions and gap junctions, each of which has a specialized structure and specific functions. Periodontal pathogens are able to induce inflammatory responses that lead to attachment loss and periodontal destruction. A number of studies have demonstrated that the characteristics of pathogenic oral bacteria influence the expression and structural integrity of different cell-cell junctions. Tissue destruction can be mediated by host cells following stimulation with cytokines and bacterial products. Keratinocytes, the main cell type in gingival epithelial tissues, express a variety of proinflammatory cytokines and chemokines, including interleukin-1alpha, interleukin-1beta, interleukin-6, interleukin-8 and tumor necrosis factor-alpha. Furthermore, the inflammatory mediators that may be secreted by oral keratinocytes are vascular endothelial growth factor, prostaglandin E2 , interleukin-1 receptor antagonist and chemokine (C-C motif) ligand 2. The protein family of matrix metalloproteinases is able to degrade all types of extracellular matrix protein, and can process a number of bioactive molecules. Matrix metalloproteinase activities under inflammatory conditions are mostly deregulated and often increased, and those mainly relevant in periodontal disease are matrix metalloproteinases 1, 2, 3, 8, 9, 13 and 24. Viral infection may also influence the epithelial barrier. Studies show that the expression of HIV proteins in the mucosal epithelium is correlated with the disruption of epithelial tight junctions, suggesting a possible enhancement of human papilloma virus infection by HIV-associated disruption of tight junctions. Altered expression of matrix metalloproteinases was demonstrated in keratinocytes transformed with human papilloma virus-16 or papilloma virus-18,. To summarize, the oral epithelium is able to react to a variety of exogenous, possibly noxious influences.
Collapse
|
69
|
Rokad F, Moseley R, Hardy RS, Chukkapalli S, Crean S, Kesavalu L, Singhrao SK. Cerebral Oxidative Stress and Microvasculature Defects in TNF-α Expressing Transgenic and Porphyromonas gingivalis-Infected ApoE-/- Mice. J Alzheimers Dis 2017; 60:359-369. [PMID: 28800332 DOI: 10.3233/jad-170304] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The polymicrobial dysbiotic subgingival biofilm microbes associated with periodontal disease appear to contribute to developing pathologies in distal body sites, including the brain. This study examined oxidative stress, in the form of increased protein carbonylation and oxidative protein damage, in the tumor necrosis factor-α (TNF-α) transgenic mouse that models inflammatory TNF-α excess during bacterial infection; and in the apolipoprotein knockout (ApoE-/-) mouse brains, following Porphyromonas gingivalis gingival monoinfection. Following 2,4-dinitrophenylhydrazine derivatization, carbonyl groups were detected in frontal lobe brain tissue lysates by immunoblotting and immunohistochemical analysis of fixed tissue sections from the frontotemporal lobe and the hippocampus. Immunoblot analysis confirmed the presence of variable carbonyl content and oxidative protein damage in all lysates, with TNF-α transgenic blots exhibiting increased protein carbonyl content, with consistently prominent bands at 25 kDa (p = 0.0001), 43 kDa, and 68 kDa, over wild-type mice. Compared to sham-infected ApoE-/- mouse blots, P. gingivalis-infected brain tissue blots demonstrated the greatest detectable protein carbonyl content overall, with numerous prominent bands at 25 kDa (p = 0.001) and 43 kDa (p = 0.0001) and an exclusive band to this group between 30-43 kDa* (p = 0.0001). In addition, marked immunostaining was detected exclusively in the microvasculature in P. gingivalis-infected hippocampal tissue sections, compared to sham-infected, wild-type, and TNF-α transgenic mice. This study revealed that the hippocampal microvascular structure of P. gingivalis-infected ApoE-/- mice possesses elevated oxidative stress levels, resulting in the associated tight junction proteins being susceptible to increased oxidative/proteolytic degradation, leading to a loss of functional integrity.
Collapse
Affiliation(s)
- Farheen Rokad
- Dementia and Neurodegenerative Diseases Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Ryan Moseley
- Stem Cells, Wound Repair and Regeneration, School of Dentistry, Cardiff University, Cardiff, UK
| | - Rowan S Hardy
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Sasanka Chukkapalli
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - StJohn Crean
- Dementia and Neurodegenerative Diseases Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Lakshmyya Kesavalu
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Sim K Singhrao
- Dementia and Neurodegenerative Diseases Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| |
Collapse
|
70
|
Abe-Yutori M, Chikazawa T, Shibasaki K, Murakami S. Decreased expression of E-cadherin by Porphyromonas gingivalis-lipopolysaccharide attenuates epithelial barrier function. J Periodontal Res 2016; 52:42-50. [PMID: 27016120 DOI: 10.1111/jre.12367] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND OBJECTIVE The gingival epithelium is a first line of defense against bacterial challenge. E-cadherin (E-cad) plays an important role in cell-cell adhesion as a barrier in the epithelium. Recently, a decrease in the expression of E-cad has been observed in inflamed gingival tissue. The aims of this study were to clarify the changes in E-cad expression and barrier function in human gingival epithelial cells stimulated with Porphyromonas gingivalis-lipopolysaccharide (P. gingivalis-LPS) and to evaluate the influence of these changes on the inflammatory reaction. Furthermore, to clarify the mechanism of the E-cad changes induced by P. gingivalis-LPS, we focused on reactive oxygen species (ROS) that are reported to induce a decrease in E-cad expression. MATERIAL AND METHODS Human gingival epithelial cells were incubated in Humedia-KG2 in the presence or absence of P. gingivalis-LPS and antioxidants to analyze ROS involvement in P. gingivalis-LPS-induced E-cad changes. E-cad protein expression was analyzed by immunofluorescence staining. To investigate barrier function and inflammatory changes, we performed transport and cytokine assays using gingival epithelial cells and macrophages co-culture model in transwell plates. Medium containing 10 μg/mL P. gingivalis-LPS (transport substance) was added to the upper compartment, which harvested gingival epithelial cells, and medium without P. gingivalis-LPS was added to the lower compartment, which harvested macrophages. In the transport assay, P. gingivalis-LPS penetration was analyzed using the Limulus amebocyte lysate test. In the cytokine assay, we examined the change in tumor necrosis factor-α (TNF-α) production from the macrophages in the lower compartment using enzyme-linked immunosorbent assay. RESULTS Expression of E-cad in human gingival epithelial cells was decreased by P. gingivalis-LPS, and the decrease in E-cad accelerated the penetration of P. gingivalis-LPS through the monolayer. In addition, the concentration of TNF-α was higher under the E-cad reduced monolayer. Antioxidants, particularly vitamin E and l-ascorbic acid 2-phosphate magnesium salt, inhibited the decrease in E-cad expression, penetration of P. gingivalis-LPS and increase in TNF-α. CONCLUSION These results suggest that the decrease in E-cad caused by P. gingivalis-LPS leads to destruction of the epithelial barrier function in human gingival epithelial cells, and finally accelerates the inflammatory reaction under the barrier. Antioxidants, particularly vitamin E and l-ascorbic acid 2-phosphate magnesium salt, may restore the impaired function by scavenging ROS, which are related to the decrease in E-cad expression by P. gingivalis-LPS.
Collapse
Affiliation(s)
- M Abe-Yutori
- Oral Care Research Laboratories, Lion Corporation, Tokyo, Japan
| | - T Chikazawa
- Oral Care Research Laboratories, Lion Corporation, Tokyo, Japan
| | - K Shibasaki
- Oral Care Research Laboratories, Lion Corporation, Tokyo, Japan
| | - S Murakami
- Department of Periodontology, Osaka University, Graduate School of Dentistry, Suita, Japan
| |
Collapse
|
71
|
Thorlakson HH, Schreurs O, Schenck K, Blix IJS. Lysophosphatidic acid regulates adhesion molecules and enhances migration of human oral keratinocytes. Eur J Oral Sci 2016; 124:164-71. [PMID: 26913569 DOI: 10.1111/eos.12255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2016] [Indexed: 12/20/2022]
Abstract
Oral keratinocytes are connected via cell-to-cell adhesions to protect underlying tissues from physical and bacterial damage. Lysophosphatidic acids (LPAs) are a family of phospholipid mediators that have the ability to regulate gene expression, cytoskeletal rearrangement, and cytokine/chemokine secretion, which mediate proliferation, migration, and differentiation. Several forms of LPA are found in saliva and gingival crevicular fluid, but it is unknown how they affect human oral keratinocytes (HOK). The aim of the present study was therefore to examine how different LPA forms affect the expression of adhesion molecules and the migration and proliferation of HOK. Keratinocytes were isolated from gingival biopsies obtained from healthy donors and challenged with different forms of LPA. Quantitative real-time RT-PCR, immunocytochemistry, and flow cytometry were used to analyze the expression of adhesion molecules. Migration and proliferation assays were performed. Lysophosphatidic acids strongly promoted expression of E-cadherin and occludin mRNAs and translocation of E-cadherin protein from the cytoplasm to the membrane. Occludin and claudin-1 proteins were up-regulated by LPA. Migration of HOK in culture was increased, but proliferation was reduced, by the addition of LPA. This indicates that LPA can have a role in the regulation of the oral epithelial barrier by increasing the expression of adhesion molecules of HOK, by promotion of migration and by inhibition of proliferation.
Collapse
Affiliation(s)
- Hong H Thorlakson
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.,Department of Periodontology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Olav Schreurs
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Karl Schenck
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Inger J S Blix
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.,Department of Periodontology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
72
|
Benedyk M, Mydel PM, Delaleu N, Płaza K, Gawron K, Milewska A, Maresz K, Koziel J, Pyrc K, Potempa J. Gingipains: Critical Factors in the Development of Aspiration Pneumonia Caused by Porphyromonas gingivalis. J Innate Immun 2015; 8:185-98. [PMID: 26613585 DOI: 10.1159/000441724] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/16/2015] [Indexed: 01/06/2023] Open
Abstract
Aspiration pneumonia is a life-threatening infectious disease often caused by oral anaerobic and periodontal pathogens such as Porphyromonas gingivalis. This organism produces proteolytic enzymes, known as gingipains, which manipulate innate immune responses and promote chronic inflammation. Here, we challenged mice with P. gingivalis W83 and examined the role of gingipains in bronchopneumonia, lung abscess formation, and inflammatory responses. Although gingipains were not required for P. gingivalis colonization and survival in the lungs, they were essential for manifestation of clinical symptoms and infection-related mortality. Pathologies caused by wild-type (WT) P. gingivalis W83, including hemorrhage, necrosis, and neutrophil infiltration, were absent from lungs infected with gingipain-null isogenic strains or WT bacteria preincubated with gingipain-specific inhibitors. Damage to lung tissue correlated with systemic inflammatory responses, as manifested by elevated levels of TNF, IL-6, IL-17, and C-reactive protein. These effects were unequivocally dependent on gingipain activity. Gingipain activity was also implicated in the observed increase in IL-17 in lung tissues. Furthermore, gingipains increased platelet counts in the blood and activated platelets in the lungs. Arginine-specific gingipains made a greater contribution to P. gingivalis-related morbidity and mortality than lysine-specific gingipains. Thus, inhibition of gingipain may be a useful adjunct treatment for P. gingivalis-mediated aspiration pneumonia.
Collapse
Affiliation(s)
- Małgorzata Benedyk
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Elmi A, Nasher F, Jagatia H, Gundogdu O, Bajaj-Elliott M, Wren B, Dorrell N. Campylobacter jejuni outer membrane vesicle-associated proteolytic activity promotes bacterial invasion by mediating cleavage of intestinal epithelial cell E-cadherin and occludin. Cell Microbiol 2015; 18:561-72. [PMID: 26451973 DOI: 10.1111/cmi.12534] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/08/2015] [Accepted: 09/28/2015] [Indexed: 12/15/2022]
Abstract
Outer membrane vesicles (OMVs) play an important role in the pathogenicity of Gram-negative bacteria. Campylobacter jejuni produces OMVs that trigger IL-8, IL-6, hBD-3 and TNF-α responses from T84 intestinal epithelial cells and are cytotoxic to Caco-2 IECs and Galleria mellonella larvae. Proteomic analysis of 11168H OMVs identified the presence of three proteases, HtrA, Cj0511 and Cj1365c. In this study, 11168H OMVs were shown to possess proteolytic activity that was reduced by pretreatment with specific serine protease inhibitors. OMVs isolated from 11168H htrA, Cj0511 or Cj1365c mutants possess significantly reduced proteolytic activity. 11168H OMVs are able to cleave both E-cadherin and occludin, but this cleavage is reduced with OMVs pretreated with serine protease inhibitors and also with OMVs isolated from htrA or Cj1365c mutants. Co-incubation of T84 monolayers with 11168H OMVs results in a visible reduction in both E-cadherin and occludin. The addition of 11168H OMVs to the co-culture of live 11168H bacteria with T84 cells results in enhanced levels of bacterial adhesion and invasion in a time-dependent and dose-dependent manner. Further investigation of the cleavage of host cell structural proteins by C. jejuni OMVs should enhance our understanding of the interactions of this important pathogen with intestinal epithelial cells.
Collapse
Affiliation(s)
- Abdi Elmi
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Fauzy Nasher
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Heena Jagatia
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Ozan Gundogdu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Mona Bajaj-Elliott
- Infection, Immunity, Inflammation and Physiological Medicine, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Brendan Wren
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Nick Dorrell
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
74
|
Ji S, Choi YS, Choi Y. Bacterial invasion and persistence: critical events in the pathogenesis of periodontitis? J Periodontal Res 2014; 50:570-85. [DOI: 10.1111/jre.12248] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2014] [Indexed: 12/22/2022]
Affiliation(s)
- S. Ji
- Department of Periodontology Anam Hospital Korea University Seoul Korea
| | - Y. S. Choi
- Department of Immunology and Molecular Microbiology and Dental Research Institute School of Dentistry Seoul National University Seoul Korea
| | - Y. Choi
- Department of Immunology and Molecular Microbiology and Dental Research Institute School of Dentistry Seoul National University Seoul Korea
| |
Collapse
|
75
|
Breaking the Gingival Epithelial Barrier: Role of the Aggregatibacter actinomycetemcomitans Cytolethal Distending Toxin in Oral Infectious Disease. Cells 2014; 3:476-99. [PMID: 24861975 PMCID: PMC4092858 DOI: 10.3390/cells3020476] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/08/2014] [Accepted: 05/15/2014] [Indexed: 12/17/2022] Open
Abstract
The Gram-negative bacterium Aggregatibacter actinomycetemcomitans is part of the HACEK group that causes infective endocarditis, a constituent of the oral flora that promotes some forms of periodontal disease and a member of the family of species that secrete a cytolethal distending toxin (Cdt). The family of bacteria that express the cdt genes participate in diseases that involve the disruption of a mucosal or epithelial layer. In vitro studies have shown that human gingival epithelial cells (HGEC) are native targets of the Cdt that typically induces DNA damage that signals growth arrest at the G2/M interphase of the cell cycle. The gingival epithelium is an early line of defense in the oral cavity against microbial assault. When damaged, bacteria collectively gain entry into the underlying connective tissue where microbial products can affect processes and pathways in infiltrating inflammatory cells culminating in the destruction of the attachment apparatus of the tooth. One approach has been the use of an ex vivo gingival explant model to assess the effects of the Cdt on the morphology and integrity of the tissue. The goal of this review is to provide an overview of these studies and to critically examine the potential contribution of the Cdt to the breakdown of the protective gingival barrier.
Collapse
|
76
|
Jiao Y, Hasegawa M, Inohara N. The Role of Oral Pathobionts in Dysbiosis during Periodontitis Development. J Dent Res 2014; 93:539-46. [PMID: 24646638 DOI: 10.1177/0022034514528212] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/21/2014] [Indexed: 12/29/2022] Open
Abstract
An emerging concept is the tight relationship between dysbiosis (microbiota imbalance) and disease. The increase in knowledge about alterations in microbial communities that reside within the host has made a strong impact not only on dental science, but also on immunology and microbiology as well as on our understanding of several diseases. Periodontitis is a well-characterized human disease associated with dysbiosis, characterized by the accumulation of multiple bacteria that play individual and critical roles in bone loss around the teeth. Dysbiosis is largely dependent on cooperative and competitive interactions among oral microbes during the formation of the pathogenic biofilm community at gingival sites. Oral pathobionts play different and synergistic roles in periodontitis development, depending on their host-damaging and immunostimulatory activities. Host immune responses to oral pathobionts act as a double-edged sword not only by protecting the host against pathobionts, but also by promoting alveolar bone loss. Recent studies have begun to elucidate the roles of individual oral bacteria, including a new type of pathobionts that possess strong immunostimulatory activity, which is critical for alveolar bone loss. Better understanding of the roles of oral pathobionts is expected to lead to a better understanding of periodontitis disease and to the development of novel preventive and therapeutic approaches for the disease.
Collapse
Affiliation(s)
- Y Jiao
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - M Hasegawa
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - N Inohara
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
77
|
Choi YS, Kim YC, Ji S, Choi Y. Increased bacterial invasion and differential expression of tight-junction proteins, growth factors, and growth factor receptors in periodontal lesions. J Periodontol 2014; 85:e313-22. [PMID: 24527855 DOI: 10.1902/jop.2014.130740] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Many pathogens are known to modulate epithelial physical barriers, particularly tight-junction (TJ) proteins, to enter host cells and/or tissues. Growth factors have been implicated in the regulation of TJ proteins. The aim of this study is to determine differences in the levels of TJ proteins, growth factors, and their receptors in relation to bacterial invasion in diseased gingival tissues obtained from patients with periodontitis. METHODS The presence of bacteria and expression of junctional adhesion molecule (JAM)-A, occludin, epidermal growth factor (EGF), keratinocyte growth factor (KGF), insulin-like growth factor-I (IGF-I), EGF receptor, KGF receptor, and IGF-1 receptor (IGF-1R) were evaluated in gingival tissues from healthy (n = 10) and diseased (n = 10) sites in patients with periodontitis by in situ hybridization and immunohistochemistry. RESULTS The bacterial invasion of gingival tissue was increased in periodontal lesions compared with healthy sites. Although the levels of JAM-A and occludin were not significantly different between the healthy and diseased sites, aberrant cytoplasmic expression of JAM-A and occluding was often observed in the lesions. In addition, more leukocytes expressing JAM-A or occludin were observed within the disease-associated epithelia. Compared with the healthy sites, the differential expression of KGF, IGF-I, and IGF-1R was observed in the periodontal lesions. The levels of TJ proteins showed positive correlations with those of growth factors. CONCLUSION The aberrant expression of growth factors and TJ proteins may contribute to increased bacterial invasion and disease progression in periodontal lesions.
Collapse
Affiliation(s)
- Yun S Choi
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | | | | | | |
Collapse
|
78
|
Jiao Y, Hasegawa M, Inohara N. Emerging roles of immunostimulatory oral bacteria in periodontitis development. Trends Microbiol 2014; 22:157-63. [PMID: 24433922 DOI: 10.1016/j.tim.2013.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/06/2013] [Accepted: 12/13/2013] [Indexed: 12/19/2022]
Abstract
Periodontitis is a common dental disease which results in irreversible alveolar bone loss around teeth, and subsequent tooth loss. Previous studies have focused on bacteria that damage the host and the roles of commensals to facilitate their colonization. Although some immune responses targeting oral bacteria protect the host from alveolar bone loss, recent studies show that particular host defense responses to oral bacteria can induce alveolar bone loss. Host-damaging and immunostimulatory oral bacteria cooperatively induce bone loss by inducing gingival damage followed by immunostimulation. In mouse models of experimental periodontitis induced by either Porphyromonas gingivalis or ligature, γ-proteobacteria accumulate and stimulate host immune responses to induce host damage. Here we review the differential roles of individual bacterial groups in promoting bone loss through the induction of host damage and immunostimulation.
Collapse
Affiliation(s)
- Yizu Jiao
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Mizuho Hasegawa
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Naohiro Inohara
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
79
|
P. gingivalis modulates keratinocytes through FOXO transcription factors. PLoS One 2013; 8:e78541. [PMID: 24265696 PMCID: PMC3827038 DOI: 10.1371/journal.pone.0078541] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 09/16/2013] [Indexed: 11/19/2022] Open
Abstract
P. gingivalis is a prominent periodontal pathogen that has potent effects on host cells. In this study we challenged gingival epithelial cells with P. gingivalis with the aim of assessing how mRNA levels of key target genes were modulated by P. gingivalis via the transcription factors FOXO1 and FOXO3. Primary mono- and multi-layer cultures of gingival epithelial cells were challenged and barrier function was examined by fluorescent dextran and apoptosis was measured by cytoplasmic histone associated DNA. Gene expression levels were measured by real-time PCR with and without FOXO1 and FOXO3 siRNA compared to scrambled siRNA. P. gingivalis induced a loss of barrier function and stimulated gingival epithelial cell apoptosis in multilayer cultures that was in part gingipain dependent. P. gingivalis stimulated an increase in FOXO1 and FOXO3 mRNA, enhanced mRNA levels of genes associated with differentiated keratinocyte function (keratin-1, -10, -14, and involucrin), increased mRNA levels of apoptotic genes (BID and TRADD), reduced mRNA levels of genes that regulate inflammation (TLR-2 and -4) and reduced those associated with barrier function (integrin beta-1, -3 and -6). The ability of P. gingivalis to modulate these genes was predominantly FOXO1 and FOXO3 dependent. The results indicate that P. gingivalis has pronounced effects on gingival keratinocytes and modulates mRNA levels of genes that affect host response, differentiation, apoptosis and barrier function. Moreover, this modulation is dependent upon the transcription factors FOXO1 or FOXO3. In addition, a new function for FOXO1 was identified, that of suppressing TLR-2 and TLR-4 and maintaining integrin beta -1, beta -3 and beta -6 basal mRNA levels in keratinocytes.
Collapse
|
80
|
Beyond Toll-Like Receptors: Porphyromonas gingivalis Induces IL-6, IL-8, and VCAM-1 Expression Through NOD-Mediated NF-κB and ERK Signaling Pathways in Periodontal Fibroblasts. Inflammation 2013; 37:522-33. [DOI: 10.1007/s10753-013-9766-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
81
|
Bullman S, Lucid A, Corcoran D, Sleator RD, Lucey B. Genomic investigation into strain heterogeneity and pathogenic potential of the emerging gastrointestinal pathogen Campylobacter ureolyticus. PLoS One 2013; 8:e71515. [PMID: 24023611 PMCID: PMC3758288 DOI: 10.1371/journal.pone.0071515] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/01/2013] [Indexed: 12/29/2022] Open
Abstract
The recent detection and isolation of C. ureolyticus from patients with diarrhoeal illness and inflammatory bowel diseases warrants further investigation into its role as an emerging pathogen of the human gastrointestinal tract. Regarding the pathogenic mechanisms employed by this species we provide the first whole genome analysis of two C. ureolyticus isolates including the type strain. Comparative analysis, subtractive hybridisation and gene ontology searches against other Campylobacter species identifies the high degree of heterogenicity between C. ureolyticus isolates, in addition to the identification of 106 putative virulence associated factors, 52 of which are predicted to be secreted. Such factors encompass each of the known virulence tactics of pathogenic Campylobacter spp. including adhesion and colonisation (CadF, PEB1, IcmF and FlpA), invasion (ciaB and 16 virB-virD4 genes) and toxin production (S-layer RTX and ZOT). Herein, we provide the first virulence catalogue for C. ureolyticus, the components of which theoretically provide this emerging species with sufficient arsenal to establish pathology.
Collapse
Affiliation(s)
- Susan Bullman
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | - Alan Lucid
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | - Daniel Corcoran
- Department of Medical Microbiology, Cork University Hospital, Cork, Ireland
| | - Roy D. Sleator
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
- * E-mail:
| | - Brigid Lucey
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
- Department of Medical Microbiology, Cork University Hospital, Cork, Ireland
| |
Collapse
|
82
|
Schwerk J, Köster M, Hauser H, Rohde M, Fulde M, Hornef MW, May T. Generation of mouse small intestinal epithelial cell lines that allow the analysis of specific innate immune functions. PLoS One 2013; 8:e72700. [PMID: 23940817 PMCID: PMC3734307 DOI: 10.1371/journal.pone.0072700] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/11/2013] [Indexed: 12/24/2022] Open
Abstract
Cell lines derived from the small intestine that reflect authentic properties of the originating intestinal epithelium are of high value for studies on mucosal immunology and host microbial homeostasis. A novel immortalization procedure was applied to generate continuously proliferating cell lines from murine E19 embryonic small intestinal tissue. The obtained cell lines form a tight and polarized epithelial cell layer, display characteristic tight junction, microvilli and surface protein expression and generate increasing transepithelial electrical resistance during in vitro culture. Significant up-regulation of Cxcl2 and Cxcl5 chemokine expression upon exposure to defined microbial innate immune stimuli and endogenous cytokines is observed. Cell lines were also generated from a transgenic interferon reporter (Mx2-Luciferase) mouse, allowing reporter technology-based quantification of the cellular response to type I and III interferon. Thus, the newly created cell lines mimic properties of the natural epithelium and can be used for diverse studies including testing of the absorption of drug candidates. The reproducibility of the method to create such cell lines from wild type and transgenic mice provides a new tool to study molecular and cellular processes of the epithelial barrier.
Collapse
Affiliation(s)
- Johannes Schwerk
- Department of Gene Regulation and Differentiation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mario Köster
- Department of Gene Regulation and Differentiation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Hansjörg Hauser
- Department of Gene Regulation and Differentiation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Manfred Rohde
- Department of Medical Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Marcus Fulde
- Institute of Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Mathias W. Hornef
- Institute of Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
83
|
Sculley DV. Periodontal disease: modulation of the inflammatory cascade by dietary n-3 polyunsaturated fatty acids. J Periodontal Res 2013; 49:277-81. [DOI: 10.1111/jre.12116] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2013] [Indexed: 12/19/2022]
Affiliation(s)
- D. V. Sculley
- Faculty of Health and Medicine; School of Biomedical Sciences and Pharmacy; University of Newcastle; Ourimbah NSW Australia
| |
Collapse
|
84
|
Edwards VL, Wang LC, Dawson V, Stein DC, Song W. Neisseria gonorrhoeae breaches the apical junction of polarized epithelial cells for transmigration by activating EGFR. Cell Microbiol 2013; 15:1042-57. [PMID: 23279089 PMCID: PMC5584544 DOI: 10.1111/cmi.12099] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 12/13/2012] [Accepted: 12/17/2012] [Indexed: 12/24/2022]
Abstract
Neisseria gonorrhoeae initiates infection at the apical surface of columnar endocervical epithelial cells in the female reproductive tract. These cells provide a physical barrier against pathogens by forming continuous apical junctional complexes between neighbouring cells. This study examines the interaction of gonococci (GC) with polarized epithelial cells. We show that viable GC preferentially localize at the apical side of the cell-cell junction in polarized endometrial and colonic epithelial cells, HEC-1-B and T84. In GC-infected cells, continuous apical junctional complexes are disrupted, and the junction-associated protein β-catenin is redistributed from the apical junction to the cytoplasm and to GC adherent sites; however, overall cellular levels remain unchanged. This redistribution of junctional proteins is associated with a decrease in the 'fence' function of the apical junction but not its 'gate' function. Disruption of the apical junction by removing calcium increases GC transmigration across the epithelial monolayer. GC inoculation induces the phosphorylation of both epidermal growth factor receptor (EGFR) and β-catenin, while inhibition of EGFR kinase activity significantly reduces both GC-induced β-catenin redistribution and GC transmigration. Therefore, the gonococcus is capable of weakening the apical junction and polarity of epithelial cells by activating EGFR, which facilitates GC transmigration across the epithelium.
Collapse
Affiliation(s)
- Vonetta L. Edwards
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Liang-Chun Wang
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Valerie Dawson
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Daniel C. Stein
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Wenxia Song
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
85
|
Genome-wide association analysis of avian resistance to Campylobacter jejuni colonization identifies risk locus spanning the CDH13 gene. G3-GENES GENOMES GENETICS 2013; 3:881-90. [PMID: 23550144 PMCID: PMC3656734 DOI: 10.1534/g3.113.006031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The enteropathogen Campylobacter jejuni is a major worldwide health and economic burden, being one of the leading causes of bacterial gastroenteritis and commonly linked to postinfectious onset of autoimmune disease. Chickens are a major vector for human infection and even though variation in avian colonization level is heritable, no previous studies have identified regions of the genome associated with colonization resistance. We performed a genome-wide association study of resistance to C. jejuni colonization in the avian intestine by controlling for population structure, which revealed a risk locus with genome-wide significance spanning the T-cadherin (CDH13) gene. A second possible risk locus was also identified close to calmodulin (CALM1), a calcium-activated modulator of cadherin function. In addition, gene expression analysis of mRNA sequencing profiles revealed that the relative expression of the two genes is significantly associated with colonization resistance. Functional studies have previously demonstrated involvement of cadherins and calmodulin in C. jejuni intracellular invasion and colonization of human intestinal epithelial cells in vitro. Consistent with this finding, our analysis reveals that variation surrounding these genes is associated with avian colonization resistance in vivo and highlights their potential as possible targets for control of the bacterium in avian and human populations.
Collapse
|
86
|
Choi Y, Kim YC, Jo A, Ji S, Koo KT, Ko Y, Choi Y. Porphyromonas Gingivalisand Dextran Sulfate Sodium Induce Periodontitis Through the Disruption of Physical Barriers in Mice. EUR J INFLAMM 2013. [DOI: 10.1177/1721727x1301100212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Y.S. Choi
- Departments of Immunology and Molecular Microbiology, Seoul National University, Seoul, Korea
| | - Y. C. Kim
- Departments of Immunology and Molecular Microbiology, Seoul National University, Seoul, Korea
| | - A.R. Jo
- Departments of Immunology and Molecular Microbiology, Seoul National University, Seoul, Korea
| | - S. Ji
- Department of Periodontology, Anam Hospital, Korea University, Seoul, Korea
| | - K-T. Koo
- Departments of Periodontology, BK21 CLS, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Y. Ko
- Department of Dentistry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Y. Choi
- Departments of Immunology and Molecular Microbiology, Seoul National University, Seoul, Korea
| |
Collapse
|
87
|
Costa AM, Leite M, Seruca R, Figueiredo C. Adherens junctions as targets of microorganisms: a focus on Helicobacter pylori. FEBS Lett 2012; 587:259-65. [PMID: 23262219 DOI: 10.1016/j.febslet.2012.12.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 12/14/2022]
Abstract
Mucosal epithelia are targeted by several microorganisms as a way of adhesion, internalization, and/or exploitation of the host properties to induce disease. Helicobacter pylori are worldwide prevalent bacteria that colonize the human stomach. Persistent infection of the gastric mucosa with H. pylori and concurrent chronic gastritis are risk factors for ulcer disease and gastric carcinoma. Therefore, interactions at the H. pylori-epithelial interface are important to understand the pathogenesis of these bacteria and the host responses that contribute to disease development. Here, we provide an overview of the interactions between microorganisms and the adherens junctions with an emphasis on H. pylori.
Collapse
Affiliation(s)
- Angela Margarida Costa
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto,Portugal
| | | | | | | |
Collapse
|
88
|
Gaddis DE, Maynard CL, Weaver CT, Michalek SM, Katz J. Role of TLR2-dependent IL-10 production in the inhibition of the initial IFN-γ T cell response to Porphyromonas gingivalis. J Leukoc Biol 2012; 93:21-31. [PMID: 23077245 DOI: 10.1189/jlb.0512220] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
P.g., a Gram-negative bacterium, is one of the main etiological agents of the chronic inflammatory disease, periodontitis. Disease progression is thought to occur as a result of an inadequate immune response, which although happens locally, can also occur distally as a result of the dissemination of P.g. into the circulation. As IL-10 and TLR2 are pivotal molecules in the immune response that P.g. elicits, we hypothesized that TLR2-mediated IL-10 production, following the initial systemic exposure to P.g., inhibits the IFN-γ T cell response. To address this hypothesis, mice were primed with P.g., and the types of cells producing IL-10 and the capacity of T cells to produce IFN-γ following blocking or neutralization of IL-10 were assessed. Our results showed that upon initial encounter with P.g., splenic T cells and CD11b(+) cells produce IL-10, which when neutralized, resulted in a substantial increase in IFN-γ production by T cells. Furthermore, IL-10 production was dependent on TLR2/1 signaling, partly in response to the major surface protein, FimA of P.g. In addition, P.g. stimulation resulted in the up-regulation of PD-1 and its ligand PD-L1 on CD4 T cells and CD11b(+) cells, respectively. Up-regulation of PD-1 was partially dependent on IL-10 but independent of TLR2 or FimA. These results highlight the role of IL-10 in inhibiting T cell responses to the initial systemic P.g. exposure and suggest multiple inhibitory mechanisms potentially used by P.g. to evade the host's immune response, thus allowing its persistence in the host.
Collapse
Affiliation(s)
- Dalia E Gaddis
- University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294-2170, USA.
| | | | | | | | | |
Collapse
|
89
|
|
90
|
Fujita T, Shiba H, Kurihara H. Irsogladine maleate regulates barrier function and neutrophil accumulation in the gingival epithelium. J Oral Biosci 2012. [DOI: 10.1016/j.job.2012.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
91
|
Dabija-Wolter G, Sapkota D, Cimpan MR, Neppelberg E, Bakken V, Costea DE. Limited in-depth invasion of Fusobacterium nucleatum into in vitro reconstructed human gingiva. Arch Oral Biol 2012; 57:344-51. [DOI: 10.1016/j.archoralbio.2011.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/22/2011] [Accepted: 09/30/2011] [Indexed: 11/25/2022]
|
92
|
Kinane JA, Benakanakere MR, Zhao J, Hosur KB, Kinane DF. Porphyromonas gingivalis influences actin degradation within epithelial cells during invasion and apoptosis. Cell Microbiol 2012; 14:1085-96. [PMID: 22381126 DOI: 10.1111/j.1462-5822.2012.01780.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Porphyromonas gingivalis, a Gram-negative oral pathogen, has been shown to induce apoptosis in human gingival epithelial cells, yet the underlining cellular mechanisms controlling this process are poorly understood. We have previously shown that the P. gingivalis proteases arginine and lysine gingipains, are necessary and sufficient to induce host cell apoptosis. In the present study, we demonstrate that 'P. gingivalis-induced apoptosis' is mediated through degradation of actin leading to cytoskeleton collapse. Stimulation of human gingival epithelial cells with P. gingivalis strains 33277 and W50 at moi:100 induced β-actin cleavage as early as 1 h and human serum inhibited this effect. By using gingipain-deficient mutants of P. gingivalis and purified gingipains, we demonstrate that lysine gingipain is involved in actin hydrolysis in a dose and time-dependent manner. Use of Jasplakinolide and cytochalasin D revealed that P. gingivalis internalization is necessary for actin cleavage. Further, we also show that lysine gingipain from P. gingivalis can cleave active caspase 3. Taken together, we have identified actin as a substrate for lysine gingipain and demonstrated a novel mechanism involved in microbial host cell invasion and apoptosis.
Collapse
Affiliation(s)
- James A Kinane
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
93
|
Fujita T, Shiba H, Kurihara H. Irsogladine maleate regulates gingival epithelial barrier function and intercellular communication in gingival epithelial cells. Inflamm Regen 2012. [DOI: 10.2492/inflammregen.32.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
94
|
Jerse AE, Wu H, Packiam M, Vonck RA, Begum AA, Garvin LE. Estradiol-Treated Female Mice as Surrogate Hosts for Neisseria gonorrhoeae Genital Tract Infections. Front Microbiol 2011; 2:107. [PMID: 21747807 PMCID: PMC3129519 DOI: 10.3389/fmicb.2011.00107] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 04/28/2011] [Indexed: 12/16/2022] Open
Abstract
Historically, animal modeling of gonorrhea has been hampered by the exclusive adaptation of Neisseria gonorrhoeae to humans. Genital tract infection can be established in female mice that are treated with 17β-estradiol, however, and many features of experimental murine infection mimic human infection. Here we review the colonization kinetics and host response to experimental murine gonococcal infection, including mouse strain differences and evidence that IL-17 responses, toll-like receptor 4, and T regulatory cells play a role in infection. We also discuss the strengths and limitations of the mouse system and the potential of transgenic mice to circumvent host restrictions. Additionally, we review studies with genetically defined mutants that demonstrated a role for sialyltransferase and the MtrC-MtrD-MtrE active efflux pump in evading innate defenses in vivo, but not for factors hypothesized to protect against the phagocytic respiratory burst and H(2)O(2)-producing lactobacilli. Studies using estradiol-treated mice have also revealed the existence of non-host-restricted iron sources in the female genital tract and the influence of hormonal factors on colonization kinetics and selection for opacity (Opa) protein expression. Recent work by others with estradiol-treated mice that are transgenic for human carcinoembryonic adhesion molecules (CEACAMs) supports a role for Opa proteins in enhancing cellular attachment and thus reduced shedding of N. gonorrhoeae. Finally we discuss the use of the mouse model in product testing and a recently developed gonorrhea chlamydia coinfection model.
Collapse
Affiliation(s)
- Ann E Jerse
- Department of Microbiology and Immunology, F. Edward Hebert School of Medicine, Uniformed Services University Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
95
|
Akamatsu Y, Yamamoto T, Yamamoto K, Oseko F, Kanamura N, Imanishi J, Kita M. Porphyromonas gingivalis induces myocarditis and/or myocardial infarction in mice and IL-17A is involved in pathogenesis of these diseases. Arch Oral Biol 2011; 56:1290-8. [PMID: 21683342 DOI: 10.1016/j.archoralbio.2011.05.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 05/19/2011] [Accepted: 05/25/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Although an association between periodontitis and cardiovascular diseases has been suggested, the role of Porphyromonas gingivalis in cardiovascular diseases is not clear. In this study, we examined whether experimental bacteremia of P. gingivalis causes cardiovascular diseases and investigated the mechanism of pathogenesis of cardiovascular diseases induced by P. gingivalis. DESIGN C57BL/6 mice were intravenously inoculated with 2.0 × 10(8)CFU of P. gingivalis A7436 strain. Mice were sacrificed at specified days and their hearts were collected. The collected organs were divided into two halves and used for histological evaluation and cytokine analysis. IL-17A(-/-), IFN-γ(-/-) and TNF-α(-/-) mice were also intravenously inoculated and the histological changes of hearts in mice were examined. RESULTS Myocarditis and/or myocardial infarction were observed in mice injected with P. gingivalis. The levels of IL1-β, IL-6, IL-17A, IL-18, TNF-α and IFN-γ mRNA increased significantly after P. gingivalis injection. In particular, high levels of IL-17A and IFN-γ mRNA expression were observed in hearts of mice after P. gingivalis injection in comparison with these levels before injection. Furthermore, the production of IL-17A was detected in hearts of wild-type mice after P. gingivalis injection. In wild-type, TNF-α(-/-) and IFN-γ(-/-) mice, moderate infiltration of neutrophils and monocytes was observed in hearts at 5 days after injection. In contrast, no inflammatory findings were observed in hearts of IL-17A(-/-) mice. CONCLUSION We have demonstrated that an experimental bacteremia of P. gingivalis could induce myocarditis and/or myocardial infarction in mice, and IL-17A plays an important role in the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Yuki Akamatsu
- Department of Microbiology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, 465, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | | | | | | | | | | | | |
Collapse
|
96
|
Dickinson BC, Moffatt CE, Hagerty D, Whitmore SE, Brown TA, Graves DT, Lamont RJ. Interaction of oral bacteria with gingival epithelial cell multilayers. Mol Oral Microbiol 2011; 26:210-20. [PMID: 21545698 PMCID: PMC3248246 DOI: 10.1111/j.2041-1014.2011.00609.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Primary gingival epithelial cells were cultured in multilayers as a model for the study of interactions with oral bacteria associated with health and periodontal disease. Multilayers maintained at an air-liquid interface in low-calcium medium displayed differentiation and cytokeratin properties characteristic of junctional epithelium. Multilayers were infected with fluorescently labeled Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum or Streptococcus gordonii, and bacterial association was determined by confocal microscopy and quantitative image analysis. Porphyromonas gingivalis invaded intracellularly and spread from cell to cell; A. actinomycetemcomitans and F. nucleatum remained extracellular and showed intercellular movement through the multilayer; whereas S. gordonii remained extracellular and predominantly associated with the superficial cell layer. None of the bacterial species disrupted barrier function as measured by transepithelial electrical resistance. P. gingivalis did not elicit secretion of proinflammatory cytokines. However, A. actinomycetemcomitans and S. gordonii induced interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), IL-6 and IL-8 secretion; and F. nucleatum stimulated production of IL-1β and TNF-α. Aggregatibacter actinomycetemcomitans, F. nucleatum and S. gordonii, but not P. gingivalis, increased levels of apoptosis after 24 h infection. The results indicate that the organisms with pathogenic potential were able to traverse the epithelium, whereas the commensal bacteria did not. In addition, distinct host responses characterized the interaction between the junctional epithelium and oral bacteria.
Collapse
Affiliation(s)
- Brittany C. Dickinson
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, 32610
| | - Catherine E. Moffatt
- Center for Oral Health and Systemic Disease, School of Dentistry, University of Louisville, Louisville, KY 40292
| | - Dylan Hagerty
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, 32610
| | - Sarah E. Whitmore
- Center for Oral Health and Systemic Disease, School of Dentistry, University of Louisville, Louisville, KY 40292
| | - Thomas A Brown
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, 32610
| | - Dana T. Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Richard J. Lamont
- Center for Oral Health and Systemic Disease, School of Dentistry, University of Louisville, Louisville, KY 40292
| |
Collapse
|
97
|
McGuckin MA, Lindén SK, Sutton P, Florin TH. Mucin dynamics and enteric pathogens. Nat Rev Microbiol 2011. [PMID: 21407243 DOI: 10.1038/nrm] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The extracellular secreted mucus and the cell surface glycocalyx prevent infection by the vast numbers of microorganisms that live in the healthy gut. Mucin glycoproteins are the major component of these barriers. In this Review, we describe the components of the secreted and cell surface mucosal barriers and the evidence that they form an effective barricade against potential pathogens. However, successful enteric pathogens have evolved strategies to circumvent these barriers. We discuss the interactions between enteric pathogens and mucins, and the mechanisms that these pathogens use to disrupt and avoid mucosal barriers. In addition, we describe dynamic alterations in the mucin barrier that are driven by host innate and adaptive immune responses to infection.
Collapse
Affiliation(s)
- Michael A McGuckin
- Immunity, Infection and Inflammation Program, Mater Medical Research Institute and The University of Queensland School of Medicine, South Brisbane, Queensland 4101, Australia.
| | | | | | | |
Collapse
|
98
|
|
99
|
Sugawara Y, Fujinaga Y. The botulinum toxin complex meets E-cadherin on the way to its destination. Cell Adh Migr 2011; 5:34-6. [PMID: 20935473 DOI: 10.4161/cam.5.1.13574] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Botulinum neurotoxin (BoNT) causes the disease botulism, which is characterized by flaccid paralysis, in humans and animals. The metalloprotease activity of BoNT inhibits neurotransmitter release at neuro-muscular junctions. In most cases, poisoning occurs when BoNT is ingested. Therefore, BoNT must pass through the epithelial barrier of the gastrointestinal tract to enter the systemic circulation and reach the target site. BoNT forms large protein complexes by associating with non-toxic components referred to as non-toxic non-hemagglutinin (NTNH) and hemagglutinin (HA). These proteins protect BoNT from the low pH and proteases in the digestive tract. We recently determined that HA has an unexpected function of disrupting the intercellular epithelial barrier by directly binding to E-cadherin. HA binds to E-cadherin and disrupts its function in a species-specific manner, and this interaction is essential to disrupt tight junctions. This activity is thought to facilitate the absorption of BoNT through the paracellular route of the intestinal epithelium in susceptible species.
Collapse
Affiliation(s)
- Yo Sugawara
- International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | | |
Collapse
|
100
|
Zhang W, Ju J, Rigney T, Tribble GD. Fimbriae of Porphyromonas gingivalis are important for initial invasion of osteoblasts, but not for inhibition of their differentiation and mineralization. J Periodontol 2010; 82:909-16. [PMID: 21189086 DOI: 10.1902/jop.2010.100501] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Porphyromonas gingivalis is etiologically associated with chronic periodontitis. The major fimbriae of this periodontal pathogen mediate binding to host gingival epithelial cells and fibroblasts, a critical function in the initiation of periodontitis. However, the role of fimbriae in P. gingivalis-osteoblast interactions remains unknown. In the present study, the involvement of major fimbriae in the initial and long-term interactions between P. gingivalis and osteoblasts is investigated. METHODS Primary mouse calvarial osteoblast cultures were established and inoculated with P. gingivalis ATCC 33277 or YPF1, a major fimbriae-deficient mutant of P. gingivalis. Confocal microscopy images were acquired to assess bacterial invasion. DNA content measurement, real-time polymerase chain reaction, and alizarin red S staining and calcium content analysis were used to study the impact of bacteria on the proliferation, differentiation, and mineralization of osteoblasts, respectively. RESULTS Compared to the parent strain, YPF1 was significantly reduced in invasion of osteoblasts after 3 hours interaction. However, extended culture of infected osteoblasts did not reveal significant differences in persistence between the two strains. Proliferation of osteoblasts was not affected by either strain, and differentiation and mineralization of osteoblasts were inhibited by both strains to comparable levels. CONCLUSION This study reveals that major fimbriae are involved in the initial invasion of osteoblasts by P. gingivalis, but are not essential for the subsequent inhibition of osteoblast differentiation and mineralization in long-term culture.
Collapse
Affiliation(s)
- Wenjian Zhang
- Department of Diagnostic Sciences, University of Texas Dental Branch at Houston, Houston, TX, USA.
| | | | | | | |
Collapse
|