51
|
Gonzalez MR, Bischofberger M, Frêche B, Ho S, Parton RG, van der Goot FG. Pore-forming toxins induce multiple cellular responses promoting survival. Cell Microbiol 2011; 13:1026-43. [PMID: 21518219 DOI: 10.1111/j.1462-5822.2011.01600.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pore-forming toxins (PFTs) are secreted proteins that contribute to the virulence of a great variety of bacterial pathogens. They inflict one of the more disastrous damages a target cell can be exposed to: disruption of plasma membrane integrity. Since this is an ancient form of attack, which bears similarities to mechanical membrane damage, cells have evolved response pathways to these perturbations. Here, it is reported that PFTs trigger very diverse yet specific response pathways. Many are triggered by the decrease in cytoplasmic potassium, which thus emerges as a central regulator. Upon plasma membrane damage, cells activate signalling pathways aimed at restoring plasma membrane integrity and ion homeostasis. Interestingly these pathways do not require protein synthesis. Cells also trigger signalling cascades that allow them to enter a quiescent-like state, where minimal energy is consumed while waiting for plasma membrane damage to be repaired. More specifically, protein synthesis is arrested, cytosolic constituents are recycled by autophagy and energy is stored in lipid droplets.
Collapse
Affiliation(s)
- Manuel R Gonzalez
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
52
|
Sreedharan K, Philip R, Singh ISB. Isolation and characterization of virulent Aeromonas veronii from ascitic fluid of oscar Astronotus ocellatus showing signs of infectious dropsy. DISEASES OF AQUATIC ORGANISMS 2011; 94:29-39. [PMID: 21553566 DOI: 10.3354/dao02304] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The cichlid oscar Astronotus ocellatus has worldwide commercial value in the pet fish industry because of its early maturation, relatively high fecundity, ability to identify its caretaker and also to alter colouration amongst conspecifics. Pathogenic strains of Aeromonas veronii resistant to multiple antibiotics were isolated from A. ocellatus individuals showing signs of infectious abdominal dropsy. The moribund fish showed haemorrhage in all internal organs, and pure cultures could be obtained from the abdominal fluid. The isolates recovered were biochemically identified as A. veronii biovar sobria and genetically confirmed as A. veronii based on 16S rRNA gene sequence analysis (GenBank accession no. FJ573179). The RAPD profile using 3 primers (OPA-3, OPA-4 and OPD-20) generated similar banding patterns for all isolates. They displayed cytotoxic and haemolytic activity and produced several exoenzymes which were responsible for the pathogenic potential of the isolates. In the representative isolate MCCB 137, virulence genes such as enterotoxin act, haemolytic toxin aerA, type 3 secretion genes such as aexT, ascVand ascF-ascG, and gcat (glycerophospholipid-cholesterol acyltransferase) could be amplified. MCCB 137 exhibited a 50% lethal dose (LD50) of 10(5.071) colony-forming units ml(-1) in goldfish and could be subsequently recovered from lesions as well as from the internal organs. This is the first description of a virulent A. veronii from oscar.
Collapse
Affiliation(s)
- K Sreedharan
- National Centre for Aquatic Animal Health, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Cochin 682 016, Kerala, India
| | | | | |
Collapse
|
53
|
Li J, Ni X, Liu Y, Lu C. Detection of three virulence genes alt, ahp and aerA in Aeromonas hydrophila and their relationship with actual virulence to zebrafish. J Appl Microbiol 2011; 110:823-30. [DOI: 10.1111/j.1365-2672.2011.04944.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
54
|
Li J, Zhang XL, Liu YJ, Lu CP. Development of an Aeromonas hydrophila infection model using the protozoan Tetrahymena thermophila. FEMS Microbiol Lett 2011; 316:160-8. [PMID: 21204941 DOI: 10.1111/j.1574-6968.2010.02208.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Aeromonas hydrophila is a motile bacterium present in numerous freshwater habitats worldwide and is frequently the cause of infections in fish and numerous terrestrial vertebrates including humans. Because A. hydrophila is also a component of the normal intestinal flora of healthy fish, virulence mechanisms are not well understood. Considering that fish models used for the examination of A. hydrophila genes associated with virulence have not been well defined, we established an infection model using the free-living, ciliate protozoa Tetrahymena thermophila. The expression of A. hydrophila virulence genes following infection of T. thermophila was assessed by reverse transcription-PCR and demonstrated that the aerolysin (aerA) and Ahe2 serine protease (ahe2) genes (not present in the avirulent A. hydrophila NJ-4 strain) in the virulent J-1 strain were upregulated 4-h postinfection. Furthermore, the presence of intact A. hydrophila J-1 within T. thermophila suggested that these bacteria could interfere with phagocytosis, resulting in the death of the infected protozoan 48-h postinfection. Conversely, A. hydrophila NJ-4-infected T. thermophila survived the infection. This study established a novel T. thermophila infection model that will provide a novel means of examining virulence mechanisms of A. hydrophila.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Animal Disease Diagnostic and Immunology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | | | | | | |
Collapse
|
55
|
Valério E, Chaves S, Tenreiro R. Diversity and impact of prokaryotic toxins on aquatic environments: a review. Toxins (Basel) 2010; 2:2359-410. [PMID: 22069558 PMCID: PMC3153167 DOI: 10.3390/toxins2102359] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 10/01/2010] [Accepted: 10/13/2010] [Indexed: 12/17/2022] Open
Abstract
Microorganisms are ubiquitous in all habitats and are recognized by their metabolic versatility and ability to produce many bioactive compounds, including toxins. Some of the most common toxins present in water are produced by several cyanobacterial species. As a result, their blooms create major threats to animal and human health, tourism, recreation and aquaculture. Quite a few cyanobacterial toxins have been described, including hepatotoxins, neurotoxins, cytotoxins and dermatotoxins. These toxins are secondary metabolites, presenting a vast diversity of structures and variants. Most of cyanobacterial secondary metabolites are peptides or have peptidic substructures and are assumed to be synthesized by non-ribosomal peptide synthesis (NRPS), involving peptide synthetases, or NRPS/PKS, involving peptide synthetases and polyketide synthases hybrid pathways. Besides cyanobacteria, other bacteria associated with aquatic environments are recognized as significant toxin producers, representing important issues in food safety, public health, and human and animal well being. Vibrio species are one of the most representative groups of aquatic toxin producers, commonly associated with seafood-born infections. Some enterotoxins and hemolysins have been identified as fundamental for V. cholerae and V. vulnificus pathogenesis, but there is evidence for the existence of other potential toxins. Campylobacter spp. and Escherichia coli are also water contaminants and are able to produce important toxins after infecting their hosts. Other bacteria associated with aquatic environments are emerging as toxin producers, namely Legionella pneumophila and Aeromonas hydrophila, described as responsible for the synthesis of several exotoxins, enterotoxins and cytotoxins. Furthermore, several Clostridium species can produce potent neurotoxins. Although not considered aquatic microorganisms, they are ubiquitous in the environment and can easily contaminate drinking and irrigation water. Clostridium members are also spore-forming bacteria and can persist in hostile environmental conditions for long periods of time, contributing to their hazard grade. Similarly, Pseudomonas species are widespread in the environment. Since P. aeruginosa is an emergent opportunistic pathogen, its toxins may represent new hazards for humans and animals. This review presents an overview of the diversity of toxins produced by prokaryotic microorganisms associated with aquatic habitats and their impact on environment, life and health of humans and other animals. Moreover, important issues like the availability of these toxins in the environment, contamination sources and pathways, genes involved in their biosynthesis and molecular mechanisms of some representative toxins are also discussed.
Collapse
Affiliation(s)
- Elisabete Valério
- Centro de Recursos Microbiológicos (CREM), Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal;
| | - Sandra Chaves
- Centro de Biodiversidade, Genómica Integrativa e Funcional (BioFIG), Faculdade de Ciências, Universidade de Lisboa, Edificio ICAT, Campus da FCUL, Campo Grande, 1740-016 Lisboa, Portugal;
| | - Rogério Tenreiro
- Centro de Biodiversidade, Genómica Integrativa e Funcional (BioFIG), Faculdade de Ciências, Universidade de Lisboa, Edificio ICAT, Campus da FCUL, Campo Grande, 1740-016 Lisboa, Portugal;
| |
Collapse
|
56
|
Suarez G, Sierra JC, Kirtley ML, Chopra AK. Role of Hcp, a type 6 secretion system effector, of Aeromonas hydrophila in modulating activation of host immune cells. MICROBIOLOGY-SGM 2010; 156:3678-3688. [PMID: 20798163 PMCID: PMC3068704 DOI: 10.1099/mic.0.041277-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Recently, we reported that the type 6 secretion system (T6SS) of Aeromonas hydrophila SSU plays an important role in bacterial virulence in a mouse model, and immunization of animals with the T6SS effector haemolysin co-regulated protein (Hcp) protected them against lethal infections with wild-type bacteria. Additionally, we showed that the mutant bacteria deleted for the vasH gene within the T6SS gene cluster did not express the hcp gene, while the vasK mutant could express and translocate Hcp, but was unable to secrete it into the extracellular milieu. Both of these A. hydrophila SSU mutants were readily phagocytosed by murine macrophages, pointing to the possible role of the secreted form of Hcp in the evasion of the host innate immunity. By using the ΔvasH mutant of A. hydrophila, our in vitro data showed that the addition of exogenous recombinant Hcp (rHcp) reduced bacterial uptake by macrophages. These results were substantiated by increased bacterial virulence when rHcp was added along with the ΔvasH mutant in a septicaemic mouse model of infection. Analysis of the cytokine profiling in the intraperitoneal lavage as well as activation of host cells after 4 h of infection with the ΔvasH mutant supplemented with rHcp indicated that this T6SS effector inhibited production of pro-inflammatory cytokines and induced immunosuppressive cytokines, such as interleukin-10 and transforming growth factor-β, which could circumvent macrophage activation and maturation. This mechanism of innate immune evasion by Hcp possibly inhibited the recruitment of cellular immune components, which allowed bacterial multiplication and dissemination in animals, thereby leading to their mortality.
Collapse
Affiliation(s)
- Giovanni Suarez
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Johanna C Sierra
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Michelle L Kirtley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ashok K Chopra
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
57
|
Unraveling the mechanism of action of a new type III secretion system effector AexU from Aeromonas hydrophila. Microb Pathog 2010; 49:122-34. [PMID: 20553837 DOI: 10.1016/j.micpath.2010.05.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 05/18/2010] [Accepted: 05/20/2010] [Indexed: 11/23/2022]
Abstract
We recently characterized a T3SS effector, AexU, from a diarrheal isolate SSU of Aeromonas hydrophila, which exhibited ADP-ribosyltransferase (ADPRT) activity. Here we provided evidence that AexU also possessed GTPase-activating protein (GAP) activity, which was mainly responsible for host cell apoptosis and disruption of actin filaments. Earlier, we showed that the DeltaaexU null mutant was attenuated in a mouse model, and we now demonstrated that while the parental A. hydrophila strain could be detected in the lung, liver, and spleen of infected mice, the DeltaaexU mutant was rapidly cleared from these organs resulting in increased survivability of animals. Further, AexU prevented phosphorylation of c-Jun, JNK and IkappaBalpha and inhibited IL-6 and IL-8 secretion from HeLa cells. Our data indicated that AexU operated by inhibiting NF-kappaB and inactivating Rho GTPases. Importantly, however, when the DeltaaexU null mutant was complemented with the mutated aexU gene devoid of ADPRT and GAP activities, a higher mortality rate in mice with concomitant increase in the production of pro-inflammatory cytokines/chemokines was noted. These data indicated that either such a mutated AexU is a potent inducer of them or that AexU possesses yet another unknown activity that is modulated by ADPRT and GAP activities and results in this aberrant cytokine/chemokine production responsible for increased animal death.
Collapse
|
58
|
Abstract
Over the past decade, the genus Aeromonas has undergone a number of significant changes of practical importance to clinical microbiologists and scientists alike. In parallel with the molecular revolution in microbiology, several new species have been identified on a phylogenetic basis, and the genome of the type species, A. hydrophila ATCC 7966, has been sequenced. In addition to established disease associations, Aeromonas has been shown to be a significant cause of infections associated with natural disasters (hurricanes, tsunamis, and earthquakes) and has been linked to emerging or new illnesses, including near-drowning events, prostatitis, and hemolytic-uremic syndrome. Despite these achievements, issues still remain regarding the role that Aeromonas plays in bacterial gastroenteritis, the extent to which species identification should be attempted in the clinical laboratory, and laboratory reporting of test results from contaminated body sites containing aeromonads. This article provides an extensive review of these topics, in addition to others, such as taxonomic issues, microbial pathogenicity, and antimicrobial resistance markers.
Collapse
|
59
|
Janda JM, Abbott SL. The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev 2010. [PMID: 20065325 DOI: 10.1128/cmr.00039-091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023] Open
Abstract
Over the past decade, the genus Aeromonas has undergone a number of significant changes of practical importance to clinical microbiologists and scientists alike. In parallel with the molecular revolution in microbiology, several new species have been identified on a phylogenetic basis, and the genome of the type species, A. hydrophila ATCC 7966, has been sequenced. In addition to established disease associations, Aeromonas has been shown to be a significant cause of infections associated with natural disasters (hurricanes, tsunamis, and earthquakes) and has been linked to emerging or new illnesses, including near-drowning events, prostatitis, and hemolytic-uremic syndrome. Despite these achievements, issues still remain regarding the role that Aeromonas plays in bacterial gastroenteritis, the extent to which species identification should be attempted in the clinical laboratory, and laboratory reporting of test results from contaminated body sites containing aeromonads. This article provides an extensive review of these topics, in addition to others, such as taxonomic issues, microbial pathogenicity, and antimicrobial resistance markers.
Collapse
Affiliation(s)
- J Michael Janda
- Microbial Diseases Laboratory, Division of Communicable Disease Control, Center for Infectious Diseases, California Department of Public Health, Richmond, California 94804, USA.
| | | |
Collapse
|
60
|
Bhowmik P, Bag PK, Hajra TK, De R, Sarkar P, Ramamurthy T. Pathogenic potential of Aeromonas hydrophila isolated from surface waters in Kolkata, India. J Med Microbiol 2009; 58:1549-1558. [DOI: 10.1099/jmm.0.014316-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Members of the genus Aeromonas (family Aeromonadaceae) are medically important, Gram-negative, rod-shaped micro-organisms and are ubiquitous in aquatic environments. Aeromonas species are increasingly recognized as enteric pathogens; they possess several virulence factors associated with human disease, and represent a serious public health concern. In the present study, putative virulence traits of Aeromonas hydrophila isolates collected from different natural surface waters of Kolkata, India, were compared with a group of clinical isolates from the same geographical area using tissue culture and PCR assays. Enteropathogenic potential was investigated in the mouse model. Of the 21 environmental isolates tested, the majority showed cytotoxicity to HeLa cells (81 %), haemolysin production (71 %) and serum resistance properties (90 %), and they all exhibited multi-drug resistance. Some of the isolates induced fluid accumulation (FA ratio≥100), damage to the gut and an inflammatory reaction in the mouse intestine; these effects were comparable to those of clinical strains of A. hydrophila and toxigenic Vibrio cholerae. Interestingly, two of the isolates evoked a cell vacuolation effect in HeLa cells, and were also able to induce FA. These findings demonstrate the presence of potentially pathogenic and multi-drug-resistant A. hydrophila in the surface waters, thereby indicating a significant risk to public health. Continuous monitoring of surface waters is important to identify potential water-borne pathogens and to reduce the health risk caused by the genus Aeromonas.
Collapse
Affiliation(s)
- Poulami Bhowmik
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, India
| | - Prasanta K. Bag
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, India
| | - Tapas K. Hajra
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, India
| | - Rituparna De
- National Institute of Cholera and Enteric Diseases, P-33 C.I.T. Road, Scheme-XM, Beliaghata, Kolkata 700 010, India
| | - Pradipto Sarkar
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, India
| | - T. Ramamurthy
- National Institute of Cholera and Enteric Diseases, P-33 C.I.T. Road, Scheme-XM, Beliaghata, Kolkata 700 010, India
| |
Collapse
|
61
|
Clinical relevance of the recently described species Aeromonas aquariorum. J Clin Microbiol 2009; 47:3742-6. [PMID: 19741075 DOI: 10.1128/jcm.02216-08] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Twenty-two human extraintestinal isolates (11 from blood) and three isolates recovered from patients with diarrhea were genetically characterized as Aeromonas aquariorum, a novel species known only from ornamental fish. The isolates proved to bear a considerable number of virulence genes, and all were resistant to amoxicillin (amoxicilline), cephalothin (cefalotin), and cefoxitin. Biochemical differentiation from the most relevant clinical species is provided.
Collapse
|
62
|
Khemiss F, Ahmadi S, Massoudi R, Ghoul-Mazgar S, Safta S, Moshtaghie AA, Saïdane D. Effect of in vitro exposure to Vibrio vulnificus on hydroelectrolytic transport and structural changes of sea bream (Sparus aurata L.) intestine. FISH PHYSIOLOGY AND BIOCHEMISTRY 2009; 35:541-549. [PMID: 18825505 DOI: 10.1007/s10695-008-9265-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 08/25/2008] [Indexed: 05/26/2023]
Abstract
The everted gut sac technique has been used to investigate the effect of Vibrio vulnificus on water and electrolyte (Na(+), K(+), Cl(-), HCO(3)(-)) transport on the intestine of sea bream (Sparus aurata L.). Both the anterior and the posterior intestine were incubated in a medium containing 10(8) V. vulnificus cells ml(-1) at 25 degrees C for 2 h. The presence of V. vulnificus resulted in a significant reduction (P < 0.05) of water absorption in the anterior intestine, while sodium absorption in the anterior (P < 0.01) and posterior (P < 0.05) intestine was elevated. Chloride absorption was increased, but the changed was not significant, while potassium absorption decreased significantly (P < 0.05), but only in the posterior intestine. Incubation the sea bream intestine with V. vulnificus did not affect carbonate secretion in the anterior segment, whereas high secretion was stimulated in the posterior segment (P < 0.01). Histological evaluations demonstrated damage in the anterior intestine of sea bream that was characterized by the detachment of degenerative enterocytes, alterations in the microvilli, and the presence of a heterogenous cell population, indicating inflammation. Based on our results, we conclude that V. vulnificus caused cell damage to the intestine of sea bream and that the anterior intestine is more susceptible than the posterior part of the intestine. Several hypotheses are suggested to explain our observations, such as the presence of higher numbers of villosities in the anterior intestine than in the posterior one and/or the presence of endogenous bacteria in the posterior intestine which may have a protector role.
Collapse
Affiliation(s)
- Fathia Khemiss
- Laboratory of Physiology, Faculty of Dental Medicine, Monastir, Tunisia.
| | | | | | | | | | | | | |
Collapse
|
63
|
Rodríguez I, Chamorro R, Novoa B, Figueras A. beta-Glucan administration enhances disease resistance and some innate immune responses in zebrafish (Danio rerio). FISH & SHELLFISH IMMUNOLOGY 2009; 27:369-373. [PMID: 19232393 DOI: 10.1016/j.fsi.2009.02.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 01/15/2009] [Accepted: 02/01/2009] [Indexed: 05/27/2023]
Abstract
The present study was conducted to investigate the effect of beta-glucan (derived from Saccharomyces cerevisiae) on the immune response and its protection against an infection of the bacterial pathogen Aeromonas hydrophila in zebrafish (Danio rerio). Zebrafish received beta-glucan by intraperitoneal injection at three different concentrations (5, 2 and 0.5 mgml(-1)) at 6, 4 and 2 days prior the challenge. On challenge day the control and beta-glucan pretreated zebrafish were intraperitoneally injected with A. hydrophila and mortality was recorded for 4 days. Intraperitoneal injection of 5 mgml(-1) of beta-glucan significantly reduced the mortality. A single injection of 5 mgml(-1) of beta-glucan 6 days before challenge also enhanced significantly the survival against the infection. The treatment with beta-glucan increased the myelomonocytic cell population in the kidney at 6h postchallenge with A. hydrophila. Moreover it enhanced the ability of kidney cells to kill A. hydrophila. beta-glucan did not affect the expression of TNFalpha or IL-1 beta but seemed to modulate IFNgamma and chemokine expression in kidney.
Collapse
Affiliation(s)
- Iván Rodríguez
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (CSIC), Eduardo Cabello 6, Vigo, Spain
| | | | | | | |
Collapse
|
64
|
Cancino-Rodezno A, Porta H, Soberón M, Bravo A. Defense and death responses to pore forming toxins. Biotechnol Genet Eng Rev 2009; 26:65-82. [DOI: 10.5661/bger-26-65] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
65
|
Aeromonas Spp. Human Isolates Induce Apoptosis of Murine Macrophages. Curr Microbiol 2008; 58:252-7. [DOI: 10.1007/s00284-008-9316-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 09/30/2008] [Accepted: 10/13/2008] [Indexed: 02/05/2023]
|
66
|
MacCarthy EM, Burns I, Irnazarow I, Polwart A, Greenhough TJ, Shrive AK, Hoole D. Serum CRP-like protein profile in common carp Cyprinus carpio challenged with Aeromonas hydrophila and Escherichia coli lipopolysaccharide. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:1281-1289. [PMID: 18538390 DOI: 10.1016/j.dci.2008.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 03/17/2008] [Accepted: 04/06/2008] [Indexed: 05/26/2023]
Abstract
The potential of C-reactive protein (CRP)-like proteins to be used as a biomarker of health status in cultured carp obtained from various European fish lines has been assessed. Varying CRP-like protein levels in the serum of carp were monitored using an indirect competitive enzyme-linked immunosorbent assay. CRP-like protein basal levels in normal fish varied between carp lines, ranging on average from 2.9+/-0.15 to 12.57+/-1.19 microg ml(-1). Serum levels of CRP-like protein in carp were observed to increase several fold in fish infected with the pathogen Aeromonas hydrophila. However, carp injected with Escherichia coli lipopolysaccharide (LPS) serotype 0111:B4 did not exhibit an increase in CRP-like proteins levels.
Collapse
Affiliation(s)
- Eugene M MacCarthy
- School of Life Sciences, Huxley Building, Keele University, Staffordshire ST5 5BG, UK
| | | | | | | | | | | | | |
Collapse
|
67
|
Fluid secretion caused by aerolysin-like hemolysin of Aeromonas sobria in the intestines is due to stimulation of production of prostaglandin E2 via cyclooxygenase 2 by intestinal cells. Infect Immun 2007; 76:1076-82. [PMID: 18086811 DOI: 10.1128/iai.01098-07] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To clarify the mechanisms of diarrheal disease induced by Aeromonas sobria, we examined whether prostaglandin E2 (PGE2) was involved in the intestinal secretory action of A. sobria hemolysin by use of a mouse intestinal loop model. The amount of PGE2 in jejunal fluid and the fluid accumulation ratio were directly related to the dose of hemolysin. The increase over time in the level of PGE2 was similar to that of the accumulated fluid. In addition, hemolysin-induced fluid secretion and PGE2 synthesis were inhibited by the selective cyclooxygenase 2 (COX-2) inhibitor NS-398 but not the COX-1 inhibitor SC-560. Western blot analysis revealed that hemolysin increased the COX-2 protein levels but reduced the COX-1 protein levels in mouse intestinal mucosa in vivo. These results suggest that PGE2 functions as an important mediator of diarrhea caused by hemolysin and that PGE2 is produced primarily through a COX-2-dependent mechanism. Subsequently, we examined the relationship between PGE2, cyclic AMP (cAMP), and cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channels in mouse intestinal mucosa exposed to hemolysin. Hemolysin increased the levels of cAMP in the intestinal mucosa. NS-398 inhibited the increase in cAMP production, but SC-560 did not. In addition, H-89, a cAMP-dependent protein kinase A (PKA) inhibitor, and glibenclamide, a CFTR inhibitor, inhibited fluid accumulation. Taken together, these results indicate that hemolysin activates PGE2 production via COX-2 and that PGE2 stimulates cAMP production. cAMP then activates PKA, which in turn stimulates CFTR Cl- channels and finally leads to fluid accumulation in the intestines.
Collapse
|
68
|
Suarez G, Sierra JC, Sha J, Wang S, Erova TE, Fadl AA, Foltz SM, Horneman AJ, Chopra AK. Molecular characterization of a functional type VI secretion system from a clinical isolate of Aeromonas hydrophila. Microb Pathog 2007; 44:344-61. [PMID: 18037263 DOI: 10.1016/j.micpath.2007.10.005] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 10/17/2007] [Accepted: 10/18/2007] [Indexed: 01/01/2023]
Abstract
Our laboratory recently molecularly characterized the type II secretion system (T2SS)-associated cytotoxic enterotoxin (Act) and the T3SS-secreted AexU effector from a diarrheal isolate SSU of Aeromonas hydrophila. The role of these toxin proteins in the pathogenesis of A. hydrophila infections was subsequently delineated in in vitro and in vivo models. In this study, we characterized the new type VI secretion system (T6SS) from isolate SSU of A. hydrophila and demonstrated its role in bacterial virulence. Study of the role of T6SS in bacterial virulence is in its infancy, and there are, accordingly, only limited, recent reports directed toward a better understanding its role in bacterial pathogenesis. We have provided evidence that the virulence-associated secretion (vas) genes vasH (Sigma 54-dependent transcriptional regulator) and vasK (encoding protein of unknown function) are essential for expression of the genes encoding the T6SS and/or they constituted important components of the T6SS. Deletion of the vasH gene prevented expression of the potential translocon hemolysin coregulated protein (Hcp) encoding gene from bacteria, while the vasK gene deletion prevented secretion but not translocation of Hcp into host cells. The secretion of Hcp was independent of the T3SS and the flagellar system. We demonstrated that secreted Hcp could bind to the murine RAW 264.7 macrophages from outside, in addition to its ability to be translocated into host cells. Further, the vasH and vasK mutants were less toxic to murine macrophages and human epithelial HeLa cells, and these mutants were more efficiently phagocytosed by macrophages. We also provided evidence that the expression of the hcp gene in the HeLa cell resulted in apoptosis of the host cells. Finally, the vasH and vasK mutants of A. hydrophila were less virulent in a septicemic mouse model of infection, and animals immunized with recombinant Hcp were protected from subsequent challenge with the wild-type (WT) bacterium. In addition, mice infected with the WT A. hydrophila had circulating antibodies to Hcp, indicating an important role of T6SS in the pathogenesis of A. hydrophila infections. Taken together, we have characterized the T6SS from Aeromonas for the first time and provided new features of this secretion system not yet known for other pathogens.
Collapse
Affiliation(s)
- Giovanni Suarez
- Department of Microbiology and Immunology(,) University of Texas Medical Branch, 301 University Blvd., Galveston, TX 775551070, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Scoaris DDO, Colacite J, Nakamura CV, Ueda-Nakamura T, de Abreu Filho BA, Dias Filho BP. Virulence and antibiotic susceptibility of Aeromonas spp. isolated from drinking water. Antonie van Leeuwenhoek 2007; 93:111-22. [PMID: 17636377 DOI: 10.1007/s10482-007-9185-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 06/18/2007] [Indexed: 11/25/2022]
Abstract
Aeromonas isolates from tap water, mineral water, and artesian well water were investigated for their ability to produce different potential virulence factors or markers such as hemolysins, cytotoxins, phospholipase, DNase, hydrophobicity and their ability to adhere to epithelial cells and to abiotic surfaces. The susceptibility to antibiotics of Aeromonas isolates was also examined. Majority of the isolates displayed hemolytic activity against sheep erythrocytes, while only 7 of the 23 Aeromonas strains displayed DNase activity and 4 of the 23 Aeromonas strains tested were regarded as positive for phospholipase production. Most of the isolates showed cytotoxic activities in culture filtrate dilutions at titer of 1/8 or lower. No general relation between the strain isolated and the ability to interact with epithelial cells could be established. Using the bacterial adherence to hydrocarbons method, most of the strains were classified as highly hydrophilic. All five Aeromonas jandaei strains isolates, 9 of the 12 Aeromonas sp strains and four of the five Aeromonas hydrophila were multidrug resistant. The most active antimicrobial was ciprofloxacin (susceptible in 100% of the isolates), and the least active antibiotic was ampicillin (resistance in 92% of the isolates). The majority of the isolates tested were not killed by chlorine at 1.2 mg/l. Whether the high tolerance to chlorine of Aeromonas isolates can be linked to greater virulence is not know.
Collapse
Affiliation(s)
- Denise de Oliveira Scoaris
- Programa de Pós-graduação em Microbiologia, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Pr 445 Km 380, Cx. Postal 6001, 86051-990, Londrina, PR, Brazil
| | | | | | | | | | | |
Collapse
|
70
|
Fadl AA, Galindo CL, Sha J, Zhang F, Garner HR, Wang HQ, Chopra AK. Global transcriptional responses of wild-type Aeromonas hydrophila and its virulence-deficient mutant in a murine model of infection. Microb Pathog 2007; 42:193-203. [PMID: 17368824 DOI: 10.1016/j.micpath.2007.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 12/12/2006] [Accepted: 02/02/2007] [Indexed: 11/25/2022]
Abstract
We previously generated a double knockout mutant (act/aopB) of a diarrheal isolate SSU of A. hydrophila, in which the genes encoding Aeromonas outer membrane protein B (AopB), a structural component of the type III secretion system (T3SS), and a type II (T2)-secreted cytotoxic enterotoxin gene (act) were deleted. This mutant exhibited minimal virulence in mice, compared to animals infected with wild-type (WT) A. hydrophila. Based on microarray analyses, WT A. hydrophila altered the expression of 434 and 80 genes in murine macrophages (RAW 264.7) and human colonic epithelial cells (HT-29), respectively. Approximately half of these gene expression alterations were abrogated when host cells were infected instead with the act/aopB mutant. In this study, we used microarrays to examine early host transcriptional responses in spleens of mice infected for 3h with WT A. hydrophila or its act/aopB mutant. Our data indicated that expression of 221 genes was altered (158 up-regulated and 63 down-regulated) in spleens of WT bacteria-infected animals. There were 21 genes that were consistently more highly expressed in WT A. hydrophila-infected mice, compared to mice infected with its act/aopB mutant. Ten of these genes were either induced to a lesser extent (e.g., interleukin-6, macrophage inflammatory protein-2, and cyclooxygenase-2), not altered at all (e.g., killer cell lectin-like receptor subfamily B member A), or down-regulated (e.g., cytochrome P450) in animals infected with A. hydrophila, compared to phosphate-buffered saline-infected control animals, when the mutant was used instead of the WT. We verified the microarray results at the transcript level by performing real-time reverse transcriptase-polymerase chain reaction on selected genes and at the protein level by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry. This is the first study demonstrating in vivo gene regulation in mice infected with A. hydrophila and the contribution of virulence factors and host responses to the disease process.
Collapse
Affiliation(s)
- Amin A Fadl
- Department of Microbiology and Immunology, Medical Research Building, 301 University Boulevard, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | | | | | | | | | | | | |
Collapse
|
71
|
Aroian R, van der Goot FG. Pore-forming toxins and cellular non-immune defenses (CNIDs). Curr Opin Microbiol 2007; 10:57-61. [PMID: 17234446 DOI: 10.1016/j.mib.2006.12.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Accepted: 12/22/2006] [Indexed: 11/17/2022]
Abstract
Pore-forming toxins (PFTs) are the most common class of bacterial protein toxin and are important for bacterial pathogenesis. Recent studies have shown that the previous model stating that epithelial cells lyse in response to these toxins and have no defenses against these pores is oversimplified. Rather, it appears that cells have sophisticated mechanisms and signal-transduction pathways with which to respond to such an attack. There is a growing body of knowledge about how cells respond to and protect themselves against PFTs; this protection against PFTs is likely to be important in host survival to attack by bacterial pathogens, but does not neatly fit into current concepts of adaptive or innate immunity. Therefore, it is proposed that the terminology cellular non-immune defenses (CNIDs) be used to describe defenses that are employed by non-immune cells to protect against bacterial attack.
Collapse
Affiliation(s)
- Raffi Aroian
- Section of Cell and Developmental Biology, University of California, San Diego, CA 92093, USA
| | | |
Collapse
|
72
|
Rahman M, Huys G, Rahman M, Albert MJ, Kühn I, Möllby R. Persistence, transmission, and virulence characteristics of Aeromonas strains in a duckweed aquaculture-based hospital sewage water recycling plant in Bangladesh. Appl Environ Microbiol 2006; 73:1444-51. [PMID: 17194839 PMCID: PMC1828788 DOI: 10.1128/aem.01901-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The persistence and transmission of Aeromonas in a duckweed aquaculture-based hospital sewage water treatment plant in Bangladesh was studied. A total of 670 samples from different sites of the hospital sewage water treatment plant, from feces of hospitalized children suffering from diarrhea, from environmental control ponds, and from feces of healthy humans were collected over a period of three years. In total, 1,315 presumptive Aeromonas isolates were biochemically typed by the PhenePlate rapid screening system (PhP-AE). A selection of 90 representative isolates was further analyzed with PhenePlate (PhP) extended typing (PhP-48), fatty acid methyl ester analysis, and amplified fragment length polymorphism (AFLP) fingerprinting. In addition, the prevalence of the putative virulence factors hemolysin and cytotoxin and the presence of the cytolytic enterotoxin gene (AHCYTOEN) were analyzed. Aeromonas was found at all sites of the treatment plant, in 40% of the samples from environmental control ponds, in 8.5% of the samples from hospitalized children suffering from diarrhea, and in 3.5% of samples from healthy humans. A significantly high number of Aeromonas bacteria was found in duckweed, which indicates that duckweed may serve as a reservoir for these bacteria. PhP-AE typing allowed identification of more than 192 distinct PhP types, of which 18 major PhP types (MTs) were found in multiple sites and during several occasions. AFLP fingerprinting revealed the prevalence of genotypically indistinguishable Aeromonas isolates among certain PhP MTs recovered from different sampling occasions and/or at multiple sites. Hemolytic and cytotoxic activities were observed in 43% of the tested strains, whereas 29% possessed the cytolytic enterotoxin gene AHCYTOEN. Collectively, two specific MTs associated with diarrhea were shown to exhibit high cytotoxicity. Furthermore, all tested isolates of these major types were positive for the cytolytic enterotoxin gene. In conclusion, our data indicate that certain phenotypically and genotypically stable clonal lineages of Aeromonas have persisted in the treatment system for a prolonged period and might spread from the hospitalized children suffering from diarrhea to fish produced for human consumption through the sewage water treatment system.
Collapse
Affiliation(s)
- Mokhlasur Rahman
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, and Department of Natural Science, Södertörns högskola University College, Alfred Nobels alle 7, Flemingsberg, SE-14189 Huddinge, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
73
|
Gurcel L, Abrami L, Girardin S, Tschopp J, van der Goot FG. Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell 2006; 126:1135-45. [PMID: 16990137 DOI: 10.1016/j.cell.2006.07.033] [Citation(s) in RCA: 422] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 04/12/2006] [Accepted: 07/24/2006] [Indexed: 11/27/2022]
Abstract
Many pathogenic organisms produce pore-forming toxins as virulence factors. Target cells however mount a response to such membrane damage. Here we show that toxin-induced membrane permeabilization leads to a decrease in cytoplasmic potassium, which promotes the formation of a multiprotein oligomeric innate immune complex, called the inflammasome, and the activation of caspase-1. Further, we find that when rendered proteolytic in this context caspase-1 induces the activation of the central regulators of membrane biogenesis, the Sterol Regulatory Element Binding Proteins (SREBPs), which in turn promote cell survival upon toxin challenge possibly by facilitating membrane repair. This study highlights that, in addition to its well-established role in triggering inflammation via the processing of the precursor forms of interleukins, caspase-1 has a broader role, in particular linking the intracellular ion composition to lipid metabolic pathways, membrane biogenesis, and survival.
Collapse
Affiliation(s)
- Laure Gurcel
- Department Microbiology and Molecular Medicine, University of Geneva, 1 rue Michel Servet, CH-1211 Geneva 4, Switzerland
| | | | | | | | | |
Collapse
|
74
|
Chopra V, Fadl AA, Sha J, Chopra S, Galindo CL, Chopra AK. Alterations in the virulence potential of enteric pathogens and bacterial-host cell interactions under simulated microgravity conditions. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2006; 69:1345-70. [PMID: 16760141 DOI: 10.1080/15287390500361792] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Host immune mechanisms were proposed to decline under microgravity conditions during spaceflights, which might result in severe infections in astronauts. Therefore, it was important to investigate the effects of microgravity on infecting organisms and their interaction with host cells. Data showed that simulated microgravity (SMG) conditions markedly increased production of the enterotoxigenic Escherichia coli (ETEC) heat-labile enterotoxin, which induced fluid secretory responses in a mouse model. SMG also enhanced production of tumor necrosis factor-alpha in murine macrophages infected with enteropathogenic E. coli (EPEC). In a similar fashion, simulated microgravity conditions augmented the invasive potential of Salmonella enterica serovar typhimurium and enhanced production of tumor necrosis-factor alpha in S. typhimurium-infected epithelial cells. Furthermore, coculturing of macrophages and S. typhimurium in a simulated microgravity environment resulted in activation of stress-associated mitogen-activated protein kinase kinase 4. Using the antiorthostatic tail suspension mouse model, which simulates some aspects of microgravity, oral inoculation of S. typhimurium markedly reduced the 50% lethal dose compared to mice infected under normal gravitational conditions. Microarray analysis revealed simulated microgravity-induced alterations in the expression of 22 genes in S. typhimurium, and protein expression profiles were altered in both EPEC and S. typhimurium, based on two-dimensional gel electrophoresis. These studies indicated alterations in the virulence potential of bacteria and in host responses to these pathogens under simulated microgravity conditions, which may represent an important environmental signal. Such studies are essential for better understanding bacterial-host cell interactions, particularly in the context of spaceflights and space habitations of long duration.
Collapse
Affiliation(s)
- V Chopra
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas 77555-1070, USA
| | | | | | | | | | | |
Collapse
|
75
|
Abstract
Pseudomonas aeruginosa, a gram-negative, facultative pathogen, causes severe and often even lethal infections in immunocompromised patients, as well as cystic fibrosis patients. We show here that a variety of P. aeruginosa strains activate phospholipase A2 (PLA2), cultured epithelial cells, and fibroblasts, resulting in increased intracellular and extracellular arachidonic acid release. The use of different PLA2 inhibitors revealed that P. aeruginosa-induced arachidonic acid release is mediated by activation of cytosolic PLA2 (cPLA2), whereas iPLA2 or sPLA2 do not seem to be involved in the response to P. aeruginosa. Likewise, the cPLA2-specific inhibitors MAFP and AACOCF3 prevented apoptosis of cultured epithelial cells upon P. aeruginosa infection, whereas inhibitors specific for iPLA2 or sPLA2 were without effect. The physiological significance of these findings is indicated by an inhibition of apoptosis in tracheal epithelial cells upon in vivo infection with P. aeruginosa. The data indicate that arachidonic acid generation by activation of cPLA2 during P. aeruginosa infection plays an important role in the induction of host cell death.
Collapse
Affiliation(s)
- Susanne Kirschnek
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany.
| | | |
Collapse
|
76
|
Galindo CL, Gutierrez C, Chopra AK. Potential involvement of galectin-3 and SNAP23 in Aeromonas hydrophila cytotoxic enterotoxin-induced host cell apoptosis. Microb Pathog 2006; 40:56-68. [PMID: 16426811 DOI: 10.1016/j.micpath.2005.11.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 11/03/2005] [Accepted: 11/07/2005] [Indexed: 11/23/2022]
Abstract
We investigated the potential of the cytotoxic enterotoxin (Act) of Aeromonas hydrophila to bind to 1869 human and 4319 yeast proteins, using protein microarray technology. Act was capable of binding nine different human proteins, including the SNARE complex scaffolding protein synaptosomal-associated protein 23 (SNAP23), galectin-3, and guanylate kinase 1 (GUK-1). Act was also able to bind to four of the yeast proteins examined, which included the vesicle tethering protein Vsp52. We verified interaction of Act with murine and human SNAP23, galectin-3, and GUK-1 by sandwich Western blot analysis. In order to determine the physiological relevance of Act binding to these three proteins, we performed small interfering RNA (siRNA) gene knockdown experiments in RAW 264.7 cells, a murine macrophage cell line in which Act-induced signaling and cell death is well characterized. Based on real-time reverse transcriptase-polymerase chain reaction, siRNA transfection of RAW 264.7 cells with specific oligonucleotides reduced the expression of genes encoding SNAP23, galectin-3, and GUK-1 by 62, 63, and 99%, respectively. Knockdown of galectin-3 and SNAP23, but not GUK-1, significantly reduced Act-induced apoptosis of host cells, as determined by TUNEL (TdT-mediated dUTP nick end labeling) assay, lactate dehydrogenase release, Giemsa staining, and reduction in activation of caspase 3, compared to toxin-treated macrophages that were transfected with a random sequence control siRNA. We also performed these assays using a human intestinal epithelial cell line (HT-29) and observed a similar trend of galectin-3 and SNAP23 association with Act-induced apoptosis. This is the first report of putative protein binding partners for this toxin and potential mediators/regulators of Act-induced apoptosis.
Collapse
Affiliation(s)
- C L Galindo
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Medical Research Building, 301 University Boulevard, Galveston, Texas 77555-1070, USA
| | | | | |
Collapse
|
77
|
Galindo CL, Fadl AA, Sha J, Pillai L, Gutierrez C, Chopra AK. Microarray and proteomics analyses of human intestinal epithelial cells treated with the Aeromonas hydrophila cytotoxic enterotoxin. Infect Immun 2005; 73:2628-43. [PMID: 15845465 PMCID: PMC1087361 DOI: 10.1128/iai.73.5.2628-2643.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We performed microarray analyses on RNA from human intestinal epithelial (HT-29) cells treated with the cytotoxic enterotoxin (Act) of Aeromonas hydrophila to examine global cellular transcriptional responses. Based on three independent experiments, Act upregulated the expression of 34 genes involved in cell growth, adhesion, signaling, immune responses (including interleukin-8 [IL-8] production), and apoptosis. We verified the upregulation of 14 genes by real-time reverse transcriptase-PCR and confirmed Act-induced production of IL-8 by enzyme-linked immunosorbent assay on supernatants from nonpolarized and polarized HT-29 cells. Maximal production of IL-8 in response to Act required the presence of intracellular calcium, since chelation of calcium with BAPTA-AM significantly reduced Act-induced IL-8 production in HT-29 cells. We also examined activation of mitogen-activated protein kinases and, as demonstrated by Western blot analysis of apical side-treated polarized HT-29 cells, Act induced phosphorylation of p38, c-Jun NH(2)-terminal kinase, and extracellular signal-regulated kinase 1/2. In addition, KinetWorks proteomics screening of whole-cell lysates revealed Act-induced phosphorylation of cyclic AMP-response element binding protein (CREB), c-Jun, adducin, protein kinase C, and signal transducer and activator of transcription 3 (STAT3) and decreased phosphorylation of protein kinase Balpha, v-raf-1 murine leukemia viral oncogene homolog 1 (i.e., Raf1), and STAT1. We verified activation of CREB and activator protein 1 in polarized cells by gel shift assay. This is the first description of human intestinal epithelial cell transcriptional alterations, phosphorylation or activation of signaling molecules, cytokine production, and calcium mobilization in response to this toxin.
Collapse
Affiliation(s)
- C L Galindo
- Department of Microbiology and Immunology, Medical Research Building, 301 University Blvd., University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | | | | | | | | | | |
Collapse
|
78
|
Galindo CL, Fadl AA, Sha J, Chopra AK. Microarray analysis of Aeromonas hydrophila cytotoxic enterotoxin-treated murine primary macrophages. Infect Immun 2004; 72:5439-45. [PMID: 15322042 PMCID: PMC517445 DOI: 10.1128/iai.72.9.5439-5445.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We performed microarray analyses of murine peritoneal macrophages to examine cellular transcriptional responses to a cytotoxic enterotoxin of Aeromonas hydrophila. While 66% of altered genes were common to both primary macrophages and the murine macrophage cell line RAW 264.7, Act caused expression changes of 28 genes specifically in murine peritoneal macrophages.
Collapse
Affiliation(s)
- C L Galindo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | | | | | | |
Collapse
|
79
|
Galindo CL, Fadl AA, Sha J, Gutierrez C, Popov VL, Boldogh I, Aggarwal BB, Chopra AK. Aeromonas hydrophila Cytotoxic Enterotoxin Activates Mitogen-activated Protein Kinases and Induces Apoptosis in Murine Macrophages and Human Intestinal Epithelial Cells. J Biol Chem 2004; 279:37597-612. [PMID: 15215244 DOI: 10.1074/jbc.m404641200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A cytotoxic enterotoxin (Act) of Aeromonas hydrophila possesses several biological activities, induces an inflammatory response in the host, and causes apoptosis of murine macrophages. In this study, we utilized five target cell types (a murine macrophage cell line (RAW 264.7), bone marrow-derived transformed macrophages, murine peritoneal macrophages, and two human intestinal epithelial cell lines (T84 and HT-29)) to investigate the effect of Act on mitogen-activated protein kinase (MAPK) pathways and mechanisms leading to apoptosis. As demonstrated by immunoprecipitation/kinase assays or Western blot analysis, Act activated stress-associated p38, c-Jun NH(2)-terminal kinase (JNK), and extracellular signal-regulated kinase 1/2 (ERK1/2) in these cells. Act also induced phosphorylation of upstream MAPK factors (MAPK kinase 3/6 (MKK3/6), MKK4, and MAP/ERK kinase 1 (MEK1)) and downstream effectors (MAPK-activated protein kinase-2, activating transcription factor-2, and c-Jun). Act evoked cell membrane blebbing, caspase 3-cleavage, and activation of caspases 8 and 9 in these cells. In macrophages that do not express functional tumor necrosis factor receptors, apoptosis and caspase activities were significantly decreased. Immunoblotting of host whole cell lysates revealed Act-induced up-regulation of apoptosis-related proteins, including the mitochondrial proteins cytochrome c and apoptosis-inducing factor. However, mitochondrial membrane depolarization was not detected in response to Act. Taken together, the data demonstrated for the first time Act-induced activation of MAPK signaling and classical caspase-associated apoptosis in macrophages and intestinal epithelial cells. Given the importance of MAPK pathways and apoptosis in inflammation-associated diseases, this study provided new insights into the mechanism of action of Act on host cells.
Collapse
Affiliation(s)
- Cristi L Galindo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-1070, USA
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Sha J, Fadl AA, Klimpel GR, Niesel DW, Popov VL, Chopra AK. The two murein lipoproteins of Salmonella enterica serovar Typhimurium contribute to the virulence of the organism. Infect Immun 2004; 72:3987-4003. [PMID: 15213144 PMCID: PMC427434 DOI: 10.1128/iai.72.7.3987-4003.2004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Septic shock due to Salmonella and other gram-negative enteric pathogens is a leading cause of death worldwide. The role of lipopolysaccharide in sepsis is well studied; however, the contribution of other bacterial outer membrane components, such as Braun (murein) lipoprotein (Lpp), is not well defined. The genome of Salmonella enterica serovar Typhimurium harbors two copies of the lipoprotein (lpp) gene. We constructed a serovar Typhimurium strain with deletions in both copies of the lpp gene (lpp1 and lpp2) by marker exchange mutagenesis. The integrity of the cell membrane and the secretion of the effector proteins through the type III secretion system were not affected in the lpp double-knockout mutant. Subsequently, the virulence potential of this mutant was examined in a cell culture system using T84 intestinal epithelial and RAW264.7 macrophage cell lines and a mouse model of salmonellosis. The lpp double-knockout mutant was defective in invading and inducing cytotoxic effects in T84 and RAW264.7 cells, although binding of the mutant to the host cell was not affected when compared to the wild-type (WT) serovar Typhimurium. The motility of the mutant was impaired, despite the finding that the number of flagella was similar in the lpp double knockout mutant and the WT serovar Typhimurium. Deletion in the lpp genes did not affect the intracellular survival and replication of Salmonella in macrophages and T84 cells. Induction of the proinflammatory cytokines tumor necrosis factor alpha and interleukin-8 (IL-8) was significantly reduced in macrophages and T84 cells infected with the lpp double-knockout mutant. The levels of IL-8 remained unaffected in T84 cells when infected with either live or heat-killed WT and lpp mutant, indicating that invasion was not required for IL-8 production and that Toll-like receptor 2 signaling might be affected in the Lpp double-knockout mutant. These effects of the Lpp protein could be restored by complementation of the isogenic mutant. The lpp double-knockout mutant was avirulent in mice, and animals infected with this mutant were protected from a lethal challenge dose of WT serovar Typhimurium. The severe combined immunodeficient mice, on the other hand, were susceptible to infection by the lpp double-knockout mutant. The serovar Typhimurium mutants from which only one of the lpp (lpp1 or lpp2) genes was deleted were also avirulent in mice. Taken together, our data indicated that Lpp specifically contributed to the virulence of the organism.
Collapse
Affiliation(s)
- J Sha
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1070, USA
| | | | | | | | | | | |
Collapse
|
81
|
Ringø E, Jutfelt F, Kanapathippillai P, Bakken Y, Sundell K, Glette J, Mayhew TM, Myklebust R, Olsen RE. Damaging effect of the fish pathogen Aeromonas salmonicida ssp. salmonicida on intestinal enterocytes of Atlantic salmon (Salmo salar L.). Cell Tissue Res 2004; 318:305-11. [PMID: 15503156 DOI: 10.1007/s00441-004-0934-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Accepted: 05/26/2004] [Indexed: 10/26/2022]
Abstract
In fish, bacterial pathogens can enter the host by one or more of three different routes: (a) skin, (b) gills and (c) gastrointestinal tract. Bacteria can cross the gastrointestinal lining in three different ways. In undamaged tissue, bacteria can translocate by transcellular or paracellular routes. Alternatively, bacteria can damage the intestinal lining with extracellular enzymes or toxins before entering. Using an in vitro (Ussing chamber) model, this paper describes intestinal cell damage in Atlantic salmon (Salmo salar L.) caused by the fish pathogen Aeromonas salmonicida ssp. salmonicida, the causative agent of furunculosis. The in vitro method clearly demonstrated substantial detachment of enterocytes from anterior region of the intestine (foregut) upon exposure to the pathogen. In the hindgut (posterior part of the intestine), little detachment was observed but cellular damage involved microvilli, desmosomes and tight junctions. Based on these findings, we suggest that A. salmonicida may obtain entry to the fish by seriously damaging the intestinal lining. Translocation of bacteria through the foregut (rather than the hindgut) is a more likely infection route for A. salmonicida infections in Atlantic salmon.
Collapse
Affiliation(s)
- Einar Ringø
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, 9292 Tromsø, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Wang D, Noda Y, Zhou Y, Nitta A, Nabeshima T, Yu Q. Effects of sodium houttuyfonate on phosphorylation of CaMK II, CREB and ERK 1/2 and expression of c-Fos in macrophages. Int Immunopharmacol 2004; 4:1083-8. [PMID: 15222983 DOI: 10.1016/j.intimp.2004.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Revised: 04/19/2004] [Accepted: 05/03/2004] [Indexed: 10/26/2022]
Abstract
The purpose of this research is to investigate the effects of sodium houttuyfonate on the phosphorylation of CaMK II, CREB and ERK 1/2, and the expression of c-Fos. Macrophages were cultured in vitro with or without sodium houttuyfonate in the culture medium. After cell culture, macrophages were lysed and the lysate of the macrophages was collected for analysis. Western-blotting method was adopted to investigate the phosphorylation or the expression of these signal elements. It was found in this research that the phosphorylation levels of CaMK II and CREB and the expression of c-Fos protein in macrophages were increased by sodium houttuyfonate treatment; however, the phosphorylation level of ERK 1/2 was not affected by the treatment.
Collapse
Affiliation(s)
- Dayong Wang
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | | | | | | | | | | |
Collapse
|
83
|
Sha J, Kozlova EV, Fadl AA, Olano JP, Houston CW, Peterson JW, Chopra AK. Molecular characterization of a glucose-inhibited division gene, gidA, that regulates cytotoxic enterotoxin of Aeromonas hydrophila. Infect Immun 2004; 72:1084-95. [PMID: 14742556 PMCID: PMC321642 DOI: 10.1128/iai.72.2.1084-1095.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Revised: 10/23/2003] [Accepted: 11/03/2003] [Indexed: 11/20/2022] Open
Abstract
By using a mini-transposon, we obtained two mutated strains of a diarrheal isolate, SSU, of Aeromonas hydrophila that exhibited a 50 to 53% reduction in the hemolytic activity and 83 to 87% less cytotoxic activity associated with the cytotoxic enterotoxin (Act). Act is a potent virulence factor of A. hydrophila and has been shown to contribute significantly to the development of both diarrhea and septicemia in animal models. Subsequent cloning and DNA sequence analysis revealed that transposon insertion occurred at different locations in these two mutants within the same 1,890-bp open reading frame for the glucose-inhibited division gene (gidA). A similar reduction in hemolytic (46%) and cytotoxic (81%) activity of Act was noted in the gidA isogenic mutant of A. hydrophila that was generated by marker exchange mutagenesis. Northern blot analysis revealed that the transcription of the cytotoxic enterotoxin gene (act) was not altered in the gidA transposon and isogenic mutants. However, by generating a chromosomal act::alkaline phosphatase gene (phoA) reporter construct, we demonstrated significantly reduced phosphatase activity in these mutants, indicating the effect of glucose-inhibited division (GidA) protein in modulating act gene expression at the translational level. The biological effects of Act in the gidA mutants were restored by complementation. The virulence of the gidA mutants in mice was dramatically reduced compared to the those of the wild-type (WT) and complemented strains of A. hydrophila. The histopathological examination of lungs, in particular, indicated severe congestion, alveolar hemorrhage, and acute inflammatory infiltrate in the interstitial compartment and the alveolar spaces when mice were infected with the WT and complemented strains. Minimal-to-mild changes were noted in the lungs with the gidA mutants. Taken together, our data indicate for the first time that GidA regulates the most-potent virulence factor of A. hydrophila, Act.
Collapse
Affiliation(s)
- Jian Sha
- Departments of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas 77555-1070, USA
| | | | | | | | | | | | | |
Collapse
|
84
|
Stassen M, Müller C, Richter C, Neudörfl C, Hültner L, Bhakdi S, Walev I, Schmitt E. The streptococcal exotoxin streptolysin O activates mast cells to produce tumor necrosis factor alpha by p38 mitogen-activated protein kinase- and protein kinase C-dependent pathways. Infect Immun 2003; 71:6171-7. [PMID: 14573633 PMCID: PMC219607 DOI: 10.1128/iai.71.11.6171-6177.2003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptolysin O (SLO), a major virulence factor of pyogenic streptococci, binds to cholesterol in the membranes of eukaryotic cells and oligomerizes to form large transmembrane pores. While high toxin doses are rapidly cytocidal, low doses are tolerated because a limited number of lesions can be resealed. Here, we report that at sublethal doses, SLO activates primary murine bone marrow-derived mast cells to degranulate and to rapidly induce or enhance the production of several cytokine mRNAs, including tumor necrosis factor alpha (TNF-alpha). Mast cell-derived TNF-alpha plays an important protective role in murine models of acute inflammation, and the production of this cytokine was analyzed in more detail. Release of biologically active TNF-alpha peaked approximately 4 h after stimulation with SLO. Production of TNF-alpha was blunted upon depletion of protein kinase C by pretreatment of the cells with phorbol-12 myristate-13 acetate. Transient permeabilization of mast cells with SLO also led to the activation of the stress-activated protein kinases p38 mitogen-activated protein (MAP) kinase and c-jun N-terminal kinase (JNK), and inhibition of p38 MAP kinase markedly reduced production of TNF-alpha. In contrast, secretion of preformed granule constituents triggered by membrane permeabilization was not dependent on p38 MAP kinase or on protein kinase C. Thus, transcriptional activation of mast cells following transient permeabilization might contribute to host defense against infections via the beneficial effects of TNF-alpha. However, hyperstimulation of mast cells might also lead to overproduction of TNF-alpha, which would then promote the development of toxic streptococcal syndromes.
Collapse
Affiliation(s)
- Michael Stassen
- Institute of Immunology. Institute of Medical Microbiology, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Galindo CL, Sha J, Ribardo DA, Fadl AA, Pillai L, Chopra AK. Identification of Aeromonas hydrophila cytotoxic enterotoxin-induced genes in macrophages using microarrays. J Biol Chem 2003; 278:40198-212. [PMID: 12824169 DOI: 10.1074/jbc.m305788200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A cytotoxic enterotoxin (Act) of Aeromonas hydrophila possesses several biological activities, and it induces an inflammatory response in the host. In this study, we used microarrays to gain a global and molecular view of the cellular transcriptional responses to Act and to identify important genes up-regulated by this toxin. Total RNA was isolated at 0, 2, and 12 h from Act-treated macrophages and applied to Affymetrix MGU74 arrays, and the data were processed using a multi-analysis approach to identify genes that might be critical in the inflammatory process evoked by Act. Seventy-six genes were significantly and consistently up-regulated. Many of these genes were immune-related, and several were transcription factors, adhesion molecules, and cytokines. Additionally, we identified several apoptosis-associated genes that were significantly up-regulated in Act-treated macrophages. Act-induced apoptosis of macrophages was confirmed by annexin V staining and DNA laddering. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay were used to verify increased expression of some inflammatory and apoptosis-associated genes identified by the microarray analysis. To further confirm Act-induced increases in gene expression, real-time RT-PCR was also used for selected genes. Taken together, the array data provided for the first time a global view of Act-mediated signal transduction and clearly demonstrated an inflammatory response and apoptosis mediated by this toxin in host cells at the molecular level.
Collapse
Affiliation(s)
- Cristi L Galindo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-1070, USA
| | | | | | | | | | | |
Collapse
|
86
|
Sha J, Galindo CL, Pancholi V, Popov VL, Zhao Y, Houston CW, Chopra AK. Differential expression of the enolase gene under in vivo versus in vitro growth conditions of Aeromonas hydrophila. Microb Pathog 2003; 34:195-204. [PMID: 12668143 DOI: 10.1016/s0882-4010(03)00028-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Aeromonas hydrophila is an emerging human pathogen that leads to gastroenteritis and other invasive diseases. By using a murine peritoneal culture (MPC) model, we identified via restriction fragment differential display PCR (RFDDPCR) five genes of A. hydrophila that were differentially expressed under in vivo versus in vitro growth conditions. The gene encoding enolase was among those five genes that were differentially up regulated. Enolase is a glycolytic enzyme and its surface expression was recently shown to be important in the pathogenesis of a gram-positive bacterium Streptococcus pyogenes. By Western blot analysis and Immunogold staining, we demonstrated secretion and surface expression of enolase in A. hydrophila. We also showed that the whole cells of A. hydrophila had strong enolase activity. Using an enzyme-linked immunosorbant assay and sandwich Western blot analysis, we demonstrated binding of enolase to human plasminogen, which is involved in the fibrinolytic system of the host. We cloned the A. hydrophila enolase gene, which exhibited 62% homology at the DNA level and 57% homology at the amino acid level when compared to S. pyogenes enolase. This is a first report describing the increased expression of enolase gene in vivo that could potentially contribute to the pathogenesis of A. hydrophila infections.
Collapse
Affiliation(s)
- Jian Sha
- Department of Microbiology and Immunology, 301 University Blvd, Medical Research Building, The University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | | | | | | | | | | | | |
Collapse
|
87
|
Almeida-Campos FR, Noronha FSM, Horta MF. The multitalented pore-forming proteins of intracellular pathogens. Microbes Infect 2002; 4:741-50. [PMID: 12067834 DOI: 10.1016/s1286-4579(02)01593-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Being an intracellular pathogen demands being able to invade a host cell, to circumvent the host immune response and to survive in the intracellular environment. Pore-forming proteins are among the innumerable tools used by intracellular microorganisms to achieve these goals. Remarkably, this seems to be a multipurpose group of proteins that can act in several ways. Making channels may signify entering into host cells, inhibiting phagocytosis, escaping phagosomes or promoting pathogen dissemination. In certain cases, pore-forming proteins are double-edged tools and may benefit the host by eliminating infected cells and/or inducing inflammation.
Collapse
Affiliation(s)
- Flávia R Almeida-Campos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | | | | |
Collapse
|
88
|
Ribardo DA, Kuhl KR, Peterson JW, Chopra AK. Role of melittin-like region within phospholipase A(2)-activating protein in biological function. Toxicon 2002; 40:519-26. [PMID: 11821123 DOI: 10.1016/s0041-0101(01)00247-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Phospholipase A(2)-activating protein (PLAA) has been implicated in the production of prostaglandins (e.g. PGE(2)) via activation of phospholipases in various stimulated cell types. Human PLAA, with 738 amino acid (aa) residues, contains a region of 38% homology (aa 503-538) with the 26-aa long melittin peptide, a major component of bee venom and a reported regulator of phospholipase A(2) and phospholipase D activity. To learn more about the role of PLAA in the production of eicosanoids and other inflammatory mediators, we synthesized a murine PLAA peptide (36-aa long) having homology to melittin, as well as to human and rat PLAA. The PLAA peptide and melittin increased the expression of genes encoding the proinflammatory cytokine tumor necrosis factor alpha (TNFalpha) and cyclooxygenase-2 (COX-2), which is involved in PGE(2) production. We determined that the C-terminal region of the PLAA peptide (aa 515-538) was essential, since truncation of the C-terminal end of the PLAA peptide significantly reduced expression of genes encoding TNFalpha and COX-2 in macrophages. We concluded that PLAA could be important in the regulation of the inflammatory response because of its stimulatory effects on eicosanoid and cytokine synthesis. Consequently, control of plaa gene expression could be a target for the development of new drugs to control the inflammatory response.
Collapse
Affiliation(s)
- Deborah A Ribardo
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1070, USA
| | | | | | | |
Collapse
|
89
|
Sha J, Kozlova EV, Chopra AK. Role of various enterotoxins in Aeromonas hydrophila-induced gastroenteritis: generation of enterotoxin gene-deficient mutants and evaluation of their enterotoxic activity. Infect Immun 2002; 70:1924-35. [PMID: 11895956 PMCID: PMC127858 DOI: 10.1128/iai.70.4.1924-1935.2002] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Three enterotoxins from the Aeromonas hydrophila diarrheal isolate SSU have been molecularly characterized in our laboratory. One of these enterotoxins is cytotoxic in nature, whereas the other two are cytotonic enterotoxins, one of them heat labile and the other heat stable. Earlier, by developing an isogenic mutant, we demonstrated the role of a cytotoxic enterotoxin in causing systemic infection in mice. In the present study, we evaluated the role of these three enterotoxins in evoking diarrhea in a murine model by developing various combinations of enterotoxin gene-deficient mutants by marker-exchange mutagenesis. A total of six isogenic mutants were prepared in a cytotoxic enterotoxin gene (act)-positive or -negative background strain of A. hydrophila. We developed two single knockouts with truncation in either the heat-labile (alt) or the heat-stable (ast) cytotonic enterotoxin gene; three double knockouts with truncations of genes encoding (i) alt and ast, (ii) act and alt, and (iii) act and ast genes; and a triple-knockout mutant with truncation in all three genes, act, alt, and ast. The identity of these isogenic mutants developed by double-crossover homologous recombination was confirmed by Southern blot analysis. Northern and Western blot analyses revealed that the expression of different enterotoxin genes in the mutants was correspondingly abrogated. We tested the biological activity of these mutants in a diet-restricted and antibiotic-treated mouse model with a ligated ileal loop assay. Our data indicated that all of these mutants had significantly reduced capacity to evoke fluid secretion compared to that of wild-type A. hydrophila; the triple-knockout mutant failed to induce any detectable level of fluid secretion. The biological activity of selected A. hydrophila mutants was restored after complementation. Taken together, we have established a role for three enterotoxins in A. hydrophila-induced gastroenteritis in a mouse model with the greatest contribution from the cytotoxic enterotoxin Act, followed by the Alt and Ast cytotonic enterotoxins.
Collapse
Affiliation(s)
- Jian Sha
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas 77555-1070, USA
| | | | | |
Collapse
|
90
|
Ribardo DA, Kuhl KR, Boldogh I, Peterson JW, Houston CW, Chopra AK. Early cell signaling by the cytotoxic enterotoxin of Aeromonas hydrophila in macrophages. Microb Pathog 2002; 32:149-63. [PMID: 12079405 DOI: 10.1006/mpat.2001.0490] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A cytotoxic enterotoxin (Act) of Aeromonas hydrophila is an important virulence factor with hemolytic, cytotoxic and enterotoxic activities. In this report, we demonstrated Act rapidly mobilized calcium from intracellular stores and evoked influx of calcium from the extracellular milieu in macrophages. A direct role of calcium in Act-induced prostaglandin (e.g. PGE(2)) and tumor necrosis factor alpha (TNF alpha) production was demonstrated in macrophages using a cell-permeable calcium chelator BAPTA-AM, which also down-regulated activation of transcription factor NF-kappa B. We showed that Act's capacity to increase PGE(2) and TNF alpha production could be blocked by inhibitors of tyrosine kinases and protein kinase A. In addition, Act caused up-regulation of the DNA repair enzyme redox factor-1 (Ref-1), which potentially could promote DNA binding of the transcription factors allowing modulation of various genes involved in the inflammatory response. Taken together, a link between Act-induced calcium release, regulation of downstream kinase cascades and Ref-1, and activation of NF-kappa B leading to PGE(2) and TNF alpha production was established. Since Act also caused extensive tissue damage, we showed that Act increased reactive oxygen species, and the antioxidant N-acetyl cysteine, blocked Act-induced PGE(2) and TNF alpha production, as well as NF-kappa B nuclear translocation in macrophages. We have demonstrated for the first time early cell signaling initiated in eukaryotic cells by Act, which leads to various biological effects associated with this toxin.
Collapse
Affiliation(s)
- D A Ribardo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | | | | | | | | | | |
Collapse
|
91
|
Abstract
Like a variety of other pathogenic bacteria, Aeromonas hydrophila secretes a pore-forming toxin that contribute to its virulence. The last decade has not only increased our knowledge about the structure of this toxin, called aerolysin, but has also shed light on how it interacts with its target cell and how the cell reacts to this stress. Whereas pore-forming toxins are generally thought to lead to brutal death by osmotic lysis of the cell, based on what is observed for erythrocytes, recent studies have started to reveal far more complicated pathways leading to death of nucleated mammalian cells.
Collapse
Affiliation(s)
- M Fivaz
- Department of Biochemistry, Faculty of Sciences, University of Geneva, 30 quai E. Ansermet, 1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
92
|
Sha J, Lu M, Chopra AK. Regulation of the cytotoxic enterotoxin gene in Aeromonas hydrophila: characterization of an iron uptake regulator. Infect Immun 2001; 69:6370-81. [PMID: 11553581 PMCID: PMC98772 DOI: 10.1128/iai.69.10.6370-6381.2001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytotoxic enterotoxin Act from a diarrheal isolate, SSU, of Aeromonas hydrophila is aerolysin related and crucial to the pathogenesis of Aeromonas infections. To elucidate the role of environmental signals which influence the expression of the cytotoxic enterotoxin gene (act), a portion of the act gene, including the putative promoter region, was fused in frame to a truncated alkaline phosphatase gene (phoA) of Escherichia coli. The act::phoA reporter gene was then introduced into the chromosome of A. hydrophila by using the suicide vector pJQ200SK, allowing the fusion protein to be secreted out into the culture medium. Western blot analysis demonstrated the presence of a correctly size 110-kDa fusion protein in the culture supernatant, which reacted with both anti-Act and anti-alkaline phosphatase antibodies. Based on alkaline phosphatase (PhoA) activity in the culture supernatant, we demonstrated that calcium significantly increased the activity of the act promoter but that glucose and iron repressed its activity in a dose-dependent fashion. The act promoter exhibited optimal activity at pH 7.0 and at 37 degrees C, and maximal PhoA activity was noted when the culture was aerated. Using a Vibrio cholerae iron uptake regulator gene (fur) as a probe, a 2.6-kb SalI/HindIII DNA fragment from an A. hydrophila chromosome was cloned and sequenced. The DNA sequence revealed a 429-bp open reading frame that exhibited 69% homology at the DNA level with the fur gene and 79% homology at the amino acid level with the iron uptake regulator (Fur) protein of V. cholerae. Complementation experiments demonstrated that the A. hydrophila fur gene could restore iron regulation in an E. coli fur-minus mutant. Using the suicide vector pDMS197, we generated a fur isogenic mutant of wild-type A. hydrophila SSU. Northern blot analysis data indicated that the repression in the transcription of the act gene by iron was relieved in the fur isogenic mutant. Further, iron regulation in the fur isogenic mutant of A. hydrophila could be restored by complementation. These results are important in understanding the regulation of the act gene under in vivo conditions.
Collapse
Affiliation(s)
- J Sha
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas 77555-1070, USA
| | | | | |
Collapse
|
93
|
Ribardo DA, Crowe SE, Kuhl KR, Peterson JW, Chopra AK. Prostaglandin levels in stimulated macrophages are controlled by phospholipase A2-activating protein and by activation of phospholipase C and D. J Biol Chem 2001; 276:5467-75. [PMID: 11094054 DOI: 10.1074/jbc.m006690200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prostaglandins (PG), which are responsible for a large array of biological functions in eukaryotic cells, are produced from arachidonic acid by phospholipases and cyclooxygenase enzymes COX-1 and COX-2. We demonstrated that PG levels in cells were partly controlled by a regulatory protein, phospholipase A2 (PLA2)-activating protein (PLAA). Treatment of murine macrophages with lipopolysaccharide, interleukin-1beta, and tumor necrosis factor-alpha increased PLAA levels at early time points (2-30 min), which correlated with an up-regulation in cytosolic PLA2 and PGE2 levels. Both COX-2 and secretory PLA2 were also increased in lipopolysaccharide-stimulated macrophages, however, at later time points of 4-24 h. The role of PLAA in eicosanoid formation in macrophages was confirmed by the use of an antisense plaa oligonucleotide. Within amino acid residues 503-538, PLAA exhibited homology with melittin, and increased PGE(2) production was noted in macrophages stimulated with melittin. In addition to PLA2, we demonstrated that activation of phospholipase C and D significantly controlled PGE2 production. Finally, increased antigen levels of PLAA, COX-2, and phospholipases were demonstrated in biopsy specimens from patients with varying amounts of intestinal mucosal inflammation, which corresponded to increased levels of phospholipase activity. These results could provide a basis for the development of new therapeutic tools to control inflammation.
Collapse
Affiliation(s)
- D A Ribardo
- Department of Microbiology and Immunology and Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555-1070, USA
| | | | | | | | | |
Collapse
|
94
|
Albert MJ, Ansaruzzaman M, Talukder KA, Chopra AK, Kuhn I, Rahman M, Faruque AS, Islam MS, Sack RB, Mollby R. Prevalence of enterotoxin genes in Aeromonas spp. isolated from children with diarrhea, healthy controls, and the environment. J Clin Microbiol 2000; 38:3785-90. [PMID: 11015403 PMCID: PMC87476 DOI: 10.1128/jcm.38.10.3785-3790.2000] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aeromonads are causative agents of a number of human infections. Even though aeromonads have been isolated from patients suffering from diarrhea, their etiological role in gastroenteritis is unclear. In spite of a number of virulence factors produced by Aeromonas species, their association with diarrhea has not been clearly linked. Recently, we have characterized a heat-labile cytotonic enterotoxin (Alt), a heat-stable cytotonic enterotoxin (Ast), and a cytotoxic enterotoxin (Act) from a diarrheal isolate of Aeromonas hydrophila. Alt and Ast are novel enterotoxins which are not related to cholera toxin; Act is aerolysin related and has hemolytic, cytotoxic, and enterotoxic activities. We studied the distribution of the alt, ast, and act enterotoxin genes in 115 of 125 aeromonads isolated from 1, 735 children with diarrhea, in all 27 aeromonads isolated from 830 control children (P = 7 x 10(-4) for comparison of rates of isolation of aeromonads from cases versus those from controls), and in 120 randomly selected aeromonads from different components of surface water in Bangladesh. Aeromonas isolates which were positive only for the presence of the alt gene had similar distributions in the three sources; the number of isolates positive only for the presence of the ast gene was significantly higher for the environmental samples than for samples from diarrheal children; and isolates positive only for the presence of the act gene were not found in any of the three sources. Importantly, the number of isolates positive for both the alt and ast genes was significantly higher for diarrheal children than for control children and the environment. Thus, this is the first study to indicate that the products of both the alt and ast genes may synergistically act to induce severe diarrhea. In 26 patients, Aeromonas spp. were isolated as the sole enteropathogen. Analysis of clinical data from 11 of these patients suggested that isolates positive for both the alt and ast genes were associated with watery diarrhea but that isolates positive only for the alt gene were associated with loose stools. Most of the isolates from the three sources could be classified into seven phenospecies and eight hybridization groups. For the first time, Aeromonas eucrenophila was isolated from two children, one with diarrhea and another without diarrhea.
Collapse
Affiliation(s)
- M J Albert
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka-1000, Bangladesh.
| | | | | | | | | | | | | | | | | | | |
Collapse
|