51
|
Zhang L, Xiang W, Wang G, Yan Z, Zhu Z, Guo Z, Sengupta R, Chen AF, Loughran PA, Lu B, Wang Q, Billiar TR. Interferon β (IFN-β) Production during the Double-stranded RNA (dsRNA) Response in Hepatocytes Involves Coordinated and Feedforward Signaling through Toll-like Receptor 3 (TLR3), RNA-dependent Protein Kinase (PKR), Inducible Nitric Oxide Synthase (iNOS), and Src Protein. J Biol Chem 2016; 291:15093-107. [PMID: 27226571 DOI: 10.1074/jbc.m116.717942] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Indexed: 12/19/2022] Open
Abstract
The sensing of double-stranded RNA (dsRNA) in the liver is important for antiviral defenses but can also contribute to sterile inflammation during liver injury. Hepatocytes are often the target of viral infection and are easily injured by inflammatory insults. Here we sought to establish the pathways involved in the production of type I interferons (IFN-I) in response to extracellular poly(I:C), a dsRNA mimetic, in hepatocytes. This was of interest because hepatocytes are long-lived and, unlike most immune cells that readily die after activation with dsRNA, are not viewed as cells with robust antimicrobial capacity. We found that poly(I:C) leads to rapid up-regulation of inducible nitric oxide synthase (iNOS), double-stranded RNA-dependent protein kinase (PKR), and Src. The production of IFN-β was dependent on iNOS, PKR, and Src and partially dependent on TLR3/Trif. iNOS and Src up-regulation was partially dependent on TLR3/Trif but entirely dependent on PKR. The phosphorylation of TLR3 on tyrosine 759 was shown to increase in parallel to IFN-β production in an iNOS- and Src-dependent manner, and Src was found to directly interact with TLR3 in the endosomal compartment of poly(I:C)-treated cells. Furthermore, we identified a robust NO/cGMP/PKG-dependent feedforward pathway for the amplification of iNOS expression. These data identify iNOS/NO as an integral component of IFN-β production in response to dsRNA in hepatocytes in a pathway that involves the coordinated activities of TLR3/Trif and PKR.
Collapse
Affiliation(s)
- Liyong Zhang
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Wenpei Xiang
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, the Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoliang Wang
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Zhengzheng Yan
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Zhaowei Zhu
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Zhong Guo
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Rajib Sengupta
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Alex F Chen
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Patricia A Loughran
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, the Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, and
| | - Ben Lu
- the Xiangya Third Hospital and Central South University School of Medicine, Changsha, China
| | - Qingde Wang
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Timothy R Billiar
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213,
| |
Collapse
|
52
|
Baranova IN, Souza ACP, Bocharov AV, Vishnyakova TG, Hu X, Vaisman BL, Amar MJ, Chen Z, Kost Y, Remaley AT, Patterson AP, Yuen PST, Star RA, Eggerman TL. Human SR-BI and SR-BII Potentiate Lipopolysaccharide-Induced Inflammation and Acute Liver and Kidney Injury in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:3135-47. [PMID: 26936883 PMCID: PMC4856165 DOI: 10.4049/jimmunol.1501709] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/24/2016] [Indexed: 12/18/2022]
Abstract
The class B scavenger receptors BI (SR-BI) and BII (SR-BII) are high-density lipoprotein receptors that recognize various pathogens, including bacteria and their products. It has been reported that SR-BI/II null mice are more sensitive than normal mice to endotoxin-induced inflammation and sepsis. Because the SR-BI/II knockout model demonstrates multiple immune and metabolic disorders, we investigated the role of each receptor in the LPS-induced inflammatory response and tissue damage using transgenic mice with pLiv-11-directed expression of human SR-BI (hSR-BI) or human SR-BII (hSR-BII). At 6 h after i.p. LPS injection, transgenic hSR-BI and hSR-BII mice demonstrated markedly higher serum levels of proinflammatory cytokines and 2- to 3-fold increased expression levels of inflammatory mediators in the liver and kidney, compared with wild-type (WT) mice. LPS-stimulated inducible NO synthase expression was 3- to 6-fold higher in the liver and kidney of both transgenic strains, although serum NO levels were similar in all mice. Despite the lower high-density lipoprotein plasma levels, both transgenic strains responded to LPS by a 5-fold increase of plasma corticosterone levels, which were only moderately lower than in WT animals. LPS treatment resulted in MAPK activation in tissues of all mice; however, the strongest response was detected for hepatic extracellular signal-regulated protein kinase 1 and 2 and kidney JNK of both transgenic mice. Histological examination of hepatic and renal tissue from LPS-challenged mice revealed more injury in hSR-BII, but not hSR-BI, transgenic mice versus WT controls. Our findings demonstrate that hSR-BII, and to a lesser extent hSR-BI, significantly increase LPS-induced inflammation and contribute to LPS-induced tissue injury in the liver and kidney, two major organs susceptible to LPS toxicity.
Collapse
Affiliation(s)
- Irina N Baranova
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Ana C P Souza
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Alexander V Bocharov
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892;
| | - Tatyana G Vishnyakova
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Xuzhen Hu
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Boris L Vaisman
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Marcelo J Amar
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Zhigang Chen
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Yana Kost
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Alan T Remaley
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Amy P Patterson
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892; National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Peter S T Yuen
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Robert A Star
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Thomas L Eggerman
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892; Division of Diabetes, Endocrinology, and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
53
|
Lopes JAG, Borges-Canha M, Pimentel-Nunes P. Innate immunity and hepatocarcinoma: Can toll-like receptors open the door to oncogenesis? World J Hepatol 2016; 8:162-182. [PMID: 26839640 PMCID: PMC4724579 DOI: 10.4254/wjh.v8.i3.162] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocarcinoma (HCC) is a highly prevalent cancer worldwide and its inflammatory background was established long ago. Recent studies have shown that innate immunity is closely related to the HCC carcinogenesis. An effective innate immunity response relies on the toll-like receptors (TLR) found in several different liver cells which, through different ligands and many signaling pathways can elicit, not only a pro-inflammatory but also an oncogenic or anti-oncogenic response. Our aim was to study the role of TLRs in the liver oncogenesis and as a consequence their value as potential therapeutic targets. We performed a systematic review of PubMed searching for original articles studying the relationship between HCC and TLRs until March 2015. TLR2 appears to be a fundamental stress-sensor as its absence reveals an augmented tendency to accumulate DNA-damages and to cell survival. However, pathways are still not fully understood as TLR2 up-regulation was also associated to enhanced tumorigenesis. TLR3 has a well-known protective role influencing crucial processes like angiogenesis, cell growth or proliferation. TLR4 works as an interesting epithelial-mesenchymal transition’s inducer and a promoter of cell survival probably inducing HCC carcinogenesis even though an anti-cancer role has already been observed. TLR9’s influence on carcinogenesis is also controversial and despite a potential anti-cancer capacity, a pro-tumorigenic role is more likely. Genetic polymorphisms in some TLRs have been found and its influence on the risk of HCC has been reported. As therapeutic targets, TLRs are already in use and have a great potential. In conclusion, TLRs have been shown to be an interesting influence on the HCC’s microenvironment, with TLR3 clearly determining an anti-tumour influence. TLR4 and TLR9 are considered to have a positive relationship with tumour development even though, in each of them anti-tumorigenic signals have been described. TLR2 presents a more ambiguous role, possibly depending on the stage of the inflammation-HCC axis.
Collapse
|
54
|
Shah P, Omoluabi O, Moorthy B, Ghose R. Role of Adaptor Protein Toll-Like Interleukin Domain Containing Adaptor Inducing Interferon β in Toll-Like Receptor 3- and 4-Mediated Regulation of Hepatic Drug Metabolizing Enzyme and Transporter Genes. Drug Metab Dispos 2016; 44:61-7. [PMID: 26470915 PMCID: PMC4702015 DOI: 10.1124/dmd.115.066761] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/14/2015] [Indexed: 02/03/2023] Open
Abstract
The expressions and activities of hepatic drug-metabolizing enzymes and transporters (DMETs) are altered during infection and inflammation. Inflammatory responses in the liver are mediated primarily by Toll-like receptor (TLR)-signaling, which involves recruitment of Toll/interleukin (IL)-1 receptor (TIR) domain containing adaptor protein (TIRAP) and TIR domain containing adaptor inducing interferon (IFN)-β (TRIF) that eventually leads to induction of proinflammatory cytokines and mitogen-activated protein kinases (MAPKs). Lipopolysaccharide (LPS) activates the Gram-negative bacterial receptor TLR4 and polyinosinic:polycytidylic acid (polyI:C) activates the viral receptor TLR3. TLR4 signaling involves TIRAP and TRIF, whereas TRIF is the only adaptor protein involved in the TLR3 pathway. We have shown previously that LPS-mediated downregulation of DMETs is independent of TIRAP. To determine the role of TRIF, we treated TRIF(+/+) and TRIF(-/-) mice with LPS or polyI:C. LPS downregulated (∼40%-60%) Cyp3a11, Cyp2a4, Ugt1a1, Mrp2 mRNA levels, whereas polyI:C downregulated (∼30%-60%) Cyp3a11, Cyp2a4, Cyp1a2, Cyp2b10, Ugt1a1, Mrp2, and Mrp3 mRNA levels in TRIF(+/+) mice. This downregulation was not attenuated in TRIF(-/-) mice. Induction of cytokines by LPS was observed in both TRIF(+/+) and TRIF(-/-) mice. Cytokine induction was delayed in polyI:C-treated TRIF(-/-) mice, indicating that multiple mechanisms mediating polyI:C signaling exist. To assess the role of MAPKs, primary hepatocytes were pretreated with specific inhibitors before treatment with LPS/polyI:C. We found that only the c-jun-N-terminal kinase (JNK) inhibitor attenuated the down-regulation of DMETs. These results show that TRIF-independent pathways can be involved in the downregulation of DMETs through TLR4 and 3. JNK-dependent mechanisms likely mediate this downregulation.
Collapse
Affiliation(s)
- Pranav Shah
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston (P.S, O.O., R.G.), and Department of Pediatrics, Baylor College of Medicine (B.M.), Houston, Texas
| | - Ozozoma Omoluabi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston (P.S, O.O., R.G.), and Department of Pediatrics, Baylor College of Medicine (B.M.), Houston, Texas
| | - Bhagavatula Moorthy
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston (P.S, O.O., R.G.), and Department of Pediatrics, Baylor College of Medicine (B.M.), Houston, Texas
| | - Romi Ghose
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston (P.S, O.O., R.G.), and Department of Pediatrics, Baylor College of Medicine (B.M.), Houston, Texas
| |
Collapse
|
55
|
Luangsay S, Ait-Goughoulte M, Michelet M, Floriot O, Bonnin M, Gruffaz M, Rivoire M, Fletcher S, Javanbakht H, Lucifora J, Zoulim F, Durantel D. Expression and functionality of Toll- and RIG-like receptors in HepaRG cells. J Hepatol 2015; 63:1077-85. [PMID: 26144659 DOI: 10.1016/j.jhep.2015.06.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS HepaRG cells are considered as the best surrogate model to primary human hepatocyte (PHH) culture to investigate host-pathogen interactions. Yet their innate immune functions remain unknown. In this study, we explored the expression and functionality of Toll-like (TLR) and retinoic acid-inducible gene-1 (RIG-I)-like receptors (RLR) in these cells. METHODS Gene and protein expression levels of TLR-1 to 9 and RLR in HepaRG were mainly compared to PHH, by RT-qPCR, FACS, and Western blotting. Their functionality was assessed, by measuring the induction of toll/rig-like themselves and several target innate gene expressions, as well as the secretion of IL-6, IP-10, and type I interferon (IFN), upon agonist stimulation. Their functionality was also shown by measuring the antiviral activity of some TLR/RLR agonists against hepatitis B virus (HBV) infection. RESULTS The basal gene and protein expression profile of TLR/RLR in HepaRG cells was similar to PHH. Most receptors, except for TLR-7 and 9, were expressed as proteins and functionally active as shown by the induction of some innate genes, as well as by the secretion of IL-6 and IP-10, upon agonist stimulation. The highest levels of IL-6 and IP-10 secretion were obtained by TLR-2 and TLR-3 agonist stimulation respectively. The highest preventive anti-HBV activity was obtained following TLR-2, TLR-4 or RIG-I/MDA-5 stimulations, which correlated with their high capacity to produce both cytokines. CONCLUSIONS Our results indicate that HepaRG cells express a similar pattern of functional TLR/RLR as compared to PHH, thus qualifying HepaRG cells as a surrogate model to study pathogen interactions within a hepatocyte innate system.
Collapse
Affiliation(s)
- Souphalone Luangsay
- INSERM U1052, CNRS UMR_5286, Cancer Research Centre of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude Bernard (UCBL), UMR_S1052, 69008 Lyon, France; Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland
| | - Malika Ait-Goughoulte
- INSERM U1052, CNRS UMR_5286, Cancer Research Centre of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude Bernard (UCBL), UMR_S1052, 69008 Lyon, France; Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland
| | - Maud Michelet
- INSERM U1052, CNRS UMR_5286, Cancer Research Centre of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude Bernard (UCBL), UMR_S1052, 69008 Lyon, France
| | - Océane Floriot
- INSERM U1052, CNRS UMR_5286, Cancer Research Centre of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude Bernard (UCBL), UMR_S1052, 69008 Lyon, France
| | - Marc Bonnin
- INSERM U1052, CNRS UMR_5286, Cancer Research Centre of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude Bernard (UCBL), UMR_S1052, 69008 Lyon, France
| | - Marion Gruffaz
- INSERM U1052, CNRS UMR_5286, Cancer Research Centre of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude Bernard (UCBL), UMR_S1052, 69008 Lyon, France
| | - Michel Rivoire
- Centre Léon Bérard (CLB), 69008 Lyon, France; INSERM U1032, 69003 Lyon, France
| | - Simon Fletcher
- Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland
| | - Hassan Javanbakht
- Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland
| | - Julie Lucifora
- INSERM U1052, CNRS UMR_5286, Cancer Research Centre of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude Bernard (UCBL), UMR_S1052, 69008 Lyon, France
| | - Fabien Zoulim
- INSERM U1052, CNRS UMR_5286, Cancer Research Centre of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude Bernard (UCBL), UMR_S1052, 69008 Lyon, France; Hospices Civils de Lyon (HCL), 69002 Lyon, France; Institut Universitaire de France (IUF), 75005 Paris, France.
| | - David Durantel
- INSERM U1052, CNRS UMR_5286, Cancer Research Centre of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude Bernard (UCBL), UMR_S1052, 69008 Lyon, France.
| |
Collapse
|
56
|
Velloso LA, Folli F, Saad MJ. TLR4 at the Crossroads of Nutrients, Gut Microbiota, and Metabolic Inflammation. Endocr Rev 2015; 36:245-71. [PMID: 25811237 DOI: 10.1210/er.2014-1100] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity is accompanied by the activation of low-grade inflammatory activity in metabolically relevant tissues. Studies have shown that obesity-associated insulin resistance results from the inflammatory targeting and inhibition of key proteins of the insulin-signaling pathway. At least three apparently distinct mechanisms-endoplasmic reticulum stress, toll-like receptor (TLR) 4 activation, and changes in gut microbiota-have been identified as triggers of obesity-associated metabolic inflammation; thus, they are expected to represent potential targets for the treatment of obesity and its comorbidities. Here, we review the data that place TLR4 in the center of the events that connect the consumption of dietary fats with metabolic inflammation and insulin resistance. Changes in the gut microbiota can lead to reduced integrity of the intestinal barrier, leading to increased leakage of lipopolysaccharides and fatty acids, which can act upon TLR4 to activate systemic inflammation. Fatty acids can also trigger endoplasmic reticulum stress, which can be further stimulated by cross talk with active TLR4. Thus, the current data support a connection among the three main triggers of metabolic inflammation, and TLR4 emerges as a link among all of these mechanisms.
Collapse
Affiliation(s)
- Licio A Velloso
- Department of Internal Medicine (L.A.V., F.F., M.J.S.), University of Campinas, 13084-970 Campinas SP, Brazil; and Department of Medicine (F.F.), Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Franco Folli
- Department of Internal Medicine (L.A.V., F.F., M.J.S.), University of Campinas, 13084-970 Campinas SP, Brazil; and Department of Medicine (F.F.), Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Mario J Saad
- Department of Internal Medicine (L.A.V., F.F., M.J.S.), University of Campinas, 13084-970 Campinas SP, Brazil; and Department of Medicine (F.F.), Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| |
Collapse
|
57
|
Sharma M, Mitnala S, Vishnubhotla RK, Mukherjee R, Reddy DN, Rao PN. The Riddle of Nonalcoholic Fatty Liver Disease: Progression From Nonalcoholic Fatty Liver to Nonalcoholic Steatohepatitis. J Clin Exp Hepatol 2015; 5:147-58. [PMID: 26155043 PMCID: PMC4491606 DOI: 10.1016/j.jceh.2015.02.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/09/2015] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver (NAFL) is an emerging global epidemic which progresses to nonalcoholic steatohepatitis (NASH) and cirrhosis in a subset of subjects. Various reviews have focused on the etiology, epidemiology, pathogenesis and treatment of NAFLD. This review highlights specifically the triggers implicated in disease progression from NAFL to NASH. The integrating role of genes, dietary factors, innate immunity, cytokines and gut microbiome have been discussed.
Collapse
Key Words
- AGE, Advanced glycation end products
- ALT, Alanine aminotransferase
- AMPK, AMP-activated protein Kinase
- APPL1 and 2, Adaptor protein 1 and 2
- ATP, Adenosine tri-phosphatase
- BMI, Basal Metabolic Index
- CD, Cluster of differentiation
- COL13A1, Collagen, type XIII, alpha 1
- DAMP, Damage assocauted molecular pattern molecules
- EFCAB4B, EF-hand calcium binding domain 4B
- FA, Fatty acid
- FDFT1, Farnesyl-diphosphate farnesyltransferase 1
- FFA, Free fatty acid
- GCKR, Glucokinase regulatory protein
- GLUT 5, Glucose transporter type 5
- GWAS, Genome wide association studies
- HDL, High density lipoprotein
- HMGB1, High-mobility group protein B1
- HOMA-IR, Homoestatic model assessment-insulin resistance
- HSC, Hepatic Stellate Cells
- Hh, Hedgehog
- IL6, Interleukin 6
- IR, Insulin Resistance
- KC, Kupffer Cells
- LPS, Lipopolysacharrides
- LYPLAL1, Lypophospholipase like 1
- MCP, Monocyte chemotactic protein
- NAD, Nicotinamide adenine dinucleotide
- NAFL, Nonalcoholic fatty liver
- NAFLD, Nonalcoholic fatty liver disease
- NASH, Nonalcoholic steatohepatitis
- NCAN, Neurocan gene
- NF-KB, Nuclear Factor Kappa B
- NK, Natural Killer
- NKL, Natural Killer T cells
- NLR, NOD like receptor
- NNMT, Nicotinamide N-methyltransferase gene
- OXLAM, Oxidized linolenic acid metabolite
- PAMP, Pathogen-associated Molecular pattern
- PARVB, Beta Parvin Gene
- PDGF, Platelet-derived growth factor
- PNPLA3
- PNPLA3, Patatin-like phospholipase domain-containing protein 3
- PPAR-α, Peroxisome proliferator activated receptor alpha
- PPP1R3B, Protein phosphatase 1 R3B
- PUFA, Poly unsaturated fatty acid
- PZP, Pregnancy-zone protein
- ROS, Reactive oxygen species
- SAMM, Sorting and assembly machinery component
- SCAP, SREBP cleavage-activating protein
- SFA, Saturated fatty acid
- SNP, Single nucleotide polymorphism
- SOCS3, Suppressor of cytokine signaling 3
- SOD2, Superoxide dismutase 2 gene
- SREBP-1C, Sterol regulatory Element—Binding Protein 1-C gene
- TLR, Toll like receptor
- TNF α, Tumor necrosis factor Alpha
- UCP3, Uncoupling protein 3 gene
- adiponectin
- cytokines
- gut microbiota
- lipotoxicity
Collapse
Affiliation(s)
- Mithun Sharma
- Department of Hepatology and Nutrition, Asian Institute of Gastroenterology, Hyderabad, Telangana, India,Address for correspondence: Mithun Sharma, Consultant Hepatologist, Asian Institute of Gastroenterology, 6-3-661, Red Rose Café Lane, Somajigudda, Hyderabad 500082, India. Tel.: +91 8790622655.
| | - Shasikala Mitnala
- Research Labs, Institute of Basic Sciences and Translational Research, Asian Healthcare Foundation, Asian Institute of Gastroenterology, Hyderabad, Telangana, India
| | - Ravi K. Vishnubhotla
- Department of Genetics, Asian Healthcare Foundation, Asian Institute of Gastroenterology, Hyderabad, Telangana, India
| | - Rathin Mukherjee
- Department of Molecular Biology, Asian Healthcare Foundation, Asian Institute of Gastroenterology, Hyderabad, Telangana, India
| | - Duvvur N. Reddy
- Department of Gastroenterology, Asian Healthcare Foundation, Asian Institute of Gastroenterology, Hyderabad, Telangana, India
| | - Padaki N. Rao
- Department of Hepatology and Nutrition, Asian Healthcare Foundation, Asian Institute of Gastroenterology, Hyderabad, Telangana, India
| |
Collapse
|
58
|
Liu HY, Huang CM, Hung YF, Hsueh YP. The microRNAs Let7c and miR21 are recognized by neuronal Toll-like receptor 7 to restrict dendritic growth of neurons. Exp Neurol 2015; 269:202-12. [PMID: 25917529 DOI: 10.1016/j.expneurol.2015.04.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 11/25/2022]
Abstract
Inflammatory responses are known to play critical roles in the regulation of neurodevelopment and neurodegeneration. Although microglial cells are recognized as professional immune cells in brains, recent evidence suggests that neurons also express important receptors and regulators of innate immunity, including Toll-like receptor 7 (TLR7), which is a receptor for single-stranded RNAs (ssRNAs). Here, we report that neuronal TLR7 recognizes endogenous ligands such as the miRNAs Let7c and miR21 and plays a negative role in controlling neuronal growth in a cell-autonomous manner. We show here that hippocampal CA1 neurons in Tlr7(-/Y) mice had more complex dendritic arbors compared with those of wild-type littermates at postnatal (P) day 7, but not at P21. This observation strengthens a role of TLR7 in restricting neuronal growth during development. In cultured neurons, transient knockdown of Tlr7 promoted axonal and dendritic growth, supporting the cell-autonomous effect of TLR7 on neuronal growth. We observed perceptible levels of Let7c and miR21 in the exosomes of the neuronal cultures as well as in developing brains. Treatment with Let7c and miR21 restricted dendritic growth of wild-type neurons but not Tlr7(-/-) neurons. Our study suggests that neuronal TLR7 is activated by endogenous ligands and thus regulates neuronal morphology. Neuronal innate immune responses may influence neurodevelopment and neurodegeneration through the regulation of neuronal morphology.
Collapse
Affiliation(s)
- Hsin-Yu Liu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| | | | - Yun-Fen Hung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
59
|
Sun M, Cui W, Woody SK, Staudinger JL. Pregnane X receptor modulates the inflammatory response in primary cultures of hepatocytes. Drug Metab Dispos 2015; 43:335-43. [PMID: 25527709 PMCID: PMC4352581 DOI: 10.1124/dmd.114.062307] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 12/12/2014] [Indexed: 12/16/2022] Open
Abstract
Bacterial sepsis is characterized by a rapid increase in the expression of inflammatory mediators to initiate the acute phase response in liver. Inflammatory mediator release is counterbalanced by the coordinated expression of anti-inflammatory molecules such as interleukin 1 receptor antagonist (IL1-Ra) through time. This study determined whether activation of pregnane X receptor (PXR, NR1I2) alters the lipopolysaccharide (LPS)-inducible gene expression program in primary cultures of hepatocytes (PCHs). Preactivation of PXR for 24 hours in PCHs isolated from wild-type mice suppressed the subsequent LPS-inducible expression of the key inflammatory mediators interleukin 1β (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor α (TNFα) but not in PCHs isolated from Pxr-null (PXR-knockout [KO]) mice. Basal expression of key inflammatory cytokines was elevated in PCHs from PXR-KO mice. Stimulation of PCHs from PXR-KO mice with LPS alone produced enhanced levels of IL-1β when compared with wild-type mice. Experiments performed using PCHs from both humanized-PXR transgenic mice as well as human donors indicate that prolonged activation of PXR produces an increased secretion of IL1-Ra from cells through time. Our data reveal a working model that describes a pivotal role for PXR in both inhibiting as well as in resolving the inflammatory response in hepatocytes. Understanding the molecular details of how PXR is converted from a positive regulator of drug-metabolizing enzymes into a transcriptional suppressor of inflammation in liver will provide new pharmacologic strategies for modulating inflammatory-related diseases in the liver and intestine.
Collapse
Affiliation(s)
- Mengxi Sun
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas
| | - Wenqi Cui
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas
| | - Sarah K Woody
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas
| | - Jeff L Staudinger
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas
| |
Collapse
|
60
|
Pol JG, Lekbaby B, Redelsperger F, Klamer S, Mandouri Y, Ahodantin J, Bieche I, Lefevre M, Souque P, Charneau P, Gadessaud N, Kremsdorf D, Soussan P. Alternative splicing-regulated protein of hepatitis B virus hacks the TNF-α-stimulated signaling pathways and limits the extent of liver inflammation. FASEB J 2015; 29:1879-89. [PMID: 25630972 DOI: 10.1096/fj.14-258715] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 12/28/2014] [Indexed: 12/31/2022]
Abstract
Hepatitis B splicing-regulated protein (HBSP) of the hepatitis B virus (HBV) was uncovered a few years ago but its function remains unknown. HBSP expression occurs from a spliced viral transcript that increases during the course of liver disease. This study aimed at characterizing the impact of HBSP on cellular signaling pathways in vitro and on liver pathogenesis in transgenic (Tg) mice. By RT-qPCR array, NF-κB-inducible genes appeared modulated in HepG2 cells transduced with a HBSP-encoding lentivirus. Using luciferase and Western blot assays, we observed a decreased activation of the NF-κB pathway in HBSP-expressing cells following TNF-α treatment, as illustrated by lower levels of phosphorylated IκB-α. Meanwhile, the level of phosphorylated JNK increased together with the sensitivity to apoptosis. The contrasting effects on JNK and IκB-α activation upon TNF-α stimulation matched with a modulated maturation of TGF-β-activated kinase 1 (TAK1) kinase, assessed by 2-dimensional SDS-PAGE. Inhibition of the NF-κB pathway by HBSP was confirmed in the liver of HBSP Tg mice and associated with a significant decrease of chemically induced chronic liver inflammation, as assessed by immunohistochemistry. In conclusion, HBSP contributes to limit hepatic inflammation during chronic liver disease and may favor HBV persistence by evading immune response.
Collapse
Affiliation(s)
- Jonathan G Pol
- *INSERM U845, Pathogenèse des Hépatites Virales B et Immunothérapie, Paris, France; Institut Pasteur, Département de Virologie, Paris, France; Université Paris-Descartes, Centre Hospitalier Universitaire Necker, Paris, France; Laboratoire de Génétique Moléculaire, Faculté des Sciences Pharmaceutiques, Paris, France; Service d'Anatomo-pathologie, Hôpital Tenon, Paris, France; Virologie Moléculaire et Vectorologie, Centre National de la Recherche Scientifique - Unité de Recherche Associée 3015, Institut Pasteur, Paris, France; Plateforme d'Histologie, Laboratoire L-RB126, Paris, France; **Laboratoire de Virologie, Hôpital Tenon, Paris, France; and Université Pierre et Marie Curie, Centre Hospitalier Universitaire Tenon, Paris France
| | - Bouchra Lekbaby
- *INSERM U845, Pathogenèse des Hépatites Virales B et Immunothérapie, Paris, France; Institut Pasteur, Département de Virologie, Paris, France; Université Paris-Descartes, Centre Hospitalier Universitaire Necker, Paris, France; Laboratoire de Génétique Moléculaire, Faculté des Sciences Pharmaceutiques, Paris, France; Service d'Anatomo-pathologie, Hôpital Tenon, Paris, France; Virologie Moléculaire et Vectorologie, Centre National de la Recherche Scientifique - Unité de Recherche Associée 3015, Institut Pasteur, Paris, France; Plateforme d'Histologie, Laboratoire L-RB126, Paris, France; **Laboratoire de Virologie, Hôpital Tenon, Paris, France; and Université Pierre et Marie Curie, Centre Hospitalier Universitaire Tenon, Paris France
| | - François Redelsperger
- *INSERM U845, Pathogenèse des Hépatites Virales B et Immunothérapie, Paris, France; Institut Pasteur, Département de Virologie, Paris, France; Université Paris-Descartes, Centre Hospitalier Universitaire Necker, Paris, France; Laboratoire de Génétique Moléculaire, Faculté des Sciences Pharmaceutiques, Paris, France; Service d'Anatomo-pathologie, Hôpital Tenon, Paris, France; Virologie Moléculaire et Vectorologie, Centre National de la Recherche Scientifique - Unité de Recherche Associée 3015, Institut Pasteur, Paris, France; Plateforme d'Histologie, Laboratoire L-RB126, Paris, France; **Laboratoire de Virologie, Hôpital Tenon, Paris, France; and Université Pierre et Marie Curie, Centre Hospitalier Universitaire Tenon, Paris France
| | - Sofieke Klamer
- *INSERM U845, Pathogenèse des Hépatites Virales B et Immunothérapie, Paris, France; Institut Pasteur, Département de Virologie, Paris, France; Université Paris-Descartes, Centre Hospitalier Universitaire Necker, Paris, France; Laboratoire de Génétique Moléculaire, Faculté des Sciences Pharmaceutiques, Paris, France; Service d'Anatomo-pathologie, Hôpital Tenon, Paris, France; Virologie Moléculaire et Vectorologie, Centre National de la Recherche Scientifique - Unité de Recherche Associée 3015, Institut Pasteur, Paris, France; Plateforme d'Histologie, Laboratoire L-RB126, Paris, France; **Laboratoire de Virologie, Hôpital Tenon, Paris, France; and Université Pierre et Marie Curie, Centre Hospitalier Universitaire Tenon, Paris France
| | - Yassmina Mandouri
- *INSERM U845, Pathogenèse des Hépatites Virales B et Immunothérapie, Paris, France; Institut Pasteur, Département de Virologie, Paris, France; Université Paris-Descartes, Centre Hospitalier Universitaire Necker, Paris, France; Laboratoire de Génétique Moléculaire, Faculté des Sciences Pharmaceutiques, Paris, France; Service d'Anatomo-pathologie, Hôpital Tenon, Paris, France; Virologie Moléculaire et Vectorologie, Centre National de la Recherche Scientifique - Unité de Recherche Associée 3015, Institut Pasteur, Paris, France; Plateforme d'Histologie, Laboratoire L-RB126, Paris, France; **Laboratoire de Virologie, Hôpital Tenon, Paris, France; and Université Pierre et Marie Curie, Centre Hospitalier Universitaire Tenon, Paris France
| | - James Ahodantin
- *INSERM U845, Pathogenèse des Hépatites Virales B et Immunothérapie, Paris, France; Institut Pasteur, Département de Virologie, Paris, France; Université Paris-Descartes, Centre Hospitalier Universitaire Necker, Paris, France; Laboratoire de Génétique Moléculaire, Faculté des Sciences Pharmaceutiques, Paris, France; Service d'Anatomo-pathologie, Hôpital Tenon, Paris, France; Virologie Moléculaire et Vectorologie, Centre National de la Recherche Scientifique - Unité de Recherche Associée 3015, Institut Pasteur, Paris, France; Plateforme d'Histologie, Laboratoire L-RB126, Paris, France; **Laboratoire de Virologie, Hôpital Tenon, Paris, France; and Université Pierre et Marie Curie, Centre Hospitalier Universitaire Tenon, Paris France
| | - Ivan Bieche
- *INSERM U845, Pathogenèse des Hépatites Virales B et Immunothérapie, Paris, France; Institut Pasteur, Département de Virologie, Paris, France; Université Paris-Descartes, Centre Hospitalier Universitaire Necker, Paris, France; Laboratoire de Génétique Moléculaire, Faculté des Sciences Pharmaceutiques, Paris, France; Service d'Anatomo-pathologie, Hôpital Tenon, Paris, France; Virologie Moléculaire et Vectorologie, Centre National de la Recherche Scientifique - Unité de Recherche Associée 3015, Institut Pasteur, Paris, France; Plateforme d'Histologie, Laboratoire L-RB126, Paris, France; **Laboratoire de Virologie, Hôpital Tenon, Paris, France; and Université Pierre et Marie Curie, Centre Hospitalier Universitaire Tenon, Paris France
| | - Marine Lefevre
- *INSERM U845, Pathogenèse des Hépatites Virales B et Immunothérapie, Paris, France; Institut Pasteur, Département de Virologie, Paris, France; Université Paris-Descartes, Centre Hospitalier Universitaire Necker, Paris, France; Laboratoire de Génétique Moléculaire, Faculté des Sciences Pharmaceutiques, Paris, France; Service d'Anatomo-pathologie, Hôpital Tenon, Paris, France; Virologie Moléculaire et Vectorologie, Centre National de la Recherche Scientifique - Unité de Recherche Associée 3015, Institut Pasteur, Paris, France; Plateforme d'Histologie, Laboratoire L-RB126, Paris, France; **Laboratoire de Virologie, Hôpital Tenon, Paris, France; and Université Pierre et Marie Curie, Centre Hospitalier Universitaire Tenon, Paris France
| | - Philippe Souque
- *INSERM U845, Pathogenèse des Hépatites Virales B et Immunothérapie, Paris, France; Institut Pasteur, Département de Virologie, Paris, France; Université Paris-Descartes, Centre Hospitalier Universitaire Necker, Paris, France; Laboratoire de Génétique Moléculaire, Faculté des Sciences Pharmaceutiques, Paris, France; Service d'Anatomo-pathologie, Hôpital Tenon, Paris, France; Virologie Moléculaire et Vectorologie, Centre National de la Recherche Scientifique - Unité de Recherche Associée 3015, Institut Pasteur, Paris, France; Plateforme d'Histologie, Laboratoire L-RB126, Paris, France; **Laboratoire de Virologie, Hôpital Tenon, Paris, France; and Université Pierre et Marie Curie, Centre Hospitalier Universitaire Tenon, Paris France
| | - Pierre Charneau
- *INSERM U845, Pathogenèse des Hépatites Virales B et Immunothérapie, Paris, France; Institut Pasteur, Département de Virologie, Paris, France; Université Paris-Descartes, Centre Hospitalier Universitaire Necker, Paris, France; Laboratoire de Génétique Moléculaire, Faculté des Sciences Pharmaceutiques, Paris, France; Service d'Anatomo-pathologie, Hôpital Tenon, Paris, France; Virologie Moléculaire et Vectorologie, Centre National de la Recherche Scientifique - Unité de Recherche Associée 3015, Institut Pasteur, Paris, France; Plateforme d'Histologie, Laboratoire L-RB126, Paris, France; **Laboratoire de Virologie, Hôpital Tenon, Paris, France; and Université Pierre et Marie Curie, Centre Hospitalier Universitaire Tenon, Paris France
| | - Noémie Gadessaud
- *INSERM U845, Pathogenèse des Hépatites Virales B et Immunothérapie, Paris, France; Institut Pasteur, Département de Virologie, Paris, France; Université Paris-Descartes, Centre Hospitalier Universitaire Necker, Paris, France; Laboratoire de Génétique Moléculaire, Faculté des Sciences Pharmaceutiques, Paris, France; Service d'Anatomo-pathologie, Hôpital Tenon, Paris, France; Virologie Moléculaire et Vectorologie, Centre National de la Recherche Scientifique - Unité de Recherche Associée 3015, Institut Pasteur, Paris, France; Plateforme d'Histologie, Laboratoire L-RB126, Paris, France; **Laboratoire de Virologie, Hôpital Tenon, Paris, France; and Université Pierre et Marie Curie, Centre Hospitalier Universitaire Tenon, Paris France
| | - Dina Kremsdorf
- *INSERM U845, Pathogenèse des Hépatites Virales B et Immunothérapie, Paris, France; Institut Pasteur, Département de Virologie, Paris, France; Université Paris-Descartes, Centre Hospitalier Universitaire Necker, Paris, France; Laboratoire de Génétique Moléculaire, Faculté des Sciences Pharmaceutiques, Paris, France; Service d'Anatomo-pathologie, Hôpital Tenon, Paris, France; Virologie Moléculaire et Vectorologie, Centre National de la Recherche Scientifique - Unité de Recherche Associée 3015, Institut Pasteur, Paris, France; Plateforme d'Histologie, Laboratoire L-RB126, Paris, France; **Laboratoire de Virologie, Hôpital Tenon, Paris, France; and Université Pierre et Marie Curie, Centre Hospitalier Universitaire Tenon, Paris France
| | - Patrick Soussan
- *INSERM U845, Pathogenèse des Hépatites Virales B et Immunothérapie, Paris, France; Institut Pasteur, Département de Virologie, Paris, France; Université Paris-Descartes, Centre Hospitalier Universitaire Necker, Paris, France; Laboratoire de Génétique Moléculaire, Faculté des Sciences Pharmaceutiques, Paris, France; Service d'Anatomo-pathologie, Hôpital Tenon, Paris, France; Virologie Moléculaire et Vectorologie, Centre National de la Recherche Scientifique - Unité de Recherche Associée 3015, Institut Pasteur, Paris, France; Plateforme d'Histologie, Laboratoire L-RB126, Paris, France; **Laboratoire de Virologie, Hôpital Tenon, Paris, France; and Université Pierre et Marie Curie, Centre Hospitalier Universitaire Tenon, Paris France
| |
Collapse
|
61
|
Wunderlich F, Al-Quraishy S, Dkhil MA. Liver-inherent immune system: its role in blood-stage malaria. Front Microbiol 2014; 5:559. [PMID: 25408684 PMCID: PMC4219477 DOI: 10.3389/fmicb.2014.00559] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/06/2014] [Indexed: 12/19/2022] Open
Abstract
The liver is well known as that organ which is obligately required for the intrahepatocyte development of the pre-erythrocytic stages of the malaria-causative agent Plasmodium. However, largely neglected is the fact that the liver is also a central player of the host defense against the morbidity- and mortality-causing blood stages of the malaria parasites. Indeed, the liver is equipped with a unique immune system that acts locally, however, with systemic impact. Its main “antipodal” functions are to recognize and to generate effective immunoreactivity against pathogens on the one hand, and to generate tolerance to avoid immunoreactivity with “self” and harmless substances as dietary compounds on the other hand. This review provides an introductory survey of the liver-inherent immune system: its pathogen recognition receptors including Toll-like receptors (TLRs) and its major cell constituents with their different facilities to fight and eliminate pathogens. Then, evidence is presented that the liver is also an essential organ to overcome blood-stage malaria. Finally, we discuss effector responses of the liver-inherent immune system directed against blood-stage malaria: activation of TLRs, acute phase response, phagocytic activity, cytokine-mediated pro- and anti-inflammatory responses, generation of “protective” autoimmunity by extrathymic T cells and B-1 cells, and T cell-mediated repair of liver injuries mainly produced by malaria-induced overreactions of the liver-inherent immune system.
Collapse
Affiliation(s)
- Frank Wunderlich
- Department of Biology, Heinrich-Heine-University , Düsseldorf, Germany
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University , Riyadh, Saudi Arabia
| | - Mohamed A Dkhil
- Department of Zoology, College of Science, King Saud University , Riyadh, Saudi Arabia ; Department of Zoology and Entomology, Faculty of Science, Helwan University , Cairo, Egypt
| |
Collapse
|
62
|
Genome-wide detection of allelic gene expression in hepatocellular carcinoma cells using a human exome SNP chip. Gene 2014; 551:236-42. [DOI: 10.1016/j.gene.2014.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 08/19/2014] [Accepted: 09/01/2014] [Indexed: 11/22/2022]
|
63
|
Huang Y, Liu W, Yin C, Ci L, Zhao R, Yang X. Response to lipopolysaccharide in salivary components and the submandibular gland of pigs. Livest Sci 2014. [DOI: 10.1016/j.livsci.2014.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
64
|
Zhou M, Zhu X, Ye S, Zhou B. Blocking TLR2 in vivo attenuates experimental hepatitis induced by concanavalin A in mice. Int Immunopharmacol 2014; 21:241-6. [DOI: 10.1016/j.intimp.2014.04.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/12/2014] [Accepted: 04/23/2014] [Indexed: 01/22/2023]
|
65
|
Nakamoto N, Kanai T. Role of toll-like receptors in immune activation and tolerance in the liver. Front Immunol 2014; 5:221. [PMID: 24904576 PMCID: PMC4032908 DOI: 10.3389/fimmu.2014.00221] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 04/30/2014] [Indexed: 12/11/2022] Open
Abstract
Liver has a unique vascular system receiving the majority of the blood supply from the gastrointestinal tract through the portal vein and faces continuous exposure to foreign pathogens and commensal bacterial products. These gut-derived antigens stimulate liver cells and result in a distinctive immune response via a family of pattern recognition receptors, the Toll-like receptors (TLRs). TLRs are expressed on Kupffer cells, dendritic cells, hepatic stellate cells, endothelial cells, and hepatocytes in the liver. The crosstalk between gut-derived antigens and TLRs on immune cells trigger a distinctive set of mechanisms to induce immunity, contributing to various acute and chronic liver diseases including liver cirrhosis and hepatocellular carcinoma. Accumulating evidence has shown that TLRs stimulation by foreign antigens induces the production of immunoactivating and immunoregulatory cytokines. Furthermore, the immunoregulatory arm of TLR stimulation can also control excessive tissue damage. With this knowledge at hand, it is important to clarify the dual role of disease-specific TLRs as activators and regulators, especially in the liver. We will review the current understanding of TLR signaling and subsequent immune activation and tolerance by the innate immune system in the liver.
Collapse
Affiliation(s)
- Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine , Tokyo , Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine , Tokyo , Japan
| |
Collapse
|
66
|
Jia L, Vianna CR, Fukuda M, Berglund ED, Liu C, Tao C, Sun K, Liu T, Harper MJ, Lee CE, Lee S, Scherer PE, Elmquist JK. Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance. Nat Commun 2014; 5:3878. [PMID: 24815961 PMCID: PMC4080408 DOI: 10.1038/ncomms4878] [Citation(s) in RCA: 228] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/11/2014] [Indexed: 02/06/2023] Open
Abstract
Chronic low-grade inflammation is a hallmark of obesity and thought to contribute to the development of obesity-related insulin resistance. Toll-like receptor 4 (Tlr4) is a key mediator of pro-inflammatory responses. Mice lacking Tlr4s are protected from diet-induced insulin resistance and inflammation; however which Tlr4 expressing cells mediate this effect is unknown. Here we show that mice deficient in hepatocyte Tlr4 (Tlr4LKO) exhibit improved glucose tolerance, enhanced insulin sensitivity, and ameliorated hepatic steatosis despite the development of obesity after a high fat diet (HFD) challenge. Furthermore, Tlr4LKO mice have reduced macrophage content in white adipose tissue, as well as decreased tissue and circulating inflammatory markers. In contrast, the loss of Tlr4 activity in myeloid cells has little effect on insulin sensitivity. Collectively, these data indicate that the activation of Tlr4 on hepatocytes contributes to obesity-associated inflammation and insulin resistance, and suggest that targeting hepatocyte Tlr4 might be a useful therapeutic strategy for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Lin Jia
- 1] Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA [2]
| | - Claudia R Vianna
- 1] Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA [2]
| | - Makoto Fukuda
- 1] Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA [2]
| | - Eric D Berglund
- 1] Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA [2] Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Chen Liu
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Caroline Tao
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kai Sun
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Tiemin Liu
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Matthew J Harper
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Charlotte E Lee
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Syann Lee
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Joel K Elmquist
- 1] Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA [2] Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| |
Collapse
|
67
|
Norris CA, He M, Kang LI, Ding MQ, Radder JE, Haynes MM, Yang Y, Paranjpe S, Bowen WC, Orr A, Michalopoulos GK, Stolz DB, Mars WM. Synthesis of IL-6 by hepatocytes is a normal response to common hepatic stimuli. PLoS One 2014; 9:e96053. [PMID: 24763697 PMCID: PMC3999098 DOI: 10.1371/journal.pone.0096053] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 04/02/2014] [Indexed: 12/22/2022] Open
Abstract
Exogenous interleukin 6 (IL-6), synthesized at the initiation of the acute phase response, is considered responsible for signaling hepatocytes to produce acute phase proteins. It is widely posited that IL-6 is either delivered to the liver in an endocrine fashion from immune cells at the site of injury, or alternatively, in a paracrine manner by hepatic immune cells within the liver. A recent publication showed there was a muted IL-6 response in lipopolysaccharide (LPS)-injured mice when nuclear NFκB was specifically inactivated in the hepatocytes. This indicates hepatocellular signaling is also involved in regulating the acute phase production of IL-6. Herein, we present extensive in vitro and in vivo evidence that normal hepatocytes are directly induced to synthesize IL-6 mRNAs and protein by challenge with LPS, a bacterial hepatotoxin, and by HGF, an important regulator of hepatic homeostasis. As the IL-6 receptor is found on the hepatocyte, these results reveal that induction of the acute phase response can be regulated in an autocrine as well as endocrine/paracrine fashion. Further, herein we provide data indicating that following partial hepatectomy (PHx), HGF differentially regulates IL-6 production in hepatocytes (induces) versus immune cells (suppresses), signifying disparate regulation of the cell sources involved in IL-6 production is a biologically relevant mechanism that has previously been overlooked. These findings have wide ranging ramifications regarding how we currently interpret a variety of in vivo and in vitro biological models involving elements of IL-6 signaling and the hepatic acute phase response.
Collapse
Affiliation(s)
- Callie A. Norris
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Mu He
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Liang-I Kang
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Michael Qi Ding
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Josiah E. Radder
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Meagan M. Haynes
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Yu Yang
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Shirish Paranjpe
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - William C. Bowen
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Anne Orr
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - George K. Michalopoulos
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Donna B. Stolz
- Department of Cell Biology and Physiology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Wendy M. Mars
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
68
|
Meli R, Mattace Raso G, Calignano A. Role of innate immune response in non-alcoholic Fatty liver disease: metabolic complications and therapeutic tools. Front Immunol 2014; 5:177. [PMID: 24795720 PMCID: PMC4005965 DOI: 10.3389/fimmu.2014.00177] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/04/2014] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently the most common liver disease worldwide, both in adults and children. It is characterized by an aberrant lipid storage in hepatocytes, named hepatic steatosis. Simple steatosis remains a benign process in most affected patients, while some of them develop superimposed necroinflammatory activity with a non-specific inflammatory infiltrate and a progression to non-alcoholic steatohepatitis with or without fibrosis. Deep similarity and interconnections between innate immune cells and those of liver parenchyma have been highlighted and showed to play a key role in the development of chronic liver disease. The liver can be considered as an “immune organ” because it hosts non-lymphoid cells, such as macrophage Kupffer cells, stellate and dendritic cells, and lymphoid cells. Many of these cells are components of the classic innate immune system, enabling the liver to play a major role in response to pathogens. Although the liver provides a “tolerogenic” environment, aberrant activation of innate immune signaling may trigger “harmful” inflammation that contributes to tissue injury, fibrosis, and carcinogenesis. Pathogen recognition receptors, such as toll-like receptors and nucleotide oligomerization domain-like receptors, are responsible for the recognition of immunogenic signals, and represent the major conduit for sensing hepatic and non-hepatic noxious stimuli. A pivotal role in liver inflammation is also played by cytokines, which can initiate or have a part in immune response, triggering hepatic intracellular signaling pathways. The sum of inflammatory signals and deranged substrate handling induce most of the metabolic alteration traits: insulin resistance, obesity, diabetes, hyperlipidemia, and their compounded combined effects. In this review, we discuss the relevant role of innate immune cell activation in relation to NAFLD, the metabolic complications associated to this pathology, and the possible pharmacological tools.
Collapse
Affiliation(s)
- Rosaria Meli
- Department of Pharmacy, University of Naples "Federico II" , Naples , Italy
| | | | - Antonio Calignano
- Department of Pharmacy, University of Naples "Federico II" , Naples , Italy
| |
Collapse
|
69
|
Quantitative proteomic analysis of hepatocyte-secreted extracellular vesicles reveals candidate markers for liver toxicity. J Proteomics 2014; 103:227-40. [PMID: 24747303 DOI: 10.1016/j.jprot.2014.04.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 01/23/2023]
Abstract
UNLABELLED Extracellular vesicles have created great interest as possible source of biomarkers for different biological processes and diseases. Although the biological function of these vesicles is not fully understood, it is clear that they participate in the removal of unnecessary cellular material and act as carriers of various macromolecules and signals between the cells. In this report, we analyzed the proteome of extracellular vesicles secreted by primary hepatocytes. We used one- and two-dimensional liquid chromatography combined with data-independent mass spectrometry. Employing label-free quantitative proteomics, we detected significant changes in vesicle protein expression levels in this in vitro model after exposure to well-known liver toxins (galactosamine and Escherichia coli-derived lipopolysaccharide). The results allowed us to identify candidate markers for liver injury. We validated a number of these markers in vivo, providing the basis for the development of novel methods to evaluate drug toxicity. This report strongly supports the application of proteomics in the study of extracellular vesicles released by well-controlled in vitro cellular systems. Analysis of such systems should help to identify specific markers for various biological processes and pathological conditions. BIOLOGICAL SIGNIFICANCE Identification of low invasive candidate marker for hepatotoxicity. Support to apply proteomics in the study of extracellular vesicles released by well-controlled in vitro cellular systems to identify low invasive markers for diseases.
Collapse
|
70
|
Tomasi ML, Ryoo M, Yang H, Iglesias Ara A, Ko KS, Lu SC. Molecular mechanisms of lipopolysaccharide-mediated inhibition of glutathione synthesis in mice. Free Radic Biol Med 2014; 68:148-58. [PMID: 24296246 PMCID: PMC3943979 DOI: 10.1016/j.freeradbiomed.2013.11.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 11/20/2013] [Indexed: 12/12/2022]
Abstract
Endotoxemia correlates with the degree of liver failure and may participate in worsening of liver diseases. Lipopolysaccharide (LPS; synonymous with endotoxin) treatment in mice lowered the hepatic glutathione (GSH) level, which in turn is a variable that determines susceptibility to LPS-induced injury. We previously showed that LPS treatment in mice lowered hepatic expression of the rate-limiting enzyme in GSH synthesis, glutamate-cysteine ligase (GCL). The aim of our current work was to determine the molecular mechanism(s) responsible for these changes. Studies were done using RAW cells (murine macrophages), in vivo LPS-treated mice, and mouse hepatocytes. We found that LPS treatment lowered GCL catalytic and modifier (Gclc and Gclm) subunit expression at the transcriptional level, which was unrelated to alterations in nitric oxide production or induction of NF-κB/p65 subunit. The key mechanism was a decrease in sumoylation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and MafG, which is required for their heterodimerization and subsequent binding and trans-activation of the antioxidant-response element (ARE) present in the promoter region of these genes that is essential for their expression. LPS treatment lowered markedly the expression of ubiquitin-conjugating enzyme 9 (Ubc9), which is required for sumoylation. Similar findings also occurred in liver after in vivo LPS treatment and in LPS-treated mouse hepatocytes. Overexpression of Ubc9 protected against LPS-mediated inhibition of Gclc and Gclm expression in RAW cells and hepatocytes. In conclusion, LPS-mediated lowering of GCL expression in hepatocytes and macrophages is due to lowering of sumoylation of Nrf2 and MafG, leading to reduced heterodimerization, binding, and trans-activation of ARE.
Collapse
Affiliation(s)
- Maria Lauda Tomasi
- Division of Gastroenterology and Liver Diseases, USC Research Center for Liver Diseases, Los Angeles, CA 90033, USA; Southern California Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Minjung Ryoo
- Division of Gastroenterology and Liver Diseases, USC Research Center for Liver Diseases, Los Angeles, CA 90033, USA; Southern California Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Heping Yang
- Division of Gastroenterology and Liver Diseases, USC Research Center for Liver Diseases, Los Angeles, CA 90033, USA; Southern California Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ainhoa Iglesias Ara
- Division of Gastroenterology and Liver Diseases, USC Research Center for Liver Diseases, Los Angeles, CA 90033, USA; Department of Genetics, Faculty of Science and Technology, University of the Basque Country, Leioa, Bilbao, Spain
| | - Kwang Suk Ko
- Division of Gastroenterology and Liver Diseases, USC Research Center for Liver Diseases, Los Angeles, CA 90033, USA; Department of Nutritional Science and Food Management, College of Health Science, Ewha Women's University, Seoul, Korea
| | - Shelly C Lu
- Division of Gastroenterology and Liver Diseases, USC Research Center for Liver Diseases, Los Angeles, CA 90033, USA; Southern California Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
71
|
Bartlett PJ, Gaspers LD, Pierobon N, Thomas AP. Calcium-dependent regulation of glucose homeostasis in the liver. Cell Calcium 2014; 55:306-16. [PMID: 24630174 DOI: 10.1016/j.ceca.2014.02.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 02/07/2014] [Accepted: 02/08/2014] [Indexed: 02/09/2023]
Abstract
A major role of the liver is to integrate multiple signals to maintain normal blood glucose levels. The balance between glucose storage and mobilization is primarily regulated by the counteracting effects of insulin and glucagon. However, numerous signals converge in the liver to ensure energy demand matches the physiological status of the organism. Many circulating hormones regulate glycogenolysis, gluconeogenesis and mitochondrial metabolism by calcium-dependent signaling mechanisms that manifest as cytosolic Ca(2+) oscillations. Stimulus-strength is encoded in the Ca(2+) oscillation frequency, and also by the range of intercellular Ca(2+) wave propagation in the intact liver. In this article, we describe how Ca(2+) oscillations and waves can regulate glucose output and oxidative metabolism in the intact liver; how multiple stimuli are decoded though Ca(2+) signaling at the organ level, and the implications of Ca(2+) signal dysregulation in diseases such as metabolic syndrome and non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Paula J Bartlett
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA.
| | - Lawrence D Gaspers
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Nicola Pierobon
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Andrew P Thomas
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
72
|
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors that play an important role in host defence by recognizing pathogen-associated molecular patterns (PAMP). Recent studies indicate that TLR signalling plays an important role in progression of chronic liver diseases. Ongoing clinical trials suggest that therapeutic manipulation of TLR pathways may offer novel means of reversing chronic liver diseases. Upon activation by their respective ligands, TLRs initiate an intracellular pro-inflammatory/anti-inflammatory signalling cascade via recruitment of various adaptor proteins. TLR associated signalling pathways are tightly regulated to keep a check on inappropriate production of pro-inflammatory cytokines and interferons thereby preventing various autoimmune and inflammatory processes. Herein, we review the current state of knowledge of hepatic distribution, signalling pathways and therapeutic modulation of TLRs in chronic liver diseases.
Collapse
Affiliation(s)
- Vivek Kesar
- Department of Medicine, Recanati/Miller Transplant Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Lenox Hill Hospital, New York, NY, USA
| | | |
Collapse
|
73
|
Vindiš B, Gašperšič R, Skalerič U, Kovačič U. Toll-Like Receptor 4 Expression in Trigeminal Neurons Is Increased During Ligature-Induced Periodontitis in Rats. J Periodontol 2014; 85:170-7. [DOI: 10.1902/jop.2013.130039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
74
|
Shah P, Guo T, Moore DD, Ghose R. Role of constitutive androstane receptor in Toll-like receptor-mediated regulation of gene expression of hepatic drug-metabolizing enzymes and transporters. Drug Metab Dispos 2014; 42:172-81. [PMID: 24194512 PMCID: PMC3876785 DOI: 10.1124/dmd.113.053850] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/05/2013] [Indexed: 01/03/2023] Open
Abstract
Impairment of drug disposition in the liver during inflammation has been attributed to downregulation of gene expression of drug-metabolizing enzymes (DMEs) and drug transporters. Inflammatory responses in the liver are primarily mediated by Toll-like receptors (TLRs). We have recently shown that activation of TLR2 or TLR4 by lipoteichoic acid (LTA) and lipopolysaccharide (LPS), respectively, leads to the downregulation of gene expression of DMEs/transporters. However, the molecular mechanism underlying this downregulation is not fully understood. The xenobiotic nuclear receptors, pregnane X receptor (PXR) and constitutive androstane receptor (CAR), regulate the expression of DMEs/transporter genes. Downregulation of DMEs/transporters by LTA or LPS was associated with reduced expression of PXR and CAR genes. To determine the role of CAR, we injected CAR(+/+) and CAR(-/-) mice with LTA or LPS, which significantly downregulated (~40%-60%) RNA levels of the DMEs, cytochrome P450 (Cyp)3a11, Cyp2a4, Cyp2b10, uridine diphosphate glucuronosyltransferase 1a1, amine N-sulfotransferase, and the transporter, multidrug resistance-associated protein 2, in CAR(+/+) mice. Suppression of most of these genes was attenuated in LTA-treated CAR(-/-) mice. In contrast, LPS-mediated downregulation of these genes was not attenuated in CAR(-/-) mice. Induction of these genes by mouse CAR activator 1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene was sustained in LTA- but not in LPS-treated mice. Similar observations were obtained in humanized CAR mice. We have replicated these results in primary hepatocytes as well. Thus, LPS can downregulate DME/transporter genes in the absence of CAR, whereas the effect of LTA on these genes is attenuated in the absence of CAR, indicating the potential involvement of CAR in LTA-mediated downregulation of DME/transporter genes.
Collapse
Affiliation(s)
- Pranav Shah
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (P.S., T.G., R.G.); and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas (D.D.M.)
| | | | | | | |
Collapse
|
75
|
Aravalli RN. Role of innate immunity in the development of hepatocellular carcinoma. World J Gastroenterol 2013; 19:7500-7514. [PMID: 24282342 PMCID: PMC3837249 DOI: 10.3748/wjg.v19.i43.7500] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 09/29/2013] [Accepted: 10/18/2013] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of liver cancer worldwide. It is caused by a variety of risk factors, most common ones being infection with hepatitis viruses, alcohol, and obesity. HCC often develops in the background of underlying cirrhosis, and even though a number of interventional treatment methods are currently in use, recurrence is fairly common among patients who have had a resection. Therefore, whole liver transplantation remains the most practical treatment option for HCC. Due to the growing incidence of HCC, intense research efforts are being made to understand cellular and molecular mechanisms of the disease so that novel therapeutic strategies can be developed to combat liver cancer. In recent years, it has become clear that innate immunity plays a critical role in the development of a number of liver diseases, including HCC. In particular, the activation of Toll-like receptor signaling results in the generation of immune responses that often results in the production of pro-inflammatory cytokines and chemokines, and could cause acute inflammation in the liver. In this review, the current knowledge on the role of innate immune responses in the development and progression of HCC is examined, and emerging therapeutic strategies based on molecular mechanisms of HCC are discussed.
Collapse
|
76
|
Wree A, Broderick L, Canbay A, Hoffman HM, Feldstein AE. From NAFLD to NASH to cirrhosis-new insights into disease mechanisms. Nat Rev Gastroenterol Hepatol 2013; 10:627-36. [PMID: 23958599 DOI: 10.1038/nrgastro.2013.149] [Citation(s) in RCA: 475] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
NAFLD has evolved as a serious public health problem in the USA and around the world. In fact, NASH-the most serious form of NAFLD-is predicted to become the leading cause of liver transplantation in the USA by the year 2020. The pathogenesis of NAFLD and NASH, in particular the mechanisms responsible for liver injury and fibrosis, is the result of a complex interplay between host and environmental factors, and is at the centre of intense investigation. In this Review, we focus on recently uncovered aspects of the genetic, biochemical, immunological and molecular events that are responsible for the development and progression of this highly prevalent and potentially serious disease. These studies bring new insight into this complex disorder and have led to the development of novel therapeutic and diagnostic strategies that might enable a personalized approach in the management of this disease.
Collapse
Affiliation(s)
- Alexander Wree
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92037-0715, USA
| | | | | | | | | |
Collapse
|
77
|
Lin H, Liu XB, Yu JJ, Hua F, Hu ZW. Antioxidant N-acetylcysteine attenuates hepatocarcinogenesis by inhibiting ROS/ER stress in TLR2 deficient mouse. PLoS One 2013; 8:e74130. [PMID: 24098333 PMCID: PMC3788783 DOI: 10.1371/journal.pone.0074130] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 07/29/2013] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains one of the most deadly solid tumor malignancies worldwide. We recently find that the loss of toll-like receptor 2 (TLR2) activities promotes the diethylnitrosamine (DEN) induced hepatocellular carcinogenesis and tumor progression, which associates with an abundant accumulation of reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress. This finding suggests that the ROS/ER stress plays a role in TLR2 modulated carcinogenesis of HCC. To investigate the mechanism of TLR2 activity defending against hepatocarcinogenesis, the TLR2-deficient mice were treated with or without antioxidant N-acetylcysteine (NAC) before DEN administration. We found that pretreatment of these animals with NAC attenuated carcinogenesis and progression of HCC in the TLR2-deficient mice, declined ROS/ER stress, and alleviated the unfold protein response and inflammatory response in TLR2-deficient liver tissue. Moreover, the NAC treatment significantly reduced the enhanced aggregation of p62 and Mallory-Denk bodies in the DEN-induced HCC liver tissue, suggesting that NAC treatment improves the suppressive autophagic flux in the TLR2-deficient liver. These findings indicate that TLR2 activity defends against hepatocarcinogenesis through diminishing the accumulation of ROS and alleviating ER stress and unfold protein response mediated inflammatory response in the liver.
Collapse
Affiliation(s)
- Heng Lin
- Molecular Immunology and Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (NO. BZ0150), Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao-bo Liu
- Molecular Immunology and Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (NO. BZ0150), Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jiao-jiao Yu
- Molecular Immunology and Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (NO. BZ0150), Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Fang Hua
- Molecular Immunology and Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (NO. BZ0150), Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhuo-wei Hu
- Molecular Immunology and Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (NO. BZ0150), Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
78
|
Hochhauser E, Avlas O, Fallach R, Bachmetov L, Zemel R, Pappo O, Shainberg A, Ben Ari Z. Bone marrow and nonbone marrow Toll like receptor 4 regulate acute hepatic injury induced by endotoxemia. PLoS One 2013; 8:e73041. [PMID: 23977376 PMCID: PMC3744496 DOI: 10.1371/journal.pone.0073041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/16/2013] [Indexed: 01/15/2023] Open
Abstract
Background Toll-like receptors (TLRs) are expressed in immune cells and hepatocytes. We examined whether hepatic Toll-like receptor 4 (TLR4) is involved in the acute hepatic injury caused by the administration of lipopolysaccharide (LPS) (septic shock model). Methods Wild type (WT), TLR4-deficient and chimera mice underwent myeloablative bone marrow transplantation to dissociate between TLR4 expression in the liver or in the immune-hematopoietic system. Mice were injected with LPS and sacrificed 4 hours later. Results Compared to TLR4 deficient mice, WT mice challenged with LPS displayed increased serum liver enzymes and hepatic cellular inflammatory infiltrate together with increased serum and hepatic levels of interleukin 1β (IL-1β), tumor necrosis factor α (TNFα) ,Up-regulation of hepatic mRNA encoding TLR4, IκB and c-jun expressions. TLR4 mutant mice transplanted with WT bone marrow were more protected than WT chimeric mice bearing TLR4 mutant hemopoietic cells from LPS, as seen by IL-1β and TNFα levels. We then used hepatocytes (Huh7) and macrophages from monocytic cell lines to detect TLR mRNA expression. Macrophages expressed a significantly higher level of TLR4 mRNA and TLR2 (more than 3000- and 8000-fold respectively) compared with the hepatocyte cell line. LPS administration induced TLR4 activation in a hepatocyte cell line in a dose dependent manner while TLR2 mRNA hardly changed. Conclusions These results suggest that TLR4 activation of hepatocytes participate in the immediate response to LPS induced hepatic injury. However, in this response, the contribution of TLR4 on bone marrow derived cells is more significant than those of the hepatocytes. The absence of the TLR4 gene plays a pivotal role in reducing hepatic LPS induced injury.
Collapse
Affiliation(s)
- Edith Hochhauser
- Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orna Avlas
- Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva, Israel
- Goldschmied Medical Diagnostic Research Center, the Mina and Everard Goodman Faculty of Life Sciences Bar-Ilan University, Ramat Gan, Israel
| | - Reut Fallach
- Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva, Israel
| | - Larissa Bachmetov
- Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Romy Zemel
- Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orit Pappo
- Department of Histopathology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Asher Shainberg
- Goldschmied Medical Diagnostic Research Center, the Mina and Everard Goodman Faculty of Life Sciences Bar-Ilan University, Ramat Gan, Israel
| | - Ziv Ben Ari
- Liver Disease Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
79
|
Roh YS, Seki E. Toll-like receptors in alcoholic liver disease, non-alcoholic steatohepatitis and carcinogenesis. J Gastroenterol Hepatol 2013; 28 Suppl 1:38-42. [PMID: 23855294 PMCID: PMC3721430 DOI: 10.1111/jgh.12019] [Citation(s) in RCA: 226] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/31/2012] [Indexed: 02/07/2023]
Abstract
Activation of innate immune systems including Toll-like receptor (TLR) signaling is a key in chronic liver disease. Recent studies suggest that gut microflora-derived bacterial products (i.e. lipopolysaccharide [LPS], bacterial DNA) and endogenous substances (i.e. high-mobility group protein B1 [HMGB1], free fatty acids) released from damaged cells activate hepatic TLRs that contribute to the development of alcoholic (ASH) and non-alcoholic steatohepatitis (NASH) and liver fibrosis. The crucial role of TLR4, a receptor for LPS, has been implicated in the development of ASH, NASH, liver fibrosis, and hepatocellular carcinoma. However, the role of other TLRs, such as TLR2 and TLR9 in chronic liver disease remains less clear. In this review, we will discuss the role of TLR2, 4, and 9 in Kupffer cells and hepatic stellate cells in the development of ASH, NASH, and hepatocarcinogenesis.
Collapse
Affiliation(s)
- Yoon Seok Roh
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California 92093-0702, USA
| | | |
Collapse
|
80
|
Nace GW, Huang H, Klune JR, Eid RE, Rosborough BR, Korff S, Li S, Shapiro RA, Stolz DB, Sodhi CP, Hackam DJ, Geller DA, Billiar TR, Tsung A. Cellular-specific role of toll-like receptor 4 in hepatic ischemia-reperfusion injury in mice. Hepatology 2013; 58:374-87. [PMID: 23460269 PMCID: PMC3688695 DOI: 10.1002/hep.26346] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 02/15/2013] [Indexed: 12/19/2022]
Abstract
UNLABELLED Ischemia-reperfusion (I/R) injury is a process whereby an initial hypoxic insult and subsequent return of blood flow leads to the propagation of innate immune responses and organ injury. The necessity of the pattern recognition receptor, Toll-like receptor (TLR)4, for this innate immune response has been previously shown. However, TLR4 is present on various cell types of the liver, both immune and nonimmune cells. Therefore, we sought to determine the role of TLR4 in individual cell populations, specifically, parenchymal hepatocytes (HCs), myeloid cells, including Kupffer cells, and dendritic cells (DCs) subsequent to hepatic I/R. When HC-specific (Alb-TLR4(-/-) ) and myeloid-cell-specific (Lyz-TLR4(-/-) ) TLR4 knockout (KO) mice were subjected to warm hepatic ischemia, there was significant protection in these mice, compared to wild type (WT). However, the protection afforded in these two strains was significantly less than global TLR4 KO (TLR4(-/-) ) mice. DC-specific TLR4(-/-) (CD11c-TLR4(-/-) ) mice had significantly increased hepatocellular damage, compared to WT mice. Circulating levels of high-mobility group box 1 (HMGB1) were significantly reduced in Alb-TLR4(-/-) mice, compared to WT, Lyz-TLR4(-/-) , CD11c-TLR4(-/-) mice and equivalent to global TLR4(-/-) mice, suggesting that TLR4-mediated HMGB1 release from HCs may be a source of HMGB1 after I/R. HCs exposed to hypoxia responded by rapidly phosphorylating the mitogen-activated protein kinases, c-Jun-N-terminal kinase (JNK) and p38, in a TLR4-dependent manner; inhibition of JNK decreased release of HMGB1 after both hypoxia in vitro and I/R in vivo. CONCLUSION These results provide insight into the individual cellular response of TLR4. The parenchymal HC is an active participant in sterile inflammatory response after I/R through TLR4-mediated activation of proinflammatory signaling and release of danger signals, such as HMGB1.
Collapse
Affiliation(s)
- Gary W Nace
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Hai Huang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - John R Klune
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Raymond E Eid
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Brian R Rosborough
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sebastian Korff
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA,Department of Orthopedic and Trauma Surgery, University of Heidelberg, Heidelberg, Germany
| | - Shen Li
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Richard A Shapiro
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Chhinder P Sodhi
- Division of Pediatric Surgery, Department of Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - David J Hackam
- Division of Pediatric Surgery, Department of Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - David A Geller
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA,Corresponding author: Allan Tsung, 3459 Fifth Avenue, UPMC Montefiore, 7 South, Pittsburgh, PA 15213-2582, Telephone: 412-692-2001, Fax: 412-692-2002
| |
Collapse
|
81
|
van Golen RF, Reiniers MJ, Olthof PB, van Gulik TM, Heger M. Sterile inflammation in hepatic ischemia/reperfusion injury: present concepts and potential therapeutics. J Gastroenterol Hepatol 2013; 28:394-400. [PMID: 23216461 DOI: 10.1111/jgh.12072] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/23/2012] [Indexed: 12/12/2022]
Abstract
Ischemia and reperfusion (I/R) injury is an often unavoidable consequence of major liver surgery and is characterized by a sterile inflammatory response that jeopardizes the viability of the organ. The inflammatory response results from acute oxidative and nitrosative stress and consequent hepatocellular death during the early reperfusion phase, which causes the release of endogenous self-antigens known as damage-associated molecular patterns (DAMPs). DAMPs, in turn, are indirectly responsible for a second wave of reactive oxygen and nitrogen species (ROS and RNS) production by driving the chemoattraction of various leukocyte subsets that exacerbate oxidative liver damage during the later stages of reperfusion. In this review, the molecular mechanisms underlying hepatic I/R injury are outlined, with emphasis on the interplay between ROS/RNS, DAMPs, and the cell types that either produce ROS/RNS and DAMPs or respond to them. This theoretical background is subsequently used to explain why current interventions for hepatic I/R injury have not been very successful. Moreover, novel therapeutic modalities are addressed, including MitoSNO and nilotinib, and metalloporphyrins on the basis of the updated paradigm of hepatic I/R injury.
Collapse
Affiliation(s)
- Rowan F van Golen
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
82
|
Brownell J, Polyak SJ. Molecular pathways: hepatitis C virus, CXCL10, and the inflammatory road to liver cancer. Clin Cancer Res 2013; 19:1347-52. [PMID: 23322900 DOI: 10.1158/1078-0432.ccr-12-0928] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An estimated 170 million people worldwide are chronically infected with the hepatitis C virus (HCV), which is characterized histologically by a persistent immune and inflammatory response that fails to clear HCV from hepatocytes. This response is recruited to the liver, in part, by the chemokine CXCL10, the serum and intrahepatic levels of which have been inversely linked to the outcome of interferon-based therapies for hepatitis C. Bystander tissue damage from this ineffective response is thought to lead to increased hepatocyte turnover and the development of fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). However, CXCL10 is traditionally viewed as an orchestrator of the angiostatic and antitumor immune response. In this review, we will explore this duality and the pathways by which CXCL10 is produced by hepatocytes during HCV infection, its effects on resident and infiltrating immune cells, and how deregulation of these cell populations within the liver may lead to chronic liver inflammation. We will also discuss potential host-directed therapies to slow or reverse HCV-induced inflammation that leads to fibrosis, cirrhosis, and HCCs.
Collapse
Affiliation(s)
- Jessica Brownell
- Pathobiology Program, Department of Global Health, University of Washington, Seattle, Washington 98104, USA
| | | |
Collapse
|
83
|
Benias PC, Gopal K, Bodenheimer H, Theise ND. Hepatic expression of toll-like receptors 3, 4, and 9 in primary biliary cirrhosis and chronic hepatitis C. Clin Res Hepatol Gastroenterol 2012; 36:448-54. [PMID: 23026026 DOI: 10.1016/j.clinre.2012.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 07/04/2012] [Accepted: 07/18/2012] [Indexed: 02/04/2023]
Abstract
UNLABELLED Toll-like receptors (TLRs) may play a role in the inflammatory patterns observed in primary biliary cirrhosis (PBC) and chronic hepatitis C (CHC). We investigated TLR 3, 4 and 9 expression in PBC and CHC using immunohistochemical staining. METHODS Patient biopsies of PBC (N=11) and CHC (N=15) were compared to disease free livers (n=7). The extent of TLR staining was assessed separately according to a semi-quantitative scale for hepatocytes, cholangiocytes and portal mononuclear cells (PMC). RESULTS In hepatocytes, TLR4 expression was increased (PBC; P=0.019), as was TLR9 (PBC; P=0.006, CHC; P=0.001). Cholangiocyte expression of TLRs 4 and 3 was reduced in both PBC (TLR4; P<0.0001, TLR3; P=0.006) and CHC (TLR4; P<0.0001, TLR3; P=0.014). Cholangiocyte expression of TLR9 was elevated for both groups and was significant in CHC (P=0.0115). PMCs showed up-regulation of TLR9 in PBC (P=0.022) and CHC (P=0.0001), with almost no expression of TLR 3 or 4. CONCLUSIONS In PBC and CHC, hepatocytes showed increased TLR 4 and 9 expression without change in TLR3. Cholangiocytes showed increased TLR9 expression as opposed to down-regulation of TLRs 3 and 4. PMCs in both diseases had significantly increased TLR 9 expression perhaps implicating TLR9 expression in chronic liver inflammation.
Collapse
Affiliation(s)
- Petros C Benias
- Beth Israel Medical Center, 16th Street at First Avenue, 17th Floor, Baird Hall, 10003 New York, USA.
| | | | | | | |
Collapse
|
84
|
Bode JG, Ehlting C, Häussinger D. The macrophage response towards LPS and its control through the p38(MAPK)-STAT3 axis. Cell Signal 2012; 24:1185-94. [PMID: 22330073 DOI: 10.1016/j.cellsig.2012.01.018] [Citation(s) in RCA: 310] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 01/27/2012] [Indexed: 12/19/2022]
Abstract
In macrophages detection of gram-negative bacteria particularly involves binding of the outer-wall component lipopolysaccharide (LPS) to its cognate receptor complex, comprising Toll like receptor 4 (TLR4), CD14 and MD2. LPS-induced formation of the LPS receptor complex elicits a signaling network, including intra-cellular signal-transduction directly activated by the TLR4 receptor complex as well as successional induction of indirect autocrine and paracrine signaling events. All these different pathways are integrated into the macrophage response towards an inflammatory stimulus by a highly complex cross-talk of the pathways engaged. This also includes a tight control by several intra- and inter-cellular feedback loops warranting an inflammatory response sufficient to battle invading pathogens and to avoid non-essential tissue damage caused by an overwhelming inflammatory response. Several evidences indicate that the reciprocal cross-talk between the p38(MAPK)-pathway and signal transducer and activator of transcription (STAT)3-mediated signal-transduction forms a critical axis successively activated by LPS. The balanced activation of this axis is essential for both induction and propagation of the inflammatory macrophage response as well as for the control of the resolution phase, which is largely driven by IL-10 and sustained STAT3 activation. In this context regulation of suppressor of cytokine signaling (SOCS)3 expression and the recently described divergent regulatory roles of the two p38(MAPK)-activated protein kinases MK2 and MK3 for the regulation of LPS-induced NF-κB- and IRF3-mediated signal-transduction and gene expression, which includes the regulation of IFNβ, IL-10 and DUSP1, appears to play an important role.
Collapse
Affiliation(s)
- Johannes G Bode
- Department of Gastroenterology, Hepatology and Infectious Disease, University Hospital, Heinrich Heine University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany.
| | | | | |
Collapse
|
85
|
Hösel M, Broxtermann M, Janicki H, Esser K, Arzberger S, Hartmann P, Gillen S, Kleeff J, Stabenow D, Odenthal M, Knolle P, Hallek M, Protzer U, Büning H. Toll-like receptor 2-mediated innate immune response in human nonparenchymal liver cells toward adeno-associated viral vectors. Hepatology 2012; 55:287-97. [PMID: 21898480 DOI: 10.1002/hep.24625] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
UNLABELLED Adeno-associated viral vectors (rAAV) are frequently used in gene therapy trials. Although rAAV vectors are of low immunogenicity, humoral as well as T cell responses may be induced. While the former limits vector reapplication, the expansion of cytotoxic T cells correlates with liver inflammation and loss of transduced hepatocytes. Because adaptive immune responses are a consequence of recognition by the innate immune system, we aimed to characterize cell autonomous immune responses elicited by rAAV in primary human hepatocytes and nonparenchymal liver cells. Surprisingly, Kupffer cells, but also liver sinusoidal endothelial cells, mounted responses to rAAV, whereas neither rAAV2 nor rAAV8 were recognized by hepatocytes. Viral capsids were sensed at the cell surface as pathogen-associated molecular patterns by Toll-like receptor 2. In contrast to the Toll-like receptor 9-mediated recognition observed in plasmacytoid dendritic cells, immune recognition of rAAV in primary human liver cells did not induce a type I interferon response, but up-regulated inflammatory cytokines through activation of nuclear factor κB. CONCLUSION Using primary human liver cells, we identified a novel mechanism of rAAV recognition in the liver, demonstrating that alternative means of sensing rAAV particles have evolved. Minimizing this recognition will be key to improving rAAV-mediated gene transfer and reducing side effects in clinical trials due to immune responses against rAAV.
Collapse
Affiliation(s)
- Marianna Hösel
- Department I of Internal Medicine, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Abstract
Liver fibrosis is the result of the entire organism responding to a chronic injury. Every cell type in the liver contributes to the fibrosis. This paper first discusses key intracellular signaling pathways that are induced during liver fibrosis. The paper then examines the effects of these signaling pathways on the major cell types in the liver. This will provide insights into the molecular pathophysiology of liver fibrosis and should identify therapeutic targets.
Collapse
|
87
|
Kosik-Bogacka DI, Wojtkowiak-Giera A, Kolasa A, Salamatin R, Jagodzinski PP, Wandurska-Nowak E. Hymenolepis diminuta: analysis of the expression of Toll-like receptor genes (TLR2 and TLR4) in the small and large intestines of rats. Exp Parasitol 2011; 130:261-6. [PMID: 22209940 DOI: 10.1016/j.exppara.2011.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 12/06/2011] [Accepted: 12/09/2011] [Indexed: 10/14/2022]
Abstract
Toll receptors play a critical role in the rapid activation of innate immune responses to a variety of pathogens. In mammals, Toll-like receptors (TLR) have been found in both immune related cells and other cells. At present little is known about the participation of TLR in host defense mechanisms during parasitic infections. The aim of this study was to determine the expression of TLR2 and TLR4 genes in rat intestines during experimental hymenolepidosis. There is difference in expression of TLR2 and TLR4 genes in the colon and jejunum in uninfected rats: in the colon, mRNA of the examined TLR is present in much higher amounts than the jejunum, while the protein of the TLR also had a segmented specific distribution. In the jejunum isolated rats infected with Hymeolepis diminuta 6 and 8 days post infection (dpi), mRNA for TLR4 and TLR2 were significantly more strongly expressed in comparison with the uninfected controls. In the colon, a statistically significantly increased expression of TLR4 gene was observed only at 6 dpi, and at 8 dpi for the TLR2 gene. Moreover, we observed that during inflammation, the immunopositive cell number and the intensity of immunohistochemical staining (indicating the presence of TLR within intestinal epithelial cells), increased together with the duration of the infection period.
Collapse
Affiliation(s)
- D I Kosik-Bogacka
- Department of Biology and Medical Parasitology, Pomeranian Medical University, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland.
| | | | | | | | | | | |
Collapse
|
88
|
Minor T, Koetting M, Koetting M, Kaiser G, Efferz P, Lüer B, Paul A. Hypothermic reconditioning by gaseous oxygen improves survival after liver transplantation in the pig. Am J Transplant 2011; 11:2627-34. [PMID: 21906256 DOI: 10.1111/j.1600-6143.2011.03731.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The quality of cold-stored livers declines with the extension of ischemic time and the risk of primary dys- or nonfunction increases. Here, we provide in vivo evidence for the efficacy of the previously developed end-ischemic gaseous oxygen persufflation technique to resuscitate liver grafts after extended storage times. Porcine livers were recovered according to standard multiorgan procurement protocol. Control livers were cold stored in histidine tryptophan ketoglutarate solution for 10 h (cold storage [CS]; n = 6) at 4°C. In the treatment group (n = 6), livers were additionally subjected to hypothermic reconditioning (HR) by gaseous oxygen persufflation via the caval vein for 2 h before transplantation. Viability was assessed by orthotopic liver transplantation and 1 week follow-up. HR significantly improved pretransplant energy charge and initial graft function after transplantation. One week survival after CS was 0% whereas five of six pigs (83%) survived in the HR group. At that time, coagulation parameters were in the normal range and histological analysis disclosed healthy liver tissue with normal trabecular architecture in the treated grafts. Molecular analyses identify the prevention of ischemia-induced decline of cellular autophagy and mitigation of innate immune machinery (high-mobility group protein B1, interferon-β) as operative mechanisms among the protective effects provided by HR.
Collapse
Affiliation(s)
- T Minor
- Surgical Research Division, University Clinic of Surgery, Bonn, Germany.
| | | | | | | | | | | | | |
Collapse
|
89
|
Miranda-Díaz AG, Alonso-Martínez H, Hernández-Ojeda J, Arias-Carvajal O, Rodríguez-Carrizalez AD, Román-Pintos LM. Toll-like receptors in secondary obstructive cholangiopathy. Gastroenterol Res Pract 2011; 2011:265093. [PMID: 22114589 PMCID: PMC3205723 DOI: 10.1155/2011/265093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/16/2011] [Accepted: 08/22/2011] [Indexed: 12/19/2022] Open
Abstract
Secondary obstructive cholangiopathy is characterized by intra- or extrahepatic bile tract obstruction. Liver inflammation and structural alterations develop due to progressive bile stagnation. Most frequent etiologies are biliary atresia in children, and hepatolithiasis, postcholecystectomy bile duct injury, and biliary primary cirrhosis in adults, which causes chronic biliary cholangitis. Bile ectasia predisposes to multiple pathogens: viral infections in biliary atresia; Gram-positive and/or Gram-negative bacteria cholangitis found in hepatolithiasis and postcholecystectomy bile duct injury. Transmembrane toll-like receptors (TLRs) are activated by virus, bacteria, fungi, and parasite stimuli. Even though TLR-2 and TLR-4 are the most studied receptors related to liver infectious diseases, other TLRs play an important role in response to microorganism damage. Acquired immune response is not vertically transmitted and reflects the infectious diseases history of individuals; in contrast, innate immunity is based on antigen recognition by specific receptors designated as pattern recognition receptors and is transmitted vertically through the germ cells. Understanding the mechanisms for bile duct inflammation is essential for the future development of therapeutic alternatives in order to avoid immune-mediated destruction on secondary obstructive cholangiopathy. The role of TLRs in biliary atresia, hepatolithiasis, bile duct injury, and primary biliary cirrhosis is described in this paper.
Collapse
Affiliation(s)
- A. G. Miranda-Díaz
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, 44340 JAL, Mexico
| | - H. Alonso-Martínez
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, 44340 JAL, Mexico
| | - J. Hernández-Ojeda
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, 44340 JAL, Mexico
| | - O. Arias-Carvajal
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, 44340 JAL, Mexico
| | - A. D. Rodríguez-Carrizalez
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, 44340 JAL, Mexico
| | - L. M. Román-Pintos
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, 44340 JAL, Mexico
| |
Collapse
|
90
|
Wang SN, Wang ST, Lee KT. The potential interplay of adipokines with toll-like receptors in the development of hepatocellular carcinoma. Gastroenterol Res Pract 2011; 2011:215986. [PMID: 21960997 PMCID: PMC3179873 DOI: 10.1155/2011/215986] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 08/02/2011] [Accepted: 08/02/2011] [Indexed: 12/17/2022] Open
Abstract
Toll-like receptors (TLRs) are not only crucial to the initiation of the immune system, but also play a key role in several human inflammatory diseases. Hepatocellular carcinoma (HCC) is among those human cancers, which arise from sites of chronic inflammation. Therefore, a number of studies have explored the potential contribution of TLRs to HCC occurrence, which is initiated by exposure to chronic hepatic inflammation of different etiologies (including ethanol, and chronic B and C viral infections). Recent epidemiological data have shown the association of obesity and HCC development. Given the fact that adipose tissues can produce a variety of inflammation-related adipokines, obesity has been characterized as a state of chronic inflammation. Adipokines are therefore considered as important mediators linking inflammation to several metabolic diseases, including cancers. More recently, many experts have also shown the bridging role of TLRs between inflammation and metabolism. Hopefully, to retrieve the potential interaction between TLRs and adipokines in carcinogenesis of HCC will shed a new light on the therapeutic alternative for HCC. In this paper, the authors first review the respective roles of TLRs and adipokines, discuss their mutual interaction in chronic inflammation, and finally anticipate further investigations of this interaction in HCC development.
Collapse
Affiliation(s)
- Shen-Nien Wang
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Sen-Te Wang
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - King Teh Lee
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Hepatobiliary Surgery, Department of Surgery, Kaohsiung Medical University Hospital, No. 100, Shih-Chuan 1st Road, San Ming District, Kaohsiung 80756, Taiwan
| |
Collapse
|
91
|
Jiang N, Zhang X, Zheng X, Chen D, Zhang Y, Siu LKS, Xin HB, Li R, Zhao H, Riordan N, Ichim TE, Quan D, Jevnikar AM, Chen G, Min W. Targeted gene silencing of TLR4 using liposomal nanoparticles for preventing liver ischemia reperfusion injury. Am J Transplant 2011; 11:1835-44. [PMID: 21794086 DOI: 10.1111/j.1600-6143.2011.03660.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
RNAi-based therapy is a promising strategy for the prevention of ischemia-reperfusion injury (IRI). However, systemic administration of small interfering RNA (siRNA) may cause globally nonspecific targeting of all tissues, which impedes clinical use. Here we report a hepatocyte-specific delivery system for the treatment of liver IRI, using galactose-conjugated liposome nanoparticles (Gal-LipoNP). Heptocyte-specific targeting was validated by selective in vivo delivery as observed by increased Gal-LipoNP accumulation and gene silencing in the liver. Gal-LipoNP TLR4 siRNA treatment resulted in a significant decrease of serum alanine transferase (ALT) and aspartate transaminase (AST) in a hepatic IRI model. Histopathology displayed an overall reduction of the injury area in the Gal-LipoNP TLR4 siRNA treated mice. Additionally, neutrophil accumulation and lipid peroxidase-mediated tissue injury, detected by MPO, MDA and ROS respectively, were attenuated after Gal-LipoNP TLR4 siRNA treatment. Moreover, therapeutic effects of Gal-LipoNP TLR4 siRNA were associated with suppression of the inflammatory cytokines IL-1 and TNF-α. Taken together, this study is the first demonstration of liver IRI treatment using liver-specific siRNA delivery.
Collapse
Affiliation(s)
- N Jiang
- Multi-Organ Transplant Program, London Health Sciences Centre, London, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Zhou L, Li J, Wang X, Ye L, Hou W, Ho J, Li H, Ho W. IL-29/IL-28A suppress HSV-1 infection of human NT2-N neurons. J Neurovirol 2011; 17:212-9. [PMID: 21499846 PMCID: PMC4444784 DOI: 10.1007/s13365-011-0031-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 02/08/2011] [Accepted: 03/14/2011] [Indexed: 12/22/2022]
Abstract
The newly identified cytokines, IL-28/IL-29 (also termed type III IFNs), are able to inhibit a number of viruses. Here, we examined the antiviral effects of IL-29/IL-28A against herpes simplex virus type 1 (HSV-1) in human NT2-N neurons and CHP212 neuronal cells. Both IL-29 and IL-28A could efficiently inhibit HSV-1 replication in neuronal cells, as evidenced by the reduced expression of HSV-1 DNA and proteins. This inhibitory effect of IL-29 and IL-28A against HSV-1 could be partially blocked by antibody to IL-10Rβ, one of the key receptors for IL-29 and IL-28A. To explore the underlying antiviral mechanisms employed by IL-29/IL-28A, we showed that IL-29/IL-28A could selectively induce the expression of several Toll-like receptors (TLRs) as well as activate TLR-mediated antiviral pathway, including IFN regulatory factor 7, IFN-α, and the key IFN-α stimulated antiviral genes.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Pathology & Laboratory Medicine, Temple University School of Medicine, Medical Education Research Building, 1052, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Interleukin-13 protects mouse intestine from ischemia and reperfusion injury through regulation of innate and adaptive immunity. Transplantation 2011; 91:737-43. [PMID: 21311412 DOI: 10.1097/tp.0b013e31820c861a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Ischemia-reperfusion (I/R) injury is a major factor leading to intestinal dysfunction or graft loss after intestinal surgery or transplantation. This study investigated the cytoprotective effects and putative mechanisms of interleukin (IL)-13 after intestinal I/R injury in the mouse. METHODS Mouse warm intestinal I/R injury induced by clamping the superior mesenteric artery for 100 min with tissue analysis at 4 and 24 hr after reperfusion. Treated animals received intravenous recombinant murine IL-13 (rIL-13) and anti-IL-13 antibody, whereas controls received saline. RESULTS rIL-13 administration markedly prolonged animal survival (100% vs. 50% in saline controls) and resulted in near normal histopathological architecture. rIL-13 treatment also significantly decreased myeloperoxidase activity. Mice conditioned with rIL-13 had a markedly depressed Toll-like receptor-4 expression and increased the expression of Stat6, antioxidant hemeoxygenase-1, and antiapoptotic A20, Bcl-2/Bcl-xl, compared with that of controls. Unlike in controls, the expression of mRNA coding for IL-2/interferon-γ, and interferon-γ-inducible protein (IP)-10/monocyte chemotactic protein-1 remained depressed, whereas that of IL-13/IL-4 reciprocally increased in the mice treated with rIL-13. Administration of anti-IL13 antibody alone or in combination with rIL-13 resulted in outcomes similar to that seen in controls. CONCLUSIONS This study demonstrates for the first time that IL-13 plays a protective role in intestinal warm I/R injury and a critical role in the regulation of Stat6 and Toll-like receptor-4 signaling. The administration of IL-13 exerts cytoprotective effects in this model by regulating innate and adaptive immunity while the removal of IL-13 using antibody therapy abrogates this effect.
Collapse
|
94
|
Chen Y, Sun R. Toll-like receptors in acute liver injury and regeneration. Int Immunopharmacol 2011; 11:1433-41. [PMID: 21601014 DOI: 10.1016/j.intimp.2011.04.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/07/2011] [Accepted: 04/30/2011] [Indexed: 12/14/2022]
Abstract
Liver is the lymphoid organ with an overwhelming innate immune system, which functions as a filter organ at the first line between the digestive tract and the rest of the body, with receiving 80% of the blood supply through portal vein. TLRs are widely expressed on parenchymal and non-parenchymal cells in the liver, which play critical roles for the liver health. Recent studies indicate that TLR-medicated signals have been involved in almost all liver diseases such as acute and chronic hepatitis, liver fibrosis and cirrhosis, alcoholic and non-alcoholic liver disease, ischemia/reperfusion liver injury, liver regeneration and hepatocellular carcinoma. In this review, the expressions of TLRs in hepatic cell populations including hepatocytes, LSECs, Kupffer cells, lymphocytes, DCs, biliary epithelial cells and HSCs, and TLR ligands and signaling in the liver are summarized. Further, recent advances in the roles of TLRs in acute liver injury and regeneration as mediator and regulator, and their potential therapeutic targets are discussed.
Collapse
Affiliation(s)
- Yongyan Chen
- Institute of Immunology, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | | |
Collapse
|
95
|
Ghose R, Guo T, Vallejo JG, Gandhi A. Differential role of Toll-interleukin 1 receptor domain-containing adaptor protein in Toll-like receptor 2-mediated regulation of gene expression of hepatic cytokines and drug-metabolizing enzymes. Drug Metab Dispos 2011; 39:874-81. [PMID: 21303924 PMCID: PMC3082375 DOI: 10.1124/dmd.110.037382] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 02/08/2011] [Indexed: 01/22/2023] Open
Abstract
Pharmacological activities of drugs are impaired during inflammation because of reduced expression of hepatic drug-metabolizing enzyme genes (DMEs) and their regulatory nuclear receptors (NRs): pregnane X receptor (PXR), constitutive androstane receptor (CAR), and retinoid X receptor (RXRα). We have shown that a component of Gram-positive bacteria, lipoteichoic acid (LTA) induces proinflammatory cytokines and reduces gene expression of hepatic DMEs and NRs. LTA is a Toll-like receptor 2 (TLR2) ligand, which initiates signaling by recruitment of Toll-interleukin 1 receptor domain-containing adaptor protein (TIRAP) to the cytoplasmic TIR domain of TLR2. To determine the role of TIRAP in TLR2-mediated regulation of DME genes, TLR2(+/+), TLR2(-/-), TIRAP(+/+), and TIRAP(-/-) mice were given LTA injections. RNA levels of the DMEs (Cyp3a11, Cyp2b10, and sulfoaminotransferase), xenobiotic NRs (PXR and CAR), and nuclear protein levels of the central NR RXRα were reduced ∼ 50 to 60% in LTA-treated TLR2(+/+) but not in TLR2(-/-) mice. Induction of hepatic cytokines (interleukin-1β, tumor necrosis factor-α, and interleukin-6), c-Jun NH(2)-terminal kinase, and nuclear factor-κΒ was blocked in TLR2(-/-) mice. As expected, expression of hepatic DMEs and NRs was reduced by LTA in TIRAP(+/+) but not in TIRAP(-/-) mice. Of interest, cytokine RNA levels were induced in the livers of both the TIRAP(+/+) and TIRAP(-/-) mice, whereas LTA-mediated induction of serum cytokines was attenuated in TIRAP(-/-) mice. LTA-mediated down-regulation of DME genes was attenuated in hepatocytes from TLR2(-/-) or TIRAP(-/-) mice and in small interfering RNA-treated hepatocytes. Thus, the effect of TLR2 on DME genes in hepatocytes was mediated by TIRAP, whereas TIRAP was not involved in mediating the effects of TLR2 on cytokine expression in the liver.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Cytochrome P-450 Enzyme System/genetics
- Cytochrome P-450 Enzyme System/physiology
- Cytokines/biosynthesis
- Cytokines/blood
- Cytokines/genetics
- Cytokines/metabolism
- Down-Regulation
- Gene Expression
- Hepatocytes
- Inactivation, Metabolic/genetics
- Inactivation, Metabolic/immunology
- Inactivation, Metabolic/physiology
- Lipopolysaccharides/physiology
- Liver/immunology
- Liver/metabolism
- Male
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/physiology
- Metabolic Detoxication, Phase I/genetics
- Metabolic Detoxication, Phase I/physiology
- Metabolic Detoxication, Phase II/genetics
- Metabolic Detoxication, Phase II/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/physiology
- Receptors, Interleukin-1/genetics
- Receptors, Interleukin-1/physiology
- Signal Transduction/genetics
- Signal Transduction/physiology
- Teichoic Acids
- Toll-Like Receptor 2/genetics
- Toll-Like Receptor 2/physiology
Collapse
Affiliation(s)
- Romi Ghose
- College of Pharmacy, Department of Pharmacological and Pharmaceutical Sciences, University of Houston, 1441 Moursund St., Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
96
|
Gill R, Ruan X, Menzel CL, Namkoong S, Loughran P, Hackam DJ, Billiar TR. Systemic inflammation and liver injury following hemorrhagic shock and peripheral tissue trauma involve functional TLR9 signaling on bone marrow-derived cells and parenchymal cells. Shock 2011; 35:164-70. [PMID: 20577143 PMCID: PMC3000874 DOI: 10.1097/shk.0b013e3181eddcab] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hemorrhagic shock due to trauma (HS/T) induces an inflammatory response that can contribute to end-organ injury. The pathways involved in the initiation and propagation of HS/T-induced inflammation are incompletely understood. Here, we hypothesized that the DNA sensor TLR9 would have a role in inflammatory signaling after HS/T. Using mice expressing a nonfunctional, mutant form of TLR9, we identified a role of TLR9 in driving the initial cytokine response and liver damage in a model of hemorrhagic shock and bilateral femur fracture. Circulating DNA levels were found to correlate with the degree of tissue damage. Experiments using chimeric mice show that TLR9 on both bone marrow-derived cells and parenchymal cells are important for the TLR9-mediated liver and tissue damage, as well as systemic inflammation after HS/T. These data suggest that release of DNA may be a driver of the inflammatory response to severe injury as well as a marker of the extent of tissue damage. One of the sensors of DNA in the setting of HS/T seems to be TLR9.
Collapse
Affiliation(s)
- Roop Gill
- Department of Surgery, University of Pittsburgh, 200 Lothrop St., Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | |
Collapse
|
97
|
Wu S, Kanda T, Imazeki F, Arai M, Yonemitsu Y, Nakamoto S, Fujiwara K, Fukai K, Nomura F, Yokosuka O. Hepatitis B virus e antigen downregulates cytokine production in human hepatoma cell lines. Viral Immunol 2011; 23:467-76. [PMID: 20883161 DOI: 10.1089/vim.2010.0042] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Disease activities of hepatitis B are affected by the status of hepatitis B e antigen (HBeAg). The function of the hepatitis B virus (HBV) precore or HBeAg is unknown. We assumed that HBeAg blocks aberrant immune responses, although HBeAg is not required for viral assembly, infection, or replication. We examined the interaction of HBeAg and the immune system, including cytokine production. The inflammatory cytokine TNF, IL-6, IL-8, IL-12A, IFN-α1, and IFN-ß mRNA were downregulated in HBeAg-positive HepG2, which stably expresses HBeAg, compared to HBeAg-negative HepG2 cells. The results of real-time RT-PCR-based cytokine-related gene arrays showed the downregulation of cytokine and IFN production. We also observed inhibition of the activation of NF-κB- and IFN-ß-promoter in HBeAg-positive HepG2, as well as inhibition of IFN and IL-6 production in HBeAg-positive HepG2 cell culture fluids. HBeAg might modify disease progression by inhibiting inflammatory cytokine and IFN gene expression, while simultaneously suppressing NF-κB-signaling- and IFNß-promoter activation.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Medicine and Clinical Oncology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
NF-κB, JNK, and TLR Signaling Pathways in Hepatocarcinogenesis. Gastroenterol Res Pract 2010; 2010:367694. [PMID: 21151655 PMCID: PMC2995932 DOI: 10.1155/2010/367694] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Accepted: 10/22/2010] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third largest cause of cancer deaths worldwide. The role of molecular changes in HCC have been used to identify prognostic markers and chemopreventive or therapeutic targets. It seems that toll-like receptors (TLRs) as well as the nuclear factor (NF)-κB, and JNK pathways are critical regulators for the production of the cytokines associated with tumor promotion. The cross-talk between an inflammatory cell and a neoplastic cell, which is instigated by the activation of NF-κB and JNKs, is critical for tumor organization. JNKs also regulate cell proliferation and act as oncogenes, making them the main tumor-promoting protein kinases. TLRs play roles in cytokine and hepatomitogen expression mainly in myeloid cells and may promote liver tumorigenesis. A better understanding of these signaling pathways in the liver will help us understand the mechanism of hepatocarcinogenesis and provide a new therapeutic target for HCC.
Collapse
|
99
|
Vasileiou I, Kostopanagiotou G, Katsargyris A, Klonaris C, Perrea D, Theocharis S. Toll-like receptors: a novel target for therapeutic intervention in intestinal and hepatic ischemia-reperfusion injury? Expert Opin Ther Targets 2010; 14:839-53. [PMID: 20568914 DOI: 10.1517/14728222.2010.500286] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IMPORTANCE OF THE FIELD Toll-like receptors (TLRs) are transmembrane proteins that act mainly as sensors of microbes, orchestrating an organism's defense against infections, while they sense also host tissue injury by recognizing products of dying cells. Ischemia-reperfusion injury (IRI) represents one of these tissue damage states in which TLR-mediated mechanisms might be implicated. AREAS COVERED IN THIS REVIEW The most recent data on TLR signaling and the latest knowledge regarding the involvement of TLRs in the pathogenesis and progression of intestinal and hepatic IRI are presented. The potential effectiveness of TLR-modulating therapy in intestinal and liver IRI is also analyzed. WHAT THE READER WILL GAIN A comprehensive summary of the data suggesting TLR involvement in intestinal and hepatic IRI. Knowledge required for developing TLR modulation strategies against intestinal and hepatic IRI. TAKE HOME MESSAGE TLRS play a significant role in both intestinal and hepatic IRI pathophysiology. Better understanding of TLR involvement in such processes may enable the invention of novel TLR-based therapies for IRI in the intestine and liver.
Collapse
Affiliation(s)
- Ioanna Vasileiou
- University of Athens, Medical School, Department of Forensic Medicine and Toxicology, Athens, Greece.
| | | | | | | | | | | |
Collapse
|
100
|
Carrera-Silva EA, Guiñazu N, Pellegrini A, Cano RC, Arocena A, Aoki MP, Gea S. Importance of TLR2 on hepatic immune and non-immune cells to attenuate the strong inflammatory liver response during Trypanosoma cruzi acute infection. PLoS Negl Trop Dis 2010; 4:e863. [PMID: 21072226 PMCID: PMC2970533 DOI: 10.1371/journal.pntd.0000863] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 09/29/2010] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Toll-like receptors (TLR) and cytokines play a central role in the pathogen clearance as well as in pathological processes. Recently, we reported that TLR2, TLR4 and TLR9 are differentially modulated in injured livers from BALB/c and C57BL/6 (B6) mice during Trypanosoma cruzi infection. However, the molecular and cellular mechanisms involved in local immune response remain unclear. METHODOLOGY/PRINCIPAL FINDINGS In this study, we demonstrate that hepatic leukocytes from infected B6 mice produced higher amounts of pro-inflammatory cytokines than BALB/c mice, whereas IL10 and TGFβ were only released by hepatic leukocytes from BALB/c. Strikingly, a higher expression of TLR2 and TLR4 was observed in hepatocytes of infected BALB/c mice. However, in infected B6 mice, the strong pro-inflammatory response was associated with a high and sustained expression of TLR9 and iNOS in leukocytes and hepatic tissue respectively. Additionally, co-expression of gp91- and p47-phox NADPH oxidase subunits were detected in liver tissue of infected B6 mice. Notably, the pre-treatment previous to infection with Pam3CSK4, TLR2-agonist, induced a significant reduction of transaminase activity levels and inflammatory foci number in livers of infected B6 mice. Moreover, lower pro-inflammatory cytokines and increased TGFβ levels were detected in purified hepatic leukocytes from TLR2-agonist pre-treated B6 mice. CONCLUSIONS/SIGNIFICANCE Our results describe some of the main injurious signals involved in liver immune response during the T. cruzi acute infection. Additionally we show that the administration of Pam3CSk4, previous to infection, can attenuate the exacerbated inflammatory response of livers in B6 mice. These results could be useful to understand and design novel immune strategies in controlling liver pathologies.
Collapse
Affiliation(s)
- Eugenio Antonio Carrera-Silva
- Inmunología, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, CIBICI-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Natalia Guiñazu
- Inmunología, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, CIBICI-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrea Pellegrini
- Inmunología, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, CIBICI-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Roxana Carolina Cano
- Inmunología, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, CIBICI-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Alfredo Arocena
- Inmunología, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, CIBICI-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maria Pilar Aoki
- Inmunología, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, CIBICI-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Susana Gea
- Inmunología, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, CIBICI-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|