51
|
Ünal C, Schwedhelm KF, Thiele A, Weiwad M, Schweimer K, Frese F, Fischer G, Hacker J, Faber C, Steinert M. Collagen IV-derived peptide binds hydrophobic cavity of Legionella pneumophila Mip and interferes with bacterial epithelial transmigration. Cell Microbiol 2011; 13:1558-72. [DOI: 10.1111/j.1462-5822.2011.01641.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
52
|
Helicobacter pylori AlpA and AlpB bind host laminin and influence gastric inflammation in gerbils. Infect Immun 2011; 79:3106-16. [PMID: 21576328 DOI: 10.1128/iai.01275-10] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori persistently colonizes humans, causing gastritis, ulcers, and gastric cancer. Adherence to the gastric epithelium has been shown to enhance inflammation, yet only a few H. pylori adhesins have been paired with targets in host tissue. The alpAB locus has been reported to encode adhesins involved in adherence to human gastric tissue. We report that abrogation of H. pylori AlpA and AlpB reduces binding of H. pylori to laminin while expression of plasmid-borne alpA or alpB confers laminin-binding ability to Escherichia coli. An H. pylori strain lacking only AlpB is also deficient in laminin binding. Thus, we conclude that both AlpA and AlpB contribute to H. pylori laminin binding. Contrary to expectations, the H. pylori SS1 mutant deficient in AlpA and AlpB causes more severe inflammation than the isogenic wild-type strain in gerbils. Identification of laminin as the target of AlpA and AlpB will facilitate future investigations of host-pathogen interactions occurring during H. pylori infection.
Collapse
|
53
|
Singh B, Jalalvand F, Mörgelin M, Zipfel P, Blom AM, Riesbeck K. Haemophilus influenzae protein E recognizes the C-terminal domain of vitronectin and modulates the membrane attack complex. Mol Microbiol 2011; 81:80-98. [PMID: 21542857 DOI: 10.1111/j.1365-2958.2011.07678.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Haemophilus influenzae protein E (PE) is a 16 kDa adhesin that induces a pro-inflammatory immune response in lung epithelial cells. The active epithelial binding region comprising amino acids PE 84-108 also interferes with complement-mediated bacterial killing by capturing vitronectin (Vn) that prevents complement deposition and formation of the membrane attack complex (MAC). Here, the interaction between PE and Vn was characterized using site-directed mutagenesis. Protein E variants were produced both in soluble forms and in surface-expressed molecules on Escherichia coli. Mutations within PE(84-108) in the full-length molecule revealed that K85 and R86 residues were important for the Vn binding. Bactericidal activity against H. influenzae was higher in human serum pre-treated with full-length PE as compared with serum incubated with PE(K85E, R86D) , suggesting that PE quenched Vn. A series of truncated Vn molecules revealed that the C-terminal domain comprising Vn(353-363) harboured the major binding region for PE. Interestingly, MAC deposition was significantly higher on mutants devoid of PE due to a decreased Vn-binding capacity when compared with wild-type H. influenzae. Our results define a fine-tuned interaction between H. influenzae and the innate immune system, and identify the mode of control of the MAC that is important for pathogen complement evasion.
Collapse
Affiliation(s)
- Birendra Singh
- Medical Microbiology and Medical Protein Chemistry, Department of Laboratory Medicine Malmö, Lund University, Skåne University Hospital, SE-205 02 Malmö, Sweden
| | | | | | | | | | | |
Collapse
|
54
|
|
55
|
An autotransporter protein from Orientia tsutsugamushi mediates adherence to nonphagocytic host cells. Infect Immun 2011; 79:1718-27. [PMID: 21282412 DOI: 10.1128/iai.01239-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Orientia tsutsugamushi, the causative agent of scrub typhus, is an obligate intracellular pathogen whose mechanism of cellular adhesion and invasion is poorly characterized. Bioinformatic analyses of two O. tsutsugamushi genomes revealed the presence of a group of genes that encode autotransporter proteins. In this study, we identified 10 autotransporter gene products and categorized them into five groups of orthologs (ScaA to ScaE) based on their sequence similarities. Sequence homology was highest between members of ScaC group, suggesting the functional conservation of bacterium-host interactions. ScaC was actively expressed on the surface of O. tsutsugamushi and induced antibody responses in scrub typhus patients. Experiments using microbeads conjugated to recombinant ScaC or a surrogate Escherichia coli expression system showed that ScaC was sufficient to mediate attachment to, but not invasion of, nonphagocytic mammalian cells. In addition, preincubation of host cells with recombinant ScaC significantly inhibited their interaction with O. tsutsugamushi. Finally, fibronectin was identified as a potential receptor for ScaC by using yeast two-hybrid screening, and this was confirmed using a glutathione S-transferase (GST) pulldown assay. Taken together, these results demonstrate that ScaC is involved in the interaction of O. tsutsugamushi with mammalian host cells and suggest that ScaC may play a critical role in bacterial pathogenesis.
Collapse
|
56
|
Henderson B, Nair S, Pallas J, Williams MA. Fibronectin: a multidomain host adhesin targeted by bacterial fibronectin-binding proteins. FEMS Microbiol Rev 2011; 35:147-200. [DOI: 10.1111/j.1574-6976.2010.00243.x] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
57
|
van Ulsen P. Protein folding in bacterial adhesion: secretion and folding of classical monomeric autotransporters. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 715:125-42. [PMID: 21557061 DOI: 10.1007/978-94-007-0940-9_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Bacterial adhesins mediate the attachment of bacteria to their niches, such as the tissue of an infected host. Adhesins have to be transported across the cell envelope to become active and during this secretion process they fold into their final conformation. This chapter focuses on the biogenesis of the classical monomeric autotransporter proteins, which are the most ubiquitous class of secreted proteins in Gram-negative bacteria. They may function as adhesins, but other functions are also known. Autotransporter proteins have a modular structure and consist of an N-terminal signal peptide and a C-terminal translocator domain with in between the secreted passenger domain that harbours the functions. The signal peptide directs the transport across the inner membrane to the periplasm via the Sec machinery. The translocator domain inserts into the outer membrane and facilitates the transport of the passenger to the cell surface. In this chapter, I will review our current knowledge of the secretion of classical monomeric autotransporters and the methods that have been used to assess their folding during the translocation, both in vitro and in vivo.
Collapse
Affiliation(s)
- Peter van Ulsen
- Section Molecular Microbiology, Department of Molecular Cell Biology, VU University Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
58
|
Henderson B, Ward JM, Ready D. Aggregatibacter (Actinobacillus) actinomycetemcomitans: a triple A* periodontopathogen? Periodontol 2000 2010; 54:78-105. [DOI: 10.1111/j.1600-0757.2009.00331.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
59
|
Structural determinants of autoproteolysis of the Haemophilus influenzae Hap autotransporter. Infect Immun 2009; 77:4704-13. [PMID: 19687208 DOI: 10.1128/iai.00598-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haemophilus influenzae is a gram-negative bacterium that initiates infection by colonizing the upper respiratory tract. The H. influenzae Hap autotransporter protein mediates adherence, invasion, and microcolony formation in assays with respiratory epithelial cells and presumably facilitates colonization. The serine protease activity of Hap is associated with autoproteolytic cleavage and extracellular release of the HapS passenger domain, leaving the Hapbeta C-terminal domain embedded in the outer membrane. Cleavage occurs most efficiently at the LN1036-37 peptide bond and to a lesser extent at three other sites. In this study, we utilized site-directed mutagenesis, homology modeling, and assays with a peptide library to characterize the structural determinants of Hap proteolytic activity and cleavage specificity. In addition, we used homology modeling to predict the S1, S2, and S4 subsite residues of the Hap substrate groove. Our results indicate that the P1 and P2 positions at the Hap cleavage sites are critical for cleavage, with leucine preferred over larger hydrophobic residues or other amino acids in these positions. The substrate groove is formed by L263 and N274 at the S1 subsite, R264 at the S2 subsite, and E265 at the S4 subsite. This information may facilitate design of approaches to block Hap activity and interfere with H. influenzae colonization.
Collapse
|
60
|
Hallström T, Blom AM, Zipfel PF, Riesbeck K. Nontypeable Haemophilus influenzae protein E binds vitronectin and is important for serum resistance. THE JOURNAL OF IMMUNOLOGY 2009; 183:2593-601. [PMID: 19635912 DOI: 10.4049/jimmunol.0803226] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nontypeable Haemophilus influenzae (NTHi) commonly causes local disease in the upper and lower respiratory tract and has recently been shown to interfere with both the classical and alternative pathways of complement activation. The terminal pathway of the complement system is regulated by vitronectin that is a component of both plasma and the extracellular matrix. In this study, we identify protein E (PE; 16 kDa), which is a recently characterized ubiquitous outer membrane protein, as a vitronectin-binding protein of NTHi. A PE-deficient NTHi mutant had a markedly reduced survival in serum compared with the PE-expressing isogenic NTHi wild type. Moreover, the PE-deficient mutant showed a significantly decreased binding to both soluble and immobilized vitronectin. In parallel, PE-expressing Escherichia coli bound soluble vitronectin and adhered to immobilized vitronectin compared with controls. Surface plasmon resonance technology revealed a K(D) of 0.4 microM for the interaction between recombinant PE and immobilized vitronectin. Moreover, the PE-dependent vitronectin-binding site was located at the heparin-binding domains of vitronectin and the major vitronectin-binding domain was found in the central core of PE (aa 84-108). Importantly, vitronectin bound to the surface of NTHi 3655 reduced membrane attack complex-induced hemolysis. In contrast to incubation with normal human serum, NTHi 3655 showed a reduced survival in vitronectin-depleted human serum, thus demonstrating that vitronectin mediates a protective role at the bacterial surface. Our findings show that PE, by binding vitronectin, may play an important role in NTHi pathogenesis.
Collapse
Affiliation(s)
- Teresia Hallström
- Department of Laboratory Medicine, Lund University, University Hospital Malmö, Malmö, Sweden
| | | | | | | |
Collapse
|
61
|
Hotomi M, Arai J, Billal DS, Takei S, Ikeda Y, Ogami M, Kono M, Beder LB, Toya K, Kimura M, Yamanaka N. Nontypeable Haemophilus influenzae isolated from intractable acute otitis media internalized into cultured human epithelial cells. Auris Nasus Larynx 2009; 37:137-44. [PMID: 19505782 DOI: 10.1016/j.anl.2009.03.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 02/26/2009] [Accepted: 03/22/2009] [Indexed: 12/01/2022]
Abstract
OBJECTIVES The aim of this study is to examine the internalization of nontypeable Haemophilus influenzae (NTHi) into human epithelial cells. METHODS Bactericidal assay was applied to examine the effects of antibiotics against cell-adherent NTHi using HEp-2 cells. A trans-well chamber assay was applied to examine the internalization and penetration of NTHi using Detroit562 cells. RESULTS The adherence of NTHi to HEp-2 cells was noted after 2h of incubation. Azithromycin had a strong bactericidal effect against both cell-associated and non-adherent NTHi, while ceftriaxone did not show bactericidal effects on NTHi adhered to the HEp-2 cells. Three (60.0%) out of five NTHi isolates from the nasopharynx of children with intractable acute otitis media (AOM) internalized into and subsequently penetrated through the epithelial cells at various degrees. Azithromycin had a strong bactericidal effect against the cell-internalized NTHi, while ceftriaxone was bactericidal only against extracellular NTHi. CONCLUSION The potential of NTHi as the intracellular pathogen may contribute to the persistent existence of this pathogen that result in the prolonged and intractable clinical course of AOM. Azithromycin may be a therapeutically significant antibiotic for patients with prolonged respiratory tract infections due to NTHi.
Collapse
Affiliation(s)
- Muneki Hotomi
- Department of Otolaryngology-Head and Neck Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama-shi, Wakayama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Wells TJ, McNeilly TN, Totsika M, Mahajan A, Gally DL, Schembri MA. The Escherichia coli O157:H7 EhaB autotransporter protein binds to laminin and collagen I and induces a serum IgA response in O157:H7 challenged cattle. Environ Microbiol 2009; 11:1803-14. [PMID: 19508554 DOI: 10.1111/j.1462-2920.2009.01905.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) are a subgroup of Shiga toxin-producing E. coli that cause gastrointestinal disease with the potential for life-threatening sequelae. Cattle serve as the natural reservoir for EHEC and outbreaks occur sporadically as a result of contaminated beef and other farming products. While certain EHEC virulence mechanisms have been extensively studied, the factors that mediate host colonization are poorly defined. Previously, we identified four proteins (EhaA,B,C,D) from the prototypic EHEC strain EDL933 that belong to the autotransporter (AT) family. Here we characterize the EhaB AT protein. EhaB was shown to be located at the cell surface and overexpression in E. coli K-12 resulted in significant biofilm formation under continuous flow conditions. Overexpression of EhaB in E. coli K12 and EDL933 backgrounds also promoted adhesion to the extracellular matrix proteins collagen I and laminin. An EhaB-specific antibody revealed that EhaB is expressed in E. coli EDL933 following in vitro growth. EhaB also cross-reacted with serum IgA from cattle challenged with E. coli O157:H7, indicating that EhaB is expressed in vivo and elicits a host IgA immune response.
Collapse
Affiliation(s)
- Timothy J Wells
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane Queensland 4072, Australia
| | | | | | | | | | | |
Collapse
|
63
|
Avian pathogenic Escherichia coli bind fibronectin and laminin. Vet Res Commun 2008; 33:379-86. [PMID: 19005772 DOI: 10.1007/s11259-008-9180-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 10/08/2008] [Indexed: 10/21/2022]
|
64
|
Ulanova M, Gravelle S, Barnes R. The role of epithelial integrin receptors in recognition of pulmonary pathogens. J Innate Immun 2008; 1:4-17. [PMID: 20375562 PMCID: PMC7190199 DOI: 10.1159/000141865] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 04/30/2008] [Indexed: 12/19/2022] Open
Abstract
Integrins are a large family of heterodimeric transmembrane cell adhesion receptors. During the last decade, it has become clear that integrins significantly participate in various host-pathogen interactions involving pathogenic bacteria, fungi, and viruses. Many bacteria possess adhesins that can bind either directly or indirectly to integrins. However, there appears to be an emerging role for integrins beyond simply adhesion molecules. Given the conserved nature of integrin structure and function, and the diversity of the pathogens which use integrins, it appears that they may act as pattern recognition receptors important for the innate immune response. Several clinically significant bacterial pathogens target lung epithelial integrins, and this review will focus on exploring various structures and mechanisms involved in these interactions.
Collapse
Affiliation(s)
- Marina Ulanova
- Northern Ontario School of Medicine, Lakehead University, Thunder Bay, Ont., Canada.
| | | | | |
Collapse
|
65
|
In LipL32, the major leptospiral lipoprotein, the C terminus is the primary immunogenic domain and mediates interaction with collagen IV and plasma fibronectin. Infect Immun 2008; 76:2642-50. [PMID: 18391007 DOI: 10.1128/iai.01639-07] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LipL32 is the major leptospiral outer membrane lipoprotein expressed during infection and is the immunodominant antigen recognized during the humoral immune response to leptospirosis in humans. In this study, we investigated novel aspects of LipL32. In order to define the immunodominant domains(s) of the molecule, subfragments corresponding to the N-terminal, intermediate, and C-terminal portions of the LipL32 gene were cloned and the proteins were expressed and purified by metal affinity chromatography. Our immunoblot results indicate that the C-terminal and intermediate domains of LipL32 are recognized by sera of patients with laboratory-confirmed leptospirosis. An immunoglobulin M response was detected exclusively against the LipL32 C-terminal fragment in both the acute and convalescent phases of illness. We also evaluated the capacity of LipL32 to interact with extracellular matrix (ECM) components. Dose-dependent, specific binding of LipL32 to collagen type IV and plasma fibronectin was observed, and the binding capacity could be attributed to the C-terminal portion of this molecule. Both heparin and gelatin could inhibit LipL32 binding to fibronectin in a concentration-dependent manner, indicating that the 30-kDa heparin-binding and 45-kDa gelatin-binding domains of fibronectin are involved in this interaction. Taken together, our results provide evidence that the LipL32 C terminus is recognized early in the course of infection and is the domain responsible for mediating interaction with ECM proteins.
Collapse
|
66
|
Mastronunzio JE, Tisa LS, Normand P, Benson DR. Comparative secretome analysis suggests low plant cell wall degrading capacity in Frankia symbionts. BMC Genomics 2008; 9:47. [PMID: 18226217 PMCID: PMC2266912 DOI: 10.1186/1471-2164-9-47] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 01/28/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Frankia sp. strains, the nitrogen-fixing facultative endosymbionts of actinorhizal plants, have long been proposed to secrete hydrolytic enzymes such as cellulases, pectinases, and proteases that may contribute to plant root penetration and formation of symbiotic root nodules. These or other secreted proteins might logically be involved in the as yet unknown molecular interactions between Frankia and their host plants. We compared the genome-based secretomes of three Frankia strains representing diverse host specificities. Signal peptide detection algorithms were used to predict the individual secretomes of each strain, and the set of secreted proteins shared among the strains, termed the core Frankia secretome. Proteins in the core secretome may be involved in the actinorhizal symbiosis. RESULTS The Frankia genomes have conserved Sec (general secretory) and Tat (twin arginine translocase) secretion systems. The potential secretome of each Frankia strain comprised 4-5% of the total proteome, a lower percentage than that found in the genomes of other actinobacteria, legume endosymbionts, and plant pathogens. Hydrolytic enzymes made up only a small fraction of the total number of predicted secreted proteins in each strain. Surprisingly, polysaccharide-degrading enzymes were few in number, especially in strain CcI3, with more esterolytic, lipolytic and proteolytic enzymes having signal peptides. A total of 161 orthologous proteins belong to the core Frankia secretome. Of these, 52 also lack homologs in closely related actinobacteria, and are termed "Frankia-specific." The genes encoding these conserved secreted proteins are often clustered near secretion machinery genes. CONCLUSION The predicted secretomes of Frankia sp. are relatively small and include few hydrolases, which could reflect adaptation to a symbiotic lifestyle. There are no well-conserved secreted polysaccharide-degrading enzymes present in all three Frankia genomes, suggesting that plant cell wall polysaccharide degradation may not be crucial to root infection, or that this degradation varies among strains. We hypothesize that the relative lack of secreted polysaccharide-degrading enzymes in Frankia reflects a strategy used by these bacteria to avoid eliciting host defense responses. The esterases, lipases, and proteases found in the core Frankia secretome might facilitate hyphal penetration through the cell wall, release carbon sources, or modify chemical signals. The core secretome also includes extracellular solute-binding proteins and Frankia-specific hypothetical proteins that may enable the actinorhizal symbiosis.
Collapse
Affiliation(s)
- Juliana E Mastronunzio
- Department of Molecular and Cell Biology, U-3125, University of Connecticut, Storrs, CT, USA.
| | | | | | | |
Collapse
|
67
|
Yang BG, Tanaka T, Jang MH, Bai Z, Hayasaka H, Miyasaka M. Binding of Lymphoid Chemokines to Collagen IV That Accumulates in the Basal Lamina of High Endothelial Venules: Its Implications in Lymphocyte Trafficking. THE JOURNAL OF IMMUNOLOGY 2007; 179:4376-82. [PMID: 17878332 DOI: 10.4049/jimmunol.179.7.4376] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Certain lymphoid chemokines are selectively and constitutively expressed in the high endothelial venules (HEV) of lymph nodes and Peyer's patches, where they play critical roles in the directional migration of extravasating lymphocytes into the lymphoid tissue parenchyma. How these chemokines are selectively localized and act in situ, however, remains unclear. In the present study, we examined the possibility that basal lamina-associated extracellular matrix proteins in the HEVs are responsible for retaining the lymphoid chemokines locally. Here we show that collagen IV (Col IV) bound certain lymphoid chemokines, including CCL21, CXCL13, and CXCL12, more potently than did fibronectin or laminin-1, but it bound CCL19 and CCL5 only weakly, if at all. Surface plasmon resonance analysis indicated that Col IV bound CCL21 with a low nanomolar K(D), which required the C-terminal region of CCL21. Col IV can apparently hold these chemokines in their active form upon binding, because the Col IV-bound chemokines induced lymphocyte migration efficiently in vitro. We found by immunohistochemistry that Col IV and CCL21, CXCL13, and CXCL12 were colocalized in the basal lamina of HEVs. When injected s.c. into plt/plt mice, CCL21 colocalized at least partially with Col IV on the basal lamina of HEVs in draining lymph nodes. Collectively, our results suggest that Col IV contributes to the creation of a lymphoid chemokine-rich environment in the basal lamina of HEVs by binding an array of locally produced lymphoid chemokines that promote directional lymphocyte trafficking from HEVs into the lymphoid tissue parenchyma.
Collapse
Affiliation(s)
- Bo-Gie Yang
- Laboratory of Immunodynamics, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
68
|
Wells TJ, Tree JJ, Ulett GC, Schembri MA. Autotransporter proteins: novel targets at the bacterial cell surface. FEMS Microbiol Lett 2007; 274:163-72. [PMID: 17610513 DOI: 10.1111/j.1574-6968.2007.00833.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Autotransporter proteins constitute a family of outer membrane/secreted proteins that possess unique structural properties that facilitate their independent transport across the bacterial membrane system and final routing to the cell surface. Autotransporter proteins have been identified in a wide range of Gram-negative bacteria and are often associated with virulence functions such as adhesion, aggregation, invasion, biofilm formation and toxicity. The importance of autotransporter proteins is exemplified by the fact that they constitute an essential component of some human vaccines. Autotransporter proteins contain three structural motifs: a signal sequence, a passenger domain and a translocator domain. Here, the structural properties of the passenger and translocator domains of three type Va autotransporter proteins are compared and contrasted, namely pertactin from Bordetella pertussis, the adhesion and penetration protein (Hap) from Haemophilus influenzae and Antigen 43 (Ag43) from Escherichia coli. The Ag43 protein is described in detail to examine how its structure relates to functional properties such as cell adhesion, aggregation and biofilm formation. The widespread occurrence of autotransporter-encoding genes, their apparent uniform role in virulence and their ability to interact with host cells suggest that they may represent rational targets for the design of novel vaccines directed against Gram-negative pathogens.
Collapse
Affiliation(s)
- Timothy J Wells
- School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland, Australia
| | | | | | | |
Collapse
|
69
|
Erdem AL, Avelino F, Xicohtencatl-Cortes J, Girón JA. Host protein binding and adhesive properties of H6 and H7 flagella of attaching and effacing Escherichia coli. J Bacteriol 2007; 189:7426-35. [PMID: 17693516 PMCID: PMC2168434 DOI: 10.1128/jb.00464-07] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
It had been suggested that the flagella of enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) might contribute to host colonization. In this study, we set out to investigate the adhesive properties of H7 and H6 flagella. We studied the abilities of EHEC EDL933 (O157:H7) and EPEC E2348/69 (O127:H6) flagella to bind to bovine mucus, host proteins such as mucins, and extracellular matrix proteins. Through several approaches, we found that H6 and H7 flagella and their flagellin monomers bind to mucins I and II and to freshly isolated bovine mucus. A genetic approach showed that EHEC and EPEC fliC deletion mutants were significantly less adherent to bovine intestinal tissue than the parental wild-type strains. In addition, we found that EPEC bacteria and H6 flagella, but not EHEC, bound largely, in a dose-dependent manner, to collagen and to a lesser extent to laminin and fibronectin. We also report that EHEC O157:H7 strains agglutinate rabbit red blood cells via their flagella, a heretofore unknown phenotype in this pathogroup. Collectively, our data demonstrate that the H6 and H7 flagella possess adhesive properties, particularly the ability to bind mucins, that may contribute to colonization of mucosal surfaces.
Collapse
Affiliation(s)
- Aysen L Erdem
- Department of Immunobiology, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | |
Collapse
|
70
|
Abstract
The intestinal epithelium is a complex system of highly specialised cells that provide digestive and absorptive functions as well as innate and adaptive immunity. Induction of an adaptive immune response in the intestine can occur through the interaction of antigen with M-cells that overlay the lymphoid aggregates of the intestine (Peyer's patches). This study demonstrated that specific common microbial pathogen-associated molecular patterns are recognised by pattern recognition receptors on the surface of the M-cells and this interaction initiates transcytosis through the M-cell of particulate antigen from the intestinal milieu to underlying antigen presenting cells within the Peyer's patch. The study has found that among the pattern recognition molecules that have a role in recognising bacterial components, the apical expression of alpha5beta1 integrin was important for the transcytotic function of M-cells. A proportion of intestinal enterocytes transform to an M-cell morphology in vitro, when cultured with Peyer's patch cells and our studies have demonstrated that CD4+ cells are integral for the development of M-cells in vitro.
Collapse
Affiliation(s)
- Peter C Tyrer
- Macrophage Research Group, The Canberra Hospital, Canberra, ACT, Australia
| | | | | | | | | |
Collapse
|
71
|
Tamura GS, Hull JR, Oberg MD, Castner DG. High-affinity interaction between fibronectin and the group B streptococcal C5a peptidase is unaffected by a naturally occurring four-amino-acid deletion that eliminates peptidase activity. Infect Immun 2006; 74:5739-46. [PMID: 16988251 PMCID: PMC1594932 DOI: 10.1128/iai.00241-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The streptococcal C5a peptidase (ScpB) of group B streptococci (GBS) is found in virtually all clinical GBS isolates and is required for mucosal colonization in a neonatal mouse model. ScpB inhibits neutrophil chemotaxis by enzymatically cleaving the complement component C5a. We previously identified a second function of ScpB as a fibronectin (Fn) adhesin using phage display. However, phage display can identify low-affinity interactions. We therefore measured the affinity of both full-length recombinant ScpB (FL-ScpB) and the 110-amino-acid phage display fragment (Scp-PDF) for immobilized Fn using surface plasmon resonance. The affinity for Fn was very high for both FL-ScpB (equilibrium dissociation constant [KD] = 4.0 nM) and Scp-PDF (KD = 4.4 nM) and is consistent with a biologically significant role for the adhesin activity of ScpB. We also studied the Fn adhesin activity of a common natural variant of ScpB (ScpBDelta) that contains a 4-amino-acid deletion that eliminates peptidase activity. The integrity of scpB is otherwise maintained, suggesting that the Fn adhesin activity of ScpB may be responsible for its conservation in these strains. The affinities of both FL-ScpBDelta (KD = 2.4 nM) and ScpBDelta-PDF (KD = 1.4 nM) for Fn are unaffected by the deletion. Complementation in trans by both scpB and scpBDelta corrected the Fn-binding defect of an scpB deletion mutant GBS strain to an identical degree. The high affinity of ScpB for Fn and the maintenance of this affinity in ScpBDelta support our hypothesis that the Fn adhesin activity of scpB plays a role in virulence.
Collapse
Affiliation(s)
- Glen S Tamura
- Department of Pediatrics, University of Washington, Box 359300, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
72
|
Hallström T, Trajkovska E, Forsgren A, Riesbeck K. Haemophilus influenzae surface fibrils contribute to serum resistance by interacting with vitronectin. THE JOURNAL OF IMMUNOLOGY 2006; 177:430-6. [PMID: 16785539 DOI: 10.4049/jimmunol.177.1.430] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vitronectin inhibits the membrane attack complex of the complement system and is found both in plasma and the extracellular matrix. In this study, we have identified the outer membrane protein Haemophilus surface fibrils (Hsf) as the major vitronectin-binding protein in encapsulated H. influenzae type b. A H. influenzae mutant devoid of Hsf showed a significantly decreased binding to both soluble and immobilized vitronectin as compared with the wild-type counterpart. Moreover, Escherichia coli-expressing Hsf at the surface strongly adhered to immobilized vitronectin. Importantly, the H. influenzae Hsf mutant had a markedly reduced survival as compared with the wild-type bacterium when incubated with normal human serum. A series of truncated Hsf fragments were recombinantly manufactured in E. coli. The vitronectin binding regions were located within two separate binding domains. In conclusion, Hsf interacts with vitronectin and thereby inhibits the complement-mediated bactericidal activity, and thus is a major H. influenzae virulence factor.
Collapse
Affiliation(s)
- Teresia Hallström
- Medical Microbiology, Department of Laboratory Medicine, Lund University, Malmö University Hospital, Malmö, Sweden
| | | | | | | |
Collapse
|
73
|
Dabo SM, Confer AW, Saliki JT, Anderson BE. Binding of Bartonella henselae to extracellular molecules: Identification of potential adhesins. Microb Pathog 2006; 41:10-20. [PMID: 16725305 DOI: 10.1016/j.micpath.2006.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 03/28/2006] [Accepted: 04/04/2006] [Indexed: 10/24/2022]
Abstract
Bartonella henselae, the etiologic agent of cat scratch disease, bacillary angiomatosis and other clinical syndromes initiates infection through a trauma or wound to the skin suggesting involvement of extracellular matrix molecules. We have demonstrated in this study that B. henselae bound strongly fibronectin, collagen IX and X, but comparatively less laminin and collagen IV. B. henselae bound primarily the N- and C-terminal heparin (Hep-1 and Hep-2, respectively) and the gelatin-binding domains of fibronectin (Fn) but not the cell-binding domain. Binding to the Hep-binding domain was significantly inhibited by Hep suggesting common binding sites on the Fn molecule. Furthermore, glycosaminoglycans-mediated binding of B. henselae to soluble Fn showed that Hep but not dextran sulfate inhibited the bacterium binding to Fn. Unlike Fn, B. henselae bound strongly vitronectin only in the presence of Hep or dextran sulfate. Also, the binding of B. henselae to host cells could be inhibited by anti-B. henselae surface-reactive antibodies, the exogenous Fn or the anti-Fn polyclonal antibodies. Ligand blots, batch affinity purification and MALDI-TOF peptide fingerprinting identified B. henselae Pap31, Omp43 and Omp89 as the three major putative Fn-binding proteins (FnBPs) in B. henselae outer membrane proteins. We hypothesized that B. henselae wound associated infections involved interactions with extracellular matrix molecules. Taken together, the above data suggest that interactions between B. henselae and ECM molecules such as Fn may play an important role in the bacterium adherence to and invasion of host cells.
Collapse
Affiliation(s)
- S M Dabo
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078-2007, USA.
| | | | | | | |
Collapse
|
74
|
Webster P, Wu S, Gomez G, Apicella M, Plaut AG, St Geme JW. Distribution of bacterial proteins in biofilms formed by non-typeable Haemophilus influenzae. J Histochem Cytochem 2006; 54:829-42. [PMID: 16549506 DOI: 10.1369/jhc.6a6922.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability to preserve the fragile ultrastructural organization of bacterial biofilms using cryo-preparation methods for electron microscopy has enabled us to probe sections through non-typeable Haemophilus influenzae (NTHi) biofilms and determine the localization of NTHi-specific lipooligosaccharide (LOS) and proteins within these structures. Some of the proteins we examined are currently being considered as candidates for vaccine development, so it is important that their distribution and accessibility within the biofilms formed by NTHi be determined. We have localized LOS to the extracellular matrix (ECM) of the biofilm and the P6 outer membrane protein to the membrane of what appear to be viable bacteria within the biofilm. The Hap and HWM1/HMW2 adhesive proteins were associated with bacteria within the biofilm and were present in the biofilm ECM. The IgA1 protease is a secreted protein that was also associated with NTHi in the biofilm and was in the ECM, but was more concentrated in the top region of the biofilm, suggesting a role in protecting biofilm bacteria from antibody attack.
Collapse
Affiliation(s)
- Paul Webster
- Ahmanson Advanced Electron Microscopy and Imaging Center, House Ear Institute, Los Angeles, CA 90057, USA.
| | | | | | | | | | | |
Collapse
|
75
|
Avadhanula V, Rodriguez CA, Ulett GC, Bakaletz LO, Adderson EE. Nontypeable Haemophilus influenzae adheres to intercellular adhesion molecule 1 (ICAM-1) on respiratory epithelial cells and upregulates ICAM-1 expression. Infect Immun 2006; 74:830-8. [PMID: 16428725 PMCID: PMC1360337 DOI: 10.1128/iai.74.2.830-838.2006] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHI) is an important respiratory pathogen. NTHI initiates infection by adhering to the airway epithelium. Here, we report that NTHI interacts with intracellular adhesion molecule 1 (ICAM-1) expressed by respiratory epithelial cells. A fourfold-higher number of NTHI bacteria adhered to Chinese hamster ovary (CHO) cells transfected with human ICAM-1 (CHO-ICAM-1) than to control CHO cells (P < or = 0.005). Blocking cell surface ICAM-1 with specific antibody reduced the adhesion of NTHI to A549 respiratory epithelial cells by 37% (P = 0.001) and to CHO-ICAM-1 cells by 69% (P = 0.005). Preincubating the bacteria with recombinant ICAM-1 reduced adhesion by 69% (P = 0.003). The adherence to CHO-ICAM-1 cells of NTHI strains deficient in the adhesins P5, P2, HMW1/2, and Hap or expressing a truncated lipooligosaccharide was compared to that of parental strains. Only strain 1128f-, which lacks the outer membrane protein (OMP) P5-homologous adhesin (P5 fimbriae), adhered less well than its parental strain. The numbers of NTHI cells adhering to CHO-ICAM-1 cells were reduced by 67% (P = 0.009) following preincubation with anti-P5 antisera. Furthermore, recombinant ICAM bound to an OMP preparation from strain 1128f+, which expresses P5, but not to that from its P5-deficient mutant, confirming a specific interaction between ICAM-1 and P5 fimbriae. Incubation of respiratory epithelial cells with NTHI increased ICAM-1 expression fourfold (P=0.001). Adhesion of NTHI to the respiratory epithelium, therefore, upregulates the expression of its own receptor. Blocking interactions between NTHI P5 fimbriae and ICAM-1 may reduce respiratory colonization by NTHI and limit the frequency and severity of NTHI infection.
Collapse
Affiliation(s)
- Vasanthi Avadhanula
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | |
Collapse
|
76
|
Hotomi M, Ikeda Y, Suzumoto M, Yamauchi K, Green BA, Zlotnick G, Billal DS, Shimada J, Fujihara K, Yamanaka N. A recombinant P4 protein of Haemophilus influenzae induces specific immune responses biologically active against nasopharyngeal colonization in mice after intranasal immunization. Vaccine 2005; 23:1294-300. [PMID: 15652672 DOI: 10.1016/j.vaccine.2004.08.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Revised: 07/26/2004] [Accepted: 08/06/2004] [Indexed: 10/26/2022]
Abstract
Outer membrane protein P4, together with P6, is highly conserved among all typeable and nontypeable strains of Haemophilus influenzae (H. influenzae). Thus, the protein is an attractive antigen for the inclusion in a vaccine against nontypeable H. influenzae (NTHi). However, the ability of P4 to induce antibodies protective against NTHi infections is still controversial. In this study, we investigated the specific mucosal immune responses against NTHi induced by intranasal immunization with the lipidated form of recombinant P4 protein (rP4) and non-fatty acylated recombinant P6 protein (rP6) with or without cholera toxin (CT) in BALB/c mice model. Intranasal immunization with either rP4+CT, a mixture of rP4 and rP6+CT, or rP4 and rP6 without CT elicited anti-rP4 specific IgG antibody in serum of mice. Intranasal immunization with either rP4+CT or a mixture of rP4, rP6+CT elicited anti-rP4 specific IgA antibody in nasopharyngeal washing (NPW), while intranasal immunization with rP4 and rP6 without CT did not induced anti-rP4 specific IgA antibody responses in NPWs. Sera from mice intranasally immunized with rP4+CT and a mixture of rP4, rP6+CT also showed bactericidal activity. Significant clearance of NTHi in nasopharynx was seen 3 days after the inoculation of live NTHi in mice intranasally immunized with rP4+CT. The current findings suggested that P4 would be a useful antigen as the component of the vaccine to induce protective immune responses against NTHi. The use of an intranasal vaccine composed of the different surface protein antigens is an attractive strategy for the development of a vaccine against NTHi.
Collapse
Affiliation(s)
- Muneki Hotomi
- Department of Otolaryngology-Head and Neck Surgery, Wakayama Medical University, Kimiidera 811-1, Wakayama-shi 641-0032, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Liu DF, Mason KW, Mastri M, Pazirandeh M, Cutter D, Fink DL, St Geme JW, Zhu D, Green BA. The C-terminal fragment of the internal 110-kilodalton passenger domain of the Hap protein of nontypeable Haemophilus influenzae is a potential vaccine candidate. Infect Immun 2004; 72:6961-8. [PMID: 15557618 PMCID: PMC529169 DOI: 10.1128/iai.72.12.6961-6968.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nontypeable Haemophilus influenzae is a major causative agent of bacterial otitis media in children. H. influenzae Hap autotransporter protein is an adhesin composed of an outer membrane Hapbeta region and a moiety of an extracellular internal 110-kDa passenger domain called Hap(S). The Hap(S) moiety promotes adherence to human epithelial cells and extracellular matrix proteins, and it also mediates bacterial aggregation and microcolony formation. A recent work (D. L. Fink, A. Z. Buscher, B. A. Green, P. Fernsten, and J. W. St. Geme, Cell. Microbiol. 5:175-186, 2003) demonstrated that Hap(S) adhesive activity resides within the C-terminal 311 amino acids (the cell binding domain) of the protein. In this study, we immunized mice subcutaneously with recombinant proteins corresponding to the C-terminal region of Hap(S) from H. influenzae strains N187, P860295, and TN106 and examined the resulting immune response. Antisera against the recombinant proteins from all three strains not only recognized native Hap(S) purified from strain P860295 but also inhibited H. influenzae Hap-mediated adherence to Chang epithelial cells. Furthermore, when mice immunized intranasally with recombinant protein plus mutant cholera toxin CT-E29H were challenged with strain TN106, they were protected against nasopharyngeal colonization. These observations demonstrate that the C-terminal region of Hap(S) is capable of eliciting cross-reacting antibodies that reduce nasopharyngeal colonization, suggesting utility as a vaccine antigen for the prevention of nontypeable H. influenzae diseases.
Collapse
Affiliation(s)
- Dai-Fang Liu
- Wyeth Vaccines Research, 401 N. Middletown Road, Pearl River, NY 10965, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Henderson IR, Navarro-Garcia F, Desvaux M, Fernandez RC, Ala'Aldeen D. Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev 2004; 68:692-744. [PMID: 15590781 PMCID: PMC539010 DOI: 10.1128/mmbr.68.4.692-744.2004] [Citation(s) in RCA: 604] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Gram-negative bacteria possess an outer membrane layer which constrains uptake and secretion of solutes and polypeptides. To overcome this barrier, bacteria have developed several systems for protein secretion. The type V secretion pathway encompasses the autotransporter proteins, the two-partner secretion system, and the recently described type Vc or AT-2 family of proteins. Since its discovery in the late 1980s, this family of secreted proteins has expanded continuously, due largely to the advent of the genomic age, to become the largest group of secreted proteins in gram-negative bacteria. Several of these proteins play essential roles in the pathogenesis of bacterial infections and have been characterized in detail, demonstrating a diverse array of function including the ability to condense host cell actin and to modulate apoptosis. However, most of the autotransporter proteins remain to be characterized. In light of new discoveries and controversies in this research field, this review considers the autotransporter secretion process in the context of the more general field of bacterial protein translocation and exoprotein function.
Collapse
Affiliation(s)
- Ian R Henderson
- Division of Immunity and Infection, University of Birmingham, Birmingham B15 2TT, UK.
| | | | | | | | | |
Collapse
|
79
|
Kostakioti M, Stathopoulos C. Functional analysis of the Tsh autotransporter from an avian pathogenic Escherichia coli strain. Infect Immun 2004; 72:5548-54. [PMID: 15385451 PMCID: PMC517524 DOI: 10.1128/iai.72.10.5548-5554.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The temperature-sensitive hemagglutinin (Tsh) is an autotransporter protein secreted by avian-pathogenic Escherichia coli strains that colonize the respiratory tract and lead to airsacculitis, pericarditis, and colisepticemia. It is synthesized as a 140-kDa precursor protein, whose processing results in a 106-kDa passenger domain (Tshs) and a 33-kDa beta-domain (Tsh(beta)). The presence of a conserved 7-amino-acid serine protease motif within Tshs classifies the protein in a subfamily of autotransporters, known as serine protease autotransporters of the Enterobacteriaceae. In this study, we report that purified Tshs is capable of adhering to red blood cells, hemoglobin, and the extracellular matrix proteins fibronectin and collagen IV. We also demonstrate that Tshs exerts proteolytic activity against casein, and we provide experimental evidence demonstrating that serine 259 is essential for the protease function. However, this residue is not required for adherence to substrates, and its replacement by an alanine does not abolish binding activity. In summary, our results demonstrate that Tsh is a bifunctional protein with both adhesive and proteolytic properties.
Collapse
Affiliation(s)
- Maria Kostakioti
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | | |
Collapse
|
80
|
Swords WE, Moore ML, Godzicki L, Bukofzer G, Mitten MJ, VonCannon J. Sialylation of lipooligosaccharides promotes biofilm formation by nontypeable Haemophilus influenzae. Infect Immun 2004; 72:106-13. [PMID: 14688087 PMCID: PMC343998 DOI: 10.1128/iai.72.1.106-113.2004] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is a major cause of opportunistic respiratory tract infections, including otitis media and bronchitis. The persistence of NTHi in vivo is thought to involve bacterial persistence in a biofilm community. Therefore, there is a need for further definition of bacterial factors contributing to biofilm formation by NTHi. Like other bacteria inhabiting host mucosal surfaces, NTHi has on its surface a diverse array of lipooligosaccharides (LOS) that influence host-bacterial interactions. In this study, we show that LOS containing sialic (N-acetyl-neuraminic) acid promotes biofilm formation by NTHi in vitro and bacterial persistence within the middle ear or lung in vivo. LOS from NTHi in biofilms was sialylated, as determined by comparison of electrophoretic mobilities and immunochemical reactivities before and after neuraminidase treatment. Biofilm formation was significantly reduced in media lacking sialic acid, and a siaB (CMP-sialic acid synthetase) mutant was deficient in biofilm formation in three different in vitro model systems. The persistence of an asialylated siaB mutant was attenuated in a gerbil middle ear infection model system, as well as in a rat pulmonary challenge model system. These data show that sialylated LOS glycoforms promote biofilm formation by NTHi and persistence in vivo.
Collapse
Affiliation(s)
- W Edward Swords
- Department of Microbiology and Immunology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA.
| | | | | | | | | | | |
Collapse
|
81
|
Veiga E, de Lorenzo V, Fernández LA. Autotransporters as scaffolds for novel bacterial adhesins: surface properties of Escherichia coli cells displaying Jun/Fos dimerization domains. J Bacteriol 2003; 185:5585-90. [PMID: 12949111 PMCID: PMC193771 DOI: 10.1128/jb.185.18.5585-5590.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hybrid proteins containing the beta-autotransporter domain of the immunoglobulin A (IgA) protease of Neisseria gonorrhoea (IgA beta) and the partner leucine zippers of the eukaryotic transcriptional factors Fos and Jun were expressed in Escherichia coli. Such fusion proteins targeted the leucine zipper modules to the cell surface. Cells displaying the Jun beta sequence flocculated shortly after induction of the hybrid protein. E. coli cells expressing separately Fos beta and Junbeta chimeras formed stable bacterial consortia. These associations were physically held by tight intercell ties caused by the protein-protein interactions of matching dimerization domains. The role of autotransporters in the emergence of new adhesins is discussed.
Collapse
Affiliation(s)
- Esteban Veiga
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
82
|
O'Neill JM, St Geme JW, Cutter D, Adderson EE, Anyanwu J, Jacobs RF, Schutze GE. Invasive disease due to nontypeable Haemophilus influenzae among children in Arkansas. J Clin Microbiol 2003; 41:3064-9. [PMID: 12843045 PMCID: PMC165342 DOI: 10.1128/jcm.41.7.3064-3069.2003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2002] [Revised: 11/05/2002] [Accepted: 05/06/2003] [Indexed: 11/20/2022] Open
Abstract
In this study, we reviewed cases of invasive disease due to nontypeable Haemophilus influenzae among children hospitalized at Arkansas Children's Hospital from 1993 to 2001. A total of 28 cases were examined, including 21 associated with bacteremia and 4 associated with meningitis. Of the patients examined, 86% were =4 years of age, and 68% had underlying medical conditions. Characterization of the bacterial isolates by multilocus sequence type genotyping revealed significant overall genetic diversity, similar to the diversity in the general population structure for nontypeable H. influenzae. However, four separate pairs of isolates were closely related genetically, a relationship confirmed by pulsed-field gel electrophoresis and Southern hybridization studies using probes for the major H. influenzae adhesin genes. These results suggest that selected strains of nontypeable H. influenzae may have more invasive potential, especially in young children and patients with underlying medical conditions. At this point, the specific factors that contribute to enhanced virulence remain unclear.
Collapse
Affiliation(s)
- Joshua M O'Neill
- Department of Pediatrics, University of Arkansas for Medical Sciences/Arkansas Children's Hospital, Little Rock, Arkansas, USA.
| | | | | | | | | | | | | |
Collapse
|
83
|
Hsieh YC, Liang SM, Tsai WL, Chen YH, Liu TY, Liang CM. Study of capsular polysaccharide from Vibrio parahaemolyticus. Infect Immun 2003; 71:3329-36. [PMID: 12761115 PMCID: PMC155742 DOI: 10.1128/iai.71.6.3329-3336.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The leading cause of food poisoning in both Taiwan and Japan is Vibrio parahaemolyticus infection, whose mechanism of enteropathogenesis is still unclear. To evaluate whether surface components are responsible for the intestinal adhesion of V. parahaemolyticus, we have developed a novel method for isolating the capsular polysaccharide (CPS) from V. parahaemolyticus (serotype O4:K8). We found that culturing of V. parahaemolyticus in broth for 1 week or more changed the colony form of the bacteria on an agar plate from opaque to translucent. The translucent colonies of V. parahaemolyticus contained little CPS and exhibited a much lower level of adherence to epithelial cells (Int-407) than the opaque colonies of the bacteria. Incubation of V. parahaemolyticus in medium supplemented with bile increased the levels of CPS and adherence. Treatment of V. parahaemolyticus with anti-CPS but not anti-LPS serum decreased the level of bacterial adherence. In addition, purified CPS bound to epithelial cells in a dose-dependent manner. Intranasal administration of CPS to mice in the presence of adjuvants such as immunostimulatory sequence oligodeoxynucleotides or cholera toxin elicited CPS-specific mucosal and systemic immune responses. These results indicate that CPS plays an important role in the adherence of V. parahaemolyticus to its target cells and may be considered a potential target for the development of a vaccine against this pathogen.
Collapse
Affiliation(s)
- Yu-Chi Hsieh
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan 11529
| | | | | | | | | | | |
Collapse
|
84
|
Abstract
PURPOSE OF REVIEW This review will consider recent developments in the clinical aspects of infections due to non-typeable Haemophilus influenzae. In addition, newer developments in the areas of mechanisms of pathogenesis, host pathogen interaction, immune responses and efforts toward vaccine development will be reviewed briefly. RECENT FINDINGS Non-typeable H. influenzae continues to be a common cause of otitis media in infants and children, sinusitis in children and adults, pneumonia in adults, and lower respiratory tract infection in adults with chronic obstructive pulmonary disease. While the rate of beta-lactamase production by isolates of H. influenzae varies geographically, most regions show a rate of 20-35% of isolates producing beta-lactamase. Recent studies have highlighted the possible role of bacterial biofilms formed by H. influenzae as a cause of otitis media. Several lines of evidence indicate that H. influenzae causes intracellular infection in the lower respiratory tract in chronic obstructive pulmonary disease and this observation has important implications in understanding the human immune response to the bacterium. Lipooligosaccharide is an important virulence factor for H. influenzae and research is generating new information on the complex role of this molecule in colonization and infection of the respiratory tract. Several surface molecules are under active evaluation as vaccine antigens. SUMMARY Non-typeable H. influenzae is an important cause of respiratory tract infections in children and adults. Most strains are susceptible to amoxicillin/clavulanate, fluoroquinolones and the newer macrolides. Research in the next decade promises substantial progress in the challenge of developing vaccines for nontypeable H. influenzae.
Collapse
Affiliation(s)
- Timothy F Murphy
- Department of Medicine, University at Buffalo, State University of New York, Buffalo, New York, USA.
| |
Collapse
|
85
|
Fink DL, St Geme JW. Chromosomal expression of the Haemophilus influenzae Hap autotransporter allows fine-tuned regulation of adhesive potential via inhibition of intermolecular autoproteolysis. J Bacteriol 2003; 185:1608-15. [PMID: 12591878 PMCID: PMC148083 DOI: 10.1128/jb.185.5.1608-1615.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Haemophilus influenzae Hap autotransporter is a nonpilus adhesin that promotes adherence to respiratory epithelial cells and selected extracellular matrix proteins and facilitates bacterial aggregation and microcolony formation. Hap consists of a 45-kDa outer membrane translocator domain called Hap(beta) and a 110-kDa extracellular passenger domain called Hap(S). All adhesive activity resides within Hap(S), which also contains protease activity and directs its own secretion from the bacterial cell surface via intermolecular autoproteolysis. In the present study, we sought to determine the relationship between the magnitude of Hap expression, the efficiency of Hap autoproteolysis, and the level of Hap-mediated adherence and aggregation. We found that a minimum threshold of Hap precursor was required for autoproteolysis and that this threshold approximated expression of Hap from a chromosomal allele, as occurs in H. influenzae clinical isolates. Chromosomal expression of wild-type Hap was sufficient to promote significant adherence to epithelial cells and extracellular matrix proteins, and adherence was enhanced substantially by inhibition of autoproteolysis. In contrast, chromosomal expression of Hap was sufficient to promote bacterial aggregation only when autoproteolysis was inhibited, indicating that the threshold for Hap-mediated aggregation is above the threshold for autoproteolysis. These results highlight the critical role of autoproteolysis and an intermolecular mechanism of cleavage in controlling the diverse adhesive activities of Hap.
Collapse
Affiliation(s)
- Doran L Fink
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, and Division of Infectious Diseases, St. Louis Children's Hospital, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
86
|
Fink DL, Buscher AZ, Green B, Fernsten P, St Geme JW. The Haemophilus influenzae Hap autotransporter mediates microcolony formation and adherence to epithelial cells and extracellular matrix via binding regions in the C-terminal end of the passenger domain. Cell Microbiol 2003; 5:175-86. [PMID: 12614461 DOI: 10.1046/j.1462-5822.2003.00266.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The pathogenesis of non-typable Haemophilus influenzae disease begins with colonization of the nasopharynx and is facilitated by bacterial adherence to respiratory mucosa. The H. influenzae Hap autotransporter is a non-pilus adhesin that promotes adherence to epithelial cells and selected extracellular matrix proteins and mediates bacterial aggregation and microcolony formation. In addition, Hap has serine protease activity. Hap contains a 110 kDa internal passenger domain called HapS and a 45 kDa C-terminal translocator domain called Hapbeta. In the present study, we sought to define the structural basis for Hap adhesive activities. Based on experiments using a panel of monoclonal antibodies against HapS, a deletion derivative lacking most of HapS and a purified fragment of HapS, we established that adherence to epithelial cells is mediated by sequences within the C-terminal 311 residues of HapS. In additional experiments, we discovered that bacterial aggregation is also mediated by sequences within the C-terminal 311 residues of HapS and occurs via HapS-HapS interaction between molecules on neighbouring organisms. Finally, we found that adherence to fibronectin, laminin and collagen IV is mediated in part by sequences within the C-terminal 311 residues of HapS and in full by sequences within the C-terminal 511 residues of HapS. Taken together, these results demonstrate that all Hap adhesive activities reside in the C-terminal portion of HapS. Coupled with earlier observations, the current results establish that HapS adhesive activities and HapS protease activity are contained in separate modules of the protein.
Collapse
Affiliation(s)
- Doran L Fink
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|