51
|
Genome analysis of Moraxella catarrhalis strain BBH18, [corrected] a human respiratory tract pathogen. J Bacteriol 2010; 192:3574-83. [PMID: 20453089 DOI: 10.1128/jb.00121-10] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis is an emerging human-restricted respiratory tract pathogen that is a common cause of childhood otitis media and exacerbations of chronic obstructive pulmonary disease in adults. Here, we report the first completely assembled and annotated genome sequence of an isolate of M. catarrhalis, strain RH4, which originally was isolated from blood of an infected patient. The RH4 genome consists of 1,863,286 nucleotides that form 1,886 protein-encoding genes. Comparison of the RH4 genome to the ATCC 43617 contigs demonstrated that the gene content of both strains is highly conserved. In silico phylogenetic analyses based on both 16S rRNA and multilocus sequence typing revealed that RH4 belongs to the seroresistant lineage. We were able to identify almost the entire repertoire of known M. catarrhalis virulence factors and mapped the members of the biosynthetic pathways for lipooligosaccharide, peptidoglycan, and type IV pili. Reconstruction of the central metabolic pathways suggested that RH4 relies on fatty acid and acetate metabolism, as the genes encoding the enzymes required for the glyoxylate pathway, the tricarboxylic acid cycle, the gluconeogenic pathway, the nonoxidative branch of the pentose phosphate pathway, the beta-oxidation pathway of fatty acids, and acetate metabolism were present. Moreover, pathways important for survival under challenging in vivo conditions, such as the iron-acquisition pathways, nitrogen metabolism, and oxidative stress responses, were identified. Finally, we showed by microarray expression profiling that approximately 88% of the predicted coding sequences are transcribed under in vitro conditions. Overall, these results provide a foundation for future research into the mechanisms of M. catarrhalis pathogenesis and vaccine development.
Collapse
|
52
|
Mil-Homens D, Rocha EPC, Fialho AM. Genome-wide analysis of DNA repeats in Burkholderia cenocepacia J2315 identifies a novel adhesin-like gene unique to epidemic-associated strains of the ET-12 lineage. Microbiology (Reading) 2010; 156:1084-1096. [DOI: 10.1099/mic.0.032623-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Members of the Burkholderia cepacia complex (Bcc) are respiratory pathogens in patients with cystic fibrosis (CF). Close repetitive DNA sequences often associate with surface antigens to promote genetic variability in pathogenic bacteria. The genome of Burkholderia cenocepacia J2315, a CF isolate belonging to the epidemic lineage Edinburgh–Toronto (ET-12), was analysed for the presence of close repetitive DNA sequences. Among the 422 DNA close repeats, 45 genes potentially involved in virulence were identified and grouped into 12 classes; of these, 13 genes were included in the antigens class. Two trimeric autotransporter adhesins (TAA) among the 13 putative antigens are absent from the other Burkholderia genomes and are clustered downstream of the cci island that is a marker for transmissible B. cenocepacia strains. This cluster contains four adhesins, one outer-membrane protein, one sensor histidine kinase and two transcriptional regulators. By using PCR, we analysed three genes among 47 Bcc isolates to determine whether the cluster was conserved. These three genes were present in the isolates of the ET-12 lineage but absent in all the other members. Furthermore, the BCAM0224 gene was exclusively detected in this epidemic lineage and may serve as a valuable new addition to the field of Bcc diagnostics. The BCAM0224 gene encodes a putative TAA that demonstrates adhesive properties to the extracellular matrix protein collagen type I. Quantitative real-time PCR analysis indicated that BCAM0224 gene expression occurred preferentially for cells grown under high osmolarity, oxygen-limited conditions and oxidative stress. Inactivation of BCAM0224 in B. cenocepacia attenuates the ability of the mutant to promote cell adherence in vitro and impairs the overall bacterial virulence against Galleria mellonella as a model of infection. Together, our data show that BCAM0224 from B. cenocepacia J2315 represents a new collagen-binding TAA with no bacterial orthologues which has an important role in cellular adhesion and virulence.
Collapse
Affiliation(s)
- Dalila Mil-Homens
- IBB-Institute for Biotechnology and Bioengineering, Center for Biological and Chemical Engineering, Instituto Superior Técnico, Lisbon 1049-001, Portugal
| | - Eduardo P. C. Rocha
- Microbial Evolutionary Genomics Group, CNRS URA2171, Institute Pasteur, F-75015 Paris, France
- Atelier de Bioinformatique, Université Pierre et Marie Curie-Paris 6, Paris, F-75005 France
| | - Arsenio M. Fialho
- IBB-Institute for Biotechnology and Bioengineering, Center for Biological and Chemical Engineering, Instituto Superior Técnico, Lisbon 1049-001, Portugal
| |
Collapse
|
53
|
Biofilm-induced modifications in the proteome of Pseudomonas aeruginosa planktonic cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:957-66. [DOI: 10.1016/j.bbapap.2010.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 12/04/2009] [Accepted: 01/08/2010] [Indexed: 11/17/2022]
|
54
|
Singh B, Blom AM, Unal C, Nilson B, Mörgelin M, Riesbeck K. Vitronectin binds to the head region ofMoraxella catarrhalisubiquitous surface protein A2 and confers complement-inhibitory activity. Mol Microbiol 2010; 75:1426-44. [DOI: 10.1111/j.1365-2958.2010.07066.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
55
|
Molecular aspects of Moraxella catarrhalis pathogenesis. Microbiol Mol Biol Rev 2009; 73:389-406, Table of Contents. [PMID: 19721084 DOI: 10.1128/mmbr.00007-09] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In recent years, Moraxella catarrhalis has established its position as an important human mucosal pathogen, no longer being regarded as just a commensal bacterium. Further, current research in the field has led to a better understanding of the molecular mechanisms involved in M. catarrhalis pathogenesis, including mechanisms associated with cellular adherence, target cell invasion, modulation of the host's immune response, and metabolism. Additionally, in order to be successful in the host, M. catarrhalis has to be able to interact and compete with the commensal flora and overcome stressful environmental conditions, such as nutrient limitation. In this review, we provide a timely overview of the current understanding of the molecular mechanisms associated with M. catarrhalis virulence and pathogenesis.
Collapse
|
56
|
Attia AS, Sedillo JL, Hoopman TC, Liu W, Liu L, Brautigam CA, Hansen EJ. Identification of a bacteriocin and its cognate immunity factor expressed by Moraxella catarrhalis. BMC Microbiol 2009; 9:207. [PMID: 19781080 PMCID: PMC2761928 DOI: 10.1186/1471-2180-9-207] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 09/25/2009] [Indexed: 12/23/2022] Open
Abstract
Background Bacteriocins are antimicrobial proteins and peptides ribosomally synthesized by some bacteria which can effect both intraspecies and interspecies killing. Results Moraxella catarrhalis strain E22 containing plasmid pLQ510 was shown to inhibit the growth of M. catarrhalis strain O35E. Two genes (mcbA and mcbB) in pLQ510 encoded proteins predicted to be involved in the secretion of a bacteriocin. Immediately downstream from these two genes, a very short ORF (mcbC) encoded a protein which had some homology to double-glycine bacteriocins produced by other bacteria. A second very short ORF (mcbI) immediately downstream from mcbC encoded a protein which had no significant similarity to other proteins in the databases. Cloning and expression of the mcbI gene in M. catarrhalis O35E indicated that this gene encoded the cognate immunity factor. Reverse transcriptase-PCR was used to show that the mcbA, mcbB, mcbC, and mcbI ORFs were transcriptionally linked. This four-gene cluster was subsequently shown to be present in the chromosome of several M. catarrhalis strains including O12E. Inactivation of the mcbA, mcbB, or mcbC ORFs in M. catarrhalis O12E eliminated the ability of this strain to inhibit the growth of M. catarrhalis O35E. In co-culture experiments involving a M. catarrhalis strain containing the mcbABCI locus and one which lacked this locus, the former strain became the predominant member of the culture after overnight growth in broth. Conclusion This is the first description of a bacteriocin and its cognate immunity factor produced by M. catarrhalis. The killing activity of the McbC protein raises the possibility that it might serve to lyse other M. catarrhalis strains that lack the mcbABCI locus, thereby making their DNA available for lateral gene transfer.
Collapse
Affiliation(s)
- Ahmed S Attia
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | | | | | | | | | | | | |
Collapse
|
57
|
Outer membrane porin M35 of Moraxella catarrhalis mediates susceptibility to aminopenicillins. BMC Microbiol 2009; 9:188. [PMID: 19732412 PMCID: PMC3224680 DOI: 10.1186/1471-2180-9-188] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 09/04/2009] [Indexed: 11/17/2022] Open
Abstract
Background The outer membrane protein M35 is a conserved porin of type 1 strains of the respiratory pathogen Moraxella catarrhalis. It was previously shown that M35 is involved in the uptake of essential nutrients required for bacterial growth and for nasal colonization in mice. The aim of this study was (i) to characterize the potential roles of M35 in the host-pathogen interactions considering the known multifunctionality of porins and (ii) to characterize the degree of conservation in the phylogenetic older subpopulation (type 2) of M. catarrhalis. Results Isogenic m35 mutants of the type 1 strains O35E, 300 and 415 were tested for their antimicrobial susceptibility against 15 different agents. Differences in the MIC (Minimum Inhibitory Concentration) between wild-type and mutant strains were found for eight antibiotics. For ampicillin and amoxicillin, we observed a statistically significant 2.5 to 2.9-fold MIC increase (p < 0.03) in the m35 mutants. Immunoblot analysis demonstrated that human saliva contains anti-M35 IgA. Wild-type strains and their respective m35 mutants were indistinguishable with respect to the phenotypes of autoagglutination, serum resistance, iron acquisition from human lactoferrin, adherence to and invasion of respiratory tract epithelial cells, and proinflammatory stimulation of human monocytes. DNA sequencing of m35 from the phylogenetic subpopulation type 2 strain 287 revealed 94.2% and 92.8% identity on the DNA and amino acid levels, respectively, in comparison with type 1 strains. Conclusion The increase in MIC for ampicillin and amoxicillin, respectively, in the M35-deficient mutants indicates that this porin affects the outer membrane permeability for aminopenicillins in a clinically relevant manner. The presence of IgA antibodies in healthy human donors indicates that M35 is expressed in vivo and recognized as a mucosal antigen by the human host. However, immunoblot analysis of human saliva suggests the possibility of antigenic variation of immunoreactive epitopes, which warrants further analysis before M35 can be considered a potential vaccine candidate.
Collapse
|
58
|
Hag mediates adherence of Moraxella catarrhalis to ciliated human airway cells. Infect Immun 2009; 77:4597-608. [PMID: 19667048 DOI: 10.1128/iai.00212-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis is a human pathogen causing otitis media in infants and respiratory infections in adults, particularly patients with chronic obstructive pulmonary disease. The surface protein Hag (also designated MID) has previously been shown to be a key adherence factor for several epithelial cell lines relevant to pathogenesis by M. catarrhalis, including NCIH292 lung cells, middle ear cells, and A549 type II pneumocytes. In this study, we demonstrate that Hag mediates adherence to air-liquid interface cultures of normal human bronchial epithelium (NHBE) exhibiting mucociliary activity. Immunofluorescent staining and laser scanning confocal microscopy experiments demonstrated that the M. catarrhalis wild-type isolates O35E, O12E, TTA37, V1171, and McGHS1 bind principally to ciliated NHBE cells and that their corresponding hag mutant strains no longer associate with cilia. The hag gene product of M. catarrhalis isolate O35E was expressed in the heterologous genetic background of a nonadherent Haemophilus influenzae strain, and quantitative assays revealed that the adherence of these recombinant bacteria to NHBE cultures was increased 27-fold. These experiments conclusively demonstrate that the hag gene product is responsible for the previously unidentified tropism of M. catarrhalis for ciliated NHBE cells.
Collapse
|
59
|
Serruto D, Spadafina T, Scarselli M, Bambini S, Comanducci M, Höhle S, Kilian M, Veiga E, Cossart P, Oggioni MR, Savino S, Ferlenghi I, Taddei AR, Rappuoli R, Pizza M, Masignani V, Aricò B. HadA is an atypical new multifunctional trimeric coiled-coil adhesin ofHaemophilus influenzaebiogroupaegyptius, which promotes entry into host cells. Cell Microbiol 2009; 11:1044-63. [DOI: 10.1111/j.1462-5822.2009.01306.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
60
|
Perez Vidakovics ML, Riesbeck K. Virulence mechanisms of Moraxella in the pathogenesis of infection. Curr Opin Infect Dis 2009; 22:279-85. [PMID: 19405217 DOI: 10.1097/qco.0b013e3283298e4e] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Moraxella catarrhalis is an emerging human-specific pathogen responsible for upper and lower respiratory tract infections. Understanding the events in the complex pathogenesis and underlying mechanisms during M. catarrhalis infection is a key to the development of novel therapeutics and vaccines. RECENT FINDINGS Several novel findings have been reported on Moraxella pathogenesis and, in parts, explain how the species stands as a commensal in preschool children and survives in the host. Molecular structures for different adhesins in addition to target ligands with respect to signalling and invasion have been defined. Evasion of the complement system allows Moraxella to survive in the mucosa and by neutralizing [alpha]1-antichymotrypsin the protease activity is increased, resulting in tissue destruction and thus promotion of bacterial attachment. Moraxella-dependent cell activation via immunoglobulin D in addition to toll-like receptors and specific epithelial cell inhibition by cross-linking of carcinoembryonic antigen-related cell adhesion molecule-1 in the early innate immune response and, finally, the ability of M. catarrhalis to form biofilms are other specific research areas of interest. SUMMARY Recent advances have allowed a more detailed picture of the processes involved in bacteria-host cell interactions, the cause of inflammatory processes and specific host defense responses against the intriguing species Moraxella.
Collapse
Affiliation(s)
- M Laura Perez Vidakovics
- Division of Medical Microbiology, Department of Laboratory Medicine, University Hospital Malmö, Lund University, Malmö, Sweden
| | | |
Collapse
|
61
|
Transcriptional and translational analysis of biofilm determinants of Aggregatibacter actinomycetemcomitans in response to environmental perturbation. Infect Immun 2009; 77:2896-907. [PMID: 19433550 DOI: 10.1128/iai.00126-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Fimbriae, lipopolysaccharide (LPS), and extracellular polymeric substance (EPS) all contribute to biofilm formation by the periodontopathogen Aggregatibacter actinomycetemcomitans. To understand how individual biofilm determinants respond to changing environmental conditions, the transcription of genes responsible for fimbria, LPS, and EPS production, as well as the translation of these components, was determined in rough (Rv) and isogenic smooth (Sv) variants of A. actinomycetemcomitans cultured in half-strength and full-strength culture medium under anaerobic or aerobic conditions, and in iron-supplemented and iron-chelated medium. The transcription of tadV (fimbrial assembly), pgaC (extracellular polysaccharide synthesis), and orf8 or rmlB (lipopolysaccharide synthesis) was measured by real-time PCR. The amounts of fimbriae, LPS, and EPS were also estimated from stained sodium dodecyl sulfate-polyacrylamide gels and verified by Western blotting and enzyme-linked immunoadsorbent assay using specific antibodies. Each gene was significantly upregulated in the Rv compared to in the Sv. The transcription of fimbrial, LPS, and EPS genes in the Rv was increased approximately twofold in cells cultured in full-strength medium under anaerobic conditions compared to that in cells cultured under aerobic conditions. Under anaerobic conditions, the transcription of fimbrial and EPS enzymes was elevated in both Rv and Sv cells cultured in half-strength medium, compared to that in full-strength medium. Iron chelation also increased the transcription and translation of all biofilm determinants compared to their expression with iron supplementation, yet the quantity of biofilm was not significantly changed by any environmental perturbation except iron limitation. Thus, anaerobic conditions, nutrient stress, and iron limitation each upregulate known biofilm determinants of A. actinomycetemcomitans to contribute to biofilm formation.
Collapse
|
62
|
Wells TJ, McNeilly TN, Totsika M, Mahajan A, Gally DL, Schembri MA. The Escherichia coli O157:H7 EhaB autotransporter protein binds to laminin and collagen I and induces a serum IgA response in O157:H7 challenged cattle. Environ Microbiol 2009; 11:1803-14. [PMID: 19508554 DOI: 10.1111/j.1462-2920.2009.01905.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) are a subgroup of Shiga toxin-producing E. coli that cause gastrointestinal disease with the potential for life-threatening sequelae. Cattle serve as the natural reservoir for EHEC and outbreaks occur sporadically as a result of contaminated beef and other farming products. While certain EHEC virulence mechanisms have been extensively studied, the factors that mediate host colonization are poorly defined. Previously, we identified four proteins (EhaA,B,C,D) from the prototypic EHEC strain EDL933 that belong to the autotransporter (AT) family. Here we characterize the EhaB AT protein. EhaB was shown to be located at the cell surface and overexpression in E. coli K-12 resulted in significant biofilm formation under continuous flow conditions. Overexpression of EhaB in E. coli K12 and EDL933 backgrounds also promoted adhesion to the extracellular matrix proteins collagen I and laminin. An EhaB-specific antibody revealed that EhaB is expressed in E. coli EDL933 following in vitro growth. EhaB also cross-reacted with serum IgA from cattle challenged with E. coli O157:H7, indicating that EhaB is expressed in vivo and elicits a host IgA immune response.
Collapse
Affiliation(s)
- Timothy J Wells
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane Queensland 4072, Australia
| | | | | | | | | | | |
Collapse
|
63
|
Identification of domains of the Hag/MID surface protein recognized by systemic and mucosal antibodies in adults with chronic obstructive pulmonary disease following clearance of Moraxella catarrhalis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:653-9. [PMID: 19321697 DOI: 10.1128/cvi.00460-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Moraxella catarrhalis is a common cause of respiratory tract infection in the setting of chronic obstructive pulmonary disease (COPD). Adults with COPD acquire and clear strains of M. catarrhalis from the respiratory tract continuously and develop strain-specific protection following clearance of a strain. In previous work, we identified Hag/MID (Moraxella immunoglobulin D-binding protein), a large multifunctional surface protein that acts as an adhesin and hemagglutinin, as a target of antibody responses in adults with COPD after clearance of M. catarrhalis. The goal of the present study was to characterize the domains of Hag/MID to which humans make antibodies, including both systemic and mucosal antibody responses. Analysis of recombinant peptide constructs, which spanned the M. catarrhalis strain O35E Hag/MID protein, with well-characterized serum and sputum samples revealed that most adults with COPD made antibodies directed toward a region of the molecule bounded by amino acids 706 to 863. Serum immunoglobulin G (IgG) and IgA purified from sputum both recognized the same domain. Some flanking sequence of this fragment was necessary for the epitope(s) in this region to maintain its conformation to bind human antibodies. These results reveal that humans consistently generate both systemic and mucosal antibody responses to an immunodominant region of the Hag/MID molecule, which was previously shown to overlap with several biologically relevant domains, including epithelial cell adherence, IgD binding, collagen binding, and hemagglutination.
Collapse
|
64
|
Magagnoli C, Bardotti A, De Conciliis G, Galasso R, Tomei M, Campa C, Pennatini C, Cerchioni M, Fabbri B, Giannini S, Mattioli GL, Biolchi A, D'Ascenzi S, Helling F. Structural organization of NadADelta(351-405), a recombinant MenB vaccine component, by its physico-chemical characterization at drug substance level. Vaccine 2009; 27:2156-70. [PMID: 19356620 DOI: 10.1016/j.vaccine.2009.01.099] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 01/13/2009] [Accepted: 01/22/2009] [Indexed: 12/27/2022]
Abstract
The physico-chemical characterization of NadADelta(351-405), a recombinant protein discovered by reverse vaccinology, component of a candidate vaccine against Neisseria meningitidis serotype B is presented. Analytical methods like mass spectrometry, electrophoresis, optical spectroscopy and SEC-MALLS have been applied to unveil the structure of NadADelta(351-405), and to evaluate Product-Related Substances. Moreover, analysis of the protein after intentional denaturation has been applied in order to challenge the chosen methods and to determine their appropriateness and specificity. All the obtained results were inserted in a model allowing in-depth understanding of the antigen NadADelta(351-405): it is present in solution as a homo-trimer, retaining a high percentage of alpha-helix secondary structure, and able to reassemble from monomeric subunits after thermal denaturation; this structural organization is consistent with that foreseen for MenB NadA (Neisseria Adhesin A). The analytical data sets produced during process development for clinical phases I-III material confirm product quality and manufacturing consistency.
Collapse
|
65
|
Wang W, Richardson AR, Martens-Habbena W, Stahl DA, Fang FC, Hansen EJ. Identification of a repressor of a truncated denitrification pathway in Moraxella catarrhalis. J Bacteriol 2008; 190:7762-72. [PMID: 18820017 PMCID: PMC2583601 DOI: 10.1128/jb.01032-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 09/17/2008] [Indexed: 01/02/2023] Open
Abstract
Growth of Moraxella catarrhalis in a biofilm resulted in marked upregulation of two open reading frames (ORFs), aniA and norB, predicted to encode a nitrite reductase and a nitric oxide reductase, respectively (W. Wang, L. Reitzer, D. A. Rasko, M. M. Pearson, R. J. Blick, C. Laurence, and E. J. Hansen, Infect. Immun. 75:4959-4971, 2007). An ORF designated nsrR, which was located between aniA and norB, was shown to encode a predicted transcriptional regulator. Inactivation of nsrR resulted in increased expression of aniA and norB in three different M. catarrhalis strains, as measured by both DNA microarray analysis and quantitative reverse transcriptase PCR. Provision of a wild-type nsrR gene in trans in an nsrR mutant resulted in decreased expression of the AniA protein. DNA microarray analysis revealed that two other ORFs (MC ORF 683 and MC ORF 1550) were also consistently upregulated in an nsrR mutant. Consumption of both nitrite and nitric oxide occurred more rapidly with cells of an nsrR mutant than with wild-type cells. However, growth of nsrR mutants was completely inhibited by a low level of sodium nitrite. This inhibition of growth by nitrite was significantly reversed by introduction of an aniA mutation into the nsrR mutant and was completely reversed by the presence of a wild-type nsrR gene in trans. NsrR regulation of the expression of aniA was sensitive to nitrite, whereas NsrR regulation of norB was sensitive to nitric oxide.
Collapse
Affiliation(s)
- Wei Wang
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9048, USA
| | | | | | | | | | | |
Collapse
|
66
|
Brooks MJ, Sedillo JL, Wagner N, Wang W, Attia AS, Wong H, Laurence CA, Hansen EJ, Gray-Owen SD. Moraxella catarrhalis binding to host cellular receptors is mediated by sequence-specific determinants not conserved among all UspA1 protein variants. Infect Immun 2008; 76:5322-9. [PMID: 18678656 PMCID: PMC2573313 DOI: 10.1128/iai.00572-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 06/26/2008] [Accepted: 07/30/2008] [Indexed: 11/20/2022] Open
Abstract
The Moraxella catarrhalis ubiquitous surface proteins (UspAs) are autotransporter molecules reported to interact with a variety of different host proteins and to affect processes ranging from serum resistance to cellular adhesion. The role of UspA1 as an adhesin has been confirmed with a number of different human cell types and is mediated by binding to eukaryotic proteins including carcinoembryonic antigen-related cellular adhesion molecules (CEACAMs), fibronectin, and laminin. A distinct difference in the ability of prototypical M. catarrhalis strains to adhere to CEACAM-expressing cell lines prompted us to perform strain-specific structure-function analyses of UspA1 proteins. In this study, we characterized CEACAM binding by a diverse set of UspA1 proteins and showed that 3 out of 10 UspA1 proteins were incapable of binding CEACAM. This difference resulted from the absence of a distinct CEACAM binding motif in nonadhering strains. Our sequence analysis also revealed a single M. catarrhalis isolate that lacked the fibronectin-binding motif and was defective in adherence to Chang conjunctival epithelial cells. These results clearly demonstrate that UspA1-associated adhesive functions are not universally conserved. Instead, UspA1 proteins must be considered as variants with the potential to confer both different cell tropisms and host cell responses.
Collapse
Affiliation(s)
- Michael J Brooks
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Brooks MJ, Sedillo JL, Wagner N, Laurence CA, Wang W, Attia AS, Hansen EJ, Gray-Owen SD. Modular arrangement of allelic variants explains the divergence in Moraxella catarrhalis UspA protein function. Infect Immun 2008; 76:5330-40. [PMID: 18678659 PMCID: PMC2573364 DOI: 10.1128/iai.00573-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 06/26/2008] [Accepted: 07/30/2008] [Indexed: 11/20/2022] Open
Abstract
Ubiquitous surface protein A molecules (UspAs) of Moraxella catarrhalis are large, nonfimbrial, autotransporter proteins that can be visualized as a "fuzzy" layer on the bacterial surface by transmission electron microscopy. Previous studies attributed a wide array of functions and binding activities to the closely related UspA1, UspA2, and/or UspA2H protein, yet the molecular and phylogenetic relationships among these activities remain largely unexplored. To address this issue, we determined the nucleotide sequence of the uspA1 genes from a variety of independent M. catarrhalis isolates and compared the deduced amino acid sequences to those of the previously characterized UspA1, UspA2, and UspA2H proteins. Rather than being conserved proteins, we observed a striking divergence of individual UspA1, UspA2, and UspA2H proteins resulting from the modular assortment of unrelated "cassettes" of peptide sequence. The exchange of certain variant cassettes correlates with strain-specific differences in UspA protein function and confers differing phenotypes upon these mucosal surface pathogens.
Collapse
Affiliation(s)
- Michael J Brooks
- Department of Molecular Genetics, University of Toronto, Medical Sciences Building, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Szczesny P, Linke D, Ursinus A, Bär K, Schwarz H, Riess TM, Kempf VAJ, Lupas AN, Martin J, Zeth K. Structure of the head of the Bartonella adhesin BadA. PLoS Pathog 2008; 4:e1000119. [PMID: 18688279 PMCID: PMC2483945 DOI: 10.1371/journal.ppat.1000119] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 07/10/2008] [Indexed: 11/18/2022] Open
Abstract
Trimeric autotransporter adhesins (TAAs) are a major class of proteins by which pathogenic proteobacteria adhere to their hosts. Prominent examples include Yersinia YadA, Haemophilus Hia and Hsf, Moraxella UspA1 and A2, and Neisseria NadA. TAAs also occur in symbiotic and environmental species and presumably represent a general solution to the problem of adhesion in proteobacteria. The general structure of TAAs follows a head-stalk-anchor architecture, where the heads are the primary mediators of attachment and autoagglutination. In the major adhesin of Bartonella henselae, BadA, the head consists of three domains, the N-terminal of which shows strong sequence similarity to the head of Yersinia YadA. The two other domains were not recognizably similar to any protein of known structure. We therefore determined their crystal structure to a resolution of 1.1 A. Both domains are beta-prisms, the N-terminal one formed by interleaved, five-stranded beta-meanders parallel to the trimer axis and the C-terminal one by five-stranded beta-meanders orthogonal to the axis. Despite the absence of statistically significant sequence similarity, the two domains are structurally similar to domains from Haemophilus Hia, albeit in permuted order. Thus, the BadA head appears to be a chimera of domains seen in two other TAAs, YadA and Hia, highlighting the combinatorial evolutionary strategy taken by pathogens.
Collapse
Affiliation(s)
- Pawel Szczesny
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Dirk Linke
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Astrid Ursinus
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Kerstin Bär
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Heinz Schwarz
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Tanja M. Riess
- Institut für Medizinische Mikrobiologie und Hygiene, Eberhard-Karls-Universität, Tübingen, Germany
| | - Volkhard A. J. Kempf
- Institut für Medizinische Mikrobiologie und Hygiene, Eberhard-Karls-Universität, Tübingen, Germany
| | - Andrei N. Lupas
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
- * E-mail:
| | - Jörg Martin
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Kornelius Zeth
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
69
|
Conners R, Hill DJ, Borodina E, Agnew C, Daniell SJ, Burton NM, Sessions RB, Clarke AR, Catto LE, Lammie D, Wess T, Brady RL, Virji M. The Moraxella adhesin UspA1 binds to its human CEACAM1 receptor by a deformable trimeric coiled-coil. EMBO J 2008; 27:1779-89. [PMID: 18497748 PMCID: PMC2396876 DOI: 10.1038/emboj.2008.101] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 04/23/2008] [Indexed: 11/09/2022] Open
Abstract
Moraxella catarrhalis is a ubiquitous human-specific bacterium commonly associated with upper and lower respiratory tract infections, including otitis media, sinusitis and chronic obstructive pulmonary disease. The bacterium uses an autotransporter protein UspA1 to target an important human cellular receptor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1). Using X-ray crystallography, we show that the CEACAM1 receptor-binding region of UspA1 unusually consists of an extended, rod-like left-handed trimeric coiled-coil. Mutagenesis and binding studies of UspA1 and the N-domain of CEACAM1 have been used to delineate the interacting surfaces between ligand and receptor and guide assembly of the complex. However, solution scattering, molecular modelling and electron microscopy analyses all indicate that significant bending of the UspA1 coiled-coil stalk also occurs. This explains how UspA1 can engage CEACAM1 at a site far distant from its head group, permitting closer proximity of the respective cell surfaces during infection.
Collapse
Affiliation(s)
- Rebecca Conners
- Department of Biochemistry, University of Bristol, Bristol, UK
| | - Darryl J Hill
- Department of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Elena Borodina
- Department of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | | | - Sarah J Daniell
- Department of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | | | | | | | - Lucy E Catto
- Department of Biochemistry, University of Bristol, Bristol, UK
| | - Donna Lammie
- Cardiff School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - Timothy Wess
- Cardiff School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - R Leo Brady
- Department of Biochemistry, University of Bristol, Bristol, UK
| | - Mumtaz Virji
- Department of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| |
Collapse
|
70
|
Tan TT, Riesbeck K. Current progress of adhesins as vaccine candidates for Moraxella catarrhalis. Expert Rev Vaccines 2008; 6:949-56. [PMID: 18377357 DOI: 10.1586/14760584.6.6.949] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Moraxella catarrhalis is an emerging pathogen and all isolates are now considered beta-lactamase producing. Potential further use of vaccines against Streptococcus pneumoniae and nontypeable Haemophilus influenzae means that M. catarrhalis might be thrust further into the limelight. However, a vaccine has not yet been designed. In this review, the progress of M. catarrhalis adhesins as vaccine candidates is discussed with a focus on various candidate antigens that spanned those discovered more than 10 years ago, for example, the ubiquitous surface proteins to newer antigens, such as the Moraxella IgD-binding hemagglutinin.
Collapse
Affiliation(s)
- Thuan Tong Tan
- Malmö University Hospital, Medical Microbiology, Department of Laboratory Medicine, Lund University, SE-205 02 Malmö, Sweden.
| | | |
Collapse
|
71
|
UpaG, a new member of the trimeric autotransporter family of adhesins in uropathogenic Escherichia coli. J Bacteriol 2008; 190:4147-61. [PMID: 18424525 DOI: 10.1128/jb.00122-08] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The ability of Escherichia coli to colonize both intestinal and extraintestinal sites is driven by the presence of specific virulence factors, among which are the autotransporter (AT) proteins. Members of the trimeric AT adhesin family are important virulence factors for several gram-negative pathogens and mediate adherence to eukaryotic cells and extracellular matrix (ECM) proteins. In this study, we characterized a new trimeric AT adhesin (UpaG) from uropathogenic E. coli (UPEC). Molecular analysis of UpaG revealed that it is translocated to the cell surface and adopts a multimeric conformation. We demonstrated that UpaG is able to promote cell aggregation and biofilm formation on abiotic surfaces in CFT073 and various UPEC strains. In addition, UpaG expression resulted in the adhesion of CFT073 to human bladder epithelial cells, with specific affinity to fibronectin and laminin. Prevalence analysis revealed that upaG is strongly associated with E. coli strains from the B2 and D phylogenetic groups, while deletion of upaG had no significant effect on the ability of CFT073 to colonize the mouse urinary tract. Thus, UpaG is a novel trimeric AT adhesin from E. coli that mediates aggregation, biofilm formation, and adhesion to various ECM proteins.
Collapse
|
72
|
Functional mapping of an oligomeric autotransporter adhesin of Aggregatibacter actinomycetemcomitans. J Bacteriol 2008; 190:3098-109. [PMID: 18310342 DOI: 10.1128/jb.01709-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Extracellular matrix protein adhesin A (EmaA) is a 202-kDa nonfimbrial adhesin, which mediates the adhesion of the oral pathogen Aggregatibacter actinomycetemcomitans to collagen. EmaA oligomers form surface antenna-like protrusions consisting of a long helical rod with an ellipsoidal ending. The functional analysis of in-frame emaA deletion mutants has located the collagen binding activity to the amino terminus of the protein corresponding to amino acids 70 to 386. The level of collagen binding of this deletion mutant was comparable to the emaA mutant strain. Transmission electron microscopy studies indicate that the first 330 amino acids of the mature protein form the ellipsoidal ending of the EmaA protrusions, where the activity resides. Amino acid substitution analysis within this sequence has identified a critical amino acid, which is essential for the formation of the ellipsoidal ending and for collagen binding activity.
Collapse
|
73
|
Manolov T, Tan TT, Forsgren A, Riesbeck K. Moraxella-dependent alpha 1-antichymotrypsin neutralization: a unique virulence mechanism. Am J Respir Cell Mol Biol 2007; 38:609-17. [PMID: 18096871 DOI: 10.1165/rcmb.2007-0289oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The acute phase reactant and protease inhibitor alpha(1)-antichymotrypsin is considered to play a protective role in the airways, but whether it interacts with respiratory bacteria is not known. We analyzed whether the common respiratory pathogens Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and other bacterial species interact with antichymotrypsin. M. catarrhalis was the only species that bound antichymotrypsin among 25 bacterial species tested by flow cytometry and direct binding assay. We compared a series of clinical isolates in addition to wild-type and ubiquitous surface protein-deficient Moraxella to study the nature of antichymotrypsin binding by the bacteria. Experiments with Moraxella mutants revealed that ubiquitous surface proteins A1 and A2 were responsible for the interaction, and using recombinant fragments, a consensus sequence within ubiquitous surface proteins A1 and A2 was defined. Binding of iodine-labeled antichymotrypsin was dose dependent and strong (dissociation constant [K(d)] 24.9-44.8 nM). Moreover, a chymotrypsin activity assay showed that antichymotrypsin, when bound to the bacterial surface, was neutralized. Moraxella antichymotrypsin neutralization is a novel microbial virulence mechanism that may induce excessive inflammation resulting in more exposed extracellular matrix that is beneficial for bacterial colonization.
Collapse
Affiliation(s)
- Taras Manolov
- Medical Microbiology, Department of Laboratory Medicine, Malmö University Hospital, Lund University, SE-205 02 Malmö, Sweden
| | | | | | | |
Collapse
|
74
|
Outer membrane protein UspA1 and lipooligosaccharide are involved in invasion of human epithelial cells by Moraxella catarrhalis. Microbes Infect 2007; 10:3-11. [PMID: 18069032 DOI: 10.1016/j.micinf.2007.09.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 09/05/2007] [Accepted: 09/24/2007] [Indexed: 11/22/2022]
Abstract
Invasion of non-professional phagocytes is a strategy employed by several mucosal pathogens, but has not been investigated in detail for Moraxella catarrhalis, a major cause of human respiratory tract infections. We investigated the role of outer membrane protein (OMP) UspA1 and lipooligosaccharide (LOS) in M. catarrhalis invasion into epithelial cells. An isogenic mutant of strain O35E, which lacked expression of the UspA1 adhesin, demonstrated not only severely impaired adherence (86%) to but also reduced invasion (77%) into Chang conjunctival cells in comparison with the wild-type strain. The isogenic, LOS-deficient mutant strain O35E.lpxA was attenuated in adherence (93%) and its capacity to invade was severely reduced (95%), but not abolished. Inhibition assays using sucrose and cytochalasin D, respectively, demonstrated that clathrin and actin polymerization contribute to internalization of M. catarrhalis by Chang cells. Furthermore, inhibition of UspA1-mediated binding to cell-associated fibronectin and alpha5beta1 integrin decreased invasion of M. catarrhalis strain O35E (72% and 41%, respectively). These data indicate that OMP UspA1 and LOS profoundly affect the capacity of M. catarrhalis to invade epithelial cells.
Collapse
|
75
|
Luke NR, Jurcisek JA, Bakaletz LO, Campagnari AA. Contribution of Moraxella catarrhalis type IV pili to nasopharyngeal colonization and biofilm formation. Infect Immun 2007; 75:5559-64. [PMID: 17908808 PMCID: PMC2168369 DOI: 10.1128/iai.00946-07] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis is a gram-negative mucosal pathogen of the human respiratory tract. Although little information is available regarding the initial steps of M. catarrhalis pathogenesis, this organism must be able to colonize the human mucosal surface in order to initiate an infection. Type IV pili (TFP), filamentous surface appendages primarily comprised of a single protein subunit termed pilin, play a crucial role in the initiation of disease by a wide range of bacteria. We previously identified the genes that encode the major proteins involved in the biosynthesis of M. catarrhalis TFP and determined that the TFP expressed by this organism are highly conserved and essential for natural transformation. We extended this initial study by investigating the contribution of TFP to the early stages of M. catarrhalis colonization. TFP-deficient M. catarrhalis bacteria exhibit diminished adherence to eukaryotic cells in vitro. Additionally, our studies demonstrate that M. catarrhalis cells form a mature biofilm in continuous-flow chambers and that biofilm formation is enhanced by TFP expression. The potential role of TFP in colonization by M. catarrhalis was further investigated using in vivo studies comparing the abilities of wild-type M. catarrhalis and an isogenic TFP mutant to colonize the nasopharynx of the chinchilla. These results suggest that the expression of TFP contributes to mucosal airway colonization. Furthermore, these data indicate that the chinchilla model of nasopharyngeal colonization provides an effective animal system for studying the early steps of M. catarrhalis pathogenesis.
Collapse
Affiliation(s)
- Nicole R Luke
- Department of Microbiology and Immunology, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
76
|
Wang W, Reitzer L, Rasko DA, Pearson MM, Blick RJ, Laurence C, Hansen EJ. Metabolic analysis of Moraxella catarrhalis and the effect of selected in vitro growth conditions on global gene expression. Infect Immun 2007; 75:4959-71. [PMID: 17620351 PMCID: PMC2044516 DOI: 10.1128/iai.00073-07] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The nucleotide sequence from the genome of Moraxella catarrhalis ATCC 43617 was annotated and used both to assess the metabolic capabilities and limitations of this bacterium and to design probes for a DNA microarray. An absence of gene products for utilization of exogenous carbohydrates was noteworthy and could be correlated with published phenotypic data. Gene products necessary for aerobic energy generation were present, as were a few gene products generally ascribed to anaerobic systems. Enzymes for synthesis of all amino acids except proline and arginine were present. M. catarrhalis DNA microarrays containing 70-mer oligonucleotide probes were designed from the genome-derived nucleotide sequence data. Analysis of total RNA extracted from M. catarrhalis ATCC 43617 cells grown under iron-replete and iron-restricted conditions was used to establish the utility of these DNA microarrays. These DNA microarrays were then used to analyze total RNA from M. catarrhalis cells grown in a continuous-flow biofilm system and in the planktonic state. The genes whose expression was most dramatically increased by growth in the biofilm state included those encoding a nitrate reductase, a nitrite reductase, and a nitric oxide reductase. Real-time reverse transcriptase PCR analysis was used to validate these DNA microarray results. These results indicate that growth of M. catarrhalis in a biofilm results in increased expression of gene products which can function not only in energy generation but also in resisting certain elements of the innate immune response.
Collapse
Affiliation(s)
- Wei Wang
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9048, USA
| | | | | | | | | | | | | |
Collapse
|
77
|
Bullard B, Lipski S, Lafontaine ER. Regions important for the adhesin activity of Moraxella catarrhalis Hag. BMC Microbiol 2007; 7:65. [PMID: 17608944 PMCID: PMC1931440 DOI: 10.1186/1471-2180-7-65] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 07/03/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Moraxella catarrhalis Hag protein, an Oca autotransporter adhesin, has previously been shown to be important for adherence of this respiratory tract pathogen to human middle ear and A549 lung cells. RESULTS The present study demonstrates that adherence of M. catarrhalis isogenic hag mutant strains to the human epithelial cell lines Chang (conjunctival) and NCIH292 (lung) is reduced by 50-93%. Furthermore, expressing Hag in a heterologous Escherichia coli background substantially increased the adherence of recombinant bacteria to NCIH292 cells and murine type IV collagen. Hag did not, however, increase the attachment of E. coli to Chang cells. These results indicate that Hag directly mediates adherence to NCIH292 lung cells and collagen, but is not sufficient to confer binding to conjunctival monolayers. Several in-frame deletions were engineered within the hag gene of M. catarrhalis strain O35E and the resulting proteins were tested for their ability to mediate binding to NCIH292 monolayers, middle ear cells, and type IV collagen. These experiments revealed that epithelial cell and collagen binding properties are separable, and that residues 385-705 of this ~2,000 amino acid protein are important for adherence to middle ear and NCIH292 cells. The region of O35E-Hag encompassing aa 706 to 1194 was also found to be required for adherence to collagen. In contrast, beta-roll repeats present in Hag, which are structural features conserved in several Oca adhesins and responsible for the adhesive properties of Yersinia enterocolitica YadA, are not important for Hag-mediated adherence. CONCLUSION Hag is a major adherence factor for human cells derived from various anatomical sites relevant to pathogenesis by M. catarrhalis and its structure-function relationships differ from those of other, closely-related autotransporter proteins.
Collapse
Affiliation(s)
- Brian Bullard
- Department of Medical Microbiology and Immunology, University of Toledo Health Sciences Campus, 3055 Arlington Avenue, Toledo, OH, 43614, USA
| | - Serena Lipski
- Department of Medical Microbiology and Immunology, University of Toledo Health Sciences Campus, 3055 Arlington Avenue, Toledo, OH, 43614, USA
| | - Eric R Lafontaine
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, 30602, USA
| |
Collapse
|
78
|
Pearson MM, Hansen EJ. Identification of gene products involved in biofilm production by Moraxella catarrhalis ETSU-9 in vitro. Infect Immun 2007; 75:4316-25. [PMID: 17562762 PMCID: PMC1951151 DOI: 10.1128/iai.01347-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis ETSU-9 was subjected to random transposon insertion mutagenesis to identify genes encoding products involved in the ability of the organism to form biofilms in vitro. Screening of approximately 3,000 transposon insertion mutants in the crystal violet-based biofilm assay system yielded six mutants that exhibited greatly reduced abilities to form biofilms. Three of these mutants had transposon insertions in the uspA2H gene, which encodes a surface protein previously shown to be involved in the ability of M. catarrhalis to both attach to human cell lines in vitro and resist killing by normal human serum. Random insertion mutagenesis of the uspA2H gene, involving the introduction of a 15-nucleotide fragment encoding 5 amino acids, was used to attempt to identify the domain(s) necessary for biofilm formation. Most of these insertions adversely affected biofilm formation, whereas the abilities of these same mutants to attach to Chang conjunctival epithelial cells in vitro were usually not reduced. Gain-of-function experiments showed that introduction of the M. catarrhalis ETSU-9 uspA2H gene into Escherichia coli conferred biofilm formation ability on this recombinant strain. Two of the other three M. catarrhalis ETSU-9 transposon insertion mutants that had greatly reduced abilities to form biofilms were shown to have insertions in genes encoding products predicted to be directly or indirectly involved in cell wall metabolism.
Collapse
Affiliation(s)
- Melanie M Pearson
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9048, USA
| | | |
Collapse
|
79
|
Plamondon P, Luke NR, Campagnari AA. Identification of a novel two-partner secretion locus in Moraxella catarrhalis. Infect Immun 2007; 75:2929-36. [PMID: 17420235 PMCID: PMC1932880 DOI: 10.1128/iai.00396-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Although Moraxella catarrhalis continues to be a significant cause of disease in both children and adults, the steps involved in pathogenesis remain poorly understood. We have identified three open reading frames in the M. catarrhalis genome that encode homologues of the two-partner secretion system (TPS). The sequenced M. catarrhalis hemagglutinin-like locus of strain 7169 has a unique gene organization composed in the order of mchA1, mchB, and mchA2, where mchA1 is divergent. MchA1 and MchA2 are 74% identical at the amino acid level and diverge only in the C-terminal regions. The TPS motif identified in the common N-terminal regions of MchA1 and MchA2 was found to be homologous to the filamentous hemagglutinin of Bordetella pertussis, and MchB has homology to other TpsB transporters. The presence of MchA1 and MchA2 in outer membrane protein preparations and concentrated culture supernatants (CCSs) of strain 7169 was confirmed by immunoblotting using specific antisera. Nanoscale liquid chromatography-tandem mass spectrometry peptide sequencing of the antibody-reactive bands from the CCSs was performed and demonstrated that 13 different peptides mapped to identical regions of MchA1 and MchA2. Quantitative adherence assays revealed a decrease of binding to primary normal human bronchial epithelial cells by the mch mutants 7169mchB and 7169mchA1A2B compared to that by the wild-type strain. These studies show that MchA1, MchA2, and MchB are components of a novel TPS identified in M. catarrhalis and suggest that these proteins may be involved in colonization.
Collapse
Affiliation(s)
- Pascale Plamondon
- Department of Microbiology and Immunology, University at Buffalo, 140 Biomedical Research Building, 3435 Main Street, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
80
|
Liu DF, McMichael JC, Baker SM. Moraxella catarrhalis outer membrane protein CD elicits antibodies that inhibit CD binding to human mucin and enhance pulmonary clearance of M. catarrhalis in a mouse model. Infect Immun 2007; 75:2818-25. [PMID: 17403868 PMCID: PMC1932855 DOI: 10.1128/iai.00074-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The outer membrane protein CD of Moraxella catarrhalis is considered to be a potential vaccine antigen against Moraxella infection. We purified the native CD from isolate O35E, administered it to mice, and detected considerable titers of anti-CD antibodies. Anti-CD sera were cross-reactive towards six different M. catarrhalis isolates and promoted bacterial clearance of O35E in a pulmonary challenge model. To circumvent the difficulty of generating large quantities of CD from M. catarrhalis for vaccine use, the CD gene from O35E was cloned into Escherichia coli, and the recombinant CD, expressed without a signal sequence or fusion tags, represented approximately 70% of the total E. coli proteins. The recombinant CD formed inclusion bodies that were solubilized with 6 M urea and then purified by ion-exchange chromatography, a procedure that produced soluble CD of high purity and yield. Mice immunized with the purified recombinant CD had significant titers of anti-CD antibodies that were cross-reactive towards 24 different M. catarrhalis isolates. Upon challenge, these mice showed enhanced bacterial clearance of both O35E and a heterologous M. catarrhalis isolate, TTA24. In an in vitro assay, antisera to either the native or the recombinant CD inhibited the binding activity of CD to human tracheobronchial mucin in a serum concentration-dependent manner, and the extent of inhibition appeared to correlate with the corresponding anti-CD antibody titer and whole-cell enzyme-linked immunosorbent assay titer. Our results demonstrate that the recombinant CD is a promising vaccine candidate for preventing Moraxella infection.
Collapse
Affiliation(s)
- Dai-Fang Liu
- Wyeth Vaccines Research, 401 N. Middletown Road 205/281, Pearl River, NY 10965, USA.
| | | | | |
Collapse
|
81
|
Balder R, Hassel J, Lipski S, Lafontaine ER. Moraxella catarrhalis strain O35E expresses two filamentous hemagglutinin-like proteins that mediate adherence to human epithelial cells. Infect Immun 2007; 75:2765-75. [PMID: 17371858 PMCID: PMC1932885 DOI: 10.1128/iai.00079-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two-partner secretion (TPS) systems are a family of proteins being rapidly identified and characterized in a growing number of gram-negative bacteria. TPS systems mediate the secretion of proteins, many involved in virulence traits such as hemolysis, adherence to epithelial cells, inhibition of bacterial growth, and immunomodulation of the host. A TPS system typically consists of a transporter located in the bacterial outer membrane (OM) which is responsible for the recognition and secretion of at least one large exoprotein. Two of the better-characterized TPS systems specify the Bordetella pertussis FHA and Haemophilus influenzae HMW1/HMW2 proteins. We identified three gene products of Moraxella catarrhalis strain O35E that resemble TPS proteins and designated them MhaC (transporter), MhaB1 (exoprotein), and MhaB2 (exoprotein). Western blot analysis using anti-MhaC, or antibodies reacting to both MhaB1 and MhaB2 (MhaB-reactive), revealed that these antigens are expressed in the OM of 63% of isolates tested. Mutations in the mhaC gene specifying the putative transporter of the M. catarrhalis wild-type strains O35E, O12E, and McGHS1 resulted in the absence of MhaB1/MhaB2 in the OM of mutants. These results are therefore consistent with the Mha proteins functioning as a TPS system. Furthermore, we discovered that these mhaC mutants exhibit markedly decreased binding to human epithelial cells relevant to pathogenesis by M. catarrhalis (Chang, HEp2, A549, and/or 16HBE14o(-)). Expression of O12E MhaC and MhaB1 in a nonadherent strain of Escherichia coli was found to increase the adherence of recombinant bacteria to HEp2 monolayers by sevenfold, thereby demonstrating that this M. catarrhalis TPS system directly mediates binding to human epithelial cells. The construction of isogenic mutants in the mhaB1 and mhaB2 genes of strain O35E also suggests that the MhaB proteins play distinct roles in M. catarrhalis adherence.
Collapse
Affiliation(s)
- Rachel Balder
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, 220 Riverbend Road, South Building Room 146, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
82
|
Hays JP, Gorkink R, Simons G, Peeters JK, Eadie K, Verduin CM, Verbrugh H, van Belkum A. High-throughput amplification fragment length polymorphism (htAFLP) analysis identifies genetic lineage markers but not complement phenotype-specific markers in Moraxella catarrhalis. Clin Microbiol Infect 2007; 13:55-62. [PMID: 17184288 DOI: 10.1111/j.1469-0691.2006.01582.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Comparative high-throughput amplified fragment length polymorphism (htAFLP) analysis was performed on a set of 25 complement-resistant and 23 complement-sensitive isolates of Moraxella catarrhalis in order to determine whether there were complement phenotype-specific markers within this species. The htAFLP analysis used 21 primer-pair combinations, generating 41 364 individual fragments and 2273 fragment length polymorphisms, with an average of 862 polymorphisms per isolate. Analysis of polymorphism data clearly indicated the presence of two phylogenetic lineages and 40 (2%) lineage-specific polymorphisms. However, despite the presence of 361 (16%) statistically significant complement phenotype-associated polymorphisms, no single marker was 100% complement phenotype-specific. Furthermore, no complement phenotype-specific marker was found within different phylogenetic lineages. These findings agree with previous results indicating that the complement resistance phenotype within M. catarrhalis is probably defined by multiple genes, although not all of these genes may be present within all M. catarrhalis isolates.
Collapse
Affiliation(s)
- J P Hays
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Lipski SL, Holm MM, Lafontaine ER. Identification of aMoraxella catarrhalisgene that confers adherence to various human epithelial cell linesin vitro. FEMS Microbiol Lett 2007; 267:207-13. [PMID: 17166229 DOI: 10.1111/j.1574-6968.2006.00549.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Moraxella catarrhalis is a pathogen of the human airways. We found that expression of the M. catarrhalis gene mcmA by Escherichia coli increases adherence to epithelial cells 100-fold. Furthermore, we discovered that disrupting mcmA decreases M. catarrhalis adherence to laryngeal and lung cells, which are relevant to pathogenesis by the bacterium.
Collapse
Affiliation(s)
- Serena L Lipski
- Department of Medical Microbiology and Immunology, Medical University of Ohio, Toledo, OH 43614, USA
| | | | | |
Collapse
|
84
|
Wang W, Pearson MM, Attia AS, Blick RJ, Hansen EJ. A UspA2H-negative variant of Moraxella catarrhalis strain O46E has a deletion in a homopolymeric nucleotide repeat common to uspA2H genes. Infect Immun 2007; 75:2035-45. [PMID: 17220316 PMCID: PMC1865690 DOI: 10.1128/iai.00609-06] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis strains can express either a UspA2 protein or a UspA2H protein. The latter protein is encoded by a gene that possesses a homopolymeric nucleotide tract containing eight adenine (A) residues [i.e., a poly(A) tract] which is located near the 5' end. A spontaneous UspA2H-negative variant of M. catarrhalis strain O46E, designated O46E.U2V, was found to have a uspA2H poly(A) tract that contained seven A residues. Northern blot analysis of total RNA from the O46E parent strain revealed a readily detectable uspA2H mRNA transcript, whereas little or no uspA2H transcript was detectable in total RNA from the UspA2H-negative variant O46E.U2V. The 5' end of the uspA2H genes from both the O46E parent strain and the O46E.U2V variant were ligated to a promoterless lacZ gene to prepare translational fusions for use as reporter constructs. The level of beta-galactosidase activity expressed by the fusion construct containing eight A residues in its poly(A) tract was 200-fold greater than that obtained with the construct that had seven A residues. Site-directed mutagenesis of the 5' end of the uspA2H gene confirmed that translation was initiated at a GTG codon located 21 nucleotides (nt) upstream of the poly(A) tract. Primer extension analysis determined that the transcriptional start site of the uspA2H gene was located 291 nt upstream from the GTG translational start codon. This poly(A) tract was also found to be present in the uspA2H genes of other M. catarrhalis strains.
Collapse
MESH Headings
- Amino Acid Sequence
- Artificial Gene Fusion
- Bacterial Outer Membrane Proteins/chemistry
- Bacterial Outer Membrane Proteins/genetics
- Base Sequence
- Blotting, Northern
- Codon, Initiator
- Gene Expression
- Genes, Reporter
- Molecular Sequence Data
- Moraxella catarrhalis/genetics
- Mutagenesis, Site-Directed
- Open Reading Frames
- Poly A/genetics
- RNA, Bacterial/analysis
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Repetitive Sequences, Nucleic Acid/genetics
- Sequence Deletion
- Transcription Initiation Site
- Transcription, Genetic
- beta-Galactosidase/analysis
- beta-Galactosidase/genetics
Collapse
Affiliation(s)
- Wei Wang
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | | | |
Collapse
|
85
|
Lipski SL, Akimana C, Timpe JM, Wooten RM, Lafontaine ER. The Moraxella catarrhalis autotransporter McaP is a conserved surface protein that mediates adherence to human epithelial cells through its N-terminal passenger domain. Infect Immun 2006; 75:314-24. [PMID: 17088358 PMCID: PMC1828417 DOI: 10.1128/iai.01330-06] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The protein McaP was previously shown to be an adhesin expressed by the Moraxella catarrhalis strain O35E, which also displays esterase and phospholipase B activities (J. M. Timpe et al., Infect. Immun. 71:4341-4350, 2003). In the present study, sequence analysis suggests that McaP is a conventional autotransporter protein that contains a 12-stranded beta-barrel transporter module (amino acids [aa] 383 to 650) linked to a surface-exposed passenger domain exhibiting lipolytic activity (aa 62 to 330). An in-frame deletion removing most of this predicted N-terminal passenger domain was engineered, and Escherichia coli expressing the truncated McaP protein exhibited greatly reduced adherence to A549 human lung epithelial cells compared to E. coli expressing wild-type McaP. Site-directed mutagenesis of a serine residue at position 62 of McaP, predicted to be important for the lipolytic activity of the protein, resulted in loss of hydrolysis of p-nitrophenyl ester of caproate. E. coli expressing this mutated McaP, however, adhered to A549 monolayers at levels greater than recombinant bacteria expressing the wild-type adhesin. These results indicate that the predicted passenger domain of McaP is involved in both the binding and the lipolytic activity of the molecule and demonstrate that the adhesive properties of McaP do not require its lipolytic activity. Sequence analysis of mcaP from eight Moraxella catarrhalis strains revealed that the gene product is highly conserved at the amino acid level (98 to 100% identity), and Western blot analysis demonstrated that a panel of 16 isolates all express McaP. Flow cytometry experiments using antibodies raised against various portions of McaP indicated that its predicted passenger domain as well as transporter module contain surface-exposed epitopes. In addition to binding to the surface of intact bacteria, these antibodies were found to decrease adherence of M. catarrhalis to A549 human lung cells by up to 47% and to reduce binding of recombinant E. coli expressing McaP by 98%. These results suggest that McaP should be considered as a potential vaccine antigen.
Collapse
Affiliation(s)
- Serena L Lipski
- Department of Medical Microbiology and Immunology, University of Toledo Health Sciences Campus, 3055 Arlington Avenue, Toledo, Ohio 43614, USA
| | | | | | | | | |
Collapse
|
86
|
Fine DH, Kaplan JB, Kachlany SC, Schreiner HC. How we got attached to Actinobacillus actinomycetemcomitans: A model for infectious diseases. Periodontol 2000 2006; 42:114-57. [PMID: 16930309 DOI: 10.1111/j.1600-0757.2006.00189.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Daniel H Fine
- Center for Oral Infectious Diseases, Department of Oral Biology, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA
| | | | | | | |
Collapse
|
87
|
Slevogt H, Seybold J, Tiwari KN, Hocke AC, Jonatat C, Dietel S, Hippenstiel S, Singer BB, Bachmann S, Suttorp N, Opitz B. Moraxella catarrhalis is internalized in respiratory epithelial cells by a trigger-like mechanism and initiates a TLR2- and partly NOD1-dependent inflammatory immune response. Cell Microbiol 2006; 9:694-707. [PMID: 17054439 DOI: 10.1111/j.1462-5822.2006.00821.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Moraxella catarrhalis is an important pathogen in patients with chronic obstructive lung disease (COPD). While M. catarrhalis has been categorized as an extracellular bacterium so far, the potential to invade human respiratory epithelium has not yet been explored. Our results obtained by electron and confocal microscopy demonstrated a considerable potential of M. catarrhalis to invade bronchial epithelial (BEAS-2B) cells, type II pneumocytes (A549) and primary small airway epithelial cells (SAEC). Moraxella invasion was dependent on cellular microfilament as well as on bacterial viability, and characterized by macropinocytosis leading to the formation of lamellipodia and engulfment of the invading organism into macropinosomes, thus indicating a trigger-like uptake mechanism. In addition, the cells examined expressed TLR2 as well as NOD1, a recently found cytosolic protein implicated in the intracellular recognition of bacterial cell wall components. Importantly, inhibition of TLR2 or NOD1 expression by RNAi significantly reduced the M. catarrhalis-induced IL-8 secretion. The role of TLR2 and NOD1 was further confirmed by overexpression assays in HEK293 cells. Overall, M. catarrhalis may employ lung epithelial cell invasion to colonize and to infect the respiratory tract, nonetheless, the bacteria are recognized by cell surface TLR2 and the intracellular surveillance molecule NOD1.
Collapse
Affiliation(s)
- Hortense Slevogt
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité- Universitätsmedizin Berlin, 13353 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Brooks MJ, Laurence CA, Hansen EJ, Gray-Owen SD. Characterization of the Moraxella catarrhalis opa-like protein, OlpA, reveals a phylogenetically conserved family of outer membrane proteins. J Bacteriol 2006; 189:76-82. [PMID: 17041038 PMCID: PMC1797210 DOI: 10.1128/jb.00788-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis is a human-restricted pathogen that can cause respiratory tract infections. In this study, we identified a previously uncharacterized 24-kDa outer membrane protein with a high degree of similarity to Neisseria Opa protein adhesins, with a predicted beta-barrel structure consisting of eight antiparallel beta-sheets with four surface-exposed loops. In striking contrast to the antigenically variable Opa proteins, the M. catarrhalis Opa-like protein (OlpA) is highly conserved and constitutively expressed, with 25 of 27 strains corresponding to a single variant. Protease treatment of intact bacteria and isolation of outer membrane vesicles confirm that the protein is surface exposed yet does not bind host cellular receptors recognized by neisserial Opa proteins. Genome-based analyses indicate that OlpA and Opa derive from a conserved family of proteins shared by a broad array of gram-negative bacteria.
Collapse
Affiliation(s)
- Michael J Brooks
- Department of Medical Genetics and Microbiology, Room 4381, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | | | | | | |
Collapse
|
89
|
Tan TT, Christensen JJ, Dziegiel MH, Forsgren A, Riesbeck K. Comparison of the serological responses to Moraxella catarrhalis immunoglobulin D-binding outer membrane protein and the ubiquitous surface proteins A1 and A2. Infect Immun 2006; 74:6377-86. [PMID: 16966403 PMCID: PMC1695507 DOI: 10.1128/iai.00702-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis immunoglobulin D-binding protein (MID) is a complex antigen with unique immunoglobulin D (IgD)-binding, adhesion, and hemagglutination properties. Previous studies have shown that antibodies raised against MID764-913 in rabbits inhibited M. catarrhalis adhesion to human alveolar epithelial cells, and immunization with MID764-913 resulted in an increased pulmonary clearance in a murine model. Strong immune responses against MID have also consistently been shown in humans. Here, the MID-specified IgG responses were compared to those of ubiquitous surface proteins A1 and A2 (UspA1/A2) using a series of recombinant fragments that spanned all three proteins. Sera were obtained from young children, aged 6 months to 1 year (n=8) and 2 to 3 years (n=15), and healthy adults (n=16). Acute- and convalescent-phase sera from chronic obstructive pulmonary disease (COPD) patients with M. catarrhalis infective exacerbations (n=23) were also analyzed. Young children, who are at risk of M. catarrhalis infection, had low levels of anti-MID and anti-UspA1/A2 antibodies. Healthy adults and the majority of COPD patients (16/23) had high levels of antibodies directed against, among others, the adhesive domain of MID and the fibronectin- and C3-binding domains of UspA1/A2. Among eight COPD patients in whom a rise in antibody levels could be detected, these functional domains were also the main regions targeted by the antibodies. In addition, human IgG directed against MID was bactericidal and anti-MID antibodies were additive to antibodies targeting UspA1/A2. Hence, the functional domains in these three antigens may have significant potential in a future vaccine against M. catarrhalis.
Collapse
Affiliation(s)
- Thuan Tong Tan
- Medical Microbiology, Department of Laboratory Medicine, Malmö University Hospital, Lund University, SE-205 02, Malmö, Sweden
| | | | | | | | | |
Collapse
|
90
|
Attia AS, Hansen EJ. A conserved tetranucleotide repeat is necessary for wild-type expression of the Moraxella catarrhalis UspA2 protein. J Bacteriol 2006; 188:7840-52. [PMID: 16963572 PMCID: PMC1636323 DOI: 10.1128/jb.01204-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The UspA2 protein has been shown to be directly involved in the serum-resistant phenotype of Moraxella catarrhalis. The predicted 5'-untranslated regions (UTR) of the uspA2 genes in several different M. catarrhalis strains were shown to contain various numbers (i.e., 6 to 23) of a heteropolymeric tetranucleotide (AGAT) repeat. Deletion of the AGAT repeats from the uspA2 genes in the serum-resistant M. catarrhalis strains O35E and O12E resulted in a drastic reduction in UspA2 protein expression and serum resistance. PCR and transformation were used to construct a series of M. catarrhalis O12E strains that differed only in the number of AGAT repeats in their uspA2 genes. Expression of UspA2 was maximal in the presence of 18 AGAT repeats, although serum resistance attained wild-type levels in the presence of as few as nine AGAT repeats. Increased UspA2 expression was correlated with both increased binding of vitronectin and decreased binding of polymerized C9. Real-time reverse transcription-PCR analysis showed that changes in the number of AGAT repeats affected the levels of uspA2 mRNA, with 15 to 18 AGAT repeats yielding maximal levels. Primer extension analysis indicated that these AGAT repeats were contained in the 5'-UTR of the uspA2 gene. The mRNA transcribed from a uspA2 gene containing 18 AGAT repeats was found to have a longer half-life than that transcribed from a uspA2 gene lacking AGAT repeats. These data confirm that the presence of the AGAT repeats in the 5'-UTR of the uspA2 gene is necessary for both normal expression of the UspA2 protein and serum resistance.
Collapse
Affiliation(s)
- Ahmed S Attia
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9048, USA
| | | |
Collapse
|
91
|
Scarselli M, Serruto D, Montanari P, Capecchi B, Adu-Bobie J, Veggi D, Rappuoli R, Pizza M, Aricò B. Neisseria meningitidis NhhA is a multifunctional trimeric autotransporter adhesin. Mol Microbiol 2006; 61:631-44. [PMID: 16803596 DOI: 10.1111/j.1365-2958.2006.05261.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
NhhA, Neisseriahia/hsf homologue, or GNA0992, is an oligomeric outer membrane protein of Neisseria meningitidis, recently included in the family of trimeric autotransporter adhesins. In this study we present the structural and functional characterization of this protein. By expressing in Escherichia coli the full-length gene, deletion mutants and chimeric proteins of NhhA, we demonstrated that the last 72 C-terminal residues are able to allow trimerization and localization of the N-terminal protein domain to the bacterial surface. In addition, we investigated on the possible role of NhhA in bacterial-host interaction events. We assessed in vitro the ability of recombinant purified NhhA to bind human epithelial cells as well as laminin and heparan sulphate. Furthermore, we shown that E. coli strain expressing NhhA was able to adhere to epithelial cells, and observed a reduced adherence in a meningococcal isogenic MC58DeltaNhhA mutant. We concluded that this protein is a multifunctional adhesin, able to promote the bacterial adhesion to host cells and extracellular matrix components. Collectively, our results underline a putative role of NhhA in meningococcal pathogenesis and ascertain its structural and functional belonging to the emerging group of bacterial autotransporter adhesins with trimeric architecture.
Collapse
|
92
|
Wang W, Hansen EJ. Plasmid pWW115, a cloning vector for use with Moraxella catarrhalis. Plasmid 2006; 56:133-7. [PMID: 16757025 DOI: 10.1016/j.plasmid.2006.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 03/15/2006] [Accepted: 03/18/2006] [Indexed: 11/25/2022]
Abstract
The plasmid shuttle vector pWW102B is able to replicate in only a modest number of Moraxella catarrhalis strains. Plasmid pWW115, a spontaneous deletion mutant of pWW102B, was shown to lack both the pACYC184-derived origin of replication and the associated chloramphenicol-resistance gene but was able to replicate in every M. catarrhalis strain tested in this study, including one strain that had been previously refractory to all types of genetic manipulations. To test the utility of this plasmid, a M. catarrhalis gene encoding the UspA2 serum-resistance factor was cloned into pWW115 and the resultant recombinant plasmid was shown to confer serum-resistance on a serum-sensitive M. catarrhalis uspA2 mutant.
Collapse
Affiliation(s)
- Wei Wang
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9048, USA
| | | |
Collapse
|
93
|
Attia AS, Ram S, Rice PA, Hansen EJ. Binding of vitronectin by the Moraxella catarrhalis UspA2 protein interferes with late stages of the complement cascade. Infect Immun 2006; 74:1597-611. [PMID: 16495531 PMCID: PMC1418666 DOI: 10.1128/iai.74.3.1597-1611.2006] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many Moraxella catarrhalis strains are resistant to the bactericidal activity of normal human serum (NHS). The UspA2 protein of the serum-resistant strain O35E has previously been shown to be directly involved in conferring serum resistance on this strain. Testing of 11 additional serum-resistant M. catarrhalis wild-type isolates and their uspA1 and uspA2 mutants showed that the uspA1 mutants of all 11 strains were consistently serum resistant and that the uspA2 mutants of these same 11 strains were always serum sensitive. Analysis of complement deposition on four different serum-resistant M. catarrhalis strains and their serum-sensitive uspA2 mutants showed that, for three of these four strain sets, the wild-type and mutant strains bound similar amounts of early complement components. In contrast, there was a significant reduction in the amount of the polymerized C9 on the wild-type strains relative to that on the uspA2 mutants. These same three wild-type strains bound more vitronectin than did their uspA2 mutants. UspA2 proteins from these three strains, when expressed in Haemophilus influenzae, bound vitronectin and conferred serum resistance on this organism. Furthermore, vitronectin-depleted NHS exhibited bactericidal activity against these same three serum-resistant wild-type strains; addition of purified vitronectin to this serum restored serum resistance. In contrast, binding of the complement regulator C4b-binding protein by the M. catarrhalis strains used in this study was found to be highly variable and did not appear to correlate with the serum-resistant phenotype. These results indicate that binding of vitronectin by UspA2 is involved in the serum resistance of M. catarrhalis; this represents the first example of vitronectin-mediated serum resistance on a microbe.
Collapse
Affiliation(s)
- Ahmed S Attia
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9048, USA
| | | | | | | |
Collapse
|
94
|
Pearson MM, Laurence CA, Guinn SE, Hansen EJ. Biofilm formation by Moraxella catarrhalis in vitro: roles of the UspA1 adhesin and the Hag hemagglutinin. Infect Immun 2006; 74:1588-96. [PMID: 16495530 PMCID: PMC1418653 DOI: 10.1128/iai.74.3.1588-1596.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutant analysis was used to identify Moraxella catarrhalis gene products necessary for biofilm development in a crystal violet-based assay involving 24-well tissue culture plates. The wild-type M. catarrhalis strains that formed the most extensive biofilms in this system proved to be refractory to transposon mutagenesis, so an M. catarrhalis strain was constructed that was both able to form biofilms in vitro and amenable to transposon mutagenesis. Chromosomal DNA from the biofilm-positive strain O46E was used to transform the biofilm-negative strain O35E; transformants able to form biofilms were identified and subjected to transposon-mediated mutagenesis. Biofilm-negative mutants of these transformants were shown to have a transposon insertion in the uspA1 gene. Nucleotide sequence analysis revealed that the biofilm-positive transformant T14 contained a hybrid O46E-O35E uspA1 gene, with the N-terminal 155 amino acids being derived from the O46E UspA1 protein. Transformant T14 was also shown to be unable to express the Hag protein, which normally extends from the surface of the M. catarrhalis cell. Introduction of a wild-type O35E hag gene into T14 eliminated its ability to form a biofilm. When the hybrid O46E-O35E uspA1 gene from T14 was used to replace the uspA1 gene of O35E, this transformant strain did not form a biofilm. However, inactivation of the hag gene did allow biofilm formation by strain O35E expressing the hybrid O46E-O35E uspA1 gene product. The Hag protein was shown to have an inhibitory or negative effect on biofilm formation by these M. catarrhalis strains in the crystal violet-based assay.
Collapse
Affiliation(s)
- Melanie M Pearson
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9048, USA
| | | | | | | |
Collapse
|
95
|
Girard V, Mourez M. Adhesion mediated by autotransporters of Gram-negative bacteria: Structural and functional features. Res Microbiol 2006; 157:407-16. [PMID: 16725315 DOI: 10.1016/j.resmic.2006.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 01/22/2006] [Accepted: 02/03/2006] [Indexed: 01/05/2023]
Abstract
The ability of bacterial proteins to promote adhesion to biological surfaces is a fundamental step in bacterial infections. Some bacterial adhesins belong to the family of autotransporters, which are secreted to the surface of Gram-negative bacteria by an elegantly simple mechanism. This review will summarize their functional and structural features.
Collapse
Affiliation(s)
- Victoria Girard
- Department of Pathology and Microbiology, School of Veterinary Medicine, University of Montreal, 3200 Sicotte, Saint Hyacinthe, QC, J2S 7C6, Canada
| | | |
Collapse
|
96
|
Linke D, Riess T, Autenrieth IB, Lupas A, Kempf VAJ. Trimeric autotransporter adhesins: variable structure, common function. Trends Microbiol 2006; 14:264-70. [PMID: 16678419 DOI: 10.1016/j.tim.2006.04.005] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 03/10/2006] [Accepted: 04/19/2006] [Indexed: 11/24/2022]
Abstract
Trimeric autotransporter adhesins (TAAs) are important virulence factors in gram-negative pathogens. Despite the variety of hosts ranging from plants to mammals and the specialized regulation of TAAs, their molecular organization follows surprisingly simple rules: they form trimeric surface structures with a head-stalk-anchor architecture. The head and stalk are composed of a small set of domains, building blocks that are frequently arranged repetitively. We propose that this repetitive arrangement facilitates recombination of domains to modulate the specificity of the common function: adhesion to the host.
Collapse
Affiliation(s)
- Dirk Linke
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Proteinevolution, Spemannstr. 35, 72076 Tübingen, Germany.
| | | | | | | | | |
Collapse
|
97
|
Schaller A, Troller R, Molina D, Gallati S, Aebi C, Stutzmann Meier P. Rapid typing of Moraxella catarrhalis subpopulations based on outer membrane proteins using mass spectrometry. Proteomics 2006; 6:172-80. [PMID: 16317771 DOI: 10.1002/pmic.200500086] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Moraxella catarrhalis is a major mucosal pathogen of the human respiratory tract both in children and in adults. Two subpopulations of this organism have been described that differ in 16S rRNA gene sequence and virulence traits. Three 16S rRNA types have been defined. 2-DE followed by protein identification by MS revealed significant differences in the outer membrane protein (OMP) patterns of each M. catarrhalis 16S rRNA type. Approximately 130 features were detected on the 2-DE map of each M. catarrhalis 16S rRNA type. However, only 50 features were expressed by all strains. Furthermore, direct profiling of isolated OMP using MALDI-TOF MS resulted in a characteristic spectral fingerprint for each 16S rRNA type. Fingerprints remained identical when intact cells instead of isolated OMP were analyzed. This finding suggests that the source of desorbed ions is the outer membrane. Based on the fingerprint we were able to assign 18 well-characterized clinical M. catarrhalis isolates to the correct subpopulation. Therefore, MALDI-TOF of intact M. catarrhalis provides a rapid and robust tool for M. catarrhalis strain typing that could be applied in epidemiological studies.
Collapse
Affiliation(s)
- André Schaller
- Division of Human Genetics, University of Bern, Friedbuehlstrasse 51, CH-3010 Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
98
|
Edwards KJ, Schwingel JM, Datta AK, Campagnari AA. Multiplex PCR assay that identifies the major lipooligosaccharide serotype expressed by Moraxella catarrhalis clinical isolates. J Clin Microbiol 2006; 43:6139-43. [PMID: 16333114 PMCID: PMC1317230 DOI: 10.1128/jcm.43.12.6139-6143.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A heterologous cluster of glycosyltransferase genes was identified in the three Moraxella catarrhalis LOS serotype strains. Multiple PCR primers designed to this region amplified products that differentiate between the serotypes more rapidly and efficiently than previously described serological analyses. This assay will be valuable for clinical and research-based studies.
Collapse
Affiliation(s)
- Katie J Edwards
- Department of Microbiology, University at Buffalo, Biomedical Research Bldg. Rm. 143, 3435 Main Street, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
99
|
Heiniger N, Troller R, Meier PS, Aebi C. Cold shock response of the UspA1 outer membrane adhesin of Moraxella catarrhalis. Infect Immun 2006; 73:8247-55. [PMID: 16299321 PMCID: PMC1307079 DOI: 10.1128/iai.73.12.8247-8255.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colonization of the human nasopharynx exposes Moraxella catarrhalis, a common cause of otitis media in children and exacerbations of chronic obstructive pulmonary disease in adults, to sudden downshifts in temperature, occurring when the host breathes cold air. We investigated whether in vitro cold shock influences the expressions of the outer membrane adhesins UspA1 and hemagglutinin, which are considered virulence factors, and of an M. catarrhalis homolog of recA, a housekeeping gene, which in Escherichia coli is induced by cold shock. Quantitative real-time reverse transcriptase PCR was used for measuring mRNA copy number. A screening experiment revealed that a cold shock at 26 degrees C maximally induced the copy number of uspA1. In comparison with 37 degrees C conditions, a 1-hour cold shock at 26 degrees C increased copy numbers of uspA1 and recA by 2.5-fold (11.2 +/- 1.8 versus 4.5 +/- 0.8 copies/CFU) and 2.7-fold (0.30 +/- 0.10 versus 0.11 +/- 0.06), respectively, but did not induce transcription of hag. Exposure to 26 degrees C increased surface expression of UspA1, as assessed by fluorescence-activated cell sorter analysis, and resulted in a significant increase in adherence of strain O35E to Chang human conjunctival cells (97.1% +/- 2.0% versus 48.3% +/- 9.2% at 37 degrees C; P = 0.01). Cold shock induction of uspA1 and recA was detected in strains belonging to either phylogenetic subpopulation of M. catarrhalis (16S rRNA types 1 and 2/3) and was most pronounced in type 2/3 strains (4- to 25-fold for uspA1), which do not express detectable amounts of UspA1 protein at 37 degrees C. These data indicate that cold shock at a physiologically relevant temperature of 26 degrees C induces the expression of at least one virulence factor (UspA1). To our knowledge, no similar data are available for other nasopharyngeal pathogens.
Collapse
Affiliation(s)
- Nadja Heiniger
- Institute for Infectious Diseases, University of Bern, CH-3010 Bern, Switzerland
| | | | | | | |
Collapse
|
100
|
Murphy TF, Brauer AL, Aebi C, Sethi S. Antigenic specificity of the mucosal antibody response to Moraxella catarrhalis in chronic obstructive pulmonary disease. Infect Immun 2006; 73:8161-6. [PMID: 16299311 PMCID: PMC1307080 DOI: 10.1128/iai.73.12.8161-8166.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis is an important human mucosal pathogen causing otitis media in children and lower respiratory tract infection in adults with chronic obstructive pulmonary disease (COPD). Little is known about the mucosal antibody response to M. catarrhalis in adults with COPD. In this study, 10 pairs of well-characterized sputum supernatant samples from adults with COPD who had acquired and subsequently cleared M. catarrhalis from their respiratory tracts were studied in detail in an effort to begin to elucidate potentially protective immune responses. Flow cytometry analysis was used to study the distribution of immunoglobulin isotypes in paired preacquisition and postclearance sputum samples. The results showed that immunoglobulin A (IgA) is the predominant M. catarrhalis-specific immunoglobulin isotype and that the sputum IgA contains a secretory component, indicating that it is locally produced at the mucosal site. Most patients made new sputum IgA responses to the adhesins UspA1 and Hag, along with the surface protein UspA2. A smaller proportion of patients made new sputum IgA responses to the iron-regulated proteins TbpB and CopB and to lipooligosaccharide. These results have important implications in understanding the mucosal immune response to M. catarrhalis in the setting of COPD and in elucidating the elements of a protective immune response.
Collapse
Affiliation(s)
- Timothy F Murphy
- VA Western New York Healthcare System, Medical Research 151, 3495 Bailey Avenue, Buffalo, NY 14215, USA.
| | | | | | | |
Collapse
|