51
|
Lin JY, Chen TC, Weng KF, Chang SC, Chen LL, Shih SR. Viral and host proteins involved in picornavirus life cycle. J Biomed Sci 2009; 16:103. [PMID: 19925687 PMCID: PMC2785775 DOI: 10.1186/1423-0127-16-103] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Accepted: 11/20/2009] [Indexed: 01/11/2023] Open
Abstract
Picornaviruses cause several diseases, not only in humans but also in various animal hosts. For instance, human enteroviruses can cause hand-foot-and-mouth disease, herpangina, myocarditis, acute flaccid paralysis, acute hemorrhagic conjunctivitis, severe neurological complications, including brainstem encephalitis, meningitis and poliomyelitis, and even death. The interaction between the virus and the host is important for viral replication, virulence and pathogenicity. This article reviews studies of the functions of viral and host factors that are involved in the life cycle of picornavirus. The interactions of viral capsid proteins with host cell receptors is discussed first, and the mechanisms by which the viral and host cell factors are involved in viral replication, viral translation and the switch from translation to RNA replication are then addressed. Understanding how cellular proteins interact with viral RNA or viral proteins, as well as the roles of each in viral infection, will provide insights for the design of novel antiviral agents based on these interactions.
Collapse
Affiliation(s)
- Jing-Yi Lin
- Research Center for Emerging Viral Infections, Chang Gung University, Tao-Yuan, Taiwan.
| | | | | | | | | | | |
Collapse
|
52
|
Conversion of VPg into VPgpUpUOH before and during poliovirus negative-strand RNA synthesis. J Virol 2009; 83:12660-70. [PMID: 19812161 DOI: 10.1128/jvi.01676-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There are two protein primers involved in picornavirus RNA replication, VPg, the viral protein of the genome, and VPgpUpU(OH). A cis-acting replication element (CRE) within the open reading frame of poliovirus (PV) RNA allows the viral RNA-dependent RNA polymerase 3D(Pol) to catalyze the conversion of VPg into VPgpUpU(OH). In this study, we used preinitiation RNA replication complexes (PIRCs) to determine when CRE-dependent VPg uridylylation occurs relative to the sequential synthesis of negative- and positive-strand RNA. Guanidine HCl (2 mM), a reversible inhibitor of PV 2C(ATPase), prevented CRE-dependent VPgpUpU(OH) synthesis and the initiation of negative-strand RNA synthesis. VPgpUpU(OH) and nascent negative-strand RNA molecules were synthesized coincident in time following the removal of guanidine, consistent with PV RNA functioning simultaneously as a template for CRE-dependent VPgpUpU(OH) synthesis and negative-strand RNA synthesis. The amounts of [(32)P]UMP incorporated into VPgpUpU(OH) and negative-strand RNA products indicated that 100 to 400 VPgpUpU(OH) molecules were made coincident in time with each negative-strand RNA. 3'-dCTP inhibited the elongation of nascent negative-strand RNAs without affecting CRE-dependent VPg uridylylation. A 3' nontranslated region mutation which inhibited negative-strand RNA synthesis did not inhibit CRE-dependent VPg uridylylation. Together, the data implicate 2C(ATPase) in the mechanisms whereby PV RNA functions as a template for reiterative CRE-dependent VPg uridylylation before and during negative-strand RNA synthesis.
Collapse
|
53
|
Liu Y, Wimmer E, Paul AV. Cis-acting RNA elements in human and animal plus-strand RNA viruses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:495-517. [PMID: 19781674 PMCID: PMC2783963 DOI: 10.1016/j.bbagrm.2009.09.007] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 09/09/2009] [Accepted: 09/13/2009] [Indexed: 02/08/2023]
Abstract
The RNA genomes of plus-strand RNA viruses have the ability to form secondary and higher-order structures that contribute to their stability and to their participation in inter- and intramolecular interactions. Those structures that are functionally important are called cis-acting RNA elements because their functions cannot be complemented in trans. They can be involved not only in RNA/RNA interactions but also in binding of viral and cellular proteins during the complex processes of translation, RNA replication and encapsidation. Most viral cis-acting RNA elements are located in the highly structured 5'- and 3'-nontranslated regions of the genomes but sometimes they also extend into the adjacent coding sequences. In addition, some cis-acting RNA elements are embedded within the coding sequences far away from the genomic ends. Although the functional importance of many of these structures has been confirmed by genetic and biochemical analyses, their precise roles are not yet fully understood. In this review we have summarized what is known about cis-acting RNA elements in nine families of human and animal plus-strand RNA viruses with an emphasis on the most thoroughly characterized virus families, the Picornaviridae and Flaviviridae.
Collapse
Affiliation(s)
- Ying Liu
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11790, USA
| | | | | |
Collapse
|
54
|
Victoria M, Colina R, Miagostovich MP, Leite JP, Cristina J. Phylogenetic prediction of cis-acting elements: a cre-like sequence in Norovirus genome? BMC Res Notes 2009; 2:176. [PMID: 19735574 PMCID: PMC2749865 DOI: 10.1186/1756-0500-2-176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 09/07/2009] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Discrete RNA structures such as cis-acting replication elements (cre) in the coding region of RNA virus genomes create characteristic suppression of synonymous site variability (SSSV). Different phylogenetic methods have been developed to predict secondary structures in RNA viruses, for high-resolution thermodynamic scanning and for detecting SSSV. These approaches have been successfully in predicting cis-acting signals in different members of the family Picornaviridae and Caliciviridae. In order to gain insight into the identification of cis-acting signals in viruses whose mechanisms of replication are currently unknown, we performed a phylogenetic analysis of complete genome sequences from 49 Human Norovirus (NoV) strains. FINDINGS The complete coding sequences of NoV ORF1 were obtained from the DDBJ database and aligned. Shannon entropy calculations and RNAalifold consensus RNA structure prediction identified a discrete, conserved, invariant sequence region with a characteristic AAACG cre motif at positions 240 through 291 of the RNA dependant RNA polymerase (RdRp) sequence (relative to strain [EMBL:EU794713]). This sequence region has a high probability to conform a stem-loop. CONCLUSION A new predicted stem-loop has been identified near the 5' end of the RdRp of Human NoV genome. This is the same location recently reported for Hepatovirus cre stem-loop.
Collapse
Affiliation(s)
- Matías Victoria
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz, FIOCRUZ, Av. Brasil 4365, Manguinhos, 21040-360 Rio deJaneiro, RJ, Brasil.
| | | | | | | | | |
Collapse
|
55
|
Jegouic S, Joffret ML, Blanchard C, Riquet FB, Perret C, Pelletier I, Colbere-Garapin F, Rakoto-Andrianarivelo M, Delpeyroux F. Recombination between polioviruses and co-circulating Coxsackie A viruses: role in the emergence of pathogenic vaccine-derived polioviruses. PLoS Pathog 2009; 5:e1000412. [PMID: 19412342 PMCID: PMC2669712 DOI: 10.1371/journal.ppat.1000412] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Accepted: 04/06/2009] [Indexed: 11/30/2022] Open
Abstract
Ten outbreaks of poliomyelitis caused by pathogenic circulating vaccine-derived polioviruses (cVDPVs) have recently been reported in different regions of the world. Two of these outbreaks occurred in Madagascar. Most cVDPVs were recombinants of mutated poliovaccine strains and other unidentified enteroviruses of species C. We previously reported that a type 2 cVDPV isolated during an outbreak in Madagascar was co-circulating with coxsackieviruses A17 (CA17) and that sequences in the 3′ half of the cVDPV and CA17 genomes were related. The goal of this study was to investigate whether these CA17 isolates can act as recombination partners of poliovirus and subsequently to evaluate the major effects of recombination events on the phenotype of the recombinants. We first cloned the infectious cDNA of a Madagascar CA17 isolate. We then generated recombinant constructs combining the genetic material of this CA17 isolate with that of the type 2 vaccine strain and that of the type 2 cVDPV. Our results showed that poliovirus/CA17 recombinants are viable. The recombinant in which the 3′ half of the vaccine strain genome had been replaced by that of the CA17 genome yielded larger plaques and was less temperature sensitive than its parental strains. The virus in which the 3′ portion of the cVDPV genome was replaced by the 3′ half of the CA17 genome was almost as neurovirulent as the cVDPV in transgenic mice expressing the poliovirus cellular receptor gene. The co-circulation in children and genetic recombination of viruses, differing in their pathogenicity for humans and in certain other biological properties such as receptor usage, can lead to the generation of pathogenic recombinants, thus constituting an interesting model of viral evolution and emergence. Following intense vaccination campaigns with Sabin's trivalent live-attenuated oral poliovirus vaccine, poliomyelitis caused by wild polioviruses has disappeared from large parts of the world. However, poliomyelitis outbreaks due to pathogenic circulating vaccine-derived polioviruses (cVDPVs) have recently been reported in countries with low vaccine coverage. Most of these cVDPVs seem to be recombinants of mutated vaccine strains and undetermined coxsackieviruses. We have previously shown a cVDPV isolated during an outbreak in Madagascar to be co-circulating with coxsackievirus A17 (CA17) strains with 3′ genomic sequences related to those of the cVDPV. In this study, we determined whether these CA17 isolates can act as recombination partners of poliovirus. Using genetic engineering techniques, we constructed a variety of recombinant viruses derived from a CA17 isolate, the cVDPV and the corresponding original vaccine strain. Our results showed that poliovirus/CA17 recombinants are viable. Moreover, the recombinant virus resulting from the replacement of the 3′ half of the cVDPV genome by that of the CA17 genome was almost as pathogenic as the cVDPV. This supports the notion that co-circulation and co-evolution through the recombination of polioviruses and coxsackieviruses contribute to the emergence of epidemic cVDPVs. This constitutes an interesting model of viral evolution and emergence.
Collapse
Affiliation(s)
- Sophie Jegouic
- Institut Pasteur, Unité de Biologie des Virus Entériques, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Tolf C, Gullberg M, Johansson ES, Tesh RB, Andersson B, Lindberg AM. Molecular characterization of a novel Ljungan virus (Parechovirus; Picornaviridae) reveals a fourth genotype and indicates ancestral recombination. J Gen Virol 2009; 90:843-853. [PMID: 19264646 PMCID: PMC2889435 DOI: 10.1099/vir.0.007948-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 12/22/2008] [Indexed: 01/11/2023] Open
Abstract
Ljungan virus (LV) was discovered 20 years ago in Swedish bank voles (Myodes glareolus, previously referred to as Clethrionomys glareolus) during the search for an infectious agent causing lethal myocarditis in young athletes. To date, the genomes of four LV isolates, including the prototype 87-012 strain, have been characterized. Three of these LV strains were isolated from bank voles trapped in Sweden. Sequence analysis of an American virus (M1146), isolated from a montane vole (Microtus montanus) in western USA, indicates that this strain represents a genotype that is different from the Swedish strains. Here, we present genomic analyses of a fifth LV strain (64-7855) isolated from a southern red-backed vole (Myodes gapperi) trapped during arbovirus studies in New York state in the north-eastern USA in the 1960s. Sequence analysis of the 64-7855 genome showed an LV-like genome organization and sequence similarity to other LV strains. Genetic and phylogenetic analyses of the evolutionary relationship between the 64-7855 strain and other viruses within the family Picornaviridae, including previously published LV strains, demonstrated that the 64-7855 strain constitutes a new genotype within the LV species. Analyses also showed that different regions of the 64-7855 genome have different phylogenetic relationships with other LV strains, indicating that previous recombination events have been involved in the evolution of this virus.
Collapse
Affiliation(s)
- Conny Tolf
- School of Pure and Applied Natural Sciences, University of Kalmar, SE-39182 Kalmar, Sweden
| | - Maria Gullberg
- School of Pure and Applied Natural Sciences, University of Kalmar, SE-39182 Kalmar, Sweden
| | - E. Susanne Johansson
- Discipline of Immunology and Microbiology, Faculty of Health, The University of Newcastle, David Maddison Clinical Sciences Building, Royal Newcastle Hospital, Newcastle, NSW 2300, Australia
| | - Robert B. Tesh
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Björn Andersson
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - A. Michael Lindberg
- School of Pure and Applied Natural Sciences, University of Kalmar, SE-39182 Kalmar, Sweden
| |
Collapse
|
57
|
Steil BP, Barton DJ. Cis-active RNA elements (CREs) and picornavirus RNA replication. Virus Res 2009; 139:240-52. [PMID: 18773930 PMCID: PMC2692539 DOI: 10.1016/j.virusres.2008.07.027] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 07/25/2008] [Accepted: 07/29/2008] [Indexed: 10/21/2022]
Abstract
Our understanding of picornavirus RNA replication has improved over the past 10 years, due in large part to the discovery of cis-active RNA elements (CREs) within picornavirus RNA genomes. CREs function as templates for the conversion of VPg, the Viral Protein of the genome, into VPgpUpU(OH). These so called CREs are different from the previously recognized cis-active RNA sequences and structures within the 5' and 3' NTRs of picornavirus genomes. Two adenosine residues in the loop of the CRE RNA structures allow the viral RNA-dependent RNA polymerase 3D(Pol) to add two uridine residues to the tyrosine residue of VPg. Because VPg and/or VPgpUpU(OH) prime the initiation of viral RNA replication, the asymmetric replication of viral RNA could not be explained without an understanding of the viral RNA template involved in the conversion of VPg into VPgpUpU(OH) primers. We review the growing body of knowledge regarding picornavirus CREs and discuss how CRE RNAs work coordinately with viral replication proteins and other cis-active RNAs in the 5' and 3' NTRs during RNA replication.
Collapse
Affiliation(s)
- Benjamin P Steil
- Department of Microbiology and Program in Molecular Biology, University of Colorado Denver, School of Medicine, United States
| | | |
Collapse
|
58
|
Pathak HB, Oh HS, Goodfellow IG, Arnold JJ, Cameron CE. Picornavirus genome replication: roles of precursor proteins and rate-limiting steps in oriI-dependent VPg uridylylation. J Biol Chem 2008; 283:30677-88. [PMID: 18779320 PMCID: PMC2576561 DOI: 10.1074/jbc.m806101200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 09/05/2008] [Indexed: 11/06/2022] Open
Abstract
The 5' ends of all picornaviral RNAs are linked covalently to the genome-encoded peptide, VPg (or 3B). VPg linkage is thought to occur in two steps. First, VPg serves as a primer for production of diuridylylated VPg (VPg-pUpU) in a reaction catalyzed by the viral polymerase that is templated by an RNA element (oriI). It is currently thought that the viral 3AB protein is the source of VPg in vivo. Second, VPg-pUpU is transferred to the 3' end of plus- and/or minus-strand RNA and serves as primer for production of full-length RNA. Nothing is known about the mechanism of transfer. We present biochemical and biological evidence refuting the use of 3AB as the donor for VPg uridylylation. Our data are consistent with precursors 3BC and/or 3BCD being employed for uridylylation. This conclusion is supported by in vitro uridylylation of these proteins, the ability of a mutant replicon incapable of producing processed VPg to replicate in HeLa cells and cell-free extracts and corresponding precursor processing profiles, and the demonstration of 3BC-linked RNA in mutant replicon-transfected cells. These data permit elaboration of our model for VPg uridylylation to include the use of precursor proteins and invoke a possible mechanism for location of the diuridylylated, VPg-containing precursor at the 3' end of plus- or minus-strand RNA for production of full-length RNA. Finally, determinants of VPg uridylylation efficiency suggest formation and/or collapse or release of the uridylylated product as the rate-limiting step in vitro depending upon the VPg donor employed.
Collapse
Affiliation(s)
- Harsh B Pathak
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | |
Collapse
|
59
|
Yang Y, Yi M, Evans DJ, Simmonds P, Lemon SM. Identification of a conserved RNA replication element (cre) within the 3Dpol-coding sequence of hepatoviruses. J Virol 2008; 82:10118-28. [PMID: 18684812 PMCID: PMC2566277 DOI: 10.1128/jvi.00787-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2008] [Accepted: 07/29/2008] [Indexed: 11/20/2022] Open
Abstract
Internally located, cis-acting RNA replication elements (cre) have been identified within the genomes of viruses representing each of the major picornavirus genera (Enterovirus, Rhinovirus, Aphthovirus, and Cardiovirus) except Hepatovirus. Previous efforts to identify a stem-loop structure with cre function in hepatitis A virus (HAV), the type species of this genus, by phylogenetic analyses or thermodynamic predictions have not succeeded. However, a region of markedly suppressed synonymous codon variability was identified in alignments of HAV sequences near the 5' end of the 3D(pol)-coding sequence of HAV, consistent with noncoding constraints imposed by an underlying RNA secondary structure. Subsequent MFOLD predictions identified a 110-nucleotide (nt) complex stem-loop in this region with a typical AAACA/G cre motif in its top loop. A potentially homologous RNA structure was identified in this region of the avian encephalitis virus genome, despite little nucleotide sequence relatedness between it and HAV. Mutations that disrupted secondary RNA structure or the AAACA/G motif, without altering the amino acid sequence of 3D(pol), ablated replication of a subgenomic HAV replicon in transfected human hepatoma cells. Replication competence could be rescued by reinsertion of the native 110-nt stem-loop structure (but not an abbreviated 45-nt stem-loop) upstream of the HAV coding sequence in the replicon. These results suggest that this stem-loop is functionally similar to cre elements of other picornaviruses and likely involved in templating VPg uridylylation as in other picornaviruses, despite its significantly larger size and lower free folding energy.
Collapse
Affiliation(s)
- Yan Yang
- Center for Hepatitis Research, 4.104 Blocker Medical Research Bldg., University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1073, USA
| | | | | | | | | |
Collapse
|
60
|
Riquet FB, Blanchard C, Jegouic S, Balanant J, Guillot S, Vibet MA, Rakoto-Andrianarivelo M, Delpeyroux F. Impact of exogenous sequences on the characteristics of an epidemic type 2 recombinant vaccine-derived poliovirus. J Virol 2008; 82:8927-32. [PMID: 18579607 PMCID: PMC2519664 DOI: 10.1128/jvi.00239-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2008] [Accepted: 06/09/2008] [Indexed: 11/20/2022] Open
Abstract
Pathogenic circulating vaccine-derived polioviruses (cVDPVs) have become a major obstacle to the successful completion of the global polio eradication program. Most cVDPVs are recombinant between the oral poliovirus vaccine (OPV) and human enterovirus species C (HEV-C). To study the role of HEV-C sequences in the phenotype of cVDPVs, we generated a series of recombinants between a Madagascar cVDPV isolate and its parental OPV type 2 strain. Results indicated that the HEV-C sequences present in this cVDPV contribute to its characteristics, including pathogenicity, suggesting that interspecific recombination contributes to the phenotypic biodiversity of polioviruses and may favor the emergence of cVDPVs.
Collapse
Affiliation(s)
- Franck B Riquet
- Unité de Biologie des Virus Entériques, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Zoll J, Heus HA, van Kuppeveld FJM, Melchers WJG. The structure-function relationship of the enterovirus 3'-UTR. Virus Res 2008; 139:209-16. [PMID: 18706945 DOI: 10.1016/j.virusres.2008.07.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 07/02/2008] [Indexed: 12/25/2022]
Abstract
Essential processes in living cells are carried out by large complex assemblies, which typically consist of a large number of proteins and frequently also contain nucleic acids, mostly RNA [Alberts, B., 1998. The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92, 291-294]. These large biomolecular complexes carry out biological processes in highly sophisticated ways: molecules do not move around randomly in the cell and interact by chance, but are guided to these "macromolecular machines", in which the number of possible collisions is restricted to a few possibilities, based, e.g., on the specificity of protein-RNA recognition. While the coding capacity of RNA lies within its sequence, the shape of an RNA molecule determines other functionalities such as stability, intra- and intermolecular interactions, catalytic activity, regulation of cellular processes, etc. [Doudna, J.A., 2000. Structural genomics of RNA. Nat. Struct. Biol. 7, 954-956; Cech, T.R. 2000. Structural biology. The ribosome is a ribozyme. Science 289, 878-879]. RNA structures in macromolecular machines are important features in assembly, target recognition and activity. Viral RNA molecules contain cis- and/or trans-acting control elements that, as exemplified by internal ribosomal entry sites and origins of genome replication, consist of complex multidomain structures [Andino, R., Rieckhof, G.E., Achacoso, P.L., Baltimore D., 1993. Poliovirus RNA synthesis utilizes an RNP complex formed around the 5'-end of viral RNA. EMBO J. 12, 3587-3598; Melchers, W.J.G., Hoenderop, J.G.J., Bruins Slot, H.J., Pleij, C.W.A., Pilipenko, E.V., Agol, V.I., Galama, J.M.D., 1997. Kissing of the two predominant hairpin loops in the coxsackie B virus 3' untranslated region is the essential structural feature of the origin of replication required for negative-strand RNA synthesis. J. Virol. 71, 686-696]. The formation of these structures is involved in the specific recognition of ligands or serves to support the structural integrity of the whole element. The replication of the enterovirus RNA is carried out by a large biomolecular complex formed by cis-acting RNA elements found in the 5'- and 3'-UTR of the virus genome and several cellular and viral proteins. This review will focus on RNA elements in the 3'-UTR of enteroviruses.
Collapse
Affiliation(s)
- Jan Zoll
- Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Department of Medical Microbiology, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
62
|
Cordey S, Gerlach D, Junier T, Zdobnov EM, Kaiser L, Tapparel C. The cis-acting replication elements define human enterovirus and rhinovirus species. RNA (NEW YORK, N.Y.) 2008; 14:1568-1578. [PMID: 18541697 PMCID: PMC2491478 DOI: 10.1261/rna.1031408] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 04/24/2008] [Indexed: 05/26/2023]
Abstract
Replication of picornaviruses is dependent on VPg uridylylation, which is linked to the presence of the internal cis-acting replication element (cre). Cre are located within the sequence encoding polyprotein, yet at distinct positions as demonstrated for poliovirus and coxsackievirus-B3, cardiovirus, and human rhinovirus (HRV-A and HRV-B), overlapping proteins 2C, VP2, 2A, and VP1, respectively. Here we report a novel distinct cre element located in the VP2 region of the recently reported HRV-A2 species and provide evolutionary evidence of its functionality. We also experimentally interrogated functionality of recently identified HRV-B cre in the 2C region that is orthologous to the human enterovirus (HEV) cre and show that it is dispensable for replication and appears to be a nonfunctional evolutionary relic. In addition, our mutational analysis highlights two amino acids in the 2C protein that are crucial for replication. Remarkably, we conclude that each genetic clade of HRV and HEV is characterized by a unique functional cre element, where evolutionary success of a new genetic lineage seems to be associated with an invention of a novel cre motif and decay of the ancestral one. Therefore, we propose that cre element could be considered as an additional criterion for human rhinovirus and enterovirus classification.
Collapse
Affiliation(s)
- Samuel Cordey
- Central Laboratory of Virology, Division of Infectious Diseases, University of Geneva Hospitals, 1211 Geneva 14, Switzerland.
| | | | | | | | | | | |
Collapse
|
63
|
The crystal structure of coxsackievirus B3 RNA-dependent RNA polymerase in complex with its protein primer VPg confirms the existence of a second VPg binding site on Picornaviridae polymerases. J Virol 2008; 82:9577-90. [PMID: 18632861 DOI: 10.1128/jvi.00631-08] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The RNA-dependent RNA polymerase (RdRp) is a central piece in the replication machinery of RNA viruses. In picornaviruses this essential RdRp activity also uridylates the VPg peptide, which then serves as a primer for RNA synthesis. Previous genetic, binding, and biochemical data have identified a VPg binding site on poliovirus RdRp and have shown that is was implicated in VPg uridylation. More recent structural studies have identified a topologically distinct site on the closely related foot-and-mouth disease virus RdRp supposed to be the actual VPg-primer-binding site. Here, we report the crystal structure at 2.5-A resolution of active coxsackievirus B3 RdRp (also named 3D(pol)) in a complex with VPg and a pyrophosphate. The pyrophosphate is situated in the active-site cavity, occupying a putative binding site either for the coproduct of the reaction or an incoming NTP. VPg is bound at the base of the thumb subdomain, providing first structural evidence for the VPg binding site previously identified by genetic and biochemical methods. The binding mode of VPg to CVB3 3D(pol) at this site excludes its uridylation by the carrier 3D(pol). We suggest that VPg at this position is either uridylated by another 3D(pol) molecule or that it plays a stabilizing role within the uridylation complex. The CVB3 3D(pol)/VPg complex structure is expected to contribute to the understanding of the multicomponent VPg-uridylation complex essential for the initiation of genome replication of picornaviruses.
Collapse
|
64
|
Simmonds P, Karakasiliotis I, Bailey D, Chaudhry Y, Evans DJ, Goodfellow IG. Bioinformatic and functional analysis of RNA secondary structure elements among different genera of human and animal caliciviruses. Nucleic Acids Res 2008; 36:2530-46. [PMID: 18319285 PMCID: PMC2377429 DOI: 10.1093/nar/gkn096] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 02/02/2008] [Accepted: 02/18/2008] [Indexed: 11/14/2022] Open
Abstract
The mechanism and role of RNA structure elements in the replication and translation of Caliciviridae remains poorly understood. Several algorithmically independent methods were used to predict secondary structures within the Norovirus, Sapovirus, Vesivirus and Lagovirus genera. All showed profound suppression of synonymous site variability (SSSV) at genomic 5' ends and the start of the sub-genomic (sg) transcript, consistent with evolutionary constraints from underlying RNA structure. A newly developed thermodynamic scanning method predicted RNA folding mapping precisely to regions of SSSV and at the genomic 3' end. These regions contained several evolutionarily conserved RNA secondary structures, of variable size and positions. However, all caliciviruses contained 3' terminal hairpins, and stem-loops in the anti-genomic strand invariably six bases upstream of the sg transcript, indicating putative roles as sg promoters. Using the murine norovirus (MNV) reverse-genetics system, disruption of 5' end stem-loops produced approximately 15- to 20-fold infectivity reductions, while disruption of the RNA structure in the sg promoter region and at the 3' end entirely destroyed replication ability. Restoration of infectivity by repair mutations in the sg promoter region confirmed a functional role for the RNA secondary structure, not the sequence. This study provides comprehensive bioinformatic resources for future functional studies of MNV and other caliciviruses.
Collapse
Affiliation(s)
- Peter Simmonds
- Centre for Infectious Diseases, University of Edinburgh, Summerhall, Edinburgh, EH9 1QH, UK.
| | | | | | | | | | | |
Collapse
|
65
|
Shen M, Reitman ZJ, Zhao Y, Moustafa I, Wang Q, Arnold JJ, Pathak HB, Cameron CE. Picornavirus genome replication. Identification of the surface of the poliovirus (PV) 3C dimer that interacts with PV 3Dpol during VPg uridylylation and construction of a structural model for the PV 3C2-3Dpol complex. J Biol Chem 2008; 283:875-88. [PMID: 17993457 PMCID: PMC2186065 DOI: 10.1074/jbc.m707907200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Picornaviruses have a peptide termed VPg covalently linked to the 5'-end of the genome. Attachment of VPg to the genome occurs in at least two steps. First, Tyr-3 of VPg, or some precursor thereof, is used as a primer by the viral RNA-dependent RNA polymerase, 3Dpol, to produce VPg-pUpU. Second, VPg-pUpU is used as a primer to produce full-length genomic RNA. Production of VPg-pUpU is templated by a single adenylate residue located in the loop of an RNA stem-loop structure termed oriI by using a slide-back mechanism. Recruitment of 3Dpol to and its stability on oriI have been suggested to require an interaction between the back of the thumb subdomain of 3Dpol and an undefined region of the 3C domain of viral protein 3CD. We have performed surface acidic-to-alanine-scanning mutagenesis of 3C to identify the surface of 3C with which 3Dpol interacts. This analysis identified numerous viable poliovirus mutants with reduced growth kinetics that correlated to reduced kinetics of RNA synthesis that was attributable to a change in VPg-pUpU production. Importantly, these 3C derivatives were all capable of binding to oriI as well as wild-type 3C. Synthetic lethality was observed for these mutants when placed in the context of a poliovirus mutant containing 3Dpol-R455A, a residue on the back of the thumb required for VPg uridylylation. These data were used to guide molecular docking of the structures for a poliovirus 3C dimer and 3Dpol, leading to a structural model for the 3C(2)-3Dpol complex that extrapolates well to all picornaviruses.
Collapse
Affiliation(s)
- Miaoqing Shen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Shen M, Wang Q, Yang Y, Pathak HB, Arnold JJ, Castro C, Lemon SM, Cameron CE. Human rhinovirus type 14 gain-of-function mutants for oriI utilization define residues of 3C(D) and 3Dpol that contribute to assembly and stability of the picornavirus VPg uridylylation complex. J Virol 2007; 81:12485-95. [PMID: 17855535 PMCID: PMC2169002 DOI: 10.1128/jvi.00972-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Accepted: 08/30/2007] [Indexed: 11/20/2022] Open
Abstract
VPg linkage to the 5' ends of picornavirus RNAs requires production of VPg-pUpU. VPg-pUpU is templated by an RNA stem-loop (the cre or oriI) found at different locations in picornavirus genomes. At least one adaptive mutation is required for human rhinovirus type 14 (HRV-14) to use poliovirus type 3 (PV-3) or PV-1 oriI efficiently. One mutation changes Leu-94 of 3C to Pro; the other changes Asp-406 of 3Dpol to Asn. By using an in vitro VPg uridylylation system for HRV-14 that recapitulates biological phenotypes, we show that the 3C adaptive mutation functions at the level of 3C(D) and the 3D adaptive mutation functions at the level of 3Dpol. Pro-94 3C(D) has an expanded specificity and enhanced stability relative to wild-type 3C(D) that leads to production of more processive uridylylation complexes. PV-1/HRV-14 oriI chimeras reveal sequence specificity in 3C(D) recognition of oriI that resides in the upper stem. Asn-406 3Dpol is as active as wild-type 3Dpol in RNA-primed reactions but exhibits greater VPg uridylylation activity due to more efficient recruitment to and retention in the VPg uridylylation complex. Asn-406 3Dpol from PV-1 exhibits identical behavior. These studies suggest a two-step binding mechanism in the assembly of the 3C(D)-oriI complex that leads to unwinding of at least the upper stem of oriI and provide additional support for a direct interaction between the back of the thumb of 3Dpol and 3C that is required for 3Dpol recruitment to and retention in the uridylylation complex.
Collapse
Affiliation(s)
- Miaoqing Shen
- Pennsylvania State University, Department of Biochemistry and Molecular Biology, 201 Althouse Laboratory, University Park, PA 16802, USA
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Tapparel C, Junier T, Gerlach D, Cordey S, Van Belle S, Perrin L, Zdobnov EM, Kaiser L. New complete genome sequences of human rhinoviruses shed light on their phylogeny and genomic features. BMC Genomics 2007; 8:224. [PMID: 17623054 PMCID: PMC1949831 DOI: 10.1186/1471-2164-8-224] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 07/10/2007] [Indexed: 12/15/2022] Open
Abstract
Background Human rhinoviruses (HRV), the most frequent cause of respiratory infections, include 99 different serotypes segregating into two species, A and B. Rhinoviruses share extensive genomic sequence similarity with enteroviruses and both are part of the picornavirus family. Nevertheless they differ significantly at the phenotypic level. The lack of HRV full-length genome sequences and the absence of analysis comparing picornaviruses at the whole genome level limit our knowledge of the genomic features supporting these differences. Results Here we report complete genome sequences of 12 HRV-A and HRV-B serotypes, more than doubling the current number of available HRV sequences. The whole-genome maximum-likelihood phylogenetic analysis suggests that HRV-B and human enteroviruses (HEV) diverged from the last common ancestor after their separation from HRV-A. On the other hand, compared to HEV, HRV-B are more related to HRV-A in the capsid and 3B-C regions. We also identified the presence of a 2C cis-acting replication element (cre) in HRV-B that is not present in HRV-A, and that had been previously characterized only in HEV. In contrast to HEV viruses, HRV-A and HRV-B share also markedly lower GC content along the whole genome length. Conclusion Our findings provide basis to speculate about both the biological similarities and the differences (e.g. tissue tropism, temperature adaptation or acid lability) of these three groups of viruses.
Collapse
Affiliation(s)
- Caroline Tapparel
- Central Laboratory of Virology, Division of Infectious Diseases, University of Geneva Hospitals, 24 Rue Micheli-du-Crest, 1211 Geneva 14, Switzerland
| | - Thomas Junier
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1 Rue Michel-Servet, 1211 Geneva 14, Switzerland
| | - Daniel Gerlach
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1 Rue Michel-Servet, 1211 Geneva 14, Switzerland
| | - Samuel Cordey
- Central Laboratory of Virology, Division of Infectious Diseases, University of Geneva Hospitals, 24 Rue Micheli-du-Crest, 1211 Geneva 14, Switzerland
| | - Sandra Van Belle
- Central Laboratory of Virology, Division of Infectious Diseases, University of Geneva Hospitals, 24 Rue Micheli-du-Crest, 1211 Geneva 14, Switzerland
| | - Luc Perrin
- Central Laboratory of Virology, Division of Infectious Diseases, University of Geneva Hospitals, 24 Rue Micheli-du-Crest, 1211 Geneva 14, Switzerland
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1 Rue Michel-Servet, 1211 Geneva 14, Switzerland
- Swiss Institute of Bioinformatics, 1 Rue Michel-Servet, 1211 Geneva 14, Switzerland
- Imperial College London, South Kensington Campus, SW7 2AZ London, UK
| | - Laurent Kaiser
- Central Laboratory of Virology, Division of Infectious Diseases, University of Geneva Hospitals, 24 Rue Micheli-du-Crest, 1211 Geneva 14, Switzerland
| |
Collapse
|
68
|
Pathak HB, Arnold JJ, Wiegand PN, Hargittai MRS, Cameron CE. Picornavirus genome replication: assembly and organization of the VPg uridylylation ribonucleoprotein (initiation) complex. J Biol Chem 2007; 282:16202-13. [PMID: 17392285 PMCID: PMC2116992 DOI: 10.1074/jbc.m610608200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
All picornaviruses have a protein, VPg, covalently linked to the 5'-ends of their genomes. Uridylylated VPg (VPg-pUpU) is thought to serve as the protein primer for RNA synthesis. VPg-pUpU can be produced in vitro by the viral polymerase, 3Dpol, in a reaction in which a single adenylate residue of a stem-loop structure, termed oriI, templates processive incorporation of UMP into VPg by using a "slide-back" mechanism. This reaction is greatly stimulated by viral precursor protein 3CD or its processed derivative, 3C; both contain RNA-binding and protease activities. We show that the 3C domain encodes specificity for oriI, and the 3D domain enhances the overall affinity for oriI. Thus, 3C(D) stimulation exhibits an RNA length dependence. By using a minimal system to evaluate the mechanism of VPg uridylylation, we show that the active complex contains polymerase, oriI, and 3C(D) at stoichiometry of 1:1:2. Dimerization of 3C(D) is supported by physical and structural data. Polymerase recruitment to and retention in this complex require a protein-protein interaction between the polymerase and 3C(D). Physical and functional data for this interaction are provided for three picornaviruses. VPg association with this complex is weak, suggesting that formation of a complex containing all necessary components of the reaction is rate-limiting for the reaction. We suggest that assembly of this complex in vivo would be facilitated by use of precursor proteins instead of processed proteins. These data provide a glimpse into the organization of the ribonucleoprotein complex that catalyzes this key step in picornavirus genome replication.
Collapse
Affiliation(s)
- Harsh B Pathak
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | |
Collapse
|
69
|
Korneeva VS, Cameron CE. Structure-function relationships of the viral RNA-dependent RNA polymerase: fidelity, replication speed, and initiation mechanism determined by a residue in the ribose-binding pocket. J Biol Chem 2007; 282:16135-45. [PMID: 17400557 PMCID: PMC2116994 DOI: 10.1074/jbc.m610090200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Studies of the RNA-dependent RNA polymerase (RdRp) from poliovirus (PV), 3Dpol, have shown that Asn-297 permits this enzyme to distinguish ribose from 2'-deoxyribose. All animal RNA viruses have Asn at the structurally homologous position of their polymerases, suggesting a conserved function for this residue. However, all prokaryotic RNA viruses have Glu at this position. In the presence of Mg2+, the apparent affinity of Glu-297 3Dpol for 2'-deoxyribonucleotides was decreased by 6-fold relative to wild type without a substantial difference in the fidelity of 2'-dNMP incorporation. The fidelity of ribonucleotide misincorporation for Glu-297 3Dpol was reduced by 14-fold relative to wild type. A 4- to 11-fold reduction in the rate of ribonucleotide incorporation was observed. Glu-297 PV was unable to grow in HeLa cells due to a replication defect equivalent to that observed for a mutant PV encoding an inactive polymerase. Evaluation of the protein-(VPg)-primed initiation reaction showed that only half of the Glu-297 3Dpol initiation complexes were capable of producing VPg-pUpU product and that the overall yield of uridylylated VPg products was reduced by 20-fold relative to wild-type enzyme, a circumstance attributable to a reduced affinity for UTP. These studies identify the first RdRp derivative with a mutator phenotype and provide a mechanistic basis for the elevated mutation frequency of RNA phage relative to animal RNA viruses observed in culture. Although protein-primed initiation and RNA-primed elongation complexes employ the same polymerase active site, the functional differences reported here imply significant structural differences between these complexes.
Collapse
Affiliation(s)
- Victoria S. Korneeva
- From the Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Craig E. Cameron
- From the Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
70
|
Marcotte LL, Wass AB, Gohara DW, Pathak HB, Arnold JJ, Filman DJ, Cameron CE, Hogle JM. Crystal structure of poliovirus 3CD protein: virally encoded protease and precursor to the RNA-dependent RNA polymerase. J Virol 2007; 81:3583-96. [PMID: 17251299 PMCID: PMC1866080 DOI: 10.1128/jvi.02306-06] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 01/19/2007] [Indexed: 01/07/2023] Open
Abstract
Poliovirus 3CD is a multifunctional protein that serves as a precursor to the protease 3C(pro) and the viral polymerase 3D(pol) and also plays a role in the control of viral replication. Although 3CD is a fully functional protease, it lacks polymerase activity. We have solved the crystal structures of 3CD at a 3.4-A resolution and the G64S fidelity mutant of 3D(pol) at a 3.0-A resolution. In the 3CD structure, the 3C and 3D domains are joined by a poorly ordered polypeptide linker, possibly to facilitate its cleavage, in an arrangement that precludes intramolecular proteolysis. The polymerase active site is intact in both the 3CD and the 3D(pol) G64S structures, despite the disruption of a network proposed to position key residues in the active site. Therefore, changes in molecular flexibility may be responsible for the differences in fidelity and polymerase activities. Extensive packing contacts between symmetry-related 3CD molecules and the approach of the 3C domain's N terminus to the VPg binding site suggest how 3D(pol) makes biologically relevant interactions with the 3C, 3CD, and 3BCD proteins that control the uridylylation of VPg during the initiation of viral replication. Indeed, mutations designed to disrupt these interfaces have pronounced effects on the uridylylation reaction in vitro.
Collapse
Affiliation(s)
- Laura L Marcotte
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Toyoda H, Yin J, Mueller S, Wimmer E, Cello J. Oncolytic Treatment and Cure of Neuroblastoma by a Novel Attenuated Poliovirus in a Novel Poliovirus-Susceptible Animal Model. Cancer Res 2007; 67:2857-64. [PMID: 17363609 DOI: 10.1158/0008-5472.can-06-3713] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neuroblastoma is one of the most common solid tumors in children. Treatment is of limited utility for high-risk neuroblastoma and prognosis is poor. Resistance of neuroblastoma to conventional therapies has prompted us to search for a novel therapeutic approach based on genetically modified polioviruses. Poliovirus targets motor neurons leading to irreversible paralysis. Neurovirulence can be attenuated by point mutations or by exchange of genetic elements between different picornaviruses. We have developed a novel and stable attenuated poliovirus, replicating in neuroblastoma cells, by engineering an indigenous replication element (cre), copied from a genome-internal site, into the 5'-nontranslated genomic region (mono-crePV). An additional host range mutation (A(133)G) conferred replication in mouse neuroblastoma cells (Neuro-2a(CD155)) expressing CD155, the poliovirus receptor. Crossing immunocompetent transgenic mice susceptible to poliovirus (CD155 tg mice) with A/J mice generated CD155 tgA/J mice, which we immunized against poliovirus. Neuro-2a(CD155) cells were then transplanted into these animals, leading to lethal tumors. Despite preexisting high titers of anti-poliovirus antibodies, established lethal s.c. Neuro-2a(CD155) tumors in CD155 tgA/J mice were eliminated by intratumoral administrations of A(133)Gmono-crePV. No signs of paralysis were observed. Interestingly, no tumor growth was observed in mice cured of neuroblastoma that were reinoculated s.c. with Neuro-2a(CD155). This result indicates that the destruction of neuroblastoma cells by A(133)Gmono-crePV may lead to a robust antitumor immune response. We suggest that our novel attenuated oncolytic poliovirus is a promising candidate for effective oncolytic treatment of human neuroblastoma or other cancer even in the presence of present or induced antipolio immunity.
Collapse
Affiliation(s)
- Hidemi Toyoda
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, New York 11794-5222, USA
| | | | | | | | | |
Collapse
|
72
|
Liu Y, Franco D, Paul AV, Wimmer E. Tyrosine 3 of poliovirus terminal peptide VPg(3B) has an essential function in RNA replication in the context of its precursor protein, 3AB. J Virol 2007; 81:5669-84. [PMID: 17360746 PMCID: PMC1900252 DOI: 10.1128/jvi.02350-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Poliovirus (PV) VPg is a genome-linked protein that is essential for the initiation of viral RNA replication. It has been well established that RNA replication is initiated when a molecule of UMP is covalently linked to the hydroxyl group of a tyrosine (Y3) in VPg by the viral RNA polymerase 3D(pol), but it is not yet known whether the substrate for uridylylation in vivo is the free peptide itself or one of its precursors. The aim of this study was to use complementation analyses to obtain information about the true in vivo substrate for uridylylation by 3D(pol). Previously, it was shown that a VPg mutant, in which tyrosine 3 and threonine 4 were replaced by phenylalanine and alanine (3F4A), respectively, was nonviable. We have now tested whether wild-type forms of proteins 3B, 3BC, 3BCD, 3AB, 3ABC, and P3 provided either in trans or in cis could rescue the replication defect of the VPg(3F4A) mutations in the PV polyprotein. Our results showed that proteins 3B, 3BC, 3BCD, and P3 were unable to complement the RNA replication defect in dicistronic PV or dicistronic luciferase replicons in vivo. However, cotranslation of the P3 precursor protein allowed rescue of RNA replication of the VPg(3F4A) mutant in an in vitro cell-free translation-RNA replication system, but only poor complementation was observed when 3BC, 3AB, 3BCD, or 3ABC proteins were cotranslated in the same assay. Interestingly, only protein 3AB but not 3B and 3BC, when provided in cis by insertion of a wild-type 3AB coding sequence between the P2 and P3 domains of the polyprotein, supported the replication of the mutated genome in vivo. Elimination of cleavage between 3A and 3B in the complementing 3AB protein, however, led to a complete lack of RNA replication. Our results suggest that (i) VPg has to be delivered to the replication complex in the form of a large protein precursor (P3) to be fully functional in replication; (ii) the replication complex formed during PV replication in vivo is essentially inaccessible to proteins provided in trans, even if the complementing protein is translated from a different cistron of the same RNA genome; (iii) 3AB is the most likely precursor of VPg; and (iv) Y3 of VPg has an essential function in RNA replication in the context of both VPg and 3AB.
Collapse
Affiliation(s)
- Ying Liu
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
73
|
Richards OC, Spagnolo JF, Lyle JM, Vleck SE, Kuchta RD, Kirkegaard K. Intramolecular and intermolecular uridylylation by poliovirus RNA-dependent RNA polymerase. J Virol 2006; 80:7405-15. [PMID: 16840321 PMCID: PMC1563691 DOI: 10.1128/jvi.02533-05] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The 22-amino-acid protein VPg can be uridylylated in solution by purified poliovirus 3D polymerase in a template-dependent reaction thought to mimic primer formation during RNA amplification in infected cells. In the cell, the template used for the reaction is a hairpin RNA termed 2C-cre and, possibly, the poly(A) at the 3' end of the viral genome. Here, we identify several additional substrates for uridylylation by poliovirus 3D polymerase. In the presence of a 15-nucleotide (nt) RNA template, the poliovirus polymerase uridylylates other polymerase molecules in an intermolecular reaction that occurs in a single step, as judged by the chirality of the resulting phosphodiester linkage. Phosphate chirality experiments also showed that VPg uridylylation can occur by a single step; therefore, there is no obligatory uridylylated intermediate in the formation of uridylylated VPg. Other poliovirus proteins that could be uridylylated by 3D polymerase in solution were viral 3CD and 3AB proteins. Strong effects of both RNA and protein ligands on the efficiency and the specificity of the uridylylation reaction were observed: uridylylation of 3D polymerase and 3CD protein was stimulated by the addition of viral protein 3AB, and, when the template was poly(A) instead of the 15-nt RNA, the uridylylation of 3D polymerase itself became intramolecular instead of intermolecular. Finally, an antiuridine antibody identified uridylylated viral 3D polymerase and 3CD protein, as well as a 65- to 70-kDa host protein, in lysates of virus-infected human cells.
Collapse
Affiliation(s)
- Oliver C Richards
- Department of Microbiology and Immunology, Stanford University School of Medicine, 299 Campus Drive, Stanford, CA 94305-5402, USA
| | | | | | | | | | | |
Collapse
|
74
|
Filomatori CV, Lodeiro MF, Alvarez DE, Samsa MM, Pietrasanta L, Gamarnik AV. A 5' RNA element promotes dengue virus RNA synthesis on a circular genome. Genes Dev 2006; 20:2238-49. [PMID: 16882970 PMCID: PMC1553207 DOI: 10.1101/gad.1444206] [Citation(s) in RCA: 292] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The mechanisms of RNA replication of plus-strand RNA viruses are still unclear. Here, we identified the first promoter element for RNA synthesis described in a flavivirus. Using dengue virus as a model, we found that the viral RdRp discriminates the viral RNA by specific recognition of a 5' element named SLA. We demonstrated that RNA-RNA interactions between 5' and 3' end sequences of the viral genome enhance dengue virus RNA synthesis only in the presence of an intact SLA. We propose a novel mechanism for minus-strand RNA synthesis in which the viral polymerase binds SLA at the 5' end of the genome and reaches the site of initiation at the 3' end via long-range RNA-RNA interactions. These findings provide an explanation for the strict requirement of dengue virus genome cyclization during viral replication.
Collapse
|
75
|
Schein CH, Volk DE, Oezguen N, Paul A. Novel, structure-based mechanism for uridylylation of the genome-linked peptide (VPg) of picornaviruses. Proteins 2006; 63:719-26. [PMID: 16498624 DOI: 10.1002/prot.20891] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The VPg peptide, which is found in poliovirus infected cells either covalently bound to the 5'-end of both plus and minus strand viral RNA, or in a uridylylated free form, is essential for picornavirus replication. Combining experimental structure and mutation results with molecular modeling suggests a new mechanism for VPg uridylylation, which assigns an additional function, that of scaffold, to the polymerase. The polarity of the NMR structure of VPg is complementary to the binding site on the surface of poliovirus polymerase determined previously by mutagenesis. Docking VPg at this position places the reactive tyrosinate close to the 5'-end of Poly(A)7 RNA when this is bound with its 3'-end in the active site of the polymerase. The triphosphate tail of a UTP moiety, base paired with the 5'-end of the RNA, projects back over the Tyr3-OH and is held in position by conserved positively charged side-chains of VPg. Other conserved residues mediate binding to the polymerase surface and serve as ligands for metal ion catalyzed transphosphorylation. Additional viral proteins or a second polymerase molecule may aid in stabilizing the components of the reaction. In the model complex, VPg can direct its own uridylylation before entering the polymerase active site.
Collapse
Affiliation(s)
- Catherine H Schein
- Sealy Center for Structural Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-0857, USA.
| | | | | | | |
Collapse
|
76
|
Rohayem J, Robel I, Jäger K, Scheffler U, Rudolph W. Protein-primed and de novo initiation of RNA synthesis by norovirus 3Dpol. J Virol 2006; 80:7060-9. [PMID: 16809311 PMCID: PMC1489054 DOI: 10.1128/jvi.02195-05] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Accepted: 04/21/2006] [Indexed: 01/07/2023] Open
Abstract
Noroviruses (Caliciviridae) are RNA viruses with a single-stranded, positive-oriented polyadenylated genome. To date, little is known about the replication strategy of norovirus, a so-far noncultivable virus. We have examined the initiation of replication of the norovirus genome in vitro, using the active norovirus RNA-dependent RNA polymerase (3D(pol)), homopolymeric templates, and synthetic subgenomic or antisubgenomic RNA. Initiation of RNA synthesis on homopolymeric templates as well as replication of subgenomic polyadenylated RNA was strictly primer dependent. In this context and as observed for other enteric RNA viruses, i.e., poliovirus, a protein-primed initiation of RNA synthesis after elongation of the VPg by norovirus 3D(pol) was postulated. To address this question, norovirus VPg was expressed in Escherichia coli and purified. Incubation of VPg with norovirus 3D(pol) generated VPg-poly(U), which primed the replication of subgenomic polyadenylated RNA. In contrast, replication of antisubgenomic RNA was not primer dependent, nor did it depend on a leader sequence, as evidenced by deletion analysis of the 3' termini of subgenomic and antisubgenomic RNA. On nonpolyadenylated RNA, i.e., antisubgenomic RNA, norovirus 3D(pol) initiated RNA synthesis de novo and terminated RNA synthesis by a poly(C) stretch. Interestingly, on poly(C) RNA templates, norovirus 3D(pol) initiated RNA synthesis de novo in the presence of high concentrations of GTP. We propose a novel model for initiation of replication of the norovirus genome by 3D(pol), with a VPg-protein-primed initiation of replication of polyadenylated genomic RNA and a de novo initiation of replication of antigenomic RNA.
Collapse
Affiliation(s)
- Jacques Rohayem
- Institut für Virologie, The Calicilab, Fiedlerstrasse 42, D-01307 Dresden, Germany.
| | | | | | | | | |
Collapse
|
77
|
van Ooij MJM, Polacek C, Glaudemans DHRF, Kuijpers J, van Kuppeveld FJM, Andino R, Agol VI, Melchers WJG. Polyadenylation of genomic RNA and initiation of antigenomic RNA in a positive-strand RNA virus are controlled by the same cis-element. Nucleic Acids Res 2006; 34:2953-65. [PMID: 16738134 PMCID: PMC1474053 DOI: 10.1093/nar/gkl349] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 03/28/2006] [Accepted: 04/19/2006] [Indexed: 01/16/2023] Open
Abstract
Genomes and antigenomes of many positive-strand RNA viruses contain 3'-poly(A) and 5'-poly(U) tracts, respectively, serving as mutual templates. Mechanism(s) controlling the length of these homopolymeric stretches are not well understood. Here, we show that in coxsackievirus B3 (CVB3) and three other enteroviruses the poly(A) tract is approximately 80-90 and the poly(U) tract is approximately 20 nt-long. Mutagenesis analysis indicate that the length of the CVB3 3'-poly(A) is determined by the oriR, a cis-element in the 3'-noncoding region of viral RNA. In contrast, while mutations of the oriR inhibit initiation of (-) RNA synthesis, they do not affect the 5'-poly(U) length. Poly(A)-lacking genomes are able to acquire genetically unstable AU-rich poly(A)-terminated 3'-tails, which may be generated by a mechanism distinct from the cognate viral RNA polyadenylation. The aberrant tails ensure only inefficient replication. The possibility of RNA replication independent of oriR and poly(A) demonstrate that highly debilitated viruses are able to survive by utilizing 'emergence', perhaps atavistic, mechanisms.
Collapse
Affiliation(s)
- Mark J. M. van Ooij
- Department of Medical Microbiology Nijmegen Center for Molecular Life Science, Radboud University Nijmegen Medical CentrePO Box 9101, 6500 HB Nijmegen, The Netherlands
- M.P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical SciencesMoscow Region 142782, Russia
- Moscow State UniversityMoscow 119899, Russia
- University of California, San Francisco, Mission Bay Genentech Hall, UCSF Department of Microbiology600 16th Street, PO Box 2280, San Francisco, CA 94143, USA
| | - Charlotta Polacek
- University of California, San Francisco, Mission Bay Genentech Hall, UCSF Department of Microbiology600 16th Street, PO Box 2280, San Francisco, CA 94143, USA
| | - Dirk H. R. F. Glaudemans
- Department of Medical Microbiology Nijmegen Center for Molecular Life Science, Radboud University Nijmegen Medical CentrePO Box 9101, 6500 HB Nijmegen, The Netherlands
- M.P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical SciencesMoscow Region 142782, Russia
- Moscow State UniversityMoscow 119899, Russia
- University of California, San Francisco, Mission Bay Genentech Hall, UCSF Department of Microbiology600 16th Street, PO Box 2280, San Francisco, CA 94143, USA
| | - Judith Kuijpers
- Department of Medical Microbiology Nijmegen Center for Molecular Life Science, Radboud University Nijmegen Medical CentrePO Box 9101, 6500 HB Nijmegen, The Netherlands
- M.P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical SciencesMoscow Region 142782, Russia
- Moscow State UniversityMoscow 119899, Russia
- University of California, San Francisco, Mission Bay Genentech Hall, UCSF Department of Microbiology600 16th Street, PO Box 2280, San Francisco, CA 94143, USA
| | - Frank J. M. van Kuppeveld
- Department of Medical Microbiology Nijmegen Center for Molecular Life Science, Radboud University Nijmegen Medical CentrePO Box 9101, 6500 HB Nijmegen, The Netherlands
- M.P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical SciencesMoscow Region 142782, Russia
- Moscow State UniversityMoscow 119899, Russia
- University of California, San Francisco, Mission Bay Genentech Hall, UCSF Department of Microbiology600 16th Street, PO Box 2280, San Francisco, CA 94143, USA
| | - Raul Andino
- University of California, San Francisco, Mission Bay Genentech Hall, UCSF Department of Microbiology600 16th Street, PO Box 2280, San Francisco, CA 94143, USA
| | - Vadim I. Agol
- M.P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical SciencesMoscow Region 142782, Russia
- Moscow State UniversityMoscow 119899, Russia
| | - Willem J. G. Melchers
- To whom correspondence should be addressed. Tel: +31 24 3614356; Fax: +31 24 3540216;
| |
Collapse
|
78
|
van Ooij MJM, Vogt DA, Paul A, Castro C, Kuijpers J, van Kuppeveld FJM, Cameron CE, Wimmer E, Andino R, Melchers WJG. Structural and functional characterization of the coxsackievirus B3 CRE(2C): role of CRE(2C) in negative- and positive-strand RNA synthesis. J Gen Virol 2006; 87:103-113. [PMID: 16361422 DOI: 10.1099/vir.0.81297-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A stem-loop element located within the 2C-coding region of the coxsackievirus B3 (CVB3) genome has been proposed to function as a cis-acting replication element (CRE). It is shown here that disruption of this structure indeed interfered with viral RNA replication in vivo and abolished uridylylation of VPg in vitro. Site-directed mutagenesis demonstrated that the previously proposed enteroviral CRE consensus loop sequence, R(1)NNNAAR(2)NNNNNNR(3), is also applicable to CVB3 CRE(2C) and that a positive correlation exists between the ability of CRE(2C) mutants to serve as template in the uridylylation reaction and the capacity of these mutants to support viral RNA replication. To further investigate the effects of the mutations on negative-strand RNA synthesis, an in vitro translation/replication system containing HeLa S10 cell extracts was used. Similar to the results observed for poliovirus and rhinovirus, it was found that a complete disruption of the CRE(2C) structure interfered with positive-strand RNA synthesis, but not with negative-strand synthesis. All CRE(2C) point mutants affecting the enteroviral CRE consensus loop, however, showed a marked decrease in efficiency to induce negative-strand synthesis. Moreover, a transition (A(5)G) regarding the first templating adenosine residue in the loop was even unable to initiate complementary negative-strand synthesis above detectable levels. Taken together, these results indicate that the CVB3 CRE(2C) is not only required for the initiation of positive-strand RNA synthesis, but also plays an essential role in the efficient initiation of negative-strand RNA synthesis, a conclusion that has not been reached previously by using the cell-free system.
Collapse
Affiliation(s)
- Mark J M van Ooij
- Radboud University Medical Centre Nijmegen, Nijmegen Centre for Molecular Life Science, Department of Medical Microbiology, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Dorothee A Vogt
- University of California, San Francisco, Mission Bay Genentech Hall, UCSF Department of Microbiology, 600 16th Street, PO Box 2280, San Francisco, CA 94143, USA
| | - Aniko Paul
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Christian Castro
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Judith Kuijpers
- Radboud University Medical Centre Nijmegen, Nijmegen Centre for Molecular Life Science, Department of Medical Microbiology, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Frank J M van Kuppeveld
- Radboud University Medical Centre Nijmegen, Nijmegen Centre for Molecular Life Science, Department of Medical Microbiology, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Craig E Cameron
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Eckard Wimmer
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Raul Andino
- University of California, San Francisco, Mission Bay Genentech Hall, UCSF Department of Microbiology, 600 16th Street, PO Box 2280, San Francisco, CA 94143, USA
| | - Willem J G Melchers
- Radboud University Medical Centre Nijmegen, Nijmegen Centre for Molecular Life Science, Department of Medical Microbiology, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
79
|
Franco D, Pathak HB, Cameron CE, Rombaut B, Wimmer E, Paul AV. Stimulation of poliovirus RNA synthesis and virus maturation in a HeLa cell-free in vitro translation-RNA replication system by viral protein 3CDpro. Virol J 2005; 2:86. [PMID: 16300678 PMCID: PMC1315353 DOI: 10.1186/1743-422x-2-86] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Accepted: 11/21/2005] [Indexed: 11/10/2022] Open
Abstract
Poliovirus protein 3CDpro possesses both proteinase and RNA binding activities, which are located in the 3Cpro domain of the protein. The RNA polymerase (3Dpol) domain of 3CDpro modulates these activities of the protein. We have recently shown that the level of 3CDpro in HeLa cell-free in vitro translation-RNA replication reactions is suboptimal for efficient virus production. However, the addition of either 3CDpro mRNA or of purified 3CDpro protein to in vitro reactions, programmed with viral RNA, results in a 100-fold increase in virus yield. Mutational analyses of 3CDpro indicated that RNA binding by the 3Cpro domain and the integrity of interface I in the 3Dpol domain of the protein are both required for function. The aim of these studies was to determine the exact step or steps at which 3CDpro enhances virus yield and to determine the mechanism by which this occurs. Our results suggest that the addition of extra 3CDpro to in vitro translation RNA-replication reactions results in a mild enhancement of both minus and plus strand RNA synthesis. By examining the viral particles formed in the in vitro reactions on sucrose gradients we determined that 3CDpro has only a slight stimulating effect on the synthesis of capsid precursors but it strikingly enhances the maturation of virus particles. Both the stimulation of RNA synthesis and the maturation of the virus particles are dependent on the presence of an intact RNA binding site within the 3Cpro domain of 3CDpro. In addition, the integrity of interface I in the 3Dpol domain of 3CDpro is required for efficient production of mature virus. Surprisingly, plus strand RNA synthesis and virus production in in vitro reactions, programmed with full-length transcript RNA, are not enhanced by the addition of extra 3CDpro. Our results indicate that the stimulation of RNA synthesis and virus maturation by 3CDpro in vitro is dependent on the presence of a VPg-linked RNA template.
Collapse
Affiliation(s)
- David Franco
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, N. Y. 11790, USA
| | - Harsh B Pathak
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Craig E Cameron
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Bart Rombaut
- Department of Microbiology and Hygiene, Vrije Universiteit Brussel, B-1090 Brussels, Belgium
| | - Eckard Wimmer
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, N. Y. 11790, USA
| | - Aniko V Paul
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, N. Y. 11790, USA
| |
Collapse
|
80
|
Silvestri LS, Parilla JM, Morasco BJ, Ogram SA, Flanegan JB. Relationship between poliovirus negative-strand RNA synthesis and the length of the 3' poly(A) tail. Virology 2005; 345:509-19. [PMID: 16297425 DOI: 10.1016/j.virol.2005.10.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 10/07/2005] [Accepted: 10/18/2005] [Indexed: 10/25/2022]
Abstract
The precise relationship between the length of the 3' poly(A) tail and the replication and infectivity of poliovirus RNA was examined in this study. With both poly(A)(11) and poly(A)(12) RNAs, negative-strand synthesis was 1-3% of the level observed with poly(A)(80) RNA. In contrast, increasing the length of the poly(A) tail from (A)(12) to (A)(13) resulted in about a ten-fold increase in negative-strand synthesis. This increase continued with each successive increase in poly(A) tail length. With poly(A)(20) RNA, RNA synthesis approached the level observed with poly(A)(80) RNA. A similar relationship was observed between poly(A) tail length and the infectivity of the viral RNA. A replication model is described which suggests that viral RNA replication is dependent on a poly(A) tail that is long enough to bind poly(A) binding protein and to act as a template for VPg uridylylation and negative-strand initiation.
Collapse
Affiliation(s)
- Lynn S Silvestri
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, 32610-0245, USA
| | | | | | | | | |
Collapse
|
81
|
Brown DM, Cornell CT, Tran GP, Nguyen JHC, Semler BL. An authentic 3' noncoding region is necessary for efficient poliovirus replication. J Virol 2005; 79:11962-73. [PMID: 16140772 PMCID: PMC1212627 DOI: 10.1128/jvi.79.18.11962-11973.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Picornavirus RNA replication involves the specific synthesis of negative-strand intermediates followed by an accumulation of positive-strand viral RNA in the presence of a multitude of cellular mRNAs. Previously, in an effort to identify cis-acting elements required for initiation of negative-strand RNA synthesis, we deleted the entire 3' noncoding regions from human rhinovirus and poliovirus genomic RNAs. These deletion mutation transcripts displayed a severe delay in RNA accumulation following transfection of HeLa cells. Interestingly, in subsequent infection of HeLa cells, the deletion-mutant poliovirus displayed only a moderate deficiency in RNA synthesis. These data suggested that the delay in the production of cytopathic effects after transfection may have been due to an RNA replication defect overcome by the accumulation of a compensatory mutation(s) generated during initial rounds of RNA synthesis. In this study, we have sequenced the entire genome of the deletion-mutant virus and found only two nucleotide changes from the parental clone. Transfection analysis of these sequence variants revealed that the sequence changes did not provide compensatory functions for the 3' noncoding region deletion mutation replication defect. Further examination of the deletion mutant phenotype revealed that the severe replication defect following RNA transfection is due, in part, to nonviral terminal sequences present in the in vitro-derived deletion mutation transcripts. Our data suggest that poliovirus RNA harboring a complete 3' noncoding region deletion mutation is infectious (not merely quasi-infectious).
Collapse
Affiliation(s)
- David M Brown
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
82
|
Abstract
Dipyridamole is an effective inhibitor of cardiovirus growth in cell culture. The effects of dipyridamole on mengovirus replication in vivo and in vitro were examined in the hope the drug could be used as an experimental analog of the poliovirus inhibitor guanidine. Guanidine selectively inhibits poliovirus RNA synthesis but not RNA translation, and as such, has been a valuable research tool. Although guanidine does not inhibit cardiovirus infection, a compound with similar discriminatory characteristics would be experimentally useful for parallel work with these viruses. We found that mengovirus plaque formation in HeLa or L cells was inhibited nearly 100% by the presence of 80 muM dipyridamole. The inhibitory effect was reversible and targeted an early step in the replication cycle. Studies with luciferase-expressing mengovirus replicons showed that viral protein synthesis was unaffected by dipyridamole, and rather, RNA synthesis was the step targeted by the drug. This assessment was confirmed by direct analyses of viral translation and RNA synthesis activities in a Krebs-2-derived in vitro system that supported complete, infectious cardiovirus replication. In Krebs extracts, dipyridamole specifically inhibited viral RNA synthesis to more than 95%, with no concomitant effect on viral protein translation or polyprotein processing. The observed inhibition reversibly affected an early step in both minus-strand and plus-strand RNA synthesis, although inhibition of plus-strand synthesis was more profound than that of minus-strand synthesis. We conclude that dipyridamole is a potent experimental tool that readily distinguishes between cardiovirus translation and RNA replication functions.
Collapse
|
83
|
Seeger C. Salient molecular features of hepatitis C virus revealed. Trends Microbiol 2005; 13:528-34. [PMID: 16154356 DOI: 10.1016/j.tim.2005.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 08/09/2005] [Accepted: 08/31/2005] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus (HCV) is a positive strand RNA virus with a narrow host and tissue tropism. It ranks among the most significant of human pathogens, causing inflammation, scarring and cancer of the liver. Recent investigations have shed light on some of the salient molecular features of this virus. These include a requirement for CD81 (a tetraspanin transmembrane protein for viral entry), a novel mechanism for the initiation of RNA synthesis, phosphorylation of a viral protein in the regulation of RNA amplification and virus assembly and, finally, a viral protease suppressing activation of the innate immune response in infected cells.
Collapse
Affiliation(s)
- Christoph Seeger
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| |
Collapse
|
84
|
Choi IR, Horken KM, Stenger DC, French R. An internal RNA element in the P3 cistron of Wheat streak mosaic virus revealed by synonymous mutations that affect both movement and replication. J Gen Virol 2005; 86:2605-2614. [PMID: 16099920 DOI: 10.1099/vir.0.81081-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiple synonymous substitution mutations in the Wheat streak mosaic virus P3 cistron did not affect translation in vitro but rendered the virus incapable of systemic infection. Multiple synonymous substitutions in the cylindrical inclusion cistron did not alter infectivity or in vitro translation. To assess replication and movement phenotypes, P3 mutations were placed in context with a GUS reporter gene. GUS activity measured in barley protoplasts 36 h post-transfection indicated that mutants with synonymous substitutions in P3 retained the ability to replicate at 22–80 % of wild-type levels. Almost no GUS activity was detected in protoplasts transfected with a P3 frame-shift mutant. Histochemical GUS assays conducted 3 days post-inoculation (p.i.) revealed genomes with multiple synonymous substitutions in P3, which were able to establish infection foci limited to small clusters of cells that increased in size only slightly by 5 days p.i. Infection foci produced by wild-type Wheat streak mosaic virus-expressing GUS were much larger at 3 days p.i. and had coalesced by 5 days p.i. No GUS activity was detected in plants inoculated with the frame-shift mutant bearing GUS. Three of four mutants, each with a single synonymous substitution in the 3′-proximal half of the P3 cistron, were wild-type with respect to systemic infectivity. A model RNA secondary structure obtained for the region was disrupted by the debilitating single mutation but not by the other three single mutations. Collectively, these results identify an internal RNA sequence element in the P3 cistron that affects both replication and movement of the viral genome.
Collapse
Affiliation(s)
- Il-Ryong Choi
- United States Department of Agriculture - Agricultural Research Service and Department of Plant Pathology, University of Nebraska, 344 Keim Hall, Lincoln, NE 68583, USA
| | - Kempton M Horken
- United States Department of Agriculture - Agricultural Research Service and Department of Plant Pathology, University of Nebraska, 344 Keim Hall, Lincoln, NE 68583, USA
| | - Drake C Stenger
- United States Department of Agriculture - Agricultural Research Service and Department of Plant Pathology, University of Nebraska, 344 Keim Hall, Lincoln, NE 68583, USA
| | - Roy French
- United States Department of Agriculture - Agricultural Research Service and Department of Plant Pathology, University of Nebraska, 344 Keim Hall, Lincoln, NE 68583, USA
| |
Collapse
|
85
|
Mueller S, Wimmer E, Cello J. Poliovirus and poliomyelitis: a tale of guts, brains, and an accidental event. Virus Res 2005; 111:175-93. [PMID: 15885840 DOI: 10.1016/j.virusres.2005.04.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Nearly 100 years after its discovery poliovirus remains one of most thoroughly studied and best understood virus models for the molecular virologist. While poliovirus has been of vital importance for our insight into picornavirus biology at the cellular and biochemical level, it is ironic to note that, due to the early success in defeating poliomyelitis in the developed world through vaccination, many of the basic aspects of poliovirus pathogenesis remain poorly understood. This is chiefly due to the lack of an adequate and affordable animal model, save of old world monkeys. Fundamental questions, such as the identity of the target cells during the enteric phase of infection, or mechanisms of systemic spread are still unanswered. This review will attempt to summarize our current knowledge of the molecular biology of poliovirus, its pathogenesis, as well as recent advances in the areas of cell and tissue tropism and mechanisms of central nervous system invasion.
Collapse
Affiliation(s)
- Steffen Mueller
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | |
Collapse
|
86
|
Boerner JE, Lyle JM, Daijogo S, Semler BL, Schultz SC, Kirkegaard K, Richards OC. Allosteric effects of ligands and mutations on poliovirus RNA-dependent RNA polymerase. J Virol 2005; 79:7803-11. [PMID: 15919933 PMCID: PMC1143668 DOI: 10.1128/jvi.79.12.7803-7811.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein priming of viral RNA synthesis plays an essential role in the replication of picornavirus RNA. Both poliovirus and coxsackievirus encode a small polypeptide, VPg, which serves as a primer for addition of the first nucleotide during synthesis of both positive and negative strands. This study examined the effects on the VPg uridylylation reaction of the RNA template sequence, the origin of VPg (coxsackievirus or poliovirus), the origin of 3D polymerase (coxsackievirus or poliovirus), the presence and origin of interacting protein 3CD, and the introduction of mutations at specific regions in the poliovirus 3D polymerase. Substantial effects associated with VPg origin were traced to differences in VPg-polymerase interactions. The effects of 3CD proteins and mutations at polymerase-polymerase intermolecular Interface I were most consistent with allosteric effects on the catalytic 3D polymerase molecule. In conclusion, the efficiency and specificity of VPg uridylylation by picornavirus polymerases is greatly influenced by allosteric effects of ligand binding that are likely to be relevant during the viral replicative cycle.
Collapse
Affiliation(s)
- Joanna E Boerner
- Stanford University School of Medicine, Department of Microbiology and Immunology, Fairchild Science Building D309A, Stanford, CA 94305-5402, USA
| | | | | | | | | | | | | |
Collapse
|
87
|
Appleby TC, Luecke H, Shim JH, Wu JZ, Cheney IW, Zhong W, Vogeley L, Hong Z, Yao N. Crystal structure of complete rhinovirus RNA polymerase suggests front loading of protein primer. J Virol 2005; 79:277-88. [PMID: 15596823 PMCID: PMC538717 DOI: 10.1128/jvi.79.1.277-288.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Picornaviruses utilize virally encoded RNA polymerase and a uridylylated protein primer to ensure replication of the entire viral genome. The molecular details of this mechanism are not well understood due to the lack of structural information. We report the crystal structure of human rhinovirus 16 3D RNA-dependent RNA polymerase (HRV16 3Dpol) at a 2.4-A resolution, representing the first complete polymerase structure from the Picornaviridae family. HRV16 3Dpol shares the canonical features of other known polymerase structures and contains an N-terminal region that tethers the fingers and thumb subdomains, forming a completely encircled active site cavity which is accessible through a small tunnel on the backside of the molecule. The small thumb subdomain contributes to the formation of a large cleft on the front face of the polymerase which also leads to the active site. The cleft appears large enough to accommodate a template:primer duplex during RNA elongation or a protein primer during the uridylylation stage of replication initiation. Based on the structural features of HRV16 3Dpo1 and the catalytic mechanism known for all polymerases, a front-loading model for uridylylation is proposed.
Collapse
Affiliation(s)
- Todd C Appleby
- Valeant Pharmaceuticals International, Costa Mesa, California 92626, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Bartenschlager R, Frese M, Pietschmann T. Novel insights into hepatitis C virus replication and persistence. Adv Virus Res 2005; 63:71-180. [PMID: 15530561 DOI: 10.1016/s0065-3527(04)63002-8] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hepatitis C virus (HCV) is a small enveloped RNA virus that belongs to the family Flaviviridae. A hallmark of HCV is its high propensity to establish a persistent infection that in many cases leads to chronic liver disease. Molecular studies of the virus became possible with the first successful cloning of its genome in 1989. Since then, the genomic organization has been delineated, and viral proteins have been studied in some detail. In 1999, an efficient cell culture system became available that recapitulates the intracellular part of the HCV life cycle, thereby allowing detailed molecular studies of various aspects of viral RNA replication and persistence. This chapter attempts to summarize the current state of knowledge in these most actively worked on fields of HCV research.
Collapse
Affiliation(s)
- Ralf Bartenschlager
- Department of Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
89
|
Cornell CT, Brunner JE, Semler BL. Differential rescue of poliovirus RNA replication functions by genetically modified RNA polymerase precursors. J Virol 2004; 78:13007-18. [PMID: 15542652 PMCID: PMC525034 DOI: 10.1128/jvi.78.23.13007-13018.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously described the RNA replication properties of poliovirus transcripts harboring chimeric RNA polymerase sequences representing suballelic exchanges between poliovirus type 1 (PV1) and coxsackievirus B3 (CVB3) utilizing an in vitro translation and RNA replication assay (C. Cornell, R. Perera, J. E. Brunner, and B. L. Semler, J. Virol. 78:4397-4407, 2004). We showed that three of the seven chimeras were capable of RNA replication in vitro, although replication levels were greatly reduced compared to that of wild-type transcripts. Interestingly, one of the replication-competent transcripts displayed a strand-specific RNA synthesis defect suggesting (i) a differential replication complex assembly mechanism involving 3D and/or precursor molecules (i.e., 3CD) required for negative- versus positive-strand RNA synthesis or (ii) effect(s) on the ability of the 3D polymerase to form higher-ordered structures required for positive-strand RNA synthesis. In this study, we have attempted to rescue defective RNA replication in vitro by cotranslating nonstructural proteins from a transcript encoding a large precursor polyprotein (P3) to complement 3D polymerase and/or precursor polypeptide functions altered in each of the chimeric constructs. Utilization of a wild-type P3 construct revealed that all transcripts containing chimeric PV1/CVB3 polymerase sequences can be complemented in trans for both negative- and positive-strand RNA synthesis. Furthermore, data from experiments utilizing genetically modified forms of the P3 polyprotein, containing mutations within 3C or 3D sequences, strongly suggest the existence of different protein-protein and protein-RNA interactions required for positive- versus negative-strand RNA synthesis. These results, combined with data from in vitro RNA elongation assays, indicate that the delivery of active 3D RNA polymerase to replication complexes requires a series of macromolecular interactions that rely on the presence of specific 3D amino acid sequences.
Collapse
Affiliation(s)
- Christopher T Cornell
- Department of Microbiology and Molecular Genetics, Med. Sci. B240, University of California, Irvine, CA 92697-4025, USA
| | | | | |
Collapse
|
90
|
Lee H, Shin H, Wimmer E, Paul AV. cis-acting RNA signals in the NS5B C-terminal coding sequence of the hepatitis C virus genome. J Virol 2004; 78:10865-77. [PMID: 15452207 PMCID: PMC521798 DOI: 10.1128/jvi.78.20.10865-10877.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The cis-replicating RNA elements in the 5' and 3' nontranslated regions (NTRs) of the hepatitis C virus (HCV) genome have been thoroughly studied before. However, no cis-replicating elements have been identified in the coding sequences of the HCV polyprotein until very recently. The existence of highly conserved and stable stem-loop structures in the RNA polymerase NS5B coding sequence, however, has been previously predicted (A. Tuplin, J. Wood, D. J. Evans, A. H. Patel, and P. Simmonds, RNA 8:824-841, 2002). We have selected for our studies a 249-nt-long RNA segment in the C-terminal NS5B coding region (NS5BCR), which is predicted to form four stable stem-loop structures (SL-IV to SL-VII). By deletion and mutational analyses of the RNA structures, we have determined that two of the stem-loops (SL-V and SL-VI) are essential for replication of the HCV subgenomic replicon in Huh-7 cells. Mutations in the loop and the top of the stem of these RNA elements abolished replicon RNA synthesis but had no effect on translation. In vitro gel shift and filter-binding assays revealed that purified NS5B specifically binds to SL-V. The NS5B-RNA complexes were specifically competed away by unlabeled homologous RNA, to a small extent by 3' NTR RNA, and only poorly by 5' NTR RNA. The other two stem-loops (SL-IV and SL-VII) of the NS5BCR domain were found to be important but not essential for colony formation by the subgenomic replicon. The precise function(s) of these cis-acting RNA elements is not known.
Collapse
Affiliation(s)
- Haekyung Lee
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
91
|
Thompson AA, Peersen OB. Structural basis for proteolysis-dependent activation of the poliovirus RNA-dependent RNA polymerase. EMBO J 2004; 23:3462-71. [PMID: 15306852 PMCID: PMC516629 DOI: 10.1038/sj.emboj.7600357] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Accepted: 07/19/2004] [Indexed: 11/10/2022] Open
Abstract
The active RNA-dependent RNA polymerase of poliovirus, 3Dpol, is generated by cleavage of the 3CDpro precursor protein, a protease that has no polymerase activity despite containing the entire polymerase domain. By intentionally disrupting a known and persistent crystal packing interaction, we have crystallized the poliovirus polymerase in a new space group and solved the complete structure of the protein at 2.0 A resolution. It shows that the N-terminus of fully processed 3Dpol is buried in a surface pocket where it makes hydrogen bonds that act to position Asp238 in the active site. Asp238 is an essential residue that selects for the 2' OH group of substrate rNTPs, as shown by a 2.35 A structure of a 3Dpol-GTP complex. Mutational, biochemical, and structural data further demonstrate that 3Dpol activity is exquisitely sensitive to mutations at the N-terminus. This sensitivity is the result of allosteric effects where the structure around the buried N-terminus directly affects the positioning of Asp238 in the active site.
Collapse
Affiliation(s)
- Aaron A Thompson
- Program in Cellular and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Olve B Peersen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
92
|
Thiviyanathan V, Yang Y, Kaluarachchi K, Rijnbrand R, Gorenstein DG, Lemon SM. High-resolution structure of a picornaviral internal cis-acting RNA replication element (cre). Proc Natl Acad Sci U S A 2004; 101:12688-93. [PMID: 15314212 PMCID: PMC515117 DOI: 10.1073/pnas.0403079101] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Picornaviruses constitute a medically important family of RNA viruses in which genome replication critically depends on a small RNA element, the cis-acting replication element (cre), that templates 3D(pol) polymerase-catalyzed uridylylation of the protein primer for RNA synthesis, VPg. We report the solution structure of the 33-nt cre of human rhinovirus 14 under solution conditions optimal for uridylylation in vitro. The cre adopts a stem-loop conformation with an extended duplex stem supporting a novel 14-nt loop that derives stability from base-stacking interactions. Base-pair interactions are absent within the loop, and base substitutions within the loop that favor such interactions are detrimental to viral RNA replication. Conserved adenosines in the 5' loop sequence that participate in a slide-back mechanism of VPg-pUpU synthesis are oriented to the inside of the loop but are available for base templating during uridylation. The structure explains why substitutions of the 3' loop nucleotides have little impact on conformation of the critical 5' loop bases and accounts for wide variation in the sequences of cres from different enteroviruses and rhinoviruses.
Collapse
|
93
|
Abstract
Members of the Picornaviridae are positive- strand RNA viruses that cause a variety of human diseases such as poliomyelitis, the common cold, myocarditis, and hepatitis. Although the diseases caused by picornaviruses are diverse, the genome organization and mechanisms of gene expression are highly conserved among family members. This review will discuss the mechanisms of viral gene expression including cap-independent translation initiation, host cell translation shut off, viral polyprotein processing, and RNA replication.
Collapse
Affiliation(s)
- Kristin M Bedard
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Medical Sciences Building, Room B240, Irvine, CA 92697-4025, USA
| | | |
Collapse
|
94
|
Puustinen P, Mäkinen K. Uridylylation of the potyvirus VPg by viral replicase NIb correlates with the nucleotide binding capacity of VPg. J Biol Chem 2004; 279:38103-10. [PMID: 15218030 DOI: 10.1074/jbc.m402910200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Poty- and picornaviruses share similar genome organizations and polyprotein processing strategies. By analogy to picornaviruses it has been proposed that the genome-linked protein VPg may serve as a primer for genome replication of potyviruses. The multifunctional VPg of potato virus A (PVA; genus Potyvirus) was found to be uridylylated by NIb, the RNA polymerase of PVA. The nucleotidylation activity of NIb is more efficient in the presence of Mn(2+) than Mg(2+) and does not require an RNA template. Our results suggest that the nucleotidylation reaction exhibits weak preference for UTP over the other NTPs. An NTP-binding experiment with oxidized [alpha-(32)P]UTP revealed that PVA VPg contains an NTP-binding site. Deletion of a 7-amino acid-long putative NTP-binding site from VPg reduced nucleotide-binding capacity and debilitated uridylylation reaction. These results provide evidence that VPg may play a similar role in RNA synthesis of potyviruses as it does in the case of picornaviruses.
Collapse
Affiliation(s)
- Pietri Puustinen
- Department of Applied Biology, P. O. Box 27, University of Helsinki, Helsinki 00014, Finland
| | | |
Collapse
|
95
|
Abstract
Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals. The disease was initially described in the 16th century and was the first animal pathogen identified as a virus. Recent FMD outbreaks in developed countries and their significant economic impact have increased the concern of governments worldwide. This review describes the reemergence of FMD in developed countries that had been disease free for many years and the effect that this has had on disease control strategies. The etiologic agent, FMD virus (FMDV), a member of the Picornaviridae family, is examined in detail at the genetic, structural, and biochemical levels and in terms of its antigenic diversity. The virus replication cycle, including virus-receptor interactions as well as unique aspects of virus translation and shutoff of host macromolecular synthesis, is discussed. This information has been the basis for the development of improved protocols to rapidly identify disease outbreaks, to differentiate vaccinated from infected animals, and to begin to identify and test novel vaccine candidates. Furthermore, this knowledge, coupled with the ability to manipulate FMDV genomes at the molecular level, has provided the framework for examination of disease pathogenesis and the development of a more complete understanding of the virus and host factors involved.
Collapse
Affiliation(s)
- Marvin J Grubman
- Plum Island Animal Disease Center, USDA, Agricultural Research Service, North Atlantic Area, Greenport, New York 11944, USA.
| | | |
Collapse
|
96
|
Chen MH, Frolov I, Icenogle J, Frey TK. Analysis of the 3' cis-acting elements of rubella virus by using replicons expressing a puromycin resistance gene. J Virol 2004; 78:2553-61. [PMID: 14963158 PMCID: PMC369209 DOI: 10.1128/jvi.78.5.2553-2561.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A rubella virus (RUB) replicon, RUBrep/PAC, was constructed and used to map the 3' cis-acting elements (3' CSE) of the RUB genome required for RUB replication. The RUBrep/PAC replicon had the structural protein open reading frame partially replaced by a puromycin acetyltransferase (PAC) gene. Cells transfected with RUBrep/PAC transcripts expressed the PAC gene from the subgenomic RNA, were rendered resistant to puromycin, and thus survived selection with this drug. The relative survival following puromycin selection of cells transfected with transcripts from RUBrep/PAC constructs with mutations in the 3' CSE varied. The 3' region necessary for optimal relative survival consisted of the 3' 305 nucleotides (nt), a region conserved in RUB defective-interfering RNAs, and thus this region constitutes the 3' CSE. Within the 3' CSE, deletions in the approximately 245 nt that overlap the 3' end of the E1 gene resulted in reduced relative survivals, ranging from 20 to <1% of the parental replicon survival level while most mutations within the approximately 60-nt 3' untranslated region (UTR) were lethal. None of the 3' CSE mutations affected in vitro translation of the nonstructural protein open reading frame (which is 5' proximal in the genome and encodes the enzymes involved in virus RNA replication). In cells transfected with replicons with 3' CSE mutations that survived antibiotic selection (i.e., those with mutations in the region of the 3' CSE that overlaps the E1 coding region), the amount of replicon-specific minus-strand RNA was uniform; however, the accumulation of both plus-strand RNA species, genomic and subgenomic, varied widely, indicating that this region of the RUB 3' CSE affects plus-strand RNA accumulation rather than minus-strand RNA synthesis.
Collapse
Affiliation(s)
- Min-Hsin Chen
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | |
Collapse
|
97
|
Paul AV, Yin J, Mugavero J, Rieder E, Liu Y, Wimmer E. A "slide-back" mechanism for the initiation of protein-primed RNA synthesis by the RNA polymerase of poliovirus. J Biol Chem 2003; 278:43951-60. [PMID: 12937178 DOI: 10.1074/jbc.m307441200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Poliovirus RNA replication is initiated when a molecule of UMP is covalently linked to the hydroxyl group of a tyrosine in the terminal protein VPg. This reaction can be reproduced in vitro with an assay that utilizes two purified viral proteins, RNA polymerase 3Dpol and viral protein 3CDpro, synthetic VPg, UTP, and Mg2+. The template for the reaction is either poliovirus RNA or transcripts of a small RNA hairpin, termed cre(2C), located in the coding sequence of protein 2CATPase. The products of the reaction are VPgpU and VPgpUpU, the primers used by 3Dpol for RNA synthesis. With mutant template RNAs in this assay we determined the precise initiation site. Our results indicate that 1) 3Dpol does not possess strict specificity toward the nucleotide it links to VPg, 2) A-5 of the conserved 1GXXXAAAXXXXXXA14 sequence in the loop is the template nucleotide for the linkage of both the first and second UMPs to VPg, 3) VPgpUpU is synthesized by a "slide-back" mechanism, and 4) A-6 provides specificity to the reaction during the slide-back step and also modulates the uridylylation reaction. In additional experiments we determined the effect of mutations in the 5AAA7 sequence of cre(2C) on viral growth, RNA replication, and on the activity of the 2CATPase protein. Furthermore, we observed that the spacing between G-1 and A-5 and the size of the loop affect the yield but not the nature of the VPg-linked products.
Collapse
Affiliation(s)
- Aniko V Paul
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, New York 11790, USA.
| | | | | | | | | | | |
Collapse
|
98
|
Towner JS, Brown DM, Nguyen JHC, Semler BL. Functional conservation of the hydrophobic domain of polypeptide 3AB between human rhinovirus and poliovirus. Virology 2003; 314:432-42. [PMID: 14517095 DOI: 10.1016/s0042-6822(03)00448-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study we exchanged portions of the poliovirus type 1 (PV1) hydrophobic domain within the membrane-associated polypeptide 3AB for the analogous sequences from human rhinovirus 14 (HRV14). The sequence exchanges were based upon a previous report in which the 22 amino acid hydrophobic region was subdivided into two domains, I and II, the latter of which was shown to be required for membrane association (J. Biol. Chem. 271 (1996), 26810). Using these divisions, the HRV14 sequences were cloned into the complete poliovirus type 1 cDNA sequence. RNAs transcribed from these cDNAs were transfected into HeLa cell monolayers and used in HeLa cell-free translation/replication assays. The data indicated that 3AB sequences from PV1 and HRV14 are interchangeable; however, the substitutions cause a range of significant RNA replication defects, and in some cases, protein processing defects. Following transfection of RNAs encoding the domain substitutions into HeLa cell monolayers, virus isolates were harvested, and the corresponding viral RNAs were sequenced. The sequence data revealed that for the carboxy-terminal domain substitutions (domain II), multiple nucleotide changes were identified in the first, second, and third positions of different codons. In addition, the data indicated that for one of the PV1/HRV14 chimeras to replicate, compensatory mutations within poliovirus protein 2B may be required.
Collapse
Affiliation(s)
- Jonathan S Towner
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
99
|
Bertolotti-Ciarlet A, Crawford SE, Hutson AM, Estes MK. The 3' end of Norwalk virus mRNA contains determinants that regulate the expression and stability of the viral capsid protein VP1: a novel function for the VP2 protein. J Virol 2003; 77:11603-15. [PMID: 14557646 PMCID: PMC229252 DOI: 10.1128/jvi.77.21.11603-11615.2003] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2003] [Accepted: 08/05/2003] [Indexed: 11/20/2022] Open
Abstract
Norwalk virus (NV) is the prototype strain of a group of noncultivable human caliciviruses responsible for epidemic outbreaks of acute gastroenteritis. The capsid protein VP1 is synthesized from a subgenomic RNA that contains two open reading frames (ORFs), ORF2 and ORF3, and the 3' untranslated region (UTR). ORF2 and ORF3 code for the capsid protein (VP1) and a small structural basic protein (VP2), respectively. We discovered that the yields of virus-like particles (VLPs) composed of VP1 are significantly reduced when this protein is expressed from ORF2 alone. To determine how the 3' terminus of the NV subgenomic RNA regulates VP1 expression, we compared VP1 expression levels by using recombinant baculovirus constructs containing different 3' elements. High VP1 levels were detected by using a recombinant baculovirus that contained ORF2, ORF3, and the 3'UTR (ORF2+3+3'UTR). In contrast, expression of VP1 from constructs that lacked the 3'UTR (ORF2+3), ORF3 (ORF2+3'UTR), or both (ORF2 alone) was highly reduced. Elimination of VP2 synthesis from the subgenomic RNA by mutation resulted in VP1 levels similar to those obtained with the ORF2 construct alone, suggesting a cis role for VP2 in upregulation of VP1 expression levels. Comparisons of the kinetics of RNA and capsid protein expression levels by using constructs with or without ORF3 or the 3'UTR revealed that the 3'UTR increased the levels of VP1 RNA, whereas the presence of VP2 resulted in increased levels of VP1. Furthermore, VP2 increased VP1 stability and protected VP1 from disassembly and protease degradation. The increase in VP1 expression levels caused by the presence of VP2 in cis was also observed in mammalian cells.
Collapse
Affiliation(s)
- Andrea Bertolotti-Ciarlet
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
100
|
Goodfellow IG, Polacek C, Andino R, Evans DJ. The poliovirus 2C cis-acting replication element-mediated uridylylation of VPg is not required for synthesis of negative-sense genomes. J Gen Virol 2003; 84:2359-2363. [PMID: 12917456 DOI: 10.1099/vir.0.19132-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleotides in the terminal loop of the poliovirus 2C cis-acting replication element (2C(CRE)), a 61 nt structured RNA, function as the template for the addition of two uridylate (U) residues to the viral protein VPg. This uridylylation reaction leads to the formation of VPgpUpU, which is used by the viral RNA polymerase as a nucleotide-peptide primer for genome replication. Although VPg primes both positive- and negative-strand replication, the specific requirement for 2C(CRE)-mediated uridylylation for one or both events has not been demonstrated. We have used a cell-free in vitro translation and replication reaction to demonstrate that 2C(CRE) is not required for the initiation of the negative-sense strand, which is synthesized in the absence of 2C(CRE)-mediated VPgpUpU formation. We propose that the 3' poly(A) tail could serve as the template for the formation of a VPg-poly(U) primer that functions in the initiation of negative-sense strands.
Collapse
Affiliation(s)
- Ian G Goodfellow
- Division of Virology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G11 5JR, UK
| | - Charlotta Polacek
- University of California San Francisco, Genentech Hall, San Francisco, CA 94143-2280, USA
| | - Raul Andino
- University of California San Francisco, Genentech Hall, San Francisco, CA 94143-2280, USA
| | - David J Evans
- Division of Virology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G11 5JR, UK
| |
Collapse
|