51
|
Chen J, Zhou Y, Zhuang Y, Qin T, Guo M, Jiang J, Niu J, Li JZ, Chen X, Wang Q. The metabolic regulator small heterodimer partner contributes to the glucose and lipid homeostasis abnormalities induced by hepatitis C virus infection. Metabolism 2019; 100:153954. [PMID: 31400386 DOI: 10.1016/j.metabol.2019.153954] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/16/2019] [Accepted: 07/31/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND Chronic hepatitis C virus (HCV) infection can predispose the host to metabolic abnormalities. The orphan nuclear receptor small heterodimer partner (SHP; NR0B2) has been identified as a key transcriptional regulatory factor of genes involved in diverse metabolic pathways. The protective effects of SHP against HCV-induced hepatic fibrosis have been reported. However, the exact mechanisms of its role on metabolism are largely unknown. We investigated the role of hepatic SHP in regulating glucose and lipid homeostasis, particularly in the metabolic stress response caused by HCV infection. MATERIALS AND METHODS Gluconeogenesis and lipogenesis levels and SHP expression were measured in HCV-infected cells, as well as in liver samples from HCV-infected patients and persistently HCV-infected mice. RESULTS We demonstrated that SHP is involved in gluconeogenesis via the acetylation of the Forkhead box O (FoxO) family transcription factor FoxO1, which is mediated by histone deacetylase 9 (HDAC9). Meanwhile, SHP regulates lipogenesis in the liver via suppressing the induction of sterol regulatory element-binding protein-1c (SREBP-1c) expression by the SUMOylation of Liver X receptor α (LXRα) at the SREBP-1c promoter. In particular, SHP can be strongly reduced upon stimulation, such as by HCV infection. The SHP expression levels were decreased in the livers from the CHC patients and persistently HCV-infected mice, and a negative correlation was observed between the SHP expression levels and gluconeogenic or lipogenic activities, emphasizing the clinical relevance of these results. CONCLUSIONS Our results suggest that SHP is involved in HCV-induced abnormal glucose and lipid homeostasis and that SHP could be a major target for therapeutic interventions targeting HCV-associated metabolic diseases.
Collapse
Affiliation(s)
- Jizheng Chen
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yue Zhou
- Department of Thoracic Surgery, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Yuan Zhuang
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 210029, China
| | - Tian Qin
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 210029, China
| | - Min Guo
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jing Jiang
- Department of Hepatology, The First Hospital of Jilin University, Changchun 130021, China
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin University, Changchun 130021, China
| | - John Zhong Li
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 210029, China.
| | - Xinwen Chen
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qian Wang
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
52
|
Kalemba KM, Wang Y, Xu H, Chiles E, McMillin SM, Kwon H, Su X, Wondisford FE. Glycerol induces G6pc in primary mouse hepatocytes and is the preferred substrate for gluconeogenesis both in vitro and in vivo. J Biol Chem 2019; 294:18017-18028. [PMID: 31645433 PMCID: PMC6885632 DOI: 10.1074/jbc.ra119.011033] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/15/2019] [Indexed: 12/27/2022] Open
Abstract
Gluconeogenesis (GNG) is de novo production of glucose from endogenous carbon sources. Although it is a commonly studied pathway, particularly in disease, there is a lack of consensus about substrate preference. Moreover, primary hepatocytes are the current gold standard for in vitro liver studies, but no direct comparison of substrate preference at physiological fasting concentrations has been performed. We show that mouse primary hepatocytes prefer glycerol to pyruvate/lactate in glucose production assays and 13C isotope tracing studies at the high concentrations commonly used in the literature, as well as at more relevant fasting, physiological concentrations. In addition, when glycerol, pyruvate/lactate, and glutamine are all present, glycerol is responsible for over 75% of all glucose carbons labeled. We also found that glycerol can induce a rate-limiting enzyme of GNG, glucose-6-phosphatase. Lastly, we suggest that glycerol is a better substrate than pyruvate to test in vivo production of glucose in fasting mice. In conclusion, glycerol is the major carbon source for GNG in vitro and in vivo and should be compared with other substrates when studying GNG in the context of metabolic disease states.
Collapse
Affiliation(s)
- Katarzyna M Kalemba
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey 08901
| | - Yujue Wang
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey 08901
| | - Huiting Xu
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey 08901
| | - Eric Chiles
- Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey 08903
| | - Sara M McMillin
- Fred Wilson School of Pharmacy, High Point University, High Point, North Carolina
| | - Hyokjoon Kwon
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey 08901
| | - Xiaoyang Su
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey 08901; Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey 08903
| | - Fredric E Wondisford
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey 08901; Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey 08903.
| |
Collapse
|
53
|
Cappel DA, Deja S, Duarte JAG, Kucejova B, Iñigo M, Fletcher JA, Fu X, Berglund ED, Liu T, Elmquist JK, Hammer S, Mishra P, Browning JD, Burgess SC. Pyruvate-Carboxylase-Mediated Anaplerosis Promotes Antioxidant Capacity by Sustaining TCA Cycle and Redox Metabolism in Liver. Cell Metab 2019; 29:1291-1305.e8. [PMID: 31006591 PMCID: PMC6585968 DOI: 10.1016/j.cmet.2019.03.014] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 01/12/2019] [Accepted: 03/26/2019] [Indexed: 01/09/2023]
Abstract
The hepatic TCA cycle supports oxidative and biosynthetic metabolism. This dual responsibility requires anaplerotic pathways, such as pyruvate carboxylase (PC), to generate TCA cycle intermediates necessary for biosynthesis without disrupting oxidative metabolism. Liver-specific PC knockout (LPCKO) mice were created to test the role of anaplerotic flux in liver metabolism. LPCKO mice have impaired hepatic anaplerosis, diminution of TCA cycle intermediates, suppressed gluconeogenesis, reduced TCA cycle flux, and a compensatory increase in ketogenesis and renal gluconeogenesis. Loss of PC depleted aspartate and compromised urea cycle function, causing elevated urea cycle intermediates and hyperammonemia. Loss of PC prevented diet-induced hyperglycemia and insulin resistance but depleted NADPH and glutathione, which exacerbated oxidative stress and correlated with elevated liver inflammation. Thus, despite catalyzing the synthesis of intermediates also produced by other anaplerotic pathways, PC is specifically necessary for maintaining oxidation, biosynthesis, and pathways distal to the TCA cycle, such as antioxidant defenses.
Collapse
Affiliation(s)
- David A Cappel
- Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stanisław Deja
- Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - João A G Duarte
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Blanka Kucejova
- Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Melissa Iñigo
- Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Justin A Fletcher
- Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaorong Fu
- Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eric D Berglund
- Center for Hypothalamic Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tiemin Liu
- Sate Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, Shanghai 200438, China
| | - Joel K Elmquist
- Center for Hypothalamic Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Suntrea Hammer
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Prashant Mishra
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey D Browning
- Department of Clinical Nutrition, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shawn C Burgess
- Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
54
|
Grossmann M, Wierman ME, Angus P, Handelsman DJ. Reproductive Endocrinology of Nonalcoholic Fatty Liver Disease. Endocr Rev 2019; 40:417-446. [PMID: 30500887 DOI: 10.1210/er.2018-00158] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023]
Abstract
The liver and the reproductive system interact in a multifaceted bidirectional fashion. Sex steroid signaling influences hepatic endobiotic and xenobiotic metabolism and contributes to the pathogenesis of functional and structural disorders of the liver. In turn, liver function affects the reproductive axis via modulating sex steroid metabolism and transport to tissues via sex hormone-binding globulin (SHBG). The liver senses the body's metabolic status and adapts its energy homeostasis in a sex-dependent fashion, a dimorphism signaled by the sex steroid milieu and possibly related to the metabolic costs of reproduction. Sex steroids impact the pathogenesis of nonalcoholic fatty liver disease, including development of hepatic steatosis, fibrosis, and carcinogenesis. Preclinical studies in male rodents demonstrate that androgens protect against hepatic steatosis and insulin resistance both via androgen receptor signaling and, following aromatization to estradiol, estrogen receptor signaling, through regulating genes involved in hepatic lipogenesis and glucose metabolism. In female rodents in contrast to males, androgens promote hepatic steatosis and dysglycemia, whereas estradiol is similarly protective against liver disease. In men, hepatic steatosis is associated with modest reductions in circulating testosterone, in part consequent to a reduction in circulating SHBG. Testosterone treatment has not been demonstrated to improve hepatic steatosis in randomized controlled clinical trials. Consistent with sex-dimorphic preclinical findings, androgens promote hepatic steatosis and dysglycemia in women, whereas endogenous estradiol appears protective in both men and women. In both sexes, androgens promote hepatic fibrosis and the development of hepatocellular carcinoma, whereas estradiol is protective.
Collapse
Affiliation(s)
- Mathis Grossmann
- Department of Medicine Austin Health, University of Melbourne, Heidelberg, Victoria, Australia.,Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia
| | - Margaret E Wierman
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Research Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| | - Peter Angus
- Department of Medicine Austin Health, University of Melbourne, Heidelberg, Victoria, Australia.,Departments of Gastroenterology and Hepatology, Heidelberg, Victoria, Australia
| | - David J Handelsman
- ANZAC Research Institute, University of Sydney, Concord Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
55
|
Chung SI, Jin X, Kang MY. Enhancement of glucose and bone metabolism in ovariectomized rats fed with germinated pigmented rice with giant embryo ( Oryza sativa L. cv. Keunnunjami). Food Nutr Res 2019; 63:1612. [PMID: 30863274 PMCID: PMC6405879 DOI: 10.29219/fnr.v63.1612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 10/24/2018] [Accepted: 12/14/2018] [Indexed: 11/20/2022] Open
Abstract
Background Menopause induces various metabolic disorders due to the rapid decrease of the ovarian hormone estrogen. It is involved in increased risk of obesity, diabetes, dyslipidemia, and osteoporosis. The pigmented giant embryo cultivar is a promising food product for menopause-induced metabolic disorders. Objective The effects of non-germinated and germinated Keunnunjami, a new blackish purple pigmented rice with a giant embryo, on glucose and bone metabolisms in ovariectomized rats were investigated. Design The animals were fed with normal control diet (NC group) or control diet supplemented with either non-germinated Keunnunjami (KN group) or germinated Keunnunjami (GKN group) powder for 8 weeks. Results The blood glucose and plasma insulin levels, adipokine concentrations, hepatic glucose-regulating enzyme activities, and bone resorption biomarker levels significantly decreased in KN and GKN groups compared to those of the control animals. Discussion These findings illustrate that GKN group showed greater hypoglycemic activity and lower bone resorption than KN group, suggesting that germination could further improve the physiological property of Keunnunjami. Conclusion Germinated Keunnunjami may have therapeutic potential against hyperglycemia and bone turnover imbalance caused by menopause.
Collapse
Affiliation(s)
- Soo Im Chung
- Department of Food Science and Nutrition, Brain Korea 21 Plus, Kyungpook National University, Daegu, Korea
| | - Xingyue Jin
- Department of Food Science and Nutrition, Brain Korea 21 Plus, Kyungpook National University, Daegu, Korea
| | - Mi Young Kang
- Department of Food Science and Nutrition, Brain Korea 21 Plus, Kyungpook National University, Daegu, Korea
| |
Collapse
|
56
|
Beddow SA, Gattu AK, Vatner DF, Paolella L, Alqarzaee A, Tashkandi N, Popov VB, Church CD, Rodeheffer MS, Cline GW, Geisler JG, Bhanot S, Samuel VT. PEPCK1 Antisense Oligonucleotide Prevents Adiposity and Impairs Hepatic Glycogen Synthesis in High-Fat Male Fed Rats. Endocrinology 2019; 160:205-219. [PMID: 30445425 PMCID: PMC6307100 DOI: 10.1210/en.2018-00630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/06/2018] [Indexed: 11/19/2022]
Abstract
The increased hepatic gluconeogenesis in type 2 diabetes mellitus has often been ascribed to increased transcription of phosphoenolpyruvate carboxykinase 1, cystolic form (PEPCK1), although recent evidence has questioned this attribution. To assess the metabolic role of PEPCK1, we treated regular chow fed and high-fat fed (HFF) male Sprague-Dawley rats with a 2'-O-methoxyethyl chimeric antisense oligonucleotide (ASO) against PEPCK1 and compared them with control ASO-treated rats. PEPCK1 ASO effectively decreased PEPCK1 expression in the liver and white adipose tissue. In chow fed rats, PEPCK1 ASO did not alter adiposity, plasma glucose, or insulin. In contrast, PEPCK1 ASO decreased the white adipose tissue mass in HFF rats but without altering basal rates of lipolysis, de novo lipogenesis, or glyceroneogenesis in vivo. Despite the protection from adiposity, hepatic insulin sensitivity was impaired in HFF PEPCK1 ASO-treated rats. PEPCK1 ASO worsened hepatic steatosis, although without additional impairments in hepatic insulin signaling or activation of inflammatory signals in the liver. Instead, the development of hepatic insulin resistance and the decrease in hepatic glycogen synthesis during a hyperglycemic clamp was attributed to a decrease in hepatic glucokinase (GCK) expression and decreased synthesis of glycogen via the direct pathway. The decrease in GCK expression was associated with increased expression of activating transcription factor 3, a negative regulator of GCK transcription. These studies have demonstrated that PEPCK1 is integral to coordinating cellular metabolism in the liver and adipose tissue, although it does not directly effect hepatic glucose production or adipose glyceroneogenesis.
Collapse
Affiliation(s)
- Sara A Beddow
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- West Haven Veterans Affairs Medical Center, West Haven, Connecticut
| | - Arijeet K Gattu
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- West Haven Veterans Affairs Medical Center, West Haven, Connecticut
| | - Daniel F Vatner
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Lauren Paolella
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- West Haven Veterans Affairs Medical Center, West Haven, Connecticut
| | | | - Nedda Tashkandi
- West Haven Veterans Affairs Medical Center, West Haven, Connecticut
| | - Violeta B Popov
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Christopher D Church
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Matthew S Rodeheffer
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Gary W Cline
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | | | | | - Varman T Samuel
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- West Haven Veterans Affairs Medical Center, West Haven, Connecticut
| |
Collapse
|
57
|
Chung SI, Rico CW, Lee SC, Kang MY. Instant White Rice with Pigmented Giant Embryonic Rice Improves Glucose Metabolism and Inhibits Oxidative Stress in High-Fat Diet-Fed Mice. INT J VITAM NUTR RES 2018; 88:234-243. [PMID: 31124742 DOI: 10.1024/0300-9831/a000266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effects of instant cooked rice made from a combination of white rice and pigmented giant embryonic Keunnunjami rice, in comparison with those of instant regular white or brown rice and instant non-pigmented giant embryonic brown rice, on the glucose metabolism and antioxidant defense status in high-fat diet-fed mice were investigated. 56 male C57BL/6N mice were randomly divided into 7 dietary groups: normal control, high fat (23 %, HF), and HF supplemented with normal white (HF + NW) or brown rice (HF + NB), non-pigmented giant embryonic rice (HF + GB), and white rice with 8 % Keunnunjami (HF + KJ8) and 18 % Keunnunjami (HF + KJ18). After 7 weeks, HF mice showed marked increases in blood glucose (156 mg/dL), plasma insulin (12.1 mg/mL), and lipid peroxidation, and a significant decrease in hepatic glycogen (14.2 mg/g) relative to the control group (p < 0.05). However, addition of instant NB, GB, KJ8, andKJ18) rice suppressed this high-fat diet-induced hyperglycemia and oxidative stress through altering glucose-regulating enzymes (glucokinase, glucose-6-phosphatase, and phosphoenolpyruvate carboxykinase) and activation of antioxidant enzymes (superoxide dismutase, glutathione peroxidase, catalase, glutathione reductase, and paraoxonase). Compared with HF mice, HF + KJ8 and HF + KJ18 groups exhibited significantly lower glucose (139-141 mg/dL), insulin (10.6-10.9 mg/mL), and lipid peroxidation and higher glycogen (15.3-16.4 mg/g) (p < 0.05). The hypoglycemic and antioxidant effects of instant KJ8 and KJ18 rice were generally comparable to those of instant NB and GB rice. These findings illustrate that instant rice made from white rice with 8 % Keunnunjami rice may be useful as a functional food with therapeutic potential against hyperglycemia and oxidative damage.
Collapse
Affiliation(s)
- Soo Im Chung
- 1 Department of Food Science and Nutrition, Brain Korea 21 Plus, Kyungpook National University, Daegu, Republic of Korea
| | - Catherine W Rico
- 1 Department of Food Science and Nutrition, Brain Korea 21 Plus, Kyungpook National University, Daegu, Republic of Korea
| | - Sang Chul Lee
- 2 Division of Plant Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Mi Young Kang
- 1 Department of Food Science and Nutrition, Brain Korea 21 Plus, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
58
|
Abu Bakar MH, Azmi MN, Shariff KA, Tan JS. Withaferin A Protects Against High-Fat Diet-Induced Obesity Via Attenuation of Oxidative Stress, Inflammation, and Insulin Resistance. Appl Biochem Biotechnol 2018; 188:241-259. [PMID: 30417321 DOI: 10.1007/s12010-018-2920-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/05/2018] [Indexed: 01/07/2023]
Abstract
Withaferin A (WA), a bioactive constituent derived from Withania somnifera plant, has been shown to exhibit many qualifying properties in attenuating several metabolic diseases. The current investigation sought to elucidate the protective mechanisms of WA (1.25 mg/kg/day) on pre-existing obese mice mediated by high-fat diet (HFD) for 12 weeks. Following dietary administration of WA, significant metabolic improvements in hepatic insulin sensitivity, adipocytokines with enhanced glucose tolerance were observed. The hepatic oxidative functions of obese mice treated with WA were improved via augmented antioxidant enzyme activities. The levels of serum pro-inflammatory cytokines and hepatic mRNA expressions of toll-like receptor (TLR4), nuclear factor κB (NF-κB), tumor necrosis factor-α (TNF-α), chemokine (C-C motif) ligand-receptor, and cyclooxygenase 2 (COX2) in HFD-induced obese mice were reduced. Mechanistically, WA increased hepatic mRNA expression of peroxisome proliferator-activated receptors (PPARs), cluster of differentiation 36 (CD36), fatty acid synthase (FAS), carnitine palmitoyltransferase 1 (CPT1), glucokinase (GCK), phosphofructokinase (PFK), and phosphoenolpyruvate carboxykinase (PCK1) that were associated with enhanced lipid and glucose metabolism. Taken together, these results indicate that WA exhibits protective effects against HFD-induced obesity through attenuation of hepatic inflammation, oxidative stress, and insulin resistance in mice.
Collapse
Affiliation(s)
- Mohamad Hafizi Abu Bakar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia.
| | - Mohamad Nurul Azmi
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Khairul Anuar Shariff
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | - Joo Shun Tan
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| |
Collapse
|
59
|
Latorre-Muro P, Baeza J, Armstrong EA, Hurtado-Guerrero R, Corzana F, Wu LE, Sinclair DA, López-Buesa P, Carrodeguas JA, Denu JM. Dynamic Acetylation of Phosphoenolpyruvate Carboxykinase Toggles Enzyme Activity between Gluconeogenic and Anaplerotic Reactions. Mol Cell 2018; 71:718-732.e9. [PMID: 30193097 PMCID: PMC6188669 DOI: 10.1016/j.molcel.2018.07.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 06/01/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
Abstract
Cytosolic phosphoenolpyruvate carboxykinase (PCK1) is considered a gluconeogenic enzyme; however, its metabolic functions and regulatory mechanisms beyond gluconeogenesis are poorly understood. Here, we describe that dynamic acetylation of PCK1 interconverts the enzyme between gluconeogenic and anaplerotic activities. Under high glucose, p300-dependent hyperacetylation of PCK1 did not lead to protein degradation but instead increased the ability of PCK1 to perform the anaplerotic reaction, converting phosphoenolpyruvate to oxaloacetate. Lys91 acetylation destabilizes the active site of PCK1 and favors the reverse reaction. At low energy input, we demonstrate that SIRT1 deacetylates PCK1 and fully restores the gluconeogenic ability of PCK1. Additionally, we found that GSK3β-mediated phosphorylation of PCK1 decreases acetylation and increases ubiquitination. Biochemical evidence suggests that serine phosphorylation adjacent to Lys91 stimulates SIRT1-dependent deacetylation of PCK1. This work reveals an unexpected capacity of hyperacetylated PCK1 to promote anaplerotic activity, and the intersection of post-translational control of PCK1 involving acetylation, phosphorylation, and ubiquitination.
Collapse
Affiliation(s)
- Pedro Latorre-Muro
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), BIFIIQFR (CSIC) Joint Unit, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Josue Baeza
- Wisconsin Institute for Discovery and Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health-Madison, Madison, WI 53715, USA
| | - Eric A Armstrong
- Wisconsin Institute for Discovery and Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health-Madison, Madison, WI 53715, USA
| | - Ramón Hurtado-Guerrero
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), BIFIIQFR (CSIC) Joint Unit, Universidad de Zaragoza, 50018 Zaragoza, Spain; Fundación ARAID, Government of Aragón, Zaragoza, Spain
| | - Francisco Corzana
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Lindsay E Wu
- Department of Pharmacology, School of Medical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - David A Sinclair
- Department of Pharmacology, School of Medical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia; Department of Genetics, Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, Boston, MA 02115, USA
| | - Pascual López-Buesa
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), BIFIIQFR (CSIC) Joint Unit, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - José A Carrodeguas
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), BIFIIQFR (CSIC) Joint Unit, Universidad de Zaragoza, 50018 Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain; IIS Aragón, Zaragoza, Spain.
| | - John M Denu
- Wisconsin Institute for Discovery and Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health-Madison, Madison, WI 53715, USA; Morgridge Institute for Research, Madison, WI 53715, USA.
| |
Collapse
|
60
|
Potts A, Uchida A, Deja S, Berglund ED, Kucejova B, Duarte JA, Fu X, Browning JD, Magnuson MA, Burgess SC. Cytosolic phosphoenolpyruvate carboxykinase as a cataplerotic pathway in the small intestine. Am J Physiol Gastrointest Liver Physiol 2018; 315:G249-G258. [PMID: 29631378 PMCID: PMC6139646 DOI: 10.1152/ajpgi.00039.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cytosolic phosphoenolpyruvate carboxykinase (PEPCK) is a gluconeogenic enzyme that is highly expressed in the liver and kidney but is also expressed at lower levels in a variety of other tissues where it may play adjunct roles in fatty acid esterification, amino acid metabolism, and/or TCA cycle function. PEPCK is expressed in the enterocytes of the small intestine, but it is unclear whether it supports a gluconeogenic rate sufficient to affect glucose homeostasis. To examine potential roles of intestinal PEPCK, we generated an intestinal PEPCK knockout mouse. Deletion of intestinal PEPCK ablated ex vivo gluconeogenesis but did not significantly affect glycemia in chow, high-fat diet, or streptozotocin-treated mice. In contrast, postprandial triglyceride secretion from the intestine was attenuated in vivo, consistent with a role in fatty acid esterification. Intestinal amino acid profiles and 13C tracer appearance into these pools were significantly altered, indicating abnormal amino acid trafficking through the enterocyte. The data suggest that the predominant role of PEPCK in the small intestine of mice is not gluconeogenesis but rather to support nutrient processing, particularly with regard to lipids and amino acids. NEW & NOTEWORTHY The small intestine expresses gluconeogenic enzymes for unknown reasons. In addition to glucose synthesis, the nascent steps of this pathway can be used to support amino acid and lipid metabolisms. When phosphoenolpyruvate carboxykinase, an essential gluconeogenic enzyme, is knocked out of the small intestine of mice, glycemia is unaffected, but mice inefficiently absorb dietary lipid, have abnormal amino acid profiles, and inefficiently catabolize glutamine. Therefore, the initial steps of intestinal gluconeogenesis are used for processing dietary triglycerides and metabolizing amino acids but are not essential for maintaining blood glucose levels.
Collapse
Affiliation(s)
- Austin Potts
- 1Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Aki Uchida
- 1Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Stanislaw Deja
- 2Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Eric D. Berglund
- 1Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Blanka Kucejova
- 2Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Joao A. Duarte
- 1Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Xiaorong Fu
- 2Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jeffrey D. Browning
- 3Department of Clinical Nutrition, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mark A. Magnuson
- 5Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Shawn C. Burgess
- 1Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas,4Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
61
|
Yang SQ, Chen YD, Li H, Hui X, Gao WY. Geniposide and Gentiopicroside Suppress Hepatic Gluconeogenesis via Regulation of AKT-FOXO1 Pathway. Arch Med Res 2018; 49:314-322. [DOI: 10.1016/j.arcmed.2018.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/26/2018] [Accepted: 10/15/2018] [Indexed: 10/27/2022]
|
62
|
Ko CW, Counihan D, Wu J, Hatzoglou M, Puchowicz MA, Croniger CM. Macrophages with a deletion of the phosphoenolpyruvate carboxykinase 1 ( Pck1) gene have a more proinflammatory phenotype. J Biol Chem 2018; 293:3399-3409. [PMID: 29317502 DOI: 10.1074/jbc.m117.819136] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/17/2017] [Indexed: 11/06/2022] Open
Abstract
Phosphoenolpyruvate carboxykinase (Pck1) is a metabolic enzyme that is integral to the gluconeogenic and glyceroneogenic pathways. However, Pck1's role in macrophage metabolism and function is unknown. Using stable isotopomer MS analysis in a mouse model with a myeloid cell-specific Pck1 deletion, we show here that this deletion increases the proinflammatory phenotype in macrophages. Incubation of LPS-stimulated bone marrow-derived macrophages (BMDM) with [U-13C]glucose revealed reduced 13C labeling of citrate and malate and increased 13C labeling of lactate in Pck1-deleted bone marrow-derived macrophages. We also found that the Pck1 deletion in the myeloid cells increases reactive oxygen species (ROS). Of note, this altered macrophage metabolism increased expression of the M1 cytokines TNFα, IL-1β, and IL-6. We therefore conclude that Pck1 contributes to M1 polarization in macrophages. Our findings provide important insights into the factors determining the macrophage inflammatory response and indicate that Pck1 activity contributes to metabolic reprogramming and polarization in macrophages.
Collapse
Affiliation(s)
| | | | - Jing Wu
- Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Maria Hatzoglou
- Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | | | | |
Collapse
|
63
|
Zhao F, Jiang G, Wei P, Wang H, Ru S. Bisphenol S exposure impairs glucose homeostasis in male zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:794-802. [PMID: 28946120 DOI: 10.1016/j.ecoenv.2017.09.048] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/14/2017] [Accepted: 09/16/2017] [Indexed: 05/27/2023]
Abstract
Bisphenol S (BPS) is a substitute of the plastic additive bisphenol A (BPA). Its concentrations detected in surface waters and urine samples are on the same order of magnitude as BPA. Human exposure to BPA has been implicated in the development of diabetes mellitus; however, whether BPS can disrupt glucose homeostasis and increase blood glucose concentration remains unclear. We extensively investigated the effects of environmentally relevant concentrations of BPS on glucose metabolism in male zebrafish (Danio rerio) and the underlying mechanisms of these effects. Male zebrafish were exposed to 1, 10, or 100μg/L of BPS for 28 d. Fasting blood glucose (FBG) levels, glycogen levels in the liver and muscle, and mRNA levels of key glucose metabolic enzymes and the activities of the encoded proteins in tissues were evaluated to assess the effect of BPS on glucose metabolism. Plasma insulin levels and expression of preproinsulin and glucagon genes in the visceral tissue were also evaluated. Compared with the control group, exposure to 1 and 10μg/L of BPS significantly increased FBG levels but decreased insulin levels. Gluconeogenesis and glycogenolysis in the liver were promoted, and glycogen synthesis in the liver and muscle and glycolysis in the muscle were inhibited. Exposure to 100μg/L of BPS did not significantly alter plasma insulin and blood glucose levels, but nonetheless pronouncedly interfered with gluconeogenesis, glycogenolysis, glycolysis, and glycogen synthesis. Our data indicates that BPS at environmentally relevant concentrations impairs glucose homeostasis of male zebrafish possibly by hampering the physiological effect of insulin; higher BPS doses also pronouncedly interfered with glucose metabolism.
Collapse
Affiliation(s)
- Fei Zhao
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003 Shandong Province, PR China
| | - Guobin Jiang
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003 Shandong Province, PR China
| | - Penghao Wei
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003 Shandong Province, PR China
| | - Hongfang Wang
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003 Shandong Province, PR China
| | - Shaoguo Ru
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003 Shandong Province, PR China.
| |
Collapse
|
64
|
Feng Z, Hanson RW, Berger NA, Trubitsyn A. Reprogramming of energy metabolism as a driver of aging. Oncotarget 2017; 7:15410-20. [PMID: 26919253 PMCID: PMC4941250 DOI: 10.18632/oncotarget.7645] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/11/2016] [Indexed: 12/15/2022] Open
Abstract
Aging is characterized by progressive loss of cellular function and integrity. It has been thought to be driven by stochastic molecular damage. However, genetic and environmental maneuvers enhancing mitochondrial function or inhibiting glycolysis extend lifespan and promote healthy aging in many species. In post-fertile Caenorhabditis elegans, a progressive decline in phosphoenolpyruvate carboxykinase with age, and a reciprocal increase in pyruvate kinase shunt energy metabolism from oxidative metabolism to anaerobic glycolysis. This reduces the efficiency and total of energy generation. As a result, energy-dependent physical activity and other cellular functions decrease due to unmatched energy demand and supply. In return, decrease in physical activity accelerates this metabolic shift, forming a vicious cycle. This metabolic event is a determinant of aging, and is retarded by caloric restriction to counteract aging. In this review, we summarize these and other evidence supporting the idea that metabolic reprogramming is a driver of aging. We also suggest strategies to test this hypothesis
Collapse
Affiliation(s)
- Zhaoyang Feng
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Richard W Hanson
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Nathan A Berger
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Alexander Trubitsyn
- Institute of Biology and Soil Sciences of Far Eastern Brach of Russian Academy of Science, Vladivostok, Russia
| |
Collapse
|
65
|
Gotoh S, Miyauchi Y, Moore R, Negishi M. Glucose elicits serine/threonine kinase VRK1 to phosphorylate nuclear pregnane X receptor as a novel hepatic gluconeogenic signal. Cell Signal 2017; 40:200-209. [DOI: 10.1016/j.cellsig.2017.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/26/2017] [Accepted: 09/10/2017] [Indexed: 12/11/2022]
|
66
|
Prisingkorn W, Prathomya P, Jakovlić I, Liu H, Zhao YH, Wang WM. Transcriptomics, metabolomics and histology indicate that high-carbohydrate diet negatively affects the liver health of blunt snout bream (Megalobrama amblycephala). BMC Genomics 2017; 18:856. [PMID: 29121861 PMCID: PMC5680769 DOI: 10.1186/s12864-017-4246-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/31/2017] [Indexed: 12/18/2022] Open
Abstract
Background Global trend of the introduction of high levels of relatively cheap carbohydrates to reduce the amount of costly protein in the aquatic animal feed production has affected the aquaculture of an economically important cyprinid fish, blunt snout bream (Megalobrama amblycephala). This dietary shift has resulted in increased prevalence of metabolic disorders, often causing economic losses. High dietary intake of carbohydrates, associated with obesity, is one of the major causes of non-alcoholic fatty liver disease (NAFLD) in humans. Results We have conducted an eight-week feeding trial to better understand how a high-carbohydrate diet (HCBD) affects the liver health in this fish. Hepatosomatic index and lipid content were significantly (P < 0.05) higher in the HCBD group. Histology results also suggested pathological changes in the livers of HCBD group, with excessive lipid accumulation and indication of liver damage. Metabolomics and serum biochemistry analyses showed that a number of metabolites indicative of liver damage were increased in the HCBD group. This group also exhibited low levels of betaine, which is a metabolite crucial for maintaining the healthy liver functions. Transcriptomic and qPCR analyses indicated that HCBD had a strong impact on the expression of a large number of genes associated with the NAFLD and insulin signalling pathways, which may lead to the development of insulin resistance in hepatocytes, pathological liver changes, and eventually the NAFLD. Conclusions Transcriptomics, metabolomics and histology results all indicate early symptoms of liver damage. However whether these would actually lead to the development of NAFLD after a longer period of time, remains inconclusive. Additionally, a very high number of upregulated genes in the HCBD group associated with several neurodegenerative diseases is a strong indication of neurodegenerative changes caused by the high-carbohydrate diet in blunt snout bream. This suggests that fish might present a good model to study neurodegenerative changes associated with high-carbohydrate diet in humans. Electronic supplementary material The online version of this article (10.1186/s12864-017-4246-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wassana Prisingkorn
- College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Panita Prathomya
- College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Ivan Jakovlić
- Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan, 430075, People's Republic of China
| | - Han Liu
- College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Yu-Hua Zhao
- College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China.
| | - Wei-Min Wang
- College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
67
|
Chen J, Zhang Z, Wang N, Guo M, Chi X, Pan Y, Jiang J, Niu J, Ksimu S, Li JZ, Chen X, Wang Q. Role of HDAC9-FoxO1 Axis in the Transcriptional Program Associated with Hepatic Gluconeogenesis. Sci Rep 2017; 7:6102. [PMID: 28733598 PMCID: PMC5522426 DOI: 10.1038/s41598-017-06328-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/08/2017] [Indexed: 12/31/2022] Open
Abstract
Histone deacetylase 9 (HDAC9) regulates hepatic gluconeogenesis by deacetylating Forkhead box O 1 (FoxO1). HDAC9 upregulation is involved in hepatitis C virus (HCV)-associated exaggerated gluconeogenesis. Herein, we found in addition to FoxO1, HDAC9 also regulates other gluconeogenic transcription factors, including peroxisomeproliferator-activated receptor-γ coactivator-1α (PGC-1α), cyclic AMP-responsive element-binding protein (CREB), and glucocorticoid receptor (GR). Unlike FoxO1, which is regulated by post-translational modification responses to HDAC9, HDAC9 regulates PGC-1α, CREB and GR by altering gene expression. Similar to PGC-1α, CREB and GR were found to be novel regulatory targets of FoxO1 by examination of the FoxO1 binding site in their promoter. PGC-1α, CREB and GR were upregulated in response to HDAC9 via FoxO1 deacetylation. These findings indicate that HDAC9-FoxO1 signalling contributes to gluconeogenesis by modulating the expression of gluconeogenic transcription factors. In particular, metabolic profiling demonstrated a clear shift towards gluconeogenesis metabolism, and HDAC9-FoxO1 signalling can be strongly induced to upregulate gluconeogenic transcription factors following HCV infection. The positive correlation between HDAC9 and gluconeogenic transcription factor expression levels in the livers of both HCV-infected patients and normal individuals further emphasizes the clinical relevance of these results. Thus, HDAC9-FoxO1 signalling axis is involved in regulating gluconeogenic transcription factors, gluconeogenesis, and HCV-induced type 2 diabetes.
Collapse
Affiliation(s)
- Jizheng Chen
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhilei Zhang
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 210029, China
| | - Ning Wang
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 210029, China
| | - Min Guo
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Xiumei Chi
- Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yu Pan
- Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jing Jiang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Sulaiman Ksimu
- The Center for Technology and Education, The first Affiliated Hospital of Xinjiang Medical University, Urumchi, 830054, China
| | - John Zhong Li
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 210029, China
| | - Xinwen Chen
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Qian Wang
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
68
|
Kubo H, Hoshi M, Matsumoto T, Irie M, Oura S, Tsutsumi H, Hata Y, Yamamoto Y, Saito K. Sake lees extract improves hepatic lipid accumulation in high fat diet-fed mice. Lipids Health Dis 2017; 16:106. [PMID: 28578672 PMCID: PMC5457550 DOI: 10.1186/s12944-017-0501-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/25/2017] [Indexed: 02/06/2023] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is increasing worldwide as one of the leading causes of chronic liver disease. Sake lees (SL) are secondary products of sake manufacturing and are considered to have beneficial effects on human health. To investigate these effects, we used high fat diet (HFD)-fed mice treated with or without the SL extract. Method Mice were the HFD ad libitum for 8 weeks and were administered 500 μL of distilled water with or without the SL extract (350 mg/mL) by a feeding needle daily for the last 4 weeks. Food intake, body weight, and liver weight were measured. Triacylglycerol content and the mRNA and protein expression levels of various lipid and glucose metabolism-related genes were determined in liver tissues. The levels of triglyceride, free fatty acids, glucose, insulin, and liver cell damage markers were determined in serum. Fatty acid-induced lipid accumulation in HepG2 cells was assessed in the presence or absence of the SL extract. Results Mice fed a HFD and treated with the SL extract demonstrated a significant reduction in hepatic lipid accumulation and mRNA and protein levels of peroxidome proliferator-activated receptor γ (PPARγ), PPARα, CD36, and phosphoenolpyruvate carboxykinase 1 in the liver, while the SL extract did not affect body weight and food intake. Moreover, insulin resistance and hepatic inflammation in HFD-fed mice improved after administration of the SL extract. In HepG2 cells, the SL extract suppressed fatty acid-induced intracellular lipid accumulation. Conclusions These findings suggest that treatment with the SL extract could potentially reduce the risk of NAFLD development, and that the SL extract may be clinically useful for the treatment of NAFLD.
Collapse
Affiliation(s)
- Hisako Kubo
- Human Health Sciences, Graduate School of Medicine and Faculty of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masato Hoshi
- Department of Biochemical and Analytical Sciences, Fujita Health University Graduate School of Health Sciences, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, 470-1192, Japan
| | - Takuya Matsumoto
- Human Health Sciences, Graduate School of Medicine and Faculty of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Motoko Irie
- Research Institute, Gekkeikan Sake Co. Ltd., 247 Minamihamcho, Fushimi, Kyoto, 612-8385, Japan
| | - Shin Oura
- Research Institute, Gekkeikan Sake Co. Ltd., 247 Minamihamcho, Fushimi, Kyoto, 612-8385, Japan
| | - Hiroko Tsutsumi
- Research Institute, Gekkeikan Sake Co. Ltd., 247 Minamihamcho, Fushimi, Kyoto, 612-8385, Japan
| | - Yoji Hata
- Research Institute, Gekkeikan Sake Co. Ltd., 247 Minamihamcho, Fushimi, Kyoto, 612-8385, Japan
| | - Yasuko Yamamoto
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, 470-1192, Japan
| | - Kuniaki Saito
- Human Health Sciences, Graduate School of Medicine and Faculty of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan. .,Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
69
|
Choi JS, Kim JW, Park JB, Pyo SE, Hong YK, Ku SK, Kim MR. Blood glycemia-modulating effects of melanian snail protein hydrolysates in mice with type II diabetes. Int J Mol Med 2017; 39:1437-1451. [PMID: 28487991 PMCID: PMC5428967 DOI: 10.3892/ijmm.2017.2967] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/29/2017] [Indexed: 12/23/2022] Open
Abstract
Freshwater animal proteins have long been used as nutrient supplements. In this study, melanian snail (Semisulcospira libertina) protein hydrolysates (MPh) were found to exert anti-diabetic and protective effects against liver and kidney damage in mice with type II diabetes adapted to a 45% kcal high-fat diet (HFD). The hypoglycemic, hepatoprotective and nephroprotective effects of MPh were analyzed after 12 weeks of the continuous oral administration of MPh at 125, 250 and 500 mg/kg. Diabetic control mice exhibited an increase in body weight, and blood glucose and insulin levels, with a decrease in serum high-density lipoprotein (HDL) levels. In addition, an increase in the regions of steatohepatitis, hepatocyte hypertrophy, and lipid droplet deposit-related renal tubular vacuolation degenerative lesions were detected, with noticeable expansion and hyperplasia of the pancreatic islets, and an increase in glucagon- and insulin-producing cells, insulin/glucagon cell ratios in the endocrine pancreas and hepatic lipid peroxidation, as well as decreased zymogen contents. Furthermore, a deterioration of the endogenous antioxidant defense system was observed, with reduced glucose utilization related hepatic glucokinase (GK) activity and an increase in hepatic gluconeogenesis-related phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6pase) activity. However, all of these diabetic complications were significantly inhibited by oral treatment with MPh in a dose-dependent manner. In addition, the marked dose-dependent inhibition of hepatic lipid peroxidation, the depletion of the liver endogenous antioxidant defense system, and changes in hepatic glucose-regulating enzyme activities were also observed. The results of this study suggest that MPh exerts potent anti-diabetic effects, along with the amelioration of related complications in mice with type II diabetes. The overall effects of MPh at a dose of 125 mg/kg on HFD-induced diabetes and related complications were similar or more potent than those of metformin (250 mg/kg).
Collapse
Affiliation(s)
- Jae-Suk Choi
- Major in Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences, Silla University, Sasang-gu, Busan 46958, Republic of Korea
| | - Joo-Wan Kim
- Aribio Inc., Byeoksan Digital Valley, Yeongdeungpo-gu, Seoul 07286, Republic of Korea
| | - Jeong Been Park
- Major in Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences, Silla University, Sasang-gu, Busan 46958, Republic of Korea
| | - Sang Eun Pyo
- Major in Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences, Silla University, Sasang-gu, Busan 46958, Republic of Korea
| | - Yong-Ki Hong
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, Nam-Gu, Busan 48513, Republic of Korea
| | - Sae Kwang Ku
- Department of Anatomy and Histology, College of Oriental Medicine, Daegu Haany University, Gyeongsan-si, Gyeongsangbuk-do 38610, Republic of Korea
| | - Mi-Ryung Kim
- Major in Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences, Silla University, Sasang-gu, Busan 46958, Republic of Korea
| |
Collapse
|
70
|
Chen L, Zeng T, Li GQ, Liu R, Tian Y, Li QH, Lu LZ. PCK1 expression is correlated with the plasma glucose level in the duck. Anim Genet 2017; 48:358-361. [PMID: 28198082 DOI: 10.1111/age.12540] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2016] [Indexed: 11/30/2022]
Abstract
Phosphoenolpyruvate carboxykinase 1 (soluble) (PCK1) is a key gene in gluconeogenesis and glyceroneogenesis. Although its functions have been extensively studied in mice, bats and humans, little is known in ducks. Here, PCK1 functions were studied using a duck domestication model and a 48-h fasting experiment. We found PCK1 expression significantly decreased in two breeds of domestic ducks (Jinyun Pockmark ducks and Cherry Valley ducks) as compared with wild ducks (Anas platyrhynchos). Simultaneously, plasma levels of glucose, triglycerides and free fatty acid in domestic ducks were lower than in wild ducks. When compared with fed ducks, the plasma triglyceride level was observed to be significantly decreased, while the glucose and free fatty acid levels remained constant in 48-h fasting ducks. The expression analysis of gluconeogenic genes revealed that fructose-1,6-bisphosphatase genes (FBP1 and FBP2) and the glucose-6-phosphatase gene (G6PC2) were not changed, whereas PCK1 was significantly upregulated. In addition, the reported regulators of PCK1, including forkhead box A2 (FOXA2) gene and orphan nuclear receptor NR4A family genes (NR4A1, NR4A2 and NR4A3), exhibited similar expression levels between 48-h fasting ducks and fed ducks, suggesting that PCK1 is not regulated by these genes in the duck under fasting conditions. In conclusion, PCK1 expression may affect plasma levels of glucose, triglycerides and free fatty acid during the duck domestication process. This work demonstrates for the first time in duck that PCK1 is a key gene in maintaining plasma glucose homeostasis during fasting and that the upregulated expression of PCK1 may be responsible for constant plasma free fatty acid level by the glyceroneogenesis process.
Collapse
Affiliation(s)
- L Chen
- Institute of Animal Sciences and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - T Zeng
- Institute of Animal Sciences and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - G Q Li
- Institute of Animal Sciences and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - R Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Y Tian
- Institute of Animal Sciences and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Q H Li
- State Key Laboratory for Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - L Z Lu
- Institute of Animal Sciences and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
71
|
Bose SK, Hutson I, Harris CA. Hepatic Glucocorticoid Receptor Plays a Greater Role Than Adipose GR in Metabolic Syndrome Despite Renal Compensation. Endocrinology 2016; 157:4943-4960. [PMID: 27754788 PMCID: PMC5133352 DOI: 10.1210/en.2016-1615] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Exogenous glucocorticoid administration results in hyperglycemia, insulin resistance, hepatic dyslipidemia, and hypertension, a constellation of findings known as Cushing's syndrome. These effects are mediated by the glucocorticoid receptor (GR). Because GR activation in liver and adipose has been implicated in metabolic syndrome (MS), we wanted to determine the role of GR in these tissues in the development of MS. Because GR knockout (KO) mice (whole-body KO) exhibit perinatal lethality due to respiratory failure, we generated tissue-specific (liver or adipose) GRKO mice using cre-lox technology. Real-time PCR analysis of liver mRNA from dexamethasone-treated wildtype (WT) and liver GRKO mice indicated that hepatic GR regulates the expression of key genes involved in gluconeogenesis and glycogen metabolism. Interestingly, we have observed that liver-specific deletion of GR resulted in a significant increase in mRNA expression of key genes involved in gluconeogenesis and glycogen metabolism in kidney tissue, indicating a compensatory mechanism to maintain glucose homeostasis. We have also observed that GR plays an important role in regulating the mRNA expression of key genes involved in lipid metabolism. Liver GRKO mice demonstrated decreased fat mass and liver glycogen content compared with WT mice administered dexamethasone for 2 weeks. Adipose-specific deletion of GR did not alter glucose tolerance or insulin sensitivity of adipose GRKO mice compared with WT mice administrated dexamethasone. This indicates that liver GR might be more important in development of MS in dexamethasone-treated mice, whereas adipose GR plays a little role in these paradigms.
Collapse
Affiliation(s)
- Sandip K Bose
- Department of Internal Medicine (S.K.B., I.H., C.A.H.), Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110; and John Cochran Division (C.A.H.), Veterans Affairs St. Louis Health Care System, St. Louis, Missouri 63106
| | - Irina Hutson
- Department of Internal Medicine (S.K.B., I.H., C.A.H.), Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110; and John Cochran Division (C.A.H.), Veterans Affairs St. Louis Health Care System, St. Louis, Missouri 63106
| | - Charles A Harris
- Department of Internal Medicine (S.K.B., I.H., C.A.H.), Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110; and John Cochran Division (C.A.H.), Veterans Affairs St. Louis Health Care System, St. Louis, Missouri 63106
| |
Collapse
|
72
|
Wesolowski SR, Hay WW. Role of placental insufficiency and intrauterine growth restriction on the activation of fetal hepatic glucose production. Mol Cell Endocrinol 2016; 435:61-68. [PMID: 26723529 PMCID: PMC4921201 DOI: 10.1016/j.mce.2015.12.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/16/2015] [Accepted: 12/18/2015] [Indexed: 02/07/2023]
Abstract
Glucose is the major fuel for fetal oxidative metabolism. A positive maternal-fetal glucose gradient drives glucose across the placenta and is sufficient to meet the demands of the fetus, eliminating the need for endogenous hepatic glucose production (HGP). However, fetuses with intrauterine growth restriction (IUGR) from pregnancies complicated by placental insufficiency have an early activation of HGP. Furthermore, this activated HGP is resistant to suppression by insulin. Here, we present the data demonstrating the activation of HGP in animal models, mostly fetal sheep, and human pregnancies with IUGR. We also discuss potential mechanisms and pathways that may produce and support HGP and hepatic insulin resistance in IUGR fetuses.
Collapse
Affiliation(s)
- Stephanie R Wesolowski
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - William W Hay
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
73
|
Kulebyakin K, Penkov D, Blasi F, Akopyan Z, Tkachuk V. The transcription factor Prep1 controls hepatic insulin sensitivity and gluconeogenesis by targeting nuclear localization of FOXO1. Biochem Biophys Res Commun 2016; 481:182-188. [PMID: 27815072 DOI: 10.1016/j.bbrc.2016.10.146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 10/29/2016] [Indexed: 10/20/2022]
Abstract
Liver plays a key role in controlling body carbohydrate homeostasis by switching between accumulation and production of glucose and this way maintaining constant level of glucose in blood. Increased blood glucose level triggers release of insulin from pancreatic β-cells. Insulin represses hepatic glucose production and increases glucose accumulation. Insulin resistance is the main cause of type 2 diabetes and hyperglycemia. Currently thiazolidinediones (TZDs) targeting transcriptional factor PPARγ are used as insulin sensitizers for treating patients with type 2 diabetes. However, TZDs are reported to be associated with cardiovascular and liver problems and stimulate obesity. Thus, it is necessary to search new approaches to improve insulin sensitivity. A promising candidate is transcriptional factor Prep1, as it was shown earlier it could affect insulin sensitivity in variety of insulin-sensitive tissues. The aim of the present study was to evaluate a possible involvement of transcriptional factor Prep1 in control of hepatic glucose accumulation and production. We created mice with liver-specific Prep1 knockout and discovered that hepatocytes derived from these mice are much more sensitive to insulin, comparing to their WT littermates. Incubation of these cells with 100 nM insulin results in almost complete inhibition of gluconeogenesis, while in WT cells this repression is only partial. However, Prep1 doesn't affect gluconeogenesis in the absence of insulin. Also, we observed that nuclear content of gluconeogenic transcription factor FOXO1 was greatly reduced in Prep1 knockout hepatocytes. These findings suggest that Prep1 may control hepatic insulin sensitivity by targeting FOXO1 nuclear stability.
Collapse
Affiliation(s)
- Konstantin Kulebyakin
- Lomonosov Moscow State University, Faculty of Fundamental Medicine, Department of Biochemistry and Molecular Medicine, Lomonosovsky Prospekt 31-5, Moscow, 117192, Russia.
| | - Dmitry Penkov
- Lomonosov Moscow State University, Faculty of Fundamental Medicine, Department of Biochemistry and Molecular Medicine, Lomonosovsky Prospekt 31-5, Moscow, 117192, Russia; IFOM - the FIRC Institute of Molecular Oncology, Via Adamello 16, Milan, 20139, Italy
| | - Francesco Blasi
- IFOM - the FIRC Institute of Molecular Oncology, Via Adamello 16, Milan, 20139, Italy
| | - Zhanna Akopyan
- Lomonosov Moscow State University, Faculty of Fundamental Medicine, Department of Biochemistry and Molecular Medicine, Lomonosovsky Prospekt 31-5, Moscow, 117192, Russia
| | - Vsevolod Tkachuk
- Lomonosov Moscow State University, Faculty of Fundamental Medicine, Department of Biochemistry and Molecular Medicine, Lomonosovsky Prospekt 31-5, Moscow, 117192, Russia
| |
Collapse
|
74
|
Kieffer DA, Martin RJ, Adams SH. Impact of Dietary Fibers on Nutrient Management and Detoxification Organs: Gut, Liver, and Kidneys. Adv Nutr 2016; 7:1111-1121. [PMID: 28140328 PMCID: PMC5105045 DOI: 10.3945/an.116.013219] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Increased dietary fiber (DF) intake elicits a wide range of physiologic effects, not just locally in the gut, but systemically. DFs can greatly alter the gut milieu by affecting the gut microbiome, which in turn influences the gut barrier, gastrointestinal immune and endocrine responses, and nitrogen cycling and microbial metabolism. These gut-associated changes can then alter the physiology and biochemistry of the body's other main nutrient management and detoxification organs, the liver and kidneys. The molecular mechanisms by which DF alters the physiology of the gut, liver, and kidneys is likely through gut-localized events (i.e., bacterial nitrogen metabolism, microbe-microbe, and microbe-host cell interactions) coupled with specific factors that emanate from the gut in response to DF, which signal to or affect the physiology of the liver and kidneys. The latter may include microbe-derived xenometabolites, peptides, or bioactive food components made available by gut microbes, inflammation signals, and gut hormones. The intent of this review is to summarize how DF alters the gut milieu to specifically affect intestinal, liver, and kidney functions and to discuss the potential local and systemic signaling networks that are involved.
Collapse
Affiliation(s)
- Dorothy A Kieffer
- Graduate Group in Nutritional Biology and
- Department of Nutrition, University of California, Davis, Davis, CA
- Obesity and Metabolism Research Unit, USDA-Agricultural Research Service Western Human Nutrition Research Center, Davis, CA
| | - Roy J Martin
- Graduate Group in Nutritional Biology and
- Department of Nutrition, University of California, Davis, Davis, CA
- Obesity and Metabolism Research Unit, USDA-Agricultural Research Service Western Human Nutrition Research Center, Davis, CA
| | - Sean H Adams
- Graduate Group in Nutritional Biology and
- Department of Nutrition, University of California, Davis, Davis, CA
- Arkansas Children's Nutrition Center, Little Rock, AR; and
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
75
|
PEPCK-C reexpression in the liver counters neonatal hypoglycemia in Pck1 del/del mice, unmasking role in non-gluconeogenic tissues. J Physiol Biochem 2016; 73:89-98. [PMID: 27785616 DOI: 10.1007/s13105-016-0528-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 10/05/2016] [Indexed: 12/27/2022]
Abstract
Whole body cytosolic phosphoenolpyruvate carboxykinase knockout (PEPCK-C KO) mice die early after birth with profound hypoglycemia therefore masking the role of PEPCK-C in adult, non-gluconeogenic tissues where it is expressed. To investigate whether PEPCK-C deletion in the liver was critically responsible for the hypoglycemic phenotype, we reexpress this enzyme in the liver of PEPCK-C KO pups by early postnatal administration of PEPCK-C-expressing adenovirus. This maneuver was sufficient to partially rescue hypoglycemia and allow the pups to survive and identifies the liver as a critical organ, and hypoglycemia as the critical pathomechanism, leading to early postnatal death in the whole-body PEPCK-C knockout mice. Pathology assessment of survivors also suggest a possible role for PEPCK-C in lung maturation and muscle metabolism.
Collapse
|
76
|
Germinated Pigmented Rice (Oryza Sativa L. cv. Superhongmi) Improves Glucose and Bone Metabolisms in Ovariectomized Rats. Nutrients 2016; 8:nu8100658. [PMID: 27775654 PMCID: PMC5084044 DOI: 10.3390/nu8100658] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/14/2016] [Accepted: 10/19/2016] [Indexed: 12/31/2022] Open
Abstract
The effect of germinated Superhongmi, a reddish brown pigmented rice cultivar, on the glucose profile and bone turnover in the postmenopausal-like model of ovariectomized rats was determined. The ovariectomized Sprague-Dawley rats were randomly divided into three dietary groups (n = 10): normal control diet (NC) and normal diet supplemented with non-germinated Superhongmi (SH) or germinated Superhongmi (GSH) rice powder. After eight weeks, the SH and GSH groups showed significantly lower body weight, glucose and insulin concentrations, levels of bone resorption markers and higher glycogen and 17-β-estradiol contents than the NC group. The glucose metabolism improved through modulation of adipokine production and glucose-regulating enzyme activities. The GSH rats exhibited a greater hypoglycemic effect and lower bone resorption than SH rats. These results demonstrate that germinated Superhongmi rice may potentially be useful in the prevention and management of postmenopausal hyperglycemia and bone turnover imbalance.
Collapse
|
77
|
Kieffer DA, Piccolo BD, Marco ML, Kim EB, Goodson ML, Keenan MJ, Dunn TN, Knudsen KEB, Adams SH, Martin RJ. Obese Mice Fed a Diet Supplemented with Enzyme-Treated Wheat Bran Display Marked Shifts in the Liver Metabolome Concurrent with Altered Gut Bacteria. J Nutr 2016; 146:2445-2460. [PMID: 27798344 DOI: 10.3945/jn.116.238923] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/11/2016] [Accepted: 09/09/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Enzyme-treated wheat bran (ETWB) contains a fermentable dietary fiber previously shown to decrease liver triglycerides (TGs) and modify the gut microbiome in mice. It is not clear which mechanisms explain how ETWB feeding affects hepatic metabolism, but factors (i.e., xenometabolites) associated with specific microbes may be involved. OBJECTIVE The objective of this study was to characterize ETWB-driven shifts in the cecal microbiome and to identify correlates between microbial changes and diet-related differences in liver metabolism in diet-induced obese mice that typically display steatosis. METHODS Five-week-old male C57BL/6J mice fed a 45%-lard-based fat diet supplemented with ETWB (20% wt:wt) or rapidly digestible starch (control) (n = 15/group) for 10 wk were characterized by using a multi-omics approach. Multivariate statistical analysis was used to identify variables that were strong discriminators between the ETWB and control groups. RESULTS Body weight and liver TGs were decreased by ETWB feeding (by 10% and 25%, respectively; P < 0.001), and an index of liver reactive oxygen species was increased (by 29%; P < 0.01). The cecal microbiome showed an increase in Bacteroidetes (by 42%; P < 0.05) and a decrease in Firmicutes (by 16%; P < 0.05). Metabolites that were strong discriminators between the ETWB and control groups included decreased liver antioxidants (glutathione and α-tocopherol); decreased liver carbohydrate metabolites, including glucose; lower hepatic arachidonic acid; and increased liver and plasma β-hydroxybutyrate. Liver transcriptomics revealed key metabolic pathways affected by ETWB, especially those related to lipid metabolism and some fed- or fasting-regulated genes. CONCLUSIONS Together, these changes indicate that dietary fibers such as ETWB regulate hepatic metabolism concurrently with specific gut bacteria community shifts in C57BL/6J mice. It is proposed that these changes may elicit gut-derived signals that reach the liver via enterohepatic circulation, ultimately affecting host liver metabolism in a manner that mimics, in part, the fasting state.
Collapse
Affiliation(s)
- Dorothy A Kieffer
- Graduate Group in Nutritional Biology and.,Department of Nutrition.,Obesity and Metabolism Research Unit, USDA-Agricultural Research Service Western Human Nutrition Research Center, Davis, CA
| | - Brian D Piccolo
- Arkansas Children's Nutrition Center and.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | | | - Eun Bae Kim
- Food Science and Technology Department, and.,Department of Animal Life Science, College of Animal Life Sciences, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | | | | | - Tamara N Dunn
- Graduate Group in Nutritional Biology and.,Department of Nutrition.,Obesity and Metabolism Research Unit, USDA-Agricultural Research Service Western Human Nutrition Research Center, Davis, CA
| | | | - Sean H Adams
- Graduate Group in Nutritional Biology and .,Department of Nutrition.,Arkansas Children's Nutrition Center and.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Roy J Martin
- Graduate Group in Nutritional Biology and .,Department of Nutrition.,Obesity and Metabolism Research Unit, USDA-Agricultural Research Service Western Human Nutrition Research Center, Davis, CA
| |
Collapse
|
78
|
Rines AK, Sharabi K, Tavares CDJ, Puigserver P. Targeting hepatic glucose metabolism in the treatment of type 2 diabetes. Nat Rev Drug Discov 2016; 15:786-804. [PMID: 27516169 DOI: 10.1038/nrd.2016.151] [Citation(s) in RCA: 244] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes mellitus is characterized by the dysregulation of glucose homeostasis, resulting in hyperglycaemia. Although current diabetes treatments have exhibited some success in lowering blood glucose levels, their effect is not always sustained and their use may be associated with undesirable side effects, such as hypoglycaemia. Novel antidiabetic drugs, which may be used in combination with existing therapies, are therefore needed. The potential of specifically targeting the liver to normalize blood glucose levels has not been fully exploited. Here, we review the molecular mechanisms controlling hepatic gluconeogenesis and glycogen storage, and assess the prospect of therapeutically targeting associated pathways to treat type 2 diabetes.
Collapse
Affiliation(s)
- Amy K Rines
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kfir Sharabi
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Clint D J Tavares
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
79
|
Zhang Q, Koser SL, Donkin SS. Propionate induces the bovine cytosolic phosphoenolpyruvate carboxykinase promoter activity. J Dairy Sci 2016; 99:6654-6664. [DOI: 10.3168/jds.2016-11103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 04/30/2016] [Indexed: 01/26/2023]
|
80
|
Shin EK, Kang HY, Yang H, Jung EM, Jeung EB. The Regulation of Fatty Acid Oxidation in Human Preeclampsia. Reprod Sci 2016; 23:1422-33. [PMID: 27076444 DOI: 10.1177/1933719116641759] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Preeclampsia (PE) is a pregnancy disorder characterized by high blood pressure, placental oxidative stress, and proteinuria. In a GeneFishing experiment using human preeclamptic placenta, expression of acyl-coenzyme A dehydrogenase very long chain (ACADVL), which is involved in fatty acid β-oxidation (FAO), was detected. To investigate the correlation between PE and FAO, this study subjected in vitro BeWo cells and in vivo pregnant mice to oxidative stress induced by hypoxia. Hypoxic condition, which oxygen supply is insufficient in cells and placenta, created a similar state to placental oxidative stress in PE, as evidenced by increased hypoxic (oxoguanine DNA glycosylase 1, hypoxia inducible factor 1 alpha subunit) and preeclamptic markers (soluble fms-like tyrosine kinase 1) both in vitro and in vivo. Increased expression of FAO-related genes (ACADVL, enoyl-coenzyme A hydratase/3-hydroxyacyl coenzyme A dehydrogenase) was observed in these models as well as in cases of preeclamptic preterm labor. In the in vivo liver model, messenger RNA expression of gluconeogenesis-related genes increased. Consequently, these results suggest that expression of FAO-related genes is regulated by hypoxic conditions and onset time of PE and affects maternal gluconeogenesis during pregnancy in patients with PE.
Collapse
Affiliation(s)
- Eun-Kyeong Shin
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Hee Young Kang
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Hyun Yang
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Eui-Man Jung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
81
|
Seenappa V, Das B, Joshi MB, Satyamoorthy K. Context Dependent Regulation of Human Phosphoenolpyruvate Carboxykinase Isoforms by DNA Promoter Methylation and RNA Stability. J Cell Biochem 2016; 117:2506-20. [DOI: 10.1002/jcb.25543] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 03/15/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Venu Seenappa
- Department of Biotechnology; School of Life Sciences; Manipal University; Manipal India
| | - Bidyadhar Das
- Department of Zoology; Northeast Hill University; Shillong India
| | - Manjunath B. Joshi
- Department of Biotechnology; School of Life Sciences; Manipal University; Manipal India
| | - Kapaettu Satyamoorthy
- Department of Biotechnology; School of Life Sciences; Manipal University; Manipal India
| |
Collapse
|
82
|
Kung CP, Leu JIJ, Basu S, Khaku S, Anokye-Danso F, Liu Q, George DL, Ahima RS, Murphy ME. The P72R Polymorphism of p53 Predisposes to Obesity and Metabolic Dysfunction. Cell Rep 2016; 14:2413-25. [PMID: 26947067 DOI: 10.1016/j.celrep.2016.02.037] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/21/2015] [Accepted: 02/03/2016] [Indexed: 01/14/2023] Open
Abstract
p53 is well known for its tumor suppressor role, but this protein also has a poorly understood role in the regulation of metabolism. Human studies have implicated a common polymorphism at codon 72 of p53 in diabetic and pre-diabetic phenotypes. To understand this role, we utilized a humanized mouse model of the p53 codon 72 variants and monitored these mice following challenge with a high-fat diet (HFD). Mice with the arginine 72 (R72) variant of p53 developed more-severe obesity and glucose intolerance on a HFD, compared to mice with the proline 72 variant (P72). R72 mice developed insulin resistance, islet hypertrophy, increased infiltration of immune cells, and fatty liver disease. Gene expression analyses and studies with small-molecule inhibitors indicate that the p53 target genes Tnf and Npc1l1 underlie this phenotype. These results shed light on the role of p53 in obesity, metabolism, and inflammation.
Collapse
Affiliation(s)
- Che-Pei Kung
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Julia I-Ju Leu
- Department of Genetics, The Perelman School at the University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Subhasree Basu
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Sakina Khaku
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Frederick Anokye-Danso
- Institute for Diabetes, Obesity, and Metabolism, The Perelman School at the University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA; Biostatistics Unit, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Donna L George
- Department of Genetics, The Perelman School at the University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Rexford S Ahima
- Institute for Diabetes, Obesity, and Metabolism, The Perelman School at the University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Maureen E Murphy
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|
83
|
Bulik S, Holzhütter HG, Berndt N. The relative importance of kinetic mechanisms and variable enzyme abundances for the regulation of hepatic glucose metabolism--insights from mathematical modeling. BMC Biol 2016; 14:15. [PMID: 26935066 PMCID: PMC4774192 DOI: 10.1186/s12915-016-0237-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/16/2016] [Indexed: 01/09/2023] Open
Abstract
Background Adaptation of the cellular metabolism to varying external conditions is brought about by regulated changes in the activity of enzymes and transporters. Hormone-dependent reversible enzyme phosphorylation and concentration changes of reactants and allosteric effectors are the major types of rapid kinetic enzyme regulation, whereas on longer time scales changes in protein abundance may also become operative. Here, we used a comprehensive mathematical model of the hepatic glucose metabolism of rat hepatocytes to decipher the relative importance of different regulatory modes and their mutual interdependencies in the hepatic control of plasma glucose homeostasis. Results Model simulations reveal significant differences in the capability of liver metabolism to counteract variations of plasma glucose in different physiological settings (starvation, ad libitum nutrient supply, diabetes). Changes in enzyme abundances adjust the metabolic output to the anticipated physiological demand but may turn into a regulatory disadvantage if sudden unexpected changes of the external conditions occur. Allosteric and hormonal control of enzyme activities allow the liver to assume a broad range of metabolic states and may even fully reverse flux changes resulting from changes of enzyme abundances alone. Metabolic control analysis reveals that control of the hepatic glucose metabolism is mainly exerted by enzymes alone, which are differently controlled by alterations in enzyme abundance, reversible phosphorylation, and allosteric effects. Conclusion In hepatic glucose metabolism, regulation of enzyme activities by changes of reactants, allosteric effects, and reversible phosphorylation is equally important as changes in protein abundance of key regulatory enzymes. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0237-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sascha Bulik
- Charité - Universitätsmedizin Berlin, Institute of Biochemistry, Computational Systems Biochemistry Group, Charitéplatz 1, 10117, Berlin, Germany.
| | - Hermann-Georg Holzhütter
- Charité - Universitätsmedizin Berlin, Institute of Biochemistry, Computational Systems Biochemistry Group, Charitéplatz 1, 10117, Berlin, Germany.
| | - Nikolaus Berndt
- Charité - Universitätsmedizin Berlin, Institute of Biochemistry, Computational Systems Biochemistry Group, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
84
|
Chung SI, Nam SJ, Xu M, Kang MY, Lee SC. Aged ginseng ( Panax ginseng Meyer) reduces blood glucose levels and improves lipid metabolism in high fat diet-fed mice. Food Sci Biotechnol 2016; 25:267-273. [PMID: 30263267 DOI: 10.1007/s10068-016-0039-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/24/2015] [Accepted: 09/25/2015] [Indexed: 10/22/2022] Open
Abstract
Aged ginseng is unpeeled ginseng root that has been dried and heat-treated in an oven at 80°C for 14 days. The effects of aged ginseng, in comparison with white and red ginseng, on the lipid and glucose metabolism in high fat-fed mice were investigated. C57BL/6N mice were randomly divided into six dietary groups of normal control, high fat, and high fat supplemented with white, red, aged four-year old, and aged five-year old ginseng. After 8 weeks, ginseng counteracted high fat dietinduced body weight gain, hyperlipidemia, and hyperglycemia via a mechanism involving modulation of hepatic lipogenesis, adipokine production, and glucose-regulating enzyme activities. Aged ginseng showed greater antihyperlipidemic and antihyperglycemic activities than white ginseng and exhibited physiological effects similar to red ginseng, perhaps due to a relatively high ginsenoside content. Aged ginseng can be beneficial as a functional food.
Collapse
Affiliation(s)
- Soo Im Chung
- 2Department of Food Science and Nutrition, Brain Korea 21 Plus, Kyungpook National University, Daegu, 41566 Korea
| | - Su Jin Nam
- 2Department of Food Science and Nutrition, Brain Korea 21 Plus, Kyungpook National University, Daegu, 41566 Korea
| | - Mingze Xu
- 2Department of Food Science and Nutrition, Brain Korea 21 Plus, Kyungpook National University, Daegu, 41566 Korea
| | - Mi Young Kang
- 2Department of Food Science and Nutrition, Brain Korea 21 Plus, Kyungpook National University, Daegu, 41566 Korea
| | - Sang Chul Lee
- 1Division of Plant Biosciences, Kyungpook National University, Daegu, 41566 Korea
| |
Collapse
|
85
|
Latorre P, Burgos C, Hidalgo J, Varona L, Carrodeguas JA, López-Buesa P. c.A2456C-substitution in Pck1 changes the enzyme kinetic and functional properties modifying fat distribution in pigs. Sci Rep 2016; 6:19617. [PMID: 26792594 PMCID: PMC4726144 DOI: 10.1038/srep19617] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 11/10/2015] [Indexed: 11/16/2022] Open
Abstract
Cytosolic phosphoenolpyruvate carboxykinase, PCK1, is one of the main regulatory enzymes of gluconeogenesis and glyceroneogenesis. The substitution of a single amino acid (Met139Leu) in PCK1 as a consequence of a single nucleotide polymorphism (SNP), c.A2456C, is associated in the pig to a negative phenotype characterized by reduced intramuscular fat content, enhanced backfat thickness and lower meat quality. The p.139L enzyme shows reduced kcat values in the glyceroneogenic direction and enhanced ones in the anaplerotic direction. Accordingly, the expression of the p.139L isoform results in about 30% lower glucose and 9% lower lipid production in cell cultures. Moreover, the ability of this isoform to be acetylated is also compromised, what would increase its susceptibility to be degraded in vivo by the ubiquitin-proteasome system. The high frequency of the c.2456C allele in modern pig breeds implies that the benefits of including c.A2456C SNP in selection programs could be considerable.
Collapse
Affiliation(s)
- Pedro Latorre
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain.,Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Carmen Burgos
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain.,Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Jorge Hidalgo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain.,Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Luis Varona
- Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, 50018 Zaragoza, Spain.,Departamento de Anatomía, Embriología y Genética, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - José Alberto Carrodeguas
- Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, 50018 Zaragoza, Spain.,Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain.,IIS Aragón, 50009 Zaragoza, Spain
| | - Pascual López-Buesa
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain.,Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
86
|
Yuan Y, Hakimi P, Kao C, Kao A, Liu R, Janocha A, Boyd-Tressler A, Hang X, Alhoraibi H, Slater E, Xia K, Cao P, Shue Q, Ching TT, Hsu AL, Erzurum SC, Dubyak GR, Berger NA, Hanson RW, Feng Z. Reciprocal Changes in Phosphoenolpyruvate Carboxykinase and Pyruvate Kinase with Age Are a Determinant of Aging in Caenorhabditis elegans. J Biol Chem 2016; 291:1307-19. [PMID: 26631730 PMCID: PMC4714217 DOI: 10.1074/jbc.m115.691766] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/30/2015] [Indexed: 01/01/2023] Open
Abstract
Aging involves progressive loss of cellular function and integrity, presumably caused by accumulated stochastic damage to cells. Alterations in energy metabolism contribute to aging, but how energy metabolism changes with age, how these changes affect aging, and whether they can be modified to modulate aging remain unclear. In locomotory muscle of post-fertile Caenorhabditis elegans, we identified a progressive decrease in cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C), a longevity-associated metabolic enzyme, and a reciprocal increase in glycolytic pyruvate kinase (PK) that were necessary and sufficient to limit lifespan. Decline in PEPCK-C with age also led to loss of cellular function and integrity including muscle activity, and cellular senescence. Genetic and pharmacologic interventions of PEPCK-C, muscle activity, and AMPK signaling demonstrate that declines in PEPCK-C and muscle function with age interacted to limit reproductive life and lifespan via disrupted energy homeostasis. Quantifications of metabolic flux show that reciprocal changes in PEPCK-C and PK with age shunted energy metabolism toward glycolysis, reducing mitochondrial bioenergetics. Last, calorie restriction countered changes in PEPCK-C and PK with age to elicit anti-aging effects via TOR inhibition. Thus, a programmed metabolic event involving PEPCK-C and PK is a determinant of aging that can be modified to modulate aging.
Collapse
Affiliation(s)
| | | | - Clara Kao
- From the Departments of Pharmacology
| | | | - Ruifu Liu
- From the Departments of Pharmacology
| | - Allison Janocha
- the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | | | - Xi Hang
- From the Departments of Pharmacology, the School of Pharmacy, Suzhou Health College, Suzhou, Jiangsu 215009, China, and
| | | | | | - Kevin Xia
- From the Departments of Pharmacology
| | | | | | - Tsui-Ting Ching
- the Departments of Internal Medicine, Division of Geriatric Medicine, and
| | - Ao-Lin Hsu
- the Departments of Internal Medicine, Division of Geriatric Medicine, and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Serpil C Erzurum
- the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - George R Dubyak
- From the Departments of Pharmacology, Physiology and Biophysics, and
| | - Nathan A Berger
- Departments of Biochemistry and Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | | | | |
Collapse
|
87
|
Chen J, Wang N, Dong M, Guo M, Zhao Y, Zhuo Z, Zhang C, Chi X, Pan Y, Jiang J, Tang H, Niu J, Yang D, Li Z, Han X, Wang Q, Chen X. The Metabolic Regulator Histone Deacetylase 9 Contributes to Glucose Homeostasis Abnormality Induced by Hepatitis C Virus Infection. Diabetes 2015; 64:4088-98. [PMID: 26420860 DOI: 10.2337/db15-0197] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/09/2015] [Indexed: 12/15/2022]
Abstract
Class IIa histone deacetylases (HDACs), such as HDAC4, HDAC5, and HDAC7, provide critical mechanisms for regulating glucose homeostasis. Here we report that HDAC9, another class IIa HDAC, regulates hepatic gluconeogenesis via deacetylation of a Forkhead box O (FoxO) family transcription factor, FoxO1, together with HDAC3. Specifically, HDAC9 expression can be strongly induced upon hepatitis C virus (HCV) infection. HCV-induced HDAC9 upregulation enhances gluconeogenesis by promoting the expression of gluconeogenic genes, including phosphoenolpyruvate carboxykinase and glucose-6-phosphatase, indicating a major role for HDAC9 in the development of HCV-associated exaggerated gluconeogenic responses. Moreover, HDAC9 expression levels and gluconeogenic activities were elevated in livers from HCV-infected patients and persistent HCV-infected mice, emphasizing the clinical relevance of these results. Our results suggest HDAC9 is involved in glucose metabolism, HCV-induced abnormal glucose homeostasis, and type 2 diabetes.
Collapse
MESH Headings
- Acetylation
- Animals
- Biopsy, Fine-Needle
- Cell Line, Tumor
- Enzyme Induction
- Female
- Forkhead Box Protein O1
- Forkhead Transcription Factors/metabolism
- Gluconeogenesis
- Hepatitis C, Chronic/blood
- Hepatitis C, Chronic/metabolism
- Hepatitis C, Chronic/pathology
- Hepatitis C, Chronic/virology
- Histone Deacetylases/genetics
- Histone Deacetylases/metabolism
- Humans
- Insulin Resistance
- Liver/metabolism
- Liver/pathology
- Liver/virology
- Male
- Mice, Transgenic
- Occludin/antagonists & inhibitors
- Occludin/genetics
- Occludin/metabolism
- Phosphoenolpyruvate Carboxykinase (ATP)/antagonists & inhibitors
- Phosphoenolpyruvate Carboxykinase (ATP)/genetics
- Phosphoenolpyruvate Carboxykinase (ATP)/metabolism
- Phosphorylation
- Protein Processing, Post-Translational
- RNA Interference
- RNA, Viral/antagonists & inhibitors
- RNA, Viral/blood
- RNA, Viral/metabolism
- Repressor Proteins/antagonists & inhibitors
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Tetraspanin 28/antagonists & inhibitors
- Tetraspanin 28/genetics
- Tetraspanin 28/metabolism
Collapse
Affiliation(s)
- Jizheng Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ning Wang
- Jiangsu Province Key Laboratory of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Mei Dong
- Jiangsu Province Key Laboratory of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Min Guo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yang Zhao
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Zhuo
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chao Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiumei Chi
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Yu Pan
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Jing Jiang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Hong Tang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Dongliang Yang
- Department of Infectious Diseases, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhong Li
- Jiangsu Province Key Laboratory of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Xiao Han
- Jiangsu Province Key Laboratory of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Qian Wang
- Jiangsu Province Key Laboratory of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Xinwen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
88
|
Satapati S, Kucejova B, Duarte JAG, Fletcher JA, Reynolds L, Sunny NE, He T, Nair LA, Livingston KA, Fu X, Merritt ME, Sherry AD, Malloy CR, Shelton JM, Lambert J, Parks EJ, Corbin I, Magnuson MA, Browning JD, Burgess SC. Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver. J Clin Invest 2015; 125:4447-62. [PMID: 26571396 DOI: 10.1172/jci82204] [Citation(s) in RCA: 306] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/08/2015] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are critical for respiration in all tissues; however, in liver, these organelles also accommodate high-capacity anaplerotic/cataplerotic pathways that are essential to gluconeogenesis and other biosynthetic activities. During nonalcoholic fatty liver disease (NAFLD), mitochondria also produce ROS that damage hepatocytes, trigger inflammation, and contribute to insulin resistance. Here, we provide several lines of evidence indicating that induction of biosynthesis through hepatic anaplerotic/cataplerotic pathways is energetically backed by elevated oxidative metabolism and hence contributes to oxidative stress and inflammation during NAFLD. First, in murine livers, elevation of fatty acid delivery not only induced oxidative metabolism, but also amplified anaplerosis/cataplerosis and caused a proportional rise in oxidative stress and inflammation. Second, loss of anaplerosis/cataplerosis via genetic knockdown of phosphoenolpyruvate carboxykinase 1 (Pck1) prevented fatty acid-induced rise in oxidative flux, oxidative stress, and inflammation. Flux appeared to be regulated by redox state, energy charge, and metabolite concentration, which may also amplify antioxidant pathways. Third, preventing elevated oxidative metabolism with metformin also normalized hepatic anaplerosis/cataplerosis and reduced markers of inflammation. Finally, independent histological grades in human NAFLD biopsies were proportional to oxidative flux. Thus, hepatic oxidative stress and inflammation are associated with elevated oxidative metabolism during an obesogenic diet, and this link may be provoked by increased work through anabolic pathways.
Collapse
|
89
|
Sharabi K, Tavares CDJ, Rines AK, Puigserver P. Molecular pathophysiology of hepatic glucose production. Mol Aspects Med 2015; 46:21-33. [PMID: 26549348 DOI: 10.1016/j.mam.2015.09.003] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 09/09/2015] [Indexed: 12/23/2022]
Abstract
Maintaining blood glucose concentration within a relatively narrow range through periods of fasting or excess nutrient availability is essential to the survival of the organism. This is achieved through an intricate balance between glucose uptake and endogenous glucose production to maintain constant glucose concentrations. The liver plays a major role in maintaining normal whole body glucose levels by regulating the processes of de novo glucose production (gluconeogenesis) and glycogen breakdown (glycogenolysis), thus controlling the levels of hepatic glucose release. Aberrant regulation of hepatic glucose production (HGP) can result in deleterious clinical outcomes, and excessive HGP is a major contributor to the hyperglycemia observed in Type 2 diabetes mellitus (T2DM). Indeed, adjusting glycemia as close as possible to a non-diabetic range is the foremost objective in the medical treatment of patients with T2DM and is currently achieved in the clinic primarily through suppression of HGP. Here, we review the molecular mechanisms controlling HGP in response to nutritional and hormonal signals and discuss how these signals are altered in T2DM.
Collapse
Affiliation(s)
- Kfir Sharabi
- Department of Cancer Biology, Department of Cell Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Clint D J Tavares
- Department of Cancer Biology, Department of Cell Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Amy K Rines
- Department of Cancer Biology, Department of Cell Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Pere Puigserver
- Department of Cancer Biology, Department of Cell Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
90
|
Fermentation of Green Tea with 2% Aquilariae lignum Increases the Anti-Diabetic Activity of Green Tea Aqueous Extracts in the High Fat-Fed Mouse. Nutrients 2015; 7:9046-78. [PMID: 26540072 PMCID: PMC4663575 DOI: 10.3390/nu7115447] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/18/2015] [Accepted: 10/23/2015] [Indexed: 12/21/2022] Open
Abstract
Anti-diabetic effects on the metabolomic differences between green tea (GT) and Aquilariae lignum-fermented green tea (fGT) were investigated in the high fat-fed mouse. To prove the differences, hypoglycemic (blood glucose, insulin and glycated hemoglobin levels, pancreas weights and histopathological-immunohistochemistrical analysis of pancreas–insulin/glucagon cells), hepato- and nephron-protective (the changes in liver and kidney weight, histopathology of liver and kidney, serum aminotransferases (AST and ALT) levels, blood urea nitrogen, and serum creatinine levels), and hypolipidemic (the changes of serum total cholesterol, triglyceride, low- and high-density lipoprotein levels with fecal TC and TG contents) effects were evaluated. In addition, liver lipid peroxidation, the glutathione contents, and catalase and superoxide dismutase activities were measured according to the hepatic glucose-regulating enzyme activities of glucokinase (GK), glucose-6-phosphatase (G6pase) and phosphoenolpyruvate carboxykinase (PEPCK) for action mechanisms. As a result, fGT showed a stronger hypoglycemic, hepato- and nephron-protective, hypolipidemic, and anti-oxidant effect than GT in high fat-fed mice. In addition, fGT-treated mice exerted more favorable inhibitory activities against GK, G6pase, PERCK activities as compared to GT-treated mice. Taken together, fGT fermented with Aquilariae lignum, 1:49 (2%; g/g) has a stronger effect compared with GT. Therefore, fGT has the potential to increase bioactivity against type 2 diabetics.
Collapse
|
91
|
Schein V, Kucharski LC, Guerreiro PMG, Martins TL, Morgado I, Power DM, Canario AVM, da Silva RSM. Stanniocalcin 1 effects on the renal gluconeogenesis pathway in rat and fish. Mol Cell Endocrinol 2015; 414:1-8. [PMID: 26187698 DOI: 10.1016/j.mce.2015.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/03/2015] [Accepted: 07/10/2015] [Indexed: 11/16/2022]
Abstract
The mammalian kidney contributes significantly to glucose homeostasis through gluconeogenesis. Considering that stanniocalcin 1 (STC1) regulates ATP production, is synthesized and acts in different cell types of the nephron, the present study hypothesized that STC1 may be implicated in the regulation of gluconeogenesis in the vertebrate kidney. Human STC1 strongly reduced gluconeogenesis from (14)C-glutamine in rat renal medulla (MD) slices but not in renal cortex (CX), nor from (14)C-lactic acid. Total PEPCK activity was markedly reduced by hSTC1 in MD but not in CX. Pck2 (mitochondrial PEPCK isoform) was down-regulated by hSTC1 in MD but not in CX. In fish (Dicentrarchus labrax) kidney slices, both STC1-A and -B isoforms decreased gluconeogenesis from (14)C-acid lactic, while STC1-A increased gluconeogenesis from (14)C-glutamine. Overall, our results demonstrate a role for STC1 in the control of glucose synthesis via renal gluconeogenesis in mammals and suggest that it may have a similar role in teleost fishes.
Collapse
Affiliation(s)
- Vanessa Schein
- Pos-Graduate Program in Biological Sciences, Department of Physiology, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170, Porto Alegre, RS, Brazil; Pos-Graduate Program in Health Sciences, Department of Obstetrics and Gynecology, School of Medicine, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2400, 90035-003, Porto Alegre, RS, Brazil; CCMAR - Centre for Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Luiz C Kucharski
- Pos-Graduate Program in Biological Sciences, Department of Physiology, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170, Porto Alegre, RS, Brazil
| | - Pedro M G Guerreiro
- CCMAR - Centre for Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Tiago Leal Martins
- Pos-Graduate Program in Biological Sciences, Department of Physiology, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170, Porto Alegre, RS, Brazil
| | - Isabel Morgado
- CCMAR - Centre for Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Deborah M Power
- CCMAR - Centre for Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Adelino V M Canario
- CCMAR - Centre for Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Roselis S M da Silva
- Pos-Graduate Program in Biological Sciences, Department of Physiology, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170, Porto Alegre, RS, Brazil
| |
Collapse
|
92
|
Gadupudi GS, Klaren WD, Olivier AK, Klingelhutz AJ, Robertson LW. PCB126-Induced Disruption in Gluconeogenesis and Fatty Acid Oxidation Precedes Fatty Liver in Male Rats. Toxicol Sci 2015; 149:98-110. [PMID: 26396156 DOI: 10.1093/toxsci/kfv215] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
3,3',4,4',5-Pentachlorobiphenyl (PCB126), a dioxin-like polychlorinated biphenyl (PCB) and a potent aryl hydrocarbon receptor (AhR) agonist, is implicated in the disruption of both carbohydrate and lipid metabolism which ultimately leads to wasting disorders, metabolic disease, and nonalcoholic fatty liver disease. However, the mechanisms are unclear. Because liver is the target organ for PCB toxicity and responsible for metabolic homeostasis, we hypothesized that early disruption of glucose and lipid homeostasis contributes to later manifestations such as hepatic steatosis. To test this hypothesis, groups of male Sprague Dawley rats, fed on AIN-93G diet, were injected (intraperitoneal.) with a single bolus of PCB126 (5 µmol/kg) at various time intervals between 9 h and 12 days prior to euthanasia. An early decrease in serum glucose and a gradual decrease in serum triglycerides were observed over time. Liver lipid accumulation was most severe at 6 and 12 days of exposure. Transcript levels of cytosolic phosphoenol-pyruvate carboxykinase (Pepck-c/Pck1) and glucose transporter (Glut2/Slc2a2) involved in gluconeogenesis and hepatic glucose transport were time-dependently downregulated between 9 h and 12 days of PCB126 exposure. Additionally, transcript levels of Pparα, and its targets acyl-CoA oxidase (Acox1) and hydroxy-3-methylglutaryl-CoA synthase 2 (Hmgcs2), were also downregulated, indicating changes in peroxisomal fatty acid oxidation and ketogenesis. In a separate animal study, we found that the measured changes in the transcript levels of Pepck-c, Glut2, Pparα, Acox1, and Hmgcs2 were also dose dependent. Furthermore, PCB126-induced effects on Pepck-c were demonstrated to be AhR dependent in rat H4IIE hepatocytes. These results indicate that PCB126-induced wasting and steatosis are preceded initially by (1) decreased serum glucose caused by decreased hepatic glucose production, followed by (2) decreased peroxisomal fatty acid oxidation.
Collapse
Affiliation(s)
- Gopi S Gadupudi
- *Interdisciplinary Graduate Program in Human Toxicology; Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa
| | - William D Klaren
- *Interdisciplinary Graduate Program in Human Toxicology; Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa
| | - Alicia K Olivier
- Department of Pathobiology and Population Medicine, Mississippi State University, Starkville, Mississippi; and
| | | | - Larry W Robertson
- *Interdisciplinary Graduate Program in Human Toxicology; Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa;
| |
Collapse
|
93
|
Brown LD, Rozance PJ, Bruce JL, Friedman JE, Hay WW, Wesolowski SR. Limited capacity for glucose oxidation in fetal sheep with intrauterine growth restriction. Am J Physiol Regul Integr Comp Physiol 2015. [PMID: 26224688 DOI: 10.1152/ajpregu.00197.2015] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Intrauterine growth-restricted (IUGR) fetal sheep, produced by placental insufficiency, have lower oxygen concentrations, higher lactate concentrations, and increased hepatic glucose production that is resistant to suppression by insulin. We hypothesized that increased lactate production in the IUGR fetus results from reduced glucose oxidation, during basal and maximal insulin-stimulated conditions, and is used to support glucose production. To test this, studies were performed in late-gestation control (CON) and IUGR fetal sheep under basal and hyperinsulinemic-clamp conditions. The basal glucose oxidation rate was similar and increased by 30-40% during insulin clamp in CON and IUGR fetuses (P < 0.005). However, the fraction of glucose oxidized was 15% lower in IUGR fetuses during basal and insulin-clamp periods (P = 0.05). IUGR fetuses also had four-fold higher lactate concentrations (P < 0.001) and lower lactate uptake rates (P < 0.05). In IUGR fetal muscle and liver, mRNA expression of pyruvate dehydrogenase kinase (PDK4), an inhibitor of glucose oxidation, was increased over fourfold. In IUGR fetal liver, but not skeletal muscle, mRNA expression of lactate dehydrogenase A (LDHA) was increased nearly fivefold. Hepatic expression of the gluconeogenic genes, phosphoenolpyruvate carboxykinase (PCK)1, and PCK2, was correlated with expression of PDK4 and LDHA. Collectively, these in vivo and tissue data support limited capacity for glucose oxidation in the IUGR fetus via increased PDK4 in skeletal muscle and liver. We speculate that lactate production also is increased, which may supply carbon for glucose production in the IUGR fetal liver.
Collapse
Affiliation(s)
- Laura D Brown
- Perinatal Research Center, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Paul J Rozance
- Perinatal Research Center, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jennifer L Bruce
- Perinatal Research Center, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jacob E Friedman
- Perinatal Research Center, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - William W Hay
- Perinatal Research Center, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Stephanie R Wesolowski
- Perinatal Research Center, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
94
|
Zhu L, Yin Q, Irwin DM, Zhang S. Phosphoenolpyruvate carboxykinase 1 gene (Pck1) displays parallel evolution between Old World and New World fruit bats. PLoS One 2015; 10:e0118666. [PMID: 25807515 PMCID: PMC4373879 DOI: 10.1371/journal.pone.0118666] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 12/15/2014] [Indexed: 11/19/2022] Open
Abstract
Bats are an ideal mammalian group for exploring adaptations to fasting due to their large variety of diets and because fasting is a regular part of their life cycle. Mammals fed on a carbohydrate-rich diet experience a rapid decrease in blood glucose levels during a fast, thus, the development of mechanisms to resist the consequences of regular fasts, experienced on a daily basis, must have been crucial in the evolution of frugivorous bats. Phosphoenolpyruvate carboxykinase 1 (PEPCK1, encoded by the Pck1 gene) is the rate-limiting enzyme in gluconeogenesis and is largely responsible for the maintenance of glucose homeostasis during fasting in fruit-eating bats. To test whether Pck1 has experienced adaptive evolution in frugivorous bats, we obtained Pck1 coding sequence from 20 species of bats, including five Old World fruit bats (OWFBs) (Pteropodidae) and two New World fruit bats (NWFBs) (Phyllostomidae). Our molecular evolutionary analyses of these sequences revealed that Pck1 was under purifying selection in both Old World and New World fruit bats with no evidence of positive selection detected in either ancestral branch leading to fruit bats. Interestingly, however, six specific amino acid substitutions were detected on the ancestral lineage of OWFBs. In addition, we found considerable evidence for parallel evolution, at the amino acid level, between the PEPCK1 sequences of Old World fruit bats and New World fruit bats. Test for parallel evolution showed that four parallel substitutions (Q276R, R503H, I558V and Q593R) were driven by natural selection. Our study provides evidence that Pck1 underwent parallel evolution between Old World and New World fruit bats, two lineages of mammals that feed on a carbohydrate-rich diet and experience regular periods of fasting as part of their life cycle.
Collapse
Affiliation(s)
- Lei Zhu
- Institute of Molecular Ecology and Evolution, SKLEC & IECR & IAIR, East China Normal University, Shanghai, China
| | - Qiuyuan Yin
- Institute of Molecular Ecology and Evolution, SKLEC & IECR & IAIR, East China Normal University, Shanghai, China
| | - David M. Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Shuyi Zhang
- Institute of Molecular Ecology and Evolution, SKLEC & IECR & IAIR, East China Normal University, Shanghai, China
| |
Collapse
|
95
|
Insights into Transcriptional Regulation of Hepatic Glucose Production. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 318:203-53. [DOI: 10.1016/bs.ircmb.2015.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
96
|
Connor T, Martin SD, Howlett KF, McGee SL. Metabolic remodelling in obesity and type 2 diabetes: pathological or protective mechanisms in response to nutrient excess? Clin Exp Pharmacol Physiol 2014; 42:109-15. [DOI: 10.1111/1440-1681.12315] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 09/17/2014] [Accepted: 09/19/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Timothy Connor
- Metabolic Remodelling Laboratory; Metabolic Research Unit; School of Medicine; Deakin University; Geelong Vic. Australia
| | - Sheree D Martin
- Metabolic Remodelling Laboratory; Metabolic Research Unit; School of Medicine; Deakin University; Geelong Vic. Australia
| | - Kirsten F Howlett
- Centre for Physical Activity and Nutrition; School of Exercise and Nutrition Sciences; Deakin University; Geelong Vic. Australia
| | - Sean L McGee
- Metabolic Remodelling Laboratory; Metabolic Research Unit; School of Medicine; Deakin University; Geelong Vic. Australia
- Division of Cell Signalling and Metabolism; Baker IDI Heart and Diabetes Institute; Melbourne Vic. Australia
| |
Collapse
|
97
|
Abstract
The liver is an essential metabolic organ, and its metabolic function is controlled by insulin and other metabolic hormones. Glucose is converted into pyruvate through glycolysis in the cytoplasm, and pyruvate is subsequently oxidized in the mitochondria to generate ATP through the TCA cycle and oxidative phosphorylation. In the fed state, glycolytic products are used to synthesize fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglycerol, phospholipids, and/or cholesterol esters in hepatocytes. These complex lipids are stored in lipid droplets and membrane structures, or secreted into the circulation as very low-density lipoprotein particles. In the fasted state, the liver secretes glucose through both glycogenolysis and gluconeogenesis. During pronged fasting, hepatic gluconeogenesis is the primary source for endogenous glucose production. Fasting also promotes lipolysis in adipose tissue, resulting in release of nonesterified fatty acids which are converted into ketone bodies in hepatic mitochondria though β-oxidation and ketogenesis. Ketone bodies provide a metabolic fuel for extrahepatic tissues. Liver energy metabolism is tightly regulated by neuronal and hormonal signals. The sympathetic system stimulates, whereas the parasympathetic system suppresses, hepatic gluconeogenesis. Insulin stimulates glycolysis and lipogenesis but suppresses gluconeogenesis, and glucagon counteracts insulin action. Numerous transcription factors and coactivators, including CREB, FOXO1, ChREBP, SREBP, PGC-1α, and CRTC2, control the expression of the enzymes which catalyze key steps of metabolic pathways, thus controlling liver energy metabolism. Aberrant energy metabolism in the liver promotes insulin resistance, diabetes, and nonalcoholic fatty liver diseases.
Collapse
Affiliation(s)
- Liangyou Rui
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
98
|
Samuel VT. The emerging role of oestrogen-related receptor γ as a regulator of energy metabolism. Diabetologia 2014; 57:2440-3. [PMID: 25257097 PMCID: PMC4488899 DOI: 10.1007/s00125-014-3377-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 09/03/2014] [Indexed: 01/11/2023]
Abstract
Coordinating energy supply with use is critical for survival and is tightly regulated. There is growing evidence that the oestrogen-related receptors (ERRs), a family of orphan nuclear receptors, play key roles in this regulation, ERRγ being the most recently discovered member of this family. Hepatic expression and activity of ERRγ is induced by fasting and repressed in response to feeding. Work reported by Kim and colleagues (DOI: 10.1007/s00125-014-3366-x ) dissects the mechanism for the latter observation. Taken together with prior studies by this group and others, there is emerging evidence that this protein helps coordinate metabolism and may be a potential therapeutic target.
Collapse
Affiliation(s)
- Varman T Samuel
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA,
| |
Collapse
|
99
|
Yokota SI, Nakamura K, Ando M, Kamei H, Hakuno F, Takahashi SI, Shibata S. Acetylcholinesterase (AChE) inhibition aggravates fasting-induced triglyceride accumulation in the mouse liver. FEBS Open Bio 2014; 4:905-14. [PMID: 25383314 PMCID: PMC4223152 DOI: 10.1016/j.fob.2014.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 10/13/2014] [Accepted: 10/16/2014] [Indexed: 12/11/2022] Open
Abstract
Although fasting induces hepatic triglyceride (TG) accumulation in both rodents and humans, little is known about the underlying mechanism. Because parasympathetic nervous system activity tends to attenuate the secretion of very-low-density-lipoprotein-triglyceride (VLDL-TG) and increase TG stores in the liver, and serum cholinesterase activity is elevated in fatty liver disease, the inhibition of the parasympathetic neurotransmitter acetylcholinesterase (AChE) may have some influence on hepatic lipid metabolism. To assess the influence of AChE inhibition on lipid metabolism, the effect of physostigmine, an AChE inhibitor, on fasting-induced increase in liver TG was investigated in mice. In comparison with ad libitum-fed mice, 30 h fasting increased liver TG accumulation accompanied by a downregulation of sterol regulatory element-binding protein 1 (SREBP-1) and liver-fatty acid binding-protein (L-FABP). Physostigmine promoted the 30 h fasting-induced increase in liver TG levels in a dose-dependent manner, accompanied by a significant fall in plasma insulin levels, without a fall in plasma TG. Furthermore, physostigmine significantly attenuated the fasting-induced decrease of both mRNA and protein levels of SREBP-1 and L-FABP, and increased IRS-2 protein levels in the liver. The muscarinic receptor antagonist atropine blocked these effects of physostigmine on liver TG, serum insulin, and hepatic protein levels of SREBP-1 and L-FABP. These results demonstrate that AChE inhibition facilitated fasting-induced TG accumulation with up regulation of the hepatic L-FABP and SREBP-1 in mice, at least in part via the activation of muscarinic acetylcholine receptors. Our studies highlight the crucial role of parasympathetic regulation in fasting-induced TG accumulation, and may be an important source of information on the mechanism of hepatic disorders of lipid metabolism.
Collapse
Key Words
- ACC, acetyl coenzyme-A carboxylase
- ACh, acetylcholine
- AChE, acetylcholinesterase
- CPT-1, carnitine palmitoyltransferase 1
- FA, fatty acid(s)
- FAS, fatty acid synthase
- Fatty liver
- IRS-2, insulin receptor substrate
- L-FABP, liver fatty acid-binding protein
- Lipogenesis
- Lipolysis
- Metabolic syndrome
- PEPCK, phosphoenolpyruvate carboxykinase
- PGC-1α, peroxisome proliferator activated receptor gamma coactivator 1-alpha
- PPAR-α, peroxisome proliferator activated receptor alpha
- Parasympathetic nerve
- SREBP, sterol regulatory element binding proteins
- TG, triglyceride(s)
- Triglyceride
- VLDL, very low-density lipoprotein(s)
Collapse
Affiliation(s)
- Shin-Ichi Yokota
- Department of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan ; Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Tokyo, Japan
| | - Kaai Nakamura
- Department of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Midori Ando
- Department of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Hiroyasu Kamei
- Department of Animal Sciences and Applied Biological Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Fumihiko Hakuno
- Department of Animal Sciences and Applied Biological Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin-Ichiro Takahashi
- Department of Animal Sciences and Applied Biological Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigenobu Shibata
- Department of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
100
|
Chung SI, Rico CW, Kang MY. Comparative study on the hypoglycemic and antioxidative effects of fermented paste (doenjang) prepared from soybean and brown rice mixed with rice bran or red ginseng marc in mice fed with high fat diet. Nutrients 2014; 6:4610-24. [PMID: 25340370 PMCID: PMC4210936 DOI: 10.3390/nu6104610] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/29/2014] [Accepted: 10/09/2014] [Indexed: 12/02/2022] Open
Abstract
The effects of fermented paste made from soybean, brown rice, or brown rice in combination with rice bran or red ginseng marc on the glucose metabolism and antioxidative defense system in high fat-fed mice were investigated. The mice were given experimental diets for eight weeks: Normal control, high fat, and high fat supplemented with soybean fermented paste, brown rice fermented paste, brown rice-rice bran fermented paste, or brown rice-red ginseng marc fermented paste. The high fat group showed markedly higher blood glucose level and erythrocyte lipid peroxidation than the normal control group. Diet supplementation of fermented paste inhibited the high fat-induced hyperglycemia and oxidative stress via regulation of the glucose-regulating and antioxidant enzymes activities. The soybean and brown rice-red ginseng marc fermented pastes were the most effective in improving the glucose metabolism and antioxidant defense status in mice under high fat diet condition. These findings illustrate that brown rice, in combination with red ginseng marc, may be useful in the development of fermented paste with strong hypoglycemic and antioxidative activities.
Collapse
Affiliation(s)
- Soo Im Chung
- Department of Food Science and Nutrition, Brain Korea 21 Plus, Kyungpook National Universiy, 1370 Sankyuk-ong, Degu 702-701, Korea.
| | - Catherine W Rico
- Department of Food Science and Nutrition, Brain Korea 21 Plus, Kyungpook National Universiy, 1370 Sankyuk-ong, Degu 702-701, Korea.
| | - Mi Young Kang
- Department of Food Science and Nutrition, Brain Korea 21 Plus, Kyungpook National Universiy, 1370 Sankyuk-ong, Degu 702-701, Korea.
| |
Collapse
|