51
|
Hu J, Hubbard SR. Structural characterization of a novel Cbl phosphotyrosine recognition motif in the APS family of adapter proteins. J Biol Chem 2005; 280:18943-9. [PMID: 15737992 DOI: 10.1074/jbc.m414157200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Cbl adapter proteins typically function to down-regulate activated protein tyrosine kinases and other signaling proteins by coupling them to the ubiquitination machinery for degradation by the proteasome. Cbl proteins bind to specific tyrosine-phosphorylated sequences in target proteins via the tyrosine kinase-binding (TKB) domain, which comprises a four-helix bundle, an EF-hand calcium-binding domain, and a non-conventional Src homology-2 domain. The previously derived consensus sequence for phosphotyrosine recognition by the Cbl TKB domain is NXpY(S/T)XXP (X denotes lesser residue preference), wherein specificity is conferred primarily by residues C-terminal to the phosphotyrosine. Cbl is recruited to and phosphorylated by the insulin receptor in adipose cells through the adapter protein APS. APS is phosphorylated by the insulin receptor on a C-terminal tyrosine residue, which then serves as a binding site for the Cbl TKB domain. Using x-ray crystallography, site-directed mutagenesis, and calorimetric studies, we have characterized the interaction between the Cbl TKB domain and the Cbl recruitment site in APS, which contains a sequence motif, RA(V/I)XNQpY(S/T), that is conserved in the related adapter proteins SH2-B and Lnk. These studies reveal a novel mode of phosphopeptide interaction with the Cbl TKB domain, in which N-terminal residues distal to the phosphotyrosine directly contact residues of the four-helix bundle of the TKB domain.
Collapse
Affiliation(s)
- Junjie Hu
- Structural Biology Program, Skirball Institute of Biomolecular Medicine and Department of Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
52
|
Kaabeche K, Guenou H, Bouvard D, Didelot N, Listrat A, Marie PJ. Cbl-mediated ubiquitination of alpha5 integrin subunit mediates fibronectin-dependent osteoblast detachment and apoptosis induced by FGFR2 activation. J Cell Sci 2005; 118:1223-32. [PMID: 15728256 DOI: 10.1242/jcs.01679] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fibroblast growth factor receptor signaling is an important mechanism regulating osteoblast function. To gain an insight into the regulatory role of FGF receptor-2 (FGFR2) signaling in osteoblasts, we investigated integrin-mediated attachment and cell survival in human calvarial osteoblasts expressing activated FGFR2. FGFR2 activation reduced osteoblast attachment on fibronectin. This was associated with reduced expression of the alpha5 integrin subunit normally expressed in human calvarial osteoblasts in vivo. Treatment with lactacystin, a potent inhibitor of proteasome, restored alpha5 integrin levels in FGFR2 mutant osteoblasts. Immunoprecipitation analysis showed that alpha5 integrin interacts with both the E3 ubiquitin ligase Cbl and ubiquitin. Immunocytochemistry revealed that alpha5 integrin colocalizes with FGFR2 and Cbl at the leading edge in membrane ruffle regions. Transfection with the 70Z-Cbl mutant lacking the RING domain required for Cbl-ubiquitin interaction, or with the G306E Cbl mutant that abolishes the binding ability of Cbl phosphotyrosine-binding domain restored alpha5 integrin levels. This suggests that Cbl-mediated ubiquitination plays an essential role in alpha5 integrin proteasome degradation induced by FGFR2 activation. Reduced alpha5 integrin expression was associated with an increased Bax/Bcl-2 ratio and increased caspase-9 and -3 activities in FGFR2 mutant osteoblasts. Forced expression of alpha5 integrin rescued cell attachment and corrected both the Bax/Bcl-2 ratio and caspase-3 and caspase-9 activities in FGFR2 mutant osteoblasts. We show that Cbl recruitment induced by FGFR2 activation triggers alpha5 integrin degradation by the proteasome, which results in reduced osteoblast attachment on fibronectin and caspase-dependent apoptosis. This identifies a functional role of the alpha5 integrin subunit in the induction of apoptosis triggered by FGFR2 activation in osteoblasts, and reveals that a Cbl-dependent mechanism is involved in the coordinated regulation of cell apoptosis induced by alpha5 integrin degradation.
Collapse
Affiliation(s)
- Karim Kaabeche
- INSERM U 606, Lariboisière Hospital, 2 rue Ambroise Paré, 75010 Paris, Université Paris 7, Paris, France
| | | | | | | | | | | |
Collapse
|
53
|
Geahlen RL, Handley MD, Harrison ML. Molecular interdiction of Src-family kinase signaling in hematopoietic cells. Oncogene 2004; 23:8024-32. [PMID: 15489920 DOI: 10.1038/sj.onc.1208078] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ability of Src-family kinases (SFKs) to mediate signaling from cell surface receptors in hematopoietic cells is a function of their catalytic activity, location and binding partners. Kinase activity is regulated in the cell by kinases and phosphatases that alter the state of phosphorylation of key tyrosine residues and by protein binding partners that stabilize the kinase in active or inactive conformations or localize the enzyme to specific subcellular or submembrane domains. Kinase activity and function can be modulated experimentally through the use of small molecule inhibitors designed to directly target catalytic or binding domains or regulate the location of the protein by altering its state of acylation.
Collapse
Affiliation(s)
- Robert L Geahlen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
54
|
Abstract
Regulation of the Src-related tyrosine kinase Lck is crucial to the outcome of T-cell receptor (TCR) stimulation. It was previously shown that the stability of the constitutively active mutant LckY505F is controlled by Hsp90 (M. J. Bijlmakers and M. Marsh, Mol. Biol. Cell. 11:1585-1595, 2000). Here we establish that following TCR stimulation, endogenous activated Lck in T cells is also degraded in the presence of the Hsp90 inhibitor geldanamycin. Using Lck constructs expressed in COS-7 cells, we show that the presence of activating Lck mutations results not only in the enhanced dependence on Hsp90 but also in enhanced ubiquitination of Lck. Although both processes were induced by mutations Y505F and W97A that release the SH2 and SH3 inhibitory intramolecular interactions, respectively, neither process required Lck kinase activity or activation-dependent phosphorylation at serines 42 and 59 or tyrosine 394. By binding to the ATP-binding site, the Src family inhibitor PP2 reduced ubiquitination and overcame the need for Hsp90 monitoring of active Lck. We conclude that the levels of active Lck are influenced by two opposing processes, targeting for degradation by ubiquitination and rescue from degradation by Hsp90 monitoring. Based on the PP2 result, we propose that activation-induced conformational changes of the Lck kinase domain instigate both regulatory processes.
Collapse
Affiliation(s)
- Ana Giannini
- Department of Immunobiology, Guy's Hospital, King's College London, United Kingdom
| | | |
Collapse
|
55
|
Zhang J. Ubiquitin ligases in T cell activation and autoimmunity. Clin Immunol 2004; 111:234-40. [PMID: 15183144 DOI: 10.1016/j.clim.2004.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Accepted: 02/05/2004] [Indexed: 01/22/2023]
Abstract
Ubiquitination-mediated protein modifications are increasingly recognized as key regulatory events in many basic cell biology processes. A key class of enzymes called ubiquitin ligases, which has been shown to play a crucial role in the ubiquitination process, can positively or negatively regulate T cell responses. This review summarizes the recent advances defining the roles of several ubiquitin ligases in T cell activation and autoimmunity.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
56
|
Abstract
Regulation of tyrosine kinase-mediated cellular activation through antigen receptors is of great biological and practical significance. The evolutionarily conserved Cbl family ubiquitin ligases have emerged as key negative regulators of activated tyrosine kinase-coupled receptors, and their impaired function switches a normal immune response into autoimmunity. Cbl proteins facilitate the ubiquitinylation of activated tyrosine kinases and other signaling proteins and of the signaling chains of receptors themselves; monoubiquitin tag promotes sorting of activated receptors and associated proteins into internal vesicles of the multivesicular body, facilitating their lysosomal degradation, whereas polyubiquitin tag promotes proteasomal degradation. Notably, increased expression of Cbl proteins and other ubiquitin ligases is a component of anergic signaling program in T cells. Thus, controlled destruction of the signaling apparatus has emerged as a key to fine-tuning antigen receptor signaling. Further studies of this pathway are likely to elucidate the pathogenesis of autoimmune diseases and offer new therapeutic targets.
Collapse
Affiliation(s)
- Lei Duan
- Division of Molecular Oncology, Department of Medicine, Evanston Northwestern Healthcare Research Institute, Feinberg School of Medicine, Northwestern University, IL 60201, USA
| | | | | | | | | |
Collapse
|
57
|
Feshchenko EA, Smirnova EV, Swaminathan G, Teckchandani AM, Agrawal R, Band H, Zhang X, Annan RS, Carr SA, Tsygankov AY. TULA: an SH3- and UBA-containing protein that binds to c-Cbl and ubiquitin. Oncogene 2004; 23:4690-706. [PMID: 15107835 DOI: 10.1038/sj.onc.1207627] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Downregulation of protein tyrosine kinases is a major function of the multidomain protein c-Cbl. This effect of c-Cbl is critical for both negative regulation of normal physiological stimuli and suppression of cellular transformation. In spite of the apparent importance of these effects of c-Cbl, their own regulation is poorly understood. To search for possible novel regulators of c-Cbl, we purified a number of c-Cbl-associated proteins by affinity chromatography and identified them by mass spectrometry. Among them, we identified the UBA- and SH3-containing protein T-cell Ubiquitin LigAnd (TULA), which can also bind to ubiquitin. Functional studies in a model system based on co-expression of TULA, c-Cbl, and EGF receptor in 293T cells demonstrate that TULA is capable of inhibiting c-Cbl-mediated downregulation of EGF receptor. Furthermore, modulation of TULA concentration in Jurkat T-lymphoblastoid cells demonstrates that TULA upregulates the activity of both Zap kinase and NF-AT transcription factor. Therefore, our study indicates that TULA counters the inhibitory effect of c-Cbl on protein tyrosine kinases and, thus, may be involved in the regulation of biological effects of c-Cbl. Finally, our results suggest that TULA-mediated inhibition of the effects of c-Cbl on protein tyrosine kinases is caused by TULA-induced ubiquitylation and degradation of c-Cbl.
Collapse
Affiliation(s)
- Elena A Feshchenko
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Kyo S, Sada K, Qu X, Maeno K, Miah SMS, Kawauchi-Kamata K, Yamamura H. Negative regulation of Lyn protein-tyrosine kinase by c-Cbl ubiquitin-protein ligase in Fc epsilon RI-mediated mast cell activation. Genes Cells 2004; 8:825-36. [PMID: 14531861 DOI: 10.1046/j.1365-2443.2003.00679.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Recent studies have demonstrated that c-Cbl functions as a ubiquitin-protein ligase toward immune receptors and non-receptor protein-tyrosine kinase Syk by facilitating their ubiquitination and subsequent targeting to proteasomes. However, it was not clear whether Src family kinase Lyn is regulated by the Cbl family of ubiquitin-protein ligases. RESULTS Aggregation of the high affinity IgE receptor (Fc epsilon RI) induces the rapid ubiquitination of Lyn in rat basophilic leukaemia RBL-2H3 cells. Treatment of cells with a proteasome inhibitor enhances the ubiquitination of Lyn. Stimulation of Fc epsilon RI results in the association of Lyn with c-Cbl and Cbl-b, both of which then become tyrosine phosphorylated. Co-transfection study shows that both c-Cbl and Cbl-b could induce the ubiquitination of activated Lyn in COS cells. Furthermore, over-expression of membrane-anchored form of c-Cbl inhibits the Fc epsilon RI-mediated degranulation and cytokine gene production in RBL-2H3 cells by the down-regulation of the kinase activity of Lyn through the enhanced ubiquitination. CONCLUSIONS These results demonstrate that Lyn is down-regulated by c-Cbl-mediated ubiquitination and subsequent degradation in proteasome after Fc epsilon RI stimulation in mast cells. Targeting of c-Cbl in the lipid raft results in the inhibition of Fc epsilon RI-mediated mast cell activation.
Collapse
Affiliation(s)
- Shinkou Kyo
- Division of Proteomics, Department of Genome Sciences, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | |
Collapse
|
59
|
Ghosh AK, Reddi AL, Rao NL, Duan L, Band V, Band H. Biochemical basis for the requirement of kinase activity for Cbl-dependent ubiquitinylation and degradation of a target tyrosine kinase. J Biol Chem 2004; 279:36132-41. [PMID: 15208330 DOI: 10.1074/jbc.m404189200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the Cbl family of ubiquitin ligases have emerged as crucial negative regulators of tyrosine kinase signaling. These proteins preferentially interact with and target activated tyrosine kinases for ubiquitinylation, thereby facilitating the lysosomal sorting of receptor tyrosine kinases or proteasomal degradation of nonreceptor tyrosine kinases. Recent work has indicated a crucial role of the target kinase activity in Cbl-dependent ubiquitinylation and degradation, but the biochemical basis for this requirement is not understood. Here, we have used the Src-family kinase Fyn, a well characterized Cbl target, to address this issue. Using defined Fyn mutants, we demonstrate that the kinase activity of Fyn is crucial for its Cbl-dependent ubiquitinylation and degradation, but a low level of ubiquitinylation and degradation of kinase-inactive Fyn mutants was consistently observed. Mutational induction of an open conformation enhanced the susceptibility of kinase-active Fyn to Cbl but was insufficient to promote the ubiquitinylation and degradation of kinase-inactive Fyn. Notably, the Cbl-dependent degradation of Fyn did not require the Fyn-mediated phosphorylation of Cbl. Finally, we show that the major determinant of the susceptibility of Fyn protein to Cbl-dependent ubiquitinylation and degradation is the extent to which it physically associates with Cbl; kinase activity of Fyn serves as a critical determinant to promote its association with Cbl, which we demonstrate is mediated by multiple protein-protein interactions. Our results strongly suggest that promotion of association with Cbl is the primary mechanism by which the kinase activity of the targets of Cbl contributes to their susceptibility to Cbl.
Collapse
Affiliation(s)
- Amiya K Ghosh
- Division of Molecular Oncology, Department of Medicine Evanston Northwestern Healthcare Research Institute, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60201, USA
| | | | | | | | | | | |
Collapse
|
60
|
Kaabeche K, Lemonnier J, Le Mée S, Caverzasio J, Marie PJ. Cbl-mediated degradation of Lyn and Fyn induced by constitutive fibroblast growth factor receptor-2 activation supports osteoblast differentiation. J Biol Chem 2004; 279:36259-67. [PMID: 15190072 DOI: 10.1074/jbc.m402469200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Fibroblast growth factors (FGFs) play an important regulatory role in skeletal development and bone formation. However, the FGF signaling mechanisms controlling osteoblast function are poorly understood. Here, we identified a role for the Src family members Lyn and Fyn in osteoblast differentiation promoted by constitutive activation of FGF receptor-2 (FGFR2). We show that the overactive FGFR2 S252W mutation induced decreased Src family kinase tyrosine phosphorylation and activity associated with decreased Lyn and Fyn protein expression in human osteoblasts. Pharmacological stimulation of Src family kinases or transfection with Lyn or Fyn vectors repressed alkaline phosphatase (ALP) up-regulation induced by overactive FGFR2. Inhibition of proteasome activity restored normal Lyn and Fyn expression and ALP activity in FGFR2 mutant osteoblasts. Immunoprecipitation studies showed that Lyn, Fyn, and FGFR2 interacted with the ubiquitin ligase c-Cbl and ubiquitin. Transfection with c-Cbl in which the RING finger was disrupted or with c-Cbl with a point mutation that abolishes the binding ability of the Cbl phosphotyrosine-binding domain restored Src kinase activity and Lyn, Fyn, and FGFR2 levels and reduced ALP up-regulation in mutant osteoblasts. Thus, constitutive FGFR2 activation induces c-Cbl-dependent Lyn and Fyn proteasome degradation, resulting in reduced Lyn and Fyn kinase activity, increased ALP expression, and FGFR2 down-regulation. This reveals a common Cbl-mediated negative feedback mechanism controlling Lyn, Fyn, and FGFR2 degradation in response to overactive FGFR2 and indicates a role for Cbl-dependent down-regulation of Lyn and Fyn in osteoblast differentiation induced by constitutive FGFR2 activation.
Collapse
Affiliation(s)
- Karim Kaabeche
- Laboratory of Osteoblast Biology and Pathology, INSERM U606, University Paris 7, Hôpital Lariboisière, 2 rue Ambroise Paré, 75475 Paris Cedex 10, France
| | | | | | | | | |
Collapse
|
61
|
Abstract
Ubiquitination is a post-translational modification in which a small conserved peptide, ubiquitin, is appended to target proteins in the cell, through a series of complex enzymatic reactions. Recently, a particular form of ubiquitination, monoubiquitination, has emerged as a nonproteolytic reversible modification that controls protein function. In this review, we highlight recent findings on monoubiquitination as a signaling-induced modification, controlled, among others, by pathways originating from active receptor tyrosine kinases. Furthermore, we review the major cellular processes controlled by ubiquitin modification, including membrane trafficking, histone function, transcription regulation, DNA repair, and DNA replication.
Collapse
Affiliation(s)
- S Sigismund
- IFOM, The FIRC Institute for Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | | | | |
Collapse
|
62
|
Auger JM, Best D, Snell DC, Wilde JI, Watson SP. c-Cbl negatively regulates platelet activation by glycoprotein VI. J Thromb Haemost 2003; 1:2419-26. [PMID: 14629478 DOI: 10.1046/j.1538-7836.2003.00464.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND The adapter protein c-Cbl has emerged as having a potential role in negative regulation of immune receptor signaling. The major platelet-signaling receptor for collagen, glycoprotein VI (GpVI), is associated with the Fc receptor (FcR) gamma-chain, and signals through a similar pathway to immune receptors. c-Cbl is tyrosine-phosphorylated in response to stimulation of GpVI, whereas phosphorylation of c-Cbl in thrombin-activated platelets is dependent on fibrinogen binding to the integrin GpIIb/IIIa. OBJECTIVE To investigate the role of c-Cbl in platelet signaling. METHODS Murine platelets lacking functional c-Cbl or Src family kinases were analyzed. RESULTS Phosphorylation of c-Cbl through GpVI is reduced in murine platelets deficient in the Src-family kinases Fyn and Lyn, demonstrating that they lie upstream of c-Cbl phosphorylation. Phosphorylation of several proteins of the GpVI-signaling pathway, including the FcR gamma-chain, Syk and phospholipase Cgamma2 (PLCgamma2), is increased in the absence of c-Cbl. In line with this, aggregation is potentiated in response to the GpVI-specific collagen-related peptide (CRP) after a slight delay. A delay in potentiation is also seen in response to stimulation by thrombin. CONCLUSIONS These observations demonstrate that c-Cbl negatively regulates platelet responses to GpVI agonists and to thrombin, with the latter effect possibly being mediated downstream of GpIIb/IIIa. c-Cbl may play a physiological role in helping to prevent unwanted platelet activation in vivo.
Collapse
Affiliation(s)
- J M Auger
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, UK.
| | | | | | | | | |
Collapse
|
63
|
Miura-Shimura Y, Duan L, Rao NL, Reddi AL, Shimura H, Rottapel R, Druker BJ, Tsygankov A, Band V, Band H. Cbl-mediated ubiquitinylation and negative regulation of Vav. J Biol Chem 2003; 278:38495-504. [PMID: 12881521 DOI: 10.1074/jbc.m305656200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The Cbl ubiquitin ligase has emerged as a negative regulator of receptor and non-receptor tyrosine kinases. Cbl is known to associate with the proto-oncogene product Vav, a hematopoietic-restricted Rac guanine nucleotide exchange factor, but the consequences of this interaction remain to be elucidated. Using immortalized T cell lines from Cbl(+/+) and Cbl(-/-) mice, and transfection analyses in 293T cells, we demonstrate that Vav undergoes Cbl-dependent ubiquitinylation under conditions that promote Cbl and Vav phosphorylation. Interaction with Cbl also induced the loss of phosphorylated Vav. In addition, we show that an activated Vav mutant (Vav-Y174F) is more sensitive to Cbl-dependent ubiquitinylation. We demonstrate that the Cbl-dependent ubiquitinylation of Vav requires Cbl/Vav association through phosphorylated Tyr-700 on Cbl, and also requires an intact Cbl RING finger domain. Finally, using transfection analyses in the Jurkat T cell line, we show that Cbl, but not its ubiquitin ligase mutant, can inhibit Vav-dependent signaling. Thus, our findings strongly support the role of Cbl, via its ubiquitin ligase activity, as a negative regulator of activated Vav.
Collapse
Affiliation(s)
- Yuko Miura-Shimura
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Geimonen E, Fernandez I, Gavrilovskaya IN, Mackow ER. Tyrosine residues direct the ubiquitination and degradation of the NY-1 hantavirus G1 cytoplasmic tail. J Virol 2003; 77:10760-868. [PMID: 14512526 PMCID: PMC224989 DOI: 10.1128/jvi.77.20.10760-10768.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2003] [Accepted: 07/11/2003] [Indexed: 12/20/2022] Open
Abstract
The hantavirus G1 protein contains a long C-terminal cytoplasmic tail of 142 residues. Hantavirus pulmonary syndrome-associated hantaviruses contain conserved tyrosine residues near the C terminus of G1 which form an immunoreceptor tyrosine activation motif (ITAM) and interact with Src and Syk family kinases. During studies of the G1 ITAM we observed that fusion proteins containing the G1 cytoplasmic tail were poorly expressed. Expression of G1 cytoplasmic tail constructs were dramatically enhanced by treating cells with the proteasome inhibitor ALLN, suggesting that the protein is ubiquitinated and degraded via the 26S proteasome. By using a 6-His-tagged ubiquitin, we demonstrated that the G1 cytoplasmic tail is polyubiquitinated and degraded in the absence of proteasome inhibitors. Expression of only the ITAM-containing domain also directed protein ubiquitination and degradation in the absence of upstream residues. Deleting the C-terminal 51 residues of G1, including the ITAM, stabilized G1 and blocked polyubiquitination and degradation of the protein. Site-directed mutagenesis of both ITAM tyrosines (Y619 and Y632) to phenylalanine also blocked polyubiquitination of G1 proteins and dramatically enhanced G1 protein stability. In contrast, the presence of Y627, which is not part of the ITAM motif, had no effect on G1 stability. Mutagenesis of just Y619 enhanced G1 stability, inhibited G1 ubiquitination, and increased the half-life of G1 by threefold. Mutating only Y632 had less of an effect on G1 protein stability, although Y619 and Y632 synergistically contributed to G1 instability. These findings suggest that Y619, which is conserved in all hantaviruses, is the primary signal for directing G1 ubiquitination and degradation. Collectively these findings indicate that specific conserved tyrosines within the G1 cytoplasmic tail direct the polyubiquitination and degradation of expressed G1 proteins and provide a potential means for down-regulating hantavirus G1 surface glycoproteins and cellular proteins that interact with G1.
Collapse
Affiliation(s)
- Erika Geimonen
- Department of Medicine, Molecular Cell Biology Program, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | | | | | |
Collapse
|
65
|
Duan L, Miura Y, Dimri M, Majumder B, Dodge IL, Reddi AL, Ghosh A, Fernandes N, Zhou P, Mullane-Robinson K, Rao N, Donoghue S, Rogers RA, Bowtell D, Naramura M, Gu H, Band V, Band H. Cbl-mediated ubiquitinylation is required for lysosomal sorting of epidermal growth factor receptor but is dispensable for endocytosis. J Biol Chem 2003; 278:28950-60. [PMID: 12754251 DOI: 10.1074/jbc.m304474200] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ligand-induced down-regulation controls the signaling potency of the epidermal growth factor receptor (EGFR/ErbB1). Overexpression studies have identified Cbl-mediated ubiquitinylation of EGFR as a mechanism of ligand-induced EGFR down-regulation. However, the role of endogenous Cbl in EGFR down-regulation and the precise step in the endocytic pathway regulated by Cbl remain unclear. Using Cbl-/- mouse embryonic fibroblast cell lines, we demonstrate that endogenous Cbl is essential for ligand-induced ubiquitinylation and efficient degradation of EGFR. Further analyses using Chinese hamster ovary cells with a temperature-sensitive defect in ubiquitinylation confirm a crucial role of the ubiquitin machinery in Cbl-mediated EGFR degradation. However, internalization into early endosomes did not require Cbl function or an intact ubiquitin pathway. Confocal immunolocalization studies indicated that Cbl-dependent ubiquitinylation plays a critical role at the early endosome to late endosome/lysosome sorting step of EGFR down-regulation. These findings establish Cbl as the major endogenous ubiquitin ligase responsible for EGFR degradation, and show that the critical role of Cbl-mediated ubiquitinylation is at the level of endosomal sorting, rather than at the level of internalization.
Collapse
Affiliation(s)
- Lei Duan
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Niederberger N, Holmberg K, Alam SM, Sakati W, Naramura M, Gu H, Gascoigne NRJ. Allelic exclusion of the TCR alpha-chain is an active process requiring TCR-mediated signaling and c-Cbl. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:4557-63. [PMID: 12707333 DOI: 10.4049/jimmunol.170.9.4557] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phenotypic allelic exclusion at the TCRalpha locus is developmentally regulated in thymocytes. Many immature thymocytes express two cell surface alpha-chain species. Following positive selection, the vast majority of mature thymocytes and peripheral T cells display a single cell surface alpha-chain. A posttranslational mechanism occurring at the same time as positive selection and TCR up-regulation leads to this phenotypic allelic exclusion. Different models have been proposed to explain the posttranslational regulation of the alpha-chain allelic exclusion. In this study, we report that allelic exclusion is not regulated by competition between distinct alpha-chains for a single beta-chain, as proposed by the dueling alpha-chain model, nor by limiting CD3 zeta-chain in mature TCR(high) thymocytes. Our data instead favor the selective retention model where the positive selection signal through the TCR leads to phenotypic allelic exclusion by specifically maintaining cell surface expression of the selected alpha-chain while the nonselected alpha-chain is internalized. The use of inhibitors specific for Lck and/or other Src kinases indicates a role for these protein tyrosine kinases in the signaling events leading to the down-regulation of the nonselectable alpha-chain. Loss of the ubiquitin ligase/TCR signaling adapter molecule c-Cbl, which is important in TCR down-modulation and is a negative regulator of T cell signaling, leads to increased dual alpha-chain expression on the cell surface of double-positive thymocytes. Thus, not only is there an important role for TCR signaling in causing alpha-chain allelic exclusion, but differential ubiquitination by c-Cbl may be an important factor in causing only the nonselected alpha-chain to be down-modulated.
Collapse
MESH Headings
- Alleles
- Animals
- Antibody Affinity/genetics
- Binding, Competitive/genetics
- Binding, Competitive/immunology
- Cross-Linking Reagents/metabolism
- Dimethyl Sulfoxide/pharmacology
- Down-Regulation/drug effects
- Down-Regulation/genetics
- Down-Regulation/immunology
- Fetus
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/immunology
- Genes, T-Cell Receptor alpha
- Genes, T-Cell Receptor beta
- Immune Sera/metabolism
- Immunophenotyping
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/antagonists & inhibitors
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/biosynthesis
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/physiology
- Membrane Proteins/biosynthesis
- Membrane Proteins/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Mutant Strains
- Mice, Transgenic
- Organ Culture Techniques
- Proto-Oncogene Proteins/deficiency
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- Proto-Oncogene Proteins c-cbl
- Pyrazoles/pharmacology
- Pyrimidines/pharmacology
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell, alpha-beta/antagonists & inhibitors
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Signal Transduction/immunology
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Ubiquitin-Protein Ligases
Collapse
|
67
|
Bao J, Gur G, Yarden Y. Src promotes destruction of c-Cbl: implications for oncogenic synergy between Src and growth factor receptors. Proc Natl Acad Sci U S A 2003; 100:2438-43. [PMID: 12604776 PMCID: PMC151359 DOI: 10.1073/pnas.0437945100] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cellular Src and epidermal growth factor receptor (EGFR) collaborate in the progression of certain human malignancies, and their cooverexpression characterizes relatively aggressive animal tumors. Our study addressed the mode of oncogenic cooperation and reports that overexpression of c-Src in model cellular systems results in the accumulation of EGFR at the cell surface. The underlying mechanism involves inhibition of the normal, c-Cbl-regulated process of ligand-induced receptor down-regulation. In response to activation of c-Src, c-Cbl proteins undergo tyrosine phosphorylation that promotes their ubiquitylation and proteasomal destruction. Consequently, ubiquitylation of EGFR by c-Cbl is restrained in Src-transformed cells, and receptor sorting to endocytosis is impaired. In conclusion, by promoting destruction of c-Cbl, c-Src enables EGFR to evade desensitization, which explains Src-EGFR collaboration in oncogenesis.
Collapse
Affiliation(s)
- Jing Bao
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
68
|
Soubeyran P, Barac A, Szymkiewicz I, Dikic I. Cbl-ArgBP2 complex mediates ubiquitination and degradation of c-Abl. Biochem J 2003; 370:29-34. [PMID: 12475393 PMCID: PMC1223168 DOI: 10.1042/bj20021539] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2002] [Revised: 11/18/2002] [Accepted: 12/10/2002] [Indexed: 12/31/2022]
Abstract
The mechanisms leading to the ubiquitination and degradation of the activated c-Abl kinase have not yet been identified. We found that the multi-adaptor protein ArgBP2 links c-Abl to the ubiquitin ligase Cbl. Phosphorylation of Cbl and ArgBP2 by c-Abl resulted in the stabilization of their interactions, thus facilitating Cbl-induced ubiquitination and subsequent degradation of c-Abl and ArgBP2.
Collapse
Affiliation(s)
- Philippe Soubeyran
- Ludwig Institute for Cancer Research, Box 595, Husargatan 3, Uppsala, S-75124, Sweden
| | | | | | | |
Collapse
|
69
|
Corsois L, Quatannens B, Dumont P, Aumercier M, Defresne MP, Régnier DCL. Association of a new c-Cbl related protein with the very first stages of apoptosis induction. CANCER DETECTION AND PREVENTION 2002; 26:93-104. [PMID: 12102152 DOI: 10.1016/s0361-090x(02)00006-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This study investigates the involvement of the c-cbl proto-oncogene during the first stages of the apoptotic process. We have already shown that a c-Cbl aptotosis-related protein of 90 kDa (CARP 90) is detected very rapidly in the cytoplasm as well as in the nucleus of murine thymocytes after hydrocortisone (HC) treatment. We report here that this protein appeared as well after in vivo treatment of mice by gamma-irradiation or injection of anti-CD3 monoclonal antibody, two potent thymic apoptosis inductors, providing a close relationship between the occurrence of apoptosis and the appearance of CARP 90. We showed that CARP 90 and p120(cbl) share numerous epitopes strikingly suggesting that CARP 90 is coded by c-cbl. In addition, KO mice do not sustain CARP 90 appearance. We finally showed that CARP 90 contains N- and C-terminal end epitopes of p120(cbl), which suggests that CARP 90 is an alternative spliced form of c-cbl. This protein was also observed under gamma-irradiation in tissues of different origin, which enlarges the physiological significance of this phenomenon. The very rapid CARP 90 appearance under apoptotic conditions in the nucleus of cells originating in different tissues makes this protein if not a possible new actor of the apoptotic process, at least an interesting marker of this process.
Collapse
Affiliation(s)
- Laurent Corsois
- Laboratory of Molecular Oncology, CNRS-UMR 8526, Institut Pasteur de Lille, France
| | | | | | | | | | | |
Collapse
|
70
|
Goh ELK, Zhu T, Leong WY, Lobie PE. c-Cbl is a negative regulator of GH-stimulated STAT5-mediated transcription. Endocrinology 2002; 143:3590-603. [PMID: 12193575 DOI: 10.1210/en.2002-220374] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have previously demonstrated that cellular stimulation with GH results in the formation of a multiprotein signaling complex. One component of this multiprotein signaling complex is the adapter molecule c-Cbl. Here we have examined the role of c-Cbl in the mechanism of GH signal transduction. Forced expression of c-Cbl in NIH3T3 cells did not alter GH-stimulated Janus kinase 2 tyrosine phosphorylation nor GH-stimulated p44/42 MAPK activation and consequent Elk-1- mediated transcription. c-Cbl overexpression did, however, result in enhanced and prolonged GH-stimulated activation of phosphatidylinositol 3-kinase. Forced expression of c-Cbl did not affect GH-stimulated STAT5 tyrosine phosphorylation, nuclear translocation, nor binding to DNA but markedly abrogated GH-stimulated STAT5-mediated transactivation. c-Cbl overexpression resulted in increased ubiquitination and proteosomal degradation of STAT5 and increased degradation of GH-stimulated tyrosine phosphorylated STAT5. Cellular pretreatment with the proteosomal inhibitor MG132 reversed the effect of c-Cbl overexpression with prolonged duration of GH-stimulated STAT5 tyrosine phosphorylation and restoration of STAT5-mediated transcription. Thus, c-Cbl is a negative regulator of GH-stimulated STAT5-mediated transcription by direction of STAT5 for proteosomal degradation.
Collapse
Affiliation(s)
- Eyleen L K Goh
- Institute of Molecular and Cell Biology, National University of Singapore, Singapore 117609
| | | | | | | |
Collapse
|
71
|
Wang L, Rudert WA, Loutaev I, Roginskaya V, Corey SJ. Repression of c-Cbl leads to enhanced G-CSF Jak-STAT signaling without increased cell proliferation. Oncogene 2002; 21:5346-55. [PMID: 12149655 DOI: 10.1038/sj.onc.1205670] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2001] [Revised: 05/09/2002] [Accepted: 05/14/2002] [Indexed: 11/09/2022]
Abstract
Engagement of the Granulocyte-Colony-Stimulating Factor (G-CSF) receptor activates non-receptor protein tyrosine kinases Lyn and Jak2. We found that Lyn-deficient DT40 cells that express the G-CSF receptor (DT40GR) do not demonstrate G-CSF-induced mitogenic signaling. Lyn associates with and phosphorylates a small set of molecules, including c-Cbl. c-Cbl is an adaptor involved in cell growth and cytoskeletal reorganization, predominantly in hematopoietic cells. Using yeast two-hybrid analysis, we found that c-Cbl directly couples Lyn to PI 3-kinase. We also found that expression of the c-CblY731F mutant, which uncouples PI 3-kinase, resulted in the inhibition of G-CSF-induced proliferative signaling in DT40GR cells. As a complementary strategy, we sought to analyse the effects of c-Cbl deficiency in DT40GR cells. We isolated, cloned and sequenced the full-length cDNA for chicken c-Cbl and constructed antisense vectors. Antisense inhibition of c-Cbl expression in DT40GR cells led to enhanced Jak-STAT activation following G-CSF stimulation. Yet, this enhancement of Jak-STAT activation was associated with decreased G-CSF-induced PI 3-kinase activity and DNA synthesis. PI 3-kinase activity correlated with DNA synthesis and physiological levels of c-Cbl. Together, these data suggest that physiologic level of c-Cbl provides a growth stimulatory pathway for G-CSF and that enhanced Jak-STAT activation is not sufficient for G-CSF-induced growth.
Collapse
Affiliation(s)
- Lin Wang
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
72
|
Scott MP, Zappacosta F, Kim EY, Annan RS, Miller WT. Identification of novel SH3 domain ligands for the Src family kinase Hck. Wiskott-Aldrich syndrome protein (WASP), WASP-interacting protein (WIP), and ELMO1. J Biol Chem 2002; 277:28238-46. [PMID: 12029088 DOI: 10.1074/jbc.m202783200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The importance of the SH3 domain of Hck in kinase regulation, substrate phosphorylation, and ligand binding has been established. However, few in vivo ligands are known for the SH3 domain of Hck. In this study, we used mass spectrometry to identify approximately 25 potential binding partners for the SH3 domain of Hck from the monocyte cell line U937. Two major interacting proteins were the actin binding proteins Wiskott-Aldrich syndrome protein (WASP) and WASP-interacting protein (WIP). We also focused on a novel interaction between Hck and ELMO1, an 84-kDa protein that was recently identified as the mammalian ortholog of the Caenorhabditis elegans gene, ced-12. In mammalian cells, ELMO1 interacts with Dock180 as a component of the CrkII/Dock180/Rac pathway responsible for phagocytosis and cell migration. Using purified proteins, we confirmed that WASP-interacting protein and ELMO1 interact directly with the SH3 domain of Hck. We also show that Hck and ELMO1 interact in intact cells and that ELMO1 is heavily tyrosine-phosphorylated in cells that co-express Hck, suggesting that it is a substrate of Hck. The binding of ELMO1 to Hck is specifically dependent on the interaction of a polyproline motif with the SH3 domain of Hck. Our results suggest that these proteins may be novel activators/effectors of Hck.
Collapse
Affiliation(s)
- Margaret Porter Scott
- Department of Physiology and Biophysics, School of Medicine, State University of New York, Stony Brook, New York 11794-8661, USA
| | | | | | | | | |
Collapse
|
73
|
Verdier F, Valovka T, Zhyvoloup A, Drobot LB, Buchman V, Waterfield M, Gout I. Ruk is ubiquitinated but not degraded by the proteasome. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3402-8. [PMID: 12135478 DOI: 10.1046/j.1432-1033.2002.03031.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The regulator of ubiquitous kinase (Ruk) protein, also known as CIN85 or SETA, is an adaptor-type protein belonging to the CD2AP/CMS family. It was found in complexes with many signaling proteins, including phosphoinositol (PtdIns) 3-kinase (EC 2.7.1.137), Cbl, GRB2, p130Cas and Crk. Functional analysis of these interactions, implicated Ruk in the regulation of apoptosis, receptor endocytosis and cytoskeletal rearrangements. We have recently demonstrated that overexpression of Ruk induces apoptotic death in neurons, which could be reversed by activated forms of PtdIns 3-kinase and PKB/Akt. Furthermore, Ruk was shown to be a negative regulator of PtdIns 3-kinase activity through binding to its P85 regulatory subunit [Gout, I., Middleton, G., Adu, J., Ninkina, N. N., Drobot, L. B., Filonenko, V., Matsuka, G., Davies, A.M., Waterfield, M. & Buchman, V. L. (2000) Embo J.19, 4015-4025]. Here, we report for the first time, that all three isoforms of Ruk (L, M and S) are ubiquitinated. Specific interaction between the E3 ubiquitin ligase Cbl and all three Ruk isoforms was demonstrated by coexpression studies in Hek293 cells. The interaction of Ruk M and S isoforms with Cbl was found to be mediated via heterodimerization with Ruk L. The use of proteosomal and lysosomal inhibitors clearly indicated that ubiquitination of Ruk L does not lead to its degradation. Based on this study, we propose a possible mechanism for the regulation of Ruk function by ubiquitination.
Collapse
Affiliation(s)
- Frédérique Verdier
- Ludwig Institute for Cancer Research, University College of London Medical School, London, UK.
| | | | | | | | | | | | | |
Collapse
|
74
|
Frame MC. Src in cancer: deregulation and consequences for cell behaviour. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1602:114-30. [PMID: 12020799 DOI: 10.1016/s0304-419x(02)00040-9] [Citation(s) in RCA: 272] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Considerable evidence now implicates elevated expression and/or activity of Src in cancer development. In cells, endogenous Src is switched from an inactive to an active state by a variety of mechanisms that simultaneously relieve constraints on the kinase and protein-interacting Src homology (SH) domains. As a result, Src is translocated to the cell periphery, often to sites of cell adhesion, where myristylation mediates attachment to the inner surface of the plasma membrane. From these peripheral sites, Src's catalytic activity initiates intracellular signal transduction pathways that influence cell growth and adhesion strength, the latter contributing to control of cell migration. De-regulation in cancer cells may therefore enhance tumour growth and/or stimulate migratory or invasive potential in cells that would normally be relatively non-motile. Evidence now exists to suggest that Src may also influence the life or death decisions that cells make during many biological processes. Thus, Src modulation in cancer cells can alter cell responses that are often perturbed in cancer. Consequently, there is optimism that drugs which inhibit Src's kinase activity, or the activity of its downstream effectors, might have profound effects on cancer cell behaviour and be useful therapeutic agents.
Collapse
Affiliation(s)
- Margaret C Frame
- The Beatson Institute for Cancer Research and Institute of Biomedical and Life Sciences, CRC Beatson Laboratories (University of Glasgow), Glasgow, UK.
| |
Collapse
|
75
|
Panigada M, Porcellini S, Barbier E, Hoeflinger S, Cazenave PA, Gu H, Band H, von Boehmer H, Grassi F. Constitutive endocytosis and degradation of the pre-T cell receptor. J Exp Med 2002; 195:1585-97. [PMID: 12070286 PMCID: PMC2193560 DOI: 10.1084/jem.20020047] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The pre-T cell receptor (TCR) signals constitutively in the absence of putative ligands on thymic stroma and signal transduction correlates with translocation of the pre-TCR into glycolipid-enriched microdomains (rafts) in the plasma membrane. Here, we show that the pre-TCR is constitutively routed to lysosomes after reaching the cell surface. The cell-autonomous down-regulation of the pre-TCR requires activation of the src-like kinase p56(lck), actin polymerization, and dynamin. Constitutive signaling and degradation represents a feature of the pre-TCR because the gammadeltaTCR expressed in the same cell line does not exhibit these features. This is also evident by the observation that the protein adaptor/ubiquitin ligase c-Cbl is phosphorylated and selectively translocated into rafts in pre-TCR- but not gammadeltaTCR-expressing cells. A role of c-Cbl-mediated ubiquitination in pre-TCR degradation is supported by the reduction of degradation through pharmacological inhibition of the proteasome and through a dominant-negative c-Cbl ubiquitin ligase as well as by increased pre-TCR surface expression on immature thymocytes in c-Cbl-deficient mice. The pre-TCR internalization contributes significantly to the low surface level of the receptor on developing T cells, and may in fact be a requirement for optimal pre-TCR function.
Collapse
Affiliation(s)
- Maddalena Panigada
- Dipartimento di Biologia e Genetica per le Scienze Mediche, Università degli Studi di Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Abstract
Immune cells are activated as a result of productive interactions between ligands and various receptors known as immunoreceptors. These receptors function by recruiting cytoplasmic protein tyrosine kinases, which trigger a unique phosphorylation signal leading to cell activation. In the recent past, there has been increasing interest in elucidating the processes involved in the negative regulation of immunoreceptor-mediated signal transduction. Evidence is accumulating that immunoreceptor signaling is inhibited by complex and highly regulated mechanisms that involve receptors, protein tyrosine kinases, protein tyrosine phosphatases, lipid phosphatases, ubiquitin ligases, and inhibitory adaptor molecules. Genetic evidence indicates that this inhibitory machinery is crucial for normal immune cell homeostasis.
Collapse
Affiliation(s)
- André Veillette
- Laboratory of Molecular Oncology, IRCM, 110 Pine Avenue West, Montréal, Québec, Canada H2W 1R7.
| | | | | |
Collapse
|
77
|
Rao N, Dodge I, Band H. The Cbl family of ubiquitin ligases: critical negative regulators of tyrosine kinase signaling in the immune system. J Leukoc Biol 2002. [DOI: 10.1189/jlb.71.5.753] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Navin Rao
- Division of Medical Sciences, Boston, Massachusetts
| | - Ingrid Dodge
- Division of Medical Sciences, Boston, Massachusetts
| | - Hamid Band
- Lymphocyte Biology Section, Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
78
|
Rao N, Ghosh AK, Douillard P, Andoniou CE, Zhou P, Band H. An essential role of ubiquitination in Cbl-mediated negative regulation of the Src-family kinase Fyn. ACTA ACUST UNITED AC 2002; 2:29-39. [PMID: 19966925 DOI: 10.1002/1615-4061(200205)2:1/2<29::aid-sita29>3.0.co;2-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Cbl family of ubiquitin ligases function as negative regulators of activated receptor tyrosine kinases by facilitating their ubiquitination and subsequent lysosomal targeting. Here, we have investigated the role of Cbl ubiquitin ligase activity in the negative regulation of a non-receptor tyrosine kinase, the Src-family kinase Fyn. Using primary embryonic fibroblasts from Cbl(+/+) and Cbl(-/-) mice, we demonstrate that endogenous Cbl mediates the ubiquitination of Fyn and dictates the rate of Fyn turnover. By analyzing CHO-TS20 cells with a temperature-sensitive ubiquitin activating enzyme, we demonstrate that intact cellular ubiquitin machinery is required for Cbl-induced degradation of Fyn. Analyses of Cbl mutants, with mutations in or near the RING finger domain, in 293T cells revealed that the ubiquitin ligase activity of Cbl is essential for Cbl-induced degradation of Fyn by the proteasome pathway. Finally, use of a SRE-luciferase reporter demonstrated that Cbl-dependent negative regulation of Fyn function requires the region of Cbl that mediates the ubiquitin ligase activity. Given the conservation of structure between various Src-family kinases and the ability of Cbl to interact with multiple members of this family, Cbl-dependent ubiquitination could serve a general role to negatively regulate activated Src-family kinases.
Collapse
Affiliation(s)
- Navin Rao
- Brigham and Women's Hospital, Harvard Medical School, Lymphocyte Biology Section, Division of Rheumatology, Immunology and Allergy, Department of Medicine, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
79
|
Rao N, Miyake S, Reddi AL, Douillard P, Ghosh AK, Dodge IL, Zhou P, Fernandes ND, Band H. Negative regulation of Lck by Cbl ubiquitin ligase. Proc Natl Acad Sci U S A 2002; 99:3794-9. [PMID: 11904433 PMCID: PMC122603 DOI: 10.1073/pnas.062055999] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Cbl-family ubiquitin ligases function as negative regulators of activated receptor tyrosine kinases by facilitating their ubiquitination and subsequent targeting to lysosomes. Cbl associates with the lymphoid-restricted nonreceptor tyrosine kinase Lck, but the functional relevance of this interaction remains unknown. Here, we demonstrate that T cell receptor and CD4 coligation on human T cells results in enhanced association between Cbl and Lck, together with Lck ubiquitination and degradation. A Cbl(-/-) T cell line showed a marked deficiency in Lck ubiquitination and increased levels of kinase-active Lck. Coexpression in 293T cells demonstrated that Lck kinase activity and Cbl ubiquitin ligase activity were essential for Lck ubiquitination and negative regulation of Lck-dependent serum response element-luciferase reporter activity. The Lck SH3 domain was pivotal for Cbl-Lck association and Cbl-mediated Lck degradation, with a smaller role for interactions mediated by the Cbl tyrosine kinase-binding domain. Finally, analysis of a ZAP-70-deficient T cell line revealed that Cbl inhibited Lck-dependent mitogen-activated protein kinase activation, and an intact Cbl RING finger domain was required for this functional effect. Our results demonstrate a direct, ubiquitination-dependent, negative regulatory role of Cbl for Lck in T cells, independent of Cbl-mediated regulation of ZAP-70.
Collapse
Affiliation(s)
- Navin Rao
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Howlett CJ, Robbins SM. Membrane-anchored Cbl suppresses Hck protein-tyrosine kinase mediated cellular transformation. Oncogene 2002; 21:1707-16. [PMID: 11896602 DOI: 10.1038/sj.onc.1205228] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2001] [Revised: 11/27/2001] [Accepted: 12/05/2001] [Indexed: 11/09/2022]
Abstract
The mammalian proto-oncogene Cbl and its cellular homologues in Caenorhabditis elegans (Sli-1) and Drosophila (D-Cbl) are negative regulators of some growth factor receptor signaling pathways. Herein we show that Cbl can negatively regulate another signaling molecule, namely theSrc-family kinase Hck by targeting it for degradation. Hck-mediated cellular transformation of murine fibroblasts is reverted by ectopic expression of a membrane-anchored allele of Cbl as assessed by the cellular morphology, suppression of anchorage independent growth, and an overall reduction in the total tyrosine phosphorylation levels within the cells. The expression of Cbl at the plasma membrane targets both Hck and itself for ubiquitination and degradation, requiring an intact RING finger. Pharmacological inhibition of the proteasome prevents the degradation of Hck correlating with an increase in the phosphotyrosine levels within the cells. Activated Hck and membrane-anchored Cbl are present in similar subcellular localizations and co-immunoprecipitate, suggesting that their interaction is required for subsequent ubiquitination and degradation. Interestingly, both constitutively active and kinase-inactive Hck interact with and are targeted for degradation by Cbl. This work illustrates alternate means to regulate Src-family kinases, and suggests that Cbl may be able to suppress many signaling pathways that are activated in various proliferative syndromes including cancer.
Collapse
Affiliation(s)
- Christopher J Howlett
- Department of Oncology, The University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta T2N-4N1, Canada
| | | |
Collapse
|
81
|
Hawash IY, Kesavan KP, Magee AI, Geahlen RL, Harrison ML. The Lck SH3 domain negatively regulates localization to lipid rafts through an interaction with c-Cbl. J Biol Chem 2002; 277:5683-91. [PMID: 11741956 DOI: 10.1074/jbc.m110002200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lck is a member of the Src family of protein-tyrosine kinases and is essential for T cell development and function. Lck is localized to the inner surface of the plasma membrane and partitions into lipid rafts via dual acylation on its N terminus. We have tested the role of Lck binding domains in regulating Lck localization to lipid rafts. A form of Lck containing a point mutation inactivating the SH3 domain (W97ALck) was preferentially localized to lipid rafts compared with wild type or SH2 domain-inactive (R154K) Lck when expressed in Lck-deficient J.CaM1 cells. W97ALck incorporated more of the radioiodinated version of palmitic acid, 16-[(125)I]iodohexadecanoic acid. Overexpression of c-Cbl, a ligand of the Lck SH3 domain, depleted Lck from lipid rafts in Jurkat cells. Additionally, Lck localization to lipid rafts was enhanced in c-Cbl-deficient T cells. The association of Lck with c-Cbl in vivo required a functional SH3 domain. These results suggest a model whereby the SH3 domain negatively regulates basal localization of Lck to lipid rafts via association with c-Cbl.
Collapse
Affiliation(s)
- Ibrahim Y Hawash
- Department of Biology, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
82
|
Bard F, Patel U, Levy JB, Jurdic P, Horne WC, Baron R. Molecular complexes that contain both c-Cbl and c-Src associate with Golgi membranes. Eur J Cell Biol 2002; 81:26-35. [PMID: 11893076 DOI: 10.1078/0171-9335-00217] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Cbl is an adaptor protein that is phosphorylated and recruited to several receptor and non-receptor tyrosine kinases upon their activation. After binding to the activated receptor, Cbl plays a key role as a kinase inhibitor and as an E3 ubiquitin ligase, thereby contributing to receptor down-regulation and internalization. In addition, Cbl translocates to intracellular vesicular compartments following receptor activation. We report here that Cbl also associates with Golgi membranes. Confocal immunofluorescence staining of Cbl in a variety of unstimulated cells, including CHO cells, revealed a prominent perinuclear colocalization of Cbl and a Golgi marker. Both the prominent Cbl staining and the Golgi marker were dispersed by brefeldin A. Subcellular fractionation of CHO cells demonstrated that about 10% of Cbl is stably associated with membranes, and that Golgi-enriched membrane fractions produced by isopycnic density centrifugation and free-flow electrophoresis are also enriched in Cbl, relative to other membrane fractions. The membrane-bound Cbl was hyperphosphorylated and it co-immunoprecipitated with endogenous Src. By immunofluorescence, some Src colocalized with Cbl and Golgi markers, and Src, like Cbl, was present in the Golgi-enriched fraction prepared by sequential density centrifugation and free-flow electrophoresis. Transfection of an activated form of Src, but not wild-type Src, increased the amount of Src that co-immunoprecipitated with Cbl, and increased the intensity of Cbl staining on the Golgi. This result, together with the increased tyrosine phosphorylation of the membrane-associated Cbl, suggests that Golgi-associated Cbl could be part of a molecular complex that contains activated Src. The localization and interaction of Src and Cbl at the Golgi and the regulation of the interaction of Cbl with Golgi membrane suggest that this complex may contribute to the regulation of Golgi function.
Collapse
Affiliation(s)
- Frederic Bard
- Department of Orthopaedics, Yale University School of Medicine, New Haven, CT 06520-8044, USA
| | | | | | | | | | | |
Collapse
|
83
|
Rao N, Ghosh AK, Ota S, Zhou P, Reddi AL, Hakezi K, Druker BK, Wu J, Band H. The non-receptor tyrosine kinase Syk is a target of Cbl-mediated ubiquitylation upon B-cell receptor stimulation. EMBO J 2001; 20:7085-95. [PMID: 11742985 PMCID: PMC125791 DOI: 10.1093/emboj/20.24.7085] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The negative regulator Cbl functions as a ubiquitin ligase towards activated receptor tyrosine kinases and facilitates their transport to lysosomes. Whether Cbl ubiquitin ligase activity mediates its negative regulatory effects on cytoplasmic tyrosine kinases of the Syk/ZAP-70 family has not been addressed, nor is it known whether these kinases are regulated via ubiquitylation during lymphocyte B-cell receptor engagement. Here we show that B-cell receptor stimulation in Ramos cells induces the ubiquitylation of Syk tyrosine kinase which is inhibited by a dominant-negative mutant of Cbl. Intact tyrosine kinase-binding and RING finger domains of Cbl were found to be essential for Syk ubiquitylation in 293T cells and for in vitro Syk ubiquitylation. These same domains were also essential for Cbl-mediated negative regulation of Syk as measured using an NFAT-luciferase reporter in a lymphoid cell. Association with Cbl did not alter the kinase activity of Syk. Altogether, our results support an essential role for Cbl ubiquitin ligase activity in the negative regulation of Syk, and establish that ubiquitylation provides a mechanism of Cbl-mediated negative regulation of cytoplasmic targets.
Collapse
Affiliation(s)
| | | | - Satoshi Ota
- Lymphocyte Biology Section, Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115,
Division of Hematology and Medical Oncology, Oregon Health Sciences University, Portland, OR 97201 and Cell Signaling Technology, 166B Cummings Center, Beverley, MA 01915, USA Present address: The First Department of Pathology, Hamamatsu University School of Medicine, Hamamatsu 431, Japan Corresponding author e-mail:
| | | | | | | | - Brian K. Druker
- Lymphocyte Biology Section, Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115,
Division of Hematology and Medical Oncology, Oregon Health Sciences University, Portland, OR 97201 and Cell Signaling Technology, 166B Cummings Center, Beverley, MA 01915, USA Present address: The First Department of Pathology, Hamamatsu University School of Medicine, Hamamatsu 431, Japan Corresponding author e-mail:
| | - Jiong Wu
- Lymphocyte Biology Section, Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115,
Division of Hematology and Medical Oncology, Oregon Health Sciences University, Portland, OR 97201 and Cell Signaling Technology, 166B Cummings Center, Beverley, MA 01915, USA Present address: The First Department of Pathology, Hamamatsu University School of Medicine, Hamamatsu 431, Japan Corresponding author e-mail:
| | - Hamid Band
- Lymphocyte Biology Section, Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115,
Division of Hematology and Medical Oncology, Oregon Health Sciences University, Portland, OR 97201 and Cell Signaling Technology, 166B Cummings Center, Beverley, MA 01915, USA Present address: The First Department of Pathology, Hamamatsu University School of Medicine, Hamamatsu 431, Japan Corresponding author e-mail:
| |
Collapse
|
84
|
Sanjay A, Horne WC, Baron R. The Cbl Family: Ubiquitin Ligases Regulating Signaling by Tyrosine Kinases. Sci Signal 2001. [DOI: 10.1126/scisignal.1102001pe40] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
85
|
Sanjay A, Horne WC, Baron R. The Cbl family: ubiquitin ligases regulating signaling by tyrosine kinases. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2001; 2001:pe40. [PMID: 11724969 DOI: 10.1126/stke.2001.110.pe40] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Cbl proteins compose a family of ubiquitin ligases that play a central role in the down-regulation of signaling cascades involving receptor and nonreceptor tyrosine kinases. Analysis of the activity of these proteins suggests that they can regulate the signaling process through ubiquitination of the plasma membrane receptors and various downstream signaling components, including the Cbl proteins themselves. Structural analysis of the Cbl proteins shows that, in many instances, they interact with phosphorylated tyrosine residues on their targets. Furthermore, phosphorylation of specific tyrosine residues on the Cbl proteins may provide an additional level of control on the ubiquitinating activity of these proteins.
Collapse
Affiliation(s)
- A Sanjay
- Departments of Orthopaedics and Cell Biology and the Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520-8044, USA
| | | | | |
Collapse
|
86
|
Holland SJ, Liao XC, Mendenhall MK, Zhou X, Pardo J, Chu P, Spencer C, Fu A, Sheng N, Yu P, Pali E, Nagin A, Shen M, Yu S, Chan E, Wu X, Li C, Woisetschlager M, Aversa G, Kolbinger F, Bennett MK, Molineaux S, Luo Y, Payan DG, Mancebo HS, Wu J. Functional cloning of Src-like adapter protein-2 (SLAP-2), a novel inhibitor of antigen receptor signaling. J Exp Med 2001; 194:1263-76. [PMID: 11696592 PMCID: PMC2195979 DOI: 10.1084/jem.194.9.1263] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2001] [Revised: 08/20/2001] [Accepted: 09/06/2001] [Indexed: 11/04/2022] Open
Abstract
In an effort to identify novel therapeutic targets for autoimmunity and transplant rejection, we developed and performed a large-scale retroviral-based functional screen to select for proteins that inhibit antigen receptor-mediated activation of lymphocytes. In addition to known regulators of antigen receptor signaling, we identified a novel adaptor protein, SLAP-2 which shares 36% sequence similarity with the known Src-like adaptor protein, SLAP. Similar to SLAP, SLAP-2 is predominantly expressed in hematopoietic cells. Overexpression of SLAP-2 in B and T cell lines specifically impaired antigen receptor-mediated signaling events, including CD69 surface marker upregulation, nuclear factor of activated T cells (NFAT) promoter activation and calcium influx. Signaling induced by phorbol myristate acetate (PMA) and ionomycin was not significantly reduced, suggesting SLAP-2 functions proximally in the antigen receptor signaling cascade. The SLAP-2 protein contains an NH2-terminal myristoylation consensus sequence and SH3 and SH2 Src homology domains, but lacks a tyrosine kinase domain. In antigen receptor-stimulated cells, SLAP-2 associated with several tyrosine phosphorylated proteins, including the ubiquitin ligase Cbl. Deletion of the COOH terminus of SLAP-2 blocked function and abrogated its association with Cbl. Mutation of the putative myristoylation site of SLAP-2 compromised its inhibitory activity and impaired its localization to the membrane compartment. Our identification of the negative regulator SLAP-2 demonstrates that a retroviral-based screening strategy may be an efficient way to identify and characterize the function of key components of many signal transduction systems.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Amino Acid Sequence
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/immunology
- B-Lymphocytes/cytology
- B-Lymphocytes/immunology
- Base Sequence
- Calcium/metabolism
- Cell Line
- Cloning, Molecular
- DNA, Complementary
- DNA-Binding Proteins/genetics
- Humans
- Jurkat Cells
- Lectins, C-Type
- Molecular Sequence Data
- Myristic Acid/metabolism
- NFATC Transcription Factors
- Nuclear Proteins
- Phosphorylation
- Promoter Regions, Genetic
- Proto-Oncogene Proteins pp60(c-src)/genetics
- Proto-Oncogene Proteins pp60(c-src)/immunology
- Receptor Protein-Tyrosine Kinases/biosynthesis
- Receptor Protein-Tyrosine Kinases/immunology
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, T-Cell/immunology
- Sequence Homology, Amino Acid
- Signal Transduction/immunology
- Tetracycline/pharmacology
- Trans-Activators
- Transcription Factors/genetics
- Transcriptional Activation
- Tyrosine/metabolism
- src Homology Domains
Collapse
Affiliation(s)
- S J Holland
- Rigel, Incorporated, South San Francisco, CA 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Blesofsky WA, Mowen K, Arduini RM, Baker DP, Murphy MA, Bowtell DD, David M. Regulation of STAT protein synthesis by c-Cbl. Oncogene 2001; 20:7326-33. [PMID: 11704862 DOI: 10.1038/sj.onc.1204919] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2001] [Revised: 08/07/2001] [Accepted: 08/14/2001] [Indexed: 11/08/2022]
Abstract
Many cytokines and growth factors induce transcription of immediate early response genes by activating members of the Signal Transducers and Activators of Transcription (STAT) family. Although significant progress has been made in understanding the events that lead to the activation of STAT proteins, less is known about the regulation of their expression. Here we report that murine embryonic fibroblasts derived from c-Cbl-deficient mice display significantly increased levels of STAT1 and STAT5 protein. In contrast, STAT2 and STAT3 expression, as well as the levels of the tyrosine kinases Jak1 and Tyk2, appear to be regulated independently of c-Cbl. Interestingly, the half-life of STAT1 was unaffected by the presence of c-Cbl, indicating that c-Cbl acts independently of STAT1 degradation. Further analysis revealed similar levels of STAT1 mRNA, however, a dramatically increased rate of STAT1 protein synthesis was observed in c-Cbl-deficient cells. Thus, our findings demonstrate an additional control mechanism over STAT1 function, and also provide a novel biological effect of the Cbl protein family.
Collapse
Affiliation(s)
- W A Blesofsky
- Department of Biology and UCSD Cancer Center, University of California San Diego, La Jolla, California 92093-0322, USA
| | | | | | | | | | | | | |
Collapse
|
88
|
Tsygankov AY, Teckchandani AM, Feshchenko EA, Swaminathan G. Beyond the RING: CBL proteins as multivalent adapters. Oncogene 2001; 20:6382-402. [PMID: 11607840 DOI: 10.1038/sj.onc.1204781] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Following discovery of c-Cbl, a cellular form of the transforming retroviral protein v-Cbl, multiple Cbl-related proteins have been identified in vertebrate and invertebrate organisms. c-Cbl and its homologues are capable of interacting with numerous proteins involved in cell signaling, including various molecular adapters and protein tyrosine kinases. It appears that Cbl proteins play several functional roles, acting both as multivalent adapters and inhibitors of various protein tyrosine kinases. The latter function is linked, to a substantial extent, to the E3 ubiquitin-ligase activity of Cbl proteins. Experimental evidence for these functions, interrelations between them, and their biological significance are addressed in this review, with the main accent placed on the adapter functions of Cbl proteins.
Collapse
Affiliation(s)
- A Y Tsygankov
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania, PA 19140, USA.
| | | | | | | |
Collapse
|
89
|
Penela P, Elorza A, Sarnago S, Mayor F. Beta-arrestin- and c-Src-dependent degradation of G-protein-coupled receptor kinase 2. EMBO J 2001; 20:5129-38. [PMID: 11566877 PMCID: PMC125273 DOI: 10.1093/emboj/20.18.5129] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
G-protein-coupled receptor kinase 2 (GRK2) plays a key role in the regulation of G-protein-coupled receptors (GPCRs). GRK2 expression is altered in several pathological conditions, but the molecular mechanisms that modulate GRK2 cellular levels are largely unknown. We recently have described that GRK2 is degraded rapidly by the proteasome pathway. This process is enhanced by GPCR stimulation and is severely impaired in a GRK2 mutant that lacks kinase activity (GRK2-K220R). In this report, we find that beta-arrestin function and Src-mediated phosphorylation of GRK2 are critically involved in GRK2 proteolysis. Overexpression of beta-arrestin triggers GRK2-K220R degradation based on its ability to recruit c-Src, since this effect is not observed with beta-arrestin mutants that display an impaired c-Src interaction. The presence of an inactive c-Src mutant or of tyrosine kinase inhibitors strongly inhibits co-transfected or endogenous GRK2 turnover, respectively, and a GRK2 mutant with impaired phosphorylation by c-Src shows a markedly retarded degradation. This pathway for the modulation of GRK2 protein stability puts forward a new feedback mechanism for regulating GRK2 levels and GPCR signaling.
Collapse
Affiliation(s)
| | | | | | - Federico Mayor
- Departamento de Biología Molecular and Centro de Biología Molecular ‘Severo Ochoa’, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, E-28049 Madrid, Spain
Corresponding author e-mail: P.Penela and A.Elorza contributed equally to this work
| |
Collapse
|
90
|
Yokouchi M, Kondo T, Sanjay A, Houghton A, Yoshimura A, Komiya S, Zhang H, Baron R. Src-catalyzed phosphorylation of c-Cbl leads to the interdependent ubiquitination of both proteins. J Biol Chem 2001; 276:35185-93. [PMID: 11448952 DOI: 10.1074/jbc.m102219200] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The protooncogene c-Cbl has recently emerged as an E3 ubiquitin ligase for activated receptor tyrosine kinases. We report here that c-Cbl also mediates the ubiquitination of another protooncogene, the non-receptor tyrosine kinase c-Src, as well as of itself. The c-Cbl-dependent ubiquitination of Src and c-Cbl requires c-Cbl's RING finger, Src kinase activity, and c-Cbl's tyrosine phosphorylation, probably on Tyr-371. In vitro, c-Cbl forms a stable complex with the ubiquitin-conjugating enzyme UbcH7, but active Src destabilizes this interaction. In contrast, Src inhibition stabilizes the c-Cbl. UbcH7.Src complex. Finally, c-Cbl reduces v-Src protein levels and suppresses v-Src-induced STAT3 activation. Thus, in addition to mediating the ubiquitination of activated receptor tyrosine kinases, c-Cbl also acts as a ubiquitin ligase for the non-receptor tyrosine kinase Src, thereby down-regulating Src.
Collapse
Affiliation(s)
- M Yokouchi
- Departments of Cell Biology, Orthopaedics, and Genetics, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Ricci JE, Lang V, Luciano F, Belhacene N, Giordanengo V, Michel F, Bismuth G, Auberger P. An absolute requirement for Fyn in T cell receptor-induced caspase activation and apoptosis. FASEB J 2001; 15:1777-9. [PMID: 11481227 DOI: 10.1096/fj.00-0665fje] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- J E Ricci
- INSERM U526 Activation des Cellules Hématopoïétiques, Physiopathologie de la Survie et de la Mort Cellulaire et Infections Virales, Equipe Labellisée Ligue Nationale contre le Cancer, IFR 50, 06107 Nice Cédex 2, France
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Ettenberg SA, Magnifico A, Cuello M, Nau MM, Rubinstein YR, Yarden Y, Weissman AM, Lipkowitz S. Cbl-b-dependent Coordinated Degradation of the Epidermal Growth Factor Receptor Signaling Complex. J Biol Chem 2001; 276:27677-84. [PMID: 11375397 DOI: 10.1074/jbc.m102641200] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cbl proteins function as ubiquitin protein ligases for the activated epidermal growth factor receptor and, thus, negatively regulate its activity. Here we show that Cbl-b is ubiquitinated and degraded upon activation of the receptor. Epidermal growth factor (EGF)-induced Cbl-b degradation requires intact RING finger and tyrosine kinase binding domains and requires binding of the Cbl-b protein to the activated EGF receptor (EGFR). Degradation of both the EGFR and the Cbl-b protein is blocked by lysosomal and proteasomal inhibitors. Other components of the EGFR-signaling complex (i.e. Grb2 and Shc) are also degraded in an EGF-induced Cbl-b-dependent fashion. Our results suggest that the ubiquitin protein ligase function of Cbl-b is regulated by coordinated degradation of the Cbl-b protein along with its substrate. Furthermore, the data demonstrate that Cbl-b mediates degradation of multiple proteins in the EGFR-signaling complex.
Collapse
Affiliation(s)
- S A Ettenberg
- Genetics Department of the Medicine Branch and the Laboratory of Immune Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20889, USA
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Li XL, Hassel BA. Involvement of proteasomes in gene induction by interferon and double-stranded RNA. Cytokine 2001; 14:247-52. [PMID: 11444904 DOI: 10.1006/cyto.2001.0887] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytokine induced gene expression is mediated through the ligand-dependent activation of the janus kinase (jak)/signal transducer and activator of transcription (STAT) signal transduction pathway. The ubiquitin proteasome pathway functions in the controlled degradation of cellular proteins, and regulates cytokine signal transduction through the degradation of specific signaling components. Interferon (IFN) treatment induces genes that function in ubiquitin conjugation, suggesting a reciprocal regulation of proteasome activity and IFN action; however, a role for the proteasome in IFN-alpha-induced gene expression has not been examined. In this report, we find that proteasome inhibitors markedly reduce the induction of interferon-stimulated-gene 15 (ISG15), ISG43, and STAT1 by IFN-alpha and double-stranded RNA (dsRNA). The reduction in gene expression by proteasome inhibitors was dose-dependent, and was specific for ISGs. Neither STAT1 phosphorylation nor ISGF-3 activation was affected by proteasome inhibition at early times post-IFN treatment. Cycloheximide treatment diminished the effect of proteasome inhibitors on ISG induction, implicating an IFN/dsRNA-induced protein in this activity. These findings demonstrate that a functional proteasome is required for optimal ISG induction, and are consistent with a model in which IFN and dsRNA induce a proteasome-sensitive repressor of ISG expression.
Collapse
Affiliation(s)
- X L Li
- Greenebaum Cancer Center, The University of Maryland, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
94
|
Abstract
Cellular organization of the cytoskeleton, assembly of intracellular signaling complexes and movement of membrane receptors into supramolecular activation complexes (SMACs) are crucial prerequisites for lymphocyte activation and function. Full T-cell activation requires costimulatory signals in addition to antigen-mediated signals. Costimulatory signals facilitate T-cell activation by inducing SMAC formation, resulting in sustained signal transduction, cell-cycle progression and cytokine production. The guanine nucleotide exchange factor Vav1 and the Wiscott-Aldrich syndrome protein (WASP) regulate the actin cytoskeleton in T cells and also regulate SMAC formation. In mice lacking the E3 ubiquitin ligase Cbl-b, the Vav-WASP signaling pathway is active in the absence of costimulation resulting in deregulated cytoskeletal reorganization, enhanced priming and expansion of autoreactive T cells, and the development of autoimmunity. This review discusses the role of Cbl-b, Vav and WASP in the regulation of SMAC formation and the implications for the maintenance of tolerance and the development of autoimmunity.
Collapse
Affiliation(s)
- C Krawczyk
- Dept of Medical Biophysics, Amgen Institute/Ontario Cancer Institute, University of Toronto, 620 University Avenue, M5G 2C1, Toronto, Ontario, Canada
| | | |
Collapse
|
95
|
Abstract
Responses to extracellular stimuli are often transduced from cell-surface receptors to protein tyrosine kinases which, when activated, initiate the formation of protein complexes that transmit signals throughout the cell. A prominent component of these complexes is the product of the proto-oncogene c-Cbl, which specifically targets activated protein tyrosine kinases and regulates their signalling. How, then, does this multidomain protein shape the responses generated by these signalling complexes?
Collapse
Affiliation(s)
- C B Thien
- Department of Pathology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | | |
Collapse
|
96
|
Teckchandani AM, Feshchenko EA, Tsygankov AY. c-Cbl facilitates fibronectin matrix production by v-Abl-transformed NIH3T3 cells via activation of small GTPases. Oncogene 2001; 20:1739-55. [PMID: 11313921 DOI: 10.1038/sj.onc.1204246] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2000] [Revised: 01/04/2001] [Accepted: 01/09/2001] [Indexed: 11/09/2022]
Abstract
The protooncogenic protein c-Cbl has been shown to act as a multivalent adaptor and a negative regulator of protein tyrosine kinase-mediated signaling. Recent studies have implicated it in the regulation of cell adhesion-related events. We have previously shown that c-Cbl facilitates adhesion and spreading of v-Abl-transformed fibroblasts, and that these effects are dependent on its tyrosine phosphorylation. However, the mechanisms mediating effects of c-Cbl on fibroblast adhesion remain poorly understood. In this study we demonstrate that the tyrosine phosphorylation-dependent effect of c-Cbl on adhesion of v-Abl-transformed fibroblasts is primarily mediated by an increase in fibronectin matrix deposition by these cells. This increase in fibronectin matrix deposition and, hence, in cell adhesion is dependent on cytoskeletal rearrangements induced by RhoA, Rac1 and, possibly, Rap1 activation caused by c-Cbl. The observed activation of these GTPases is mediated by the recruitment of phosphatidylinositol-3' kinase, CrkL and Vav2 to the C-terminal tyrosine residues of c-Cbl. The results of this study also demonstrate that ubiquitination is essential for the observed effects of c-Cbl on fibronectin matrix production and cell adhesion.
Collapse
Affiliation(s)
- A M Teckchandani
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania, PA 19140, USA
| | | | | |
Collapse
|
97
|
Chernock RD, Cherla RP, Ganju RK. SHP2 and cbl participate in alpha-chemokine receptor CXCR4-mediated signaling pathways. Blood 2001; 97:608-15. [PMID: 11157475 DOI: 10.1182/blood.v97.3.608] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stromal cell-derived factor (SDF)-1alpha and its receptor, CXCR4, play an important role in cell migration, embryonic development, and human immunodeficiency virus infection. However, the cellular signaling pathways that mediate these processes are not fully elucidated. We and others have shown that the binding of SDF-1alpha to CXCR4 activates phosphatidylinositol-3 kinase (PI-3 kinase), p44/42 mitogen-associated protein kinase, and the transcription factor nuclear factor-kappaB, and it also enhances the tyrosine phosphorylation and association of proteins involved in the formation of focal adhesions. In this study, we examined the role of phosphatases in CXCR4-mediated signaling pathways. We observed significant inhibition of SDF-1alpha-induced migration by phosphatase inhibitors in CXCR4-transfected pre-B lymphoma L1.2 cells, Jurkat T cells, and peripheral blood lymphocytes. Further studies revealed that SDF-1alpha stimulation induced robust tyrosine phosphorylation in the SH2-containing phosphatase SHP2. SHP2 associated with the CXCR4 receptor and the signaling molecules SHIP, cbl, and fyn. Overexpression of wild-type SHP2 increased SDF-1alpha-induced chemotaxis. Enhanced activation of fyn and lyn kinases and the tyrosine phosphorylation of cbl were also observed. In addition, SDF-1alpha stimulation enhanced the association of cbl with PI-3 kinase, Crk-L, and 14-3-3beta proteins. Our results suggest that CXCR4-mediated signaling is regulated by SHP2 and cbl, which collectively participate in the formation of a multimeric signaling complex.
Collapse
MESH Headings
- 14-3-3 Proteins
- Adaptor Proteins, Signal Transducing
- Cells, Cultured
- Chemokine CXCL12
- Chemokines, CXC/pharmacology
- Chemotaxis, Leukocyte/drug effects
- Enzyme Inhibitors/pharmacology
- Humans
- Intracellular Signaling Peptides and Proteins
- Jurkat Cells
- Lymphocyte Activation
- Lymphocytes/drug effects
- Lymphocytes/metabolism
- Macromolecular Substances
- Nuclear Proteins/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases
- Phosphoprotein Phosphatases/antagonists & inhibitors
- Phosphoproteins/metabolism
- Phosphoric Monoester Hydrolases/metabolism
- Phosphotyrosine/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/metabolism
- Protein Tyrosine Phosphatases/physiology
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/physiology
- Proto-Oncogene Proteins c-cbl
- Proto-Oncogene Proteins c-fyn
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Signal Transduction
- Transfection
- Tyrosine 3-Monooxygenase/metabolism
- Ubiquitin-Protein Ligases
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- R D Chernock
- Divisions of Experimental Medicine and Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
98
|
Irvin BJ, Williams BL, Nilson AE, Maynor HO, Abraham RT. Pleiotropic contributions of phospholipase C-gamma1 (PLC-gamma1) to T-cell antigen receptor-mediated signaling: reconstitution studies of a PLC-gamma1-deficient Jurkat T-cell line. Mol Cell Biol 2000; 20:9149-61. [PMID: 11094067 PMCID: PMC102173 DOI: 10.1128/mcb.20.24.9149-9161.2000] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phospholipase C-gamma1 (PLC-gamma1) plays a crucial role in the coupling of T-cell antigen receptor (TCR) ligation to interleukin-2 (IL-2) gene expression in activated T lymphocytes. In this study, we have isolated and characterized two novel, PLC-gamma1-deficient sublines derived from the Jurkat T-leukemic cell line. The P98 subline displays a >90% reduction in PLC-gamma1 expression, while the J.gamma1 subline contains no detectable PLC-gamma1 protein. The lack of PLC-gamma1 expression in J.gamma1 cells caused profound defects in TCR-dependent Ca(2+) mobilization and NFAT activation. In contrast, both of these responses occurred at normal levels in PLC-gamma1-deficient P98 cells. Unexpectedly, the P98 cells displayed significant and selective defects in the activation of both the composite CD28 response element (RE/AP) and the full-length IL-2 promoter following costimulation with anti-TCR antibodies and phorbol ester. These transcriptional defects were reversed by transfection of P98 cells with a wild-type PLC-gamma1 expression vector but not by expression of mutated PLC-gamma1 constructs that lacked a functional, carboxyl-terminal SH2 [SH2(C)] domain or the major Tyr(783) phosphorylation site. On the other hand, the amino-terminal SH2 [SH2(N)] domain was not essential for reconstitution of RE/AP- or IL-2 promoter-dependent transcription but was required for the association of PLC-gamma1 with LAT, as well as the tyrosine phosphorylation of PLC-gamma1 itself, in activated P98 cells. These studies demonstrate that the PLC-gamma1 SH2(N) and SH2(C) domains play functionally distinct roles during TCR-mediated signaling and identify a non-Ca(2+)-related signaling function linked to the SH2(C) domain, which couples TCR plus phorbol ester-CD28 costimulation to the activation of the IL-2 promoter in T lymphocytes.
Collapse
Affiliation(s)
- B J Irvin
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
99
|
Sundvold V, Torgersen KM, Post NH, Marti F, King PD, Røttingen JA, Spurkland A, Lea T. T cell-specific adapter protein inhibits T cell activation by modulating Lck activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:2927-31. [PMID: 10975797 DOI: 10.4049/jimmunol.165.6.2927] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously reported the isolation of a cDNA encoding a T cell-specific adapter protein (TSAd). Its amino acid sequence contains an SH2 domain, tyrosines in protein binding motifs, and proline-rich regions. In this report we show that expression of TSAd is induced in normal peripheral blood T cells stimulated with anti-CD3 mAbs or anti-CD3 plus anti-CD28 mAbs. Overexpression of TSAd in Jurkat T cells interfered with TCR-mediated signaling by down-modulating anti-CD3/PMA-induced IL-2 promoter activity and anti-CD3 induced Ca2+ mobilization. The TCR-induced tyrosine phosphorylation of phospholipase C-gamma1, SH2-domain-containing leukocyte-specific phosphoprotein of 76kDa, and linker for activation of T cells was also reduced. Furthermore, TSAd inhibited Zap-70 recruitment to the CD3zeta-chains in a dose-dependent manner. Consistent with this, Lck kinase activity was reduced 3- to 4-fold in COS-7 cells transfected with both TSAd and Lck, indicating a regulatory effect of TSAd on Lck. In conclusion, our data strongly suggest an inhibitory role for TSAd in proximal T cell activation.
Collapse
Affiliation(s)
- V Sundvold
- Institute of Immunology, The National Hospital, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|