51
|
Akasaka Y, Ono I, Kamiya T, Ishikawa Y, Kinoshita T, Ishiguro S, Yokoo T, Imaizumi R, Inomata N, Fujita K, Akishima-Fukasawa Y, Uzuki M, Ito K, Ishii T. The mechanisms underlying fibroblast apoptosis regulated by growth factors during wound healing. J Pathol 2010; 221:285-99. [PMID: 20527022 DOI: 10.1002/path.2710] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
While investigating the mechanisms underlying cell death during wound healing processes, we uncovered the pro-apoptotic effects of basic fibroblast growth factor (bFGF) on granulation tissue fibroblasts following pretreatment with transforming growth factor (TGF)-beta1 in vitro. bFGF induced caspase-3 activation and apoptosis in TGF-beta1-pretreated granulation tissue-derived fibroblasts (GF-1) following bFGF treatment for 48 and 96 h. In contrast, fibroblasts that had been treated in the same manner and that originated from the uninjured dermis did not display apoptosis, indicating that the mechanisms underlying apoptosis events in fibroblasts that originate from normal dermal and wound tissues differ. In this process, we also found that bFGF inhibited Akt phosphorylation at serine 473 and induced a rapid loss of phosphorylation of focal adhesion kinase (FAK) at tyrosine 397 in pretreated GF-1 cells, an event that coincided with the dissociation of phosphorylated FAK from the focal adhesions. Therefore, inhibition of survival signals relayed via the disrupted focal adhesion structures and inactivated Akt following bFGF treatment may lead to apoptosis in GF-1 cells pretreated with TGF-beta1. Pretreatment of GF-1 with TGF-beta1 followed by the addition of bFGF resulted in significantly greater inhibition of phosphorylation of Akt and FAK compared to treatment with TGF-beta1 or bFGF alone. The combinatorial treatment also led to proteolysis of FAK and inhibition of FAK and Akt protein expression in GF-1 cells. These findings demonstrated a significant role for the two cytokines in apoptosis of granulation tissue fibroblasts during wound healing. In vivo studies also confirmed a marked decline in phosphorylation and protein expression of Akt and FAK in bFGF-injected skin wounds. These results led to the hypothesis that temporal activation of TGF-beta1 and bFGF at the injury site promotes apoptosis in granulation tissue fibroblasts, an event that is critical for the termination of proliferative granulation tissue formation.
Collapse
Affiliation(s)
- Yoshikiyo Akasaka
- Department of Pathology, School of Medicine, Toho University, 5-21-16 Omori-Nishi, Ohta-City, Tokyo, 143-8540, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Mesenchymal migration as a therapeutic target in glioblastoma. JOURNAL OF ONCOLOGY 2010; 2010:430142. [PMID: 20652056 PMCID: PMC2905941 DOI: 10.1155/2010/430142] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 04/28/2010] [Indexed: 12/29/2022]
Abstract
Extensive infiltration of the surrounding healthy brain tissue is a cardinal feature of glioblastomas, highly lethal brain tumors. Deep infiltration by the glioblastoma cells renders complete surgical excision difficult and contemporary adjuvant therapies have had little impact on long-term survival. Thus, deep infiltration and resistance to irradiation and chemotherapy remain a major cause of patient mortality. Modern therapies specifically targeted to this unique aspect of glioblastoma cell biology hold significant promise to substantially improve survival rates for glioblastoma patients. In the present paper, we focus on the role of adhesion signaling molecules and the actin cytoskeleton in the mesenchymal mode of motility that characterizes invading glioblastoma cells. We then review current approaches to targeting these elements of the glioblastoma cell migration machinery and discuss other aspects of cell migration that may improve the treatment of infiltrating glioblastoma.
Collapse
|
53
|
Pseudopodium-enriched atypical kinase 1 regulates the cytoskeleton and cancer progression [corrected]. Proc Natl Acad Sci U S A 2010; 107:10920-5. [PMID: 20534451 DOI: 10.1073/pnas.0914776107] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Regulation of the actin-myosin cytoskeleton plays a central role in cell migration and cancer progression. Here, we report the discovery of a cytoskeleton-associated kinase, pseudopodium-enriched atypical kinase 1 (PEAK1). PEAK1 is a 190-kDa nonreceptor tyrosine kinase that localizes to actin filaments and focal adhesions. PEAK1 undergoes Src-induced tyrosine phosphorylation, regulates the p130Cas-Crk-paxillin and Erk signaling pathways, and operates downstream of integrin and epidermal growth factor receptors (EGFR) to control cell spreading, migration, and proliferation. Perturbation of PEAK1 levels in cancer cells alters anchorage-independent growth and tumor progression in mice. Notably, primary and metastatic samples from colon cancer patients display amplified PEAK1 levels in 81% of the cases. Our findings indicate that PEAK1 is an important cytoskeletal regulatory kinase and possible target for anticancer therapy.
Collapse
|
54
|
Cabodi S, Tinnirello A, Bisaro B, Tornillo G, del Pilar Camacho-Leal M, Forni G, Cojoca R, Iezzi M, Amici A, Montani M, Eva A, Di Stefano P, Muthuswamy SK, Tarone G, Turco E, Defilippi P. p130Cas is an essential transducer element in ErbB2 transformation. FASEB J 2010; 24:3796-808. [PMID: 20505116 DOI: 10.1096/fj.10-157347] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The ErbB2 oncogene is often overexpressed in breast tumors and associated with poor clinical outcome. p130Cas represents a nodal scaffold protein regulating cell survival, migration, and proliferation in normal and pathological cells. The functional role of p130Cas in ErbB2-dependent breast tumorigenesis was assessed by its silencing in breast cancer cells derived from mouse mammary tumors overexpressing ErbB2 (N202-1A cells), and by its reexpression in ErbB2-transformed p130Cas-null mouse embryonic fibroblasts. We demonstrate that p130Cas is necessary for ErbB2-dependent foci formation, anchorage-independent growth, and in vivo growth of orthotopic N202-1A tumors. Moreover, intranipple injection of p130Cas-stabilized siRNAs in the mammary gland of Balbc-NeuT mice decreases the growth of spontaneous tumors. In ErbB2-transformed cells, p130Cas is a crucial component of a functional molecular complex consisting of ErbB2, c-Src, and Fak. In human mammary cells, MCF10A.B2, the concomitant activation of ErbB2, and p130Cas overexpression sustain and strengthen signaling, leading to Rac1 activation and MMP9 secretion, thus providing invasive properties. Consistently, p130Cas drives N202-1A cell in vivo lung metastases colonization. These results demonstrate that p130Cas is an essential transducer in ErbB2 transformation and highlight its potential use as a novel therapeutic target in ErbB2 positive human breast cancers.
Collapse
Affiliation(s)
- Sara Cabodi
- Molecular Biotechnology Center, University of Torino, Torino, Via Nizza 52, 10126 Torino, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Bach CTT, Schevzov G, Bryce NS, Gunning PW, O'Neill GM. Tropomyosin isoform modulation of focal adhesion structure and cell migration. Cell Adh Migr 2010; 4:226-34. [PMID: 20305380 DOI: 10.4161/cam.4.2.10888] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Orderly cell migration is essential for embryonic development, efficient wound healing and a functioning immune system and the dysregulation of this process leads to a number of pathologies. The speed and direction of cell migration is critically dependent on the structural organization of focal adhesions in the cell. While it is well established that contractile forces derived from the acto-myosin filaments control the structure and growth of focal adhesions, how this may be modulated to give different outcomes for speed and persistence is not well understood. The tropomyosin family of actin-associating proteins are emerging as important modulators of the contractile nature of associated actin filaments. The multiple non-muscle tropomyosin isoforms are differentially expressed between tissues and across development and are thought to be major regulators of actin filament functional specialization. In the present study we have investigated the effects of two splice variant isoforms from the same alpha-tropomyosin gene, TmBr1 and TmBr3, on focal adhesion structure and parameters of cell migration. These isoforms are normally switched on in neuronal cells during differentiation and we find that exogenous expression of the two isoforms in undifferentiated neuronal cells has discrete effects on cell migration parameters. While both isoforms cause reduced focal adhesion size and cell migration speed, they differentially effect actin filament phenotypes and migration persistence. Our data suggests that differential expression of tropomyosin isoforms may coordinate acto-myosin contractility and focal adhesion structure to modulate cell speed and persistence.
Collapse
Affiliation(s)
- Cuc T T Bach
- Focal Adhesion Biology, Kids Research Institute, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | | | | | | | | |
Collapse
|
56
|
Park MS, Kim YH, Lee JW. FAK mediates signal crosstalk between type II collagen and TGF-beta 1 cascades in chondrocytic cells. Matrix Biol 2010; 29:135-42. [DOI: 10.1016/j.matbio.2009.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 10/04/2009] [Accepted: 10/08/2009] [Indexed: 12/12/2022]
|
57
|
Phosphoproteomic characterization of PYK2 signaling pathways involved in osteogenesis. J Proteomics 2010; 73:1306-20. [PMID: 20116462 DOI: 10.1016/j.jprot.2010.01.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 12/30/2009] [Accepted: 01/22/2010] [Indexed: 12/28/2022]
Abstract
The PYK2 tyrosine kinase is a negative regulator of bone formation, but aside from the requirement for PYK2 kinase activity there has been little progress toward understanding of the molecular mechanism involved in this function. To gain insight into the signaling pathways modulated by PYK2 we sought to identify PYK2 substrates. Challenges inherent to a quantitative phosphoproteomic analysis for non-receptor tyrosine kinases were overcome by employing an inducible PYK2 overexpression system in NIH3T3 cells in combination with a selective PYK2 inhibitor. The identification of a number of known PYK2 substrates and interacting partners validated the methodology. Results of the inducible cell system were extended to a cell model of osteogenesis, examining the effect of the PYK2 inhibitor on the phosphorylation state of targets identified in the phosphoproteomic study. Consistent with phosphoproteomic analysis, increased osteogenesis associated with a selective PYK2 inhibitor was accompanied by reduced phosphorylation of paxillin, Gab1 and p130(Cas), along with reduction of phosphorylation levels of the Met activation loop. These results further confirmed the utility of the methodology and point to a previously unknown bi-directional activation pathway between PYK2 and Met.
Collapse
|
58
|
Cunningham-Edmondson AC, Hanks SK. p130Cas substrate domain signaling promotes migration, invasion, and survival of estrogen receptor-negative breast cancer cells. BREAST CANCER-TARGETS AND THERAPY 2009; 1:39-52. [PMID: 24367162 DOI: 10.2147/bctt.s6255] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Elevated Src tyrosine kinase activity is commonly observed in breast cancer and likely contributes to neoplasia and malignancy. p130Cas ("Crk-associated substrate") is a major Src substrate found at the sites where integrins mediate cell adhesion to the extracellular matrix. Src phosphorylates multiple tyrosines in the p130Cas "substrate domain" (SD) and this signaling event has been implicated in the promotion of cell motility, primarily from studies on fibroblasts. In breast cancer, studies on p130Cas have focused on its role in conferring antiestrogen resistance to cells that express the estrogen receptor (ER+). However, little is known regarding the role of p130Cas in the more aggressive estrogen receptor negative (ER-) breast cancers for which there is a need for development of effective targeted therapies. We found high levels of p130Cas SD tyrosine phosphorylation to be a common characteristic of ER- breast cancer cell lines, with particularly high levels observed for the BT-549 cell line. Using RNA interference to knock down p130Cas expression in BT-549 cells, combined with rescue by WT p130Cas versus a signaling-deficient control, we provide evidence that p130Cas SD tyrosine phosphorylation is an important signaling event in the migration, invasion, proliferation, and survival of this ER-breast cancer cell line.
Collapse
Affiliation(s)
- Anna C Cunningham-Edmondson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA ; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, GA, USA
| | - Steven K Hanks
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
59
|
Corsi JM, Houbron C, Billuart P, Brunet I, Bouvrée K, Eichmann A, Girault JA, Enslen H. Autophosphorylation-independent and -dependent functions of focal adhesion kinase during development. J Biol Chem 2009; 284:34769-76. [PMID: 19776009 DOI: 10.1074/jbc.m109.067280] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Focal adhesion kinase (FAK) regulates numerous cellular functions and is critical for processes ranging from embryo development to cancer progression. Although autophosphorylation on Tyr-397 appears required for FAK functions in vitro, its role in vivo has not been established. We addressed this question using a mutant mouse (fakDelta) deleted of exon 15, which encodes Tyr-397. The resulting mutant protein FAKDelta is an active kinase expressed at normal levels. Our results demonstrate that the requirement for FAK autophosphorylation varies during development. FAK(Delta/Delta) embryos developed normally up to embryonic day (E) 12.5, contrasting with the lethality at E8.5 of FAK-null embryos. Thus, autophosphorylation on Tyr-397 is not required for FAK to achieve its functions until late mid-gestation. However, FAK(Delta/Delta) embryos displayed hemorrhages, edema, delayed artery formation, vascular remodeling defects, multiple organ abnormalities, and overall developmental retardation at E13.5-14.5, and died thereafter demonstrating that FAK autophosphorylation is also necessary for normal development. Fibroblasts derived from mutant embryos had a normal stellate morphology and expression of focal adhesion proteins, Src family members, p53, and Pyk2. In contrast, in FAK(Delta/Delta) fibroblasts and endothelial cells, spreading and lamellipodia formation were altered with an increased size and number of focal adhesions, enriched in FAKDelta. FAK mutation also decreased fibroblast proliferation. These results show that the physiological functions of FAK in vivo are achieved through both autophosphorylation-independent and autophosphorylation-dependent mechanisms.
Collapse
|
60
|
Patwardhan P, Shiba K, Gordon C, Craddock BP, Tamiko M, Miller WT. Synthesis of functional signaling domains by combinatorial polymerization of phosphorylation motifs. ACS Chem Biol 2009; 4:751-8. [PMID: 19627099 DOI: 10.1021/cb900059f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The adaptor protein Cas contains a core substrate domain with multiple YXXP motifs that are phosphorylated by Src and other tyrosine kinases. Here, we used a synthetic strategy to determine the importance of the arrangement, spacing, and identity of the YXXP motifs. By polymerizing short DNA sequences encoding two phosphorylation motifs, we created a panel of Cas mutants in which the entire substrate domain was replaced by synthetic domains containing random numbers and arrangements of the motifs. Most of these synthetic Cas variants were recognized and phosphorylated by Src in vitro and in intact mammalian cells. The random polymer mutants also restored migration activity to Cas knockout cells; even artificial proteins containing a single motif retained some biological function. Our results suggest that the arrangement of Cas motifs is not critical for signaling. This method could be used to identify the minimal functional units in other signaling proteins.
Collapse
Affiliation(s)
- Parag Patwardhan
- Department of Physiology and Biophysics, School of Medicine, State University of New York at Stony Brook, Stony Brook, New York 11794
| | - Kiyotaka Shiba
- Department of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Chris Gordon
- Department of Physiology and Biophysics, School of Medicine, State University of New York at Stony Brook, Stony Brook, New York 11794
| | - Barbara P. Craddock
- Department of Physiology and Biophysics, School of Medicine, State University of New York at Stony Brook, Stony Brook, New York 11794
| | - Minamisawa Tamiko
- Department of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - W. Todd Miller
- Department of Physiology and Biophysics, School of Medicine, State University of New York at Stony Brook, Stony Brook, New York 11794
| |
Collapse
|
61
|
Abstract
Vascular smooth muscle is a key effector in the wall of blood vessels during the pathogenesis of hypertension. Various factors directly elicit smooth muscle cell contraction, migration, growth, and hypertrophy, which lead to the progression of hypertension. Crk-associated substrate (CAS), the first discovered member of the adapter protein CAS family, has recently emerged as a critical cellular component that regulates smooth muscle functions. In this review, the molecular structure and protein interactions of the CAS family members are summarized. Evidence for the role of CAS in the regulation of vascular smooth muscle contractility, cell migration, hypertrophy, and growth is presented. Regulation of CAS by novel tyrosine kinases/phosphatases and unique downstream signaling partners of CAS are also discussed. These new findings establish the important role for CAS in regulating vascular smooth muscle functions. The CAS-associated processes may be new biological targets for the development of new treatment of cardiovascular diseases such as hypertension.
Collapse
Affiliation(s)
- Dale D Tang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208, USA.
| |
Collapse
|
62
|
Makkinje A, Near RI, Infusini G, Vanden Borre P, Bloom A, Cai D, Costello CE, Lerner A. AND-34/BCAR3 regulates adhesion-dependent p130Cas serine phosphorylation and breast cancer cell growth pattern. Cell Signal 2009; 21:1423-35. [PMID: 19454314 DOI: 10.1016/j.cellsig.2009.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 05/04/2009] [Indexed: 12/27/2022]
Abstract
NSP protein family members associate with p130Cas, a focal adhesion adapter protein best known as a Src substrate that integrates adhesion-related signaling. Over-expression of AND-34/BCAR3/NSP2 (BCAR3), but not NSP1 or NSP3, induces anti-estrogen resistance in human breast cancer cell lines. BCAR3 over-expression in epithelial MCF-7 cells augments levels of a phosphorylated p130Cas species that migrates more slowly on SDS-PAGE while NSP1 and NSP3 induce modest or no phosphorylation, respectively. Conversely, reduction in BCAR3 expression in mesenchymal MDA-231 cells by inducible shRNA results in loss of such p130Cas phosphorylation. Replacement of NSP3's serine/proline-rich domain with that of AND-34/BCAR3 instills the ability to induce p130Cas phosphorylation. Phospho-amino acid analysis demonstrates that BCAR3 induces p130Cas serine phosphorylation. Mass spectrometry identified phosphorylation at p130Cas serines 139, 437 and 639. p130Cas serine phosphorylation accumulates for several hours after adhesion of MDA-231 cells to fibronectin and is dependent upon BCAR3 expression. BCAR3 knockdown alters p130Cas localization and converts MDA-231 growth to an epithelioid pattern characterized by striking cohesiveness and lack of cellular projections at colony borders. These studies demonstrate that BCAR3 regulates p130Cas serine phosphorylation that is adhesion-dependent, temporally distinct from previously well-characterized rapid Fak and Src kinase-mediated p130Cas tyrosine phosphorylation and that correlates with invasive phenotype.
Collapse
Affiliation(s)
- Anthony Makkinje
- Department of Medicine, Section of Hematology and Oncology, Boston Medical Center, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
63
|
The substrate domain of BCAR1 is essential for anti-estrogen-resistant proliferation of human breast cancer cells. Breast Cancer Res Treat 2009; 120:401-8. [PMID: 19412734 DOI: 10.1007/s10549-009-0403-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 04/09/2009] [Indexed: 10/20/2022]
Abstract
To unravel the mechanisms underlying failure of endocrine therapy of breast cancer, we have previously executed a functional genetic screen and identified the adaptor protein BCAR1 to be causative for tamoxifen resistance. As a consequence of the manifold of interactions with other proteins, we characterized the contribution of individual protein domains of BCAR1 to anti-estrogen-resistant proliferation of human breast cancer cells. We took advantage of the observation that the closely related family member HEF1 was unable to support long-term anti-estrogen-resistant cell proliferation. Chimerical proteins containing defined domains of BCAR1 and HEF1 were evaluated for anti-estrogen-resistant growth. Exchange of the SH3 and C-terminal domains did not modify the capacity to support cell proliferation. Full support of anti-estrogen resistant proliferation was observed for chimerical molecules containing the central part of BCAR1. The bi-partite SRC-binding site or the Serine-rich domain did not explain the differential capacity of BCAR1. These findings indicate that the differences between BCAR1 and HEF1 with respect to support of anti-estrogen resistance reside in the substrate domain which contains multiple sites for tyrosine phosphorylation. The crucial interactions required for anti-estrogen resistance occur within the substrate domain of BCAR1. Further deciphering of these interactions may resolve the growth regulatory mechanism and provide an explanation for the observation that primary tumors with high levels of BCAR1 are likely to fail on tamoxifen therapy. This information may also help to devise alternative personalized treatment strategies with improved outcome for breast cancer patients.
Collapse
|
64
|
Near RI, Smith RS, Toselli PA, Freddo TF, Bloom AB, Vanden Borre P, Seldin DC, Lerner A. Loss of AND-34/BCAR3 expression in mice results in rupture of the adult lens. Mol Vis 2009; 15:685-99. [PMID: 19365570 PMCID: PMC2666772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 03/30/2009] [Indexed: 11/21/2022] Open
Abstract
PURPOSE AND-34/BCAR3 (Breast Cancer Anti-Estrogen Resistance 3) associates with the focal adhesion adaptor protein, p130CAS/BCAR1. Expression of AND-34 regulates epithelial cell growth pattern, motility, and growth factor dependence. We sought to establish the effects of the loss of AND-34 expression in a mammalian organism. METHODS AND-34(-/-) mice were generated by homologous recombination. Histopathology, in situ hybridization, and western blotting were performed on murine tissues. RESULTS Western analyses confirmed total loss of expression in AND-34(-/-) splenic lymphocytes. Mice lacking AND-34 are fertile and have normal longevity. While AND-34 is widely expressed in wild type mice, histologic analysis of multiple organs in AND-34(-/-) mice is unremarkable and analyses of lymphocyte development show no overt changes. A small percentage of AND-34(-/-) mice show distinctive small white eye lesions resulting from the migration of ruptured cortical lens tissue into the anterior chamber. Following initial vacuolization and liquefaction of the lens cortex first observed at postnatal day three, posterior lens rupture occurs in all AND-34(-/-) mice, beginning as early as three weeks and seen in all mice at three months. Western blot analysis and in situ hybridization confirmed the presence of AND-34 RNA and protein in lens epithelial cells, particularly at the lens equator. Prior data link AND-34 expression to the activation of Akt signaling. While Akt Ser 473 phosphorylation was readily detectable in AND-34(+/+) lens epithelial cells, it was markedly reduced in the AND-34(-/-) lens epithelium. Basal levels of p130Cas phosphorylation were higher in AND-34(+/+) than in AND-34(-/-) lens epithelium. CONCLUSIONS These results demonstrate the loss of AND-34 dysregulates focal adhesion complex signaling in lens epithelial cells and suggest that AND-34-mediated signaling is required for maintenance of the structural integrity of the adult ocular lens.
Collapse
Affiliation(s)
- Richard I. Near
- Department of Medicine, Section of Hematology and Oncology, Boston Medical Center, Boston, MA
| | | | - Paul A. Toselli
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | | | - Alexander B. Bloom
- Department of Medicine, Section of Hematology and Oncology, Boston Medical Center, Boston, MA
| | - Pierre Vanden Borre
- Department of Medicine, Section of Hematology and Oncology, Boston Medical Center, Boston, MA
| | - David C. Seldin
- Department of Medicine, Section of Hematology and Oncology, Boston Medical Center, Boston, MA
| | - Adam Lerner
- Department of Medicine, Section of Hematology and Oncology, Boston Medical Center, Boston, MA,Department of Pathology, Boston University School of Medicine, Boston, MA
| |
Collapse
|
65
|
Rufanova VA, Alexanian A, Wakatsuki T, Lerner A, Sorokin A. Pyk2 mediates endothelin-1 signaling via p130Cas/BCAR3 cascade and regulates human glomerular mesangial cell adhesion and spreading. J Cell Physiol 2009; 219:45-56. [PMID: 19086031 PMCID: PMC2871163 DOI: 10.1002/jcp.21649] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Calcium-regulated non-receptor proline-rich tyrosine kinase 2 (Pyk2) is a critical mediator of endothelin-1 (ET-1) signaling in human glomerular mesangial cells (GMC). We aimed to identify which small G-protein is acting downstream of Pyk2. Dominant interfering Pyk2 construct, termed calcium regulated non kinase (CRNK) or green fluorescent protein (control) were expressed in GMC using adenovirus-mediated gene transfer. ET-1 stimulation resulted in a significant increase of Pyk2 phosphorylation accompanied by GTP-loading of Rap1 and RhoA. CRNK expression inhibited ET-1-induced autophosphorylation of endogenous Pyk2 and diminished Rap1, but not RhoA, activation. The mechanism linking Pyk2 and Rap1 included (1) increased autophosphorylation of Pyk2 associated with p130Cas, (2) augmented p130Cas Y165 and Y249 phosphorylation, and (3) enhanced p130Cas-BCAR3 complex formation. CRNK expression prevented p130Cas phosphorylation and attenuated p130Cas association with BCAR3. Downregulation of endogenous BCAR3 protein expression using an siRNA technique led to a significant decrease in Rap1 activation in response to ET-1. We observed that endogenous Pyk2 was important for GMC adhesion and spreading. Our data suggest that ET-1 stimulated the GTPase Rap1 (but neither RhoA nor Ras) by a mechanism involving Pyk2 activation and recruitment of the p130Cas/BCAR3 complex in GMC.
Collapse
Affiliation(s)
- Victoriya A. Rufanova
- Department of Medicine, Division of Nephrology, Kidney Disease Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Anna Alexanian
- Department of Medicine, Division of Nephrology, Kidney Disease Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Tetsuro Wakatsuki
- Bioengineering and Biotechnology Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Adam Lerner
- Department of Medicine, Section of Hematology and Oncology, Boston Medical Center, and Department of Pathology, Boston University School of Medicine, Boston, Massachusetts
| | - Andrey Sorokin
- Department of Medicine, Division of Nephrology, Kidney Disease Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
66
|
Park AYJ, Shen TL, Chien S, Guan JL. Role of focal adhesion kinase Ser-732 phosphorylation in centrosome function during mitosis. J Biol Chem 2009; 284:9418-25. [PMID: 19201755 DOI: 10.1074/jbc.m809040200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Focal adhesion kinase (FAK) is the major cytoplasmic tyrosine kinase in focal adhesions and a critical mediator of integrin signaling in a variety of cells, including endothelial cells (ECs). Here we describe a new function for FAK in the regulation of centrosome functions in a Ser-732 phosphorylation-dependent manner during mitosis. Deletion of FAK in primary ECs causes increases in centrosome numbers, multipolar and disorganized spindles, and unaligned chromosomes during mitosis. Re-expression of wild-type FAK, but not S732A mutant, rescued these mitotic defects, suggesting a role for Ser-732 phosphorylation in the regulation of centrosomal functions. Consistent with this possibility, Ser-732-phosphorylated FAK was found to co-localize in centrosomes in mitotic cells. FAK also associated with cytoplasmic dynein in a Ser-732 phosphorylation-dependent manner. Further analysis in FAK-null primary ECs showed that S732A mutant could rescue EC migration but not proliferation or tubulogenesis in vitro. Last, we showed that deletion of FAK in ECs reduced tumor angiogenesis in vivo, which could be restored by re-expression of wild-type FAK but not S732A mutant. Together, these studies demonstrated a novel role for Ser-732 phosphorylation of FAK in the regulation of centrosome function during mitosis, which may contribute to EC proliferation and angiogenesis.
Collapse
Affiliation(s)
- Ann Y J Park
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
67
|
Sachdev S, Bu Y, Gelman IH. Paxillin-Y118 phosphorylation contributes to the control of Src-induced anchorage-independent growth by FAK and adhesion. BMC Cancer 2009; 9:12. [PMID: 19138410 PMCID: PMC2651180 DOI: 10.1186/1471-2407-9-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 01/12/2009] [Indexed: 01/10/2023] Open
Abstract
Background Focal adhesion kinase (FAK) and Src are protein tyrosine kinases that physically and functionally interact to facilitate cancer progression by regulating oncogenic processes such as cell motility, survival, proliferation, invasiveness, and angiogenesis. Method To understand how FAK affects oncogenesis through the phosphorylation of cellular substrates of Src, we analyzed the phosphorylation profile of a panel of Src substrates in parental and v-Src-expressing FAK+/+ and FAK-/- mouse embryo fibroblasts, under conditions of anchorage-dependent (adherent) and -independent (suspension) growth. Results Total Src-induced cellular tyrosine phosphorylation as well as the number of phosphotyrosyl substrates was higher in suspension versus adherent cultures. Although the total level of Src-induced cellular phosphorylation was similar in FAK+/+ and FAK-/- backgrounds, the phosphorylation of some substrates was influenced by FAK depending on adherence state. Specifically, in the absence of FAK, Src induced higher phosphorylation of p190RhoGAP, paxillin (poY118) and Crk irrespective of adhesion state, PKC-δ (poY311), connexin-43 (poY265) and Sam68 only under adherent conditions, and p56Dok-2 (poY351) and p120catenin (poY228) only under suspension conditions. In contrast, FAK enhanced the Src-induced phosphorylation of vinculin (poY100 and poY1065) and p130CAS (poY410) irrespective of adherence state, p56Dok-2 (poY351) and p120catenin (poY228) only under adherent conditions, and connexin-43 (poY265), cortactin (poY421) and paxillin (poY31) only under suspension conditions. The Src-induced phosphorylation of Eps8, PLC-γ1 and Shc (poY239/poY240) were not affected by either FAK or adherence status. The enhanced anchorage-independent growth of FAK-/-[v-Src] cells was selectively decreased by expression of paxillinY118F, but not by WT-paxillin, p120cateninY228F or ShcY239/240F, identifying for the first time a role for paxillinpoY118 in Src-induced anchorage-independent growth. Knockdown of FAK by siRNA in the human colon cancer lines HT-25 and RKO, resulted in increased paxillinpoY118 levels under suspension conditions as well as increased anchorage-independent growth, supporting the notion that FAK attenuates anchorage-independent growth by suppressing adhesion-dependent phosphorylation of paxillinY118. Conclusion These data suggest that phosphorylation of Src substrates is a dynamic process, influenced temporally and spatially by factors such as FAK and adhesion.
Collapse
Affiliation(s)
- Sanjay Sachdev
- Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | | | | |
Collapse
|
68
|
Tropomyosin isoform expression regulates the transition of adhesions to determine cell speed and direction. Mol Cell Biol 2009; 29:1506-14. [PMID: 19124607 DOI: 10.1128/mcb.00857-08] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The balance of transition between distinct adhesion types contributes to the regulation of mesenchymal cell migration, and the characteristic association of adhesions with actin filaments led us to question the role of actin filament-associating proteins in the transition between adhesive states. Tropomyosin isoform association with actin filaments imparts distinct filament structures, and we have thus investigated the role for tropomyosins in determining the formation of distinct adhesion structures. Using combinations of overexpression, knockdown, and knockout approaches, we establish that Tm5NM1 preferentially stabilizes focal adhesions and drives the transition to fibrillar adhesions via stabilization of actin filaments. Moreover, our data suggest that the expression of Tm5NM1 is a critical determinant of paxillin phosphorylation, a signaling event that is necessary for focal adhesion disassembly. Thus, we propose that Tm5NM1 can regulate the feedback loop between focal adhesion disassembly and focal complex formation at the leading edge that is required for productive and directed cell movement.
Collapse
|
69
|
Genua M, Pandini G, Cassarino MF, Messina RL, Frasca F. c-Abl and insulin receptor signalling. VITAMINS AND HORMONES 2009; 80:77-105. [PMID: 19251035 DOI: 10.1016/s0083-6729(08)00604-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Insulin Receptor (IR) and IGF-I receptor (IGF-IR) are homolog but display distinct functions: IR is mainly metabolic, while IGF-IR is mitogenic. However, in some conditions like foetal growth, cancer and diabetes, IR may display some non-metabolic effects like proliferation and migration. The molecular mechanisms underlying this 'functional switch of IR' have been attributed to several factors including overexpression of ligands and receptors, predominant IR isoform expression, preferential recruitment of intracellular substrates. Here, we report that c-Abl, a cytoplasmic tyrosine kinase regulating several signal transduction pathways, is involved in this functional switch of IR. Indeed, c-Abl tyrosine kinase is involved in IR signalling as it shares with IR some substrates like Tub and SORBS1 and is activated upon insulin stimulation. Inhibition of c-Abl tyrosine kinase by STI571 attenuates the effect of insulin on Akt/GSK-3beta phosphorylation and glycogen synthesis, and at the same time, it enhances the effect of insulin on ERK activation, cell proliferation and migration. This effect of STI571 is specific to c-Abl inhibition, because it does not occur in Abl-null cells and is restored in c-Abl-reconstituted cells. Numerous evidences suggest that focal adhesion kinase (FAK) is involved in mediating this c-Abl effect. First, c-Abl tyrosine kinase activation is concomitant with FAK dephosphorylation in response to insulin, whereas c-Abl inhibition is accompanied by FAK phosphorylation in response to insulin, a response similar to that observed with IGF-I. Second, the c-Abl effects on insulin signalling are not observed in cells devoid of FAK (FAK(-/-) cells). Taken together these results suggest that c-Abl activation by insulin, via a modification of FAK response, may play an important role in directing mitogenic versus metabolic insulin receptor signalling.
Collapse
Affiliation(s)
- Marco Genua
- Department of Internal Medicine, University of Catania, Catania, Italy
| | | | | | | | | |
Collapse
|
70
|
Sharma A, Mayer BJ. Phosphorylation of p130Cas initiates Rac activation and membrane ruffling. BMC Cell Biol 2008; 9:50. [PMID: 18793427 PMCID: PMC2553404 DOI: 10.1186/1471-2121-9-50] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 09/15/2008] [Indexed: 12/27/2022] Open
Abstract
Background Non-receptor tyrosine kinases (NTKs) regulate physiological processes such as cell migration, differentiation, proliferation, and survival by interacting with and phosphorylating a large number of substrates simultaneously. This makes it difficult to attribute a particular biological effect to the phosphorylation of a particular substrate. We developed the Functional Interaction Trap (FIT) method to phosphorylate specifically a single substrate of choice in living cells, thereby allowing the biological effect(s) of that phosphorylation to be assessed. In this study we have used FIT to investigate the effects of specific phosphorylation of p130Cas, a protein implicated in cell migration. We have also used this approach to address a controversy regarding whether it is Src family kinases or focal adhesion kinase (FAK) that phosphorylates p130Cas in the trimolecular Src-FAK-p130Cas complex. Results We show here that SYF cells (mouse fibroblasts lacking the NTKs Src, Yes and Fyn) exhibit a low level of basal tyrosine phosphorylation at focal adhesions. FIT-mediated tyrosine phosphorylation of NTK substrates p130Cas, paxillin and FAK and cortactin was observed at focal adhesions, while FIT-mediated phosphorylation of cortactin was also seen at the cell periphery. Phosphorylation of p130Cas in SYF cells led to activation of Rac1 and increased membrane ruffling and lamellipodium formation, events associated with cell migration. We also found that the kinase activity of Src and not FAK is essential for phosphorylation of p130Cas when the three proteins exist as a complex in focal adhesions. Conclusion These results demonstrate that tyrosine phosphorylation of p130Cas is sufficient for its localization to focal adhesions and for activation of downstream signaling events associated with cell migration. FIT provides a valuable tool to evaluate the contribution of individual components of the response to signals with multiple outputs, such as activation of NTKs.
Collapse
Affiliation(s)
- Alok Sharma
- Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences, 1260 Elm Street, Manchester, NH 03101, USA.
| | | |
Collapse
|
71
|
Parsons JT, Slack-Davis J, Tilghman R, Roberts WG. Focal adhesion kinase: targeting adhesion signaling pathways for therapeutic intervention. Clin Cancer Res 2008; 14:627-32. [PMID: 18245520 DOI: 10.1158/1078-0432.ccr-07-2220] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The tumor microenvironment plays a central role in cancer progression and metastasis. Within this environment, cancer cells respond to a host of signals including growth factors and chemotactic factors, as well as signals from adjacent cells, cells in the surrounding stroma, and signals from the extracellular matrix. Targeting the pathways that mediate many of these signals has been a major goal in the effort to develop therapeutics.
Collapse
Affiliation(s)
- J Thomas Parsons
- Department of Microbiology and Cancer Center, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
72
|
Hayashida T, Wu MH, Pierce A, Poncelet AC, Varga J, Schnaper HW. MAP-kinase activity necessary for TGFbeta1-stimulated mesangial cell type I collagen expression requires adhesion-dependent phosphorylation of FAK tyrosine 397. J Cell Sci 2008; 120:4230-40. [PMID: 18032789 DOI: 10.1242/jcs.03492] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The signals mediating transforming growth factor beta (TGFbeta)-stimulated kidney fibrogenesis are poorly understood. We previously reported TGFbeta-stimulated, Smad-mediated collagen production by human kidney mesangial cells, and that ERK MAP kinase activity optimizes collagen expression and enhances phosphorylation of the Smad3 linker region. Furthermore, we showed that disrupting cytoskeletal integrity decreases type I collagen production. Focal adhesion kinase (FAK, PTK2) activity could integrate these findings. Adhesion-dependent FAK Y397 phosphorylation was detected basally, whereas FAK Y925 phosphorylation was TGFbeta1-dependent. By immunocytochemistry, TGFbeta1 stimulated the merging of phosphorylated FAK with the ends of thickening stress fibers. Cells cultured on poly-L-lysine (pLL) to promote integrin-independent attachment spread less than those on control substrate and failed to demonstrate focal adhesion (FA) engagement with F-actin. FAK Y397 phosphorylation and ERK activity were also decreased under these conditions. In cells with decreased FAK Y397 phosphorylation from either plating on pLL or overexpressing a FAK Y397F point mutant, serine phosphorylation of the Smad linker region, but not of the C-terminus, was reduced. Y397F and Y925F FAK point mutants inhibited TGFbeta-induced Elk-Gal activity, but only the Y397F mutant inhibited TGFbeta-stimulated collagen-promoter activity. The inhibition by the Y397F mutant or by culture on pLL was prevented by co-transfection of constitutively active ERK MAP kinase kinase (MEK), suggesting that FAK Y397 phosphorylation promotes collagen expression via ERK MAP kinase activity. Finally, Y397 FAK phosphorylation, and both C-terminal and linker-region Smad3 phosphorylation were detected in murine TGFbeta-dependent kidney fibrosis. Together, these data demonstrate adhesion-dependent FAK phosphorylation promoting TGFbeta-induced responses to regulate collagen production.
Collapse
Affiliation(s)
- Tomoko Hayashida
- Division of Kidney Diseases, Department of Pediatrics, The Freinberg School Of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | | | | | |
Collapse
|
73
|
Canel M, Secades P, Garzón-Arango M, Allonca E, Suarez C, Serrels A, Frame M, Brunton V, Chiara MD. Involvement of focal adhesion kinase in cellular invasion of head and neck squamous cell carcinomas via regulation of MMP-2 expression. Br J Cancer 2008; 98:1274-84. [PMID: 18349846 PMCID: PMC2359633 DOI: 10.1038/sj.bjc.6604286] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Focal adhesion kinase (FAK) is considered intimately involved in cancer progression. Our previous research has demonstrated that overexpression of FAK is an early and frequent event in squamous cell carcinomas of the supraglottic larynx, and it is associated with the presence of metastases in cervical lymph nodes. The purpose of this study was to examine the functional role of FAK in the progression of head and neck squamous cell carcinomas (HNSCC). To this end, expression of FAK-related nonkinase (FRNK) or small interfering RNA (siRNA) against FAK was used to disrupt the FAK-induced signal transduction pathways in the HNSCC-derived SCC40 and SCC38 cell lines. Similar phenotypic effects were observed with the two methodological approaches in both cell lines. Decreased cell attachment, motility and invasion were induced by FRNK and FAK siRNA, whereas cell proliferation was not impaired. In addition, increased cell invasion was observed upon FAK overexpression in SCC cells. FRNK expression resulted in a downregulation of MMP-2 and MMP-9 expression. Interestingly, MMP-2 overexpression in FRNK-expressing cells rescued FRNK inhibition of cell invasion. This is the first demonstration of a direct rescue of impaired cell invasion by the re-expression of MMP-2 in a tumour cell type with decreased expression of functional FAK. Collectively, these data reported here support the conclusion that FAK enhances invasion of HNSCC by promoting both increased cell motility and MMP-2 production, thus providing new insights into possible therapeutic intervention strategies.
Collapse
Affiliation(s)
- M Canel
- Servicio de Otorrinolaringología, Hospital Universitario Central de Asturias, Asturias, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Tilghman RW, Parsons JT. Focal adhesion kinase as a regulator of cell tension in the progression of cancer. Semin Cancer Biol 2008; 18:45-52. [PMID: 17928235 PMCID: PMC2267763 DOI: 10.1016/j.semcancer.2007.08.002] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 08/28/2007] [Indexed: 01/13/2023]
Abstract
Growing evidence indicates that critical steps in cancer progression such as cell adhesion, migration, and cell cycle progression are regulated by the composition and organization of the microenvironment. The adhesion of cancer cells to components of the microenvironment and the forces transmitted to the cells via the actinomyosin network and the signaling complexes organized within focal adhesions allow cancer cells to sense the local topography of the extracellular matrix and respond efficiently to proximal growth and migration promoting cues. Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase that is over expressed in a variety of cancers and plays an important role in cell adhesion, migration, and anchorage-dependent growth. In this review, we summarize evidence which implicate FAK in the ability of cells to sense and respond to local forces from the microenvironment through the regulation of adhesion dynamics and actinomyosin contractility, and we discuss the potential roles of FAK as a mechanosensor in the progression of cancer.
Collapse
Affiliation(s)
- Robert W Tilghman
- Department of Microbiology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | |
Collapse
|
75
|
Siesser PMF, Meenderink LM, Ryzhova L, Michael KE, Dumbauld DW, García AJ, Kaverina I, Hanks SK. A FAK/Src chimera with gain-of-function properties promotes formation of large peripheral adhesions associated with dynamic actin assembly. CELL MOTILITY AND THE CYTOSKELETON 2008; 65:25-39. [PMID: 17922492 PMCID: PMC2387247 DOI: 10.1002/cm.20241] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Formation of a complex between the tyrosine kinases FAK and Src is a key integrin-mediated signaling event implicated in cell motility, survival, and proliferation. Past studies indicate that FAK functions in the complex primarily as a "scaffold," acting to recruit and activate Src within cell/matrix adhesions. To study the cellular impact of FAK-associated Src signaling we developed a novel gain-of-function approach that involves expressing a chimeric protein with the FAK kinase domain replaced by the Src kinase domain. This FAK/Src chimera is subject to adhesion-dependent activation and promotes tyrosine phosphorylation of p130Cas and paxillin to higher steady-state levels than is achieved by wild-type FAK. When expressed in FAK -/- mouse embryo fibroblasts, the FAK/Src chimera resulted in a striking cellular phenotype characterized by unusual large peripheral adhesions, enhanced adhesive strength, and greatly reduced motility. Live cell imaging of the chimera-expressing FAK -/- cells provided evidence that the large peripheral adhesions are associated with a dynamic actin assembly process that is sensitive to a Src-selective inhibitor. These findings suggest that FAK-associated Src kinase activity has the capacity to promote adhesion integrity and actin assembly.
Collapse
Affiliation(s)
- Priscila M F Siesser
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8240, USA
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Patwardhan P, Miller WT. Processive phosphorylation: mechanism and biological importance. Cell Signal 2007; 19:2218-26. [PMID: 17644338 PMCID: PMC2034209 DOI: 10.1016/j.cellsig.2007.06.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 05/31/2007] [Accepted: 06/12/2007] [Indexed: 01/13/2023]
Abstract
Recent proteomic data indicate that a majority of the phosphorylated proteins in a eucaryotic cell contain multiple sites of phosphorylation. In many signaling events, a single kinase phosphorylates multiple sites on a target protein. Processive phosphorylation occurs when a protein kinase binds once to a substrate and phosphorylates all of the available sites before dissociating. In this review, we discuss examples of processive phosphorylation by serine/threonine kinases and tyrosine kinases. We describe current experimental approaches for distinguishing processive from non-processive phosphorylation. Finally, we contrast the biological situations that are suited to regulation by processive and non-processive phosphorylation.
Collapse
Affiliation(s)
- Parag Patwardhan
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | | |
Collapse
|
77
|
Bourgin C, Murai KK, Richter M, Pasquale EB. The EphA4 receptor regulates dendritic spine remodeling by affecting beta1-integrin signaling pathways. ACTA ACUST UNITED AC 2007; 178:1295-307. [PMID: 17875741 PMCID: PMC2064660 DOI: 10.1083/jcb.200610139] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Remodeling of dendritic spines is believed to modulate the function of excitatory synapses. We previously reported that the EphA4 receptor tyrosine kinase regulates spine morphology in hippocampal pyramidal neurons, but the signaling pathways involved were not characterized (Murai, K.K., L.N. Nguyen, F. Irie, Y. Yamaguchi, and E.B. Pasquale. 2003. Nat. Neurosci. 6:153–160). In this study, we show that EphA4 activation by ephrin-A3 in hippocampal slices inhibits integrin downstream signaling pathways. EphA4 activation decreases tyrosine phosphorylation of the scaffolding protein Crk-associated substrate (Cas) and the tyrosine kinases focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (Pyk2) and also reduces the association of Cas with the Src family kinase Fyn and the adaptor Crk. Consistent with this, EphA4 inhibits β1-integrin activity in neuronal cells. Supporting a functional role for β1 integrin and Cas inactivation downstream of EphA4, the inhibition of integrin or Cas function induces spine morphological changes similar to those associated with EphA4 activation. Furthermore, preventing β1-integrin inactivation blocks the effects of EphA4 on spines. Our results support a model in which EphA4 interferes with integrin signaling pathways that stabilize dendritic spines, thus modulating synaptic interactions with the extracellular environment.
Collapse
|
78
|
Frasca F, Pandini G, Malaguarnera R, Mandarino A, Messina RL, Sciacca L, Belfiore A, Vigneri R. Role of c-Abl in Directing Metabolic versus Mitogenic Effects in Insulin Receptor Signaling. J Biol Chem 2007; 282:26077-88. [PMID: 17620332 DOI: 10.1074/jbc.m705008200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
c-Abl is a cytoplasmic tyrosine kinase involved in several signal transduction pathways. Here we report that c-Abl is involved also in insulin receptor signaling. Indeed, c-Abl tyrosine kinase is activated upon insulin stimulation. Inhibition of c-Abl tyrosine kinase by STI571 attenuates the effect of insulin on Akt/GSK-3beta phosphorylation and glycogen synthesis, and at the same time, it enhances the effect of insulin on ERK activation, cell proliferation, and migration. This effect of STI571 is specific to c-Abl inhibition, because it does not occur in Abl-null cells and is restored in c-Abl-reconstituted cells. Numerous evidences suggest that focal adhesion kinase (FAK) is involved in mediating this c-Abl effect. First, anti-phosphotyrosine blots indicate that c-Abl tyrosine kinase activation is concomitant with FAK dephosphorylation in response to insulin, whereas c-Abl inhibition is accompanied by FAK phosphorylation in response to insulin, a response similar to that observed with IGF-I. Second, the c-Abl effects on insulin signaling are not observed in cells devoid of FAK (FAK(-/-) cells). Taken together these results suggest that c-Abl activation by insulin, via a modification of FAK response, may play an important role in directing mitogenic versus metabolic insulin receptor signaling.
Collapse
Affiliation(s)
- Francesco Frasca
- Endocrinologia, Dipartimento di Medicina Interna e di Medicina Specialistica, Università di Catania, Ospedale Garibaldi, Nesima, 95122 Catania, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Nagy T, Wei H, Shen TL, Peng X, Liang CC, Gan B, Guan JL. Mammary epithelial-specific deletion of the focal adhesion kinase gene leads to severe lobulo-alveolar hypoplasia and secretory immaturity of the murine mammary gland. J Biol Chem 2007; 282:31766-76. [PMID: 17716968 DOI: 10.1074/jbc.m705403200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Integrin-mediated cell adhesion and signaling is required for mammary gland development and functions. As a major mediator of integrin signaling, focal adhesion kinase (FAK) has been implicated to play a role in the survival, proliferation, and differentiation of mammary epithelial cells in previously studies in vitro. To assess the role of FAK in vivo, we created mice in which FAK is selectively deleted in mammary epithelial cells. The mammary gland FAK conditional knock-out (MFCKO) mice are viable, fertile, and macroscopically indistinguishable from the control littermates. In virgin MFCKO mice, mammary ductal elongation is retarded at 5 weeks of age but reaches the full extent by 8 weeks of age compared with the control mice. However, the MFCKO females are unable to nurse their pups due to severe lobulo-alveolar hypoplasia and secretory immaturity during pregnancy and lactation. Analysis of the mammary epithelial cells in MFCKO mice showed reduced Erk phosphorylation, expression of cyclin D1, and a corresponding decrease in proliferative capability compared with the littermate controls. In addition, phosphorylation of STAT5 and expression of whey acidic protein are significantly reduced in the mammary glands of MFCKO mice, suggesting defective secretory maturation in these mice. Therefore, the combination of the severe lobulo-alveolar hypoplasia and defective secretory differentiation is responsible for the inability of the MFCKO females to nurse their pups. Together, these results provide strong support for a role of FAK in the mammary gland development and function in vivo.
Collapse
Affiliation(s)
- Tamas Nagy
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | |
Collapse
|
80
|
Abstract
The tyrosine phosphorylated protein Crk-associated substrate (CAS) has previously been shown to participate in the cellular processes regulating dynamic changes in the actin architecture and arterial constriction. In the present study, treatment of rat mesenteric arteries with phenylephrine (PE) led to the increase in CAS tyrosine phosphorylation and the association of CAS with the adapter protein CrkII. CAS phosphorylation was catalyzed by Abl in an in vitro study. To determine the role of Abl tyrosine kinase in arterial vessels, plasmids encoding Abl short hairpin RNA (shRNA) were transduced into mesenteric arteries by chemical loading plus liposomes. Abl silencing diminished increases in CAS phosphorylation on PE stimulation. Previous studies have shown that assembly of the multiprotein compound containing CrkII, neuronal Wiskott-Aldrich Syndrome Protein (N-WASP) and the Arp2/3 (Actin Related Protein) complex triggers actin polymerization in smooth muscle as well as in nonmuscle cells. In this study, Abl silencing attenuated the assembly of the multiprotein compound in resistance arteries on contractile stimulation. Furthermore, the increase in F/G-actin ratios (an index of actin assembly) and constriction on contractile stimulation were reduced in Abl-deficient arterial segments compared with control arteries. However, myosin regulatory light chain phosphorylation (MRLCP) elicited by contractile activation was not inhibited in Abl-deficient arteries. These results suggest that Abl may play a pivotal role in mediating CAS phosphorylation, the assembly of the multiprotein complex, actin assembly, and constriction in resistance arteries. Abl does not participate in the regulation of myosin activation in arterial vessels during contractile stimulation.
Collapse
Affiliation(s)
- Yana Anfinogenova
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA
| | | | | | | | | |
Collapse
|
81
|
Liu G, Li W, Gao X, Li X, Jürgensen C, Park HT, Shin NY, Yu J, He ML, Hanks SK, Wu JY, Guan KL, Rao Y. p130CAS is required for netrin signaling and commissural axon guidance. J Neurosci 2007; 27:957-68. [PMID: 17251438 PMCID: PMC2014516 DOI: 10.1523/jneurosci.4616-06.2007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 12/12/2006] [Accepted: 12/14/2006] [Indexed: 11/21/2022] Open
Abstract
Netrins are an important family of axon guidance cues. Here, we report that netrin-1 induces tyrosine phosphorylation of p130(CAS) (Crk-associated substrate). Our biochemical studies indicate that p130(CAS) is downstream of the Src family kinases and upstream of the small GTPase Rac1 and Cdc42. Inhibition of p130(CAS) signaling blocks both the neurite outgrowth-promoting activity and the axon attraction activity of netrin-1. p130(CAS) RNA interference inhibits the attraction of commissural axons in the spinal cord by netrin-1 and causes defects in commissural axon projection in the embryo. These results demonstrate that p130(CAS) is a key component in the netrin signal transduction pathway and plays an important role in guiding commissural axons in vivo.
Collapse
Affiliation(s)
| | - Weiquan Li
- Life Sciences Institute, Department of Biological Chemistry, and Institute of Gerontology, University of Michigan, Ann Arbor, Michigan 48109
| | - Xue Gao
- Department of Neurology
- Robert H. Lurie Comprehensive Cancer Center, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | | | | | - Hwan-Tae Park
- Department of Physiology, College of Medicine, Dong-A University, Seo-Gu, Pusan 602-714, South Korea
| | - Nah-Young Shin
- Department of Cell and Developmental Biology, U-4206 Learned Laboratory, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, and
| | | | - Ming-Liang He
- The Center for Emerging Infectious Diseases, School of Public Health, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Steven K. Hanks
- Department of Cell and Developmental Biology, U-4206 Learned Laboratory, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, and
| | - Jane Y. Wu
- Department of Neurology
- Robert H. Lurie Comprehensive Cancer Center, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Kun-Liang Guan
- Life Sciences Institute, Department of Biological Chemistry, and Institute of Gerontology, University of Michigan, Ann Arbor, Michigan 48109
| | | |
Collapse
|
82
|
Singh MK, Cowell L, Seo S, O’Neill GM, Golemis EA. Molecular basis for HEF1/NEDD9/Cas-L action as a multifunctional co-ordinator of invasion, apoptosis and cell cycle. Cell Biochem Biophys 2007; 48:54-72. [PMID: 17703068 PMCID: PMC1976382 DOI: 10.1007/s12013-007-0036-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 04/11/2007] [Accepted: 11/30/1999] [Indexed: 10/23/2022]
Abstract
Upregulation of the scaffolding protein HEF1, also known as NEDD9 and Cas-L, has recently been identified as a pro-metastatic stimulus in a number of different solid tumors, and has also been strongly associated with pathogenesis of BCR-Abl-dependent tumors. As the evidence mounts for HEF1/NEDD9/Cas-L as a key player in metastatic cancer, it is timely to review the molecular regulation of HEF1/NEDD9/Cas-L. Most of the mortality associated with cancer arises from uncontrolled metastases, thus a better understanding of the properties of proteins specifically associated with promotion of this process may yield insights that improve cancer diagnosis and treatment. In this review, we summarize the extensive literature regarding HEF1/NEDD9/Cas-L expression and function in signaling relevant to cell attachment, migration, invasion, cell cycle, apoptosis, and oncogenic signal transduction. The complex function of HEF1/NEDD9/Cas-L revealed by this analysis leads us to propose a model in which alleviation of cell cycle checkpoints and acquired resistance to apoptosis is permissive for a HEF1/NEDD9/Cas-L-promoted pro-metastatic phenotype.
Collapse
Affiliation(s)
- Mahendra K. Singh
- Division of Basic Science, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Lauren Cowell
- Oncology Research Unit, The Children’s Hospital at Westmead, NSW, Australia
- Discipline of Paediatrics and Child Health, The University of Sydney, NSW, Australia
| | - Sachiko Seo
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Geraldine M. O’Neill
- Oncology Research Unit, The Children’s Hospital at Westmead, NSW, Australia
- Discipline of Paediatrics and Child Health, The University of Sydney, NSW, Australia
| | - Erica A. Golemis
- Division of Basic Science, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
83
|
Ogden K, Thompson JM, Hickner Z, Huang T, Tang DD, Watts SW. A new signaling paradigm for serotonin: use of Crk-associated substrate in arterial contraction. Am J Physiol Heart Circ Physiol 2006; 291:H2857-63. [PMID: 16861698 DOI: 10.1152/ajpheart.00229.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Crk-associated substrate (CAS), a 130-kDa adaptor protein, was discovered as a tyrosine kinase substrate of Src that was important to cellular motility and actin filament formation. As the tyrosine kinase Src is utilized by the 5-hydroxytryptamine (5-HT)2A receptor in arterial contraction, we tested the hypothesis that CAS was integral to 5-HT2A receptor-mediated vasoconstriction. Rat thoracic aorta was used as a model of the arterial 5-HT2A receptor. Western and immunohistochemistry analyses validated the presence of CAS in the aorta, and tissue bath experiments demonstrated reduction of contraction to 5-HT (13.5 ± 5% control maximum) and the 5-HT2 receptor agonist α-methyl-5-HT (6 ± 2% maximum) by latrunculin B (10−6 mol/l), an actin disruptor. In aorta contracted with 5-HT (10−5 mol/l), tyrosine phosphorylation (Tyr410) of CAS was significantly increased (∼225%), and both contraction and CAS phosphorylation were reduced by the 5-HT2A/2C receptor antagonist ketanserin (3 × 10−8 mol/l). Src is one candidate for 5-HT-stimulated CAS tyrosyl-phosphorylation as 5-HT promoted interaction of Src and CAS in coimmunoprecipitation experiments, and the Src tyrosine kinase inhibitor PP1 (10−5 mol/l) abolished 5-HT-induced tyrosyl-phosphorylation of CAS and reduced 5-HT- and α-methyl-5-HT-induced contraction. Antisense oligodeoxynucleotides delivered to the aorta reduced CAS expression (33% control) and arterial contraction to α-methyl-5-HT (45% of control), independent of changes in myosin light chain phosphorylation. These data are the first to implicate CAS in the signal transduction of 5-HT.
Collapse
Affiliation(s)
- Kevin Ogden
- Dept. of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | |
Collapse
|
84
|
Chang F, Lemmon CA, Park D, Romer LH. FAK potentiates Rac1 activation and localization to matrix adhesion sites: a role for betaPIX. Mol Biol Cell 2006; 18:253-64. [PMID: 17093062 PMCID: PMC1751318 DOI: 10.1091/mbc.e06-03-0207] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
FAK, a cytoplasmic protein tyrosine kinase, is activated and localized to focal adhesions upon cell attachment to extracellular matrix. FAK null cells spread poorly and exhibit altered focal adhesion turnover. Rac1 is a member of the Rho-family GTPases that promotes membrane ruffling, leading edge extension, and cell spreading. We investigated the activation and subcellular location of Rac1 in FAK null and FAK reexpressing fibroblasts. FAK reexpressers had a more robust pattern of Rac1 activation after cell adhesion to fibronectin than the FAK null cells. Translocation of Rac1 to focal adhesions was observed in FAK reexpressers, but seldom in FAK null cells. Experiments with constitutively active L61Rac1 and dominant negative N17Rac1 indicated that the activation state of Rac1 regulated its localization to focal adhesions. We demonstrated that FAK tyrosine-phosphorylated betaPIX and thereby increased its binding to Rac1. In addition, betaPIX facilitated the targeting of activated Rac1 to focal adhesions and the efficiency of cell spreading. These data indicate that FAK has a role in the activation and focal adhesion translocation of Rac1 through the tyrosine phosphorylation of betaPIX.
Collapse
Affiliation(s)
- Fumin Chang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | |
Collapse
|
85
|
Modzelewska K, Newman LP, Desai R, Keely PJ. Ack1 mediates Cdc42-dependent cell migration and signaling to p130Cas. J Biol Chem 2006; 281:37527-35. [PMID: 17038317 DOI: 10.1074/jbc.m604342200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously showed that activation of the small GTPase Cdc42 promotes breast cell migration on a collagen matrix. Here we further define the signaling pathways that drive this response and show that Cdc42-mediated migration relies on the adaptor molecule p130(Cas). Activated Cdc42 enhanced p130(Cas) phosphorylation and its binding to Crk. Cdc42-driven migration and p130(Cas) phosphorylation were dependent on the Cdc42 effector Ack1 (activated Cdc42-associated kinase). Ack1 formed a signaling complex that also included Cdc42, p130(Cas), and Crk, formation of which was regulated by collagen stimulation. The interaction between Ack1 and p130(Cas) occurred through their respective SH3 domains, while the substrate domain of p130(Cas) was the major site of Ack1-dependent phosphorylation. Signaling through this complex is functionally relevant, because treatment with either p130(Cas) or Ack1 siRNA blocked Cdc42-induced migration. These results suggest that Cdc42 exerts its effects on cell migration in part through its effector Ack1, which regulates p130(Cas) signaling.
Collapse
Affiliation(s)
- Katarzyna Modzelewska
- Department of Pharmacology and Molecular and Cellular Pharmacology Program, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
86
|
Shi J, Casanova JE. Invasion of host cells by Salmonella typhimurium requires focal adhesion kinase and p130Cas. Mol Biol Cell 2006; 17:4698-708. [PMID: 16914515 PMCID: PMC1635395 DOI: 10.1091/mbc.e06-06-0492] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Salmonella typhimurium colonizes the intestinal epithelium by injecting an array of effector proteins into host cells that induces phagocytic uptake of attached bacteria. However, the host molecules targeted by these effectors remain poorly defined. Here, we demonstrate that S. typhimurium induces formation of focal adhesion-like complexes at sites of bacterial attachment and that both focal adhesion kinase (FAK) and the scaffolding protein p130Cas are required for Salmonella uptake. Entry of Salmonella into FAK(-/-) cells is dramatically impaired and can be restored to control levels by expression of wild-type FAK. Surprisingly, reconstitution of bacterial internalization requires neither the kinase domain of FAK nor activation of c-Src, but does require a C-terminal PXXP motif through which FAK interacts with Cas. Infection of Cas(-/-) cells is also impaired, and reconstitution of invasiveness requires the central Cas YXXP repeat domain. The invasion defect in Cas(-/-) cells can be suppressed by overexpression of FAK, suggesting a functional link between FAK and Cas in the regulation of Salmonella invasion. Together, these findings reveal a novel role for focal adhesion proteins in the invasion of host cells by Salmonella.
Collapse
Affiliation(s)
- Jing Shi
- Department of Cell Biology, University of Virginia Health Sciences Center, Charlottesville, VA 22908-0732
| | - James E. Casanova
- Department of Cell Biology, University of Virginia Health Sciences Center, Charlottesville, VA 22908-0732
| |
Collapse
|
87
|
Cowell LN, Graham JD, Bouton AH, Clarke CL, O'Neill GM. Tamoxifen treatment promotes phosphorylation of the adhesion molecules, p130Cas/BCAR1, FAK and Src, via an adhesion-dependent pathway. Oncogene 2006; 25:7597-607. [PMID: 16799644 DOI: 10.1038/sj.onc.1209747] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reports that the adhesion-associated molecule p130Cas/BCAR1 promotes resistance to tamoxifen suggested that adhesion-mediated signalling may be altered by tamoxifen treatment. We find that p130Cas/BCAR1 phosphorylation is enhanced in tamoxifen-treated estrogen receptor (ER)-positive MCF-7 breast cancer cells. The effects of estrogen and tamoxifen were assessed independently and in combination, and the results demonstrate that tamoxifen antagonizes estrogen regulation of p130Cas/BCAR1 phosphorylation. Phosphorylation correlates with tamoxifen ER antagonist effects, as phosphorylation effects are replicated by the pure antiestrogen ICI 182, 780. Correspondingly, phosphorylation is not changed in ER-negative cells exposed to tamoxifen. We show that deletion of the p130Cas/BCAR1 substrate domain substantially reduces tamoxifen-induced phosphorylation of p130Cas/BCAR1 and confers enhanced sensitivity to tamoxifen. P130Cas/BCAR1 forms a phosphorylation-dependent signalling complex with focal adhesion kinase (FAK) and Src kinase that promotes adhesion-mediated cell survival. Therefore, we examined the kinetics of p130Cas/BCAR1, Src and FAK phosphorylation over a 14-day time course and find sustained phosphorylation of these molecules after 7 days exposure to tamoxifen. Inhibition of Src kinase is shown to reduce tamoxifen-promoted p130Cas/BCAR1 phosphorylation and reduce cell viability. Stimulation of the Src/FAK/p130Cas/BCAR1 adhesion signalling pathway in tamoxifen-treated MCF-7 cells does not cause increased migration; however, there is Src-dependent phosphorylation of the cell survival molecule Akt. Correspondingly, Akt inhibition reduces cell viability in cells treated with tamoxifen. We propose that prolonged activation of adhesion-dependent signalling may confer a survival advantage in response to additional cellular insults or alternatively, may poise cells to develop a migratory phenotype in response to additional cellular cues.
Collapse
Affiliation(s)
- L N Cowell
- Focal Adhesion Biology Group, The Oncology Research Unit, The Children's Hospital at Westmead, and Discipline of Paediatrics and Child Health, University of Sydney, Westmead, New South Wales, Australia
| | | | | | | | | |
Collapse
|
88
|
Rivera GM, Antoku S, Gelkop S, Shin NY, Hanks SK, Pawson T, Mayer BJ. Requirement of Nck adaptors for actin dynamics and cell migration stimulated by platelet-derived growth factor B. Proc Natl Acad Sci U S A 2006; 103:9536-41. [PMID: 16769879 PMCID: PMC1476694 DOI: 10.1073/pnas.0603786103] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The Nck family of Src homology (SH) 2/SH3 domain adaptors functions to link tyrosine phosphorylation induced by extracellular signals with downstream regulators of actin dynamics. We investigated the role of mammalian Nck adaptors in signaling from the activated platelet-derived growth factor (PDGF) receptor (PDGFbetaR) to the actin cytoskeleton. We report here that Nck adaptors are required for cytoskeletal reorganization and chemotaxis stimulated by PDGF-B. Analysis of tyrosine-phosphorylated proteins demonstrated that Crk-associated substrate (p130(Cas)), not the activated PDGFbetaR itself, is the major Nck SH2 domain-binding protein in PDGF-B-stimulated cells. Both Nck- and p130(Cas)-deficient cells fail to display cytoskeletal rearrangements, including the formation of membrane ruffles and the disassembly of actin bundles, typically shown by their WT counterparts in response to PDGF-B. Furthermore, Nck and p130(Cas) colocalize in phosphotyrosine-enriched membrane ruffles induced by PDGF-B in NIH 3T3 cells. These results suggest that Nck adaptors play an essential role in linking the activated PDGFbetaR with actin dynamics through a pathway that involves p130(Cas).
Collapse
Affiliation(s)
- G. M. Rivera
- *Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Developmental Biology and Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030
| | - S. Antoku
- *Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Developmental Biology and Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030
| | - S. Gelkop
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada M5G 1X5; and
| | - N. Y. Shin
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - S. K. Hanks
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - T. Pawson
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada M5G 1X5; and
- To whom correspondence may be addressed. E-mail:
or
| | - B. J. Mayer
- *Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Developmental Biology and Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
89
|
Huang J, Sakai R, Furuichi T. The docking protein Cas links tyrosine phosphorylation signaling to elongation of cerebellar granule cell axons. Mol Biol Cell 2006; 17:3187-96. [PMID: 16687575 PMCID: PMC1483050 DOI: 10.1091/mbc.e05-12-1122] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Crk-associated substrate (Cas) is a tyrosine-phosphorylated docking protein that is indispensable for the regulation of the actin cytoskeletal organization and cell migration in fibroblasts. The function of Cas in neurons, however, is poorly understood. Here we report that Cas is dominantly enriched in the brain, especially the cerebellum, of postnatal mice. During cerebellar development, Cas is highly tyrosine phosphorylated and is concentrated in the neurites and growth cones of granule cells. Cas coimmunoprecipitates with Src family protein tyrosine kinases, Crk, and cell adhesion molecules and colocalizes with these proteins in granule cells. The axon extension of granule cells is inhibited by either RNA interference knockdown of Cas or overexpression of the Cas mutant lacking the YDxP motifs, which are tyrosine phosphorylated and thereby interact with Crk. These findings demonstrate that Cas acts as a key scaffold that links the proteins associated with tyrosine phosphorylation signaling pathways to the granule cell axon elongation.
Collapse
Affiliation(s)
- Jinhong Huang
- *Laboratory for Molecular Neurogenesis, Riken Brain Science Institute, Wako, Saitama 351-0198; and
| | - Ryuichi Sakai
- Growth Factor Division, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Teiichi Furuichi
- *Laboratory for Molecular Neurogenesis, Riken Brain Science Institute, Wako, Saitama 351-0198; and
| |
Collapse
|
90
|
Ballestrem C, Erez N, Kirchner J, Kam Z, Bershadsky A, Geiger B. Molecular mapping of tyrosine-phosphorylated proteins in focal adhesions using fluorescence resonance energy transfer. J Cell Sci 2006; 119:866-75. [PMID: 16478788 DOI: 10.1242/jcs.02794] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Microscopy-based fluorescence resonance energy transfer (FRET) provides an opportunity to monitor molecular processes in the natural environment in live cells. Here we studied molecular interactions and tyrosine phosphorylation of paxillin, Crk-associated substrate (CAS), and focal adhesion kinase (FAK) in focal adhesions. For that purpose, these focal adhesion phosphoproteins, fused to cyan or yellow fluorescent proteins (CFP or YFP) were expressed in cultured fibroblasts. To assess the dynamics of tyrosine phosphorylation we used YFP- or CFP-tagged SH2 domain of pp60(src) (dSH2), which specifically binds to phosphotyrosine residues. FRET measurements, combined with immunolabeling with phosphospecific antibodies revealed that FAK, CAS and paxillin are tyrosine phosphorylated in early matrix adhesions and that FAK is in FRET proximity to CAS and paxillin in focal complexes and focal adhesions. Data suggest that paxillin incorporation into nascent focal complexes precedes its tyrosine phosphorylation, which then gradually increases. In cells treated with Rho-kinase inhibitors or expressing constitutively active Rac, focal complexes showed similar levels of paxillin tyrosine phosphorylation as seen in mature focal adhesions. Dynamic FRET-based examination indicated that paxillin phosphorylation occurs in specific areas (hotspots) within focal adhesions, whereas FAK phosphorylation is broadly distributed.
Collapse
Affiliation(s)
- Christoph Ballestrem
- Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
91
|
Brábek J, Constancio SS, Siesser PF, Shin NY, Pozzi A, Hanks SK. Crk-associated substrate tyrosine phosphorylation sites are critical for invasion and metastasis of SRC-transformed cells. Mol Cancer Res 2005; 3:307-15. [PMID: 15972849 DOI: 10.1158/1541-7786.mcr-05-0015] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Crk-associated substrate (CAS, p130Cas) is a major tyrosine phosphorylated protein in cells transformed by v-crk and v-src oncogenes. We recently reported that reexpression of CAS in CAS-deficient mouse embryo fibroblasts transformed by oncogenic Src promoted an invasive phenotype associated with enhanced cell migration through Matrigel, organization of actin into large podosome ring and belt structures, activation of matrix metalloproteinase-2, and elevated tyrosine phosphorylation of the focal adhesion proteins FAK and paxillin. We have now extended these studies to examine the mechanism by which CAS achieves these changes and to evaluate the potential role for CAS in promoting in vivo tumor growth and metastasis. Whereas the presence or absence of CAS did not alter the primary growth of subcutaneous-injected Src-transformed mouse embryo fibroblasts, CAS expression was required to promote lung metastasis following removal of the primary tumor. The substrate domain YxxP tyrosines, the major sites of CAS phosphorylation by Src that mediate interactions with Crk, were found to be critical for promoting both invasive and metastatic properties of the cells. The ability of CAS to promote Matrigel invasion, formation of large podosome structures, and tyrosine phosphorylation of Src substrates, including FAK, paxillin, and cortactin, was also strictly dependent on the YxxP tyrosines. In contrast, matrix metalloproteinase-2 activation was most dependent on the CAS SH3 domain, whereas the substrate domain YxxP sites also contributed to this property. Thus multiple CAS-mediated signaling events are implicated in promoting invasive and metastatic properties of Src-transformed cells.
Collapse
Affiliation(s)
- Jan Brábek
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | | | | | | | | | | |
Collapse
|
92
|
Wu X, Gan B, Yoo Y, Guan JL. FAK-mediated src phosphorylation of endophilin A2 inhibits endocytosis of MT1-MMP and promotes ECM degradation. Dev Cell 2005; 9:185-96. [PMID: 16054026 DOI: 10.1016/j.devcel.2005.06.006] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 04/14/2005] [Accepted: 06/16/2005] [Indexed: 10/25/2022]
Abstract
Focal adhesion kinase (FAK) is an important mediator of integrin signaling in the regulation of cell proliferation, survival, migration, and invasion. To understand how FAK contributes to cell invasion, we explored the regulation of matrix metalloproteinases (MMPs) by FAK. We found that v-Src-transformed cells activate a FAK-dependent mechanism that attenuates endocytosis of MT1-MMP. This in turn increases cell-surface expression of MT1-MMP and cellular degradation of extracellular matrix. Further, we identified an interaction between FAK's second Pro-rich motif and endophilin A2's SH3 domain. This interaction served as an autophosphorylation-dependent scaffold to allow Src phosphorylation of endophilin A2 at Tyr315. Tyr315 phosphorylation inhibited endophilin/dynamin interactions, and blockade of Tyr315 phosphorylation promoted endocytosis of MT1-MMP. Together, these results suggest a regulatory mechanism of cell invasion whereby FAK promotes cell-surface presentation of MT1-MMP by inhibiting endophilin A2-dependent endocytosis.
Collapse
Affiliation(s)
- Xiaoyang Wu
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
93
|
Shen TL, Park AYJ, Alcaraz A, Peng X, Jang I, Koni P, Flavell RA, Gu H, Guan JL. Conditional knockout of focal adhesion kinase in endothelial cells reveals its role in angiogenesis and vascular development in late embryogenesis. ACTA ACUST UNITED AC 2005; 169:941-52. [PMID: 15967814 PMCID: PMC2171636 DOI: 10.1083/jcb.200411155] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Focal adhesion kinase (FAK) is a critical mediator of signal transduction by integrins and growth factor receptors in a variety of cells including endothelial cells (ECs). Here, we describe EC-specific knockout of FAK using a Cre-loxP approach. In contrast to the total FAK knockout, deletion of FAK specifically in ECs did not affect early embryonic development including normal vasculogenesis. However, in late embryogenesis, FAK deletion in the ECs led to defective angiogenesis in the embryos, yolk sac, and placenta, impaired vasculature and associated hemorrhage, edema, and developmental delay, and late embryonic lethal phenotype. Histologically, ECs and blood vessels in the mutant embryos present a disorganized, detached, and apoptotic appearance. Consistent with these phenotypes, deletion of FAK in ECs isolated from the floxed FAK mice led to reduced tubulogenesis, cell survival, proliferation, and migration in vitro. Together, these results strongly suggest a role of FAK in angiogenesis and vascular development due to its essential function in the regulation of multiple EC activities.
Collapse
Affiliation(s)
- Tang-Long Shen
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Chang LC, Huang CH, Cheng CH, Chen BH, Chen HC. Differential Effect of the Focal Adhesion Kinase Y397F Mutant on v-Src-Stimulated Cell Invasion and Tumor Growth. J Biomed Sci 2005; 12:571-85. [PMID: 16132110 DOI: 10.1007/s11373-005-7212-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 05/10/2005] [Indexed: 01/01/2023] Open
Abstract
Upon cell adhesion to extracellular matrix proteins, focal adhesion kinase (FAK) rapidly undergoes autophosphorylation on its Tyr-397 which consequently serves as a binding site for the Src homology 2 domains of the Src family protein kinases and several other intracellular signaling molecules. In this study, we have attempted to examine the effect of the FAK Y397F mutant on v-Src-stimulated cell transformation by establishing an inducible expression of the Y397F mutant in v-Src-transformed FAK-null (FAK(-/-)) mouse embryo fibroblasts. We found that the FAK Y397F mutant had both positive and negative effects on v-Src-stimulated cell transformation; it promoted v-Src-stimulated invasion, but on the other hand it inhibited the v-Src-stimulated anchorage-independent cell growth in vitro and tumor formation in vivo . The positive effect of the Y397F mutant on v-Src-stimulated invasion was correlated with an increased expression of matrix metalloproteinase-2, both of which were inhibited by the specific phosphatidylinositol 3-kinase inhibitor wortmannin or a dominant negative mutant of AKT, suggesting a critical role for the phosphatidylinositol 3-kinase/AKT pathway in both events. However, the expression of the Y397F mutant rendered v-Src-transformed FAK(-/-) cells susceptible to anoikis, correlated with suppression on v-Src-stimulated activation of ERK and AKT. In addition, under anoikis stress, the induction of the Y397F mutant in v-Src-transformed FAK(-/-) cells selectively led to a decrease in the level of p130(Cas), but not other focal adhesion proteins such as talin, vinculin, and paxillin. These results suggest that FAK may increase the susceptibility of v-Src-transformed cells to anoikis by modulating the level of p130(Cas).
Collapse
Affiliation(s)
- Liang-Chen Chang
- Institute of Biomedical Sciences, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, 40227, Taiwan
| | | | | | | | | |
Collapse
|
95
|
Brown MC, Cary LA, Jamieson JS, Cooper JA, Turner CE. Src and FAK kinases cooperate to phosphorylate paxillin kinase linker, stimulate its focal adhesion localization, and regulate cell spreading and protrusiveness. Mol Biol Cell 2005; 16:4316-28. [PMID: 16000375 PMCID: PMC1196340 DOI: 10.1091/mbc.e05-02-0131] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The ArfGAP paxillin kinase linker (PKL)/G protein-coupled receptor kinase-interacting protein (GIT)2 has been implicated in regulating cell spreading and motility through its transient recruitment of the p21-activated kinase (PAK) to focal adhesions. The Nck-PAK-PIX-PKL protein complex is recruited to focal adhesions by paxillin upon integrin engagement and Rac activation. In this report, we identify tyrosine-phosphorylated PKL as a protein that associates with the SH3-SH2 adaptor Nck, in a Src-dependent manner, after cell adhesion to fibronectin. Both cell adhesion and Rac activation stimulated PKL tyrosine phosphorylation. PKL is phosphorylated on tyrosine residues 286/392/592 by Src and/or FAK and these sites are required for PKL localization to focal adhesions and for paxillin binding. The absence of either FAK or Src-family kinases prevents PKL phosphorylation and suppresses localization of PKL but not GIT1 to focal adhesions after Rac activation. Expression of an activated FAK mutant in the absence of Src-family kinases partially restores PKL localization, suggesting that Src activation of FAK is required for PKL phosphorylation and localization. Overexpression of the nonphosphorylated GFP-PKL Triple YF mutant stimulates cell spreading and protrusiveness, similar to overexpression of a paxillin mutant that does not bind PKL, suggesting that failure to recruit PKL to focal adhesions interferes with normal cell spreading and motility.
Collapse
Affiliation(s)
- Michael C Brown
- Department of Cell and Developmental Biology, College of Medicine, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | |
Collapse
|
96
|
Tilghman RW, Slack-Davis JK, Sergina N, Martin KH, Iwanicki M, Hershey ED, Beggs HE, Reichardt LF, Parsons JT. Focal adhesion kinase is required for the spatial organization of the leading edge in migrating cells. J Cell Sci 2005; 118:2613-23. [PMID: 15914540 DOI: 10.1242/jcs.02380] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The process of cell migration is initiated by protrusion at the leading edge of the cell, the formation of peripheral adhesions, the exertion of force on these adhesions, and finally the release of the adhesions at the rear of the cell. Focal adhesion kinase (FAK) is intimately involved in the regulation of this process, although the precise mechanism(s) whereby FAK regulates cell migration is unclear. We have used two approaches to reduce FAK expression in fibroblasts. Treatment of cells with FAK-specific siRNAs substantially reduced FAK expression and inhibited the spreading of fibroblasts in serum-free conditions, but did not affect the rate of spreading in the presence of serum. In contrast with the wild-type cells, the FAK siRNA-treated cells exhibited multiple extensions during cell spreading. The extensions appeared to be inappropriately formed lamellipodia as evidenced by the localization of cortactin to lamellipodial structures and the inhibition of such structures by expression of dominant-negative Rac. The wild-type phenotype was restored by reexpressing wild-type FAK in the knockdown cells, but not by expression of FAK containing a point mutation at the autophosphorylation site (FAK Y397F). In wound-healing assays, FAK knockdown cells failed to form broad lamellipodia, instead forming multiple leading edges. Similar results were obtained using primary mouse embryo fibroblasts from FAK-flox mice in which Cre-mediated excision was used to ablate the expression of FAK. These data are consistent with a role for FAK in regulating the formation of a leading edge during cell migration by coordinating integrin signaling to direct the correct spatial activation of membrane protrusion.
Collapse
Affiliation(s)
- Robert W Tilghman
- Department of Microbiology, University of Virginia Health System, Charlottesville, 22908, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Kapp K, Knobloch J, Schüssler P, Sroka S, Lammers R, Kunz W, Grevelding CG. The Schistosoma mansoni Src kinase TK3 is expressed in the gonads and likely involved in cytoskeletal organization. Mol Biochem Parasitol 2005; 138:171-82. [PMID: 15555729 DOI: 10.1016/j.molbiopara.2004.07.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Revised: 07/23/2004] [Accepted: 07/31/2004] [Indexed: 10/26/2022]
Abstract
Cytoplasmic protein tyrosine kinases of the Src family play a pivotal role in the regulation of cellular processes including proliferation and differentiation. Among other functions, Src kinases are involved in regulating the cell architecture. In an approach to identify protein tyrosine kinases from the medically important parasite Schistosoma mansoni, we isolated the TK3 gene by degenerate primer PCR and cDNA library screening. Sequencing of the complete cDNA and data-base analyses indicated that TK3 is a Src family kinase. Its predicted size of 71 kDa was confirmed by Western blot analysis. Southern blot analysis showed that TK3 is a single-copy gene, and Northern blot and RT-PCR experiments indicated its expression in both sexes and throughout development. Localization studies by in situ hybridization and immunolocalization revealed that TK3 is predominantly expressed in the reproductive organs such as the testes of the male and the ovary as well as the vitellarium of the female. Its enzymatic activity was confirmed by functional analyses. In transient transfection experiments with HEK293 cells, TK3 phosphorylated the well-known Src-kinase substrate p130 Cas, an intracellular scaffolding protein. Yeast two-hybrid screenings in a heterologous invertebrate system identified dAbi, vinculin and tubulin as binding partners, representing molecules that fulfill functions in the cell architecture of many organisms. These findings suggest that TK3 may play a role in signal transduction pathways organizing the cytoskeleton in the gonads of schistosomes.
Collapse
Affiliation(s)
- Katja Kapp
- Institut für Genetik, Genetische Parasitologie und Biologisch-Medizinisches-Forschungszentrum, Universitätsstr. 1, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
98
|
Wisniewska M, Bossenmaier B, Georges G, Hesse F, Dangl M, Künkele KP, Ioannidis I, Huber R, Engh RA. The 1.1 A resolution crystal structure of the p130cas SH3 domain and ramifications for ligand selectivity. J Mol Biol 2005; 347:1005-14. [PMID: 15784259 DOI: 10.1016/j.jmb.2005.02.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 02/02/2005] [Accepted: 02/04/2005] [Indexed: 11/26/2022]
Abstract
The Crk-associated tyrosine kinase substrate p130cas (CAS) is a docking protein containing an SH3 domain near its N terminus, followed by a short proline-rich segment, a large central substrate domain composed of 15 repeats of the four amino acid sequence YxxP, a serine-rich region and a carboxy-terminal domain, which possesses consensus binding sites for the SH2 and SH3 domains of Src (YDYV and RPLPSPP, respectively). The SH3 domain of CAS mediates its interaction with several proteins involved in signaling pathways such as focal adhesion kinase (FAK), tyrosine phosphatases PTP1B and PTP-PEST, and the guanine nucleotide exchange factor C3G. As a homolog of the corresponding Src docking domain, the CAS SH3 domain binds to proline-rich sequences (PxxP) of its interacting partners that can adopt a polyproline type II helix. We have determined a high-resolution X-ray structure of the recombinant human CAS SH3 domain. The domain, residues 1-69, crystallized in two related space groups, P2(1) and C222(1), that provided diffraction data to 1.1 A and 2.1 A, respectively. The crystal structure shows, in addition to the conserved SH3 domain architecture, the way in which the CAS characteristic amino acids form an atypically charged ligand-binding surface. This arrangement provides a rationale for the unusual ligand recognition motif exhibited by the CAS SH3 domain. The structure enables modelling of the docking interactions to its ligands, for example from focal adhesion kinase, and supports structure-based drug design of inhibitors of the CAS-FAK interaction.
Collapse
Affiliation(s)
- Magdalena Wisniewska
- Max Planck Institut für Biochemie, Strukturforschung, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Dorssers LCJ, Grebenchtchikov N, Brinkman A, Look MP, van Broekhoven SPJ, de Jong D, Peters HA, Portengen H, Meijer-van Gelder ME, Klijn JGM, van Tienoven DTH, Geurts-Moespot A, Span PN, Foekens JA, Sweep FCGJ. The prognostic value of BCAR1 in patients with primary breast cancer. Clin Cancer Res 2005; 10:6194-202. [PMID: 15448007 DOI: 10.1158/1078-0432.ccr-04-0444] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE BCAR1, the human homologue of the rat p130Cas protein, was identified in a functional screen for human breast cancer cell proliferation resistant to antiestrogen drugs. Here, we study the prognostic value of quantitative BCAR1 levels in a large series of breast cancer specimens. EXPERIMENTAL DESIGN A specific ELISA was developed to measure BCAR1 protein levels in 2593 primary breast tumor cytosols. Tumor levels of BCAR1 were correlated with relapse-free survival (RFS) and overall survival (OS) and compared with collected data on urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor 1 (PAI-1). RESULTS In tumor cytosols, BCAR1 protein levels varied between 0.02 and 23 ng/mg protein. BCAR1 levels exhibited a positive correlation with steroid hormone receptor levels, age and menopausal status, and uPA and PAI-1 levels. The level of BCAR1 (continuous or categorized as low, intermediate, or high) was inversely related with RFS and OS time. Multivariate analysis showed that BCAR1 levels contributed independently to a base model containing the traditional prognostic factors for both RFS and OS (both P < 0.0001). When added together with uPA and PAI-1 in the multivariate model, BCAR1 contributed independently of PAI-1 and was favored over uPA. Interaction tests allowed for additional analyses of BCAR1 protein levels in clinically relevant subgroups stratified by nodal and menopausal status. CONCLUSIONS The quantitative BCAR1 protein level represents a prognostic factor for RFS and OS in primary breast cancer, independent of the traditional prognostic factors and the other novel marker PAI-1.
Collapse
Affiliation(s)
- Lambert C J Dorssers
- Department of Pathology, Division of Molecular Biology, Erasmus MC Rotterdam, Rotterdam.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Nasertorabi F, Tars K, Becherer K, Kodandapani R, Liljas L, Vuori K, Ely KR. Molecular basis for regulation of Src by the docking protein p130Cas. J Mol Recognit 2005; 19:30-8. [PMID: 16245368 DOI: 10.1002/jmr.755] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The docking protein p130Cas (Cas) becomes tyrosine-phosphorylated in its central substrate domain in response to extracellular stimuli such as integrin-mediated cell adhesion, and transmits signals through interactions with various intracellular signaling molecules such as the adaptor protein Crk. Src-family kinases (SFKs) bind a specific site in the carboxyl-terminal region of Cas and subsequently SFKs phosphorylate progressively the substrate domain in Cas. In this study crystallography, mutagenesis and binding assays were used to understand the molecular basis for Cas interactions with SFKs. Tyrosine phosphorylation regulates binding of Cas to SFKs, and the primary site for this phosphorylation, Y762, has been proposed. A phosphorylated peptide corresponding to Cas residues 759MEDpYDYVHL767 containing the key phosphotyrosine was crystallized in complex with the SH3-SH2 domain of the SFK Lck. The results provide the first structural data for this protein-protein interaction. The motif in Cas 762pYDYV binds to the SH2 domain in a mode that mimics high-affinity ligands, involving dual contacts of Y762 and V765 with conserved residues in SFK SH2 domains. In addition, Y764 is in position to make an electrostatic contact after phosphorylation with a conserved SFK arginine that mediates interactions with other high-affinity SH2 binders. These new molecular data suggest that Cas may regulate activity of Src as a competing ligand to displace intramolecular interactions that occur in SFKs (between the C-terminal tail and the SH2 domain) and restrain and down-regulate the kinase in an inactive form.
Collapse
Affiliation(s)
- Fariborz Nasertorabi
- Cancer Center, The Burnham Institute for Medical Research, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|