51
|
Dammann K, Khare V, Gasche C. Republished: tracing PAKs from GI inflammation to cancer. Postgrad Med J 2014; 90:657-68. [PMID: 25335797 PMCID: PMC4222351 DOI: 10.1136/postgradmedj-2014-306768rep] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/07/2014] [Accepted: 04/10/2014] [Indexed: 12/20/2022]
Abstract
P-21 activated kinases (PAKs) are effectors of Rac1/Cdc42 which coordinate signals from the cell membrane to the nucleus. Activation of PAKs drive important signalling pathways including mitogen activated protein kinase, phospoinositide 3-kinase (PI3K/AKT), NF-κB and Wnt/β-catenin. Intestinal PAK1 expression increases with inflammation and malignant transformation, although the biological relevance of PAKs in the development and progression of GI disease is only incompletely understood. This review highlights the importance of altered PAK activation within GI inflammation, emphasises its effect on oncogenic signalling and discusses PAKs as therapeutic targets of chemoprevention.
Collapse
Affiliation(s)
- Kyle Dammann
- Department of Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| | - Vineeta Khare
- Department of Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| | - Christoph Gasche
- Department of Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
52
|
Gq-mediated Akt translocation to the membrane: a novel PIP3-independent mechanism in platelets. Blood 2014; 125:175-84. [PMID: 25331114 DOI: 10.1182/blood-2014-05-576306] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Akt is an important signaling molecule regulating platelet aggregation. Akt is phosphorylated after translocation to the membrane through Gi signaling pathways by a phosphatidylinositol-3,4,5-trisphosphate (PIP3)-dependent mechanism. However, Akt is more robustly phosphorylated by thrombin compared with adenosine 5'-diphosphate in platelets. This study investigated the mechanisms of Akt translocation as a possible explanation for this difference. Stimulation of washed human platelets with protease-activated receptor agonists caused translocation of Akt to the membrane rapidly, whereas phosphorylation occurred later. The translocation of Akt was abolished in the presence of a Gq-selective inhibitor or in Gq-deficient murine platelets, indicating that Akt translocation is regulated downstream of Gq pathways. Interestingly, phosphatidylinositol 3-kinase (PI3K) inhibitors or P2Y12 antagonist abolished Akt phosphorylation without affecting Akt translocation to the membrane, suggesting that Akt translocation occurs through a PI3K/PIP3/Gi-independent mechanism. An Akt scaffolding protein, p21-activated kinase (PAK), translocates to the membrane after stimulation with protease-activated receptor agonists in a Gq-dependent manner, with the kinetics of translocation similar to that of Akt. Coimmunoprecipitation studies showed constitutive association of PAK and Akt, suggesting a possible role of PAK in Akt translocation. These results show, for the first time, an important role of the Gq pathway in mediating Akt translocation to the membrane in a novel Gi/PI3K/PIP3-independent mechanism.
Collapse
|
53
|
Zhou GL, Zhang H, Wu H, Ghai P, Field J. Phosphorylation of the cytoskeletal protein CAP1 controls its association with cofilin and actin. J Cell Sci 2014; 127:5052-65. [PMID: 25315833 DOI: 10.1242/jcs.156059] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cell signaling can control the dynamic balance between filamentous and monomeric actin by modulating actin regulatory proteins. One family of actin regulating proteins that controls actin dynamics comprises cyclase-associated proteins 1 and 2 (CAP1 and 2, respectively). However, cell signals that regulate CAPs remained unknown. We mapped phosphorylation sites on mouse CAP1 and found S307 and S309 to be regulatory sites. We further identified glycogen synthase kinase 3 as a kinase phosphorylating S309. The phosphomimetic mutant S307D/S309D lost binding to its partner cofilin and, when expressed in cells, caused accumulation of actin stress fibers similar to that in cells with reduced CAP expression. In contrast, the non-phosphorylatable S307A/S309A mutant showed drastically increased cofilin binding and reduced binding to actin. These results suggest that the phosphorylation serves to facilitate release of cofilin for a subsequent cycle of actin filament severing. Moreover, our results suggest that S307 and S309 function in tandem; neither the alterations in binding cofilin and/or actin, nor the defects in rescuing the phenotype of the enlarged cell size in CAP1 knockdown cells was observed in point mutants of either S307 or S309. In summary, we identify a novel regulatory mechanism of CAP1 through phosphorylation.
Collapse
Affiliation(s)
- Guo-Lei Zhou
- Department of Biological Sciences, Arkansas State University, State University, AR 72467, USA Molecular Biosciences Program, Arkansas State University, State University, AR 72467, USA
| | - Haitao Zhang
- Department of Biological Sciences, Arkansas State University, State University, AR 72467, USA Molecular Biosciences Program, Arkansas State University, State University, AR 72467, USA
| | - Huhehasi Wu
- Department of Biological Sciences, Arkansas State University, State University, AR 72467, USA
| | - Pooja Ghai
- Department of Biological Sciences, Arkansas State University, State University, AR 72467, USA Molecular Biosciences Program, Arkansas State University, State University, AR 72467, USA
| | - Jeffrey Field
- Department of Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
54
|
Koth AP, Oliveira BR, Parfitt GM, Buonocore JDQ, Barros DM. Participation of group I p21-activated kinases in neuroplasticity. ACTA ACUST UNITED AC 2014; 108:270-7. [PMID: 25174326 DOI: 10.1016/j.jphysparis.2014.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/25/2014] [Accepted: 08/20/2014] [Indexed: 12/15/2022]
Abstract
PAKs are a family of serine/threonine protein kinases activated by small GTPases of the Rho family, including Rac and Cdc42, and are categorized into group I (isoforms 1, 2 and 3) and group II (isoforms 4, 5 and 6). PAK1 and PAK3 are critically involved in biological mechanisms associated with neurodevelopment, neuroplasticity and maturation of the nervous system, and changes in their activity have been detected in pathological disorders, such as Alzheimer's disease, Huntington's disease and mental retardation. The group I PAKs have been associated with neurological processes due to their involvement in intracellular mechanisms that result in molecular and cellular morphological alterations that promote cytoskeletal outgrowth, increasing the efficiency of synaptic transmission. Their substrates in these processes include other intracellular signaling molecules, such as Raf, Mek and LIMK, as well as other components of the cytoskeleton, such as MLC and FLNa. In this review, we describe the characteristics of group I PAKs, such as their molecular structure, mechanisms of activation and importance in the neurobiological processes involved in synaptic plasticity.
Collapse
Affiliation(s)
- André P Koth
- Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Ciências Fisiológicas, Fisiologia Animal Comparada, Laboratório de Neurociências, Universidade Federal do Rio Grande (FURG), Av Itália, Km 8, Rio Grande, RS 96203-900, Brazil.
| | - Bruno R Oliveira
- Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Ciências Fisiológicas, Fisiologia Animal Comparada, Laboratório de Biologia Molecular, Universidade Federal do Rio Grande (FURG), Av Itália, Km 8, Rio Grande, RS 96203-900, Brazil.
| | - Gustavo M Parfitt
- Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Ciências Fisiológicas, Fisiologia Animal Comparada, Laboratório de Neurociências, Universidade Federal do Rio Grande (FURG), Av Itália, Km 8, Rio Grande, RS 96203-900, Brazil.
| | - Juliana de Quadros Buonocore
- Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Ciências Fisiológicas, Fisiologia Animal Comparada, Laboratório de Neurociências, Universidade Federal do Rio Grande (FURG), Av Itália, Km 8, Rio Grande, RS 96203-900, Brazil.
| | - Daniela M Barros
- Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Ciências Fisiológicas, Fisiologia Animal Comparada, Laboratório de Neurociências, Universidade Federal do Rio Grande (FURG), Av Itália, Km 8, Rio Grande, RS 96203-900, Brazil.
| |
Collapse
|
55
|
Abstract
P-21 activated kinases (PAKs) are effectors of Rac1/Cdc42 which coordinate signals from the cell membrane to the nucleus. Activation of PAKs drive important signalling pathways including mitogen activated protein kinase, phospoinositide 3-kinase (PI3K/AKT), NF-κB and Wnt/β-catenin. Intestinal PAK1 expression increases with inflammation and malignant transformation, although the biological relevance of PAKs in the development and progression of GI disease is only incompletely understood. This review highlights the importance of altered PAK activation within GI inflammation, emphasises its effect on oncogenic signalling and discusses PAKs as therapeutic targets of chemoprevention.
Collapse
Affiliation(s)
- Kyle Dammann
- Department of Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| | - Vineeta Khare
- Department of Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| | - Christoph Gasche
- Department of Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
56
|
Moving towards a paradigm: common mechanisms of chemotactic signaling in Dictyostelium and mammalian leukocytes. Cell Mol Life Sci 2014; 71:3711-47. [PMID: 24846395 DOI: 10.1007/s00018-014-1638-8] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/24/2014] [Accepted: 04/29/2014] [Indexed: 12/31/2022]
Abstract
Chemotaxis, or directed migration of cells along a chemical gradient, is a highly coordinated process that involves gradient sensing, motility, and polarity. Most of our understanding of chemotaxis comes from studies of cells undergoing amoeboid-type migration, in particular the social amoeba Dictyostelium discoideum and leukocytes. In these amoeboid cells the molecular events leading to directed migration can be conceptually divided into four interacting networks: receptor/G protein, signal transduction, cytoskeleton, and polarity. The signal transduction network occupies a central position in this scheme as it receives direct input from the receptor/G protein network, as well as feedback from the cytoskeletal and polarity networks. Multiple overlapping modules within the signal transduction network transmit the signals to the actin cytoskeleton network leading to biased pseudopod protrusion in the direction of the gradient. The overall architecture of the networks, as well as the individual signaling modules, is remarkably conserved between Dictyostelium and mammalian leukocytes, and the similarities and differences between the two systems are the subject of this review.
Collapse
|
57
|
Jin J, Zuo G, Xiong G, Luo H, Li Q, Ma C, Li D, Gu F, Ma Y, Wan Y. The inhibition of lamellar hydroxyapatite and lamellar magnetic hydroxyapatite on the migration and adhesion of breast cancer cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:1025-1031. [PMID: 24363068 DOI: 10.1007/s10856-013-5126-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 12/13/2013] [Indexed: 06/03/2023]
Abstract
Hydroxyapatite nanoparticles have been reported to exhibit potent anti-tumor effects in some cancer cells. In our previous study, we have successfully synthesized two types of hydroxyapatite nanoparticles, laminated hydroxyapatite (L-HAp) and laminated magnetic hydroxyapatite (LM-HAp). In this study, we wanted to investigate the effects of L-HAp and LM-HAp with various concentrations on human breast cancer MDA-MB-231 cells. Cell proliferation was assessed with a MTT colorimetric assay. Scratch and adhesion assays were used to detect the effects of these two materials on migration and adhesion. The expressions of integrin β1 and Akt were measured by Western blotting. Our results showed that L-HAp and LM-HAp had little cell cytotoxicity and significantly reduced cell mobility and adhesion. LM-HAp showed greater inhibitor ability on migration and adhesion of MDA-MB-231 cells. Moreover, results from western blotting showed that L-HAp and LM-HAp impacted the phosphorylation of integrin β1, but showed no regular impact on Akt. This study suggests that L-HAp and LM-HAp may be potential anti-tumor and delivery system for breast cancer therapy.
Collapse
Affiliation(s)
- Jun Jin
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Abstract
p21-Activated kinases (PAKs) are positioned at the nexus of several oncogenic signalling pathways. Overexpression or mutational activation of PAK isoforms frequently occurs in various human tumours, and recent data suggest that excessive PAK activity drives many of the cellular processes that are the hallmarks of cancer. In this Review, we discuss the mechanisms of PAK activation in cancer, the key substrates that mediate the developmental and oncogenic effects of this family of kinases, and how small-molecule inhibitors of these enzymes might be best developed and deployed for the treatment of cancer.
Collapse
Affiliation(s)
- Maria Radu
- Cancer Biology Program; Fox Chase Cancer Center; Philadelphia, PA, USA
| | - Galina Semenova
- Cancer Biology Program; Fox Chase Cancer Center; Philadelphia, PA, USA
| | - Rachelle Kosoff
- Cancer Biology Program; Fox Chase Cancer Center; Philadelphia, PA, USA
- Cancer Biology program, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan Chernoff
- Cancer Biology Program; Fox Chase Cancer Center; Philadelphia, PA, USA
- To whom correspondence should be addressed: Jonathan Chernoff, Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA, Tel.: (215) 728 5319; Fax: (215) 728 3616;
| |
Collapse
|
59
|
Role of p-21-activated kinases in cancer progression. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 309:347-87. [PMID: 24529727 DOI: 10.1016/b978-0-12-800255-1.00007-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The p-21-activated kinases (PAKs) are downstream effectors of Rho GTPases Rac and Cdc42. The PAK family consists of six members which are segregated into two subgroups (Group I and Group II) based on sequence homology. Group I PAKs (PAK1-3) are the most extensively studied but there is increasing interest in the functionality of Group II PAKs (PAK4-6). The PAK family proteins are thought to play an important role in many different cellular processes, some of which have particular significance in the context of cancer progression. This review explores established and more recent data, linking the PAK family kinases to cancer progression including expression profiles, evasion of apoptosis, promotion of cell survival, and regulation of cell invasion. Finally, we discuss attempts to therapeutically target the PAK family and outline the major obstacles that still need to be overcome.
Collapse
|
60
|
Yang Y, Du J, Hu Z, Liu J, Tian Y, Zhu Y, Wang L, Gu L. Activation of Rac1-PI3K/Akt is required for epidermal growth factor-induced PAK1 activation and cell migration in MDA-MB-231 breast cancer cells. J Biomed Res 2013; 25:237-45. [PMID: 23554696 PMCID: PMC3597073 DOI: 10.1016/s1674-8301(11)60032-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 05/16/2011] [Accepted: 06/02/2011] [Indexed: 11/11/2022] Open
Abstract
Epidermal growth factor (EGF) may increase cell motility, an event implicated in cancer cell invasion and metastasis. However, the underlying mechanisms for EGF-induced cell motility remain elusive. In this study, we found that EGF treatment could activate Ras-related C3 botulinum toxin substrate 1 (Rac1), PI3K/Akt and p21-actived kinase (PAK1) along with cell migration. Ectopic expression of PAK1 K299R, a dominant negative PAK1 mutant, could largely abolish EGF-induced cell migration. Blocking PI3K/Akt signalling with LY294002 or Akt siRNA remarkably inhibited both EGF-induced PAK1 activation and cell migration. Furthermore, expression of dominant-negative Rac1 (T17N) could largely block EGF-induced PI3K/Akt-PAK1 activation and cell migration. Interestingly, EGF could induce a significant production of ROS, and N-acetyl-L-cysteine, a scavenger of ROS which abolished the EGF-induced ROS generation, cell migration, as well as activation of PI3K/Akt and PAK, but not Rac1. Our study demonstrated that EGF-induced cell migration involves a cascade of signalling events, including activation of Rac1, generation of ROS and subsequent activation of PI3K/Akt and PAK1.
Collapse
|
61
|
Zhang H, Ghai P, Wu H, Wang C, Field J, Zhou GL. Mammalian adenylyl cyclase-associated protein 1 (CAP1) regulates cofilin function, the actin cytoskeleton, and cell adhesion. J Biol Chem 2013; 288:20966-20977. [PMID: 23737525 DOI: 10.1074/jbc.m113.484535] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CAP (adenylyl cyclase-associated protein) was first identified in yeast as a protein that regulates both the actin cytoskeleton and the Ras/cAMP pathway. Although the role in Ras signaling does not extend beyond yeast, evidence supports that CAP regulates the actin cytoskeleton in all eukaryotes including mammals. In vitro actin polymerization assays show that both mammalian and yeast CAP homologues facilitate cofilin-driven actin filament turnover. We generated HeLa cells with stable CAP1 knockdown using RNA interference. Depletion of CAP1 led to larger cell size and remarkably developed lamellipodia as well as accumulation of filamentous actin (F-actin). Moreover, we found that CAP1 depletion also led to changes in cofilin phosphorylation and localization as well as activation of focal adhesion kinase (FAK) and enhanced cell spreading. CAP1 forms complexes with the adhesion molecules FAK and Talin, which likely underlie the cell adhesion phenotypes through inside-out activation of integrin signaling. CAP1-depleted HeLa cells also had substantially elevated cell motility as well as invasion through Matrigel. In summary, in addition to generating in vitro and in vivo evidence further establishing the role of mammalian CAP1 in actin dynamics, we identified a novel cellular function for CAP1 in regulating cell adhesion.
Collapse
Affiliation(s)
- Haitao Zhang
- From the Department of Biological Sciences and; Molecular Biosciences Program, Arkansas State University, State University, Arkansas 72467
| | - Pooja Ghai
- From the Department of Biological Sciences and; Molecular Biosciences Program, Arkansas State University, State University, Arkansas 72467
| | - Huhehasi Wu
- From the Department of Biological Sciences and
| | - Changhui Wang
- the Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China, and
| | - Jeffrey Field
- the Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| | - Guo-Lei Zhou
- From the Department of Biological Sciences and; Molecular Biosciences Program, Arkansas State University, State University, Arkansas 72467,.
| |
Collapse
|
62
|
Zhu W, Nelson CM. PI3K regulates branch initiation and extension of cultured mammary epithelia via Akt and Rac1 respectively. Dev Biol 2013; 379:235-45. [PMID: 23665174 DOI: 10.1016/j.ydbio.2013.04.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 04/05/2013] [Accepted: 04/23/2013] [Indexed: 11/28/2022]
Abstract
The tree-like architecture of the mammary gland is generated by branching morphogenesis, which is regulated by many signals from the microenvironment. Here we examined how signaling downstream of phosphoinositide 3-kinase (PI3K) regulates different steps of mammary branching using three-dimensional culture models of the mammary epithelial duct. We found that PI3K was required for both branch initiation and elongation. Activated Akt was enhanced at branch initiation sites where its negative regulator, PTEN, was blocked by signaling via Sprouty2 (SPRY2); inhibiting Akt prevented branch initiation. The pattern of SPRY2 expression, and thus of Akt activation and branch initiation, was controlled by mechanical signaling from endogenous cytoskeletal contractility. In contrast, activated GTP-bound Rac1 localized to the leading edge of nascent branches and was required for branch elongation. These data suggest that the PI3K network integrates mechanical and biochemical signaling to control branching morphogenesis of mammary epithelial cells.
Collapse
Affiliation(s)
- Wenting Zhu
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
63
|
Singhal R, Kandel ES. The response to PAK1 inhibitor IPA3 distinguishes between cancer cells with mutations in BRAF and Ras oncogenes. Oncotarget 2013; 3:700-8. [PMID: 22869096 PMCID: PMC3443253 DOI: 10.18632/oncotarget.587] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
While new drugs aimed at BRAF-mutated cancers are entering clinical practice, cells and tumors with activating Ras mutations are relatively resistant to those and quite a few other anti-cancer agents. This inspires the effort to reverse this resistance or to uncover new vulnerabilities in such resistant cancers. IPA3 has been originally identified as a small molecule inhibitor of p21-activated protein kinase 1 (PAK1), a candidate therapeutic target in human malignancies. We have tested a battery of melanoma and colon carcinoma cell lines that carry mutations in BRAF, NRAS and KRAS genes and have observed that those with NRAS and KRAS mutations are more sensitive to killing by IPA3. Genetic manipulations suggest that the differential response depends not just on these oncogenes, but also on additional events that were co-selected during tumor evolution. Furthermore, sublethal doses of IPA3 or ectopic expression of dominant-negative PAK1 sensitized Ras-mutated cells to GDC-0897 and AZD6244, which otherwise have reduced efficiency against cells with activated Ras. Dominant-negative PAK1 also reduced the growth of NRAS-mutated cells in confluent cultures, but, unlike IPA3, caused no significant toxicity. Although it remains to be proven that all the effects of IPA3 are exclusively due to inhibition of PAK1, our findings point to the existence of selective vulnerabilities, which are associated with Ras mutations and could be useful for better understanding and treatment of a large subset of tumors.
Collapse
Affiliation(s)
- Ruchi Singhal
- Roswell Park Cancer Institute, Department of Cell Stress Biology, Elm and Carlton St., Buffalo, NY 142263, USA
| | | |
Collapse
|
64
|
Posada-Duque RA, Velasquez-Carvajal D, Eckert GP, Cardona-Gomez GP. Atorvastatin requires geranylgeranyl transferase-I and Rac1 activation to exert neuronal protection and induce plasticity. Neurochem Int 2013; 62:433-45. [PMID: 23411415 DOI: 10.1016/j.neuint.2013.01.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 01/23/2013] [Accepted: 01/26/2013] [Indexed: 11/24/2022]
Abstract
Statins are widely used cholesterol-lowering drugs that may reduce the incidence of stroke and the progression of Alzheimer's disease (AD). However, how statins exert these beneficial effects remains poorly understood. Thus, this study evaluated the roles of Rac1 geranylgeranylation and the relationship between Rac1 and αN-catenin in the protective activity of atorvastatin (ATV) in a cortical neuronal culture model of glutamate (GLU) excitotoxicity. We found that ATV-induced neuroprotection and plasticity were blocked by isoprenoids, such as farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP), inhibition of farnesylation (FTI-277) and geranylgeranylation (GGTI-286), down-regulation of GGTase-Iβ and Rac activity and promotion of active RhoA. Additionally, ATV rescued the distribution of dendritic αN-catenin and increased the number and length of dendritic branches; these effects were reversed by GGTI-286, GGTase-Iβ shRNA, Rac1 shRNA and a dominant-negative version of Rac1 (T17N). In summary, our findings suggest that ATV requires GGTase-Iβ, prenylation and active Rac1 to induce protection and plasticity. In this regard, αN-catenin is a marker for stable interactions between adhesion proteins and the actin cytoskeleton and is necessary for the neuroprotective action of ATV.
Collapse
Affiliation(s)
- Rafael Andrés Posada-Duque
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, Faculty of Medicine, SIU, University of Antioquia, Medellín, Colombia
| | | | | | | |
Collapse
|
65
|
ErbB2-dependent chemotaxis requires microtubule capture and stabilization coordinated by distinct signaling pathways. PLoS One 2013; 8:e55211. [PMID: 23383112 PMCID: PMC3558493 DOI: 10.1371/journal.pone.0055211] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 12/19/2012] [Indexed: 01/17/2023] Open
Abstract
Activation of the ErbB2 receptor tyrosine kinase stimulates breast cancer cell migration. Cell migration is a complex process that requires the synchronized reorganization of numerous subcellular structures including cell-to-matrix adhesions, the actin cytoskeleton and microtubules. How the multiple signaling pathways triggered by ErbB2 coordinate, in time and space, the various processes involved in cell motility, is poorly defined. We investigated the mechanism whereby ErbB2 controls microtubules and chemotaxis. We report that activation of ErbB2 increased both cell velocity and directed migration. Impairment of the Cdc42 and RhoA GTPases, but not of Rac1, prevented the chemotactic response. RhoA is a key component of the Memo/ACF7 pathway whereby ErbB2 controls microtubule capture at the leading edge. Upon Memo or ACF7 depletion, microtubules failed to reach the leading edge and cells lost their ability to follow the chemotactic gradient. Constitutive ACF7 targeting to the membrane in Memo-depleted cells reestablished directed migration. ErbB2-mediated activation of phospholipase C gamma (PLCγ) also contributed to cell guidance. We further showed that PLCγ signaling, via classical protein kinases C, and Memo signaling converged towards a single pathway controlling the microtubule capture complex. Finally, inhibiting the PI3K/Akt pathway did not affect microtubule capture, but disturbed microtubule stability, which also resulted in defective chemotaxis. PI3K/Akt-dependent stabilization of microtubules involved repression of GSK3 activity on the one hand and inhibition of the microtubule destabilizing protein, Stathmin, on the other hand. Thus, ErbB2 triggers distinct and complementary pathways that tightly coordinate microtubule capture and microtubule stability to control chemotaxis.
Collapse
|
66
|
|
67
|
Yurdagul A, Chen J, Funk SD, Albert P, Kevil CG, Orr AW. Altered nitric oxide production mediates matrix-specific PAK2 and NF-κB activation by flow. Mol Biol Cell 2012; 24:398-408. [PMID: 23171552 PMCID: PMC3564533 DOI: 10.1091/mbc.e12-07-0513] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
PAK2 mediates shear stress–induced NF-κB activation. Basement membrane proteins limit the proinflammatory response to shear by blocking the interaction of PAK2 with the adaptor protein Nck. This uncoupling response requires protein kinase A–dependent nitric oxide production and subsequent PAK2 phosphorylation on Ser-20 in the Nck-binding domain. Shear stress generated by distinct blood flow patterns modulates endothelial cell phenotype to spatially restrict atherosclerotic plaque development. Signaling through p21-activated kinase (PAK) mediates several of the deleterious effects of shear stress, including enhanced NF-κB activation and proinflammatory gene expression. Whereas shear stress activates PAK in endothelial cells on a fibronectin matrix, basement membrane proteins limit shear-induced PAK activation and inflammation through a protein kinase A–dependent pathway; however, the mechanisms underlying this regulation were unknown. We show that basement membrane proteins limit membrane recruitment of PAK2, the dominant isoform in endothelial cells, by blocking its interaction with the adaptor protein Nck. This uncoupling response requires protein kinase A–dependent nitric oxide production and subsequent PAK2 phosphorylation on Ser-20 in the Nck-binding domain. Of importance, shear stress does not stimulate nitric oxide production in endothelial cells on fibronectin, resulting in enhanced PAK activation, NF-κB phosphorylation, ICAM-1 expression, and monocyte adhesion. These data demonstrate that differential flow–induced nitric oxide production regulates matrix-specific PAK signaling and describe a novel mechanism of nitric oxide–dependent NF-κB inhibition.
Collapse
Affiliation(s)
- Arif Yurdagul
- Department of Pathology, LSU Health Sciences Center, Shreveport, LA 71103, USA
| | | | | | | | | | | |
Collapse
|
68
|
Nie J, Sun C, Faruque O, Ye G, Li J, Liang Q, Chang Z, Yang W, Han X, Shi Y. Synapses of amphids defective (SAD-A) kinase promotes glucose-stimulated insulin secretion through activation of p21-activated kinase (PAK1) in pancreatic β-Cells. J Biol Chem 2012; 287:26435-44. [PMID: 22669945 DOI: 10.1074/jbc.m112.378372] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The p21-activated kinase-1 (PAK1) is implicated in regulation of insulin exocytosis as an effector of Rho GTPases. PAK1 is activated by the onset of glucose-stimulated insulin secretion (GSIS) through phosphorylation of Thr-423, a major activation site by Cdc42 and Rac1. However, the kinase(s) that phosphorylates PAK1 at Thr-423 in islet β-cells remains elusive. The present studies identified SAD-A (synapses of amphids defective), a member of AMP-activated protein kinase-related kinases exclusively expressed in brain and pancreas, as a key regulator of GSIS through activation of PAK1. We show that SAD-A directly binds to PAK1 through its kinase domain. The interaction is mediated by the p21-binding domain (PBD) of PAK1 and requires both kinases in an active conformation. The binding leads to direct phosphorylation of PAK1 at Thr-423 by SAD-A, triggering the onset of GSIS from islet β-cells. Consequently, ablation of PAK1 kinase activity or depletion of PAK1 expression completely abolishes the potentiating effect of SAD-A on GSIS. Consistent with its role in regulating GSIS, overexpression of SAD-A in MIN6 islet β-cells significantly stimulated cytoskeletal remodeling, which is required for insulin exocytosis. Together, the present studies identified a critical role of SAD-A in the activation of PAK1 during the onset of insulin exocytosis.
Collapse
Affiliation(s)
- Jia Nie
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Fu D, Yang Y, Xiao Y, Lin H, Ye Y, Zhan Z, Liang L, Yang X, Sun L, Xu H. Role of p21-activated kinase 1 in regulating the migration and invasion of fibroblast-like synoviocytes from rheumatoid arthritis patients. Rheumatology (Oxford) 2012; 51:1170-80. [PMID: 22416254 DOI: 10.1093/rheumatology/kes031] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE To investigate the role of p21-activated kinase 1 (PAK1) in regulating migration, invasion and MMP expression in RA fibroblast-like synoviocytes (FLS). METHODS RA FLS migration and invasion in vitro were measured by the Boyden chamber method. Invasion of RA FLS into cartilage was detected in the severe combined immunodeficiency (SCID) mouse co-implantation model of RA in vivo. PAK1 and MT1-MMP expression were examined by western blotting. ELISA was used to measure the production and activity of MMPs. RESULTS Phosphorylated PAK1 (p-PAK1) protein expression was increased in ex vivo synovial membrane cells from RA patients. Stimulation with IL-1β or TNF-α up-regulated p-PAK1 expression. Inhibition of PAK1 by transfection with dominant negative PAK1 mutant (dnPAK1) reduced in vitro migration and invasion of RA FLS. In the SCID mouse model, RA FLS invasion into cartilage was attenuated by transfection with dnPAK1 in vivo. PAK1 regulated IL-1β-induced production and activity of MMP-13 and MT1-MMP. Inhibition of MMP-13 or MT1-MMP activity also reduced RA FLS invasion. Furthermore, dnPAK1 transfection inhibited c-Jun N-terminal kinase (JNK) activation, but did not affect the activities of extracellular signal-regulated kinases and p38. Inhibition of the JNK activity by chemical inhibitor significantly reduced the migration, invasion and production of MMP-13 and MT1-MMP. CONCLUSION PAK1 plays an important role in regulating the migration, invasion and production and activity of MMPs in RA FLS, which is mediated by the JNK pathway. This suggests a novel strategy targeting PAK1 to prevent joint destruction of RA.
Collapse
Affiliation(s)
- Di Fu
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong 510080, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Akiva E, Friedlander G, Itzhaki Z, Margalit H. A dynamic view of domain-motif interactions. PLoS Comput Biol 2012; 8:e1002341. [PMID: 22253583 PMCID: PMC3257277 DOI: 10.1371/journal.pcbi.1002341] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 11/20/2011] [Indexed: 11/19/2022] Open
Abstract
Many protein-protein interactions are mediated by domain-motif interaction, where a domain in one protein binds a short linear motif in its interacting partner. Such interactions are often involved in key cellular processes, necessitating their tight regulation. A common strategy of the cell to control protein function and interaction is by post-translational modifications of specific residues, especially phosphorylation. Indeed, there are motifs, such as SH2-binding motifs, in which motif phosphorylation is required for the domain-motif interaction. On the contrary, there are other examples where motif phosphorylation prevents the domain-motif interaction. Here we present a large-scale integrative analysis of experimental human data of domain-motif interactions and phosphorylation events, demonstrating an intriguing coupling between the two. We report such coupling for SH3, PDZ, SH2 and WW domains, where residue phosphorylation within or next to the motif is implied to be associated with switching on or off domain binding. For domains that require motif phosphorylation for binding, such as SH2 domains, we found coupled phosphorylation events other than the ones required for domain binding. Furthermore, we show that phosphorylation might function as a double switch, concurrently enabling interaction of the motif with one domain and disabling interaction with another domain. Evolutionary analysis shows that co-evolution of the motif and the proximal residues capable of phosphorylation predominates over other evolutionary scenarios, in which the motif appeared before the potentially phosphorylated residue, or vice versa. Our findings provide strengthening evidence for coupled interaction-regulation units, defined by a domain-binding motif and a phosphorylated residue. Domain-motif interactions are instrumental for many central cellular processes, and are therefore tightly regulated. Phosphorylation events are known modulators of protein-protein interactions in general, including domain-motif interactions. Here, we addressed the association of phosphorylation and domain-motif interaction taking a motif-centred view. We integrated human domain-motif interaction and phosphorylation data for four representative domains (SH2, WW, SH3 and PDZ), and showed that the adjacency between phosphorylation and domain-motif interactions is extensive, suggesting interesting functional links between them that extend the classical and widely studied phospho-regulation of SH2 or WW domain-motif interactions. Furthermore, we show that such interaction-regulation units may function as double switches, concurrently enabling interaction of the motif with one domain and disabling interaction with another domain. These latter interaction-regulation units are more conserved in evolution than the individual units comprising them. Assuming that the four analyzed domain-motif interaction types are reliable representatives of such interactions, our results support the existence of units comprising motifs and associated phosphorylation sites, in which the regulation of domain-motif interaction is inherent.
Collapse
Affiliation(s)
- Eyal Akiva
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gilgi Friedlander
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Zohar Itzhaki
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
71
|
The secret life of kinases: functions beyond catalysis. Cell Commun Signal 2011; 9:23. [PMID: 22035226 PMCID: PMC3215182 DOI: 10.1186/1478-811x-9-23] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 10/28/2011] [Indexed: 02/07/2023] Open
Abstract
Protein phosphorylation participates in the regulation of all fundamental biological processes, and protein kinases have been intensively studied. However, while the focus was on catalytic activities, accumulating evidence suggests that non-catalytic properties of protein kinases are essential, and in some cases even sufficient for their functions. These non-catalytic functions include the scaffolding of protein complexes, the competition for protein interactions, allosteric effects on other enzymes, subcellular targeting, and DNA binding. This rich repertoire often is used to coordinate phosphorylation events and enhance the specificity of substrate phosphorylation, but also can adopt functions that do not rely on kinase activity. Here, we discuss such kinase independent functions of protein and lipid kinases focussing on kinases that play a role in the regulation of cell proliferation, differentiation, apoptosis, and motility.
Collapse
|
72
|
Taglieri DM, Monasky MM, Knezevic I, Sheehan KA, Lei M, Wang X, Chernoff J, Wolska BM, Ke Y, Solaro RJ. Ablation of p21-activated kinase-1 in mice promotes isoproterenol-induced cardiac hypertrophy in association with activation of Erk1/2 and inhibition of protein phosphatase 2A. J Mol Cell Cardiol 2011; 51:988-96. [PMID: 21971074 DOI: 10.1016/j.yjmcc.2011.09.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 09/09/2011] [Accepted: 09/11/2011] [Indexed: 12/16/2022]
Abstract
Earlier investigations in our lab indicated an anti-adrenergic effect induced by activation of p21-activated kinase (Pak-1) and protein phosphatase 2A (PP2A). Our objective was to test the hypothesis that Pak-1/PP2A is a signaling cascade controlling stress-induced cardiac growth. We determined the effects of ablation of the Pak-1 gene on the response of the myocardium to chronic stress of isoproterenol (ISO) administration. Wild-type (WT) and Pak-1-knockout (Pak-1-KO) mice were randomized into six groups to receive either ISO, saline (CTRL), or ISO and FR180204, a selective inhibitor of Erk1/2. Echocardiography revealed that hearts of the Pak-1-KO/ISO group had increased LV fractional shortening, reduced LV chamber volume in diastole and systole, increased cardiac hypertrophy, and enhanced transmitral early filling deceleration time, compared to all other groups. The changes were associated with an increase in relative Erk1/2 activation in Pak-1-KO/ISO mice versus all other groups. ISO-induced cardiac hypertrophy and Erk1/2 activation in Pak-1-KO/ISO were attenuated when the selective Erk1/2 inhibitor FR180204 was administered. Immunoprecipitation showed an association between Pak-1, PP2A, and Erk1/2. Cardiac myocytes infected with an adenoviral vector expressing constitutively active Pak-1 showed a repression of Erk1/2 activation. p38 MAPK phosphorylation was decreased in Pak-1-KO/ISO and Pak-1-KO/CTRL mice compared to WT. Levels of phosphorylated PP2A were increased in ISO-treated Pak-1-KO mice, indicating reduced phosphatase activity. Maximum Ca(2+)-activated tension in detergent-extracted bundles of papillary fibers from ISO-treated Pak-1-KO mice was higher than in all other groups. Analysis of cTnI phosphorylation indicated that compared to WT, ISO-induced phosphorylation of cTnI was blunted in Pak-1-KO mice. Active Pak-1 is a natural inhibitor of Erk1/2 and a novel anti-hypertrophic signaling molecule upstream of PP2A.
Collapse
Affiliation(s)
- Domenico M Taglieri
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott Ave, M/C 901, Chicago, IL 60612-7342, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Thévenot E, Moreau AW, Rousseau V, Combeau G, Domenichini F, Jacquet C, Goupille O, Amar M, Kreis P, Fossier P, Barnier JV. p21-Activated kinase 3 (PAK3) protein regulates synaptic transmission through its interaction with the Nck2/Grb4 protein adaptor. J Biol Chem 2011; 286:40044-59. [PMID: 21949127 DOI: 10.1074/jbc.m111.262246] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the p21-activated kinase 3 gene (pak3) are responsible for nonsyndromic forms of mental retardation. Expression of mutated PAK3 proteins in hippocampal neurons induces abnormal dendritic spine morphology and long term potentiation anomalies, whereas pak3 gene invalidation leads to cognitive impairments. How PAK3 regulates synaptic plasticity is still largely unknown. To better understand how PAK3 affects neuronal synaptic plasticity, we focused on its interaction with the Nck adaptors that play a crucial role in PAK signaling. We report here that PAK3 interacts preferentially with Nck2/Grb4 in brain extracts and in transfected cells. This interaction is independent of PAK3 kinase activity. Selective uncoupling of the Nck2 interactions in acute cortical slices using an interfering peptide leads to a rapid increase in evoked transmission to pyramidal neurons. The P12A mutation in the PAK3 protein strongly decreases the interaction with Nck2 but only slightly with Nck1. In transfected hippocampal cultures, expression of the P12A-mutated protein has no effect on spine morphogenesis or synaptic density. The PAK3-P12A mutant does not affect synaptic transmission, whereas the expression of the wild-type PAK3 protein decreases the amplitude of spontaneous miniature excitatory currents. Altogether, these data show that PAK3 down-regulates synaptic transmission through its interaction with Nck2.
Collapse
Affiliation(s)
- Emmanuel Thévenot
- CNRS, Institut de Neurobiologie Alfred Fessard, Laboratoire de Neurobiologie Cellulaire et Moléculaire, 91190 Gif sur Yvette, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Meshki J, Douglas SD, Hu M, Leeman SE, Tuluc F. Substance P induces rapid and transient membrane blebbing in U373MG cells in a p21-activated kinase-dependent manner. PLoS One 2011; 6:e25332. [PMID: 21966499 PMCID: PMC3179504 DOI: 10.1371/journal.pone.0025332] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 09/01/2011] [Indexed: 11/18/2022] Open
Abstract
U373MG astrocytoma cells endogenously express the full-length neurokinin 1 receptor (NK1R). Substance P (SP), the natural ligand for NK1R, triggers rapid and transient membrane blebbing and we report that these morphological changes have different dynamics and intracellular signaling as compared to the changes that we have previously described in HEK293-NK1R cells. In both cell lines, the SP-induced morphological changes are Gq-independent, and they require the Rho, Rho-associated coiled-coil kinase (ROCK) signaling pathway. Using confocal microscopy we have demonstrated that tubulin is phosphorylated subsequent to cell stimulation with SP and that tubulin accumulates inside the blebs. Colchicine, a tubulin polymerization inhibitor, blocked SP-induced blebbing in U373MG but not in HEK293-NK1R cells. Although p21-activated kinase (PAK) is expressed in both cell lines, SP induced rapid phosphorylation of PAK in U373MG, but failed to phosphorylate PAK in HEK293-NK1R cells. The cell-permeable Rho inhibitor C3 transferase inhibited SP-induced PAK phosphorylation, but the ROCK inhibitor Y27632 had no effect on PAK phosphorylation, suggesting that Rho activates PAK in a ROCK-independent manner. Our study demonstrates that SP triggers rapid changes in cell morphology mediated by distinct intracellular signaling mechanisms in U373MG versus HEK293-NK1R cells.
Collapse
Affiliation(s)
- John Meshki
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Steven D. Douglas
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics, University of Pennsylvania Medical School, Philadelphia, Pennsylvania, United States of America
| | - Mingyue Hu
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Susan E. Leeman
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Florin Tuluc
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics, University of Pennsylvania Medical School, Philadelphia, Pennsylvania, United States of America
- Flow Cytometry Core Laboratory, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
75
|
Bracho-Valdés I, Moreno-Alvarez P, Valencia-Martínez I, Robles-Molina E, Chávez-Vargas L, Vázquez-Prado J. mTORC1- and mTORC2-interacting proteins keep their multifunctional partners focused. IUBMB Life 2011; 63:896-914. [PMID: 21905202 DOI: 10.1002/iub.558] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 07/14/2011] [Indexed: 12/11/2022]
Abstract
The mammalian target of rapamycin, best known as mTOR, is a phylogenetically conserved serine/threonine kinase that controls life-defining cellular processes such as growth, metabolism, survival, and migration under the influence of multiple interacting proteins. Historically, the cellular activities blocked by rapamycin in mammalian cells were considered the only events controlled by mTOR. However, this paradigm changed with the discovery of two signaling complexes differentially sensitive to rapamycin, whose catalytic component is mTOR. The one sensitive to rapamycin, known as mTORC1, promotes protein synthesis in response to growth factors and nutrients via the phosphorylation of p70S6K and 4EBP1; while the other, known as mTORC2, promotes cell migration and survival via the activation of Rho GTPases and the phosphorylation of AKT, respectively. Although mTORC2 kinase activity is not inhibited by rapamycin, hours of incubation with this antibiotic can impede the assembly of this signaling complex. The direct mechanism by which mTORC2 leads to cell migration depends on its interaction with P-Rex1, a Rac-specific guanine nucleotide exchange factor, while additional indirect pathways involve the intervention of PKC or AKT, multifunctional ubiquitous serine/threonine kinases that activate effectors of cell migration upon being phosphorylated by mTORC2 in response to chemotactic signals. These mTORC2 effectors are altered in metastatic cancer. Numerous clinical trials are testing mTOR inhibitors as potential antineoplasic drugs. Here, we briefly review the actions of mTOR with emphasis on the controlling role of mTORC1 and mTORC2-interacting proteins and highlight the mechanisms linked to cell migration.
Collapse
Affiliation(s)
- Ismael Bracho-Valdés
- Department of Pharmacology, CINVESTAV-IPN, Av. Instituto Politécnico Nacional 2508.Col. San Pedro Zacatenco, 07000 México D.F., México
| | | | | | | | | | | |
Collapse
|
76
|
Rahman P, Huysmans RD, Wiradjaja F, Gurung R, Ooms LM, Sheffield DA, Dyson JM, Layton MJ, Sriratana A, Takada H, Tiganis T, Mitchell CA. Silencer of death domains (SODD) inhibits skeletal muscle and kidney enriched inositol 5-phosphatase (SKIP) and regulates phosphoinositide 3-kinase (PI3K)/Akt signaling to the actin cytoskeleton. J Biol Chem 2011; 286:29758-70. [PMID: 21712384 DOI: 10.1074/jbc.m111.263103] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Phosphoinositide 3-kinase (PI3K) regulates cell polarity and migration by generating phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P(3)) at the leading edge of migrating cells. The serine-threonine protein kinase Akt binds to PI(3,4,5)P(3), resulting in its activation. Active Akt promotes spatially regulated actin cytoskeletal remodeling and thereby directed cell migration. The inositol polyphosphate 5-phosphatases (5-ptases) degrade PI(3,4,5)P(3) to form PI(3,4)P(2), which leads to diminished Akt activation. Several 5-ptases, including SKIP and SHIP2, inhibit actin cytoskeletal reorganization by opposing PI3K/Akt signaling. In this current study, we identify a molecular co-chaperone termed silencer of death domains (SODD/BAG4) that forms a complex with several 5-ptase family members, including SKIP, SHIP1, and SHIP2. The interaction between SODD and SKIP exerts an inhibitory effect on SKIP PI(3,4,5)P(3) 5-ptase catalytic activity and consequently enhances the recruitment of PI(3,4,5)P(3)-effectors to the plasma membrane. In contrast, SODD(-/-) mouse embryonic fibroblasts exhibit reduced Akt-Ser(473) and -Thr(308) phosphorylation following EGF stimulation, associated with increased SKIP PI(3,4,5)P(3)-5-ptase activity. SODD(-/-) mouse embryonic fibroblasts exhibit decreased EGF-stimulated F-actin stress fibers, lamellipodia, and focal adhesion complexity, a phenotype that is rescued by the expression of constitutively active Akt1. Furthermore, reduced cell migration was observed in SODD(-/-) macrophages, which express the three 5-ptases shown to interact with SODD (SKIP, SHIP1, and SHIP2). Therefore, this study identifies SODD as a novel regulator of PI3K/Akt signaling to the actin cytoskeleton.
Collapse
Affiliation(s)
- Parvin Rahman
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Majumdar D, Nebhan CA, Hu L, Anderson B, Webb DJ. An APPL1/Akt signaling complex regulates dendritic spine and synapse formation in hippocampal neurons. Mol Cell Neurosci 2011; 46:633-44. [PMID: 21236345 PMCID: PMC3046229 DOI: 10.1016/j.mcn.2011.01.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 11/04/2010] [Accepted: 01/04/2011] [Indexed: 01/16/2023] Open
Abstract
The formation and plasticity of dendritic spines and synapses, which are poorly understood on a molecular level, are critical for cognitive functions, such as learning and memory. The adaptor protein containing a PH domain, PTB domain, and leucine zipper motif (APPL1) is emerging as a critical regulator of various cellular processes in non-neuronal cells, but its function in the nervous system is not well understood. Here, we show that APPL1 localizes to dendritic spines and synapses and regulates the development of these structures in hippocampal neurons. Knockdown of endogenous APPL1 using siRNA led to a significant decrease in the number of spines as well as synapses and this defect could be rescued by expression of siRNA-resistant APPL1. Expression of exogenous APPL1 increased the spine and synaptic density and the amount of surface GluR1-containing α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs). Deletion of the C-terminal phosphotyrosine binding domain of APPL1, which binds the serine/threonine kinase Akt, resulted in a significant decrease in the spine and synaptic density, suggesting a role for Akt in regulating the development of these structures. Consistent with this, knockdown of Akt with siRNA or expression of dominant negative Akt led to a dramatic decrease in spine and synapse formation. In addition, APPL1 increased the amount of active Akt in spines and synapses and the effects of APPL1 on these structures were dependent on Akt, indicating that Akt is an effector of APPL1 in the regulation of these processes. Moreover, APPL1 signaling modulates spine and synapse formation through p21-activated kinase (PAK). Thus, our results indicate that APPL1 signaling through Akt and PAK is critical for spine and synaptic development and point to a role for APPL1 and its effectors in regulating cognitive function.
Collapse
Affiliation(s)
- Devi Majumdar
- Department of Biological Sciences, Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Caroline A. Nebhan
- Department of Biological Sciences, Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Lan Hu
- Department of Biological Sciences, Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Bridget Anderson
- Department of Biological Sciences, Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Donna J. Webb
- Department of Biological Sciences, Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37235, USA
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee 37235, USA
| |
Collapse
|
78
|
Mak AS. p53 regulation of podosome formation and cellular invasion in vascular smooth muscle cells. Cell Adh Migr 2011; 5:144-9. [PMID: 21164280 DOI: 10.4161/cam.5.2.14375] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The p53 transcription factor, discovered in 1979 ( 1;2) , is well known as a potent suppressor of tumor development by inhibiting cell cycle progression, and promoting senescence or apoptosis, when the genome is compromised or under oncogenic stress ( 3) . Accumulating evidence has pointed to an alternative role of p53 in the curtailment of tumor progression and colonization of secondary sites by negatively regulating tumor cell metastasis ( 4;5) . Recently, we have found that p53 suppresses Src-induced formation of podosomes and associated invasive phenotypes in fibroblasts and vascular smooth muscle cells (VSMC) ( 6;7) . In this review, I will focus on some recent studies that have identified p53 as a suppressor of cell migration and invasion in general, and VSMC podosome formation and ECM degradation in particular.
Collapse
Affiliation(s)
- Alan S Mak
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
79
|
The Bcl-2-associated death promoter (BAD) lowers the threshold at which the Bcl-2-interacting domain death agonist (BID) triggers mitochondria disintegration. J Theor Biol 2011; 271:114-23. [DOI: 10.1016/j.jtbi.2010.11.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 11/03/2010] [Accepted: 11/24/2010] [Indexed: 11/17/2022]
|
80
|
Abstract
IMPORTANCE OF THE FIELD P21-activated kinases (PAKs) are involved in multiple signal transduction pathways in mammalian cells. PAKs, and PAK1 in particular, play a role in such disorders as cancer, mental retardation and allergy. Cell motility, survival and proliferation, the organization and function of cytoskeleton and extracellular matrix, transcription and translation are among the processes affected by PAK1. AREAS COVERED IN THIS REVIEW We discuss the mechanisms that control PAK1 activity, its involvement in physiological and pathophysiological processes, the benefits and the drawbacks of the current tools to regulate PAK1 activity, the evidence that suggests PAK1 as a therapeutic target and the likely directions of future research. WHAT THE READER WILL GAIN The reader will gain a better knowledge and understanding of the areas described above. TAKE HOME MESSAGE PAK1 is a promising therapeutic target in cancer and allergen-induced disorders. Its suitability as a target in vascular, neurological and infectious diseases remains ambiguous. Further advancement of this field requires progress on such issues as the development of specific and clinically acceptable inhibitors, the choice between targeting one or multiple PAK isoforms, elucidation of the individual roles of PAK1 targets and the mechanisms that may circumvent inhibition of PAK1.
Collapse
Affiliation(s)
- Julia V Kichina
- Roswell Park Cancer Institute, Department of Cell Stress Biology, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Anna Goc
- University of Georgia, Medical College of Georgia, College of Pharmacy, Program in Clinical & Experimental Therapeutics, HM-1200, Augusta, GA 30912 2450, USA
| | - Belal Al-Husein
- University of Georgia, Medical College of Georgia, College of Pharmacy, Program in Clinical & Experimental Therapeutics, HM-1200, Augusta, GA 30912 2450, USA
| | - Payaningal R Somanath
- University of Georgia, Medical College of Georgia, College of Pharmacy, Program in Clinical & Experimental Therapeutics, HM-1200, Augusta, GA 30912 2450, USA
| | - Eugene S Kandel
- Roswell Park Cancer Institute, Department of Cell Stress Biology, Elm and Carlton Streets, Buffalo, NY 14263, USA
| |
Collapse
|
81
|
Siu MKY, Wong ESY, Chan HY, Kong DSH, Woo NWS, Tam KF, Ngan HYS, Chan QKY, Chan DCW, Chan KYK, Cheung ANY. Differential expression and phosphorylation of Pak1 and Pak2 in ovarian cancer: effects on prognosis and cell invasion. Int J Cancer 2010; 127:21-31. [PMID: 19876919 DOI: 10.1002/ijc.25005] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ovarian cancer is a gynecological malignancy with high mortality. Therefore, the identification of novel prognostic and therapeutic targets is important. p21-activated kinases (Paks) are involved in cytoskeleton reorganization. This study investigated the clinical significance of total and phosphorylated (p) Pak1 and Pak2 as well as their functional roles in ovarian cancer. Expressions of Pak1, p-Pak1 Thr(212), Pak2 and p-Pak2 Ser(20) in ovarian normal and cancerous cell lines as well as in clinical samples of ovarian tumors were evaluated. The effects of Pak1 and Pak2 on ovarian cancer cell functions were determined. Pak1, p-Pak1 and p-Pak2 were overexpressed in ovarian cancer cell lines, and clinical samples of ovarian cancers were compared with benign ovarian lesions/inclusion cysts. Similar Pak2 expression levels were observed among normal and cancerous cell lines and clinical samples. After multiple testing correction, high Pak1 and nuclear p-Pak1 expression in ovarian cancers was significantly associated with histological type and tumor grade, respectively. Pak1 and p-Pak1 expression was associated with poor overall and disease-free survival. Pak1 was an independent prognostic factor. Knockdown of Pak1 and Pak2 in ovarian cancer cell lines reduced cell migration and invasion but did not affect cell proliferation and apoptosis. Knockdown of Pak1 also reduced p38 activation and downregulated vascular endothelial growth factor. Conversely, ectopic Pak1 overexpression enhanced ovarian cancer cell migration and invasion in a kinase-dependent manner, along with increased p38 activation. Our findings suggest that Pak1, p-Pak1 and p-Pak2 play important roles in ovarian carcinogenesis. Pak1 and p-Pak1 may be potential prognostic markers and therapeutic molecular targets in ovarian cancer.
Collapse
Affiliation(s)
- Michelle K Y Siu
- Department of Pathology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Yang WL, Wu CY, Wu J, Lin HK. Regulation of Akt signaling activation by ubiquitination. Cell Cycle 2010; 9:487-97. [PMID: 20081374 DOI: 10.4161/cc.9.3.10508] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Akt (also known as PKB) signaling orchestrates many aspects of biological functions and, importantly, its deregulation is linked to cancer development. Akt activity is well-known regulated through its phosphorylation at T308 and S473 by PDK1 and mTOrC2, respectively. Although in the last decade the research has been primarily focused on Akt phosphorylation and its role in Akt activation and functions, other posttranslational modifications on Akt have never been reported. Until very recently, a novel posttranslational modification on Akt termed ubiquitination was identified and shown to play an important role in Akt activation. The cancer-associated Akt mutant recently identified in a subset of human cancers displays enhanced Akt ubiquitination, in turn contributing to Akt hyperactivation, suggesting a potential role of Akt ubiquitination in cancers. Thus, this novel posttranslational modification on Akt reveals an exciting avenue that has advanced our current understandings of how Akt signaling activation is regulated.
Collapse
Affiliation(s)
- Wei-Lei Yang
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | | | | | | |
Collapse
|
83
|
Siu MKY, Yeung MCW, Zhang H, Kong DSH, Ho JWK, Ngan HYS, Chan DCW, Cheung ANY. p21-Activated kinase-1 promotes aggressive phenotype, cell proliferation, and invasion in gestational trophoblastic disease. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:3015-22. [PMID: 20413688 DOI: 10.2353/ajpath.2010.091263] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gestational trophoblastic disease (GTD) includes hydatidiform mole (HM), which can develop persistent gestational trophoblastic neoplasia requiring chemotherapy; choriocarcinoma, which is a frankly malignant tumor; placental site trophoblastic tumor; and epithelioid trophoblastic tumor. p21-Activated kinases (PAKs) promote malignant tumor progression. Therefore, this study investigated PAK1, PAK2, and p-PAK2 Ser(20) in the pathogenesis of GTD. By real-time PCR, PAK1 mRNA was significantly higher in HMs, particularly metastatic HMs (P = 0.046) and HMs that developed persistent disease (P = 0.011), when compared with normal placentas. By immunohistochemistry, significantly increased cytoplasmic PAK1 immunoreactivity in cytotrophoblasts was also detected in HMs (P = 0.042) and choriocarcinomas (P = 0.003). In addition, HMs that developed persistent disease displayed higher PAK1 immunoreactivity than those that regressed (P = 0.016), and elevated PAK1 immunoreactivity was observed in placental site trophoblastic tumors. Indeed, there was significant positive correlation between PAK1 expression and the proliferative indices Ki-67 (P = 0.016) and MCM7 (P = 0.026). Moreover, higher PAK1 mRNA and protein expression was confirmed in the choriocarcinoma cell-lines JEG-3 and JAR; however, PAK2 mRNA and p-PAK2 immunoreactivity showed a similar expression pattern in normal first trimester placentas and GTD. Knockdown of PAK1 in JEG-3 and JAR reduced cell proliferation, migration, and invasion ability, up-regulated p16, and down-regulated vascular endothelial growth factor and MT1-MMP expression. This is the first report revealing the involvement of PAK1 in the pathogenesis and clinical progress of GTD.
Collapse
Affiliation(s)
- Michelle K Y Siu
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Bristow JM, Sellers MH, Majumdar D, Anderson B, Hu L, Webb DJ. The Rho-family GEF Asef2 activates Rac to modulate adhesion and actin dynamics and thereby regulate cell migration. J Cell Sci 2009; 122:4535-46. [PMID: 19934221 DOI: 10.1242/jcs.053728] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Asef2 is a recently identified Rho-family guanine nucleotide exchange factor (GEF) that has been implicated in the modulation of actin, but its function in cell migration and adhesion dynamics is not well understood. In this study, we show that Asef2 is an important regulator of cell migration and adhesion assembly and disassembly (turnover). Asef2 localizes with actin at the leading edge of cells. Knockdown of endogenous Asef2 impairs migration and significantly slows the turnover of adhesions. Asef2 enhances both Rac1 and Cdc42 activity in HT1080 cells, but only Rac1 is crucial for the Asef2-promoted increase in migration and adhesion turnover. Phosphoinositide 3-kinase (PI3K) and the serine/threonine kinase Akt are also essential for the Asef2-mediated effects on migration and adhesion turnover. Consistent with this, Asef2 increases the amount of active Akt at the leading edge of cells. Asef2 signaling leads to an overall decrease in Rho activity, which is crucial for stimulating migration and adhesion dynamics. Thus, our results reveal an important new role for Asef2 in promoting cell migration and rapid adhesion turnover by coordinately regulating the activities of Rho-family GTPases.
Collapse
Affiliation(s)
- Jeanne M Bristow
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | | | |
Collapse
|
85
|
Heckman CA, Demuth JG, Deters D, Malwade SR, Cayer ML, Monfries C, Mamais A. Relationship of p21-activated kinase (PAK) and filopodia to persistence and oncogenic transformation. J Cell Physiol 2009; 220:576-85. [PMID: 19384897 DOI: 10.1002/jcp.21788] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Previously, we found that oncogenically transformed cells had fewer filopodia and more large, p21-activated kinase (PAK)-dependent features than normal cells. These large protrusions (LPs) were increased in cells expressing RhoA(N19) with Cdc42-associated kinase (ACK). Here, we determine how GTPase-mediated mechanisms of focal contact (FC) regulation affect these protrusions. Constructs encoding various proteins were introduced into cells which were then studied by microscopy and computerized image processing and analysis. Constructs that prevented PAK recruitment by PAK-interacting exchange factor (PIX) or restricted PAK residence time on FCs decreased both protrusions. Thus, filopodia were also PAK-dependent. A comparison of FC distribution in cells expressing PAK in the presence or absence of PAK kinase inhibitor domain (KID) suggested that PAK enlarged FCs without affecting the prevalence of either protrusion. KID or Nck expression increased LPs but not filopodia. Nck failed to synergize with KID or ACK and RhoA(N19) in enhancing LPs. Nck and KID synergistically enhanced filopodia, possibly because Nck recruited PAK to FCs while KID prevented their dissociation by PAK-mediated autophosphorylation. Coexpression of Nck, ACK, and RhoA(N19) abrogated filopodia and replicated the transformed phenotype. Since Nck recruitment of PAK is implicated in persistence of directional movement, we studied the PAK-Nck interface. Filopodia were eliminated by the Nck PAK-binding domain and LPs by the PAK Nck-binding domain. The results suggested that filopodia formation has more stringent requirements than LP formation, and Nck and PAK are used differently in the protrusions. Loss of filopodia in transformed cells may reflect defective regulation of GTPase mechanisms.
Collapse
Affiliation(s)
- Carol A Heckman
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio 43403-0212, USA.
| | | | | | | | | | | | | |
Collapse
|
86
|
Molli PR, Li DQ, Brion M, Rayala SK, Kumar R. PAK signaling in oncogenesis. Oncogene 2009; 28:2545-55. [PMID: 19465939 PMCID: PMC2731678 DOI: 10.1038/onc.2009.119] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 03/23/2009] [Accepted: 04/08/2009] [Indexed: 12/24/2022]
Abstract
The p21-activated kinase (PAK) family of serine/threonine kinases is important in physiological processes including motility, survival, mitosis, transcription and translation. PAKs are evolutionally conserved and widely expressed in a variety of tissues and are often overexpressed in multiple cancer types. Depending on structural and functional similarities, the six members of PAK family are divided into two groups with three members in each group. Group I PAKs are activated by extracellular signals through GTPase-dependent and GTPase-independent mechanisms. In contrast, group II PAKs are constitutively active. Over the years, accumulating data from tissue culture models and human tumors has increased our understanding about the biology of PAK family members. In this review, we have summarized the complex regulation of PAK and its downstream diverse myriads of effectors, which in turn are responsible for the biological effects of PAK family of kinases in cancer cells.
Collapse
Affiliation(s)
- Poonam R. Molli
- Department of Biochemistry and Molecular Biology, George Washington University Medical Center, Washington DC 20037, USA
| | - Da-Qiang Li
- Department of Biochemistry and Molecular Biology, George Washington University Medical Center, Washington DC 20037, USA
| | - Murray Brion
- Pfizer Global Research and Development, La Jolla Laboratories, 10646 Science Center Drive, San Diego, CA 92121
| | - Suresh K. Rayala
- Department of Biochemistry and Molecular Biology, George Washington University Medical Center, Washington DC 20037, USA
| | - Rakesh Kumar
- Department of Biochemistry and Molecular Biology, George Washington University Medical Center, Washington DC 20037, USA
| |
Collapse
|
87
|
Bousquet E, Mazières J, Privat M, Rizzati V, Casanova A, Ledoux A, Mery E, Couderc B, Favre G, Pradines A. Loss of RhoB expression promotes migration and invasion of human bronchial cells via activation of AKT1. Cancer Res 2009; 69:6092-9. [PMID: 19602596 DOI: 10.1158/0008-5472.can-08-4147] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide, mainly due to its highly metastatic properties. Previously, we reported an inverse correlation between RhoB expression and the progression of the lung cancer, occurring between preinvasive and invasive tumors. Herein, we mimicked the loss of RhoB observed throughout lung oncogenesis with RNA interference in nontumoral bronchial cell lines and analyzed the consequences on both cell transformation and invasion. Down-regulation of RhoB did not modify the cell growth properties but did promote migration and invasiveness. Furthermore, RhoB depletion was accompanied by modifications of actin and cell adhesion. The specific activation of the Akt1 isoform and Rac1 was found to be critical for this RhoB-mediated regulation of migration. Lastly, we showed that RhoB down-regulation consecutive to K-RasV12 cell transformation is critical for cell motility but not for cell proliferation. We propose that RhoB loss during lung cancer progression relates to the acquisition of invasiveness mediated by the phosphatidylinositol 3-kinase (PI3K)/AKT and Rac1 pathways rather than to tumor initiation.
Collapse
Affiliation(s)
- Emilie Bousquet
- Département Innovation Thérapeutique et Oncologie Moléculaire, Institut National de la Sante et de la Recherche Medicale U563, Université de Toulouse, UPS, Centre de Physiopathologie Toulouse Purpan, Toulouse, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Sun J, Khalid S, Rozakis-Adcock M, Fantus IG, Jin T. P-21-activated protein kinase-1 functions as a linker between insulin and Wnt signaling pathways in the intestine. Oncogene 2009; 28:3132-44. [DOI: 10.1038/onc.2009.167] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
89
|
Liu J, Wang Z, Jiang K, Zhang L, Zhao L, Hua S, Yan F, Yang Y, Wang D, Fu C, Ding X, Guo Z, Yao X. PRC1 cooperates with CLASP1 to organize central spindle plasticity in mitosis. J Biol Chem 2009; 284:23059-71. [PMID: 19561070 DOI: 10.1074/jbc.m109.009670] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
During cell division, chromosome segregation is governed by the interaction of spindle microtubules with the kinetochore. A dramatic remodeling of interpolar microtubules into an organized central spindle between the separating chromatids is required for the initiation and execution of cytokinesis. Central spindle organization requires mitotic kinesins, microtubule-bundling protein PRC1, and Aurora B kinase complex. However, the precise role of PRC1 in central spindle organization has remained elusive. Here we show that PRC1 recruits CLASP1 to the central spindle at early anaphase onset. CLASP1 belongs to a conserved microtubule-binding protein family that mediates the stabilization of overlapping microtubules of the central spindle. PRC1 physically interacts with CLASP1 and specifies its localization to the central spindle. Repression of CLASP1 leads to sister-chromatid bridges and depolymerization of spindle midzone microtubules. Disruption of PRC1-CLASP1 interaction by a membrane-permeable peptide abrogates accurate chromosome segregation, resulting in sister chromatid bridges. These findings reveal a key role for the PRC1-CLASP1 interaction in achieving a stable anti-parallel microtubule organization essential for faithful chromosome segregation. We propose that PRC1 forms a link between stabilization of CLASP1 association with central spindle microtubules and anti-parallel microtubule elongation.
Collapse
Affiliation(s)
- Jing Liu
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology and Hefei National Laboratory for Physical Sciences at Nanoscale, Hefei 230027, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Kong X, Gan H, Hao Y, Cheng C, Jiang J, Hong Y, Yang J, Zhu H, Chi Y, Yun X, Gu J. CDK11p58 phosphorylation of PAK1 Ser174 promotes DLC2 binding and roles on cell cycle progression. J Biochem 2009; 146:417-27. [PMID: 19520772 DOI: 10.1093/jb/mvp089] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
CDK11(p58), a CDK11 family Ser/Thr kinase, is a G2/M specific protein and contributed to regulation of cell cycle, transcription and apoptotic signal transduction. Recently, CDK11(p58) has been reported to exert important functions in mitotic process, such as the regulation of bipolar spindle formation and sister chromatid cohesion. Here, we identified p21 activated kinase 1 (PAK1) as a new CDK11(p58) substrate and we mapped a new phosphorylation site of Ser174 on PAK1. By mutagenesis, we created PAK1(174A) and PAK1(174E), which mimic the dephosphorylated and phosphorylated form of PAK1; further analysis showed PAK1(174E) could be recruited to myosin V motor complex through binding to dynein light chain 2 (DLC2). PAK1(174E) could accelerate the mitosis progression in a nocodazole blocked cell model, while PAK1(174A) exhibited an opposite role. Our results indicated PAK1 may serve as a downstream effector of CDK11(p58) during mitosis progression.
Collapse
Affiliation(s)
- Xiangfei Kong
- Gene Research Center, Key Laboratory of Glycoconjugate Research Ministry of Public Health, Shanghai Medical College of Fudan University, Shanghai, P.R. China, 200032
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Lirdprapamongkol K, Kramb JP, Suthiphongchai T, Surarit R, Srisomsap C, Dannhardt G, Svasti J. Vanillin suppresses metastatic potential of human cancer cells through PI3K inhibition and decreases angiogenesis in vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:3055-63. [PMID: 19368348 DOI: 10.1021/jf803366f] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Vanillin, a food flavoring agent, has been shown to suppress cancer cell migration and metastasis in a mouse model, but its mechanism of action is unknown. In this report, we have examined the antimetastatic potential of vanillin and its structurally related compounds, vanillic acid, vanillyl alcohol, and apocynin on hepatocyte growth factor (HGF)-induced migration of human lung cancer cells by the Transwell assay. Vanillin and apocynin could inhibit cell migration, and both compounds selectively inhibited Akt phosphorylation of HGF signaling, without affecting phosphorylation of Met and Erk. Vanillin and apocynin could inhibit the enzymatic activity of phosphoinositide 3-kinase (PI3K), as revealed by an in vitro lipid kinase assay, suggesting that inhibition of PI3K activity was a mechanism underlying the inhibitory effect on cancer cell migration, and the presence of an aldehyde or ketone group in the vanillin structure was important for this inhibition. Vanillin and apocynin also inhibited angiogenesis, determined by the chick chorioallantoic membrane assay.
Collapse
|
92
|
Non-compensating roles between Nckalpha and Nckbeta in PDGF-BB signaling to promote human dermal fibroblast migration. J Invest Dermatol 2009; 129:1909-20. [PMID: 19242519 DOI: 10.1038/jid.2008.457] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Platelet-derived growth factor BB (PDGF-BB) is a Food and Drug Administration (FDA)-approved growth factor, acting as a mitogen and motogen of dermal fibroblasts (DFs), for skin wound healing. The two closely related SH2/SH3 adapter proteins, Nckalpha and Nckbeta, connect PDGF-BB signaling to the actin cytoskeleton and cell motility. The mechanism has not been fully understood. In this study, we investigated, side by side, the roles of Nckalpha and Nckbeta in PDGF-BB-stimulated DF migration. We found that cells expressing the PDGFRbeta-Y751F mutant (preventing Nckalpha binding) or PDGFRbeta-Y1009F mutant (preventing Nckbeta binding), DF cells isolated from Nckalpha- or Nckbeta-knockout mice, and primary human DF cells with RNA interference (RNAi) knockdown of the endogenous Nckalpha or Nckbeta all failed to migrate in response to PDGF-BB. Overexpression of the middle SH3 domain of Nckalpha or Nckbeta alone in human DFs also blocked PDGF-BB-induced cell migration. However, neither Nckalpha nor Nckbeta was required for the activation of the PDGF receptor, p21-activated protein kinase (Pak1), AKT, extracellular signal-regulated kinase (ERK) 1/2, or p38MAP by PDGF-BB. Although PDGF-BB stimulated the membrane translocation of both Nckalpha and Nckbeta, Nckalpha appeared to mediate Cdc42 signaling for filopodium formation, whereas Nckbeta mediated Rho signaling to induce stress fibers. Thus, this study has elucidated the independent roles and mechanisms of action of Nckalpha and Nckbeta in DF migration, which is critical for wound healing.
Collapse
|
93
|
Gorin MA, Pan Q. Protein kinase C epsilon: an oncogene and emerging tumor biomarker. Mol Cancer 2009; 8:9. [PMID: 19228372 PMCID: PMC2647895 DOI: 10.1186/1476-4598-8-9] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 02/19/2009] [Indexed: 12/30/2022] Open
Abstract
Members of the protein kinase C (PKC) family have long been studied for their contributions to oncogenesis. Among the ten different isoforms of this family of serine/threonine kinases, protein kinase Cε (PKCε) is one of the best understood for its role as a transforming oncogene. In vitro, overexpression of PKCε has been demonstrated to increase proliferation, motility, and invasion of fibroblasts or immortalized epithelial cells. In addition, xenograft and transgenic animal models have clearly shown that overexpression of PKCε is tumorigenic resulting in metastatic disease. Perhaps most important in implicating the epsilon isoform in oncogenesis, PKCε has been found to be overexpressed in tumor-derived cell lines and histopathological tumor specimens from various organ sites. Combined, this body of work provides substantial evidence implicating PKCε as a transforming oncogene that plays a crucial role in establishing an aggressive metastatic phenotype. Reviewed here is the literature that has led to the current understanding of PKCε as an oncogene. Moreover, this review focuses on the PKCε-mediated signaling network for cell motility and explores the interaction of PKCε with three major PKCε signaling nodes: RhoA/C, Stat3 and Akt. Lastly, the emerging role of PKCε as a tumor biomarker is discussed.
Collapse
Affiliation(s)
- Michael A Gorin
- University of Miami, Miller School of Medicine, Miami, FL 33136, USA.
| | | |
Collapse
|
94
|
Somanath PR, Byzova TV. 14-3-3beta-Rac1-p21 activated kinase signaling regulates Akt1-mediated cytoskeletal organization, lamellipodia formation and fibronectin matrix assembly. J Cell Physiol 2008; 218:394-404. [PMID: 18853424 DOI: 10.1002/jcp.21612] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Akt1 belongs to the three-gene Akt family and functions as a serine-threonine kinase regulating phosphorylation of an array of substrates and mediating cellular processes such as cell migration, proliferation, survival, and cell cycle. Our previous studies have established the importance of Akt1 in angiogenesis and absence of Akt1 resulted in impaired integrin activation, adhesion, migration, and extracellular matrix assembly by endothelial cells and fibroblasts. In this study, we identify the downstream signaling pathways activated by Akt1 in the regulation of these cellular events. We demonstrate here that Akt1 is necessary for the growth factor stimulated activation of 14-3-3beta-Rac1-p21 activated kinase (Pak) pathway in endothelial cells and fibroblasts. While activation of Akt1 resulted in translocation of Rac1 to membrane ruffles, enhanced Rac1 activity, Pak1 phosphorylation, and lamellipodia formation, resulting in enhanced adhesion and assembly of fibronectin, inhibition of Akt1 resulted in inhibition of these processes due to impaired Rac1-Pak signaling. Formation of lamellipodia, adhesion, and fibronectin assembly by myristoylated Akt1 expression in NIH 3T3 fibroblasts was inhibited by co-expression with either dominant negative Rac1 or dominant negative Pak1. In contrast, impaired lamellipodia formation, adhesion, and fibronectin assembly by dominant negative-Akt1 expression was rescued by co-expression with either constitutively active-Rac1 or -Pak1. Moreover, previously reported defects in adhesion and extracellular matrix assembly by Akt1(-/-) fibroblasts could be rescued by expression with either active-Rac1 or -Pak1, implying the importance of Rac1-Pak signaling in growth factor stimulated cytoskeletal assembly, lamellipodia formation and cell migration in endothelial cells and fibroblasts downstream of Akt1 activation.
Collapse
Affiliation(s)
- Payaningal R Somanath
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| | | |
Collapse
|
95
|
Smith SD, Jaffer ZM, Chernoff J, Ridley AJ. PAK1-mediated activation of ERK1/2 regulates lamellipodial dynamics. J Cell Sci 2008; 121:3729-36. [PMID: 18940914 PMCID: PMC2702775 DOI: 10.1242/jcs.027680] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
PAK1 is a member of the p21-activated kinase (PAK) family of serine/threonine kinases that are activated by the Rho GTPases Rac and Cdc42, and are implicated in regulating morphological polarity, cell migration and adhesion. Here we investigate the function of PAK1 in cell motility using macrophages derived from PAK1-null mice. We show that CSF1, a macrophage chemoattractant, transiently stimulates PAK1 and MAPK activation, and that MAPK activation is reduced in PAK1-/- macrophages. PAK1 regulates the dynamics of lamellipodium extension as cells spread in response to adhesion but is not essential for macrophage migration or chemotaxis towards CSF1. Following adhesion, PAK1-/- macrophages spread more rapidly and have more lamellipodia than wild-type cells; however, these lamellipodia were less stable than those in wild-type macrophages. ERK1/2 activity was reduced in PAK1-/- macrophages during adhesion, and inhibition of ERK1/2 activation in wild-type macrophages was sufficient to increase the spread area and mimic the lamellipodial dynamics of PAK1-/- macrophages. Together, these data indicate that PAK1 signals via ERK1/2 to regulate lamellipodial stability.
Collapse
Affiliation(s)
- Stephen D. Smith
- Ludwig Institute for Cancer Research, Royal Free and University School of Medicine, 91 Riding House Street, London, W1W 7BS, UK
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 57, Huddinge, Sweden
| | - Zahara M. Jaffer
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Jonathan Chernoff
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Anne J. Ridley
- Ludwig Institute for Cancer Research, Royal Free and University School of Medicine, 91 Riding House Street, London, W1W 7BS, UK
- Randall Division, School of Biomedical and Health Sciences, King’s College London, Guy’s Campus, London, SE1 1UL, UK
| |
Collapse
|
96
|
Kreis P, Barnier JV. PAK signalling in neuronal physiology. Cell Signal 2008; 21:384-93. [PMID: 19036346 DOI: 10.1016/j.cellsig.2008.11.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 11/06/2008] [Indexed: 12/11/2022]
Abstract
Group I p21-activated kinases are a family of key effectors of Rac1 and Cdc42 and they regulate many aspects of cellular function, such as cytoskeleton dynamics, cell movement and cell migration, cell proliferation and differentiation, and gene expression. The three genes PAK1/2/3 are expressed in brain and recent evidence indicates their crucial roles in neuronal cell fate, in axonal guidance and neuronal polarisation, and in neuronal migration. Moreover they are implicated in neurodegenerative diseases and play an important role in synaptic plasticity, with PAK3 being specifically involved in mental retardation. The main goal of this review is to describe the molecular mechanisms that govern the different functions of group I PAK in neuronal signalling and to discuss the specific functions of each isoform.
Collapse
Affiliation(s)
- Patricia Kreis
- CNRS, Institut de Neurobiologie Alfred Fessard-FRC2118, Laboratoire de Neurobiologie Cellulaire et Moléculaire-UPR9040, Gif sur Yvette, France.
| | | |
Collapse
|
97
|
Gamell C, Osses N, Bartrons R, Rückle T, Camps M, Rosa JL, Ventura F. BMP2 induction of actin cytoskeleton reorganization and cell migration requires PI3-kinase and Cdc42 activity. J Cell Sci 2008; 121:3960-70. [PMID: 19001503 DOI: 10.1242/jcs.031286] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are potent regulators of several cellular events. We report that exposure of C2C12 cells to BMP2 leads to an increase in cell migration and a rapid rearrangement of the actin filaments into cortical protrusions. These effects required independent and parallel activation of the Cdc42 small GTPase and the alpha-isoform of the phosphoinositide 3-kinase (PI3Kalpha), because ectopic expression of a dominant-negative form of Cdc42 or distinct pharmacological PI3K inhibitors abrogated these responses. Furthermore, we demonstrate that BMP2 activates different group I and group II PAK isoforms as well as LIMK1 with similar kinetics to Cdc42 or PI3K activation. BMP2 activation of PAK and LIMK1, measured by either kinase activity or with antibodies raised against phosphorylated residues at their activation loops, were abolished by blocking PI3K-signaling pathways. Together, these findings suggest that Cdc42 and PI3K signals emanating from BMP receptors are involved in specific regulation of actin assembly and cell migration.
Collapse
Affiliation(s)
- Cristina Gamell
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | | | | | | | | | | | | |
Collapse
|
98
|
Scaffolding function of PAK in the PDK1-Akt pathway. Nat Cell Biol 2008; 10:1356-64. [PMID: 18931661 DOI: 10.1038/ncb1795] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 09/23/2008] [Indexed: 01/18/2023]
Abstract
Many extracellular signals stimulate phosphatidylinositol-3-kinase, which in turn activates the Rac1 GTPase, the protein kinase Akt and the Akt Thr 308 upstream kinase PDK1. Active Rac1 stimulates a number of events, including substrate phosphorylation by a subgroup of the PAK family of kinases. The combined effects of Rac1, PDK1 and Akt are crucial for cell migration, growth, survival, metabolism and tumorigenesis. Here we show that Rac1 stimulates a second, kinase-independent function of PAK1. The PAK1 kinase domain serves as a scaffold to facilitate Akt stimulation by PDK1 and to aid recruitment of Akt to the membrane. PAK differentially activates subpopulations of Akt. These findings reveal scaffolding functions of PAK that regulate the efficiency, localization and specificity of the PDK1-Akt pathway.
Collapse
|
99
|
HMG-CoA reductase inhibition induces IL-1beta release through Rac1/PI3K/PKB-dependent caspase-1 activation. Blood 2008; 112:3563-73. [PMID: 18684863 DOI: 10.1182/blood-2008-03-144667] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mevalonate kinase deficiency (MKD) is an autoinflammatory disorder characterized by recurring fever episodes and results from disturbed isoprenoid biosynthesis. Lipopolysaccharide-stimulated peripheral blood mononuclear cells from MKD patients secrete high levels of interleukin-1beta (IL-1beta) because of the presence of hyperactive caspase-1, and this has been proposed to be the primary cause of recurring inflammation. Here we show that inhibition of HMG-CoA reductase by simvastatin treatment, mimicking MKD, results in increased IL-1beta secretion in a Rac1/PI3K-dependent manner. Simvastatin treatment was found to activate protein kinase B (PKB)/c-akt, a primary effector of PI3K, and ectopic expression of constitutively active PKB was sufficient to induce IL-1beta release. The small GTPase Rac1 was activated by simvastatin, and this was required for both PKB activation and IL-1beta secretion. IL-1beta release is mediated by caspase-1, and simvastatin treatment resulted in increased caspase-1 activity in a Rac1/PI3K-dependent manner. These data suggest that, in MKD, dysregulated isoprenoid biosynthesis activates Rac1/PI3K/PKB, resulting in caspase-1 activation with increased IL-1beta release. Importantly, inhibition of Rac1 in peripheral blood mononuclear cells isolated from MKD patients resulted in a dramatic reduction in IL-1beta release. These data suggest that pharmacologic inhibition of Rac1 could provide a novel therapeutic strategy for treatment of MKD.
Collapse
|
100
|
The Pak1 kinase: an important regulator of neuronal morphology and function in the developing forebrain. Mol Neurobiol 2008; 37:187-202. [PMID: 18649038 DOI: 10.1007/s12035-008-8032-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 06/04/2008] [Indexed: 01/07/2023]
Abstract
The mammalian central nervous system (CNS) represents a highly complex unit, the correct function of which relies on the appropriate differentiation and survival of its neurones. It is becoming apparent that the Rho family of small GTPases and their downstream targets have a major function in regulating CNS development. Among the effectors, the role of the Pak family of kinases, especially Pak1, is becoming increasingly evident. Although highest levels of Pak1 expression and activation are detected in the developing nervous system, much remains undiscovered concerning its function in neurones. This review summarises what is currently known regarding the biological and molecular role of Pak1 in the mammalian forebrain. It emphasises the importance of Pak1 in regulating neuronal polarity, morphology, migration and synaptic function. Consequently, there are also strong indications that Pak1 is required for normal cognitive function. Furthermore, loss of Pak1 has been associated with the progression of neurodegenerative disorders, particularly Alzheimer's disease, while up-regulation and de-regulation may be responsible for oncogenic transformation of support cells within the CNS, especially astrocyte progenitors. Together, these new and exciting findings encourage the future exploration into the function of Pak1 in the nervous system, thus, paving the way for novel strategies towards improved diagnosis and therapeutic treatment of diseases that affect the CNS.
Collapse
|