51
|
Polakovicova I, Jerez S, Wichmann IA, Sandoval-Bórquez A, Carrasco-Véliz N, Corvalán AH. Role of microRNAs and Exosomes in Helicobacter pylori and Epstein-Barr Virus Associated Gastric Cancers. Front Microbiol 2018; 9:636. [PMID: 29675003 PMCID: PMC5895734 DOI: 10.3389/fmicb.2018.00636] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/19/2018] [Indexed: 12/17/2022] Open
Abstract
Emerging evidence suggests that chronic inflammation caused by pathogen infection is connected to the development of various types of cancer. It is estimated that up to 20% of all cancer deaths is linked to infections and inflammation. In gastric cancer, such triggers can be infection of the gastric epithelium by either Helicobacter pylori (H. pylori), a bacterium present in half of the world population; or by Epstein-Barr virus (EBV), a double-stranded DNA virus which has recently been associated with gastric cancer. Both agents can establish lifelong inflammation by evolving to escape immune surveillance and, under certain conditions, contribute to the development of gastric cancer. Non-coding RNAs, mainly microRNAs (miRNAs), influence the host innate and adaptive immune responses, though long non-coding RNAs and viral miRNAs also alter these processes. Reports suggest that chronic infection results in altered expression of host miRNAs. In turn, dysregulated miRNAs modulate the host inflammatory immune response, favoring bacterial survival and persistence within the gastric mucosa. Given the established roles of miRNAs in tumorigenesis and innate immunity, they may serve as an important link between H. pylori- and EBV-associated inflammation and carcinogenesis. Example of this is up-regulation of miR-155 in H. pylori and EBV infection. The tumor environment contains a variety of cells that need to communicate with each other. Extracellular vesicles, especially exosomes, allow these cells to deliver certain type of information to other cells promoting cancer growth and metastasis. Exosomes have been shown to deliver not only various types of genetic information, mainly miRNAs, but also cytotoxin-associated gene A (CagA), a major H. pylori virulence factor. In addition, a growing body of evidence demonstrates that exosomes contain genetic material of viruses and viral miRNAs and proteins such as EBV latent membrane protein 1 (LMP1) which are delivered into recipient cells. In this review, we focus on the dysregulated H. pylori- and EBV-associated miRNAs while trying to unveil possible causal mechanisms. Moreover, we discuss the role of exosomes as vehicles for miRNA delivery in H. pylori- and EBV-related carcinogenesis.
Collapse
Affiliation(s)
- Iva Polakovicova
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile.,UC Center for Investigational Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Hematology-Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sofia Jerez
- Department of Hematology-Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ignacio A Wichmann
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile.,UC Center for Investigational Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Hematology-Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Nicolás Carrasco-Véliz
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandro H Corvalán
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile.,UC Center for Investigational Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Hematology-Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
52
|
Chung JW, Jeong SH, Lee SM, Pak JH, Lee GH, Jeong JY, Kim JH. Expression of MicroRNA in Host Cells Infected with Helicobacter pylori. Gut Liver 2018; 11:392-400. [PMID: 28208005 PMCID: PMC5417782 DOI: 10.5009/gnl16265] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/17/2016] [Accepted: 09/05/2016] [Indexed: 12/16/2022] Open
Abstract
Background/Aims MicroRNAs (miRNAs) regulate gene expression. We assess miRNA regulation by Helicobacter pylori infection and elucidate their role in H. pylori-infected gastric epithelial cells. Methods The relationship between miRNA expression and DNA methylation was examined. Cells were treated with the nuclear factor-kappaB (NF-κB) inhibitor Bay 11-7082 to determine the relationship between miRNA expression and NF-κB signal transduction. Results In the negative control cells infected with H. pylori 26695, the expression of six miRNAs was increased, whereas the expression of five miRNAs was decreased. The expression of upregulated miRNAs was increased when the host cells were treated with H. pylori and an NF-κB inhibitor. miR-127-5p, -155, and -181 were associated with increased interleukin 6 (IL-6) secretion in H. pylori infected cells treated with anti-miRNA. The expression of miR-155, -127-5p, -195, -216, -206, and -488 increased by approximately 3-fold following treatment with the methylation inhibitor Aza. Conclusions We found novel miRNAs in H. pylori-infected negative control cells using miRNA microarrays. Upregulated miRNA expression was inversely related to the transcription of NF-κB. miR-195 and miR-488 appear to play a pivotal role in controlling IL-6 activity in H. pylori infection. miRNA expression in H. pylori infection was affected by methylation.
Collapse
Affiliation(s)
- Jun-Won Chung
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Seok Hoo Jeong
- Department of Internal Medicine, Catholic Kwandong University International St. Mary's Hospital, Incheon, Korea
| | - Sun Mi Lee
- Department of Convergence Medicine and Asan Institute for Life Sciences, Seoul, Korea
| | - Jhang Ho Pak
- Department of Convergence Medicine and Asan Institute for Life Sciences, Seoul, Korea
| | - Gin Hyug Lee
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin-Yong Jeong
- Department of Convergence Medicine and Asan Institute for Life Sciences, Seoul, Korea
| | - Jin-Ho Kim
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
53
|
Abstract
BACKGROUND This study aimed to investigate the changes in the promoter methylation and gene expression of multiple Wnt antagonists between the chronic infection and eradication of Helicobacter pylori (H. pylori) in gastric carcinogenesis. METHODS The levels of methylation and corresponding mRNA expression of seven Wnt antagonist genes (SFRP1, -2, -5, DKK1, -2, -3, WIF1) were compared among the patients with H. pylori-positive gastric cancers (GCs), and H. pylori-positive and H. pylori-negative controls, by quantitative MethyLight assay and real-time reverse transcription (RT)-polymerase chain reaction (PCR), respectively. The changes of the methylation and expression levels of the genes were also compared between the H. pylori eradication and H. pylori-persistent groups 1 year after endoscopic resection of GCs. RESULTS The methylation levels of SFRP and DKK family genes were significantly increased in the patients with H. pylori-positive GCs and followed by H. pylori-positive controls compared with H. pylori-negative controls (P < 0.001). SFRP1, -2, and DKK3 gene expression was stepwise downregulated from H. pylori-negative controls, H. pylori-positive controls, and to H. pylori-positive GCs (P < 0.05). Among the Wnt antagonists, only the degrees of methylation and downregulation of DKK3 were significantly reduced after H. pylori eradication (P < 0.05). CONCLUSION Epigenetic silencing of SFRP and DKK family genes may facilitate the formation of an epigenetic field during H. pylori-associated gastric carcinogenesis. The epigenetic field may not be reversed even after H. pylori eradication except by DKK3 methylation.
Collapse
|
54
|
Teng G, Dai Y, Chu Y, Li J, Zhang H, Wu T, Shuai X, Wang W. Helicobacter pylori induces caudal-type homeobox protein 2 and cyclooxygenase 2 expression by modulating microRNAs in esophageal epithelial cells. Cancer Sci 2018; 109:297-307. [PMID: 29215765 PMCID: PMC5797820 DOI: 10.1111/cas.13462] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/02/2017] [Accepted: 11/16/2017] [Indexed: 12/17/2022] Open
Abstract
Dysregulation of microRNAs (miRNAs) has been linked to virulence factors of Helicobacter pylori. The role of H. pylori in esophageal disease has not been clearly defined. We previously reported that H. pylori esophageal colonization promotes the incidence of Barrett's esophagus and esophageal adenocarcinoma in vivo. Here, we studied the direct effects of H. pylori on the transformation of esophageal epithelial cells, with particular focus on whether H. pylori exerts its effects by modulating miRNAs and their downstream target genes. The normal human esophageal cell line HET‐1A was chronically exposed to H. pylori extract and/or acidified deoxycholic acid for up to 36 weeks. The miRNA profiles of the esophageal epithelial cells associated with H. pylori infection were determined by microarray analysis. We found that chronic H. pylori exposure promoted acidified deoxycholic acid‐induced morphological changes in HET‐1A cells, along with aberrant overexpression of intestinal metaplasia markers and tumorigenic factors, including caudal‐type homeobox protein 2 (CDX2), mucin 2, and cyclooxygenase 2 (COX2). Helicobacter pylori modified the miRNA profiles of esophageal epithelial cells, particularly aberrant silencing of miR‐212‐3p and miR‐361‐3p. Moreover, in biopsies from Barrett's esophagus patients, esophageal H. pylori colonization was associated with a significant decrease in miR‐212‐3p and miR‐361‐3p expression. Furthermore, we identified COX2 as a target of miR‐212‐3p, and CDX2 as a target of miR‐361‐3p. Helicobacter pylori infection of esophageal epithelial cells was associated with miRNA‐mediated upregulation of oncoprotein CDX2 and COX2. Our observations provide new evidence about the molecular mechanisms underlying the association between H. pylori infection and esophageal carcinogenesis.
Collapse
Affiliation(s)
- Guigen Teng
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Yun Dai
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Yunxiang Chu
- Department of Gastroenterology, Peking University First Hospital, Beijing, China.,Department of Gastroenterology, China Meitan General Hospital, Beijing, China
| | - Jing Li
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Hongchen Zhang
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Ting Wu
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Xiaowei Shuai
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Weihong Wang
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| |
Collapse
|
55
|
Chen X, Loo JX, Shi X, Xiong W, Guo Y, Ke H, Yang M, Jiang Y, Xia S, Zhao M, Zhong S, He C, Fu L, Li F. E6 Protein Expressed by High-Risk HPV Activates Super-Enhancers of the EGFR and c-MET Oncogenes by Destabilizing the Histone Demethylase KDM5C. Cancer Res 2018; 78:1418-1430. [DOI: 10.1158/0008-5472.can-17-2118] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 11/28/2017] [Accepted: 01/09/2018] [Indexed: 11/16/2022]
|
56
|
Rugge M, Genta RM, Di Mario F, El-Omar EM, El-Serag HB, Fassan M, Hunt RH, Kuipers EJ, Malfertheiner P, Sugano K, Graham DY. Gastric Cancer as Preventable Disease. Clin Gastroenterol Hepatol 2017; 15:1833-1843. [PMID: 28532700 DOI: 10.1016/j.cgh.2017.05.023] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/26/2017] [Accepted: 05/16/2017] [Indexed: 02/07/2023]
Abstract
Gastric cancer, 1 of the 5 most common causes of cancer death, is associated with a 5-year overall survival rate less than 30%. A minority of cancers occurs as part of syndromic diseases; more than 90% of adenocarcinomas are considered as the ultimate consequence of a longstanding mucosal inflammation. Helicobacter pylori infection is the leading etiology of non-self-limiting gastritis, which may result in atrophy of the gastric mucosa and impaired acid secretion. Gastric atrophy establishes a field of cancerization prone to further molecular and phenotypic changes, possibly resulting in cancer growth. This well-understood natural history provides the clinicopathologic rationale for primary and secondary cancer prevention strategies. A large body of evidence demonstrates that combined primary (H pylori eradication) and secondary (mainly endoscopy) prevention efforts may prevent or limit the progression of gastric oncogenesis. This approach, which is tailored to different country-specific gastric cancer incidence, socioeconomic, and cultural factors, requires that the complementary competences of gastroenterologists, oncologists, and pathologists be amalgamated into a common strategy of health policy.
Collapse
Affiliation(s)
- Massimo Rugge
- Department of Medicine (DIMED), University of Padua, Padua, Italy; Veneto Tumor Registry, Veneto Region, Padua, Italy.
| | - Robert M Genta
- Miraca Life Sciences Research Institute, Irving, and Departments of Pathology and Medicine, Baylor College of Medicine, Houston, Texas
| | - Francesco Di Mario
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Emad M El-Omar
- St George and Sutherland Clinical School, University of New South Wales, Sydney, Australia
| | - Hashem B El-Serag
- Department of Medicine, Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston, Texas
| | - Matteo Fassan
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Richard H Hunt
- Division of Gastroenterology, Department of Medicine and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Ernst J Kuipers
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Kentaro Sugano
- Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - David Y Graham
- Department of Medicine, Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
57
|
Duval M, Cossart P, Lebreton A. Mammalian microRNAs and long noncoding RNAs in the host-bacterial pathogen crosstalk. Semin Cell Dev Biol 2017; 65:11-19. [PMID: 27381344 PMCID: PMC7089780 DOI: 10.1016/j.semcdb.2016.06.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 12/20/2022]
Abstract
Gene expression regulation is a critical question in host-pathogen interactions, and RNAs act as key players in this process. In this review, we focus on the mammalian RNA response to bacterial infection, with a special interest on microRNAs and long non-coding RNAs. We discuss the role of cellular miRNAs in immunity, the implication of circulating miRNAs as well as the influence of the microbiome on the miRNA response. We also review how pathogens counteract the host miRNA expression. Interestingly, bacterial non-coding RNAs regulate host gene expression and conversely eukaryotic miRNAs may regulate bacterial gene expression. Overall, the characterization of RNA regulatory networks represents an emerging theme in the field of host pathogen interactions.
Collapse
Affiliation(s)
- Mélodie Duval
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, 75015 Paris, France; Inserm, U604, 75015 Paris, France; INRA, USC2020, 75015 Paris, France
| | - Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, 75015 Paris, France; Inserm, U604, 75015 Paris, France; INRA, USC2020, 75015 Paris, France.
| | - Alice Lebreton
- École Normale Supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'École Normale Supérieure (IBENS), Équipe Infection et Devenir de l'ARN, 75005 Paris, France; INRA, IBENS, 75005 Paris, France.
| |
Collapse
|
58
|
Singh S, Jha HC. Status of Epstein-Barr Virus Coinfection with Helicobacter pylori in Gastric Cancer. JOURNAL OF ONCOLOGY 2017; 2017:3456264. [PMID: 28421114 PMCID: PMC5379099 DOI: 10.1155/2017/3456264] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/14/2017] [Indexed: 12/14/2022]
Abstract
Epstein-Barr virus is a ubiquitous human herpesvirus whose primary infection causes mononucleosis, Burkett's lymphoma, nasopharyngeal carcinoma, autoimmune diseases, and gastric cancer (GC). The persistent infection causes malignancies in lymph and epithelial cells. Helicobacter pylori causes gastritis in human with chronic inflammation. This chronic inflammation is thought to be the cause of genomic instability. About 45%-word population have a probability of having both pathogens, namely, H. pylori and EBV. Approximately 180 per hundred thousand population is developing GC along with many gastric abnormalities. This makes GC the third leading cause of cancer-related death worldwide. Although lots of research are carried out individually for EBV and H. pylori, still there are very few reports available on coinfection of both pathogens. Recent studies suggested that EBV and H. pylori coinfection increases the occurrence of GC as well as the early age of GC detection comparing to individual infection. The aim of this review is to present status on coinfection of both pathogens and their association with GC.
Collapse
Affiliation(s)
- Shyam Singh
- Centre for Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Hem Chandra Jha
- Centre for Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| |
Collapse
|
59
|
Chen SY, Zhang RG, Duan GC. Pathogenic mechanisms of the oncoprotein CagA in H. pylori-induced gastric cancer (Review). Oncol Rep 2016; 36:3087-3094. [PMID: 27748858 DOI: 10.3892/or.2016.5145] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/16/2016] [Indexed: 11/06/2022] Open
Abstract
Infection with Helicobacter pylori is the strongest risk factor for the development of chronic gastritis, gastric ulcer and gastric carcinoma. The majority of the H. pylori-infected population remains asymptomatic, and only 1% of individuals may progress to gastric cancer. The clinical outcomes caused by H. pylori infection are considered to be associated with bacterial virulence, genetic polymorphism of hosts as well as environmental factors. Most H. pylori strains possess a cytotoxin-associated gene (cag) pathogenicity island (cagPAI), encoding a 120-140 kDa CagA protein, which is the most important bacterial oncoprotein. CagA is translocated into host cells via T4SS system and affects the expression of signaling proteins in a phosphorylation-dependent and independent manner. Thus, this review summarizes the results of relevant studies, discusses the pathogenesis of CagA-mediated gastric cancer.
Collapse
Affiliation(s)
- Shuai-Yin Chen
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Rong-Guang Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Guang-Cai Duan
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
60
|
Siddeek B, Lakhdari N, Inoubli L, Paul-Bellon R, Isnard V, Thibault E, Bongain A, Chevallier D, Repetto E, Trabucchi M, Michiels JF, Yzydorczyk C, Simeoni U, Urtizberea M, Mauduit C, Benahmed M. Developmental epigenetic programming of adult germ cell death disease: Polycomb protein EZH2-miR-101 pathway. Epigenomics 2016; 8:1459-1479. [PMID: 27762633 DOI: 10.2217/epi-2016-0061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AIM The Developmental Origin of Health and Disease refers to the concept that early exposure to toxicants or nutritional imbalances during perinatal life induces changes that enhance the risk of developing noncommunicable diseases in adulthood. Patients/materials & methods: An experimental model with an adult chronic germ cell death phenotype resulting from exposure to a xenoestrogen was used. RESULTS A reciprocal negative feedback loop involving decreased EZH2 protein level and increased miR-101 expression was identified. In vitro and in vivo knockdown of EZH2 induced an apoptotic process in germ cells through increased levels of apoptotic factors (BIM and BAD) and DNA repair alteration via topoisomerase 2B deregulation. The increased miR-101 levels were observed in the animal blood, meaning that miR-101 may be a part of a circulating mark of germ cell death. CONCLUSION miR-101-EZH2 pathway deregulation could represent a novel pathophysiological epigenetic basis for adult germ cell disease with environmental and developmental origins.
Collapse
Affiliation(s)
- Bénazir Siddeek
- Institut National de la Santé et de la Recherche Médicale, Unité 1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, Nice F-06204, France.,Université de Nice Sophia-Antipolis, Unité de Formation et de Recherche (UFR) Médecine, Nice F-06000, France
| | - Nadjem Lakhdari
- Institut National de la Santé et de la Recherche Médicale, Unité 1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, Nice F-06204, France.,Université de Nice Sophia-Antipolis, Unité de Formation et de Recherche (UFR) Médecine, Nice F-06000, France
| | - Lilia Inoubli
- Institut National de la Santé et de la Recherche Médicale, Unité 1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, Nice F-06204, France.,Université de Nice Sophia-Antipolis, Unité de Formation et de Recherche (UFR) Médecine, Nice F-06000, France
| | - Rachel Paul-Bellon
- Institut National de la Santé et de la Recherche Médicale, Unité 1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, Nice F-06204, France.,Université de Nice Sophia-Antipolis, Unité de Formation et de Recherche (UFR) Médecine, Nice F-06000, France
| | - Véronique Isnard
- Centre Hospitalier Universitaire de Nice, Pôle de Digestif-Obstétrique, Centre de Reproduction, Nice F-06202, France
| | - Emmanuelle Thibault
- Centre Hospitalier Universitaire de Nice, Pôle de Biologie, Centre de Reproduction, Nice F-06202, France
| | - André Bongain
- Centre Hospitalier Universitaire de Nice, Pôle de Digestif-Obstétrique, Centre de Reproduction, Nice F-06202, France
| | - Daniel Chevallier
- Université de Nice Sophia-Antipolis, Unité de Formation et de Recherche (UFR) Médecine, Nice F-06000, France.,Centre Hospitalier Universitaire de Nice, Pôle d'Urologie, Service d'Urologie, Nice F-06202, France
| | - Emanuela Repetto
- Université de Nice Sophia-Antipolis, Unité de Formation et de Recherche (UFR) Médecine, Nice F-06000, France.,Institut National de la Santé et de la Recherche Médicale, Unité 1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 10, Nice F-06204, France
| | - Michele Trabucchi
- Université de Nice Sophia-Antipolis, Unité de Formation et de Recherche (UFR) Médecine, Nice F-06000, France.,Institut National de la Santé et de la Recherche Médicale, Unité 1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 10, Nice F-06204, France
| | - Jean-François Michiels
- Université de Nice Sophia-Antipolis, Unité de Formation et de Recherche (UFR) Médecine, Nice F-06000, France.,Centre Hospitalier Universitaire de Nice, Pôle de Biologie, Service d'Anatomie et de Cytologie Pathologiques, Nice F-06202, France
| | - Catherine Yzydorczyk
- Division of Paediatrics & DOHaD Laboratory, CHUV & University of Lausanne, CH-1011, Switzerland
| | - Umberto Simeoni
- Division of Paediatrics & DOHaD Laboratory, CHUV & University of Lausanne, CH-1011, Switzerland
| | | | - Claire Mauduit
- Institut National de la Santé et de la Recherche Médicale, Unité 1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, Nice F-06204, France.,Université Lyon 1, UFR Médecine Lyon Sud, Lyon F-69921, France.,Hospices Civils de Lyon, Hopital Lyon Sud, Laboratoire d'Anatomie et de Cytologie Pathologiques, Pierre-Bénite F-69495, France
| | - Mohamed Benahmed
- Institut National de la Santé et de la Recherche Médicale, Unité 1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, Nice F-06204, France.,Université de Nice Sophia-Antipolis, Unité de Formation et de Recherche (UFR) Médecine, Nice F-06000, France.,Centre Hospitalier Universitaire de Nice, Département de Recherche Clinique et d'Innovation, Nice F-06001, France
| |
Collapse
|
61
|
Piao JY, Lee HG, Kim SJ, Kim DH, Han HJ, Ngo HKC, Park SA, Woo JH, Lee JS, Na HK, Cha YN, Surh YJ. Helicobacter pylori Activates IL-6-STAT3 Signaling in Human Gastric Cancer Cells: Potential Roles for Reactive Oxygen Species. Helicobacter 2016; 21:405-16. [PMID: 26910614 DOI: 10.1111/hel.12298] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Recent studies have shown that Helicobacter pylori (H. pylori) activates signal transducer and activator of transcription 3 (STAT3) that plays an important role in gastric carcinogenesis. However, the molecular mechanism underlying H. pylori-mediated STAT3 activation is still not fully understood. In this study, we investigated H. pylori-induced activation of STAT3 signaling in AGS human gastric cancer cells and the underlying mechanism. MATERIALS AND METHODS AGS cells were cocultured with H. pylori, and STAT3 activation was assessed by Western blot analysis, electrophoretic mobility shift assay and immunocytochemistry. To demonstrate the involvement of reactive oxygen species (ROS) in H. pylori-activated STAT3 signaling, the antioxidant N-acetylcysteine was utilized. The expression and production of interleukin-6 (IL-6) were measured by reverse-transcription polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA), respectively. The interaction between IL-6 and IL-6 receptor (IL-6R) was determined by the immunoprecipitation assay. RESULTS H. pylori activates STAT3 as evidenced by increases in phosphorylation on Tyr(705) , nuclear localization, DNA binding and transcriptional activity of this transcription factor. The nuclear translocation of STAT3 was also observed in H. pylori-inoculated mouse stomach. In the subsequent study, we found that H. pylori-induced STAT3 phosphorylation was dependent on IL-6. Notably, the increased IL-6 expression and the IL-6 and IL-6R binding were mediated by ROS produced as a consequence of H. pylori infection. CONCLUSIONS H. pylori-induced STAT3 activation is mediated, at least in part, through ROS-induced upregulation of IL-6 expression. These findings provide a novel molecular mechanism responsible for H. pylori-induced gastritis and gastric carcinogenesis.
Collapse
Affiliation(s)
- Juan-Yu Piao
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Hee Geum Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Su-Jung Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Do-Hee Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Hyeong-Jun Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Hoang-Kieu-Chi Ngo
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Sin-Aye Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jeong-Hwa Woo
- Department of Food and Nutrition, Sungshin Women's University, Seoul, South Korea
| | - Jeong-Sang Lee
- Department of Health and Functional Food, College of Medicine and Science, Jeonju University, Jeonju, South Korea
| | - Hye-Kyung Na
- Department of Food and Nutrition, Sungshin Women's University, Seoul, South Korea
| | - Young-Nam Cha
- College of Medicine, Inha University, Incheon, South Korea
| | - Young-Joon Surh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea. .,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea. .,Cancer Research Institute, Seoul National University, Seoul, South Korea.
| |
Collapse
|
62
|
Huang T, Wang-Johanning F, Zhou F, Kallon H, Wei Y. MicroRNAs serve as a bridge between oxidative stress and gastric cancer (Review). Int J Oncol 2016; 49:1791-1800. [PMID: 27633118 DOI: 10.3892/ijo.2016.3686] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/24/2016] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) remains one of the most prevalent tumors worldwide and affects human health due to its high morbidity and mortality. Mechanisms underlying occurrence and development of GC have been widely studied. Studies have revealed reactive oxygen species (ROS) generated by cells under oxidative stress (OS) are involved in gastric tumorigenesis, and modulate expression of microRNAs (miRs). As such, miRs have been shown to be associated with OS-related GC. Given the association of OS and miRs in development of GC, this review aims to summarize the relationship between miRs and OS and their role in GC development. Serving as a link between OS and GC, miRs may offer new approaches for gaining a more in-depth understanding of mechanisms of GC and may lead to the identification of new therapeutic approaches against GC.
Collapse
Affiliation(s)
- Tianhe Huang
- Department of Clinical Oncology, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University Xi'an, Shaanxi 710061, P.R. China
| | | | - Fuling Zhou
- Department of Clinical Hematology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Herbert Kallon
- College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
63
|
Song X, Xin N, Wang W, Zhao C. Wnt/β-catenin, an oncogenic pathway targeted by H. pylori in gastric carcinogenesis. Oncotarget 2016; 6:35579-88. [PMID: 26417932 PMCID: PMC4742126 DOI: 10.18632/oncotarget.5758] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/26/2015] [Indexed: 12/14/2022] Open
Abstract
A section of gastric cancers presents nuclear β-catenin accumulation correlated with H. pylori infection. H. pylori stimulate Wnt/β-catenin pathway by activating oncogenic c-Met and epidermal growth factor receptor (EGFR), or by inhibiting tumor suppressor Runx3 and Trefoil factor 1 (TFF1). H. pylori also trigger Wnt/β-catenin pathway by recruiting macrophages. Moreover, Wnt/β-catenin pathway is found involved in H. pylori-induced gastric cancer stem cell generation. Recently, by using gastroids, researchers have further revealed that H. pylori induce gastric epithelial cell proliferation through β-catenin. These findings indicate that Wnt/β-catenin is an oncogenic pathway activated by H. pylori. Therefore, this pathway is a potential therapy target for H. pylori-related gastric cancer.
Collapse
Affiliation(s)
- Xiaowen Song
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Na Xin
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Chenghai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
64
|
Hayashi Y, Tsujii M, Kodama T, Akasaka T, Kondo J, Hikita H, Inoue T, Tsujii Y, Maekawa A, Yoshii S, Shinzaki S, Watabe K, Tomita Y, Inoue M, Tatsumi T, Iijima H, Takehara T. p53 functional deficiency in human colon cancer cells promotes fibroblast-mediated angiogenesis and tumor growth. Carcinogenesis 2016; 37:972-984. [PMID: 27520561 DOI: 10.1093/carcin/bgw085] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/05/2016] [Indexed: 12/16/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) create a microenvironment that contributes to tumor growth; however, the mechanism by which fibroblasts are phenotypically altered to CAFs remains unclear. Loss or mutation of the tumor suppressor p53 plays a crucial role in cancer progression. Herein, we analyzed how the p53 status of cancer cells affects fibroblasts by investigating the in vivo and in vitro effects of loss of p53 function in cancer cells on phenotypic changes in fibroblasts and subsequent tumor progression in human colon cancer cell lines containing wild-type p53 and in cells with a p53 functional deficiency. The growth of p53-deficient tumors was significantly enhanced in the presence of fibroblasts compared with that of p53-wild-type tumors or p53-deficient tumors without fibroblasts. p53-deficient cancer cells produced reactive oxygen species, which activated fibroblasts to mediate angiogenesis by secreting vascular endothelial growth factor (VEGF) both in vivo and in vitro Activated fibroblasts significantly contributed to tumor progression. Deletion of fibroblast-derived VEGF or treatment with N-acetylcysteine suppressed the growth of p53-deficient xenograft tumors. The growth effect of blocking VEGF secreted from cancer cells was equivalent regardless of p53 functional status. Human colon cancer tissues also showed a significant positive correlation between p53 cancer cell staining activated fibroblasts and microvessel density. These results reveal that fibroblasts were altered by exposure to p53-deficient epithelial cancer cells and contributed to tumor progression by promoting neovascularization. Thus, p53 acts as a modulator of the tumor microenvironment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Masahiro Inoue
- Department of Biochemistry, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka 537-8511, Japan
| | | | | | | |
Collapse
|
65
|
Elevation of Il6 is associated with disturbed let-7 biogenesis in a genetic model of depression. Transl Psychiatry 2016; 6:e869. [PMID: 27529677 PMCID: PMC5022082 DOI: 10.1038/tp.2016.136] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 05/12/2016] [Accepted: 06/19/2016] [Indexed: 12/30/2022] Open
Abstract
Elevation of the proinflammatory cytokine IL-6 has been implicated in depression; however, the mechanisms remain elusive. MicroRNAs (miRNAs) are small non-coding RNAs that inhibit gene expression post-transcriptionally. The lethal-7 (let-7) miRNA family was suggested to be involved in the inflammation process and IL-6 was shown to be one of its targets. In the present study, we report elevation of Il6 in the prefrontal cortex (PFC) of a genetic rat model of depression, the Flinders Sensitive Line (FSL) compared to the control Flinders Resistant Line. This elevation was associated with an overexpression of LIN28B and downregulation of let-7 miRNAs, the former an RNA-binding protein that selectively represses let-7 synthesis. Also DROSHA, a key enzyme in miRNA biogenesis was downregulated in FSL. Running was previously shown to have an antidepressant-like effect in the FSL rat. We found that running reduced Il6 levels and selectively increased let-7i and miR-98 expression in the PFC of FSL, although there were no differences in LIN28B and DROSHA expression. Pri-let-7i was upregulated in the running FSL group, which associated with increased histone H4 acetylation. In conclusion, the disturbance of let-7 family biogenesis may underlie increased proinflammatory markers in the depressed FSL rats while physical activity could reduce their expression, possibly through regulating primary miRNA expression via epigenetic mechanisms.
Collapse
|
66
|
Zhong Z, Sanchez-Lopez E, Karin M. Autophagy, Inflammation, and Immunity: A Troika Governing Cancer and Its Treatment. Cell 2016; 166:288-298. [PMID: 27419869 PMCID: PMC4947210 DOI: 10.1016/j.cell.2016.05.051] [Citation(s) in RCA: 482] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/05/2016] [Accepted: 05/16/2016] [Indexed: 12/27/2022]
Abstract
Autophagy, a cellular waste disposal process, has well-established tumor-suppressive properties. New studies indicate that, in addition to its cell-autonomous anti-tumorigenic functions, autophagy inhibits cancer development by orchestrating inflammation and immunity. While attenuating tumor-promoting inflammation, autophagy enhances the processing and presentation of tumor antigens and thereby stimulates anti-tumor immunity. Although cancer cells can escape immunosurveillance by tuning down autophagy, certain chemotherapeutic agents with immunogenic properties may enhance anti-tumor immunity by inducing autophagic cell death. Understanding the intricate and complex relationships within this troika and how they are affected by autophagy enhancing drugs should improve the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Zhenyu Zhong
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Pathology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Elsa Sanchez-Lopez
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Pathology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Pathology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
67
|
Wu WK, Yu J, Chan MT, To KF, Cheng AS. Combinatorial epigenetic deregulation by Helicobacter pylori and Epstein-Barr virus infections in gastric tumourigenesis. J Pathol 2016; 239:245-9. [PMID: 27102722 DOI: 10.1002/path.4731] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 01/06/2023]
Abstract
Epigenetic mechanisms, including DNA methylation, histone modifications, chromatin remodelling and microRNAs, convert environmental signals to transcriptional outputs but are commonly hijacked by pathogenic microorganisms. Recent advances in cancer epigenomics have shed new light on the importance of epigenetic deregulation in Helicobacter pylori- and Epstein-Barr virus (EBV)-driven gastric tumourigenesis. Moreover, it is becoming apparent that epigenetic mechanisms interact through crosstalk and feedback loops, which modify global gene expression patterns. The SWI/SNF remodelling complexes are commonly involved in gastric cancers associated with H. pylori or EBV through different mechanisms, including microRNA-mediated deregulation and genetic mutations. While H. pylori causes epigenetic silencing of tumour-suppressor genes to deregulate cellular pathways, EBV-positive tumours exhibit a widespread and distinctive DNA hypermethylation profile. Given the early successes of epigenetic drugs in haematological malignancies, further studies are mandated to enrich and translate our understanding of combinatorial epigenetic deregulation in gastric cancers into interventional strategies in the clinic. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- William Kk Wu
- Department of Anaesthesia and Intensive Care, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,State Key Laboratory of Digestive Diseases, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Jun Yu
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,State Key Laboratory of Digestive Diseases, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Matthew Tv Chan
- Department of Anaesthesia and Intensive Care, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Ka F To
- Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,State Key Laboratory of Digestive Diseases, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Alfred Sl Cheng
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,State Key Laboratory of Digestive Diseases, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, People's Republic of China
| |
Collapse
|
68
|
Micevic G, Muthusamy V, Damsky W, Theodosakis N, Liu X, Meeth K, Wingrove E, Santhanakrishnan M, Bosenberg M. DNMT3b Modulates Melanoma Growth by Controlling Levels of mTORC2 Component RICTOR. Cell Rep 2016; 14:2180-2192. [PMID: 26923591 PMCID: PMC4785087 DOI: 10.1016/j.celrep.2016.02.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/29/2015] [Accepted: 01/27/2016] [Indexed: 01/22/2023] Open
Abstract
DNA methyltransferase DNMT3B is frequently overexpressed in tumor cells and plays important roles during the formation and progression of several cancer types. However, the specific signaling pathways controlled by DNMT3B in cancers, including melanoma, are poorly understood. Here, we report that DNMT3B plays a pro-tumorigenic role in human melanoma and that DNMT3B loss dramatically suppresses melanoma formation in the Braf/Pten mouse melanoma model. Loss of DNMT3B results in hypomethylation of the miR-196b promoter and increased miR-196b expression, which directly targets the mTORC2 component Rictor. Loss of RICTOR in turn prevents mTORC2 activation, which is critical for melanoma formation and growth. These findings establish Dnmt3b as a regulator of melanoma formation through its effect on mTORC2 signaling. Based on these results, DNMT3B is a potential therapeutic target in melanoma.
Collapse
Affiliation(s)
- Goran Micevic
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Viswanathan Muthusamy
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Chemistry, Yale University, New Haven, CT 06510, USA
| | - William Damsky
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Nicholas Theodosakis
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xiaoni Liu
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Katrina Meeth
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Emily Wingrove
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Manjula Santhanakrishnan
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Marcus Bosenberg
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
69
|
JMJD1A promotes tumorigenesis and forms a feedback loop with EZH2/let-7c in NSCLC cells. Tumour Biol 2016; 37:11237-47. [PMID: 26945572 DOI: 10.1007/s13277-016-4999-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/25/2016] [Indexed: 01/28/2023] Open
Abstract
Lung cancer is the most common cause of cancer-related deaths worldwide, and non-small cell lung cancer (NSCLC) accounts for 80 to 85 % of all lung cancer. Although the standard treatment regimen has been established, long-term survival for NSCLC patients is still generally poor. The histone demethylase Jumonji domain containing 1A (JMJD1A) has been proposed as an oncogene in several types of human cancer, but its clinical significance and functional roles in NSCLC remain largely unclear. In the present study, JMJD1A was frequently upregulated in NSCLC compared with para-carcinoma tissues. JMJD1A knockdown significantly inhibited NSCLC cell growth, migration, and invasion in vitro and tumorigenesis in vivo. Further experiments demonstrated that JMJD1A knockdown could decrease the expression of EZH2, which has been shown to play a crucial role in the carcinogenesis of NSCLC and, in turn, increase the expression of anti-tumor microRNA let-7c. Also, let-7c directly targeted the 3'-untranslated regions of JMJD1A and EZH2. Taken together, JMJD1A could promote NSCLC tumorigenesis. JMJD1A/EZH2/let-7c constituted a feedback loop and might represent a promising therapeutic target for NSCLC.
Collapse
|
70
|
Fassan M, Saraggi D, Balsamo L, Cascione L, Castoro C, Coati I, De Bernard M, Farinati F, Guzzardo V, Valeri N, Zambon CF, Rugge M. Let-7c down-regulation in Helicobacter pylori-related gastric carcinogenesis. Oncotarget 2016; 7:4915-4924. [PMID: 26701848 PMCID: PMC4826253 DOI: 10.18632/oncotarget.6642] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/27/2015] [Indexed: 12/11/2022] Open
Abstract
Aberrant let-7c microRNA (miRNA) expression has been observed in Helicobacter pylori-related gastric cancer (GC) but fragmentary information is available on the let-7c dysregulation occurring with each phenotypic change involved in gastric carcinogenesis. Let-7c expression was assessed (qRT-PCR) in a series of 175 gastric biopsy samples representative of the whole spectrum of phenotypic changes involved in H. pylori-related gastric oncogenesis including: i) normal gastric mucosa, as obtained from dyspeptic controls (40 biopsy samples); ii) non-atrophic gastritis (40 samples); iii) atrophic-metaplastic gastritis (35 samples); iv) intra-epithelial neoplasia (30 samples); v) GC (30 samples). Let-7c expression was also tested in 20 biopsy samples obtained from 10 patients before and after H. pylori eradication therapy (median follow-up: 10 weeks; range: 7-14). The results obtained were further validated by in situ hybridization on multiple tissue specimens obtained from 5 surgically treated H. pylori-related GCs. The study also included 40 oxyntic biopsy samples obtained from serologically/histologically confirmed autoimmune gastritis (AIG: 20 corpus-restricted, non-atrophic; 20 corpus-restricted, atrophic-metaplastic). Let-7c expression dropped from non-atrophic gastritis to atrophic-metaplastic gastritis, intra-epithelial neoplasia, and invasive GC (p<0.001). It rose again significantly following H. pylori eradication (p=0.009). As in the H. pylori model, AIG also featured a significant let-7c down-regulation (p<0.001). The earliest phases of the two pathways to gastric oncogenesis (H. pylori-environmental and autoimmune host-related) are characterized by similar let-7c dysregulations. In H. pylori infection, let-7c down-regulation regresses after the bacterium's eradication, while it progresses significantly with the increasing severity of the histological lesions.
Collapse
Affiliation(s)
- Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Deborah Saraggi
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Laura Balsamo
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Luciano Cascione
- Institute of Oncology Research and Swiss Institute of Bioinformatics, Lymphoma & Genomics Group, Bellinzona, Switzerland
| | - Carlo Castoro
- Istituto Oncologico Veneto, IOV-IRCCS, Surgery Unit, Padua, Italy
| | - Irene Coati
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | | | - Fabio Farinati
- Department of Surgical Oncology and Gastroenterology (DiSCOG), Gastroenterology Unit, University of Padua, Padua, Italy
| | - Vincenza Guzzardo
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Nicola Valeri
- Molecular Pathology Division, Institute of Cancer Research, London and Sutton, UK
| | - Carlo Federico Zambon
- Department of Medicine (DIMED), Clinical Pathology Unit, University of Padua, Padua, Italy
| | - Massimo Rugge
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| |
Collapse
|
71
|
Valenzuela MA, Canales J, Corvalán AH, Quest AFG. Helicobacter pylori-induced inflammation and epigenetic changes during gastric carcinogenesis. World J Gastroenterol 2015; 21:12742-12756. [PMID: 26668499 PMCID: PMC4671030 DOI: 10.3748/wjg.v21.i45.12742] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/08/2015] [Accepted: 10/13/2015] [Indexed: 02/06/2023] Open
Abstract
The sequence of events associated with the development of gastric cancer has been described as “the gastric precancerous cascade”. This cascade is a dynamic process that includes lesions, such as atrophic gastritis, intestinal metaplasia and dysplasia. According to this model, Helicobacter pylori (H. pylori) infection targets the normal gastric mucosa causing non-atrophic gastritis, an initiating lesion that can be cured by clearing H. pylori with antibiotics or that may then linger in the case of chronic infection and progress to atrophic gastritis. The presence of virulence factors in the infecting H. pylori drives the carcinogenesis process. Independent epidemiological and animal studies have confirmed the sequential progression of these precancerous lesions. Particularly long-term follow-up studies estimated a risk of 0.1% for atrophic gastritis/intestinal metaplasia and 6% in case of dysplasia for the long-term development of gastric cancer. With this in mind, a better understanding of the genetic and epigenetic changes associated with progression of the cascade is critical in determining the risk of gastric cancer associated with H. pylori infection. In this review, we will summarize some of the most relevant mechanisms and focus predominantly but not exclusively on the discussion of gene promoter methylation and miRNAs in this context.
Collapse
|
72
|
Holla S, Balaji KN. Epigenetics and miRNA during bacteria-induced host immune responses. Epigenomics 2015; 7:1197-212. [PMID: 26585338 DOI: 10.2217/epi.15.75] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Various cellular processes including the pathogen-specific immune responses, host-pathogen interactions and the related evasion mechanisms rely on the ability of the immune cells to be reprogrammed accurately and in many cases instantaneously. In this context, the exact functions of epigenetic and miRNA-mediated regulation of genes, coupled with recent advent in techniques that aid such studies, make it an attractive field for research. Here, we review examples that involve the epigenetic and miRNA control of the host immune system during infection with bacteria. Interestingly, many pathogens utilize the epigenetic and miRNA machinery to modify and evade the host immune responses. Thus, we believe that global epigenetic and miRNA mapping of such host-pathogen interactions would provide key insights into their cellular functions and help to identify various determinants for therapeutic value.
Collapse
Affiliation(s)
- Sahana Holla
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | | |
Collapse
|
73
|
Guo LL, Song CH, Wang P, Dai LP, Zhang JY, Wang KJ. Competing endogenous RNA networks and gastric cancer. World J Gastroenterol 2015; 21:11680-11687. [PMID: 26556995 PMCID: PMC4631969 DOI: 10.3748/wjg.v21.i41.11680] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/12/2015] [Accepted: 09/15/2015] [Indexed: 02/06/2023] Open
Abstract
Recent studies have showed that RNAs regulate each other with microRNA (miRNA) response elements (MREs) and this mechanism is known as "competing endogenous RNA (ceRNA)" hypothesis. Long non-coding RNAs (lncRNAs) are supposed to play important roles in cancer. Compelling evidence suggests that lncRNAs can interact with miRNAs and regulate the expression of miRNAs as ceRNAs. Several lncRNAs such as H19, HOTAIR and MEG3 have been found to be associated with miRNAs in gastric cancer (GC), generating regulatory crosstalk across the transcriptome. These MRE sharing elements implicated in the ceRNA networks (ceRNETs) are able to regulate mRNA expression. The ceRNA regulatory networks including mRNAs, miRNAs, lncRNAs and circular RNAs may play critical roles in tumorigenesis, and the perturbations of ceRNETs may contribute to the pathogenesis of GC.
Collapse
|
74
|
Paul B, Barnes S, Demark-Wahnefried W, Morrow C, Salvador C, Skibola C, Tollefsbol TO. Influences of diet and the gut microbiome on epigenetic modulation in cancer and other diseases. Clin Epigenetics 2015; 7:112. [PMID: 26478753 PMCID: PMC4609101 DOI: 10.1186/s13148-015-0144-7] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 09/22/2015] [Indexed: 02/06/2023] Open
Abstract
Epigenetic modulation of gene activity occurs in response to non-genetic factors such as body weight status, physical activity, dietary factors, and environmental toxins. In addition, each of these factors is thought to affect and be affected by the gut microbiome. A primary mechanism that links these various factors together in mediating control of gene expression is the production of metabolites that serve as critical cofactors and allosteric regulators of epigenetic processes. Here, we review the involvement of the gut microbiota and its interactions with dietary factors, many of which have known cellular bioactivity, focusing on particular epigenetic processes affected and the influence they have on human health and disease, particularly cancer and response to treatment. Advances in DNA sequencing have expanded the capacity for studying the microbiome. Combining this with rapidly improving techniques to measure the metabolome provides opportunities to understand complex relationships that may underlie the development and progression of cancer as well as treatment-related sequelae. Given broad reaching and fundamental biology, both at the cellular and organismal levels, we propose that interactive research programs, which utilize a wide range of mutually informative experimental model systems—each one optimally suited for answering particular questions—provide the best path forward for breaking ground on new knowledge and ultimately understanding the epigenetic significance of the gut microbiome and its response to dietary factors in cancer prevention and therapy.
Collapse
Affiliation(s)
- Bidisha Paul
- Department of Biology, University of Alabama at Birmingham, 175 Campbell Hall, 1300 University Boulevard, Birmingham, AL 35294-1170 USA
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL USA ; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL USA ; Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL USA
| | - Wendy Demark-Wahnefried
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL USA ; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL USA ; Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL USA ; Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL USA
| | - Casey Morrow
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL USA ; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL USA
| | - Carolina Salvador
- Division of Medical Oncology/Hematology, University of Alabama at Birmingham, Birmingham, AL USA ; Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL USA
| | - Christine Skibola
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL USA ; Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 175 Campbell Hall, 1300 University Boulevard, Birmingham, AL 35294-1170 USA ; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL USA ; Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL USA ; Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL USA ; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
75
|
Libânio D, Dinis-Ribeiro M, Pimentel-Nunes P. Helicobacter pylori and microRNAs: Relation with innate immunity and progression of preneoplastic conditions. World J Clin Oncol 2015; 6:111-132. [PMID: 26468448 PMCID: PMC4600186 DOI: 10.5306/wjco.v6.i5.111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 06/22/2015] [Accepted: 08/04/2015] [Indexed: 02/06/2023] Open
Abstract
The accepted paradigm for intestinal-type gastric cancer pathogenesis is a multistep progression from chronic gastritis induced by Helicobacter pylori (H. pylori) to gastric atrophy, intestinal metaplasia, dysplasia and ultimately gastric cancer. The genetic and molecular mechanisms underlying disease progression are still not completely understood as only a fraction of colonized individuals ever develop neoplasia suggesting that bacterial, host and environmental factors are involved. MicroRNAs are noncoding RNAs that may influence H. pylori-related pathology through the regulation of the transcription and expression of various genes, playing an important role in inflammation, cell proliferation, apoptosis and differentiation. Indeed, H. pylori have been shown to modify microRNA expression in the gastric mucosa and microRNAs are involved in the immune host response to the bacteria and in the regulation of the inflammatory response. MicroRNAs have a key role in the regulation of inflammatory pathways and H. pylori may influence inflammation-mediated gastric carcinogenesis possibly through DNA methylation and epigenetic silencing of tumor suppressor microRNAs. Furthermore, microRNAs influenced by H. pylori also have been found to be involved in cell cycle regulation, apoptosis and epithelial-mesenchymal transition. Altogether, microRNAs seem to have an important role in the progression from gastritis to preneoplastic conditions and neoplastic lesions and since each microRNA can control the expression of hundreds to thousands of genes, knowledge of microRNAs target genes and their functions are of paramount importance. In this article we present a comprehensive review about the role of microRNAs in H. pylori gastric carcinogenesis, identifying the microRNAs downregulated and upregulated in the infection and clarifying their biological role in the link between immune host response, inflammation, DNA methylation and gastric carcinogenesis.
Collapse
|
76
|
Gil C, Dorca-Arévalo J, Blasi J. Clostridium Perfringens Epsilon Toxin Binds to Membrane Lipids and Its Cytotoxic Action Depends on Sulfatide. PLoS One 2015; 10:e0140321. [PMID: 26452234 PMCID: PMC4599917 DOI: 10.1371/journal.pone.0140321] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/24/2015] [Indexed: 12/23/2022] Open
Abstract
Epsilon toxin (Etx) is one of the major lethal toxins produced by Clostridium perfringens types B and D, being the causal agent of fatal enterotoxemia in animals, mainly sheep and goats. Etx is synthesized as a non-active prototoxin form (proEtx) that becomes active upon proteolytic activation. Etx exhibits a cytotoxic effect through the formation of a pore in the plasma membrane of selected cell targets where Etx specifically binds due to the presence of specific receptors. However, the identity and nature of host receptors of Etx remain a matter of controversy. In the present study, the interactions between Etx and membrane lipids from the synaptosome-enriched fraction from rat brain (P2 fraction) and MDCK cell plasma membrane preparations were analyzed. Our findings show that both Etx and proEtx bind to lipids extracted from lipid rafts from the two different models as assessed by protein-lipid overlay assay. Lipid rafts are membrane microdomains enriched in cholesterol and sphingolipids. Binding of proEtx to sulfatide, phosphatidylserine, phosphatidylinositol (3)-phosphate and phosphatidylinositol (5)-phosphate was detected. Removal of the sulphate groups via sulfatase treatment led to a dramatic decrease in Etx-induced cytotoxicity, but not in proEtx-GFP binding to MDCK cells or a significant shift in oligomer formation, pointing to a role of sulfatide in pore formation in rafts but not in toxin binding to the target cell membrane. These results show for the first time the interaction between Etx and membrane lipids from host tissue and point to a major role for sulfatides in C. perfringens epsilon toxin pathophysiology.
Collapse
Affiliation(s)
- Carles Gil
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Catalunya, Spain
- * E-mail: (JB); (CG)
| | - Jonatan Dorca-Arévalo
- Laboratory of Cellular and Molecular Neuroscience, Department of Pathology and Experimental Therapeutics, School of Medicine, Universitat de Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
- IDIBELL-Bellvitge Biomedical Research Institute, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Juan Blasi
- Laboratory of Cellular and Molecular Neuroscience, Department of Pathology and Experimental Therapeutics, School of Medicine, Universitat de Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
- IDIBELL-Bellvitge Biomedical Research Institute, L’Hospitalet de Llobregat, Barcelona, Spain
- * E-mail: (JB); (CG)
| |
Collapse
|
77
|
Katoh M. Mutation spectra of histone methyltransferases with canonical SET domains and EZH2-targeted therapy. Epigenomics 2015; 8:285-305. [PMID: 26411517 DOI: 10.2217/epi.15.89] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Germline mutations in canonical SET-methyltransferases have been identified in autism and intellectual disability syndromes and gain-of-function somatic alterations in EZH2, MLL3, NSD1, WHSC1 (NSD2) and WHSC1L1 (NSD3) in cancer. EZH2 interacts with AR, ERα, β-catenin, FOXP3, NF-κB, PRC2, REST and SNAI2, resulting in context-dependent transcriptional activation and repression. Pharmacological EZH2 inhibitors are currently in clinical trials for the treatment of B-cell lymphomas and solid tumors. EZH2 inhibitors might also be applicable in the treatment of SWI/SNF-mutant cancers, reflecting the reciprocal expression of and functional overlap between EZH2 and SMARCA4. Because of the risks for autoimmune diseases, cognitive impairment, cardiomyopathy and myelodysplastic syndrome, EZH2 inhibitors should be utilized for cancer treatment in patients receiving long-term surveillance but not for cancer chemoprevention.
Collapse
Affiliation(s)
- Masaru Katoh
- Department of Omics Network, National Cancer Center, 5-1-1 Tsukiji, Chuo-ward, Tokyo 104-0045, Japan
| |
Collapse
|
78
|
Abstract
Helicobacter pylori infection plays a crucial role in gastric carcinogenesis. H pylori exerts oncogenic effects on gastric mucosa through complex interaction between bacterial virulence factors and host inflammatory responses. On the other hand, gastric cancer develops via stepwise accumulation of genetic and epigenetic alterations in H pylori-infected gastric mucosa. Recent comprehensive analyses of gastric cancer genomes indicate a multistep process of genetic alterations as well as possible molecular mechanisms of gastric carcinogenesis. Both genetic processes of gastric cancer development and molecular oncogenic pathways related to H pylori infection are important to completely understand the pathogenesis of H pylori-related gastric cancer.
Collapse
|
79
|
Ishimoto T, Baba H, Izumi D, Sugihara H, Kurashige J, Iwatsuki M, Tan P. Current perspectives toward the identification of key players in gastric cancer microRNA dysregulation. Int J Cancer 2015; 138:1337-49. [DOI: 10.1002/ijc.29627] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/27/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Takatsugu Ishimoto
- Cancer and Stem Cell Biology; Duke-NUS Graduate Medical School Singapore; Singapore Singapore
- Department of Gastroenterological Surgery, Graduate School of Medical Science; Kumamoto University; Kumamoto Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Science; Kumamoto University; Kumamoto Japan
| | - Daisuke Izumi
- Department of Gastroenterological Surgery, Graduate School of Medical Science; Kumamoto University; Kumamoto Japan
| | - Hidetaka Sugihara
- Department of Gastroenterological Surgery, Graduate School of Medical Science; Kumamoto University; Kumamoto Japan
| | - Junji Kurashige
- Department of Gastroenterological Surgery, Graduate School of Medical Science; Kumamoto University; Kumamoto Japan
| | - Masaaki Iwatsuki
- Department of Gastroenterological Surgery, Graduate School of Medical Science; Kumamoto University; Kumamoto Japan
| | - Patrick Tan
- Cancer and Stem Cell Biology; Duke-NUS Graduate Medical School Singapore; Singapore Singapore
| |
Collapse
|
80
|
Cao L, Yu J. Effect of Helicobacter pylori Infection on the Composition of Gastric Microbiota in the Development of Gastric Cancer. Gastrointest Tumors 2015; 2:14-25. [PMID: 26673084 DOI: 10.1159/000380893] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Gastric cancer is one of the most common cancer types worldwide. In China, gastric cancer has become one of the major threats for public health, ranking second on incidence and third on cause of cancer death. Despite the common risk factors that promote the development of gastric cancer, the huge quantity of microorganism colonies within the gastrointestinal tract, particularly Helicobacter pylori infection, demonstrates a correlation with chronic inflammation and gastric carcinogenesis, as epidemiological studies have determined that H. pylori infection confers approximately 75% of the attributable risk for gastric cancer. SUMMARY The current article draws an overview on the correlation between the microbiota, inflammation and gastric tumorigenesis. H. pylori infection has been identified as the main risk factor as it triggers epithelial barrier disruption, survival signaling as well as genetic/epigenetic modulation. Apart from H. pylori, the existence of a diverse and complex composition of microbiota in the stomach has been identified, which supports a role of microbiota in the development of gastric cancer. Moreover, metagenomics studies focused on the composition and function of the microbiota have associated microbiota with gastric metabolic diseases and even tumorigenesis. Apart from the gastric microbiota, inflammation is another identified contributor to cancer development as well. KEY MESSAGE Though H. pylori infection and the non-H. pylori microbiota play a role in gastric cancer, the properties of gastric microbiota and mechanisms by which they participate in the genesis of gastric cancer are still not clearly depicted. Moreover, it remains to be understood how the presence of microbiota along with H. pylori infection affects the progress from gastric disease to cancer. PRACTICAL IMPLICATIONS This article summarized a clue of the current studies on microbiota, H. pylori infection and the progression from gastric disease to cancer.
Collapse
Affiliation(s)
- Le Cao
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Ju Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| |
Collapse
|
81
|
Zheng F, Liao YJ, Cai MY, Liu TH, Chen SP, Wu PH, Wu L, Bian XW, Guan XY, Zeng YX, Yuan YF, Kung HF, Xie D. Systemic delivery of microRNA-101 potently inhibits hepatocellular carcinoma in vivo by repressing multiple targets. PLoS Genet 2015; 11:e1004873. [PMID: 25693145 PMCID: PMC4334495 DOI: 10.1371/journal.pgen.1004873] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 11/04/2014] [Indexed: 12/31/2022] Open
Abstract
Targeted therapy based on adjustment of microRNA (miRNA)s activity takes great promise due to the ability of these small RNAs to modulate cellular behavior. However, the efficacy of miR-101 replacement therapy to hepatocellular carcinoma (HCC) remains unclear. In the current study, we first observed that plasma levels of miR-101 were significantly lower in distant metastatic HCC patients than in HCCs without distant metastasis, and down-regulation of plasma miR-101 predicted a worse disease-free survival (DFS, P<0.05). In an animal model of HCC, we demonstrated that systemic delivery of lentivirus-mediated miR-101 abrogated HCC growth in the liver, intrahepatic metastasis and distant metastasis to the lung and to the mediastinum, resulting in a dramatic suppression of HCC development and metastasis in mice without toxicity and extending life expectancy. Furthermore, enforced overexpression of miR-101 in HCC cells not only decreased EZH2, COX2 and STMN1, but also directly down-regulated a novel target ROCK2, inhibited Rho/Rac GTPase activation, and blocked HCC cells epithelial-mesenchymal transition (EMT) and angiogenesis, inducing a strong abrogation of HCC tumorigenesis and aggressiveness both in vitro and in vivo. These results provide proof-of-concept support for systemic delivery of lentivirus-mediated miR-101 as a powerful anti-HCC therapeutic modality by repressing multiple molecular targets.
Collapse
Affiliation(s)
- Fang Zheng
- The State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Yi-Ji Liao
- The State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Mu-Yan Cai
- The State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Tian-Hao Liu
- The State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Shu-Peng Chen
- The State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Pei-Hong Wu
- The State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Tumor Interventional Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Hepatobiliary Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Long Wu
- Department of Clinical Oncology, People’s Hospital, Wuhan University, Wuhan, China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xin-Yuan Guan
- The State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Clinical Oncology, the University of Hong Kong, Hong Kong, China
| | - Yi-Xin Zeng
- The State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yun-Fei Yuan
- The State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Hepatobiliary Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hsiang-Fu Kung
- The State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- State Key Laboratory of Oncology in South China, the Chinese University of Hong Kong, Hong Kong, China
| | - Dan Xie
- The State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
- * E-mail:
| |
Collapse
|
82
|
Link A, Schirrmeister W, Langner C, Varbanova M, Bornschein J, Wex T, Malfertheiner P. Differential expression of microRNAs in preneoplastic gastric mucosa. Sci Rep 2015; 5:8270. [PMID: 25652892 PMCID: PMC4317705 DOI: 10.1038/srep08270] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/14/2015] [Indexed: 12/14/2022] Open
Abstract
Gastric carcinogenesis is a multifactorial H.pylori-triggered dynamic process that goes through a cascade of preneoplastic conditions. The expression of miRNAs in the stomach with regard to preneoplastic precursor conditions and H.pylori infection has not been investigated systematically. In this prospective proof-of-principle study, we evaluated the miRNA expression in gastric antrum and corpus mucosa from patients with chronic non-atrophic gastritis (CNAG), atrophic gastritis (AG), and GC compared to controls. Gastric normal mucosa shows a unique expression pattern for miR-21, miR-155 and miR-223, which is specific for different regions. In correlation with progression of Correa's cascade and H.pylori infection, we observed a gradual increase in miR-155 and miR-223 both in corpus and antrum and miR-21 only in the antrum mucosa. Using miRNA expression we calculated a score that allowed us to discriminate patients with AG from subjects with normal mucosa with high diagnostic accuracy in testing and validation cohorts reproducibly. In summary, the expression pattern of miRNAs in the gastric mucosa is gradually increased with progression of Correa's cascade and H.pylori infection, suggesting miRNAs as potential biomarkers for preneoplastic precursor conditions. However, differences of miRNA expression between the gastric antrum and the corpus need to be considered in future studies.
Collapse
Affiliation(s)
- Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - Wiebke Schirrmeister
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - Cosima Langner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - Mariya Varbanova
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - Jan Bornschein
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - Thomas Wex
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
83
|
Na HK, Woo JH. Helicobacter pylori Induces Hypermethylation of CpG Islands Through Upregulation of DNA Methyltransferase: Possible Involvement of Reactive Oxygen/Nitrogen Species. J Cancer Prev 2015; 19:259-64. [PMID: 25574460 PMCID: PMC4285956 DOI: 10.15430/jcp.2014.19.4.259] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 12/23/2014] [Accepted: 12/24/2014] [Indexed: 12/27/2022] Open
Abstract
Helicobacter pylori infection has been considered to be one of the major factors implicated in etiology of gastric cancer. Aberrant DNA methylation accounts for epigenetic modifications induced by H. pylori. H. pylori-induced hypermethylation has been linked to enhancement of the rates of metastasis and recurrence in gastric cancer patients. H. pylori-induced gene hypermethylation has been known to be associated with inflammation. However, the molecular mechanisms underlying H. pylori-induced hypermethylation remain largely unknown. This review highlights possible involvement of reactive oxygen/nitrogen species in H. pylori-induced hypermethylation and gastric carcinogenesis.
Collapse
Affiliation(s)
- Hye-Kyung Na
- Department of Food and Nutrition, College of Human Ecology, Sungshin Women's University, Seoul, Korea
| | - Jeong-Hwa Woo
- Department of Food and Nutrition, College of Human Ecology, Sungshin Women's University, Seoul, Korea
| |
Collapse
|
84
|
Nishizawa T, Suzuki H. Gastric Carcinogenesis and Underlying Molecular Mechanisms: Helicobacter pylori and Novel Targeted Therapy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:794378. [PMID: 25945346 PMCID: PMC4405013 DOI: 10.1155/2015/794378] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/15/2014] [Indexed: 12/21/2022]
Abstract
The oxygen-derived free radicals that are released from activated neutrophils are one of the cytotoxic factors of Helicobacter pylori-induced gastric mucosal injury. Increased cytidine deaminase activity in H. pylori-infected gastric tissues promotes the accumulation of various mutations and might promote gastric carcinogenesis. Cytotoxin-associated gene A (CagA) is delivered into gastric epithelial cells via bacterial type IV secretion system, and it causes inflammation and activation of oncogenic pathways. H. pylori infection induces epigenetic transformations, such as aberrant promoter methylation in tumor-suppressor genes. Aberrant expression of microRNAs is also reportedly linked to gastric tumorogenesis. Moreover, recent advances in molecular targeting therapies provided a new interesting weapon to treat advanced gastric cancer through anti-human epidermal growth factor receptor 2 (HER-2) therapies. This updated review article highlights possible mechanisms of gastric carcinogenesis including H. pylori-associated factors.
Collapse
MESH Headings
- Animals
- Antigens, Bacterial/genetics
- Antigens, Bacterial/metabolism
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Bacterial Secretion Systems/genetics
- Bacterial Secretion Systems/metabolism
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- DNA Methylation/genetics
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Epigenesis, Genetic
- Gene Expression Regulation, Neoplastic
- Helicobacter Infections/genetics
- Helicobacter Infections/metabolism
- Helicobacter Infections/pathology
- Helicobacter Infections/therapy
- Helicobacter pylori/genetics
- Helicobacter pylori/metabolism
- Helicobacter pylori/pathogenicity
- Humans
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Promoter Regions, Genetic
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Stomach Neoplasms/genetics
- Stomach Neoplasms/metabolism
- Stomach Neoplasms/microbiology
- Stomach Neoplasms/pathology
- Stomach Neoplasms/therapy
Collapse
Affiliation(s)
- Toshihiro Nishizawa
- 1Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- 2Division of Research and Development for Minimally Invasive Treatment, Cancer Center, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hidekazu Suzuki
- 1Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- *Hidekazu Suzuki:
| |
Collapse
|
85
|
Shi Y, Wang J, Xin Z, Duan Z, Wang G, Li F. Transcription factors and microRNA-co-regulated genes in gastric cancer invasion in ex vivo. PLoS One 2015; 10:e0122882. [PMID: 25860484 PMCID: PMC4393113 DOI: 10.1371/journal.pone.0122882] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 02/24/2015] [Indexed: 01/09/2023] Open
Abstract
Aberrant miRNA expression abnormally modulates gene expression in cells and can contribute to tumorigenesis in humans. This study identified functionally relevant differentially expressed genes using the transcription factors and miRNA-co-regulated network analysis for gastric cancer. The TF-miRNA co-regulatory network was constructed based on data obtained from cDNA microarray and miRNA expression profiling of gastric cancer tissues. The network along with their co-regulated genes was analyzed using Database for Annotation, Visualization and Integrated Discovery (DAVID) and Transcriptional Regulatory Element Database (TRED). We found eighteen (17 up-regulated and 1 down-regulated) differentially expressed genes that were co-regulated by transcription factors and miRNAs. KEGG pathway analysis revealed that these genes were part of the extracellular matrix-receptor interaction and focal adhesion signaling pathways. In addition, qRT- PCR and Western blot data showed an increase in COL1A1 and decrease in NCAM1 mRNA and protein levels in gastric cancer tissues. Thus, these data provided the first evidence to illustrate that altered gene network was associated with gastric cancer invasion. Further study with a large sample size and more functional experiments is needed to confirm these data and contribute to diagnostic and treatment strategies for gastric cancer.
Collapse
Affiliation(s)
- Yue Shi
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, China
| | - Jihan Wang
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, China
| | - Zhuoyuan Xin
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, China
| | - Zipeng Duan
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, China
| | - Guoqing Wang
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, China
- The Key Laboratory for Bionics Engineering, Ministry of Education, China, Jilin University, Changchun, China
- * E-mail: (GQW); (FL)
| | - Fan Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, China
- The Key Laboratory for Bionics Engineering, Ministry of Education, China, Jilin University, Changchun, China
- * E-mail: (GQW); (FL)
| |
Collapse
|
86
|
Expression of serum let-7c, let-7i, and let-7f microRNA with its target gene, pepsinogen C, in gastric cancer and precancerous disease. Tumour Biol 2014; 36:3337-43. [PMID: 25549793 DOI: 10.1007/s13277-014-2967-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/09/2014] [Indexed: 02/07/2023] Open
Abstract
This study examined the expression patterns of serum let-7 microRNA (miRNA) and its target gene, pepsinogen C (PGC), in gastric cancer (GC) and precancerous disease patients to evaluate their diagnostic efficiency for GC and its precursor and to investigate any correlation between the two. Serum samples were taken from 638 patients, including 214 GC patients, 222 atrophic gastritis (AG) patients, and 202 controls (CON). The expression of serum let-7 miRNA was detected in control-AG (precancerous disease) through to GC patients using quantitative reverse-transcription polymerase chain reaction. Serum PGC was determined by enzyme-linked immuno-sorbent assay. PGC expression in situ was detected by immunohistochemistry staining. The luciferase reporter gene system was used to verify correlation between let-7 miRNA and its predicted target gene. The results showed that serum let-7c, let-7i, and let-7f demonstrated significant differences in the CON-AG-GC sequence (P = 0.017, P < 0.001, P = 0.003, respectively); let-7c was significantly lower in the AG group, and let-7i and let-7f were significantly higher in the GC group. Significantly different expressions of serum PGC were found among the three diseases, and also between AG vs. CON, and GC vs. CON (P = 0.027, P = 0.001, respectively). Linear-regression analysis suggested that serum let-7c was negatively correlated to the expression of PGC (r = -0.096, P = 0.047), and serum let-7c, let-7i, and let-7f showed no association with PGC expression in tissue. In addition, serum let-7c, let-7f, and let-7i showed significant correlations with environment factors. Serum let-7c, let-7i, and let-7f demonstrated significant differences in the CON-AG-GC disease sequence indicating that let-7 miRNA might have value by serving as potential biomarker in the diagnosis of GC or its precancerous diseases. There were significant negative correlations between serum let-7c and its target gene PGC expression.
Collapse
|
87
|
Roy BC, Subramaniam D, Ahmed I, Jala VR, Hester CM, Greiner KA, Haribabu B, Anant S, Umar S. Role of bacterial infection in the epigenetic regulation of Wnt antagonist WIF1 by PRC2 protein EZH2. Oncogene 2014; 34:4519-30. [PMID: 25486432 PMCID: PMC4459936 DOI: 10.1038/onc.2014.386] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 12/19/2022]
Abstract
The Enhancer of Zeste Homolog-2 (EZH2) represses gene transcription through histone H3 lysine-27-trimethylation (H3K27me3). Citrobacter rodentium (CR) promotes crypt hyperplasia and tumorigenesis by aberrantly regulating Wnt/β-catenin signaling. We aimed at investigating EZH2’s role in epigenetically regulating Wnt/β-catenin signaling following bacterial infection. NIH:Swiss outbred and ApcMin/+ mice were infected with CR (108cfu); BLT1−/−ApcMin/+ mice, AOM/DSS-treated mice and de-identified human adenocarcinoma samples were models of colon cancer. Following infection with wild type but not mutant CR, elevated EZH2 levels in the crypt at days-6 and 12 (peak hyperplasia) coincided with increases in H3K27me3 and β-catenin levels, respectively. Chromatin immunoprecipitation revealed EZH2 and H3K27me3’s occupancy on WIF1 (Wnt Inhibitory Factor-1) promoter resulting in reduced WIF1 mRNA and protein expression. Following EZH2 knockdown via siRNA or EZH2-inhibitor DZNep either alone or in combination with HDAC inhibitor SAHA, WIF1 promoter activity increased significantly while overexpression of EZH2 attenuated WIF1-reporter activity. Ectopic overexpression of SET domain mutant (F681Y) almost completely rescued WIF1 reporter activity and partially rescued WIF1 protein levels while H3K27me3 levels were significantly attenuated suggesting that an intact methyltransferases activity is required for EZH2-dependent effects. Interestingly, while β-catenin levels were lower in EZH2-knocked-down cells, F681Y mutants exhibited only partial reduction in β-catenin levels. Besides EZH2, increases in miR-203 expression in the crypts at days-6 and 12 post-infection correlated with reduced levels of its target WIF1; overexpression of miR-203 in primary colonocytes decreased WIF1 mRNA and protein levels. Elevated levels of EZH2 and β-catenin with concomitant decrease in WIF1 expression in the polyps of CR-infected ApcMin/+ mice paralleled changes recorded in BLT1−/−ApcMin/+, AOM/DSS and human adenocarcinomas. Thus, EZH2-induced downregulation of WIF1 expression may partially regulate Wnt/β-catenin-dependent crypt hyperplasia in response to CR infection.
Collapse
Affiliation(s)
- B C Roy
- Departments of Molecular and Integrative Physiology and Family Medicine Research Division, University of Kansas Medical Center, Kansas City, KS, USA
| | - D Subramaniam
- Departments of Molecular and Integrative Physiology and Family Medicine Research Division, University of Kansas Medical Center, Kansas City, KS, USA
| | - I Ahmed
- Departments of Molecular and Integrative Physiology and Family Medicine Research Division, University of Kansas Medical Center, Kansas City, KS, USA
| | - V R Jala
- James Graham Brown Cancer Center and Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - C M Hester
- Departments of Molecular and Integrative Physiology and Family Medicine Research Division, University of Kansas Medical Center, Kansas City, KS, USA
| | - K A Greiner
- Departments of Molecular and Integrative Physiology and Family Medicine Research Division, University of Kansas Medical Center, Kansas City, KS, USA
| | - B Haribabu
- James Graham Brown Cancer Center and Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - S Anant
- Departments of Molecular and Integrative Physiology and Family Medicine Research Division, University of Kansas Medical Center, Kansas City, KS, USA.,University of Kansas Cancer Center, Kansas City, KS, USA
| | - S Umar
- Departments of Molecular and Integrative Physiology and Family Medicine Research Division, University of Kansas Medical Center, Kansas City, KS, USA.,University of Kansas Cancer Center, Kansas City, KS, USA
| |
Collapse
|
88
|
Chu YX, Wang WH, Dai Y, Teng GG, Wang SJ. Esophageal Helicobacter pylori colonization aggravates esophageal injury caused by reflux. World J Gastroenterol 2014; 20:15715-15726. [PMID: 25400455 PMCID: PMC4229536 DOI: 10.3748/wjg.v20.i42.15715] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/22/2014] [Accepted: 05/14/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate esophageal Helicobacter pylori (H. pylori) colonization on esophageal injury caused by reflux and the related mechanisms.
METHODS: An esophagitis model, with acid and bile reflux, was surgically produced in male rats. The rats were randomly divided into either: (1) an esophagogastroduodenal anastomosis (EGDA) group; (2) an EGDA with H. pylori infection group; (3) a pseudo-operation with H. pylori infection group; or (4) a pseudo-operation group. All rats were kept for 36 wk. Based on the location of H. pylori colonization, the EGDA rats with H. pylori infection were subdivided into those with concomitant esophageal H. pylori colonization or those with only gastric H. pylori colonization. The esophageal injuries were evaluated grossly and microscopically. The expressions of CDX2 and MUC2 were determined by real-time polymerase chain reaction (RT-PCR) and immunohistochemistry. Ki-67 antigen expression was determined by immunohistochemistry. The mRNA levels of cyclin D1, c-Myc, Bax and Bcl-2 were determined by RT-PCR. Cell apoptosis was evaluated using the TdT-mediated dUTP nick-end labeling method.
RESULTS: Esophagitis, Barrett’s esophagus (BE), and esophageal adenocarcinoma (EAC) developed in rats that underwent EGDA. When comparing rats with EGDA and concomitant esophageal H. pylori colonization to EGDA-only rats, the severity of injury (87.9 ± 5.2 vs 77.2 ± 8.6, macroscopically, 92.5 ± 8.0 vs 83.8 ± 5.5, microscopically, both P < 0.05) and the incidences of BE (80.0% vs 33.3%, P = 0.055) and EAC (60.0% vs 11.1%, P < 0.05) were increased. These increases were associated with upregulation of CDX2 and MUC2 mRNA (10.1 ± 5.4 vs 3.0 ± 2.9, 8.4 ± 4.6 vs 2.0 ± 3.2, respectively, Ps < 0.01) and protein (8.1 ± 2.3 vs 3.3 ± 3.1, 7.3 ± 4.0 vs 1.8 ± 2.7, respectively, all P < 0.05). The expression of Ki-67 (8.9 ± 0.7 vs 6.0 ± 1.7, P < 0.01) and the presence of apoptotic cells (8.3 ± 1.1 vs 5.3 ± 1.7, P < 0.01) were also increased significantly in rats with EGDA and concomitant esophageal H. pylori colonization compared with rats with EGDA only. The mRNA levels of cyclin D1 (5.8 ± 1.9 vs 3.4 ± 1.3, P < 0.01), c-Myc (6.4 ± 1.7 vs 3.7 ± 1.2, P < 0.01), and Bax (8.6 ± 1.6 vs 5.1 ± 1.3, P < 0.01) were significantly increased, whereas the mRNA level of Bcl-2 (0.6 ± 0.3 vs 0.8 ± 0.3, P < 0.01) was significantly reduced in rats with EGDA and concomitant esophageal H. pylori colonization compared with rats with EGDA only.
CONCLUSION: Esophageal H. pylori colonization increases esophagitis severity, and facilitates the development of BE and EAC with the augmentation of cell proliferation and apoptosis in esophageal mucosa.
Collapse
|
89
|
Zhai R, Wei Y, Su L, Liu G, Kulke MH, Wain JC, Christiani DC. Whole-miRNome profiling identifies prognostic serum miRNAs in esophageal adenocarcinoma: the influence of Helicobacter pylori infection status. Carcinogenesis 2014; 36:87-93. [PMID: 25381453 DOI: 10.1093/carcin/bgu228] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cell free circulating microRNAs (cfmiRNAs) have been recognized as robust and stable biomarkers of cancers. However, little is known about the prognostic significance of cfmiRNAs in esophageal adenocarcinoma (EA). In this study, we explored whether specific cfmiRNA profiles could predict EA prognosis and whether Helicobacter pylori (HP) infection status could influence the association between cfmiRNAs and EA survival outcome. We profiled 1075 miRNAs in pooled serum samples from 30 EA patients and 30 healthy controls. The most relevant cfmiRNAs were then assessed for their associations with EA survival in an independent cohort of 82 patients, using Log-rank test and multivariate Cox regression models. Quantitative real-time PCR (qRT-PCR) was used for cfmiRNA profiling. HP infection status was determined by immunoblotting assay. We identified a panel of 18 cfmiRNAs that could distinguish EA patients from healthy subjects (P = 3.0E-12). In overall analysis and in HP-positive subtype patients, no cfmiRNA was significantly associated with EA prognosis. In HP-negative patients, however, 15 cfmiRNAs were significantly associated with overall survival (OS) (all P < 0.05). A combined 2-cfmiRNA (low miR-3935 and high miR-4286) risk score was constructed; that showed greater risk for worse OS (HR = 2.22, P = 0.0019) than individual cfmiRNA alone. Patients with high-risk score had >10-fold increased risk of death than patients with low risk score (P = 0.0302; HR = 10.91; P = 0.0094). Our findings suggest that dysregulated cfmiRNAs may contribute to EA survival outcome and HP infection status may modify the association between cfmiRNAs and EA survival.
Collapse
Affiliation(s)
- Rihong Zhai
- Shenzhen Key Laboratory of Translational Medicine of Tumor, Shenzhen University School of Medicine, Shenzhen 518060, China, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA, Medical Oncology and Haematology, Department of Medicine, Princess Margaret Hospital, Toronto, Ontario M5G 2C4, Canada, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA and Department of Surgery and Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Yongyue Wei
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| | - Li Su
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| | - Geoffrey Liu
- Medical Oncology and Haematology, Department of Medicine, Princess Margaret Hospital, Toronto, Ontario M5G 2C4, Canada
| | - Mathew H Kulke
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA and
| | | | - David C Christiani
- Medical Oncology and Haematology, Department of Medicine, Princess Margaret Hospital, Toronto, Ontario M5G 2C4, Canada, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
90
|
Kang W, Tong JHM, Lung RWM, Dong Y, Yang W, Pan Y, Lau KM, Yu J, Cheng AS, To KF. let-7b/g silencing activates AKT signaling to promote gastric carcinogenesis. J Transl Med 2014; 12:281. [PMID: 25288334 PMCID: PMC4196013 DOI: 10.1186/s12967-014-0281-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/24/2014] [Indexed: 12/13/2022] Open
Abstract
Background Aberrant AKT activation contributes to gastric cancer cell survival and chemotherapy resistance, however its regulation is poorly understood. microRNAs have been established to be important regulators in gastric carcinogenesis. Here, we showed the functional role and putative target of let-7b and let-7g (let-7b/g) in gastric carcinogenesis. Methods The expression of let-7b/g in gastric cancer cell lines and primary tumors were evaluated by miRNA qRT-PCR. The putative target gene of let-7b/g was explored by TargetScan followed by further validation. Functional analyses including MTT proliferation, monolayer colony formation, cell invasion assays and in vivo study were performed in both ectopic expression and knockdown approaches. Results let-7b/g was found down-regulated in gastric cancer and its downregulation was associated with poor survival and correlated with lymph node metastasis. let-7b/g inhibited AKT2 expression by directly binding to its 3’UTR, reduced p-AKT (S473) activation and suppressed expression of the downstream effector pS6. AKT2 mRNA expression showed negative correlation with the expression of let-7b/g in primary tumors. Short interfering RNA (siRNA) mediated knockdown of AKT2 phenocopied the tumor-suppressive effects of let-7b/g. Moreover, AKT2 re-expression partly abrogated the growth-inhibitory effect of let-7b/g. Conclusion In conclusion, our findings reveal decreased let-7b/g contributes to aberrant AKT activation in gastric tumorigenesis and provide a potential therapeutic strategy for gastric cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12967-014-0281-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|
91
|
Zhang L, Sung JJY, Yu J, Ng SC, Wong SH, Cho CH, Ng SSM, Chan FKL, Wu WKK. Xenophagy in Helicobacter pylori- and Epstein-Barr virus-induced gastric cancer. J Pathol 2014; 233:103-12. [PMID: 24633785 DOI: 10.1002/path.4351] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/27/2014] [Accepted: 03/07/2014] [Indexed: 12/12/2022]
Abstract
Helicobacter pylori and Epstein-Barr virus (EBV) account for roughly 80% and 10%, respectively, of gastric carcinomas worldwide. Autophagy is an evolutionarily conserved and intricately regulated cellular process that involves the sequestration of cytoplasmic proteins and organelles into double-membrane autophagosomes that eventually fuse with lysosomes for degradation of the engulfed content. Emerging evidence indicates that xenophagy, a form of selective autophagy, plays a crucial role in the pathogenesis of H. pylori- and EBV-induced gastric cancer. Xenophagy specifically recognizes intracellular H. pylori and EBV and physically targets these pathogens to the autophagosomal-lysosomal pathway for degradation. In this connection, H. pylori or EBV-induced dysregulation of autophagy may be causally linked to gastric tumourigenesis and therefore can be exploited as therapeutic targets. This review will discuss how H. pylori and EBV infection activate autophagy and how these pathogens evade recognition and degradation by the autophagic pathway. Elucidating the molecular aspects of H. pylori- and EBV-induced autophagy will help us better understand the pathogenesis of gastric cancer and promote the development of autophagy modulators as antimicrobial agents.
Collapse
Affiliation(s)
- Lin Zhang
- Institute of Digestive Diseases and State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences and Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Molecular Mechanism of Gastric Carcinogenesis in Helicobacter pylori-Infected Rodent Models. Diseases 2014. [DOI: 10.3390/diseases2020168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
93
|
Ishiguro H, Kimura M, Takeyama H. Role of microRNAs in gastric cancer. World J Gastroenterol 2014; 20:5694-5699. [PMID: 24914330 PMCID: PMC4024779 DOI: 10.3748/wjg.v20.i19.5694] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 12/11/2013] [Accepted: 01/20/2014] [Indexed: 02/06/2023] Open
Abstract
Although gastric cancer (GC) is one of the leading causes of cancer-related death, major therapeutic advances have not been made, and patients with GC still face poor outcomes. The prognosis of GC also remains poor because the molecular mechanisms of GC progression are incompletely understood. MicroRNAs (miRNAs) are noncoding RNAs that are associated with gastric carcinogenesis. Studies investigating the regulation of gene expression by miRNAs have made considerable progress in recent years, and abnormalities in miRNA expression have been shown to be associated with the occurrence and progression of GC. miRNAs contribute to gastric carcinogenesis by altering the expression of oncogenes and tumor suppressors, affecting cell proliferation, apoptosis, motility, and invasion. Moreover, a number of miRNAs have been shown to be associated with tumor type, tumor stage, and patient survival and therefore may be developed as novel diagnostic or prognostic markers. In this review, we discuss the involvement of miRNAs in GC and the mechanisms through which they regulate gene expression and biological functions. Then, we review recent research on the involvement of miRNAs in GC prognosis, their potential use in chemotherapy, and their effects on Helicobacter pylori infections in GC. A greater understanding of the roles of miRNAs in gastric carcinogenesis could provide insights into the mechanisms of tumor development and could help to identify novel therapeutic targets.
Collapse
|
94
|
Ma J, Hong L, Chen Z, Nie Y, Fan D. Epigenetic regulation of microRNAs in gastric cancer. Dig Dis Sci 2014; 59:716-23. [PMID: 24248419 DOI: 10.1007/s10620-013-2939-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 10/28/2013] [Indexed: 01/02/2023]
Abstract
Gastric cancer is one of the most common cancers and accounts for a large proportion of cancer-related deaths in the world, while the pathogenesis of it is still not clear. Epigenetic changes have been found to participate in the development and progression of gastric cancer. Epigenetic changes involve methylation of cytosines in DNA, modifications of histone, chromatin remodeling, and alterations in the expression of microRNAs. MicroRNAs, a family of small non-coding RNAs, have been demonstrated to participate in many fundamental biological processes including the carcinogenesis of gastric cancer. Previous studies have shown that the downregulation of microRNAs are often caused by the methylation in the CpG islands of microRNA promoters. Here, we have summarized the functions and molecular mechanisms of gastric cancer related methylated microRNAs in gastric carcinogenesis. We further envisage the clinical application of microRNA methylation in the early diagnosis, treatment and prognosis assessment of gastric cancer.
Collapse
Affiliation(s)
- Jiaojiao Ma
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | | | | | | | | |
Collapse
|
95
|
Suzuki R, Yamamoto E, Nojima M, Maruyama R, Yamano HO, Yoshikawa K, Kimura T, Harada T, Ashida M, Niinuma T, Sato A, Nosho K, Yamamoto H, Kai M, Sugai T, Imai K, Suzuki H, Shinomura Y. Aberrant methylation of microRNA-34b/c is a predictive marker of metachronous gastric cancer risk. J Gastroenterol 2014; 49:1135-44. [PMID: 23942619 PMCID: PMC4083150 DOI: 10.1007/s00535-013-0861-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/25/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND Metachronous gastric cancer (GC) can develop after endoscopic resection of GC and cannot be predicted based on clinical signature. Aberrant DNA methylation in noncancerous gastric mucosa is strongly implicated in gastric carcinogenesis and could be a useful biomarker of GC risk. We evaluated the clinical utility of DNA methylation as a biomarker of metachronous GC risk. METHOD We carried out scheduled follow-up endoscopy in 129 patients after curative endoscopic resection of GC. Biopsy specimens were collected from noncancerous mucosa in the gastric antrum and body, after which quantitative methylation analysis of miR-34b/c, SFRP1, SFRP2, SFRP5, DKK2 and DKK3 was carried out using bisulfite pyrosequencing. The utility of the methylation for predicting the risk of metachronous GC development was assessed using Kaplan-Meier and Cox proportional hazards model analyses. RESULTS During the follow-up period, 17 patients (13%) developed metachronous GCs. The cumulative incidence of metachronous GC was significantly higher among patients with elevated miR-34b/c, SFRP2 and DKK2 methylation in their gastric body. MiR-34b/c showed the strongest association with the risk of metachronous GC, and the cumulative incidence of metachronous GC was much higher in the high-miR-34b/c-methylation group than the low-methylation group. Multivariate analysis adjusted for age, sex, H. pylori status and pathological findings showed miR-34b/c methylation in gastric body to be an independent predictor of metachronous GC risk. CONCLUSION Our results suggest that methylation of miR-34b/c in the mucosa of the noncancerous gastric body may be a useful biomarker for predicting the risk of metachronous GC.
Collapse
Affiliation(s)
- Ryo Suzuki
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University, S1, W16, Chuo-Ku, Sapporo, 060-8543 Japan
| | - Eiichiro Yamamoto
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University, S1, W16, Chuo-Ku, Sapporo, 060-8543 Japan
- Department of Molecular Biology, Sapporo Medical University, S1, W17, Chuo-Ku, Sapporo, 060-8556 Japan
| | - Masanori Nojima
- The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Reo Maruyama
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University, S1, W16, Chuo-Ku, Sapporo, 060-8543 Japan
- Department of Molecular Biology, Sapporo Medical University, S1, W17, Chuo-Ku, Sapporo, 060-8556 Japan
| | - Hiro-o Yamano
- Department of Gastroenterology, Akita Red Cross Hospital, Akita, Japan
| | - Kenjiro Yoshikawa
- Department of Gastroenterology, Akita Red Cross Hospital, Akita, Japan
| | - Tomoaki Kimura
- Department of Gastroenterology, Akita Red Cross Hospital, Akita, Japan
| | - Taku Harada
- Department of Molecular Biology, Sapporo Medical University, S1, W17, Chuo-Ku, Sapporo, 060-8556 Japan
| | - Masami Ashida
- Department of Molecular Biology, Sapporo Medical University, S1, W17, Chuo-Ku, Sapporo, 060-8556 Japan
| | - Takeshi Niinuma
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University, S1, W16, Chuo-Ku, Sapporo, 060-8543 Japan
- Department of Molecular Biology, Sapporo Medical University, S1, W17, Chuo-Ku, Sapporo, 060-8556 Japan
| | - Akiko Sato
- Department of Molecular Biology, Sapporo Medical University, S1, W17, Chuo-Ku, Sapporo, 060-8556 Japan
| | - Katsuhiko Nosho
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University, S1, W16, Chuo-Ku, Sapporo, 060-8543 Japan
| | - Hiroyuki Yamamoto
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University, S1, W16, Chuo-Ku, Sapporo, 060-8543 Japan
| | - Masahiro Kai
- Department of Molecular Biology, Sapporo Medical University, S1, W17, Chuo-Ku, Sapporo, 060-8556 Japan
| | - Tamotsu Sugai
- Department of Pathology, Iwate Medical University, Morioka, Japan
| | - Kohzoh Imai
- The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University, S1, W17, Chuo-Ku, Sapporo, 060-8556 Japan
| | - Yasuhisa Shinomura
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University, S1, W16, Chuo-Ku, Sapporo, 060-8543 Japan
| |
Collapse
|
96
|
Regulation of microRNAs by epigenetics and their interplay involved in cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2013; 32:96. [PMID: 24261995 PMCID: PMC3874662 DOI: 10.1186/1756-9966-32-96] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 11/14/2013] [Indexed: 12/15/2022]
Abstract
Similar to protein-coding genes, miRNAs are also susceptible to epigenetic modulation. Although numerous miRNAs have been shown to be affected by DNA methylation, the regulatory mechanism of histone modification on miRNA is not adequately understood. EZH2 and HDACs were recently identified as critical histone modifiers of deregulated miRNAs in cancer and can be recruited to a miRNA promoter by transcription factors such as MYC. Because miRNAs can modulate epigenetic architecture and can be regulated by epigenetic alteration, they could reasonably play an important role in mediating the crosstalk between epigenetic regulators. The complicated network between miRNAs and epigenetic machineries underlies the epigenetic–miRNA regulatory pathway, which is important in monitoring gene expression profiles. Regulation of miRNAs by inducing epigenetic changes reveals promising avenues for the design of innovative strategies in the fight against human cancer.
Collapse
|
97
|
Cid TP, Fernández MC, Benito Martínez S, Jones NL. Pathogenesis of Helicobacter pylori infection. Helicobacter 2013; 18 Suppl 1:12-7. [PMID: 24011239 DOI: 10.1111/hel.12076] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori infection and disease outcome are mediated by a complex interplay between bacterial, host, and environmental factors. Over the past year, our understanding of this complex interplay has been improved by a variety of studies focusing on both host and bacterial factors. These include studies assessing novel virulence factors as well as those most frequently associated with severity of disease outcome including cagA and the cag pathogenicity island, and the vacuolating cytotoxin. Several studies have focused on regulation of virulence factors by environmental factors. In addition, mechanisms by which bacterial virulence factors influence the host response and disease, by inducing epigenetic changes, autophagy and altered oxidative stress have also been elucidated. This review highlights key findings in the pathogenesis of H. pylori infection reported over the past year.
Collapse
Affiliation(s)
- Trinidad Parra Cid
- Unidad de Investigación, Hospital Universitario de Guadalajara, Guadalajara, Spain; CIBERehd (Centro de Investigación Biomédica en Red, Enfermedades Hepáticas y Digestivas), Madrid, Spain
| | | | | | | |
Collapse
|
98
|
Li P, Chen X, Su L, Li C, Zhi Q, Yu B, Sheng H, Wang J, Feng R, Cai Q, Li J, Yu Y, Yan M, Liu B, Zhu Z. Epigenetic silencing of miR-338-3p contributes to tumorigenicity in gastric cancer by targeting SSX2IP. PLoS One 2013; 8:e66782. [PMID: 23826132 PMCID: PMC3691322 DOI: 10.1371/journal.pone.0066782] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 05/10/2013] [Indexed: 12/27/2022] Open
Abstract
MicroRNA has been recently recognized as playing a prominent role in tumorigenesis and metastasis. Here, we report that miR-338-3p was epigenetically silenced in gastric cancer, and its down-regulation was significantly correlated with gastric cancer clinicopathological features. Strikingly, restoring miR-338-3p expression in SGC-7901 gastric cancer cells inhibited proliferation, migration, invasion and tumorigenicity in vitro and in vivo, at least partly through inducing apoptosis. Furthermore, we demonstrate the oncogene SSX2IP is a target of miR-338-3p. We propose that miR-338-3p functions as a tumor suppressor in gastric cancer, and the methylation status of its CpG island could serve as a potential diagnostic marker for gastric cancer.
Collapse
Affiliation(s)
- Pu Li
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Xuehua Chen
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Liping Su
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Chenglong Li
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Qiaoming Zhi
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Beiqin Yu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Hong Sheng
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Junqing Wang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Runhua Feng
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Qu Cai
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Jianfang Li
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yingyan Yu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Min Yan
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Bingya Liu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- * E-mail: (BYL); (ZGZ)
| | - Zhenggang Zhu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- * E-mail: (BYL); (ZGZ)
| |
Collapse
|
99
|
Zabaleta J. MicroRNA: A Bridge from H. pylori Infection to Gastritis and Gastric Cancer Development. Front Genet 2012; 3:294. [PMID: 23248648 PMCID: PMC3521996 DOI: 10.3389/fgene.2012.00294] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 11/28/2012] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori (H. pylori) infection is a recognized risk factor for gastric cancer. The disease is one of the most common in the world and explains for a significant number of cancer cases and cancer-associated deaths worldwide. H. pylori infection induces huge array of responses at the gastric epithelial cells and the immune system, inducing both pro- and anti-inflammatory molecules that are intended to either perpetuate or control the infection. Despite the strong immune response, the infection is not cleared and can persist mostly without causing major significant discomfort in the human host. Among the mediators induced in response to the infection, microRNA (miRNA) have the potential to play a major impact on the outcome of the bacteria-host interaction. These miRNA are small 18-24 nucleotide long nucleotide molecules that can interact with mRNA molecules and block their translation into proteins or induce their degradation. Many efforts have been put into the generation of miRNA profiles and their role in gastric cancer. This has led to the identification of miRNA associated with promoting the inflammatory response initiated by the H. pylori infection, increasing the malignant progression of the gastric epithelium, and enhancing the invasiveness and migratory capacity of cancer cells. However, at the same time, several miRNA have been associated with events that are totally opposite, leading to reduced inflammation, inhibition of malignancy and increased apoptosis of transformed cells. In summary, as it is in many other examples, the role played by miRNA in gastric cancer is the results of a delicate balance between pro- and anti-cancer miRNA, and this balance is modified by the interaction of many players, many of which are still waiting to be discovered.
Collapse
Affiliation(s)
- Jovanny Zabaleta
- Department of Pediatrics, Louisiana State University Health Sciences Center New Orleans, LA, USA ; Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center New Orleans, LA, USA
| |
Collapse
|
100
|
Abstract
Considering the high mortality rates and the unfavorable prognosis of gastric cancer (GC) as well as the lack of a clinical predictive marker, which is sufficiently sensitive to GC, it is of great significance to investigate new sensitive and specific markers for GC diagnosis. MicroRNAs (miRNAs) could be a practical form of potential biomarkers in the diagnosis of human disease, and they are confirmed to be closely associated with GC. In this review, we discuss the recent research results that indicate the feasibility and clinical applications of miRNAs in GC. Although several challenges remain to be addressed, miRNAs have the potential to be applied in the diagnosis of GC.
Collapse
|