51
|
Tang C, Liu Y, Liu S, Yang C, Chen L, Tang F, Wang F, Zhan L, Deng H, Zhou W, Lin Y, Yuan X. Curcumin and Its Analogs as Potential Epigenetic Modulators: Prevention of Diabetes and Its Complications. Pharmacology 2021; 107:1-13. [PMID: 34915505 DOI: 10.1159/000520311] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/18/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The pathobiology of diabetes and associated complications has been widely researched in various countries, but effective prevention and treatment methods are still insufficient. Diabetes is a metabolic disorder of carbohydrates, fats, and proteins caused by an absence of insulin or insulin resistance, which mediates an increase of oxidative stress, release of inflammatory factors, and macro- or micro-circulation dysfunctions, ultimately developing into diverse complications. SUMMARY In the last decade through pathogenesis research, epigenetics has been found to affect metabolic diseases. Particularly, DNA methylation, histone acetylation, and miRNAs promote or inhibit diabetes and complications by regulating the expression of related factors. Curcumin has a wide range of beneficial pharmacological activities, including anti-inflammatory, anti-oxidation, anticancer, anti-diabetes, anti-rheumatism, and increased immunity. Key Messages: In this review, we discuss the effects of curcumin and analogs on diabetes and associated complications through epigenetics, and we summarize the preclinical and clinical researches for curcumin and its analogs in terms of management of diabetes and associated complications, which may provide an insight into the development of targeted therapy of endocrine diseases.
Collapse
Affiliation(s)
- Chunyin Tang
- Department of Pharmacy, Evidence-based Pharmacy Center, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, China
| | - Yantao Liu
- Department of Pharmacy, Evidence-based Pharmacy Center, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, China
| | - Shilin Liu
- Department of Pharmacy, Evidence-based Pharmacy Center, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, China
| | - Chunsong Yang
- Department of Pharmacy, Evidence-based Pharmacy Center, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, China
| | - Li Chen
- Department of Pharmacy, Evidence-based Pharmacy Center, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, China
| | - Fengru Tang
- Department of Pharmacy, Evidence-based Pharmacy Center, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, China
| | - Fang Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, China
| | - Lin Zhan
- Department of Pharmacy, Evidence-based Pharmacy Center, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, China
| | - Hong Deng
- Department of Pharmacy, Evidence-based Pharmacy Center, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, China
| | - Wei Zhou
- Department of Pharmacy, Evidence-based Pharmacy Center, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, China
| | - Yunzhu Lin
- Department of Pharmacy, Evidence-based Pharmacy Center, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, China
| | - Xiaohuan Yuan
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
52
|
Abstract
Abstract
Non-alcoholic fatty liver disease (NAFLD) is now the most common cause of chronic liver disease, worldwide. The molecular pathogenesis of NAFLD is complex, involving numerous signalling molecules including microRNAs (miRNAs). Dysregulation of miRNA expression is associated with hepatic inflammation, fibrosis and hepatocellular carcinoma. Although miRNAs are also critical to the cellular response to vitamin D, mediating regulation of the vitamin D receptor (VDR) and vitamin D’s anticancer effects, a role for vitamin D regulated miRNAs in NAFLD pathogenesis has been relatively unexplored. Therefore, this review aimed to critically assess the evidence for a potential subset of miRNAs that are both dysregulated in NAFLD and modulated by vitamin D. Comprehensive review of 89 human studies identified 25 miRNAs found dysregulated in more than one NAFLD study. In contrast, only 17 studies, including a protocol for a trial in NAFLD, had examined miRNAs in relation to vitamin D status, response to supplementation, or vitamin D in the context of the liver. This paper summarises these data and reviews the biological roles of six miRNAs (miR-21, miR-30, miR-34, miR-122, miR-146, miR-200) found dysregulated in multiple independent NAFLD studies. While modulation of miRNAs by vitamin D has been understudied, integrating the data suggests seven vitamin D modulated miRNAs (miR-27, miR-125, miR-155, miR-192, miR-223, miR-375, miR-378) potentially relevant to NAFLD pathogenesis. Our summary tables provide a significant resource to underpin future hypothesis-driven research, and we conclude that the measurement of serum and hepatic miRNAs in response to vitamin D supplementation in larger trials is warranted.
Collapse
|
53
|
López-Sánchez GN, Dóminguez-Pérez M, Uribe M, Chávez-Tapia NC, Nuño-Lámbarri N. Non-alcoholic fatty liver disease and microRNAs expression, how it affects the development and progression of the disease. Ann Hepatol 2021; 21:100212. [PMID: 32533953 DOI: 10.1016/j.aohep.2020.04.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
Abstract
The obesity pandemic that affects the global population generates one of the most unfavorable microenvironmental conditions in the hepatocyte, which triggers the metabolic hepatopathy known as non-alcoholic fatty liver; its annual rates increase in its prevalence and does not seem to improve in the future. The international consortia, LITMUS by the European Union and NIMBLE by the United States of America, have started a race for the development of hepatic steatosis and steatohepatitis reliable biomarkers to have an adequate diagnosis. MicroRNAs have been proposed as diagnostic and prognostic biomarkers involved in adaptation to changes in the liver microenvironment, which could improve clinical intervention strategies in patients with hepatic steatosis.
Collapse
Affiliation(s)
- Guillermo Nahúm López-Sánchez
- Traslational Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra, Tlalpan, Z.C. 14050 Mexico City, Mexico
| | - Mayra Dóminguez-Pérez
- Genomics of Cardiovascular Diseases Laboratory, National Institute of Genomic Medicine, Periferico Sur 4809, Arenal Tepepan, Tlalpan, Z.C. 14610 Mexico City, Mexico
| | - Misael Uribe
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra, Tlalpan, Z.C. 14050 Mexico City, Mexico
| | - Norberto Carlos Chávez-Tapia
- Traslational Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra, Tlalpan, Z.C. 14050 Mexico City, Mexico; Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra, Tlalpan, Z.C. 14050 Mexico City, Mexico
| | - Natalia Nuño-Lámbarri
- Traslational Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra, Tlalpan, Z.C. 14050 Mexico City, Mexico.
| |
Collapse
|
54
|
Li B, Sui L. Metabolic reprogramming in cervical cancer and metabolomics perspectives. Nutr Metab (Lond) 2021; 18:93. [PMID: 34666780 PMCID: PMC8525007 DOI: 10.1186/s12986-021-00615-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 09/02/2021] [Indexed: 12/20/2022] Open
Abstract
Cumulative studies have shown that metabolic reprogramming is a hallmark of malignant tumors. The emergence of technological advances, such as omics studies, has strongly contributed to the knowledge of cancer metabolism. Cervical cancer is among the most common cancers in women worldwide. Because cervical cancer is a virus-associated cancer and can exist in a precancerous state for years, investigations targeting the metabolic phenotypes of cervical cancer will enhance our understanding of the interference of viruses on host cells and the progression of cervical carcinogenesis. The purpose of this review was to illustrate metabolic perturbations in cervical cancer, the role that human papillomavirus (HPV) plays in remodeling cervical cell metabolism and recent approaches toward application of metabolomics in cervical disease research. Cervical cancer displays typical cancer metabolic profiles, including glycolytic switching, high lactate levels, lipid accumulation and abnormal kynurenine/tryptophan levels. HPV, at least in part, contributes to these alterations. Furthermore, emerging metabolomics data provide global information on the metabolic traits of cervical diseases and may aid in the discovery of biomarkers for diagnosis and therapy.
Collapse
Affiliation(s)
- Boning Li
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Long Sui
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China. .,Obstetrics and Gynecology Hospital, Center of Diagnosis and Treatment for Cervical Diseases, stetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China. .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China.
| |
Collapse
|
55
|
Shatoor AS, Al Humayed S, Almohiy HM. Astaxanthin attenuates hepatic steatosis in high-fat diet-fed rats by suppressing microRNA-21 via transactivation of nuclear factor erythroid 2-related factor 2. J Physiol Biochem 2021; 78:151-168. [PMID: 34651285 DOI: 10.1007/s13105-021-00850-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/29/2021] [Indexed: 02/08/2023]
Abstract
This study examined whether astaxanthin (ASX) could alleviate hepatic steatosis in rats fed a high-fat diet (HFD) by modulating the nuclear factor erythroid 2-related factor 2 (Nrf2)/miR-21 axis. Rats (n = 8/group) were fed either a standard diet (3.8 kcal/g; 10% fat) or HFD (4.6 kcal/g; 40% fat) and treated orally with either the vehicle or ASX (6 mg/kg) daily for 8 days. Another group was fed HFD and treated with ASX and brusatol (an Nrf2 inhibitor) (2 mg/kg/twice per week/i.p.). ASX prevented the gain in body and liver weights and attenuated hepatic lipid accumulation in HFD-fed rats. In the control and HFD-fed rats, ASX did not affect food intake, serum free fatty acid (FFA) content, and glucose and insulin levels and tolerance. However, serum triglyceride (TG), cholesterol, and low-density lipoprotein-cholesterol levels; hepatic levels of TGs and FFAs; and hepatic levels of Srebp1, Srebp2, HMGCR, and fatty acid synthase mRNAs and miR-21 were reduced and the mRNA levels of Pparα were significantly increased in both the groups. These effects were associated with a reduction in the hepatic levels of reactive oxygen species, malondialdehyde, tumor necrosis factor-α, and interlukin-6 as well as an increase in superoxide dismutase levels, total glutathione content, and nuclear levels and activity of Nrf2. miR-21 levels were strongly correlated with the nuclear activity of Nrf2. Brusatol completely reversed the effects of ASX. In conclusion, ASX prevents hepatic steatosis mainly by transactivating Nrf2 and is associated with the suppression of miR-21 and Srebp1/2 and upregulation of Pparα expression.
Collapse
Affiliation(s)
- Abdullah S Shatoor
- Department of Medicine, Cardiology Section, College of Medicine, King Khalid University (KKU), Abha, Saudi Arabia.
| | - Suliman Al Humayed
- Department of Internal Medicine, College of Medicine, King Khalid University (KKU), Abha, Saudi Arabia
| | - Hussain M Almohiy
- Depatrtment of Radiology Science, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
56
|
Correia de Sousa M, Calo N, Sobolewski C, Gjorgjieva M, Clément S, Maeder C, Dolicka D, Fournier M, Vinet L, Montet X, Dufour JF, Humar B, Negro F, Sempoux C, Foti M. Mir-21 Suppression Promotes Mouse Hepatocarcinogenesis. Cancers (Basel) 2021; 13:4983. [PMID: 34638467 PMCID: PMC8508272 DOI: 10.3390/cancers13194983] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
The microRNA 21 (miR-21) is upregulated in almost all known human cancers and is considered a highly potent oncogene and potential therapeutic target for cancer treatment. In the liver, miR-21 was reported to promote hepatic steatosis and inflammation, but whether miR-21 also drives hepatocarcinogenesis remains poorly investigated in vivo. Here we show using both carcinogen (Diethylnitrosamine, DEN) or genetically (PTEN deficiency)-induced mouse models of hepatocellular carcinoma (HCC), total or hepatocyte-specific genetic deletion of this microRNA fosters HCC development-contrasting the expected oncogenic role of miR-21. Gene and protein expression analyses of mouse liver tissues further indicate that total or hepatocyte-specific miR-21 deficiency is associated with an increased expression of oncogenes such as Cdc25a, subtle deregulations of the MAPK, HiPPO, and STAT3 signaling pathways, as well as alterations of the inflammatory/immune anti-tumoral responses in the liver. Together, our data show that miR-21 deficiency promotes a pro-tumoral microenvironment, which over time fosters HCC development via pleiotropic and complex mechanisms. These results question the current dogma of miR-21 being a potent oncomiR in the liver and call for cautiousness when considering miR-21 inhibition for therapeutic purposes in HCC.
Collapse
Affiliation(s)
- Marta Correia de Sousa
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Nicolas Calo
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Monika Gjorgjieva
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Sophie Clément
- Division of Clinical Pathology, Geneva University Hospitals, 1206 Geneva, Switzerland; (S.C.); (F.N.)
| | - Christine Maeder
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Dobrochna Dolicka
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Margot Fournier
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Laurent Vinet
- Department of Radiology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (L.V.); (X.M.)
| | - Xavier Montet
- Department of Radiology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (L.V.); (X.M.)
| | - Jean-François Dufour
- Department for Visceral Surgery and Medicine, University Hospital Bern, 3010 Bern, Switzerland;
| | - Bostjan Humar
- Department of Visceral & Transplantation Surgery, University Hospital Zürich, 8006 Zürich, Switzerland;
| | - Francesco Negro
- Division of Clinical Pathology, Geneva University Hospitals, 1206 Geneva, Switzerland; (S.C.); (F.N.)
| | - Christine Sempoux
- Service of Clinical Pathology, University Institute of Pathology, Vaud University Hospital Center, 1011 Lausanne, Switzerland;
| | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| |
Collapse
|
57
|
Nguyen TT, Ung TT, Li S, Sah DK, Park SY, Lian S, Jung YD. Lithocholic Acid Induces miR21, Promoting PTEN Inhibition via STAT3 and ERK-1/2 Signaling in Colorectal Cancer Cells. Int J Mol Sci 2021; 22:10209. [PMID: 34638550 PMCID: PMC8508661 DOI: 10.3390/ijms221910209] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 11/19/2022] Open
Abstract
Micro-RNA-21 (miR-21) is a vital regulator of colorectal cancer (CRC) progression and has emerged as a potential therapeutic target in CRC treatment. Our study using real-time PCR assay found that a secondary bile acid, lithocholic acid (LCA), stimulated the expression of miR21 in the CRC cell lines. Promoter activity assay showed that LCA strongly stimulated miR21 promoter activity in HCT116 cells in a time- and dose-dependent manner. Studies of chemical inhibitors and miR21 promoter mutants indicated that Erk1/2 signaling, AP-1 transcription factor, and STAT3 are major signals involved in the mechanism of LCA-induced miR21 in HCT116 cells. The elevation of miR21 expression was upstream of the phosphatase and tensin homolog (PTEN) inhibition, and CRC cell proliferation enhancement that was shown to be possibly mediated by PI3K/AKT signaling activation. This study is the first to report that LCA affects miR21 expression in CRC cells, providing us with a better understanding of the cancer-promoting mechanism of bile acids that have been described as the very first promoters of CRC progression.
Collapse
Affiliation(s)
- Thinh-Thi Nguyen
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Korea; (T.-T.N.); (T.-T.U.); (S.L.); (D.K.S.); (S.-Y.P.)
- Nanogen Pharmaceutical Biotechnology Joint Stock Company, Ho Chi Minh City 71207, Vietnam
| | - Thuan-Trong Ung
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Korea; (T.-T.N.); (T.-T.U.); (S.L.); (D.K.S.); (S.-Y.P.)
- Nanogen Pharmaceutical Biotechnology Joint Stock Company, Ho Chi Minh City 71207, Vietnam
| | - Shinan Li
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Korea; (T.-T.N.); (T.-T.U.); (S.L.); (D.K.S.); (S.-Y.P.)
| | - Dhiraj Kumar Sah
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Korea; (T.-T.N.); (T.-T.U.); (S.L.); (D.K.S.); (S.-Y.P.)
| | - Sun-Young Park
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Korea; (T.-T.N.); (T.-T.U.); (S.L.); (D.K.S.); (S.-Y.P.)
| | - Sen Lian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Young-Do Jung
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Korea; (T.-T.N.); (T.-T.U.); (S.L.); (D.K.S.); (S.-Y.P.)
| |
Collapse
|
58
|
Dong XC, Chowdhury K, Huang M, Kim HG. Signal Transduction and Molecular Regulation in Fatty Liver Disease. Antioxid Redox Signal 2021; 35:689-717. [PMID: 33906425 PMCID: PMC8558079 DOI: 10.1089/ars.2021.0076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: Fatty liver disease is a major liver disorder in the modern societies. Comprehensive understanding of the pathophysiology and molecular mechanisms is essential for the prevention and treatment of the disease. Recent Advances: Remarkable progress has been made in the recent years in basic and translational research in the field of fatty liver disease. Multiple signaling pathways have been implicated in the development of fatty liver disease, including AMP-activated protein kinase, mechanistic target of rapamycin kinase, endoplasmic reticulum stress, oxidative stress, inflammation, transforming growth factor β, and yes1-associated transcriptional regulator/transcriptional coactivator with PDZ-binding motif (YAP/TAZ). In addition, critical molecular regulations at the transcriptional and epigenetic levels have been linked to the pathogenesis of fatty liver disease. Critical Issues: Some critical issues remain to be solved so that research findings can be translated into clinical applications. Robust and reliable biomarkers are needed for diagnosis of different stages of the fatty liver disease. Effective and safe molecular targets remain to be identified and validated. Prevention strategies require solid scientific evidence and population-wide feasibility. Future Directions: As more data are generated with time, integrative approaches are needed to comprehensively understand the disease pathophysiology and mechanisms at multiple levels from population, organismal system, organ/tissue, to cell. The interactions between genes and environmental factors require deeper investigation for the purposes of prevention and personalized treatment of fatty liver disease. Antioxid. Redox Signal. 35, 689-717.
Collapse
Affiliation(s)
- Xiaocheng Charlie Dong
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Kushan Chowdhury
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Menghao Huang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hyeong Geug Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
59
|
Wu ZH, Zhou J, Hu GH, Liu J, Li WC, Lai XH, Liu M. LncRNA CASC2 inhibits lung adenocarcinoma progression through forming feedback loop with miR-21/p53 axis. Kaohsiung J Med Sci 2021; 37:675-685. [PMID: 34337857 DOI: 10.1002/kjm2.12386] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/12/2021] [Accepted: 03/30/2021] [Indexed: 01/17/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common type of lung cancer. Currently, the survival rate of LUAD patients remains low due to heterogeneity and high invasiveness. The long non-coding RNA (lncRNA) cancer susceptibility candidate 2 (CASC2) is reported to be related to LUAD development. Hence, we investigate the roles and regulatory mechanism of CASC2 in LUAD. The expression levels of CASC2, microRNA (miR)-21, and p53 were quantified by quantitative real-time polymerase chain reaction, and the protein levels of Bax, Bcl-2, p53, and p21 were examined using western blotting. A dual-luciferase reporter experiment was conducted to prove the molecular interactions between CASC2 and miR-21 or p53. CCK-8 and flow cytometry assays were conducted to assess cell proliferation and apoptosis, respectively. CASC2 was expressed at a low level in LUAD patients and LUAD cell lines. CASC2 overexpression markedly suppressed cell proliferation and enhanced apoptosis. Mechanistically, CASC2 overexpression dramatically inhibited miR-21 expression and increased p53 expression by directly targeting miR-21. Moreover, rescue experiments suggested that either miR-21 overexpression or p53 silencing obviously weakened the biological effects of CASC2 overexpression. In addition, p53 was proven to be an upstream transcription factor of CASC2 and can activate CASC2 transcription. These results provide evidence that the lncRNA CASC2/miR-21/p53 form a positive feedback loop to mediate cell proliferation and apoptosis in LUAD, which may provide a new insight into the pathological mechanisms of LUAD.
Collapse
Affiliation(s)
- Zhi-Hui Wu
- Department of Thoracic Surgery, Zhuzhou Central Hospital, Zhuzhou, People's Republic of China
| | - Juan Zhou
- Department of Pulmonary and Critical Care Medicine, Zhuzhou Central Hospital, Zhuzhou, People's Republic of China
| | - Guo-Hong Hu
- Department of Pediatrics, Zhuzhou Central Hospital, Zhuzhou, People's Republic of China
| | - Jie Liu
- Department of Basic Medicine, Hunan Traditional Chinese Medical College, Zhuzhou, People's Republic of China
| | - Wen-Can Li
- Department of Thoracic Surgery, Zhuzhou Central Hospital, Zhuzhou, People's Republic of China
| | - Xi-Hua Lai
- Department of Thoracic Surgery, Zhuzhou Central Hospital, Zhuzhou, People's Republic of China
| | - Min Liu
- Department of Oncology, Zhuzhou Central Hospital, Zhuzhou, People's Republic of China
| |
Collapse
|
60
|
Zhang C, Yang M. The Emerging Factors and Treatment Options for NAFLD-Related Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:3740. [PMID: 34359642 PMCID: PMC8345138 DOI: 10.3390/cancers13153740] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, followed by cholangiocarcinoma (CCA). HCC is the third most common cause of cancer death worldwide, and its incidence is rising, associated with an increased prevalence of obesity and nonalcoholic fatty liver disease (NAFLD). However, current treatment options are limited. Genetic factors and epigenetic factors, influenced by age and environment, significantly impact the initiation and progression of NAFLD-related HCC. In addition, both transcriptional factors and post-transcriptional modification are critically important for the development of HCC in the fatty liver under inflammatory and fibrotic conditions. The early diagnosis of liver cancer predicts curative treatment and longer survival. However, clinical HCC cases are commonly found in a very late stage due to the asymptomatic nature of the early stage of NAFLD-related HCC. The development of diagnostic methods and novel biomarkers, as well as the combined evaluation algorithm and artificial intelligence, support the early and precise diagnosis of NAFLD-related HCC, and timely monitoring during its progression. Treatment options for HCC and NAFLD-related HCC include immunotherapy, CAR T cell therapy, peptide treatment, bariatric surgery, anti-fibrotic treatment, and so on. Overall, the incidence of NAFLD-related HCC is increasing, and a better understanding of the underlying mechanism implicated in the progression of NAFLD-related HCC is essential for improving treatment and prognosis.
Collapse
Affiliation(s)
- Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA;
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
61
|
Kim TH, Lee Y, Lee YS, Gim JA, Ko E, Yim SY, Jung YK, Kang S, Kim MY, Kim H, Kim BH, Kim JH, Seo YS, Yim HJ, Yeon JE, Um SH, Byun KS. Circulating miRNA is a useful diagnostic biomarker for nonalcoholic steatohepatitis in nonalcoholic fatty liver disease. Sci Rep 2021; 11:14639. [PMID: 34282172 PMCID: PMC8289842 DOI: 10.1038/s41598-021-94115-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is considered as a progressive form of nonalcoholic fatty liver disease (NAFLD). To distinguish NASH from nonalcoholic fatty liver (NAFL), we evaluated the diagnostic value of circulating miRNAs. Small RNA sequencing was performed on 12 NAFL patients and 12 NASH patients, and the miRNA expression was compared. After selecting miRNAs for the diagnosis of NASH, we analyzed the diagnostic accuracy of each miRNA and the combination of miRNAs. External validation was performed using quantitative reverse transcription PCR. Among the 2,588 miRNAs, 26 miRNAs significantly increased in the NASH group than in the NAFL group. Among the 26 elevated miRNAs in the NASH group, 8 miRNAs were selected, and in silico analysis was performed. Only four miRNAs (miR-21-5p, miR-151a-3p, miR-192-5p, and miR-4449) showed significant area under the receiver operating characteristic curve (AUC) values for NASH diagnosis. The combination of the four miRNAs showed satisfactory diagnostic accuracy for NASH (AUC 0.875; 95% CI 0.676-0.973). External validation revealed similar diagnostic accuracy for NASH (AUC 0.874; 95% CI 0.724-0.960). NASH represents significantly distinct miRNA expression profile compared with NAFL. The combination of serum circulating miRNAs can be used as a novel biomarker for the NASH diagnosis in NAFLD.
Collapse
Affiliation(s)
- Tae Hyung Kim
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Guro Hospital, Korea University College of Medicine, Korea University Medical Center, 97, Guro-Dong Gil, Guro-Dong, Guro-Ku, Seoul, 08308, Republic of Korea
| | - Yoonseok Lee
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Guro Hospital, Korea University College of Medicine, Korea University Medical Center, 97, Guro-Dong Gil, Guro-Dong, Guro-Ku, Seoul, 08308, Republic of Korea
| | - Young-Sun Lee
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Guro Hospital, Korea University College of Medicine, Korea University Medical Center, 97, Guro-Dong Gil, Guro-Dong, Guro-Ku, Seoul, 08308, Republic of Korea.
| | - Jeong-An Gim
- Medical Science Research Center, Korea University Medical Center, Anam-dong 5-ga, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Eunjung Ko
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Guro Hospital, Korea University College of Medicine, Korea University Medical Center, 97, Guro-Dong Gil, Guro-Dong, Guro-Ku, Seoul, 08308, Republic of Korea
| | - Sun Young Yim
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Guro Hospital, Korea University College of Medicine, Korea University Medical Center, 97, Guro-Dong Gil, Guro-Dong, Guro-Ku, Seoul, 08308, Republic of Korea
| | - Young Kul Jung
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Guro Hospital, Korea University College of Medicine, Korea University Medical Center, 97, Guro-Dong Gil, Guro-Dong, Guro-Ku, Seoul, 08308, Republic of Korea
| | - SeongHee Kang
- Department of Internal Medicine, Wonju Severance Christian Hospital, Wonju, Republic of Korea
| | - Moon Young Kim
- Department of Internal Medicine, Wonju Severance Christian Hospital, Wonju, Republic of Korea
| | - Hayeon Kim
- Department of Pathology, Korea University Medical Center, Seoul, Republic of Korea
| | - Baek-Hui Kim
- Department of Pathology, Korea University Medical Center, Seoul, Republic of Korea
| | - Ji Hoon Kim
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Guro Hospital, Korea University College of Medicine, Korea University Medical Center, 97, Guro-Dong Gil, Guro-Dong, Guro-Ku, Seoul, 08308, Republic of Korea
| | - Yeon Seok Seo
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Guro Hospital, Korea University College of Medicine, Korea University Medical Center, 97, Guro-Dong Gil, Guro-Dong, Guro-Ku, Seoul, 08308, Republic of Korea
| | - Hyung Joon Yim
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Guro Hospital, Korea University College of Medicine, Korea University Medical Center, 97, Guro-Dong Gil, Guro-Dong, Guro-Ku, Seoul, 08308, Republic of Korea
| | - Jong Eun Yeon
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Guro Hospital, Korea University College of Medicine, Korea University Medical Center, 97, Guro-Dong Gil, Guro-Dong, Guro-Ku, Seoul, 08308, Republic of Korea
| | - Soon Ho Um
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Guro Hospital, Korea University College of Medicine, Korea University Medical Center, 97, Guro-Dong Gil, Guro-Dong, Guro-Ku, Seoul, 08308, Republic of Korea
| | - Kwan Soo Byun
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Guro Hospital, Korea University College of Medicine, Korea University Medical Center, 97, Guro-Dong Gil, Guro-Dong, Guro-Ku, Seoul, 08308, Republic of Korea
| |
Collapse
|
62
|
Formichi C, Nigi L, Grieco GE, Maccora C, Fignani D, Brusco N, Licata G, Sebastiani G, Dotta F. Non-Coding RNAs: Novel Players in Insulin Resistance and Related Diseases. Int J Mol Sci 2021; 22:7716. [PMID: 34299336 PMCID: PMC8306942 DOI: 10.3390/ijms22147716] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
The rising prevalence of metabolic diseases related to insulin resistance (IR) have stressed the urgent need of accurate and applicable tools for early diagnosis and treatment. In the last decade, non-coding RNAs (ncRNAs) have gained growing interest because of their potential role in IR modulation. NcRNAs are variable-length transcripts which are not translated into proteins but are involved in gene expression regulation. Thanks to their stability and easy detection in biological fluids, ncRNAs have been investigated as promising diagnostic and therapeutic markers in metabolic diseases, such as type 2 diabetes mellitus (T2D), obesity and non-alcoholic fatty liver disease (NAFLD). Here we review the emerging role of ncRNAs in the development of IR and related diseases such as obesity, T2D and NAFLD, and summarize current evidence concerning their potential clinical application.
Collapse
Affiliation(s)
- Caterina Formichi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Giuseppina Emanuela Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Carla Maccora
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy;
| | - Daniela Fignani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Noemi Brusco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Giada Licata
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
- Tuscany Centre for Precision Medicine (CReMeP), 53100 Siena, Italy
| |
Collapse
|
63
|
Liu X, Wang X, Ye S, Li R, Li H. A One-Two-Three Multifunctional System for Enhanced Imaging and Detection of Intracellular MicroRNA and Chemogene Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27825-27835. [PMID: 34124898 DOI: 10.1021/acsami.1c04353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Simultaneous imaging, diagnosis, and therapy can offer an effective strategy for cancer treatment. However, the complex probe design, poor drug release efficiency, and multidrug resistance remain tremendous challenges to cancer treatment. Here, a novel one-two-three system is built for enhanced imaging and detection of miRNA-21 (miR-21) overexpressed in cancer cell and chemogene therapy. The system consists of dual-mode DNA robot nanoprobes assembled by two types of hairpin DNAs and three-way branch DNAs modified on gold nanoparticles, with intercalating anticancer drugs (doxorubicin), into DNA duplex GC base pairs. In the system, via intracellular ATP-accelerated cyclic reaction triggered by miR-21, fluorescence and SERS signals were alternated with DNA structure switch, and the precise SERS detection of miRNA and fluorescence imaging oriented "on-demand" release of two types of anticancer drugs (anti-miR-21 and Dox) are achieved. Thus, "one-two-three" means one kind of miR-21-triggered endogenous substance accelerated cyclic reaction, two modes of signal switch, and three functions including enhanced imaging, detection, and comprehensive treatment. The one-two-three system has some notable merits. First, ATP as an endogenous substance promotes DNA structure switching and accelerates the cyclic reaction. Second, the treatment with a dual-mode signal switch is more reliable and accurate and can provide more abundant information than a single-mode treatment platform. Thus, the imaging and detection of intracellular miRNA and effective comprehensive therapy are realized. In vivo results indicate that the system can provide new insights and strategies for diagnosis and therapy.
Collapse
Affiliation(s)
- Xun Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P R China
| | - Xingxiang Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P R China
| | - Sujuan Ye
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P R China
| | - Ronghua Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P R China
| | - Hongxia Li
- Weifang Customs, Yuqing East Street, No.15789, High tech District, Weifang 261000, Shandong Province, China
| |
Collapse
|
64
|
Pirfenidone modifies hepatic miRNAs expression in a model of MAFLD/NASH. Sci Rep 2021; 11:11709. [PMID: 34083664 PMCID: PMC8175718 DOI: 10.1038/s41598-021-91187-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022] Open
Abstract
miRNAs are involved in the development of metabolic associated fatty liver disease (MAFLD) and nonalcoholic steatohepatitis (NASH). We aimed to evaluate modifications by prolonged-release pirfenidone (PR-PFD) on key hepatic miRNAs expression in a MAFLD/NASH model. First, male C57BL/6J mice were randomly assigned into groups and fed with conventional diet (CVD) or high fat and carbohydrate diet (HFD) for 16 weeks. At the end of the eighth week, HFD mice were divided in two and only one half was treated with 300 mg/kg/day of PR-PFD mixed with food. Hepatic expression of miRNAs and target genes that participate in inflammation and lipid metabolism was determined by qRT-PCR and transcriptome by microarrays. Increased hepatic expression of miR-21a-5p, miR-34a-5p, miR-122-5p and miR-103-3p in MAFLD/NASH animals was reduced with PR-PFD. Transcriptome analysis showed that 52 genes involved in lipid and collagen biosynthesis and inflammatory response were downregulated in PR-PFD group. The expression of Il1b, Tnfa, Il6, Tgfb1, Col1a1, and Srebf1 were decreased in PR-PFD treated animals. MAFLD/NASH animals compared to CVD group showed modifications in gene metabolic pathways implicated in lipid metabolic process, inflammatory response and insulin resistance; PR-PFD reversed these modifications.
Collapse
|
65
|
Zou J, Zhu X, Xiang D, Zhang Y, Li J, Su Z, Kong L, Zhang H. LIX1-like protein promotes liver cancer progression via miR-21-3p-mediated inhibition of fructose-1,6-bisphosphatase. Acta Pharm Sin B 2021; 11:1578-1591. [PMID: 34221869 PMCID: PMC8245913 DOI: 10.1016/j.apsb.2021.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Limb and CNS expressed 1 like (LIX1L) is over-expressed in several types of tumors. However, the function of LIX1L in glucose metabolism and hepatocellular carcinoma (HCC) progression remains elusive. Here we report that LIX1L is over-expressed in human HCC tissues, which predicts unfavorable prognosis. LIX1L deficiency in vivo significantly attenuated liver cancer initiation in mice. Functional studies indicated that LIX1L overexpression elevated proliferation, migratory, invasive capacities of HCC cells in vitro, and promoted liver cancer growth and metastasis in vivo. LIX1L knockdown up-regulated fructose-1,6-bisphosphatase (FBP1) expression to reduce glucose consumption as well as lactate production. Mechanistically, LIX1L increased miR-21-3p expression, which targeted and suppressed FBP1, thereby promoting HCC growth and metastasis. MiR-21-3p inhibitor could abrogate LIX1L induced enhancement of cell migration, invasion, and glucose metabolism. Inhibition of miR-21-3p suppressed tumor growth in an orthotopic tumor model. Our results establish LIX1L as a critical driver of hepatocarcinogenesis and HCC progression, with implications for prognosis and treatment.
Collapse
Key Words
- CCl4, carbon tetrachloride
- DEN, diethylnitrosamine
- ECAR, extracellular acidification rate
- EMT, epithelial–mesenchymal transition
- FBP1
- FBP1, fructose-1,6-bisphosphatase 1
- Gluconeogenesis
- Glucose metabolism
- HCC, hepatocellular carcinoma
- Hepatocellular carcinoma
- LIX1L
- LIX1L, Limb and CNS expressed 1 like
- Metastasis
- NASH, non-alcoholic steatohepatitis
- Proliferation
- Seq, sequencing
- miR-21-3p
- miRNA, microRNA
- shRNA, short-hairpin RNA
Collapse
Affiliation(s)
- Jie Zou
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoyun Zhu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Dejuan Xiang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yanqiu Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jie Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhigui Su
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
66
|
Mechanistic Investigation on the Regulation of FABP1 by the IL-6/miR-603 Signaling in the Pathogenesis of Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8579658. [PMID: 34056002 PMCID: PMC8147539 DOI: 10.1155/2021/8579658] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 04/29/2021] [Indexed: 12/12/2022]
Abstract
Background Abnormal lipid metabolism is closely associated with the invasiveness and metastasis of cancer. Fatty acid-binding proteins (FABPs) play essential roles in lipid metabolism, and miRNAs can affect lipid metabolism by targeting FABPs. However, the exact mechanism is unknown. Methods FABP1 expression in HCC tissues was analyzed by immunochemistry with tissue microarrays. The lipid content was detected by Oil Red O staining, and the interaction between FABP1 and free fatty acid (FFA) was studied by a labeling and tracking method. miRNA arrays were used to detect the expression of miRNAs in IL-6-stimulated HCC cells. miR-603 expression was verified by qPCR. The proteins were checked by Western blot analysis. Gain and loss function evaluation was assessed by lentivirus and miRNA mimic transfection in Huh-7 cells, while reactive oxygen species (ROS) were detected by fluorescence. Results FABP1 expression was significantly decreased in approximately 90% (81/90) of HCC patients. FABP1 expression in adjacent tissues was closely associated with overall survival. Meanwhile, lipid was abundant in the adjacent tissues, yet significantly reduced in HCC tissues. FABP1 and FFA can promote each other for being uptaken by Huh-7 cells. FABP1 overexpression induced apoptosis and inhibited the proliferation, migration, invasion, and metastasis of Huh-7 cells. IL-6 treatment affected the expression of miRNAs, and miR-603 was overexpressed in HCC tissues. Also, miR-603 overexpression promoted the proliferation, migration, invasion, and metastasis of Huh-7 cells. Bioinformatic analysis predicted that miR-603 targets the 3′-UTR region of FABP1. However, miR-603 overexpression inhibited the expression of the FABP1 but increased the CPT1A, PPAR-α, and SREBP1 expressions. FABP1 overexpression reduced ROS in HCC cells, while miR-603 can reverse these effects. Conclusion Our results indicate that in the pathogenesis of HCC, IL-6 induces miR-603 expression, which subsequently inhibits FABP1 expression, promotes the lipid metabolism- and synthesis-related proteins, and finally increases the cellular oxidative stress level and leads to the metastasis of HCC.
Collapse
|
67
|
Alshammari GM, Al-Qahtani WH, AlFaris NA, Alzahrani NS, Alkhateeb MA, Yahya MA. Quercetin prevents cadmium chloride-induced hepatic steatosis and fibrosis by downregulating the transcription of miR-21. Biofactors 2021; 47:489-505. [PMID: 33733575 DOI: 10.1002/biof.1724] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022]
Abstract
This study investigated if cadmium chloride (CdCl2 )-induced hepatic steatosis and fibrosis and the protective effect of quercetin (QUR) are mediated modulating the activity of miR-21, a known hepatic lipogenic and fibrotic miRNA. Male rats (n = 8/group) were divided as control, control + QUR (50 mg/kg; orally), CdCl2 (10 moml/L; drinking water), CdCl2 + miR-21 antagomir (inhibitor) (16 mg/kg/first 3 days), and CdCl2 + QUR (50 mg/kg). Treatments were conducted for 20 weeks, daily. All treatments showed no effect on fasting glucose and insulin levels. Administration of either miR-21 or QUR prevented CdCl2 -induced hepatic damage, as well as lipid droplets and collagen deposition. They also reduced serum levels of ALT and AST and decreased serum and hepatic levels of total cholesterol, triglycerides, and low-density lipoproteins in CdCl2 -treated rats. Concomitantly, they reduced hepatic levels of reactive oxygen species, malondialdehyde, interleukin-6, and tumor necrosis factor-α, suppressed the activation of NF-kb P65, and increased hepatic levels of nuclear factor erythroid 2-related factor 2 (Nrf2), glutathione (GSH), and superoxide dismutase (SOD). These effects were associated with reduced expression of SREBP1, TGF-β1, Smad3, and collagen1 A and increased expression of PPARα, CPT1, and smad7. Interestingly, QUR significantly lowered levels of miR-21 and increased the protein levels and activity of Nrf2, as well as levels of GSH and SOD in the livers of both the control and CdCl2 -treated rats. Of note, levels of Nrf2 were negatively correlated with the transcription of miR-21. In conclusion: QUR prevents CdCl2 -induced hepatic steatosis and fibrosis mainly through attenuating its ability to upregulate miR-21, at least, by upregulation of Nrf2.
Collapse
Affiliation(s)
- Ghedeir M Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh, Saudi Arabia
| | - Wahidah H Al-Qahtani
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh, Saudi Arabia
| | - Nora A AlFaris
- Nutrition and Food Science, Department of Physical Sport Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nadiah S Alzahrani
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh, Saudi Arabia
| | - Mahmoud A Alkhateeb
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
68
|
Wei Y, Lu W, Yu Y, Zhai Y, Guo H, Yang S, Zhao C, Zhang Y, Liu J, Liu Y, Fei J, Shi J. miR-29c&b2 encourage extramedullary infiltration resulting in the poor prognosis of acute myeloid leukemia. Oncogene 2021; 40:3434-3448. [PMID: 33888868 DOI: 10.1038/s41388-021-01775-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/11/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
Extramedullary infiltration (EMI), as a concomitant symptom of acute myeloid leukemia (AML), is associated with low complete remission and poor prognosis in AML. However, the mechanism of EMI remains indistinct. Clinical trials showed that increased miR-29s were associated with a poor overall survival in AML [14]. Nevertheless, they were proved to work as tumor suppressor genes by encouraging apoptosis and inhibiting proliferation in vitro. These contradictory results led us to the hypothesis that miR-29s may play a notable role in the prognosis of AML rather than leukemogenesis. Thus, we explored the specimens of AML patients and addressed this issue into miR-29c&b2 knockout mice. As a result, a poor overall survival and invasive blast cells were observed in high miR-29c&b2-expression patients, and the wildtype mice presented a shorter survival with heavier leukemia infiltration in extramedullary organs. Subsequently, we found that the miR-29c&b2 inside leukemia cells promoted EMI, but not the one in the microenvironment. The analysis of signal pathway revealed that miR-29c&b2 could target HMG-box transcription factor 1 (Hbp1) directly, then reduced Hbp1 bound to the promoter of non-muscle myosin IIB (Myh10) as a transcript inhibitor. Thus, increased Myh10 encouraged the migration of leukemia cells. Accordingly, AML patients with EMI were confirmed to have high miR-29c&b2 and MYH10 with low HBP1. Therefore, we identify that miR-29c&b2 contribute to the poor prognosis of AML patients by promoting EMI, and related genes analyses are prospectively feasible in assessment of AML outcome.
Collapse
Affiliation(s)
- Yanyu Wei
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Lu
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yehua Yu
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuanmei Zhai
- Department of Hematology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hezhou Guo
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shaoxin Yang
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chong Zhao
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanjie Zhang
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiali Liu
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuhui Liu
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Jian Fei
- School of Life Science and Technology, Tongji University, Shanghai, China. .,Shanghai Engineering Research Center for Model Organisms, SMOC, Shanghai, China.
| | - Jun Shi
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
69
|
Fang Z, Dou G, Wang L. MicroRNAs in the Pathogenesis of Nonalcoholic Fatty Liver Disease. Int J Biol Sci 2021; 17:1851-1863. [PMID: 33994867 PMCID: PMC8120467 DOI: 10.7150/ijbs.59588] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), or, more accurately, metabolic associated fatty liver disease, accounts for a large proportion of chronic liver disorders worldwide and is closely associated with other conditions such as cardiovascular disease, obesity, and type 2 diabetes mellitus. NAFLD ranges from simple steatosis to nonalcoholic steatohepatitis (NASH) and can progress to cirrhosis and, eventually, also hepatocellular carcinoma. The morbidity and mortality associated with NAFLD are increasing rapidly year on year. Consequently, there is an urgent need to understand the etiology and pathogenesis of NAFLD and identify effective therapeutic targets. MicroRNAs (miRNAs), important epigenetic factors, have recently been proposed to participate in NAFLD pathogenesis. Here, we review the roles of miRNAs in lipid metabolism, inflammation, apoptosis, fibrosis, hepatic stellate cell activation, insulin resistance, and oxidative stress, key factors that contribute to the occurrence and progression of NAFLD. Additionally, we summarize the role of miRNA-enriched extracellular vesicles in NAFLD. These miRNAs may comprise suitable therapeutic targets for the treatment of this condition.
Collapse
Affiliation(s)
- Zhiqiang Fang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Guorui Dou
- Department of Ophthalmology, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
70
|
Wang X, He Y, Mackowiak B, Gao B. MicroRNAs as regulators, biomarkers and therapeutic targets in liver diseases. Gut 2021; 70:784-795. [PMID: 33127832 DOI: 10.1136/gutjnl-2020-322526] [Citation(s) in RCA: 277] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that post-transcriptionally regulate gene expression by binding to specific mRNA targets and promoting their degradation and/or translational inhibition. miRNAs regulate both physiological and pathological liver functions. Altered expression of miRNAs is associated with liver metabolism dysregulation, liver injury, liver fibrosis and tumour development, making miRNAs attractive therapeutic strategies for the diagnosis and treatment of liver diseases. Here, we review recent advances regarding the regulation and function of miRNAs in liver diseases with a major focus on miRNAs that are specifically expressed or enriched in hepatocytes (miR-122, miR-194/192), neutrophils (miR-223), hepatic stellate cells (miR-29), immune cells (miR-155) and in circulation (miR-21). The functions and target genes of these miRNAs are emphasised in alcohol-associated liver disease, non-alcoholic fatty liver disease, drug-induced liver injury, viral hepatitis and hepatocellular carcinoma, as well liver fibrosis and liver failure. We touch on the roles of miRNAs in intercellular communication between hepatocytes and other types of cells via extracellular vesicles in the pathogenesis of liver diseases. We provide perspective on the application of miRNAs as biomarkers for early diagnosis, prognosis and assessment of liver diseases and discuss the challenges in miRNA-based therapy for liver diseases. Further investigation of miRNAs in the liver will help us better understand the pathogeneses of liver diseases and may identify biomarkers and therapeutic targets for liver diseases in the future.
Collapse
Affiliation(s)
- Xiaolin Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Bryan Mackowiak
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
71
|
Abstract
This review provides epidemiological and translational evidence for milk and dairy intake as critical risk factors in the pathogenesis of hepatocellular carcinoma (HCC). Large epidemiological studies in the United States and Europe identified total dairy, milk and butter intake with the exception of yogurt as independent risk factors of HCC. Enhanced activity of mechanistic target of rapamycin complex 1 (mTORC1) is a hallmark of HCC promoted by hepatitis B virus (HBV) and hepatitis C virus (HCV). mTORC1 is also activated by milk protein-induced synthesis of hepatic insulin-like growth factor 1 (IGF-1) and branched-chain amino acids (BCAAs), abundant constituents of milk proteins. Over the last decades, annual milk protein-derived BCAA intake increased 3 to 5 times in Western countries. In synergy with HBV- and HCV-induced secretion of hepatocyte-derived exosomes enriched in microRNA-21 (miR-21) and miR-155, exosomes of pasteurized milk as well deliver these oncogenic miRs to the human liver. Thus, milk exosomes operate in a comparable fashion to HBV- or HCV- induced exosomes. Milk-derived miRs synergistically enhance IGF-1-AKT-mTORC1 signaling and promote mTORC1-dependent translation, a meaningful mechanism during the postnatal growth phase, but a long-term adverse effect promoting the development of HCC. Both, dietary BCAA abundance combined with oncogenic milk exosome exposure persistently overstimulate hepatic mTORC1. Chronic alcohol consumption as well as type 2 diabetes mellitus (T2DM), two HCC-related conditions, increase BCAA plasma levels. In HCC, mTORC1 is further hyperactivated due to RAB1 mutations as well as impaired hepatic BCAA catabolism, a metabolic hallmark of T2DM. The potential HCC-preventive effect of yogurt may be caused by lactobacilli-mediated degradation of BCAAs, inhibition of branched-chain α-ketoacid dehydrogenase kinase via production of intestinal medium-chain fatty acids as well as degradation of milk exosomes including their oncogenic miRs. A restriction of total animal protein intake realized by a vegetable-based diet is recommended for the prevention of HCC.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
72
|
Epigenetics in NAFLD/NASH: Targets and therapy. Pharmacol Res 2021; 167:105484. [PMID: 33771699 DOI: 10.1016/j.phrs.2021.105484] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022]
Abstract
Recently non-alcoholic fatty liver disease (NAFLD) has grabbed considerable scientific attention, owing to its rapid increase in prevalence worldwide and growing burden on end-stage liver diseases. Metabolic syndrome including obesity, diabetes, and hypertension poses a grave risk to NAFLD etiology and progression. With no drugs available, the mainstay of NAFLD management remains lifestyle changes with exercise and dietary modifications. Nonselective drugs such as metformin, thiazolidinediones (TZDs), ursodeoxycholic acid (UDCA), silymarin, etc., are also being used to target the interrelated pathways for treating NAFLD. Considering the enormous disease burden and the unmet need for drugs, fresh insights into pathogenesis and drug discovery are required. The emergence of the field of epigenetics offers a convincing explanation for the basis of lifestyle, environmental, and other risk factors to influence NAFLD pathogenesis. Therefore, understanding these epigenetic modifications to target the primary cause of the disease might prove a rational strategy to prevent the disease and develop novel therapeutic interventions. Apart from describing the role of epigenetics in the pathogenesis of NAFLD as in other reviews, this review additionally provides an elaborate discussion on exploiting the high plasticity of epigenetic modifications in response to environmental cues, for developing novel therapeutics for NAFLD. Besides, this extensive review provides evidence for epigenetic mechanisms utilized by several potential drugs for NAFLD.
Collapse
|
73
|
Lai CY, Yeh KY, Lin CY, Hsieh YW, Lai HH, Chen JR, Hsu CC, Her GM. MicroRNA-21 Plays Multiple Oncometabolic Roles in the Process of NAFLD-Related Hepatocellular Carcinoma via PI3K/AKT, TGF-β, and STAT3 Signaling. Cancers (Basel) 2021; 13:940. [PMID: 33668153 PMCID: PMC7956552 DOI: 10.3390/cancers13050940] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/20/2022] Open
Abstract
MicroRNA-21 (miR-21) is one of the most frequently upregulated miRNAs in liver diseases such as nonalcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC). However, mechanistic pathways that connect NAFLD and HCC remain elusive. We developed a doxycycline (Dox)-inducible transgenic zebrafish model (LmiR21) which exhibited an upregulation of miR-21 in the liver, which in turn induced the full spectrum of NAFLD, including steatosis, inflammation, fibrosis, and HCC, in the LmiR21 fish. Diethylnitrosamine (DEN) treatment led to accelerated liver tumor formation and exacerbated their aggressiveness. Moreover, prolonged miR-21 expression for up to ten months induced nonalcoholic steatohepatitis (NASH)-related HCC (NAHCC). Immunoblotting and immunostaining confirmed the presence of miR-21 regulatory proteins (i.e., PTEN, SMAD7, p-AKT, p-SMAD3, and p-STAT3) in human nonviral HCC tissues and LmiR21 models. Thus, we demonstrated that miR-21 can induce NAHCC via at least three mechanisms: First, the occurrence of hepatic steatosis increases with the decrease of ptenb, pparaa, and activation of the PI3K/AKT pathway; second, miR-21 induces hepatic inflammation (or NASH) through an increase in inflammatory gene expression via STAT3 signaling pathways, and induces liver fibrosis through hepatic stellate cell (HSC) activation and collagen deposition via TGF-β/Smad3/Smad7 signaling pathways; finally, oncogenic activation of Smad3/Stat3 signaling pathways induces HCC. Our LmiR21 models showed similar molecular pathology to the human cancer samples in terms of initiation of lipid metabolism disorder, inflammation, fibrosis and activation of the PI3K/AKT, TGF-β/SMADs and STAT3 (PTS) oncogenic signaling pathways. Our findings indicate that miR-21 plays critical roles in the mechanistic perspectives of NAHCC development via the PTS signaling networks.
Collapse
Affiliation(s)
- Chi-Yu Lai
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan; (C.-Y. L.); (C.-Y. L.); (Y.-W.H.)
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Kun-Yun Yeh
- Division of Hemato-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung 204, Taiwan;
| | - Chiu-Ya Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan; (C.-Y. L.); (C.-Y. L.); (Y.-W.H.)
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Yang-Wen Hsieh
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan; (C.-Y. L.); (C.-Y. L.); (Y.-W.H.)
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Hsin-Hung Lai
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Jim-Ray Chen
- Department of Pathology, Chang Gung Memorial Hospital, Keelung 204, Taiwan;
| | - Chia-Chun Hsu
- Department of Radiology, Buddhist Tzu Chi General Hospital, Taichung Branch, Taichung 427, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Guor Mour Her
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan
| |
Collapse
|
74
|
Wegermann K, Hyun J, Diehl AM. Molecular Mechanisms Linking Nonalcoholic Steatohepatitis to Cancer. Clin Liver Dis (Hoboken) 2021; 17:6-10. [PMID: 33552478 PMCID: PMC7849296 DOI: 10.1002/cld.1006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/29/2020] [Accepted: 07/12/2020] [Indexed: 02/04/2023] Open
Abstract
Watch a video presentation of this article Watch an interview with the author Answer questions and earn CME.
Collapse
Affiliation(s)
- Kara Wegermann
- Division of GastroenterologyDepartment of MedicineDuke University Medical CenterDurhamNC
| | - Jeongeun Hyun
- Institute of Tissue Regeneration Engineering (ITREN) and College of Science and TechnologyDankook UniversityCheonanRepublic of Korea
| | - Anna Mae Diehl
- Division of GastroenterologyDepartment of MedicineDuke University Medical CenterDurhamNC
| |
Collapse
|
75
|
Hwang S, Yun H, Moon S, Cho YE, Gao B. Role of Neutrophils in the Pathogenesis of Nonalcoholic Steatohepatitis. Front Endocrinol (Lausanne) 2021; 12:751802. [PMID: 34707573 PMCID: PMC8542869 DOI: 10.3389/fendo.2021.751802] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/23/2021] [Indexed: 12/18/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) includes a spectrum of liver disorders, from fatty liver to nonalcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma. Compared with fatty liver, NASH is characterized by increased liver injury and inflammation, in which liver-infiltrating immune cells, with neutrophil infiltration as a hallmark of NASH, play a critical role in promoting the progression of fatty liver to NASH. Neutrophils are the first responders to injury and infection in various tissues, establishing the first line of defense through multiple mechanisms such as phagocytosis, cytokine secretion, reactive oxygen species production, and neutrophil extracellular trap formation; however, their roles in the pathogenesis of NASH remain obscure. The current review summarizes the roles of neutrophils that facilitate the progression of fatty liver to NASH and their involvement in inflammation resolution during NASH pathogenesis. The notion that neutrophils are potential therapeutic targets for the treatment of NASH is also discussed.
Collapse
Affiliation(s)
- Seonghwan Hwang
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, South Korea
| | - Hwayoung Yun
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, South Korea
| | - Sungwon Moon
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, South Korea
| | - Ye Eun Cho
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, South Korea
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
76
|
The Prognostic Significance of miR-21 Expression among Surgically Resected Hepatocellular Carcinoma Patients: Evidence from a Meta-Analysis and Retrospective Cohort Study. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8848158. [PMID: 33415165 PMCID: PMC7769634 DOI: 10.1155/2020/8848158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
Background To date, microRNA-21 (miR-21) has been reported to be associated with the prognosis of hepatocellular carcinoma (HCC) in various studies, yet the results were inconsistent. The purpose of this two-part study, consisting of a retrospective cohort study and a meta-analysis, sets out to determine the prognostic role of miR-21 expression among HCC patients who underwent surgical resection. Methods. In this study, we first detected miR-21 expression in HCC patients by quantitative real-time PCR (qRT-PCR). Patients were divided into a high miR-21 expression group and a low miR-21 expression group according to the median level of miR-21 expression in tumor tissues. The survival outcomes of the two groups were analyzed by the Kaplan-Meier method with the log-rank test. Multivariate analysis of the prognostic factors was performed with the Cox regression model. Subsequently, eligible studies were obtained by searching on PubMed, Cochrane Library, and Web of Science, and a meta-analysis was performed to assess the prognostic role of miR-21 expression among HCC. Results The qRT-PCR analysis results of our cohort study showed miR-21 expression was significantly upregulated in HCC tissues when compared with adjacent nontumor tissues. Multivariate analysis suggested that miR-21 expression was an independent prognostic factor for overall survival (OS) (hazard ratio, HR = 2.361) and disease-free survival (DFS) (HR = 2.024) in HCC patients who underwent surgical resection. A total of 10 studies with 969 patients were enrolled in the meta-analysis, consisting of 9 studies from the database search and our cohort study. We observed that elevated miR-21 expression can predict poor OS (HR = 2.24, 95%CI = 1.73-2.91, P < 0.001) and DFS/recurrence-free survival (RFS) (HR = 2.44, 95%CI = 1.62-3.67, P < 0.001) in surgically resected HCC patients. Conclusions Our study demonstrated that miR-21 high expression among surgically resected HCC patients is a prognostic factor that indicated adverse survival.
Collapse
|
77
|
Franck M, Thon C, Schütte K, Malfertheiner P, Link A. Circulating miR-21-5p level has limited prognostic value in patients with hepatocellular carcinoma and is influenced by renal function. World J Hepatol 2020; 12:1031-1045. [PMID: 33312427 PMCID: PMC7701966 DOI: 10.4254/wjh.v12.i11.1031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/15/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) have been suggested as biomarkers for malignant diseases including hepatocellular carcinoma (HCC). Specifically, hsa-miR-21-5p (miR-21) is among the most frequently deregulated miRNA in cancer. The diagnostic and prognostic value of miR-21 has been demonstrated in HCC tissue, mostly in the Asian population. Although the impact of various factors has been recently reported for circulating hsa-miR-122-5p (miR-122), at present only limited knowledge is available for miR-21. AIM To evaluate the value of miR-21 for the assessment of prognosis in HCC patients and to delineate the influence of clinical and preanalytical factors on miR-21 level in sera. METHODS Patients with confirmed HCC from our European cohort with predominantly alcohol-associated liver damage were included in the study. All subjects were characterized according to their clinical and laboratory work-up and overall survival data were obtained. Quantitative real-time polymerase chain reaction was performed for miR-21 and spiked-in cel-miR-39-3p. The results were compared to previously reported miR-122 data. RESULTS Survival of HCC patients was comparable between patients with low and high serum miR-21 concentration. No association was observed between miR-21 level in sera and Child-Pugh score, Barcelona Clinic Liver Cancer staging system, or etiology of HCC/liver disease. Age, gender, or pretreatment had no association with miR-21 level. A positive correlation was observed between miR-21 and aspartate aminotransferase (r = 0.2854, P = 0.0061), serum miR-122 (r = 0.2624, P = 0.0120), and the International Normalized Ratio (r = 0.2065, P = 0.0496). Negative correlation of miR-21 with serum creatinine (r = -0.2215, P = 0.0348) suggests renal function as a potential influencing factor in miR-21 biogenesis in blood. CONCLUSION The results from this work do not support clinically relevant prognostic value of circulating miR-21 in HCC patients in real-life settings. Following systematic evaluation, we identified renal function and aspartate aminotransferase as potential factors that may affect miR-21 concentration in blood. This knowledge should be considered in future miRNA-based biomarker studies not only for HCC but also for other diseases.
Collapse
Affiliation(s)
- Martin Franck
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover 30625, Germany
| | - Cosima Thon
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
| | - Kerstin Schütte
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany.
| |
Collapse
|
78
|
Santos AA, Afonso MB, Ramiro RS, Pires D, Pimentel M, Castro RE, Rodrigues CM. Host miRNA-21 promotes liver dysfunction by targeting small intestinal Lactobacillus in mice. Gut Microbes 2020; 12:1-18. [PMID: 33300439 PMCID: PMC7733982 DOI: 10.1080/19490976.2020.1840766] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/03/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
New evidence shows that host-microbiota crosstalk can be modulated via endogenous miRNAs. We have previously reported that miR-21 ablation protects against liver injury in cholestasis. In this study, we investigated the role of miR-21 in modulating the gut microbiota during cholestasis and its effects in liver dysfunction. Mice lacking miR-21 had reduced liver damage and were protected against small intestinal injury as well as from gut microbiota dysbiosis when subjected to bile duct ligation surgery. The unique microbiota profile of miR-21KO mice was characterized by an increase in Lactobacillus, a key microbiome genus for gut homeostasis. Interestingly, in vitro incubation of synthetic miR-21 directly reduced Lactobacillus load. Moreover, supplementation with Lactobacillus reuteri revealed reduced liver fibrosis in acute bile duct-ligated mice, mimicking the protective effects in miR-21 knockout mice. D-lactate, a main product of Lactobacillus, regulates gut homeostasis that may link with reduced liver fibrosis. Altogether, our results demonstrate that miR-21 promotes liver dysfunction through direct modulation of the gut microbiota and highlight the potential therapeutic effects of Lactobacillus supplementation in gut and liver homeostasis.
Collapse
Affiliation(s)
- André A. Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Marta B. Afonso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | | | - David Pires
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Madalena Pimentel
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Rui E. Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cecília M.P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
79
|
Li X, Song L, Wang B, Tao C, Shi L, Xu M. Circ0120816 acts as an oncogene of esophageal squamous cell carcinoma by inhibiting miR-1305 and releasing TXNRD1. Cancer Cell Int 2020; 20:526. [PMID: 33292234 PMCID: PMC7597039 DOI: 10.1186/s12935-020-01617-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/20/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been discovered to participate in the carcinogenesis of multiple cancers. However, the role of circRNAs in esophageal squamous cell carcinoma (ESCC) progression is yet to be properly understood. This research aimed to investigate and understand the mechanism used by circRNAs to regulate ESCC progression. METHODS Bioinformatics analysis was first performed to screen dysregulated circRNAs and differentially expressed genes in ESCC. The ESCC tissue samples and adjacent normal tissue samples utilized in this study were obtained from 36 ESCC patients. All the samples were subjected to qRT-PCR analysis to identify the expression of TXNRD1, circRNAs, and miR-1305. Luciferase reporter assay, RNA immunoprecipitation assay and RNA pull-down assay were later conducted to verify the existing relationship among circ0120816, miR-1305 and TXNRD1. CCK-8, BrdU, cell adhesion, cell cycle, western blot and caspase 3 activity assays were also employed to evaluate the regulation of these three biological molecules in ESCC carcinogenesis. To evaluate the effect of circ0120816 on ESCC tumor growth and metastasis, the xenograft mice model was constructed. RESULTS Experimental investigations revealed that circ0120816 was the highest upregulated circRNA in ESCC tissues and that this non-coding RNA acted as a miR-1305 sponge in enhancing cell viability, cell proliferation, and cell adhesion as well as repressing cell apoptosis in ESCC cell lines. Moreover, miR-1305 was observed to exert a tumor-suppressive effect in ESCC cells by directly targeting and repressing TXNRD1. It was also noticed that TXNRD1 could regulate cyclin, cell adhesion molecule, and apoptosis-related proteins. Furthermore, silencing circ0120816 was found to repress ESCC tumor growth and metastasis in vivo. CONCLUSIONS This research confirmed that circ0120816 played an active role in promoting ESCC development by targeting miR-1305 and upregulating oncogene TXNRD1.
Collapse
Affiliation(s)
- Xiaoyong Li
- Department of Cardiac Surgery, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan Asia Heart Hospital Affiliated to Wuhan University of Science and Technology, No.753 Jinghan Road, Wuhan, 430022, Hubei, China
| | - Laichun Song
- Department of Cardiac Surgery, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan Asia Heart Hospital Affiliated to Wuhan University of Science and Technology, No.753 Jinghan Road, Wuhan, 430022, Hubei, China
| | - Bo Wang
- Department of Cardiac Surgery, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan Asia Heart Hospital Affiliated to Wuhan University of Science and Technology, No.753 Jinghan Road, Wuhan, 430022, Hubei, China
| | - Chao Tao
- Department of Cardiac Surgery, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan Asia Heart Hospital Affiliated to Wuhan University of Science and Technology, No.753 Jinghan Road, Wuhan, 430022, Hubei, China
| | - Lei Shi
- Department of Cardiac Surgery, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan Asia Heart Hospital Affiliated to Wuhan University of Science and Technology, No.753 Jinghan Road, Wuhan, 430022, Hubei, China
| | - Ming Xu
- Department of Cardiac Surgery, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan Asia Heart Hospital Affiliated to Wuhan University of Science and Technology, No.753 Jinghan Road, Wuhan, 430022, Hubei, China.
| |
Collapse
|
80
|
Zhong D, Lyu X, Fu X, Xie P, Liu M, He F, Huang G. Upregulation of miR-124-3p by Liver X Receptor Inhibits the Growth of Hepatocellular Carcinoma Cells Via Suppressing Cyclin D1 and CDK6. Technol Cancer Res Treat 2020; 19:1533033820967473. [PMID: 33073697 PMCID: PMC7592319 DOI: 10.1177/1533033820967473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
MiR-124-3p has been identified as a novel tumor suppressor and a potential therapeutic target in hepatocellular carcinoma (HCC) through regulating its target genes. However, the upstream regulatory mechanisms of mir-124-3p in HCC has not been fully understood. The transcription factor liver X receptor (LXR) plays a critical role in suppressing the proliferation of HCC cells, but it is unclear whether LXR is involved in the regulation of mir-124-3p. In the present study, we demonstrated that the expression of mir-124-3p was positively correlated with that of LXR in HCC, and the cell growth of HCC was significantly inhibited by LXR agonists. Moreover, activation of LXR with the agonists up-regulated the expression of mir-124-3p, and in turn down-regulated cyclin D1 and cyclin-dependent kinase 6 (CDK6) expression, which are the target genes of mir-124-3p. Mechanistically, miR-124-3p mediates LXR induced inhibition of HCC cell growth and down-regulation of cyclin D1 and CDK6 expression. In vivo experiments also confirmed that LXR induced miR-124-3p expression inhibited the growth of HCC xenograft tumors, as well as cyclin D1 and CDK6 expression. Our findings revealed that miR-124-3p is a novel target gene of LXR, and regulation of the miR-124-3p-cyclin D1/CDK6 pathway by LXR plays a crucial role in the proliferation of HCC cells. LXR-miR-124-3p-cyclin D1/CDK6 pathway may be a novel potential therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Dan Zhong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, 12525Army Medical University (Third Military Medical University), Chongqing, China
| | - Xilin Lyu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, 12525Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaohong Fu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, 12525Army Medical University (Third Military Medical University), Chongqing, China
| | - Peng Xie
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, 12525Army Medical University (Third Military Medical University), Chongqing, China
| | - Menggang Liu
- Department of Hepatobiliary Surgery, Daping Hospital (Army Medical Center), 12525Army Medical University (Third Military Medical University), Chongqing, China
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, 12525Army Medical University (Third Military Medical University), Chongqing, China
| | - Gang Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, 12525Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
81
|
Gjorgjieva M, Sobolewski C, Ay AS, Abegg D, Correia de Sousa M, Portius D, Berthou F, Fournier M, Maeder C, Rantakari P, Zhang FP, Poutanen M, Picard D, Montet X, Nef S, Adibekian A, Foti M. Genetic Ablation of MiR-22 Fosters Diet-Induced Obesity and NAFLD Development. J Pers Med 2020; 10:jpm10040170. [PMID: 33066497 PMCID: PMC7711493 DOI: 10.3390/jpm10040170] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
miR-22 is one of the most abundant miRNAs in the liver and alterations of its hepatic expression have been associated with the development of hepatic steatosis and insulin resistance, as well as cancer. However, the pathophysiological roles of miR-22-3p in the deregulated hepatic metabolism with obesity and cancer remains poorly characterized. Herein, we observed that alterations of hepatic miR-22-3p expression with non-alcoholic fatty liver disease (NAFLD) in the context of obesity are not consistent in various human cohorts and animal models in contrast to the well-characterized miR-22-3p downregulation observed in hepatic cancers. To unravel the role of miR-22 in obesity-associated NAFLD, we generated constitutive Mir22 knockout (miR-22KO) mice, which were subsequently rendered obese by feeding with fat-enriched diet. Functional NAFLD- and obesity-associated metabolic parameters were then analyzed. Insights about the role of miR-22 in NAFLD associated with obesity were further obtained through an unbiased proteomic analysis of miR-22KO livers from obese mice. Metabolic processes governed by miR-22 were finally investigated in hepatic transformed cancer cells. Deletion of Mir22 was asymptomatic when mice were bred under standard conditions, except for an onset of glucose intolerance. However, when challenged with a high fat-containing diet, Mir22 deficiency dramatically exacerbated fat mass gain, hepatomegaly, and liver steatosis in mice. Analyses of explanted white adipose tissue revealed increased lipid synthesis, whereas mass spectrometry analysis of the liver proteome indicated that Mir22 deletion promotes hepatic upregulation of key enzymes in glycolysis and lipid uptake. Surprisingly, expression of miR-22-3p in Huh7 hepatic cancer cells triggers, in contrast to our in vivo observations, a clear induction of a Warburg effect with an increased glycolysis and an inhibited mitochondrial respiration. Together, our study indicates that miR-22-3p is a master regulator of the lipid and glucose metabolism with differential effects in specific organs and in transformed hepatic cancer cells, as compared to non-tumoral tissue.
Collapse
Affiliation(s)
- Monika Gjorgjieva
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (M.G.); (C.S.); (A.-S.A.); (M.C.d.S.); (D.P.); (F.B.); (M.F.); (C.M.)
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (M.G.); (C.S.); (A.-S.A.); (M.C.d.S.); (D.P.); (F.B.); (M.F.); (C.M.)
| | - Anne-Sophie Ay
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (M.G.); (C.S.); (A.-S.A.); (M.C.d.S.); (D.P.); (F.B.); (M.F.); (C.M.)
| | - Daniel Abegg
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA; (D.A.); (A.A.)
| | - Marta Correia de Sousa
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (M.G.); (C.S.); (A.-S.A.); (M.C.d.S.); (D.P.); (F.B.); (M.F.); (C.M.)
| | - Dorothea Portius
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (M.G.); (C.S.); (A.-S.A.); (M.C.d.S.); (D.P.); (F.B.); (M.F.); (C.M.)
| | - Flavien Berthou
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (M.G.); (C.S.); (A.-S.A.); (M.C.d.S.); (D.P.); (F.B.); (M.F.); (C.M.)
| | - Margot Fournier
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (M.G.); (C.S.); (A.-S.A.); (M.C.d.S.); (D.P.); (F.B.); (M.F.); (C.M.)
| | - Christine Maeder
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (M.G.); (C.S.); (A.-S.A.); (M.C.d.S.); (D.P.); (F.B.); (M.F.); (C.M.)
| | - Pia Rantakari
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, and Turku Center for Disease Modeling, University of Turku, FI-20014 Turku, Finland; (P.R.); (F.-P.Z.); (M.P.)
| | - Fu-Ping Zhang
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, and Turku Center for Disease Modeling, University of Turku, FI-20014 Turku, Finland; (P.R.); (F.-P.Z.); (M.P.)
| | - Matti Poutanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, and Turku Center for Disease Modeling, University of Turku, FI-20014 Turku, Finland; (P.R.); (F.-P.Z.); (M.P.)
| | - Didier Picard
- Department of Cell Biology, Faculty of Science, University of Geneva, 1205 Geneva, Switzerland;
| | - Xavier Montet
- Department of Radiology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Serge Nef
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Alexander Adibekian
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA; (D.A.); (A.A.)
| | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (M.G.); (C.S.); (A.-S.A.); (M.C.d.S.); (D.P.); (F.B.); (M.F.); (C.M.)
- Diabetes Center, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Correspondence: ; Tel.: +41-22-37-95-204; Fax: +41-22-37-95-260
| |
Collapse
|
82
|
Cruz-Gil S, Fernández LP, Sánchez-Martínez R, Gómez de Cedrón M, Ramírez de Molina A. Non-Coding and Regulatory RNAs as Epigenetic Remodelers of Fatty Acid Homeostasis in Cancer. Cancers (Basel) 2020; 12:E2890. [PMID: 33050166 PMCID: PMC7599548 DOI: 10.3390/cancers12102890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer cells commonly display metabolic fluctuations. Together with the Warburg effect and the increased glutaminolysis, alterations in lipid metabolism homeostasis have been recognized as a hallmark of cancer. Highly proliferative cancer cells upregulate de novo synthesis of fatty acids (FAs) which are required to support tumor progression by exerting multiple roles including structural cell membrane composition, regulators of the intracellular redox homeostasis, ATP synthesis, intracellular cell signaling molecules, and extracellular mediators of the tumor microenvironment. Epigenetic modifications have been shown to play a crucial role in human development, but also in the initiation and progression of complex diseases. The study of epigenetic processes could help to design new integral strategies for the prevention and treatment of metabolic disorders including cancer. Herein, we first describe the main altered intracellular fatty acid processes to support cancer initiation and progression. Next, we focus on the most important regulatory and non-coding RNAs (small noncoding RNA-sncRNAs-long non-coding RNAs-lncRNAs-and other regulatory RNAs) which may target the altered fatty acids pathway in cancer.
Collapse
Affiliation(s)
| | | | | | - Marta Gómez de Cedrón
- Correspondence: (M.G.d.C.); (A.R.d.M.); Tel.: +34-67-213-49-21 (A.R.d.M.); Fax: +34-91-830-59-61 (A.R.d.M.)
| | - Ana Ramírez de Molina
- Laboratory of Molecular Oncology, IMDEA-Food Institute, CEI UAM + CSIC, 28049 Madrid, Spain; (S.C.-G.); (L.P.F.); (R.S.-M.)
| |
Collapse
|
83
|
Soto-Angona Ó, Anmella G, Valdés-Florido MJ, De Uribe-Viloria N, Carvalho AF, Penninx BWJH, Berk M. Non-alcoholic fatty liver disease (NAFLD) as a neglected metabolic companion of psychiatric disorders: common pathways and future approaches. BMC Med 2020; 18:261. [PMID: 32998725 PMCID: PMC7528270 DOI: 10.1186/s12916-020-01713-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis in over 5% of the parenchyma in the absence of excessive alcohol consumption. It is more prevalent in patients with diverse mental disorders, being part of the comorbidity driving loss of life expectancy and quality of life, yet remains a neglected entity. NAFLD can progress to non-alcoholic steatohepatitis (NASH) and increases the risk for cirrhosis and hepatic carcinoma. Both NAFLD and mental disorders share pathophysiological pathways, and also present a complex, bidirectional relationship with the metabolic syndrome (MetS) and related cardiometabolic diseases. MAIN TEXT This review compares the demographic data on NAFLD and NASH among the global population and the psychiatric population, finding differences that suggest a higher incidence of this disease among the latter. It also analyzes the link between NAFLD and psychiatric disorders, looking into common pathophysiological pathways, such as metabolic, genetic, and lifestyle factors. Finally, possible treatments, tailored approaches, and future research directions are suggested. CONCLUSION NAFLD is part of a complex system of mental and non-communicable somatic disorders with a common pathogenesis, based on shared lifestyle and environmental risks, mediated by dysregulation of inflammation, oxidative stress pathways, and mitochondrial function. The recognition of the prevalent comorbidity between NAFLD and mental disorders is required to inform clinical practice and develop novel interventions to prevent and treat these complex and interacting disorders.
Collapse
Affiliation(s)
- Óscar Soto-Angona
- Department of Psychiatry, Vall d'Hebron University Hospital, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Catalonia, Spain.
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| | - Gerard Anmella
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, 170 Villarroel st, 12-0, 08036, Barcelona, Catalonia, Spain
| | | | - Nieves De Uribe-Viloria
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
- Department of Psychiatry, Hospital Clínico Universitario de Valladolid, Castilla y León, Spain
| | - Andre F Carvalho
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam University Medical Center/Vrije Universiteit & GGZinGeest, Amsterdam, the Netherlands
| | - Michael Berk
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry, and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| |
Collapse
|
84
|
Pillai SS, Lakhani HV, Zehra M, Wang J, Dilip A, Puri N, O’Hanlon K, Sodhi K. Predicting Nonalcoholic Fatty Liver Disease through a Panel of Plasma Biomarkers and MicroRNAs in Female West Virginia Population. Int J Mol Sci 2020; 21:ijms21186698. [PMID: 32933141 PMCID: PMC7554851 DOI: 10.3390/ijms21186698] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/04/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Nonalcoholic fatty liver disease (NAFLD) is primarily characterized by the presence of fatty liver, hepatic inflammation and fibrogenesis eventually leading to nonalcoholic steatohepatitis (NASH) or cirrhosis. Obesity and diabetes are common risk factors associated with the development and progression of NAFLD, with one of the highest prevalence of these diseased conditions in the West Virginia population. Currently, the diagnosis of NAFLD is limited to radiologic studies and biopsies, which are not cost-effective and highly invasive. Hence, this study aimed to develop a panel and assess the progressive levels of circulatory biomarkers and miRNA expression in patients at risk for progression to NASH to allow early intervention strategies. (2) Methods: In total, 62 female patients were enrolled and blood samples were collected after 8–10 h of fasting. Computed tomography was performed on abdomen/pelvis following IV contrast administration. The patients were divided into the following groups: Healthy subjects with normal BMI and normal fasting blood glucose (Control, n = 20), Obese with high BMI and normal fasting blood glucose (Obese, n = 20) and Obese with high fasting blood glucose (Obese + DM, n = 22). Based on findings from CT, another subset was created from Obese + DM group with patients who showed signs of fatty liver infiltration (Obese + DM(FI), n = 10). ELISA was performed for measurement of plasma biomarkers and RT-PCR was performed for circulating miRNA expression. (3) Results: Our results show significantly increased levels of plasma IL-6, Leptin and FABP-1, while significantly decreased level of adiponectin in Obese, Obese + DM and Obese + DM(FI) group, as compared to healthy controls. The level of CK-18 was significantly increased in Obese + DM(FI) group as compared to control. Subsequently, the expression of miR-122, miR-34a, miR-375, miR-16 and miR-21 was significantly increased in Obese + DM and Obese + DM(FI) group as compared to healthy control. Our results also show distinct correlation of IL-6, FABP-1 and adiponectin levels with the expression of miRNAs in relation to the extent of NAFLD progression. (4) Conclusion: Our results support the clinical application of these biomarkers and miRNAs in monitoring the progression of NAFLD, suggesting a more advanced diagnostic potential of this panel than conventional methods. This panel may provide an appropriate method for early prognosis and management of NAFLD and subsequent adverse hepatic pathophysiology, potentially reducing the disease burden on the West Virginia population.
Collapse
Affiliation(s)
- Sneha S. Pillai
- Departments of Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (S.S.P.); (H.V.L.); (M.Z.); (J.W.); (A.D.)
| | - Hari Vishal Lakhani
- Departments of Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (S.S.P.); (H.V.L.); (M.Z.); (J.W.); (A.D.)
| | - Mishghan Zehra
- Departments of Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (S.S.P.); (H.V.L.); (M.Z.); (J.W.); (A.D.)
| | - Jiayan Wang
- Departments of Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (S.S.P.); (H.V.L.); (M.Z.); (J.W.); (A.D.)
| | - Anum Dilip
- Departments of Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (S.S.P.); (H.V.L.); (M.Z.); (J.W.); (A.D.)
| | - Nitin Puri
- Departments of Biomedical Sciences and Medical Education, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA;
| | - Kathleen O’Hanlon
- Departments of Family Medicine, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA;
| | - Komal Sodhi
- Departments of Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (S.S.P.); (H.V.L.); (M.Z.); (J.W.); (A.D.)
- Correspondence: ; Tel.: +1-(304)-691-1704; Fax: +1-(914)-347-4956
| |
Collapse
|
85
|
Xu F, Guo W. The progress of epigenetics in the development and progression of non-alcoholic fatty liver disease. LIVER RESEARCH 2020. [DOI: 10.1016/j.livres.2020.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
86
|
Yao B, Niu Y, Li Y, Chen T, Wei X, Liu Q. High-matrix-stiffness induces promotion of hepatocellular carcinoma proliferation and suppression of apoptosis via miR-3682-3p-PHLDA1-FAS pathway. J Cancer 2020; 11:6188-6203. [PMID: 33033502 PMCID: PMC7532500 DOI: 10.7150/jca.45998] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) with malignant behaviors related to death causes distant metastasis and is the fourth primary cancer in the whole world, which has taken millions lives in Asian countries such as China. The novel miR-3682-3p involving high-expression-related poor prognosis in HCC tissues and cell lines indicate oncogenesis functions in vitro and in vivo. According to TCGA database, our group find several none-coding RNAs showing abnormal expression including miR-3682-3p, thus we originally confirmed the inhibition of proliferation and acceleration of apoptosis are enhanced in miR-3682-3p knock-down cell lines. Then, in nude mice transplantation assays, we found the suppressor behaviors, smaller nodules and lower speed of tumor expansion in model of injection of cell cultured and transfected shRNA-miR-3682-3p. A combination of databases (Starbase, Targetscan and MiRgator) illustrates miR-3682-3p targets PHLDA1, which shows negative correlation demonstrated by dual-luciferase reporter system. To make functional verification of PHLDA1, we upregulate the gene and rescue tests are established to confirm that miR-3682-3p suppresses PHLDA1 to promotion of cell growth. Rescue experiments finish making confirmation of relation of miR-3682-3p and PHLDA1 subsequently. Cirrhotic tissues illustrate strong correlation to higher miR-3682-3p and clinical features make the hint that high-extracellular-matrix-stiffness environment promotes such miRNA. Functional tests on different stiffness provide the proof of underlying mechanism. In conclusion, the overexpression of miR-3682-3p mediates PHLDA1 inhibition could impede apoptosis and elevate proliferation of HCC through high-extracellular-matrix-stiffness environment potentially.
Collapse
Affiliation(s)
- Bowen Yao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China
| | - Yongshen Niu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China
| | - Yazhao Li
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China
| | - Tianxiang Chen
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China
| | - Xinyu Wei
- Medicine college, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an 710061, China
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China
| |
Collapse
|
87
|
Botello-Manilla AE, Chávez-Tapia NC, Uribe M, Nuño-Lámbarri N. Genetics and epigenetics purpose in nonalcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol 2020; 14:733-748. [PMID: 32552211 DOI: 10.1080/17474124.2020.1780915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION nonalcoholic fatty liver disease (NAFLD) comprises a broad spectrum of diseases, which can progress from benign steatosis to nonalcoholic steatohepatitis, liver cirrhosis and hepatocellular carcinoma. NAFLD is the most common chronic liver disease in developed countries, affecting approximately 25% of the general population. Insulin resistance, adipose tissue dysfunction, mitochondrial and endoplasmic reticulum stress, chronic inflammation, genetic and epigenetic factors are NAFLD triggers that control the disease susceptibility and progression. AREAS COVERED In recent years a large number of investigations have been carried out to elucidate genetic and epigenetic factors in the disease pathogenesis, as well as the search for diagnostic markers and therapeutic targets. This paper objective is to report the most studied genetic and epigenetic variants around NAFLD. EXPERT OPINION NAFLD lead to various comorbidities, which have a considerable impact on the patient wellness and life quality, as well as on the costs they generate for the country's health services. It is essential to continue with molecular research, since it could be used as a clinical tool for prognosis and disease severity. Specifically, in the field of hepatology, plasma miRNAs could provide a novel tool in liver diseases diagnosis and monitoring, representing an alternative to invasive diagnostic procedures.
Collapse
Affiliation(s)
| | - Norberto Carlos Chávez-Tapia
- Traslational Research Unit, Médica Sur Clinic & Foundation , Mexico City, Mexico.,Obesity and Digestive Diseases Unit, Médica Sur Clinic & Foundation , Mexico City, Mexico
| | - Misael Uribe
- Obesity and Digestive Diseases Unit, Médica Sur Clinic & Foundation , Mexico City, Mexico
| | | |
Collapse
|
88
|
Zhang H, Yang L, Wang Y, Huang W, Li Y, Chen S, Song G, Ren L. Oxymatrine alleviated hepatic lipid metabolism via regulating miR-182 in non-alcoholic fatty liver disease. Life Sci 2020; 257:118090. [PMID: 32679144 DOI: 10.1016/j.lfs.2020.118090] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/19/2022]
Abstract
AIMS This study aimed to investigate oxymatrine via regulating miR-182 improved the hepatic lipid accumulation in non-alcoholic fatty liver disease (NAFLD) model. MATERIALS AND METHODS Wistar rats were fed high-fat and high-fructose diet (HFDHFr group) for 4 weeks and HepG2 cells were treated with palmitic acid (PA group), and then were given oxymatrine intervention. The expression profiles of miRNAs were accessed by RNA sequencing (RNA-Seq). Hematoxylin-eosin (HE) staining and Oil Red O staining were used to observe the inflammation and lipid accumulation in liver. The levels of sterol regulatory element binding protein-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), fatty-acid synthase (FAS) and carnitine palmitoyltransferase 1A (CPT-1A) were detected by RT-qPCR and Western blotting, respectively. Cell viability was detected by Cell Counting Kit-8 (CCK-8). KEY FINDINGS miR-182 was down-regulated in the HFDHFr group and PA group. Oxymatrine reduced body weight, and improved glucose tolerance and insulin resistance in the HFDHFr + OMT group compared with HFDHFr group. In addition, oxymatrine reduced the ratio (liver weight/body weight), the content of triglycerides (TG), hepatic lipid accumulation and steatosis. The levels of SREBP-1c, ACC, and FAS were significantly decreased, while the CPT-1A level was obviously elevated after oxymatrine intervention (P < 0.05). In vivo, miR-182 knockdown increased the levels of SREBP-1c, ACC and FAS, while reduced the CPT-1A level. Additionally, oxymatrine attenuated the effects of miR-182 inhibitor on lipid accumulation. SIGNIFICANCE We presented a possible mechanism that oxymatrine alleviated hepatic lipid metabolism via regulating miR-182 in NAFLD model.
Collapse
Affiliation(s)
- He Zhang
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China; Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, China
| | - Liying Yang
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China; Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, China
| | - Yichao Wang
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China; Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, China
| | - Wenli Huang
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China; Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, China
| | - Yang Li
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China; Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, China
| | - Shuchun Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China; Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, China
| | - Guangyao Song
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China; Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, China
| | - Luping Ren
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China; Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, China.
| |
Collapse
|
89
|
Sohel MMH. Macronutrient modulation of mRNA and microRNA function in animals: A review. ACTA ACUST UNITED AC 2020; 6:258-268. [PMID: 33005759 PMCID: PMC7503081 DOI: 10.1016/j.aninu.2020.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/01/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022]
Abstract
Dietary macronutrients have been regarded as a basic source of energy and amino acids that are necessary for the maintenance of cellular homeostasis, metabolic programming as well as protein synthesis. Due to the emergence of “nutrigenomics”, a unique discipline that combines nutritional and omics technologies to study the impacts of nutrition on genomics, it is increasingly evident that macronutrients also have a significant role in the gene expression regulation. Gene expression is a complex phenomenon controlled by several signaling pathways and could be influenced by a wide variety of environmental and physiological factors. Dietary macronutrients are the most important environmental factor influencing the expression of both genes and microRNAs (miRNA). miRNA are tiny molecules of 18 to 22 nucleotides long that regulate the expression of genes. Therefore, dietary macronutrients can influence the expression of genes in both direct and indirect manners. Recent advancements in the state-of-the-art technologies regarding molecular genetics, such as next-generation sequencing, quantitative PCR array, and microarray, allowed us to investigate the occurrence of genome-wide changes in the expression of genes in relation to augmented or reduced dietary macronutrient intake. The purpose of this review is to accumulate the current knowledge focusing on macronutrient mediated changes in the gene function. This review will discuss the impact of altered dietary carbohydrate, protein, and fat intake on the expression of coding genes and their functions. In addition, it will also summarize the regulation of miRNA, both cellular and extracellular miRNA, expression modulated by dietary macronutrients.
Collapse
Affiliation(s)
- Md Mahmodul Hasan Sohel
- Department of Genetics, Faculty of Veterinary Medicine, Erciyes University, Kayseri, 38039, Turkey.,Genome and Stem Cell Centre, Erciyes University, Kayseri, 38039, Turkey
| |
Collapse
|
90
|
Yao B, Li Y, Niu Y, Wang L, Chen T, Guo C, Liu Q. Hypoxia-induced miR-3677-3p promotes the proliferation, migration and invasion of hepatocellular carcinoma cells by suppressing SIRT5. J Cell Mol Med 2020; 24:8718-8731. [PMID: 32596968 PMCID: PMC7412699 DOI: 10.1111/jcmm.15503] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 05/08/2020] [Accepted: 05/24/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC), with life‐threatening malignant behaviours, often develops distant metastases and is the fourth most common primary cancer in the world, having taken millions of lives in Asian countries such as China. The novel miR‐3677‐3p is involved in a high‐expression‐related poor prognosis in HCC tissues and cell lines, indicating oncogenesis functions in vitro and in vivo. Initially, we confirmed the inhibition of proliferation, migration and invasion in miR‐3677‐3p knock‐down MHCC‐97H and SMMC‐7721 cell lines, which are well known for their high degree of invasiveness. Then, we reversed the functional experiments in the low‐miR‐3677‐3p‐expression Hep3B cell line via overexpressing miR‐3677‐3p. In nude mice xenograft and lung metastasis assays, we found suppressor behaviours, smaller nodules and low density of organ spread, after injection of cells transfected with shRNA‐miR‐3677‐3p. A combination of databases (Starbase, TargetScan and MiRgator) illustrated miR‐3677‐3p targets, and it was shown to suppress the expression of SIRT5 in a dual‐luciferase reporter system. To clarify the conclusions of previous ambiguous research, we up‐regulated SIRT5 in Hep3B cells, and rescue tests were established for confirmation that miR‐3677‐3p suppresses SIRT5 to enhance the migration and invasion of HCC. Interestingly, we discovered hypoxia‐induced miR‐3677‐3p up‐regulation benefited HCC malignancy and invasiveness. In conclusion, the overexpression of miR‐3677‐3p mediated SIRT5 inhibition, which could increase proliferation, migration and invasion of HCC in hypoxic microenvironments.
Collapse
Affiliation(s)
- Bowen Yao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yazhao Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yongshen Niu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tianxiang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Cheng Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
91
|
Cao H, Chen X, Wang Z, Wang L, Xia Q, Zhang W. The role of MDM2-p53 axis dysfunction in the hepatocellular carcinoma transformation. Cell Death Discov 2020; 6:53. [PMID: 32595984 PMCID: PMC7305227 DOI: 10.1038/s41420-020-0287-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Liver cancer is the second most frequent cause of cancer-related death globally. The main histological subtype is hepatocellular carcinoma (HCC), which is derived from hepatocytes. According to the epidemiologic studies, the most important risk factors of HCC are chronic viral infections (HBV, HCV, and HIV) and metabolic disease (metabolic syndrome). Interestingly, these carcinogenic factors that contributed to HCC are associated with MDM2-p53 axis dysfunction, which presented with inactivation of p53 and overactivation of MDM2 (a transcriptional target and negative regulator of p53). Mechanically, the homeostasis of MDM2-p53 feedback loop plays an important role in controlling the initiation and progression of HCC, which has been found to be dysregulated in HCC tissues. To maintain long-term survival in hepatocytes, hepatitis viruses have lots of ways to destroy the defense strategies of hepatocytes by inducing TP53 mutation and silencing, promoting MDM2 overexpression, accelerating p53 degradation, and stabilizing MDM2. As a result, genetic instability, chronic ER stress, oxidative stress, energy metabolism switch, and abnormalities in antitumor genes can be induced, all of which might promote hepatocytes' transformation into hepatoma cells. In addition, abnormal proliferative hepatocytes and precancerous cells cannot be killed, because of hepatitis viruses-mediated exhaustion of Kupffer cells and hepatic stellate cells (HSCs) and CD4+T cells by disrupting their MDM2-p53 axis. Moreover, inefficiency of hepatic immune response can be further aggravated when hepatitis viruses co-infected with HIV. Unlike with chronic viral infections, MDM2-p53 axis might play a dual role in glucolipid metabolism of hepatocytes, which presented with enhancing glucolipid catabolism, but promoting hepatocyte injury at the early and late stages of glucolipid metabolism disorder. Oxidative stress, fatty degeneration, and abnormal cell growth can be detected in hepatocytes that were suffering from glucolipid metabolism disorder, and all of which could contribute to HCC initiation. In this review, we focus on the current studies of the MDM2-p53 axis in HCC, and specifically discuss the impact of MDM2-p53 axis dysfunction by viral infection and metabolic disease in the transformation of normal hepatocytes into hepatoma cells. We also discuss the therapeutic avenues and potential targets that are being developed to normalize the MDM2-p53 axis in HCC.
Collapse
Affiliation(s)
- Hui Cao
- Department of Liver Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030 China
| | - Xiaosong Chen
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127 China
| | - Zhijun Wang
- Department of Traditional Chinese Medicine, Putuo People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Lei Wang
- Department of Liver Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030 China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127 China
| | - Wei Zhang
- Department of Liver Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030 China
| |
Collapse
|
92
|
Molecular Mechanisms Regulating Obesity-Associated Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12051290. [PMID: 32443737 PMCID: PMC7281233 DOI: 10.3390/cancers12051290] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/14/2020] [Accepted: 05/17/2020] [Indexed: 02/07/2023] Open
Abstract
Obesity is a global, intractable issue, altering inflammatory and stress response pathways, and promoting tissue adiposity and tumorigenesis. Visceral fat accumulation is correlated with primary tumor recurrence, poor prognosis and chemotherapeutic resistance. Accumulating evidence highlights a close association between obesity and an increased incidence of hepatocellular carcinoma (HCC). Obesity drives HCC, and obesity-associated tumorigenesis develops via nonalcoholic fatty liver (NAFL), progressing to nonalcoholic steatohepatitis (NASH) and ultimately to HCC. The better molecular elucidation and proteogenomic characterization of obesity-associated HCC might eventually open up potential therapeutic avenues. The mechanisms relating obesity and HCC are correlated with adipose tissue remodeling, alteration in the gut microbiome, genetic factors, ER stress, oxidative stress and epigenetic changes. During obesity-related hepatocarcinogenesis, adipokine secretion is dysregulated and the nuclear factor erythroid 2 related factor 1 (Nrf-1), nuclear factor kappa B (NF-κB), mammalian target of rapamycin (mTOR), phosphatidylinositol-3-kinase (PI3K)/phosphatase and tensin homolog (PTEN)/Akt, and Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathways are activated. This review captures the present trends allied with the molecular mechanisms involved in obesity-associated hepatic tumorigenesis, showcasing next generation molecular therapeutic strategies and their mechanisms for the successful treatment of HCC.
Collapse
|
93
|
Non-Coding RNAs: Regulating Disease Progression and Therapy Resistance in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12051243. [PMID: 32429062 PMCID: PMC7281199 DOI: 10.3390/cancers12051243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the primary liver cancer arising from hepatocytes, is a universal health problem and one of the most common malignant tumors. Surgery followed by chemotherapy as well as tyrosine kinase inhibitors (TKIs), such as sorafenib, are primary treatment procedures for HCC, but recurrence of disease because of therapy resistance results in high mortality. It is necessary to identify novel regulators of HCC for developing effective targeted therapies that can significantly interfere with progression of the disease process. Non-coding RNAs (ncRNAs) are an abundant group of versatile RNA transcripts that do not translate into proteins, rather serve as potentially functional RNAs. The role of ncRNAs in regulating diverse aspects of the carcinogenesis process are gradually being elucidated. Recent advances in RNA sequencing technology have identified a plethora of ncRNAs regulating all aspects of hepatocarcinogenesis process and serving as potential prognostic or diagnostic biomarkers. The present review provides a comprehensive description of the biological roles of ncRNAs in disease process and therapy resistance, and potential clinical application of these ncRNAs in HCC.
Collapse
|
94
|
Du S, Shao J, Qi Y, Liu X, Liu J, Zhang F. Long non-coding RNA ANRIL alleviates H 2O 2-induced injury by up-regulating microRNA-21 in human lens epithelial cells. Aging (Albany NY) 2020; 12:6543-6557. [PMID: 32310822 PMCID: PMC7202488 DOI: 10.18632/aging.102800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 01/19/2020] [Indexed: 12/22/2022]
Abstract
The accurate role of ANRIL in cataract is poorly understood. We aimed to reveal the effects of ANRIL on H2O2-treated HLECs, SRA01/04, as well as the regulatory mechanisms. Oxidative stress model of HLECs was induced by H2O2. Cell injury was evaluated according to cell proliferation, apoptosis and DNA damage using CCK-8 assay/flow cytometry and TUNEL assays/γH2AX staining. Expressions of ANRIL and miR-21 in HLECs were determined by RT-qPCR. The effects of miR-21, miR-34a and miR-122-5p inhibition as well as AMPK and β-catenin on HLECs with ANRIL overexpression and H2O2 stimulation were analyzed. In vivo experiment was performed via RT-qPCR. H2O2 repressed proliferation and induced apoptosis or DNA damage in HLECs. Those alterations induced by H2O2 were attenuated by ANRIL overexpression. MiR-21 was positively regulated by ANRIL, and both of them were repressed in H2O2-induced HLECs and cataract patient tissues. Inhibition of miR-21 but not miR-34a or miR-122-5p reversed the effects of ANRIL on H2O2-treated HLECs. Phosphorylation of AMPK and expression of β-catenin were increased by ANRIL via regulating miR-21. AMPK and β-catenin affected beneficial function of ANRIL-miR-21 axis.Therefore, lncRNA ANRIL attenuated H2O2-induced cell injury in HELCs via up-regulating miR-21 via the activation of AMPK and β-catenin.
Collapse
Affiliation(s)
- Shanshan Du
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jingzhi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Ying Qi
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xuhui Liu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jingjing Liu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Fengyan Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| |
Collapse
|
95
|
Onishi M, Ochiya T, Tanaka Y. MicroRNA and liver cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:385-400. [PMID: 35582451 PMCID: PMC8992476 DOI: 10.20517/cdr.2019.110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 11/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is a major cause of cancer-related deaths worldwide. HCC is characterized by a poor prognosis and an ever increasing number of scientific studies aim to find new diagnostic, prognostic, and therapeutic targets. MicroRNAs (miRNAs), small non-coding RNAs that regulate the gene expression in many processes, have been shown to play a crucial role in regulating hepatocellular carcinoma. miRNAs may act as oncogenic miRNAs and tumor suppressor miRNAs and regulate cancer cell proliferation, invasion, and metastasis by being differently upregulated or downregulated and targeting the genes related with carcinogenesis. miRNAs secreted from cancer cells are found circulating in the blood, presenting an opportunity for their use as disease-related biomarkers. Moreover, extracellular vesicle-derived miRNAs are known to reflect the cell of origin and function and may provide effective biomarkers for predicting diagnosis and prognosis and new therapeutic target in HCC. In this article, we describe the most recent findings regarding the molecular mechanisms and gene regulation of microRNA in HCC, as well as their application in diagnosis/prognosis and treatment.
Collapse
Affiliation(s)
- Masaya Onishi
- Department of Virology & Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Yasuhito Tanaka
- Department of Virology & Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| |
Collapse
|
96
|
Zhang Q, Ma XF, Dong MZ, Tan J, Zhang J, Zhuang LK, Liu SS, Xin YN. MiR-30b-5p regulates the lipid metabolism by targeting PPARGC1A in Huh-7 cell line. Lipids Health Dis 2020; 19:76. [PMID: 32299444 PMCID: PMC7164201 DOI: 10.1186/s12944-020-01261-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/08/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND MiRNAs are a group of multifunctional non-coding RNAs which play an important role in the various physiological processes including the development of NAFLD. Recent studies have shown that miR-30b-5p tightly associated with the abnormal lipid metabolism in patients with NAFLD, but the detailed mechanism of miR-30b-5p in the lipid metabolism was remain unclear. The aim of this study was to investigate the effect of miR-30b-5p on the lipid metabolism in hepatocellular carcinoma Huh-7 cells. MATERIAL AND METHODS The correlation of intracellular fat content with the expression of miR-30b-5p in Huh-7 cells and HepG2 cells was investigated by treated cells with different concentrations of FFAs. The effect of miR-30b-5p on the lipid deposition in Huh-7 cells was tested by oil red O staining and TG concentrations measurement. qRT-PCR and western blot were used to investigate the lipid metabolism-related genes PPAR-α, SREBP-1, and GULT1 in miR-30b-5p overexpressed or inhibited Huh-7 cells. Target genes of miR-30b-5p were predicted using starBase, miRDB, and TargetScan databases and verified by qRT-PCR and western blot. RESULTS The expression of miR-30b-5p was significant decreased in the FFAs treated Huh-7 cells and HepG2 cells. Overexpressing miR-30b-5p in Huh-7 cells decreased the number and size of lipid droplets and intracellular TG concentrations in Huh-7 cells. Expression of fatty acid oxidation related gene PPAR-α was increased and expression of lipid synthesis related gene SREBP-1 was decreased in the miR-30b-5p overexpressed Huh-7 cells. In addition, miR-30b-5p regulates the intracellular lipid metabolism by targeting PPARGC1A. CONCLUSIONS Overexpression of miR-30b-5p could reduce the intracellular fat deposition in Huh-7 cells, and miR-30b-5p might regulate the intracellular lipid metabolism by targeting the PPARGC1A in Huh-7 cells.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266011, China
| | - Xue-Feng Ma
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266011, China
| | - Meng-Zhen Dong
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266011, China
| | - Jie Tan
- Weifang Medical University, Weifang, 261053, China
| | - Jie Zhang
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266011, China
| | - Li-Kun Zhuang
- Hepatology Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266011, China
| | - Shou-Sheng Liu
- Digestive Disease Key Laboratory of Qingdao, Qingdao, 266071, China.
- Central Laboratories, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China.
| | - Yong-Ning Xin
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266011, China.
- Hepatology Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266011, China.
- Digestive Disease Key Laboratory of Qingdao, Qingdao, 266071, China.
| |
Collapse
|
97
|
Ali MA, Kamel MA. Modulation of the hepatic expression of miR-33 and miR-34a possibly mediates the metabolic effects of estrogen in ovariectomized female rats. Eur J Pharmacol 2020; 873:173006. [PMID: 32045601 DOI: 10.1016/j.ejphar.2020.173006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/30/2022]
Abstract
Estrogen and the estrogen receptors (ERs) are well-known regulators of several aspects of glucose and lipid metabolism. Meanwhile, the underlying mechanistic role of estrogens in regulating metabolic health remains largely unknown. Hence, the study was designed to tackle the possible contribution of the hepatic expression of miR-33, miR-21 and miR-34a and their target genes as the underlying mechanism of the metabolic effects of estrogen in ovariectomized rats. Forty female rats were ovariectomized (OVX), treated with estrogen and/or fulvestrant for 28 days and compared with untreated or treated sham operated rats. Estradiol amended the metabolic abnormalities in the OVX rats, witnessed by decreasing blood sugar, insulin and HOMA-IR as well as correcting the disrupted serum and hepatic lipids. Estradiol increased the hepatic expression of miR-33 and inhibited that of miR-34a and miR-21, leading to adjusting the gene expression and the protein level of their targets, sterol regulatory element-binding proteins-1c (SREBP-1c), fatty acid synthase (FASN), high mobility group (HMG) Box Transcription Factor 1 (HBP1) and Sirtuin 1 (SIRT1), receptively. However, estrogen had no significant effects on HBP1 protein. These effects were almost completely inhibited by fulvestrant, an estrogen receptor blocker, to the extent that fulvestrant had similar metabolic disorders to that of ovariectomization. In conclusion, estrogen replacement therapy in OVX females significantly ameliorated the metabolic derangements of insulin resistance, dyslipidemia and hepatic fat accumulation possibly via corrections of hepatic expression of miR-33 and miR-34a; effects that were mediated through the receptor-mediated signaling of ERs as confirmed by fulvestrant.
Collapse
Affiliation(s)
- Mennatallah A Ali
- Department of Pharmacology &Therapeutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt.
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
98
|
Chi Y, Gong Z, Xin H, Wang Z, Liu Z. Long noncoding RNA lncARSR promotes nonalcoholic fatty liver disease and hepatocellular carcinoma by promoting YAP1 and activating the IRS2/AKT pathway. J Transl Med 2020; 18:126. [PMID: 32169080 PMCID: PMC7071718 DOI: 10.1186/s12967-020-02225-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/11/2020] [Indexed: 12/03/2022] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is the main cause for hepatocellular carcinoma (HCC). This study was intended to identify the function of long non-coding RNA (lncRNA) lncARSR in NAFLD and its role in human HCC cells (HepG2) proliferation and invasion. Methods LncARSR expression was detected both in high fatty acid-treated HepG2 cells and NAFLD mouse model. After gain- and loss-of-function approaches in high fatty acid-treated HepG2 cells and NAFLD mice, lipid accumulation in livers from NAFLD mice and high fatty acid-treated cells was determined by H&E staining, Oil Red-O staining or Nile Red staining respectively. Expression of YAP1, adipogenesis- (Fasn, Scd1 and GPA) and IRS2/AKT pathway-related genes was measured. Cell proliferation was monitored by MTT and soft-agar colony formation assays, cell cycle was analyzed by flow cytometry, and cell invasion was examined by transwell assay. The tumor weight and volume were then measured through in vivo xenograft tumor model after silencing lncARSR. Results LncARSR was highly expressed in high fatty diet (HFD)-fed mice and high fatty acid-treated HepG2 cells. LncARSR was observed to bind to YAP1, which inhibited phosphorylation nuclear translocation. LncARSR activated the IRS2/AKT pathway by reducing YAP1 phosphorylation, and further increased lipid accumulation, cell proliferation, invasion and cell cycle. Silencing lncARSR in HFD-fed mice alleviated NAFLD by regulating YAP1/IRS2/AKT axis. Conclusion Silencing lncARSR suppressed the IRS2/AKT pathway, consequently reducing HCC cell proliferation and invasion and inhibiting lipid accumulation in NAFLD mice by downregulating YAP1, which suggests a clinical application in treating NAFLD.
Collapse
Affiliation(s)
- Yuan Chi
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Zheng Gong
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - He Xin
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Ziwen Wang
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Zhaoyu Liu
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China.
| |
Collapse
|
99
|
Cai Q, Chen F, Xu F, Wang K, Zhang K, Li G, Chen J, Deng H, He Q. Epigenetic silencing of microRNA-125b-5p promotes liver fibrosis in nonalcoholic fatty liver disease via integrin α8-mediated activation of RhoA signaling pathway. Metabolism 2020; 104:154140. [PMID: 31926204 DOI: 10.1016/j.metabol.2020.154140] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/04/2019] [Accepted: 01/04/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases that may progress to liver fibrosis or cancer. The present study aimed to investigate the role of microRNA-125b-5p (miR-125b-5p) in NAFLD and to further explore underlying molecular mechanisms. METHODS A mouse model of NAFLD was constructed by high cholesterol diet feeding and a cell-model was developed by treating the mouse liver cell line NCTC1469 with palmitic acid. Gain- and loss-of-function experiments were performed to determine the effects of miR-125b-5p, integrin α8 (ITGA8), and the RhoA signaling pathway on liver fibrosis in NAFLD. After the expression levels of miR-125b-5p, ITGA8, and RhoA were determined, liver fibrosis was evaluated in vivo and in vitro. The binding relationship of miR-125b-5p and ITGA8 was then validated. Finally, miR-125b-5p promoter methylation in NAFLD liver tissues and cells was determined. RESULTS In NAFLD clinical samples, mouse model, and cell-model, miR-125b-5p expression was reduced, while ITGA8 expression was increased. Moreover, miR-125b-5p targeted and downregulated ITGA8, leading to inhibition of the RhoA signaling pathway. In NAFLD liver tissues and cells, the CpG island in the miR-125b-5p promoter was methylated, causing epigenetic silencing of miR-125b-5p. Both miR-125b-5p silencing and ITGA8 overexpression promoted in vitro and in vivo liver fibrosis in NAFLD via activation of the RhoA signaling pathway. CONCLUSIONS Collectively, epigenetic silencing of miR-125b-5p upregulates ITGA8 expression to activate the RhoA signaling pathway, leading to liver fibrosis in NAFLD.
Collapse
Affiliation(s)
- Qingxian Cai
- Department of Hepatopathy, The Third People's Hospital of Shenzhen, the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, PR China
| | - Fengjuan Chen
- Department of Hepatopathy, Guangzhou Eighth People's Hospital, Guangzhou 510080, PR China
| | - Fen Xu
- Department of Endocrinology, The Third Affiliated Hospital of Sun Yat-sen University, GuangdongProvincial Key Laboratory of Diabetology, Guangzhou 510630, PR China
| | - Ke Wang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Ka Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Guojun Li
- Department of Hepatopathy, The Third People's Hospital of Shenzhen, the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, PR China
| | - Jun Chen
- Department of Hepatopathy, The Third People's Hospital of Shenzhen, the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, PR China
| | - Hong Deng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China.
| | - Qing He
- Department of Hepatopathy, The Third People's Hospital of Shenzhen, the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, PR China.
| |
Collapse
|
100
|
Zhang T, Yang Z, Kusumanchi P, Han S, Liangpunsakul S. Critical Role of microRNA-21 in the Pathogenesis of Liver Diseases. Front Med (Lausanne) 2020; 7:7. [PMID: 32083086 PMCID: PMC7005070 DOI: 10.3389/fmed.2020.00007] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 01/10/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs are small non-coding RNAs that range in length from 18 to 24 nucleotides. As one of the most extensively studied microRNAs, microRNA-21 (miR-21) is highly expressed in many mammalian cell types. It regulates multiple biological functions such as proliferation, differentiation, migration, and apoptosis. In this review, we summarized the mechanism of miR-21 in the pathogenesis of various liver diseases. While it is clear that miR-21 plays an important role in different types of liver diseases, its use as a diagnostic marker for specific liver disease or its therapeutic implication are not ready for prime time due to significant variability and heterogeneity in the expression of miR-21 in different types of liver diseases depending on the studies. Additional studies to further define miR-21 functions and its mechanism in association with each type of chronic liver diseases are needed before we can translate the bedside observations into clinical settings.
Collapse
Affiliation(s)
- Ting Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States.,Indiana Center for Liver Research, Department of Medicine, Indiana University, Indianapolis, IN, United States
| | - Zhihong Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States.,Indiana Center for Liver Research, Department of Medicine, Indiana University, Indianapolis, IN, United States
| | - Praveen Kusumanchi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States.,Indiana Center for Liver Research, Department of Medicine, Indiana University, Indianapolis, IN, United States
| | - Sen Han
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States.,Indiana Center for Liver Research, Department of Medicine, Indiana University, Indianapolis, IN, United States
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States.,Indiana Center for Liver Research, Department of Medicine, Indiana University, Indianapolis, IN, United States.,Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|