51
|
Lalloyer F, Mogilenko DA, Verrijken A, Haas JT, Lamazière A, Kouach M, Descat A, Caron S, Vallez E, Derudas B, Gheeraert C, Baugé E, Despres G, Dirinck E, Tailleux A, Dombrowicz D, Van Gaal L, Eeckhoute J, Lefebvre P, Goossens JF, Francque S, Staels B. Roux-en-Y gastric bypass induces hepatic transcriptomic signatures and plasma metabolite changes indicative of improved cholesterol homeostasis. J Hepatol 2023; 79:898-909. [PMID: 37230231 DOI: 10.1016/j.jhep.2023.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND & AIMS Roux-en-Y gastric bypass (RYGB), the most effective surgical procedure for weight loss, decreases obesity and ameliorates comorbidities, such as non-alcoholic fatty liver (NAFLD) and cardiovascular (CVD) diseases. Cholesterol is a major CVD risk factor and modulator of NAFLD development, and the liver tightly controls its metabolism. How RYGB surgery modulates systemic and hepatic cholesterol metabolism is still unclear. METHODS We studied the hepatic transcriptome of 26 patients with obesity but not diabetes before and 1 year after undergoing RYGB. In parallel, we measured quantitative changes in plasma cholesterol metabolites and bile acids (BAs). RESULTS RYGB surgery improved systemic cholesterol metabolism and increased plasma total and primary BA levels. Transcriptomic analysis revealed specific alterations in the liver after RYGB, with the downregulation of a module of genes implicated in inflammation and the upregulation of three modules, one associated with BA metabolism. A dedicated analysis of hepatic genes related to cholesterol homeostasis pointed towards increased biliary cholesterol elimination after RYGB, associated with enhancement of the alternate, but not the classical, BA synthesis pathway. In parallel, alterations in the expression of genes involved in cholesterol uptake and intracellular trafficking indicate improved hepatic free cholesterol handling. Finally, RYGB decreased plasma markers of cholesterol synthesis, which correlated with an improvement in liver disease status after surgery. CONCLUSIONS Our results identify specific regulatory effects of RYGB on inflammation and cholesterol metabolism. RYGB alters the hepatic transcriptome signature, likely improving liver cholesterol homeostasis. These gene regulatory effects are reflected by systemic post-surgery changes of cholesterol-related metabolites, corroborating the beneficial effects of RYGB on both hepatic and systemic cholesterol homeostasis. IMPACT AND IMPLICATIONS Roux-en-Y gastric bypass (RYGB) is a widely used bariatric surgery procedure with proven efficacy in body weight management, combatting cardiovascular disease (CVD) and non-alcoholic fatty liver disease (NAFLD). RYGB exerts many beneficial metabolic effects, by lowering plasma cholesterol and improving atherogenic dyslipidemia. Using a cohort of patients undergoing RYGB, studied before and 1 year after surgery, we analyzed how RYGB modulates hepatic and systemic cholesterol and bile acid metabolism. The results of our study provide important insights on the regulation of cholesterol homeostasis after RYGB and open avenues that could guide future monitoring and treatment strategies targeting CVD and NAFLD in obesity.
Collapse
Affiliation(s)
- Fanny Lalloyer
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Denis A Mogilenko
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France; Department of Medicine, Department of Pathology, Microbiology and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Ann Verrijken
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610, Wilrijk, Antwerp, Belgium; Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, 2650, Edegem, Antwerp, Belgium
| | - Joel T Haas
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Antonin Lamazière
- Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint Antoine, Clinical Metabolomic Department, Sorbonne Université, Inserm, F-75012, Paris, France
| | - Mostafa Kouach
- University of Lille, CHU Lille, EA 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000, Lille, France
| | - Amandine Descat
- University of Lille, CHU Lille, EA 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000, Lille, France
| | - Sandrine Caron
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Emmanuelle Vallez
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Bruno Derudas
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Céline Gheeraert
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Eric Baugé
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Gaëtan Despres
- Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint Antoine, Clinical Metabolomic Department, Sorbonne Université, Inserm, F-75012, Paris, France
| | - Eveline Dirinck
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610, Wilrijk, Antwerp, Belgium; Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, 2650, Edegem, Antwerp, Belgium
| | - Anne Tailleux
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - David Dombrowicz
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Luc Van Gaal
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610, Wilrijk, Antwerp, Belgium; Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, 2650, Edegem, Antwerp, Belgium
| | - Jerôme Eeckhoute
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Philippe Lefebvre
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Jean-François Goossens
- University of Lille, CHU Lille, EA 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000, Lille, France
| | - Sven Francque
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610, Wilrijk, Antwerp, Belgium; Department of Gastroenterology and Hepatology, Antwerp University Hospital, ERN RARE-LIVER, 2650, Edegem, Antwerp, Belgium
| | - Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France.
| |
Collapse
|
52
|
Camp KK, Coleman MF, McFarlane TL, Doerstling SS, Khatib SA, Rezeli ET, Lewis AG, Pfeil AJ, Smith LA, Bowers LW, Fouladi F, Gong W, Glenny EM, Parker JS, Milne GL, Carroll IM, Fodor AA, Seeley RJ, Hursting SD. Calorie restriction outperforms bariatric surgery in a murine model of obesity and triple-negative breast cancer. JCI Insight 2023; 8:e172868. [PMID: 37698918 PMCID: PMC10629811 DOI: 10.1172/jci.insight.172868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Obesity promotes triple-negative breast cancer (TNBC), and effective interventions are urgently needed to break the obesity-TNBC link. Epidemiologic studies indicate that bariatric surgery reduces TNBC risk, while evidence is limited or conflicted for weight loss via low-fat diet (LFD) or calorie restriction (CR). Using a murine model of obesity-driven TNBC, we compared the antitumor effects of vertical sleeve gastrectomy (VSG) with LFD, chronic CR, and intermittent CR. Each intervention generated weight and fat loss and suppressed tumor growth relative to obese mice (greatest suppression with CR). VSG and CR regimens exerted both similar and unique effects, as assessed using multiomics approaches, in reversing obesity-associated transcript, epigenetics, secretome, and microbiota changes and restoring antitumor immunity. Thus, in a murine model of TNBC, bariatric surgery and CR each reverse obesity-driven tumor growth via shared and distinct antitumor mechanisms, and CR is superior to VSG in reversing obesity's procancer effects.
Collapse
Affiliation(s)
- Kristina K. Camp
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael F. Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Tori L. McFarlane
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Steven S. Doerstling
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Subreen A. Khatib
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Erika T. Rezeli
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alfor G. Lewis
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexander J. Pfeil
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Laura A. Smith
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Laura W. Bowers
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Farnaz Fouladi
- College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Weida Gong
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Elaine M. Glenny
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joel S. Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ginger L. Milne
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Ian M. Carroll
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anthony A. Fodor
- College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Randy J. Seeley
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephen D. Hursting
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA
| |
Collapse
|
53
|
Jiang T, Yang Z, Zhang Y, Zhang W, Doherty M, Li H, Yang T, Yang Y, Li J, Wang Y, Zeng C, Lei G, Wei J. Dysbiosis of gut microbiota, a potential mediator of bile acid compositions, and prevalence of hand synovitis: a community-based study. Rheumatology (Oxford) 2023; 62:3179-3187. [PMID: 36692134 DOI: 10.1093/rheumatology/kead042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES Hand synovitis, a potentially modifiable pathological lesion, is common and associated with pain and hand OA; nevertheless, its pathogenesis remains uncertain. This study investigated the relationship between gut microbiota dysbiosis and hand synovitis prevalence and evaluated whether bile acids mediate the association. METHODS Participants were derived from a community-based observational study. Synovitis in each hand joint was assessed using US. Gut microbiota was evaluated using 16S ribosomal RNA amplicon sequencing on faeces, and plasma bile acids were measured by HPLC mass spectrometry. We examined the relationship between gut microbiota dysbiosis and hand synovitis prevalence, as well as the extent to which bile acids were involved in the association. RESULTS Among 1336 participants (mean age: 63.2 years; women: 58.8%), 18.3% had prevalent hand synovitis (unilateral in 13.6% and bilateral in 4.7%). β-diversity, but not α-diversity, of gut microbiota was significantly associated with prevalent hand synovitis. Higher relative abundance of the genus Prevotella and lower relative abundance of the genus Blautia were significantly associated with the prevalence of hand synovitis. Similar associations were also observed for laterality and the number of joints affected by hand synovitis. The association between Prevotella and hand synovitis was partially mediated through its effect on tauroursodeoxycholic acid and glycoursodeoxycholic acid, the mediation proportions being 25.7% and 21.6%, respectively. CONCLUSION Our findings suggest that gut microbiota dysbiosis is associated with the prevalence of hand synovitis. Such an association appears to be partially mediated by plasma bile acids.
Collapse
Affiliation(s)
- Ting Jiang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Department of Ultrasonography, Xiangya Hospital, Central South University, Changsha, China
- Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- Pain Centre Versus Arthritis UK, Nottingham, UK
| | - Zidan Yang
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
| | - Yuqing Zhang
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA
- The Mongan Institute, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Weiya Zhang
- Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- Pain Centre Versus Arthritis UK, Nottingham, UK
| | - Michael Doherty
- Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- Pain Centre Versus Arthritis UK, Nottingham, UK
| | - Hui Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
| | - Tuo Yang
- Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- Pain Centre Versus Arthritis UK, Nottingham, UK
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanheng Yang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jiatian Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Yuqing Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Chao Zeng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Guanghua Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Wei
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
54
|
Zidane M, Theurich S, Schlaak M. Malignes Melanom und Adipositas: eine Übersichtsarbeit. AKTUELLE DERMATOLOGIE 2023; 49:390-398. [DOI: 10.1055/a-2086-2939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Zusammenfassung
Einleitung Die Inzidenz von Adipositas nimmt weltweit stetig zu. Übergewicht und Adipositas werden als mögliche Risikofaktoren für verschiedene Krebserkrankungen, einschließlich des malignen Melanoms, diskutiert. Dieser Review stellt die Evidenz zu der Assoziation zwischen Adipositas und dem malignen Melanom dar.
Methodik Selektive Literaturrecherche.
Ergebnisse Obwohl verschiedene Erklärungsansätze für eine mögliche Assoziation von Adipositas und dem malignen Melanom existieren, sind diese nicht vollständig bekannt und weiterhin Gegenstand der Forschung. Die Evidenz zur Assoziation zwischen Adipositas und Melanom-Outcomes für Patienten ohne Systemtherapie ist gering. Für Patienten mit Systemtherapie gibt es Evidenz, die einen protektiven Effekt unter Immuntherapien und zielgerichteten Therapien beschreibt.
Schlussfolgerung Insgesamt gibt es zu der Assoziation zwischen dem malignen Melanom und Adipositas nicht ausreichend Evidenz, um zu schlussfolgern, ob Adipositas einen unabhängigen protektiven Effekt hat oder ein Risikofaktor für die Entstehung von Melanomen darstellt. Weitere Forschung ist erforderlich, um das Wissen über diesen möglichen Zusammenhang zu vertiefen.
Collapse
Affiliation(s)
- Miriam Zidane
- Charité – Universitätsmedizin Berlin, Klinik für Dermatologie, Venerologie und Allergologie, Berlin, Deutschland, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin
| | - Sebastian Theurich
- Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Deutschland
- LMU München, Cancer and Immunometabolism Research Group, Gene Center, München, Deutschland
- LMU Klinikum, Medizinische Klinik und Poliklinik III, München, Deutschland
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partnerstandort München, Deutschland
| | - Max Schlaak
- Charité – Universitätsmedizin Berlin, Klinik für Dermatologie, Venerologie und Allergologie, Berlin, Deutschland, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partnerstandort Berlin, Deutschland
- Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Deutschland
| |
Collapse
|
55
|
Yin M, Wang Y, Han M, Liang R, Li S, Wang G, Gang X. Mechanisms of bariatric surgery for weight loss and diabetes remission. J Diabetes 2023; 15:736-752. [PMID: 37442561 PMCID: PMC10509523 DOI: 10.1111/1753-0407.13443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Obesity and type 2 diabetes(T2D) lead to defects in intestinal hormones secretion, abnormalities in the composition of bile acids (BAs), increased systemic and adipose tissue inflammation, defects of branched-chain amino acids (BCAAs) catabolism, and dysbiosis of gut microbiota. Bariatric surgery (BS) has been shown to be highly effective in the treatment of obesity and T2D, which allows us to view BS not simply as weight-loss surgery but as a means of alleviating obesity and its comorbidities, especially T2D. In recent years, accumulating studies have focused on the mechanisms of BS to find out which metabolic parameters are affected by BS through which pathways, such as which hormones and inflammatory processes are altered. The literatures are saturated with the role of intestinal hormones and the gut-brain axis formed by their interaction with neural networks in the remission of obesity and T2D following BS. In addition, BAs, gut microbiota and other factors are also involved in these benefits after BS. The interaction of these factors makes the mechanisms of metabolic improvement induced by BS more complicated. To date, we do not fully understand the exact mechanisms of the metabolic alterations induced by BS and its impact on the disease process of T2D itself. This review summarizes the changes of intestinal hormones, BAs, BCAAs, gut microbiota, signaling proteins, growth differentiation factor 15, exosomes, adipose tissue, brain function, and food preferences after BS, so as to fully understand the actual working mechanisms of BS and provide nonsurgical therapeutic strategies for obesity and T2D.
Collapse
Affiliation(s)
- Mengsha Yin
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| | - Yao Wang
- Department of OrthopedicsThe Second Hospital Jilin UniversityChangchunChina
| | - Mingyue Han
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| | - Ruishuang Liang
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| | - Shanshan Li
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| | - Guixia Wang
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| | - Xiaokun Gang
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
56
|
Attaye I, Lassen PB, Adriouch S, Steinbach E, Patiño-Navarrete R, Davids M, Alili R, Jacques F, Benzeguir S, Belda E, Nemet I, Anderson JT, Alexandre-Heymann L, Greyling A, Larger E, Hazen SL, van Oppenraaij SL, Tremaroli V, Beck K, Bergh PO, Bäckhed F, ten Brincke SP, Herrema H, Groen AK, Pinto-Sietsma SJ, Clément K, Nieuwdorp M. Protein supplementation changes gut microbial diversity and derived metabolites in subjects with type 2 diabetes. iScience 2023; 26:107471. [PMID: 37599833 PMCID: PMC10432813 DOI: 10.1016/j.isci.2023.107471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/05/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
High-protein diets are promoted for individuals with type 2 diabetes (T2D). However, effects of dietary protein interventions on (gut-derived) metabolites in T2D remains understudied. We therefore performed a multi-center, randomized-controlled, isocaloric protein intervention with 151 participants following either 12-week high-protein (HP; 30Energy %, N = 78) vs. low-protein (LP; 10 Energy%, N = 73) diet. Primary objectives were dietary effects on glycemic control which were determined via glycemic excursions, continuous glucose monitors and HbA1c. Secondary objectives were impact of diet on gut microbiota composition and -derived metabolites which were determined by shotgun-metagenomics and mass spectrometry. Analyses were performed using delta changes adjusting for center, baseline, and kidney function when appropriate. This study found that a short-term 12-week isocaloric protein modulation does not affect glycemic parameters or weight in metformin-treated T2D. However, the HP diet slightly worsened kidney function, increased alpha-diversity, and production of potentially harmful microbiota-dependent metabolites, which may affect host metabolism upon prolonged exposure.
Collapse
Affiliation(s)
- Ilias Attaye
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Pierre Bel Lassen
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Paris, France
- Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Nutrition Department, Paris, France
| | - Solia Adriouch
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Paris, France
| | - Emilie Steinbach
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Paris, France
| | - Rafael Patiño-Navarrete
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Paris, France
| | - Mark Davids
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Rohia Alili
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Paris, France
| | - Flavien Jacques
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Paris, France
| | - Sara Benzeguir
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Paris, France
| | - Eugeni Belda
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Paris, France
| | - Ina Nemet
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland, OH, USA
- Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH, USA
| | - James T. Anderson
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland, OH, USA
- Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH, USA
| | | | - Arno Greyling
- Unilever Foods Innovation Centre, Wageningen, the Netherlands
| | - Etienne Larger
- Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Nutrition Department, Paris, France
| | - Stanley L. Hazen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland, OH, USA
- Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH, USA
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland, OH, USA
| | - Sophie L. van Oppenraaij
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Valentina Tremaroli
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Katharina Beck
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Per-Olof Bergh
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Fredrik Bäckhed
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, 413 45 Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden
| | - Suzan P.M. ten Brincke
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Hilde Herrema
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Albert K. Groen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Sara-Joan Pinto-Sietsma
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Karine Clément
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Paris, France
- Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Nutrition Department, Paris, France
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| |
Collapse
|
57
|
Martínez-Sánchez MA, Balaguer-Román A, Fernández-Ruiz VE, Almansa-Saura S, García-Zafra V, Ferrer-Gómez M, Frutos MD, Queipo-Ortuño MI, Ruiz-Alcaraz AJ, Núñez-Sánchez MÁ, Ramos-Molina B. Plasma short-chain fatty acid changes after bariatric surgery in patients with severe obesity. Surg Obes Relat Dis 2023; 19:727-734. [PMID: 36842931 DOI: 10.1016/j.soard.2022.12.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/25/2022] [Accepted: 12/01/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Obesity has reached epidemic dimensions in recent decades. Bariatric surgery (BS) is one of the most effective interventions for weight loss and metabolic improvement in patients with obesity. Short-chain fatty acids (SCFA) are gut microbiota-derived metabolites with a key role in body weight control and insulin sensitivity. Although BS is known to induce significant changes in the gut microbiota composition, its impact on the circulating levels of certain metabolites produced by the gut microbiota such as SCFA remains poorly understood. OBJECTIVE To determine the impact of BS on the circulating SCFA levels in patients with severe obesity. SETTING University hospital. METHODS An observational, prospective study was performed on 51 patients undergoing Roux-en-Y gastric bypass. Plasma samples were collected at baseline (1 day before surgery) and at 6 and 12 months after BS. Plasma SCFA levels were determined by liquid chromatography-mass spectrometry. RESULTS The results revealed significant changes in the circulating levels of SCFA after BS. A marked increase in propionate, butyrate, isobutyrate, and isovalerate levels and a decrease in acetate, valerate, hexanoate, and heptanoate levels were observed 12 months after BS. Furthermore, the changes in the levels of propionate, butyrate, and isobutyrate negatively correlated with changes in body mass index, while those of isobutyrate correlated negatively with changes in the homeostatic model assessment for insulin resistance index. CONCLUSION These results suggest that propionate, butyrate, and isobutyrate levels could be related to weight loss and improved insulin sensitivity in patients with severe obesity after BS.
Collapse
Affiliation(s)
- María A Martínez-Sánchez
- Obesity and Metabolism Research Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Andrés Balaguer-Román
- Obesity and Metabolism Research Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain; Department of General and Digestive System Surgery, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Virginia E Fernández-Ruiz
- Obesity and Metabolism Research Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain; Department of Endocrinology and Nutrition, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Sonia Almansa-Saura
- Department of General and Digestive System Surgery, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Victoria García-Zafra
- Obesity and Metabolism Research Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain; Department of Endocrinology and Nutrition, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Mercedes Ferrer-Gómez
- Obesity and Metabolism Research Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain; Department of Endocrinology and Nutrition, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - María D Frutos
- Department of General and Digestive System Surgery, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - María I Queipo-Ortuño
- Department of Medical Oncology, Virgen de la Victoria and Regional University Hospitals-IBIMA, UMA-CIMES, Málaga, Spain; Department of Surgical Specialties, Biochemistry and Immunology, Faculty of Medicine, University of Málaga, Málaga, Spain
| | - Antonio J Ruiz-Alcaraz
- Department of Biochemistry, Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - María Á Núñez-Sánchez
- Obesity and Metabolism Research Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain.
| | - Bruno Ramos-Molina
- Obesity and Metabolism Research Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| |
Collapse
|
58
|
Becetti I, Bwenyi EL, de Araujo IE, Ard J, Cryan JF, Farooqi IS, Ferrario CR, Gluck ME, Holsen LM, Kenny PJ, Lawson EA, Lowell BB, Schur EA, Stanley TL, Tavakkoli A, Grinspoon SK, Singhal V. The Neurobiology of Eating Behavior in Obesity: Mechanisms and Therapeutic Targets: A Report from the 23rd Annual Harvard Nutrition Obesity Symposium. Am J Clin Nutr 2023; 118:314-328. [PMID: 37149092 PMCID: PMC10375463 DOI: 10.1016/j.ajcnut.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/03/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023] Open
Abstract
Obesity is increasing at an alarming rate. The effectiveness of currently available strategies for the treatment of obesity (including pharmacologic, surgical, and behavioral interventions) is limited. Understanding the neurobiology of appetite and the important drivers of energy intake (EI) can lead to the development of more effective strategies for the prevention and treatment of obesity. Appetite regulation is complex and is influenced by genetic, social, and environmental factors. It is intricately regulated by a complex interplay of endocrine, gastrointestinal, and neural systems. Hormonal and neural signals generated in response to the energy state of the organism and the quality of food eaten are communicated by paracrine, endocrine, and gastrointestinal signals to the nervous system. The central nervous system integrates homeostatic and hedonic signals to regulate appetite. Although there has been an enormous amount of research over many decades regarding the regulation of EI and body weight, research is only now yielding potentially effective treatment strategies for obesity. The purpose of this article is to summarize the key findings presented in June 2022 at the 23rd annual Harvard Nutrition Obesity Symposium entitled "The Neurobiology of Eating Behavior in Obesity: Mechanisms and Therapeutic Targets." Findings presented at the symposium, sponsored by NIH P30 Nutrition Obesity Research Center at Harvard, enhance our current understanding of appetite biology, including innovative techniques used to assess and systematically manipulate critical hedonic processes, which will shape future research and the development of therapeutics for obesity prevention and treatment.
Collapse
Affiliation(s)
- Imen Becetti
- Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, United States.
| | - Esther L Bwenyi
- Metabolism Unit, Massachusetts General Hospital, Boston, MA, United States; Nutrition Obesity Research Center at Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Ivan E de Araujo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Jamy Ard
- Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Bariatric and Weight Management Center, Wake Forest Baptist Health, Winston-Salem, NC, United States; Center on Diabetes, Obesity, and Metabolism, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Hypertension and Vascular Research Center, Cardiovascular Sciences Center, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Maya Angelou Center for Healthy Equity, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ismaa Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and National Institute for Health and Care Research (NIHR) Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom; Wellcome-Medical Research Council (MRC) Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom; Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Carrie R Ferrario
- Department of Pharmacology, Psychology Department (Biopsychology Area), University of Michigan, Ann Arbor, MI, United States
| | - Marci E Gluck
- National Institutes of Health, Phoenix, AZ, United States; National Institute of Diabetes and Digestive and Kidney Disease, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, Phoenix, AZ, United States
| | - Laura M Holsen
- Harvard Medical School, Boston, MA, United States; Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States; Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Elizabeth A Lawson
- Nutrition Obesity Research Center at Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States; Department of Medicine, Harvard Medical School, Boston, MA, United States; Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, United States
| | - Bradford B Lowell
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Ellen A Schur
- Division of General Internal Medicine, University of Washington, Seattle, WA, United States; Univeristy of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA, United States; Univeristy of Washington Nutrition and Obesity Research Center, University of Washington, Seattle, WA, United States; Clinical and Translational Research Services Core, University of Washington, Seattle, WA, United States
| | - Takara L Stanley
- Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, United States; Metabolism Unit, Massachusetts General Hospital, Boston, MA, United States; Nutrition Obesity Research Center at Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Ali Tavakkoli
- Division of General and Gastrointestinal (GI) Surgery, Center for Weight Management and Wellness, Advanced Minimally Invasive Fellowship, Harvard Medical School, Boston, MA, United States
| | - Steven K Grinspoon
- Metabolism Unit, Massachusetts General Hospital, Boston, MA, United States; Nutrition Obesity Research Center at Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Vibha Singhal
- Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Pediatric Endocrinology and Obesity Medicine, Massachusetts General Hospital, Boston, MA, United States; Pediatric Program MGH Weight Center, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
59
|
Pepe RB, Lottenberg AM, Fujiwara CTH, Beyruti M, Cintra DE, Machado RM, Rodrigues A, Jensen NSO, Caldas APS, Fernandes AE, Rossoni C, Mattos F, Motarelli JHF, Bressan J, Saldanha J, Beda LMM, Lavrador MSF, Del Bosco M, Cruz P, Correia PE, Maximino P, Pereira S, Faria SL, Piovacari SMF. Position statement on nutrition therapy for overweight and obesity: nutrition department of the Brazilian association for the study of obesity and metabolic syndrome (ABESO-2022). Diabetol Metab Syndr 2023; 15:124. [PMID: 37296485 PMCID: PMC10251611 DOI: 10.1186/s13098-023-01037-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 03/23/2023] [Indexed: 06/12/2023] Open
Abstract
Obesity is a chronic disease resulting from multifactorial causes mainly related to lifestyle (sedentary lifestyle, inadequate eating habits) and to other conditions such as genetic, hereditary, psychological, cultural, and ethnic factors. The weight loss process is slow and complex, and involves lifestyle changes with an emphasis on nutritional therapy, physical activity practice, psychological interventions, and pharmacological or surgical treatment. Because the management of obesity is a long-term process, it is essential that the nutritional treatment contributes to the maintenance of the individual's global health. The main diet-related causes associated with excess weight are the high consumption of ultraprocessed foods, which are high in fats, sugars, and have high energy density; increased portion sizes; and low intake of fruits, vegetables, and grains. In addition, some situations negatively interfere with the weight loss process, such as fad diets that involve the belief in superfoods, the use of teas and phytotherapics, or even the avoidance of certain food groups, as has currently been the case for foods that are sources of carbohydrates. Individuals with obesity are often exposed to fad diets and, on a recurring basis, adhere to proposals with promises of quick solutions, which are not supported by the scientific literature. The adoption of a dietary pattern combining foods such as grains, lean meats, low-fat dairy, fruits, and vegetables, associated with an energy deficit, is the nutritional treatment recommended by the main international guidelines. Moreover, an emphasis on behavioral aspects including motivational interviewing and the encouragement for the individual to develop skills will contribute to achieve and maintain a healthy weight. Therefore, this Position Statement was prepared based on the analysis of the main randomized controlled studies and meta-analyses that tested different nutrition interventions for weight loss. Topics in the frontier of knowledge such as gut microbiota, inflammation, and nutritional genomics, as well as the processes involved in weight regain, were included in this document. This Position Statement was prepared by the Nutrition Department of the Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), with the collaboration of dietitians from research and clinical fields with an emphasis on strategies for weight loss.
Collapse
Affiliation(s)
- Renata Bressan Pepe
- Grupo de Obesidade e Sindrome Metabolica, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP Brazil
| | - Ana Maria Lottenberg
- Laboratório de Lipides (LIM10), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP Brazil
- Nutrition Department of the Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), Rua Mato Grosso 306 – cj 1711, Sao Paulo, SP 01239-040 Brazil
| | - Clarissa Tamie Hiwatashi Fujiwara
- Grupo de Obesidade e Sindrome Metabolica, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP Brazil
| | - Mônica Beyruti
- Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), São Paulo, SP Brazil
| | - Dennys Esper Cintra
- Centro de Estudos em Lipídios e Nutrigenômica – CELN – University of Campinas, Campinas, SP Brazil
| | - Roberta Marcondes Machado
- Liga Acadêmica de Controle de Diabetes do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP Brazil
| | - Alessandra Rodrigues
- Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), São Paulo, SP Brazil
| | - Natália Sanchez Oliveira Jensen
- Liga Acadêmica de Controle de Diabetes do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP Brazil
| | | | - Ariana Ester Fernandes
- Grupo de Obesidade e Sindrome Metabolica, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP Brazil
| | - Carina Rossoni
- Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Fernanda Mattos
- Programa de Obesidade e Cirurgia Bariátrica do Hospital Universitário Clementino Fraga Filho da UFRJ, Rio de Janeiro, RJ Brazil
| | - João Henrique Fabiano Motarelli
- Núcleo de Estudos e Extensão em Comportamento Alimentar e Obesidade (NEPOCA) da Universidade de São Paulo - FMRP/USP, Ribeirão Preto, Brazil
| | - Josefina Bressan
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | | | - Lis Mie Masuzawa Beda
- Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), São Paulo, SP Brazil
| | - Maria Sílvia Ferrari Lavrador
- Liga Acadêmica de Controle de Diabetes do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP Brazil
| | - Mariana Del Bosco
- Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), São Paulo, SP Brazil
| | - Patrícia Cruz
- Grupo de Obesidade e Sindrome Metabolica, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP Brazil
| | | | - Priscila Maximino
- Instituto PENSI - Fundação José Luiz Egydio Setúbal, Instituto Pensi, Fundação José Luiz Egydio Setúbal, Hospital Infantil Sabará, São Paulo, SP Brazil
| | - Silvia Pereira
- Núcleo de Saúde Alimentar da Sociedade Brasileira de Cirurgia Bariátrica e Metabólica, São Paulo, Brazil
| | | | | |
Collapse
|
60
|
Garcia MM, Romero AS, Merkley SD, Meyer-Hagen JL, Forbes C, Hayek EE, Sciezka DP, Templeton R, Gonzalez-Estrella J, Jin Y, Gu H, Benavidez A, Hunter RP, Lucas S, Herbert G, Kim KJ, Cui JY, Gullapalli R, In JG, Campen MJ, Castillo EF. In Vivo Tissue Distribution of Microplastics and Systemic Metabolomic Alterations After Gastrointestinal Exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.542598. [PMID: 37398080 PMCID: PMC10312509 DOI: 10.1101/2023.06.02.542598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Global plastic use has consistently increased over the past century with several different types of plastics now being produced. Much of these plastics end up in oceans or landfills leading to a substantial accumulation of plastics in the environment. Plastic debris slowly degrades into microplastics (MPs) that can ultimately be inhaled or ingested by both animals and humans. A growing body of evidence indicates that MPs can cross the gut barrier and enter into the lymphatic and systemic circulation leading to accumulation in tissues such as the lungs, liver, kidney, and brain. The impacts of mixed MPs exposure on tissue function through metabolism remains largely unexplored. To investigate the impact of ingested MPs on target metabolomic pathways, mice were subjected to either polystyrene microspheres or a mixed plastics (5 µm) exposure consisting of polystyrene, polyethylene and the biodegradability and biocompatible plastic, poly-(lactic-co-glycolic acid). Exposures were performed twice a week for four weeks at a dose of either 0, 2, or 4 mg/week via oral gastric gavage. Our findings demonstrate that, in mice, ingested MPs can pass through the gut barrier, be translocated through the systemic circulation, and accumulate in distant tissues including the brain, liver, and kidney. Additionally, we report on the metabolomic changes that occur in the colon, liver and brain which show differential responses that are dependent on dose and type of MPs exposure. Lastly, our study provides proof of concept for identifying metabolomic alterations associated with MPs exposure and adds insight into the potential health risks that mixed MPs contamination may pose to humans.
Collapse
Affiliation(s)
- Marcus M. Garcia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Aaron S. Romero
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Seth D. Merkley
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Jewel L. Meyer-Hagen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Charles Forbes
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Eliane El Hayek
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - David P. Sciezka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Rachel Templeton
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
- University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Angelica Benavidez
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM, USA
| | - Russell P. Hunter
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Selita Lucas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Guy Herbert
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Kyle Joohyung Kim
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle WA, USA
| | - Julia Yue Cui
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle WA, USA
| | - Rama Gullapalli
- Department of Pathology, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Julie G. In
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Eliseo F. Castillo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
61
|
Ismael S, Vaz C, Durão C, Silvestre MP, Calhau C, Teixeira D, Marques C. The impact of Hafnia alvei HA4597™ on weight loss and glycaemic control after bariatric surgery - study protocol for a triple-blinded, blocked randomized, 12-month, parallel-group, placebo-controlled clinical trial. Trials 2023; 24:362. [PMID: 37248499 PMCID: PMC10226263 DOI: 10.1186/s13063-023-07383-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/16/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Subjects with obesity exhibit changes in gut microbiota composition and function (i.e. dysbiosis) that contribute to metabolic dysfunction, including appetite impairment. Although bariatric surgery is an effective treatment for obesity with a great impact on weight loss, some subjects show weight regain due to increased energy intake after the surgery. This surgery involves gut microbiota changes that promote appetite control, but it seems insufficient to completely restore the obesity-associated dysbiosis - a possible contributor for weight regain. Thus, modulating gut microbiota with probiotics that could improve appetite regulation as a complementary approach to post-operative diet (i.e. Hafnia alvei HA4597™), may accentuate post-surgery weight loss and insulin sensitivity. METHODS This is a protocol of a triple-blinded, blocked-randomized, parallel-group, placebo-controlled clinical trial designed to determine the effect of Hafnia alvei HA4597™ supplementation on weight loss and glycaemic control 1 year after bariatric surgery. Patients of Hospital CUF Tejo, Lisbon, that undergo Roux-en-Y gastric bypass are invited to participate in this study. Men and women between 18 and 65 years old, with a BMI ≥ 35 kg/m2 and at least one severe obesity-related comorbidity, or with a BMI ≥ 40 kg/m2, and who are willing to take 2 capsules of Hafnia alvei HA4597™ probiotic supplements (equivalent to 5 × 107 CFU) vs. placebo per day for 90 days are included in this study. Assessments are carried out at baseline, 3, 6, 9, and 12 months after the surgery. Loss of weight in excess and glycated haemoglobin are considered primary outcomes. In addition, changes in other metabolic and inflammatory outcomes, gut microbiota composition and metabolites, as well as gastrointestinal quality of life are also being assessed during the trial. DISCUSSION The evidence obtained in this study will provide relevant information regarding the profile of the intestinal microbiota of individuals with severe obesity and the identification of the risk/benefit ratio of the use of Hafnia alvei HA4597™ as an adjunctive treatment in the maintenance of metabolic and weight control one year after the surgical intervention. TRIAL REGISTRATION ClinicalTrials.gov NCT05170867. Registered on 28 December 2021.
Collapse
Affiliation(s)
- Shámila Ismael
- Nutrition & Metabolism, CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Lisbon, Portugal
- Nutition & Metabolism, CINTESIS@RISE, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Carlos Vaz
- Obesity and Metabolic Surgery Unit, Hospital CUF Tejo, Lisbon, Portugal
| | - Catarina Durão
- Obesity and Metabolic Surgery Unit, Hospital CUF Tejo, Lisbon, Portugal
- EPIUnit - Institute of Public Health, Universidade Do Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Marta P Silvestre
- Nutition & Metabolism, CINTESIS@RISE, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Conceição Calhau
- Nutition & Metabolism, CINTESIS@RISE, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Lisbon, Portugal
- Unidade Universitária Lifestyle Medicine José de Mello Saúde By NOVA Medical School, 1169-056, Lisbon, Portugal
| | - Diana Teixeira
- Nutrition & Metabolism, CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Lisbon, Portugal.
- Nutition & Metabolism, CINTESIS@RISE, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Lisbon, Portugal.
| | - Cláudia Marques
- Nutition & Metabolism, CINTESIS@RISE, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Lisbon, Portugal.
| |
Collapse
|
62
|
Puljiz Z, Kumric M, Vrdoljak J, Martinovic D, Ticinovic Kurir T, Krnic MO, Urlic H, Puljiz Z, Zucko J, Dumanic P, Mikolasevic I, Bozic J. Obesity, Gut Microbiota, and Metabolome: From Pathophysiology to Nutritional Interventions. Nutrients 2023; 15:2236. [PMID: 37242119 PMCID: PMC10223302 DOI: 10.3390/nu15102236] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/29/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Obesity is a disorder identified by an inappropriate increase in weight in relation to height and is considered by many international health institutions to be a major pandemic of the 21st century. The gut microbial ecosystem impacts obesity in multiple ways that yield downstream metabolic consequences, such as affecting systemic inflammation, immune response, and energy harvest, but also the gut-host interface. Metabolomics, a systematized study of low-molecular-weight molecules that take part in metabolic pathways, represents a serviceable method for elucidation of the crosstalk between hosts' metabolism and gut microbiota. In the present review, we confer about clinical and preclinical studies exploring the association of obesity and related metabolic disorders with various gut microbiome profiles, and the effects of several dietary interventions on gut microbiome composition and the metabolome. It is well established that various nutritional interventions may serve as an efficient therapeutic approach to support weight loss in obese individuals, yet no agreement exists in regard to the most effective dietary protocol, both in the short and long term. However, metabolite profiling and the gut microbiota composition might represent an opportunity to methodically establish predictors for obesity control that are relatively simple to measure in comparison to traditional approaches, and it may also present a tool to determine the optimal nutritional intervention to ameliorate obesity in an individual. Nevertheless, a lack of adequately powered randomized trials impedes the application of observations to clinical practice.
Collapse
Affiliation(s)
- Zivana Puljiz
- Laboratory for Bioinformatics, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia (J.Z.)
| | - Marko Kumric
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (D.M.); (T.T.K.)
| | - Josip Vrdoljak
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (D.M.); (T.T.K.)
| | - Dinko Martinovic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (D.M.); (T.T.K.)
| | - Tina Ticinovic Kurir
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (D.M.); (T.T.K.)
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Hospital of Split, 21000 Split, Croatia
| | - Marin Ozren Krnic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (D.M.); (T.T.K.)
| | - Hrvoje Urlic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (D.M.); (T.T.K.)
| | - Zeljko Puljiz
- Department of Internal Medicine, University of Split School of Medicine, 21000 Split, Croatia
- Department of Gastroenterology and Hepatology, University Hospital of Split, 21000 Split, Croatia
| | - Jurica Zucko
- Laboratory for Bioinformatics, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia (J.Z.)
| | - Petra Dumanic
- Medical Laboratory Diagnostic Division, University Hospital of Split, 21000 Split, Croatia
| | - Ivana Mikolasevic
- Department of Gastroenterology and Hepatology, University Hospital Centre Rijeka, School of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (D.M.); (T.T.K.)
| |
Collapse
|
63
|
Wu H, Liu Y, Wang J, Chen S, Xie L, Wu X. Schizophrenia and obesity: May the gut microbiota serve as a link for the pathogenesis? IMETA 2023; 2:e99. [PMID: 38868440 PMCID: PMC10989809 DOI: 10.1002/imt2.99] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 06/14/2024]
Abstract
Schizophrenia (SZ) places a tremendous burden on public health as one of the leading causes of disability and death. SZ patients are more prone to developing obesity than the general population from the clinical practice. The development of obesity frequently causes poor psychiatric outcomes in SZ patients. In turn, maternal obesity during pregnancy has been associated with an increased risk of SZ in offspring, suggesting that these two disorders may have shared neuropathological mechanisms. The gut microbiota is well known to serve as a major regulator of bidirectional interactions between the central nervous system and the gastrointestinal tract. It also plays a critical role in maintaining physical and mental health in humans. Recent studies have shown that the dysbiosis of gut microbiota is intimately associated with the onset of SZ and obesity through shared pathophysiological mechanisms, particularly the stimulation of immune inflammation. Therefore, gut microbiota may serve as a common biological basis for the etiology in both SZ and obesity, and the perturbed gut-brain axis may therefore account for the high prevalence of obesity in patients with SZ. On the basis of these findings, this review provides updated perspectives and intervention approaches on the etiology, prevention, and management of obesity in SZ patients by summarizing the recent findings on the role of gut microbiota in the pathogenesis of SZ and obesity, highlighting the role of gut-derived inflammation.
Collapse
Affiliation(s)
- Hui Wu
- Psychiatry DepartmentThird Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Yaxi Liu
- Psychiatry DepartmentThird Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Jie Wang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of MicrobiologyGuangdong Academy of SciencesGuangzhouChina
- Department of Life SciencesImperial College LondonLondonUnited Kingdom
| | - Shengyun Chen
- Psychiatry DepartmentThird Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of MicrobiologyGuangdong Academy of SciencesGuangzhouChina
| | - Xiaoli Wu
- Psychiatry DepartmentThird Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
64
|
Ahmad AF, Caparrós-Martín JA, Lee S, O'Gara F, Yeap BB, Green DJ, Ballal M, Ward NC, Dwivedi G. Gut Microbiome and Associated Metabolites Following Bariatric Surgery and Comparison to Healthy Controls. Microorganisms 2023; 11:1126. [PMID: 37317100 DOI: 10.3390/microorganisms11051126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 06/16/2023] Open
Abstract
The gut microbiome plays a significant role in regulating the host's ability to store fat, which impacts the development of obesity. This observational cohort study recruited obese adult men and women scheduled to undergo sleeve gastrectomy and followed up with them 6 months post-surgery to analyse their microbial taxonomic profiles and associated metabolites in comparison to a healthy control group. There were no significant differences in the gut bacterial diversity between the bariatric patients at baseline and at follow-up or between the bariatric patients and the cohort of healthy controls. However, there were differential abundances in specific bacterial groups between the two cohorts. The bariatric patients were observed to have significant enrichment in Granulicatella at baseline and Streptococcus and Actinomyces at follow-up compared to the healthy controls. Several operational taxonomic units assigned to commensal Clostridia were significantly reduced in the stool of bariatric patients both at baseline and follow-up. When compared to a healthy cohort, the plasma levels of the short chain fatty acid acetate were significantly higher in the bariatric surgery group at baseline. This remained significant when adjusted for age and sex (p = 0.013). The levels of soluble CD14 and CD163 were significantly higher (p = 0.0432 and p = 0.0067, respectively) in the bariatric surgery patients compared to the healthy controls at baseline. The present study demonstrated that there are alterations in the abundance of certain bacterial groups in the gut microbiome of obese patients prior to bariatric surgery compared to healthy individuals, which persist post-sleeve gastrectomy.
Collapse
Affiliation(s)
- Adilah F Ahmad
- Medical School, The University of Western Australia, Perth 6009, Australia
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medial Research, Perth 6150, Australia
| | | | - Silvia Lee
- Medical School, The University of Western Australia, Perth 6009, Australia
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medial Research, Perth 6150, Australia
- Department of Microbiology, Pathwest Laboratory Medicine, Perth 6000, Australia
| | - Fergal O'Gara
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth 6009, Australia
- BIOMERIT Research Centre, School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
| | - Bu B Yeap
- Medical School, The University of Western Australia, Perth 6009, Australia
- Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth 6150, Australia
| | - Daniel J Green
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth 6009, Australia
| | - Mohammed Ballal
- Medical School, The University of Western Australia, Perth 6009, Australia
- Department of General Surgery, Fremantle Hospital, Perth 6160, Australia
- Department of General Surgery, Fiona Stanley Hospital, Perth 6150, Australia
| | - Natalie C Ward
- Dobney Hypertension Centre, Medical School, The University of Western Australia, Perth 6000, Australia
| | - Girish Dwivedi
- Medical School, The University of Western Australia, Perth 6009, Australia
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medial Research, Perth 6150, Australia
- Department of Cardiology, Fiona Stanley Hospital, Perth 6150, Australia
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
| |
Collapse
|
65
|
Kang YG, Lee T, Ro J, Oh S, Kwak JH, Kim AR. Combination of Lactobacillus plantarum HAC03 and Garcinia cambogia Has a Significant Anti-Obesity Effect in Diet-Induced Obesity Mice. Nutrients 2023; 15:nu15081859. [PMID: 37111078 PMCID: PMC10142012 DOI: 10.3390/nu15081859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Obesity is a major global health problem which is associated with various diseases and psychological conditions. Increasing understanding of the relationship between obesity and gut microbiota has led to a worldwide effort to use microbiota as a treatment for obesity. However, several clinical trials have shown that obesity treatment with single strains of probiotics did not achieve as significant results as in animal studies. To overcome this limitation, we attempted to find a new combination that goes beyond the effects of probiotics alone by combining probiotics and a natural substance that has a stronger anti-obesity effect. In this study, we used a diet-induced obesity mouse (DIO) model to investigate the effects of combining Lactobacillus plantarum HAC03 with Garcinia cambogia extract, as compared to the effects of each substance alone. Combining L. plantarum HAC03 and G. cambogia, treatment showed a more than two-fold reduction in weight gain compared to each substance administered alone. Even though the total amount administered was kept the same as for other single experiments, the combination treatment significantly reduced biochemical markers of obesity and adipocyte size, in comparison to the treatment with either substance alone. The treatment with a combination of two substances also significantly decreased the gene expression of fatty acid synthesis (FAS, ACC, PPARγ and SREBP1c) in mesenteric adipose tissue (MAT). Furthermore, 16S rRNA gene sequencing of the fecal microbiota suggested that the combination of L. plantarum HAC03 and G. cambogia extract treatment changed the diversity of gut microbiota and altered specific bacterial taxa at the genus level (the Eubacterium coprostanoligenes group and Lachnospiraceae UCG group) and specific functions (NAD salvage pathway I and starch degradation V). Our results support that the idea that the combination of L. plantarum HAC03 and G. cambogia extract has a synergistic anti-obesity effect by restoring the composition of the gut microbiota. This combination also increases the abundance of bacteria responsible for energy metabolism, as well as the production of SCFAs and BCAAs. Furthermore, no significant adverse effects were observed during the experiment.
Collapse
Affiliation(s)
- Youn-Goo Kang
- School of Creative Convergence Education, Handong Global University, Pohang 37554, Gyeong-Buk, Republic of Korea
- School of Life Science, Handong Global University, Pohang 37554, Gyeong-Buk, Republic of Korea
| | - Taeyoung Lee
- School of Life Science, Handong Global University, Pohang 37554, Gyeong-Buk, Republic of Korea
| | - Jaeyoung Ro
- School of Life Science, Handong Global University, Pohang 37554, Gyeong-Buk, Republic of Korea
| | - Sanghun Oh
- HDSbio Inc., Pohang 37668, Gyeong-Buk, Republic of Korea
| | - Jin-Hwan Kwak
- School of Life Science, Handong Global University, Pohang 37554, Gyeong-Buk, Republic of Korea
- HDSbio Inc., Pohang 37668, Gyeong-Buk, Republic of Korea
- Sunlin University, Pohang 37560, Gyeong-Buk, Republic of Korea
| | - Ah-Ram Kim
- School of Creative Convergence Education, Handong Global University, Pohang 37554, Gyeong-Buk, Republic of Korea
- School of Life Science, Handong Global University, Pohang 37554, Gyeong-Buk, Republic of Korea
- HDSbio Inc., Pohang 37668, Gyeong-Buk, Republic of Korea
- School of Applied Artificial Intelligence, Handong Global University, Pohang 37554, Gyeong-Buk, Republic of Korea
| |
Collapse
|
66
|
Pereira SE, Rossoni C, Cambi MPC, Faria SL, Mattos FCC, De Campos TBF, Petry TBZ, Da Silva SA, Pereira AZ, Umeda LM, Nogueira C, De Araújo Burgos MGP, Magro DO. Brazilian guide to nutrition in bariatric and metabolic surgery. Langenbecks Arch Surg 2023; 408:143. [PMID: 37039877 DOI: 10.1007/s00423-023-02868-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/21/2023] [Indexed: 04/12/2023]
Abstract
PURPOSE Brazilian nutrition recommendations for bariatric and metabolic surgery aim to provide knowledge, based on scientific evidence, on nutritional practices related to different surgical techniques in the surgical treatment of obesity and metabolic diseases. MATERIALS AND METHODS A systematic literature search was carried out with the appropriate MeSH terms using Medline/Pubmed/LiLACS and the Cochrane database, with the established criteria being based on the inclusion of articles according to the degree of recommendation and strength of evidence of the Classification of Recommendations, Evaluation, Development, and Evaluation System (GRADE). RESULTS The recommendations that make up this guide were gathered to assist in the individualized clinical practice of nutritionists in the nutritional management of patients with obesity, including nutritional management in the intragastric balloon; pre and postoperative nutritional treatment and supplementation in bariatric and metabolic surgeries (adolescents, adults, elderly, pregnant women, and vegetarians); hypoglycemia and reactive hyperinsulinemia; and recurrence of obesity, gut microbiota, and inflammatory bowel diseases. CONCLUSION We believe that this guide of recommendations will play a decisive role in the clinical practice of nutritionists who work in bariatric and metabolic surgery, with its implementation in health services, thus promoting quality and safety in the treatment of patients with obesity. The concept of precision nutrition is expected to change the way we understand and treat these patients.
Collapse
Affiliation(s)
- Silvia Elaine Pereira
- Postgraduate Program in Nutritional Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Carina Rossoni
- Faculty of Medicine (ISAMB), Instituto of Environmental Health, Universidade de Lisboa, Lisbon, Portugal.
| | | | - Silvia Leite Faria
- Postgraduate Program in Human Nutrition, University of Brasilia, Brasilia, Brazil
| | | | | | | | - Silvia Alves Da Silva
- Postgraduate Program in Nutritional in Bariatric Surgery, Federal University of Pernambuco, Recife, Brazil
| | | | - Luciana Mela Umeda
- Medical Residency Program in Endrocrinology and Metabology, Ipiranga Hospital, São Paulo, Brazil
| | - Carla Nogueira
- Postgraduate Program in Human Nutrition, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
67
|
Zidane M, Theurich S, Schlaak M. Malignes Melanom und Adipositas: eine Übersichtsarbeit. TUMORDIAGNOSTIK & THERAPIE 2023; 44:202-210. [DOI: 10.1055/a-2037-1458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Zusammenfassung
Einleitung Die Inzidenz von Adipositas nimmt weltweit stetig zu. Übergewicht und Adipositas werden als mögliche Risikofaktoren für verschiedene Krebserkrankungen, einschließlich des malignen Melanoms, diskutiert. Dieser Review stellt die Evidenz zu der Assoziation zwischen Adipositas und dem malignen Melanom dar.
Methodik Selektive Literaturrecherche.
Ergebnisse Obwohl verschiedene Erklärungsansätze für eine mögliche Assoziation von Adipositas und dem malignen Melanom existieren, sind diese nicht vollständig bekannt und weiterhin Gegenstand der Forschung. Die Evidenz zur Assoziation zwischen Adipositas und Melanom-Outcomes für Patienten ohne Systemtherapie ist gering. Für Patienten mit Systemtherapie gibt es Evidenz, die einen protektiven Effekt unter Immuntherapien und zielgerichteten Therapien beschreibt.
Schlussfolgerung Insgesamt gibt es zu der Assoziation zwischen dem malignen Melanom und Adipositas nicht ausreichend Evidenz, um zu schlussfolgern, ob Adipositas einen unabhängigen protektiven Effekt hat oder ein Risikofaktor für die Entstehung von Melanomen darstellt. Weitere Forschung ist erforderlich, um das Wissen über diesen möglichen Zusammenhang zu vertiefen.
Collapse
Affiliation(s)
- Miriam Zidane
- Klinik für Dermatologie, Venerologie und Allergologie, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
| | - Sebastian Theurich
- Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
- Gene Center, Cancer and Immunometabolism Research Group, LMU München, München, Deutschland
- Abteilung für Medizin III, LMU Klinikum, München, Deutschland
- Partnerstandort München, Deutsches Konsortium für Translationale Krebsforschung (DKTK), München, Deutschland
| | - Max Schlaak
- Klinik für Dermatologie, Venerologie und Allergologie, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
- Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
- Partnerstandort Berlin, Deutsches Konsortium für Translationale Krebsforschung (DKTK), Berlin, Deutschland
| |
Collapse
|
68
|
Ju T, Bourrie BCT, Forgie AJ, Pepin DM, Tollenaar S, Sergi CM, Willing BP. The Gut Commensal Escherichia coli Aggravates High-Fat-Diet-Induced Obesity and Insulin Resistance in Mice. Appl Environ Microbiol 2023; 89:e0162822. [PMID: 36809030 PMCID: PMC10057047 DOI: 10.1128/aem.01628-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/18/2023] [Indexed: 02/23/2023] Open
Abstract
Changes in the gut microbiota have been linked to metabolic endotoxemia as a contributing mechanism in the development of obesity and type 2 diabetes. Although identifying specific microbial taxa associated with obesity and type 2 diabetes remains difficult, certain bacteria may play an important role in initiating metabolic inflammation during disease development. The enrichment of the family Enterobacteriaceae, largely represented by Escherichia coli, induced by a high-fat diet (HFD) has been correlated with impaired glucose homeostasis; however, whether the enrichment of Enterobacteriaceae in a complex gut microbial community in response to an HFD contributes to metabolic disease has not been established. To investigate whether the expansion of Enterobacteriaceae amplifies HFD-induced metabolic disease, a tractable mouse model with the presence or absence of a commensal E. coli strain was established. With an HFD treatment, but not a standard-chow diet, the presence of E. coli significantly increased body weight and adiposity and induced impaired glucose tolerance. In addition, E. coli colonization led to increased inflammation in liver and adipose and intestinal tissue under an HFD regimen. With a modest effect on gut microbial composition, E. coli colonization resulted in significant changes in the predicted functional potential of microbial communities. The results demonstrated the role of commensal E. coli in glucose homeostasis and energy metabolism in response to an HFD, indicating contributions of commensal bacteria to the pathogenesis of obesity and type 2 diabetes. The findings of this research identified a targetable subset of the microbiota in the treatment of people with metabolic inflammation. IMPORTANCE Although identifying specific microbial taxa associated with obesity and type 2 diabetes remains difficult, certain bacteria may play an important role in initiating metabolic inflammation during disease development. Here, we used a mouse model distinguishable by the presence or absence of a commensal Escherichia coli strain in combination with a high-fat diet challenge to investigate the impact of E. coli on host metabolic outcomes. This is the first study to show that the addition of a single bacterial species to an animal already colonized with a complex microbial community can increase severity of metabolic outcomes. This study is of interest to a wide group of researchers because it provides compelling evidence to target the gut microbiota for therapeutic purposes by which personalized medicines can be made for treating metabolic inflammation. The study also provides an explanation for variability in studies investigating host metabolic outcomes and immune response to diet interventions.
Collapse
Affiliation(s)
- Tingting Ju
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Benjamin C. T. Bourrie
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Andrew J. Forgie
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Deanna M. Pepin
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Stephanie Tollenaar
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Consolato M. Sergi
- Department of Laboratory Medicine and Pathology, Stollery Children’s Hospital, University of Alberta, Edmonton, Alberta, Canada
- Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| | - Benjamin P. Willing
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| |
Collapse
|
69
|
Fujisaka S, Watanabe Y, Tobe K. The gut microbiome: a core regulator of metabolism. J Endocrinol 2023; 256:e220111. [PMID: 36458804 PMCID: PMC9874984 DOI: 10.1530/joe-22-0111] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/02/2022] [Indexed: 12/03/2022]
Abstract
The human body is inhabited by numerous bacteria, fungi, and viruses, and each part has a unique microbial community structure. The gastrointestinal tract harbors approximately 100 trillion strains comprising more than 1000 bacterial species that maintain symbiotic relationships with the host. The gut microbiota consists mainly of the phyla Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. Of these, Firmicutes and Bacteroidetes constitute 70-90% of the total abundance. Gut microbiota utilize nutrients ingested by the host, interact with other bacterial species, and help maintain healthy homeostasis in the host. In recent years, it has become increasingly clear that a breakdown of the microbial structure and its functions, known as dysbiosis, is associated with the development of allergies, autoimmune diseases, cancers, and arteriosclerosis, among others. Metabolic diseases, such as obesity and diabetes, also have a causal relationship with dysbiosis. The present review provides a brief overview of the general roles of the gut microbiota and their relationship with metabolic disorders.
Collapse
Affiliation(s)
- Shiho Fujisaka
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Sugitani, Toyama, Japan
| | - Yoshiyuki Watanabe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Sugitani, Toyama, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Sugitani, Toyama, Japan
| |
Collapse
|
70
|
Anhê FF, Zlitni S, Zhang SY, Choi BSY, Chen CY, Foley KP, Barra NG, Surette MG, Biertho L, Richard D, Tchernof A, Lam TKT, Marette A, Schertzer J. Human gut microbiota after bariatric surgery alters intestinal morphology and glucose absorption in mice independently of obesity. Gut 2023; 72:460-471. [PMID: 36008102 PMCID: PMC9933168 DOI: 10.1136/gutjnl-2022-328185] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/05/2022] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Bariatric surgery is an effective treatment for type 2 diabetes (T2D) that changes gut microbial composition. We determined whether the gut microbiota in humans after restrictive or malabsorptive bariatric surgery was sufficient to lower blood glucose. DESIGN Women with obesity and T2D had biliopancreatic diversion with duodenal switch (BPD-DS) or laparoscopic sleeve gastrectomy (LSG). Faecal samples from the same patient before and after each surgery were used to colonise rodents, and determinants of blood glucose control were assessed. RESULTS Glucose tolerance was improved in germ-free mice orally colonised for 7 weeks with human microbiota after either BPD-DS or LSG, whereas food intake, fat mass, insulin resistance, secretion and clearance were unchanged. Mice colonised with microbiota post-BPD-DS had lower villus height/width and crypt depth in the distal jejunum and lower intestinal glucose absorption. Inhibition of sodium-glucose cotransporter (Sglt)1 abrogated microbiota-transmissible improvements in blood glucose control in mice. In specific pathogen-free (SPF) rats, intrajejunal colonisation for 4 weeks with microbiota post-BPD-DS was sufficient to improve blood glucose control, which was negated after intrajejunal Sglt-1 inhibition. Higher Parabacteroides and lower Blautia coincided with improvements in blood glucose control after colonisation with human bacteria post-BPD-DS and LSG. CONCLUSION Exposure of rodents to human gut microbiota after restrictive or malabsorptive bariatric surgery improves glycaemic control. The gut microbiota after bariatric surgery is a standalone factor that alters upper gut intestinal morphology and lowers Sglt1-mediated intestinal glucose absorption, which improves blood glucose control independently from changes in obesity, insulin or insulin resistance.
Collapse
Affiliation(s)
- Fernando F Anhê
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, and Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Soumaya Zlitni
- Department of Genetics and Medicine, Stanford University, Stanford, California, USA
| | - Song-Yang Zhang
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Béatrice So-Yun Choi
- Quebec Heart and Lung Institute Research Centre, Laval University, Quebec, Quebec, Canada
| | - Cassandra Y Chen
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, and Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Kevin P Foley
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, and Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Nicole G Barra
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, and Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Michael G Surette
- Department of Medicine, Farncombe Family Digestive Health Research Institute, and Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Laurent Biertho
- Quebec Heart and Lung Institute Research Centre, Laval University, Quebec, Quebec, Canada
| | - Denis Richard
- Quebec Heart and Lung Institute Research Centre, Laval University, Quebec, Quebec, Canada
| | - André Tchernof
- Quebec Heart and Lung Institute Research Centre, Laval University, Quebec, Quebec, Canada.,School of Nutrition, Laval University, Quebec, Quebec, Canada
| | - Tony K T Lam
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Andre Marette
- Quebec Heart and Lung Institute Research Centre, Laval University, Quebec, Quebec, Canada
| | - Jonathan Schertzer
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, and Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
71
|
Bergeat D, Coquery N, Gautier Y, Clotaire S, Vincent É, Romé V, Guérin S, Le Huërou-Luron I, Blat S, Thibault R, Val-Laillet D. Exploration of fMRI brain responses to oral sucrose after Roux-en-Y gastric bypass in obese yucatan minipigs in relationship with microbiota and metabolomics profiles. Clin Nutr 2023; 42:394-410. [PMID: 36773369 DOI: 10.1016/j.clnu.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/06/2023] [Accepted: 01/19/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND & AIMS In most cases, Roux-en-Y gastric bypass (RYGBP) is an efficient intervention to lose weight, change eating behavior and improve metabolic outcomes in obese patients. We hypothesized that weight loss induced by RYGBP in obese Yucatan minipigs would induce specific modifications of the gut-brain axis and neurocognitive responses to oral sucrose stimulation in relationship with food intake control. METHODS An integrative study was performed after SHAM (n = 8) or RYGBP (n = 8) surgery to disentangle the physiological, metabolic and neurocognitive mechanisms of RYGBP. BOLD fMRI responses to sucrose stimulations at different concentrations, brain mRNA expression, cecal microbiota, and plasma metabolomics were explored 4 months after surgery and integrated with WGCNA analysis. RESULTS We showed that weight loss induced by RYGBP or SHAM modulated differently the frontostriatal responses to oral sucrose stimulation, suggesting a different hedonic treatment and inhibitory control related to palatable food after RYGBP. The expression of brain genes involved in the serotoninergic and cannabinoid systems were impacted by RYGBP. Cecal microbiota was deeply modified and many metabolite features were differentially increased in RYGBP. Data integration with WGCNA identified interactions between key drivers of OTUs and metabolites features linked to RYGBP. CONCLUSION This longitudinal study in the obese minipig model illustrates with a systemic and integrative analysis the mid-term consequences of RYGBP on brain mRNA expression, cecal microbiota and plasma metabolites. We confirmed the impact of RYGBP on functional brain responses related to food reward, hedonic evaluation and inhibitory control, which are key factors for the success of anti-obesity therapy and weight loss maintenance.
Collapse
Affiliation(s)
- Damien Bergeat
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France; Department of Digestive Surgery, CHU Rennes, Rennes, France
| | - Nicolas Coquery
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| | - Yentl Gautier
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| | - Sarah Clotaire
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| | - Émilie Vincent
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| | - Véronique Romé
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| | - Sylvie Guérin
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| | - Isabelle Le Huërou-Luron
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| | - Sophie Blat
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| | - Ronan Thibault
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France; Department of Endocrinology-Diabetology-Nutrition, Home Parenteral Nutrition Centre, CHU Rennes, Rennes, France.
| | - David Val-Laillet
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France.
| |
Collapse
|
72
|
Xu M, Lan R, Qiao L, Lin X, Hu D, Zhang S, Yang J, Zhou J, Ren Z, Li X, Liu G, Liu L, Xu J. Bacteroides vulgatus Ameliorates Lipid Metabolic Disorders and Modulates Gut Microbial Composition in Hyperlipidemic Rats. Microbiol Spectr 2023; 11:e0251722. [PMID: 36625637 PMCID: PMC9927244 DOI: 10.1128/spectrum.02517-22] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Hyperlipidemia is a risk factor and key indicator for cardiovascular diseases, and the gut microbiota is highly associated with hyperlipidemia. Bacteroides vulgatus is a prevalent mutualist across human populations and confers multiple health benefits such as immunoregulation, antiobesity, and coronary artery disease intervention. However, its role in antihyperlipidemia has not been systematically characterized. This study sought to identify the effect of B. vulgatus Bv46 on hyperlipidemia. Hyperlipidemic rats were modeled by feeding them a high-fat diet for 6 weeks. The effect of B. vulgatus Bv46 supplementation was evaluated by measuring anthropometric parameters, lipid and inflammation markers, and the liver pathology. Multi-omics was used to explore the underlying mechanisms. The ability of B. vulgatus Bv46 to produce bile salt hydrolase was confirmed by gene annotation and in vitro experiments. Oral administration of B. vulgatus Bv46 in hyperlipidemic rats significantly reduced the body weight gain, food efficiency, and liver index, improved the serum lipid profile, lowered the levels of serum inflammatory cytokines, promoted the loss of fecal bile acids (BAs), and extended the fecal pool of short-chain fatty acids (SCFAs), especially propionate and butyrate. B. vulgatus Bv46 induced compositional shifts of the gut microbial community of hyperlipidemic rats, characterized by a lower ratio of Firmicutes to Bacteroidetes with an increase of genera Bacteroides and Parabacteroides. After intervention, serum metabolite profiling exhibited an adaptation in amino acids and glycerophospholipid metabolism. Transcriptomics further detected altered biological processes, including primary bile acid biosynthesis and fatty acid metabolic process. Taken together, the findings suggest that B. vulgatus Bv46 could be a promising candidate for interventions against hyperlipidemia. IMPORTANCE As a core microbe of the human gut ecosystem, Bacteroides vulgatus has been linked to multiple aspects of metabolic disorders in a collection of associative studies, which, while indicative, warrants more direct experimental evidence to verify. In this study, we experimentally demonstrated that oral administration of B. vulgatus Bv46 ameliorated the serum lipid profile and systemic inflammation of high-fat diet-induced hyperlipidemic rats in a microbiome-regulated manner, which appears to be associated with changes of bile acid metabolism, short-chain fatty acid biosynthesis, and serum metabolomic profile. This finding supports the causal contribution of B. vulgatus in host metabolism and helps to form the basis of novel therapies for the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Mingchao Xu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Lei Qiao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoying Lin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dalong Hu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Suping Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Juan Zhou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhihong Ren
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xianping Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guoxing Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liyun Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianguo Xu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
- Institute of Public Health, Nankai University, Tianjin, China
| |
Collapse
|
73
|
Albaugh VL, He Y, Münzberg H, Morrison CD, Yu S, Berthoud HR. Regulation of body weight: Lessons learned from bariatric surgery. Mol Metab 2023; 68:101517. [PMID: 35644477 PMCID: PMC9938317 DOI: 10.1016/j.molmet.2022.101517] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/04/2022] [Accepted: 05/21/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bariatric or weight loss surgery is currently the most effective treatment for obesity and metabolic disease. Unlike dieting and pharmacology, its beneficial effects are sustained over decades in most patients, and mortality is among the lowest for major surgery. Because there are not nearly enough surgeons to implement bariatric surgery on a global scale, intensive research efforts have begun to identify its mechanisms of action on a molecular level in order to replace surgery with targeted behavioral or pharmacological treatments. To date, however, there is no consensus as to the critical mechanisms involved. SCOPE OF REVIEW The purpose of this non-systematic review is to evaluate the existing evidence for specific molecular and inter-organ signaling pathways that play major roles in bariatric surgery-induced weight loss and metabolic benefits, with a focus on Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG), in both humans and rodents. MAJOR CONCLUSIONS Gut-brain communication and its brain targets of food intake control and energy balance regulation are complex and redundant. Although the relatively young science of bariatric surgery has generated a number of hypotheses, no clear and unique mechanism has yet emerged. It seems increasingly likely that the broad physiological and behavioral effects produced by bariatric surgery do not involve a single mechanism, but rather multiple signaling pathways. Besides a need to improve and better validate surgeries in animals, advanced techniques, including inducible, tissue-specific knockout models, and the use of humanized physiological traits will be necessary. State-of-the-art genetically-guided neural identification techniques should be used to more selectively manipulate function-specific pathways.
Collapse
Affiliation(s)
- Vance L Albaugh
- Translational and Integrative Gastrointestinal and Endocrine Research Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Yanlin He
- Brain Glycemic and Metabolism Control Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Heike Münzberg
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Christopher D Morrison
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Sangho Yu
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
74
|
Liu H, Huang Y, Zhuo W, Wan R, Hong K. U-shaped association between body mass index and ejection fraction in intensive care unit patients with heart failure. ESC Heart Fail 2023; 10:377-384. [PMID: 36251539 PMCID: PMC9871715 DOI: 10.1002/ehf2.14198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/07/2022] [Accepted: 10/02/2022] [Indexed: 01/29/2023] Open
Abstract
AIMS There are limited data about the relationship between body mass index (BMI) and left ventricular ejection fraction (EF) in patients with heart failure (HF). The study aims to assess the correlation between BMI and left ventricular EF under HF conditions. METHODS AND RESULTS We derived the data from the Dryad Digital Repository for analysis, and the information of the original patients was obtained from the MIMIC-III database by the data uploader. We performed smooth curve and two piecewise linear regression analyses to evaluate the association between BMI and EF in HF patients. A total of 962 participants were included in this study, with age of 73.7 ± 13.5 years, and 475 participants were male (49.4%). The results of the smooth curve supported a U-shaped relationship between BMI and EF, and the inflection point was found to be a BMI of 23.3 kg/m2 in these HF patients. After adjusting for potential confounders, we found that EF decreased with increasing BMI up to the inflection point (β = -0.7, 95% CI -1.3 to -0.1, P = 0.028), whereas beyond the turning point, the relationship between EF and BMI showed a positive correlation (β = 0.2, 95% CI 0.1-0.3 P < 0.001). Importantly, ischaemic heart disease (interaction P = 0.0499) and hyperlipidaemia (interaction P = 0.0162) affected the association between BMI and EF in the lower BMI group (BMI < 23.3 kg/m2 ), although only diabetes mellitus (interaction P = 0.0255) altered the association between BMI and EF in the higher BMI group (BMI ≥ 23.3 kg/m2 ). CONCLUSIONS In addition to higher BMI, we also found that lower BMI is related to higher EF in intensive care unit patients with HF, supporting a U-shaped association between BMI and EF.
Collapse
Affiliation(s)
- Hualong Liu
- Department of Cardiovascular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Ying Huang
- Department of Cardiovascular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Wen Zhuo
- Department of Cardiovascular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Rong Wan
- Jiangxi Key Laboratory of Molecular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Kui Hong
- Department of Cardiovascular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
- Jiangxi Key Laboratory of Molecular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| |
Collapse
|
75
|
Shestopalov AV, Ganenko LA, Grigoryeva TV, Laikov AV, Vasilyev IY, Kolesnikova IM, Naboka Y, Volkova NI, Roumiantsev SA. Adipokines and myokines as indicators of obese phenotypes and their association with the gut microbiome diversity indices. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2023. [DOI: 10.24075/brsmu.2023.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Today, metabolically healthy obesity (MHO) and metabolically unhealthy obesity (MUO) are distinguished. Adipose and muscle tissues can determine the obese phenotype due to adipokine and myokine production. Gut microbial community is also involved in MHO. The study was aimed to reveal the features of adipokine and myokine levels and their association with the gut microbiome alpha diversity in patients with MHO and MUO. A total of 265 subjects were divided into two groups: healthy individuals and obese patients. The latter were divided into two subgroups: patients with MHO and patients with MUO. Body mass index, waist circumference, HOMA-IR, adipokine and myokine levels, gut microbiome taxonomic composition, alpha diversity indices were defined in all the surveyed individuals, lipid and carbohydrate metabolism was also assessed. Significant differences in the adipokine and myokine levels and their association with the gut microbiome diversity indicators were revealed in patients with different obese phenotypes. Patients with MHO and MUO showed significantly lower adiponectin levels (р < 0.05) and significantly higher leptin and asprosin levels (р < 0.05) than healthy individuals. Patients with MUO had lower adiponectin and leptin levels (p < 0.05) than patients with MHO. Significantly higher FGF21 levels were observed in patients with MUO. Large-scale correlation analysis revealed the relationship between the glucose levels and the gut microbiome diversity indices that was missing in patients with MUO. This indicated the loss of the microbiota diversity effects on the blood glucose control in individuals with MUO, as well as different regulatory roles in the gut microbiome‒liver‒muscle/adipose tissue axes of individuals with MHO and MUO played by gut microbiota. The findings show the relationship between the gut microbiome diversity and the obese phenotype.
Collapse
Affiliation(s)
- AV Shestopalov
- Center for Molecular Health, Institute of Digital and Translational Biomedicine, Moscow, Russia
| | - LA Ganenko
- Rostov State Medical University, Rostov-on-Don, Russia
| | - TV Grigoryeva
- Kazan Federal University, Kazan, Republic of Tatarstan, Russia
| | - AV Laikov
- Kazan Federal University, Kazan, Republic of Tatarstan, Russia
| | - IYu Vasilyev
- Kazan Federal University, Kazan, Republic of Tatarstan, Russia
| | - IM Kolesnikova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - YuL Naboka
- Kazan Federal University, Kazan, Republic of Tatarstan, Russia
| | - NI Volkova
- Rostov State Medical University, Rostov-on-Don, Russia
| | - SA Roumiantsev
- Center for Molecular Health, Institute of Digital and Translational Biomedicine, Moscow, Russia
| |
Collapse
|
76
|
Alqahtani SJ, Alfawaz HA, Moubayed NMS, Hassan WM, Almnaizel AT, Alshiban NMS, Abuhaimed JM, Alahmed MF, AL-Dagal MM, El-Ansary A. Bariatric Surgery as Treatment Strategy of Obesity in Saudi People: Effects of Gut Microbiota. Nutrients 2023; 15:nu15020361. [PMID: 36678232 PMCID: PMC9864113 DOI: 10.3390/nu15020361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Obesity prevalence is rising globally, as are the number of chronic disorders connected with obesity, such as diabetes, non-alcoholic fatty liver disease, dyslipidemia, and hypertension. Bariatric surgery is also becoming more common, and it remains the most effective and long-term treatment for obesity. This study will assess the influence of Laparoscopic Sleeve Gastrectomy (LSG) on gut microbiota in people with obesity before and after surgery. The findings shed new light on the changes in gut microbiota in Saudi people with obesity following LSG. In conclusion, LSG may improve the metabolic profile, resulting in decreased fat mass and increased lean mass, as well as improving the microbial composition balance in the gastrointestinal tract, but this is still not equivalent to normal weight microbiology. A range of factors, including patient characteristics, geographic dispersion, type of operation, technique, and nutritional and caloric restriction, could explain differences in abundance between studies. This information could point to a novel and, most likely, tailored strategy in obesity therapy, which could eventually be incorporated into health evaluations and monitoring in preventive health care or clinical medicine.
Collapse
Affiliation(s)
- Seham J. Alqahtani
- Department of Food Science & Nutrition, College of Food Science & Agriculture, King Saud University, Riyadh 11495, Saudi Arabia
| | - Hanan A. Alfawaz
- Department of Food Science & Nutrition, College of Food Science & Agriculture, King Saud University, Riyadh 11495, Saudi Arabia
| | - Nadine M. S. Moubayed
- Botany and Microbiology Department, Science College, Female Campus, King Saud University, Riyadh 11495, Saudi Arabia
| | - Wail M. Hassan
- Department of Biomedical Sciences, School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Ahmad T. Almnaizel
- Experimental Surgery and Animal Lab, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia
| | - Noura M. S. Alshiban
- Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| | - Jawahir M. Abuhaimed
- Anatomy Department, College of Medicine, King Saud University, Riyadh 11495, Saudi Arabia
| | - Mohammed F. Alahmed
- Experimental Surgery and Animal Lab, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia
| | - Mosffer M. AL-Dagal
- Department of Food Science & Nutrition, College of Food Science & Agriculture, King Saud University, Riyadh 11495, Saudi Arabia
| | - Afaf El-Ansary
- Central Research Laboratory, Female Campus, King Saud University, Riyadh 11495, Saudi Arabia
- Correspondence:
| |
Collapse
|
77
|
Corbière L, Scanff A, Desfourneaux V, Merdrignac A, Ingels A, Thibault R, Bouguen G, Bergeat D. Outcomes of bariatric surgery in patients with inflammatory bowel disease from a French nationwide database. Br J Surg 2023; 110:251-259. [PMID: 36448229 DOI: 10.1093/bjs/znac398] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/21/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND The outcomes of bariatric surgery (BS) in patients with chronic inflammatory bowel disease (IBD) remain rarely described. We aimed to evaluate the 90-day morbidity and mortality rates, and the risk of IBD complications 2 years after BS. METHOD Patients from the French Programme de Médicalisation des Systèmes d'Information (PMSI) database who underwent a primary BS between 2016 and 2018 were included. We identified patients with a previous diagnosis of IBD. Postoperative 90-day (POD90) morbidity and mortality rates were compared between the two groups. The evolution of IBD was followed 2 years after BS. RESULTS Between 2016 and 2018, 138 980 patients underwent primary BS, including 587 patients with IBD: 326 (55.5 per cent) with Crohn's disease (CD) and 261 (44.5 per cent) with ulcerative colitis (UC). The preferred surgical technique was sleeve gastrectomy, especially in the IBD group (81.1 per cent), followed by gastric bypass (14.6 per cent). Patients with IBD had more comorbidities (Charlson Comorbidity Index of 1 or more, hypertension, and diabetes; P < 0.001) than those without IBD. The POD90 mortality rate did not differ between the two groups (0.049 per cent in the IBD group versus 0 per cent in the non-IBD group), but more unscheduled rehospitalizations at POD90 were observed in patients with IBD (6.0 per cent versus 3.7 per cent; P = 0.004). Two years after BS, 86 patients (14.6 per cent) in the IBD group had at least one unplanned readmission for the management of their IBD; 15 patients stayed for 3 or more days. After multivariable analysis, patients with CD had an independent elevated risk of IBD-related unplanned readmissions 2 years after BS versus UC (adjusted odds ratio 1.90, 95 per cent c.i. 1.22 to 2.97; P = 0.005). CONCLUSION In a highly selected cohort of patients with well-controlled IBD, BS did not result in added mortality or morbidity. A point of vigilance must be underlined regarding BS in patients with CD.
Collapse
Affiliation(s)
- Lisa Corbière
- Department of Digestive Surgery, CHU Rennes, Rennes, France.,Rennes 1 University, Rennes, France
| | | | | | | | - Anne Ingels
- Service d'Information Médicale, CHU Rennes, Rennes, France
| | - Ronan Thibault
- Rennes 1 University, Rennes, France.,Nutrition Unit, CHU Rennes, Rennes, France.,INRAE, INSERM, University of Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, France
| | - Guillaume Bouguen
- Rennes 1 University, Rennes, France.,Service des Maladies de l'Appareil Digestif, CHU Rennes, Rennes, France
| | - Damien Bergeat
- Department of Digestive Surgery, CHU Rennes, Rennes, France.,Rennes 1 University, Rennes, France.,INRAE, INSERM, University of Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, France
| |
Collapse
|
78
|
Tonelli A, Lumngwena EN, Ntusi NAB. The oral microbiome in the pathophysiology of cardiovascular disease. Nat Rev Cardiol 2023; 20:386-403. [PMID: 36624275 DOI: 10.1038/s41569-022-00825-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/01/2022] [Indexed: 01/11/2023]
Abstract
Despite advances in our understanding of the pathophysiology of many cardiovascular diseases (CVDs) and expansion of available therapies, the global burden of CVD-associated morbidity and mortality remains unacceptably high. Important gaps remain in our understanding of the mechanisms of CVD and determinants of disease progression. In the past decade, much research has been conducted on the human microbiome and its potential role in modulating CVD. With the advent of high-throughput technologies and multiomics analyses, the complex and dynamic relationship between the microbiota, their 'theatre of activity' and the host is gradually being elucidated. The relationship between the gut microbiome and CVD is well established. Much less is known about the role of disruption (dysbiosis) of the oral microbiome; however, interest in the field is growing, as is the body of literature from basic science and animal and human investigations. In this Review, we examine the link between the oral microbiome and CVD, specifically coronary artery disease, stroke, peripheral artery disease, heart failure, infective endocarditis and rheumatic heart disease. We discuss the various mechanisms by which oral dysbiosis contributes to CVD pathogenesis and potential strategies for prevention and treatment.
Collapse
Affiliation(s)
- Andrea Tonelli
- Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa.,Cardiovascular Research Unit, Christiaan Barnard Division of Cardiothoracic Surgery, Department of Surgery, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa.,Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Extramural Research Unit on the Intersection of Noncommunicable Diseases and Infectious Disease, South African Medical Research Council, Cape Town, South Africa
| | - Evelyn N Lumngwena
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,School of Clinical Medicine, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa.,Centre for the Study of Emerging and Re-emerging Infections, Institute for Medical Research and Medicinal Plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | - Ntobeko A B Ntusi
- Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa. .,Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa. .,Extramural Research Unit on the Intersection of Noncommunicable Diseases and Infectious Disease, South African Medical Research Council, Cape Town, South Africa. .,Cape Universities Body Imaging Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa. .,Wellcome Centre for Infectious Disease Research, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
79
|
Chi Y, Wu Z, Du C, Zhang M, Wang X, Xie A, Wang P, Li R. Regulatory effects mediated by ulvan oligosaccharide and its zinc complex on lipid metabolism in high-fat diet-fed mice. Carbohydr Polym 2023; 300:120249. [DOI: 10.1016/j.carbpol.2022.120249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/05/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
|
80
|
Van Gerwen OT, Smith SE, Muzny CA. Bacterial Vaginosis in Postmenopausal Women. Curr Infect Dis Rep 2023; 25:7-15. [PMID: 37601955 PMCID: PMC10438897 DOI: 10.1007/s11908-022-00794-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2022] [Indexed: 12/23/2022]
Abstract
Purpose of Review Bacterial vaginosis (BV) is the most common vaginal infection worldwide, but most research has been conducted in premenopausal women. After menopause, endogenous estrogen production decreases, often leading to the genitourinary syndrome of menopause (GSM), characterized by vulvovaginal dryness and irritation. The estrogen-deficient postmenopausal state results in an elevated vaginal pH and depletion of vaginal lactobacilli. Use of traditional BV diagnostics (Amsel criteria, Nugent score) is difficult in post-menopausal women, especially those not on estrogen replacement therapy, as these methods were originally developed in premenopausal women. In this review, we discuss recent clinical data on BV in postmenopausal women, difficulties in diagnosis using traditional methods, the role of BV molecular diagnostics, and our current expert opinion for managing BV in this population. Recent Findings BV prevalence has been found to range between 2%-57% among postmenopausal women per Amsel and Nugent criteria. This is likely an over-estimate of the true prevalence due to limitations in these criteria which were only validated in pre-menopausal women. Despite increasing diagnostic options for BV in recent years, including highly sensitive and specific BV nucleic acid amplification tests (NAATs), the physiologic changes of menopause and limited inclusion of postmenopausal women in clinical studies, diagnosis is difficult in this population. Recent studies utilizing 16s rRNA gene sequencing suggest that the vaginal microbiota of premenopausal and postmenopausal women is quite different, even if BV is not present. Data also suggest that obese postmenopausal women have significantly lower rates of BV compared to non-obese postmenopausal women, although further research is needed in this area. Multiple treatment options exist for vaginal atrophy and BV in this population. Summary Data are limited regarding optimal diagnostic approaches for BV in postmenopausal women; BV NAATs and 16s rRNA gene sequencing may have a role for diagnosing BV in symptomatic women although further studies are needed. Menopausal women with characteristic vaginal symptoms and an elevated vaginal pH should be initially treated for estrogen deficiency prior to considering a diagnosis of BV; subsequent treatment for BV should be driven by symptoms.
Collapse
Affiliation(s)
- Olivia T. Van Gerwen
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sarah E. Smith
- Department of Obstetrics and Gynecology, Emory University, Atlanta, GA, USA
| | - Christina A. Muzny
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
81
|
Gentile JKA, Oliveira KD, Pereira JG, Tanaka DY, Guidini GN, Cadona MZ, Siriani-Ribeiro DW, Perondini MT. THE INTESTINAL MICROBIOME IN PATIENTS UNDERGOING BARIATRIC SURGERY: A SYSTEMATIC REVIEW. ARQUIVOS BRASILEIROS DE CIRURGIA DIGESTIVA : ABCD = BRAZILIAN ARCHIVES OF DIGESTIVE SURGERY 2022; 35:e1707. [PMID: 36542005 PMCID: PMC9767418 DOI: 10.1590/0102-672020220002e1707] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Dysbiosis of the gut microbiota is frequently found in cases of obesity and related metabolic diseases, such as type 2 diabetes mellitus. The composition of the microbiota in diabetics is similar to that of obese people, thereby causing increased energy uptake efficiency in the large intestine of obese people, maintenance of a systemic inflammatory state, and increased insulin resistance. Bariatric surgery seems to entail an improvement in gut dysbiosis, leading to an increased diversity of the gut microbiota. AIMS This study aimed to present a literature review on obesity-associated gut dysbiosis and its status post-bariatric surgery. METHODS A systematic review of primary studies was conducted in PubMed, SciELO, BIREME, LILACS, Embase, ScienceDirect, and Scopus databases using DeCS (Health Science Descriptors) with the terms "obesity," "intestinal dysbiosis," "bariatric surgery," and "microbiota." RESULTS We analyzed 28 articles that had clinical studies or literature reviews as their main characteristics, of which 82% (n=23) corresponded to retrospective studies. The sample size of the studies ranged from 9 to 257 participants and/or fecal samples. The epidemiological profile showed a higher prevalence of obesity in females, ranging from 24.4 to 35.1%, with a mean age of around 25-40 years. There was a variation regarding the type of bariatric surgery, migrating between the Roux-en-Y bypass, adjustable gastric banding, and vertical gastrectomy. Of the 28 studies, 6 of them evaluated the gut microbiota of obese patients undergoing bariatric surgery and their relationship with type 2 diabetes mellitus/glucose metabolism/insulin resistance. CONCLUSIONS The intestinal microbiota is an important influencer in the regulation of the digestive tract, and obese individuals with comorbidities (diabetes mellitus, hypercholesterolemia, and metabolic syndrome) present important alterations, with an unbalance normal state, generating dysbiosis and the proliferation of bacterial species that favor the appearance of new diseases. Patients who undergo bariatric surgery present an improvement in the intestinal microbiota imbalance as well as reversibility of their comorbidities, increasing their life expectancy.
Collapse
Affiliation(s)
- João Kleber Almeida Gentile
- Faculty of Medicine, City of São Paulo University, Surgical Skills and Operative Technique Unit – São Paulo (SP), Brazil;,São Camilo Hospital, Pompéia Unit, Department of Digestive, Bariatric and Metabolic Surgery, São Paulo (SP), Brazil
| | | | | | - Daniel Yuji Tanaka
- Faculty of Medicine, City of São Paulo University, São Paulo (SP), Brazil
| | | | | | | | | |
Collapse
|
82
|
Ruminococcaceae_UCG-013 Promotes Obesity Resistance in Mice. Biomedicines 2022; 10:biomedicines10123272. [PMID: 36552029 PMCID: PMC9776008 DOI: 10.3390/biomedicines10123272] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Alterations in the gut microbiome have been linked to obesity and type 2 diabetes, in epidemiologic studies and studies of fecal transfer effects in germ-free mice. Here, we aimed to identify the effects of specific gut microbes on the phenotype of mice fed a high-fat diet (HFD). After eight weeks of HFD feeding, male C57BL/6J mice in the HFD group ranking in the upper and lower quartiles for body weight gain were considered obese prone and obese resistant, respectively. 16S rRNA gene sequencing was used to determine the composition of the intestinal microbiota, and fecal transplantation (FMT) was conducted to determine whether the microbiota plays a causal role in phenotypic variation. Ruminococcaceae_UCG-013 was more abundant in the gut microbes of mice with a lean phenotype than in those with an obese phenotype. Ruminococcaceae_UCG-013 was identified as the most significant biomarker for alleviating obesity by random forest analysis. In a correlation analysis of serum parameters and body weight, Ruminococcaceae_UCG-013 was positively associated with serum HDL-C levels and negatively associated with serum TC, TG, and LDL-C levels. To conclude, Ruminococcaceae_UCG-013 was identified as a novel microbiome biomarker for obesity resistance, which may serve as a basis for understanding the critical gut microbes responsible for obesity resistance. Ruminococcaceae_UCG-013 may serve as a target for microbiome-based diagnoses and treatments in the future.
Collapse
|
83
|
Lahtinen P, Juuti A, Luostarinen M, Niskanen L, Liukkonen T, Tillonen J, Kössi J, Ilvesmäki V, Viljakka M, Satokari R, Arkkila P. Effectiveness of Fecal Microbiota Transplantation for Weight Loss in Patients With Obesity Undergoing Bariatric Surgery: A Randomized Clinical Trial. JAMA Netw Open 2022; 5:e2247226. [PMID: 36525272 PMCID: PMC9856235 DOI: 10.1001/jamanetworkopen.2022.47226] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
IMPORTANCE Severe obesity is a major health concern. However, a few patients remain resistant to bariatric surgery and other treatments. Animal studies suggest that weight may be altered by fecal microbiota transplantation (FMT) from a lean donor. OBJECTIVE To determine whether FMT from a lean donor reduces body weight and further improves the results of bariatric surgery. DESIGN, SETTING, AND PARTICIPANTS This double-blinded, placebo-controlled, multicenter, randomized clinical trial was conducted in 2018 to 2021 among adult individuals with severe obesity treated at 2 bariatric surgery centers in Finland and included 18 months of follow-up. Patients eligible for bariatric surgery were recruited for the study. Data were analyzed from March 2021 to May 2022. INTERVENTIONS FMT from a lean donor or from the patient (autologous placebo) was administered by gastroscopy into the duodenum. Bariatric surgery was performed 6 months after the baseline intervention using laparoscopic Roux-en-Y gastric bypass (LRYGB) or laparoscopic sleeve gastrectomy (LSG). MAIN OUTCOMES AND MEASURES The main outcome was weight reduction measured as the percentage of total weight loss (TWL). RESULTS Forty-one patients were recruited to participate in the study and were included in the final analysis (29 women [71.1%]; mean [SD] age, 48.7 [8.7] years; mean [SD] body mass index, 42.5 [6.0]). A total of 21 patients received FMT from a lean donor, and 20 received an autologous placebo. Six months after FMT, 34 patients underwent LRYGB and 4 underwent LSG. Thirty-four patients (82.9%) attended the last visit 18 months after the baseline visit. The percentage of TWL at 6 months was 4.8% (95% CI, 2.7% to 7.0%; P < .001) in the FMT group and 4.6% (95% CI, 1.5% to 7.6%; P = .006) in the placebo group, but no difference was observed between the groups. At 18 months from the baseline (ie, 12 months after surgery), the percentage of TWL was 25.3% (95% CI, 19.5 to 31.1; P < .001) in the FMT group and 25.2% (95% CI, 20.2 to 30.3; P < .001) in the placebo group; however, no difference was observed between the groups. CONCLUSIONS AND RELEVANCE FMT did not affect presurgical and postsurgical weight loss. Further studies are needed to elucidate the possible role of FMT in obesity. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03391817.
Collapse
Affiliation(s)
- Perttu Lahtinen
- Department of Gastroenterology, Päijät-Häme Central Hospital, Lahti, Finland
| | - Anne Juuti
- Department of Gastrointestinal Surgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Markku Luostarinen
- Department of Gastrointestinal Surgery, Päijät-Häme Central Hospital, Lahti, Finland
| | - Leo Niskanen
- Department of Endocrinology, Päijät-Häme Central Hospital, Lahti, Finland
| | - Tarja Liukkonen
- Department of Nutrition, Päijät-Häme Central Hospital, Lahti, Finland
| | - Jyrki Tillonen
- Department of Gastroenterology, Päijät-Häme Central Hospital, Lahti, Finland
| | - Jyrki Kössi
- Department of Gastrointestinal Surgery, Päijät-Häme Central Hospital, Lahti, Finland
| | - Vesa Ilvesmäki
- Department of Endocrinology, Päijät-Häme Central Hospital, Lahti, Finland
| | - Mikko Viljakka
- Department of Gastrointestinal Surgery, Päijät-Häme Central Hospital, Lahti, Finland
| | - Reetta Satokari
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Perttu Arkkila
- Department of Gastroenterology, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
84
|
Belda E, Voland L, Tremaroli V, Falony G, Adriouch S, Assmann KE, Prifti E, Aron-Wisnewsky J, Debédat J, Le Roy T, Nielsen T, Amouyal C, André S, Andreelli F, Blüher M, Chakaroun R, Chilloux J, Coelho LP, Dao MC, Das P, Fellahi S, Forslund S, Galleron N, Hansen TH, Holmes B, Ji B, Krogh Pedersen H, Le P, Le Chatelier E, Lewinter C, Mannerås-Holm L, Marquet F, Myridakis A, Pelloux V, Pons N, Quinquis B, Rouault C, Roume H, Salem JE, Sokolovska N, Søndertoft NB, Touch S, Vieira-Silva S, Galan P, Holst J, Gøtze JP, Køber L, Vestergaard H, Hansen T, Hercberg S, Oppert JM, Nielsen J, Letunic I, Dumas ME, Stumvoll M, Pedersen OB, Bork P, Ehrlich SD, Zucker JD, Bäckhed F, Raes J, Clément K. Impairment of gut microbial biotin metabolism and host biotin status in severe obesity: effect of biotin and prebiotic supplementation on improved metabolism. Gut 2022; 71:2463-2480. [PMID: 35017197 PMCID: PMC9664128 DOI: 10.1136/gutjnl-2021-325753] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/15/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Gut microbiota is a key component in obesity and type 2 diabetes, yet mechanisms and metabolites central to this interaction remain unclear. We examined the human gut microbiome's functional composition in healthy metabolic state and the most severe states of obesity and type 2 diabetes within the MetaCardis cohort. We focused on the role of B vitamins and B7/B8 biotin for regulation of host metabolic state, as these vitamins influence both microbial function and host metabolism and inflammation. DESIGN We performed metagenomic analyses in 1545 subjects from the MetaCardis cohorts and different murine experiments, including germ-free and antibiotic treated animals, faecal microbiota transfer, bariatric surgery and supplementation with biotin and prebiotics in mice. RESULTS Severe obesity is associated with an absolute deficiency in bacterial biotin producers and transporters, whose abundances correlate with host metabolic and inflammatory phenotypes. We found suboptimal circulating biotin levels in severe obesity and altered expression of biotin-associated genes in human adipose tissue. In mice, the absence or depletion of gut microbiota by antibiotics confirmed the microbial contribution to host biotin levels. Bariatric surgery, which improves metabolism and inflammation, associates with increased bacterial biotin producers and improved host systemic biotin in humans and mice. Finally, supplementing high-fat diet-fed mice with fructo-oligosaccharides and biotin improves not only the microbiome diversity, but also the potential of bacterial production of biotin and B vitamins, while limiting weight gain and glycaemic deterioration. CONCLUSION Strategies combining biotin and prebiotic supplementation could help prevent the deterioration of metabolic states in severe obesity. TRIAL REGISTRATION NUMBER NCT02059538.
Collapse
Affiliation(s)
- Eugeni Belda
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France,Integrative Phenomics, Paris, France
| | - Lise Voland
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Valentina Tremaroli
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Goteborg, Sweden
| | - Gwen Falony
- Center for Microbiology, VIB, Leuven, Belgium,Vlaams Instituut voor Biotechnologie, VIB-KU Leuven, Heverlee, Flanders, Belgium
| | - Solia Adriouch
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Karen E Assmann
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Edi Prifti
- Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, Sorbonne Université, IRD, Bondy, France
| | - Judith Aron-Wisnewsky
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France,Department of Nutrition, Pitié-Salpêtrière Hospital, Assistance Publique - Hopitaux de Paris, Paris, France
| | - Jean Debédat
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Tiphaine Le Roy
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Trine Nielsen
- Center for Basic Metabolic Research, Novo Nordisk Foundation, University of Copenhagen, Kobenhavn, Denmark
| | - Chloé Amouyal
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Sébastien André
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Fabrizio Andreelli
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Matthias Blüher
- Medical Department III - Endocrinology, Nephrology, Rheumatology - Medical Center, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Rima Chakaroun
- Medical Department III - Endocrinology, Nephrology, Rheumatology - Medical Center, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Julien Chilloux
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London Faculty of Medicine, London, UK
| | - Luis Pedro Coelho
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Maria Carlota Dao
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Promi Das
- Department of Biology, Chalmers University of Technology, Goteborg, Sweden
| | - Soraya Fellahi
- Functional Unit, Biochemistry and Hormonology Department, enon Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France,Saint-Antoine Research Center, Sorbonne Université, INSERM, Paris, France
| | - Sofia Forslund
- Max Delbrück Center for Molecular Medicine, MDC, Berlin-Buch, Germany
| | - Nathalie Galleron
- MetaGenoPolis, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Tue H Hansen
- Center for Basic Metabolic Research, Novo Nordisk Foundation, University of Copenhagen, Kobenhavn, Denmark
| | - Bridget Holmes
- Centre Daniel Carasso, Global Nutrition Department, Danone Nutricia Research, Palaiseau, France
| | - Boyang Ji
- Department of Biology, Chalmers University of Technology, Goteborg, Sweden
| | - Helle Krogh Pedersen
- Center for Basic Metabolic Research, Novo Nordisk Foundation, University of Copenhagen, Kobenhavn, Denmark
| | - Phuong Le
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | | | | | - Louise Mannerås-Holm
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Goteborg, Sweden
| | - Florian Marquet
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Antonis Myridakis
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Veronique Pelloux
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Nicolas Pons
- MetaGenoPolis, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Benoit Quinquis
- MetaGenoPolis, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Christine Rouault
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Hugo Roume
- MetaGenoPolis, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Joe-Elie Salem
- Department of Pharmacology and CIC-1421, Assistance Publique-Hôpitaux de Paris, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Nataliya Sokolovska
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Nadja B Søndertoft
- Center for Basic Metabolic Research, Novo Nordisk Foundation, University of Copenhagen, Kobenhavn, Denmark
| | - Sothea Touch
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Sara Vieira-Silva
- Center for Microbiology, VIB, Leuven, Belgium,Vlaams Instituut voor Biotechnologie, VIB-KU Leuven, Heverlee, Flanders, Belgium
| | | | - Pilar Galan
- Nutritional Epidemiology Unit, INSERM, INRAE, CNAM, Paris 13 University, Bobigny, France
| | - Jens Holst
- Center for Basic Metabolic Research, Novo Nordisk Foundation, University of Copenhagen, Kobenhavn, Denmark
| | - Jens Peter Gøtze
- Department of Clinical Biochemistry, Rigshospitalet, Kobenhavn, Denmark
| | - Lars Køber
- Department of Cardiology, Rigshospitalet, Kobenhavn, Denmark
| | - Henrik Vestergaard
- Center for Basic Metabolic Research, Novo Nordisk Foundation, University of Copenhagen, Kobenhavn, Denmark,Steno Diabetes Center, Copenhagen, Gentofte, Denmark
| | - Torben Hansen
- Center for Basic Metabolic Research, Novo Nordisk Foundation, University of Copenhagen, Kobenhavn, Denmark,Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Serge Hercberg
- Nutritional Epidemiology Unit, INSERM, INRAE, CNAM, Paris 13 University, Bobigny, France
| | - Jean-Michel Oppert
- Department of Nutrition, Pitié-Salpêtrière Hospital, Assistance Publique - Hopitaux de Paris, Paris, France
| | - Jens Nielsen
- Department of Biology, Chalmers University of Technology, Goteborg, Sweden
| | | | - Marc-Emmanuel Dumas
- Department of Surgery and Cancer, Section of Computational and Systems Medicine, Imperial College London, London, UK,National Heart & Lung Institute, Section of Genomic & Environmental Medicine, Imperial College London, London, UK
| | - Michael Stumvoll
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, University of Leipzig Faculty of Medicine, Leipzig, Germany
| | - Oluf Borbye Pedersen
- Center for Basic Metabolic Research, Novo Nordisk Foundation, University of Copenhagen, Kobenhavn, Denmark
| | - Peer Bork
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Stanislav Dusko Ehrlich
- MetaGenoPolis, Université Paris-Saclay, INRAE, Jouy-en-Josas, France,Center for Host Microbiome Interactions, King's College London Dental Institute, London, UK
| | - Jean-Daniel Zucker
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France,Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, Sorbonne Université, IRD, Bondy, France
| | - Fredrik Bäckhed
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Goteborg, Sweden
| | - Jeroen Raes
- Center for Microbiology, VIB, Leuven, Belgium,Vlaams Instituut voor Biotechnologie, VIB-KU Leuven, Heverlee, Flanders, Belgium
| | - Karine Clément
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France .,Department of Nutrition, Pitié-Salpêtrière Hospital, Assistance Publique - Hopitaux de Paris, Paris, France
| |
Collapse
|
85
|
Affiliation(s)
- Yolanda Sanz
- Microbial Ecology, Nutrition and Health, IATA-CSIC, Valencia, Spain
| | - Marta Olivares
- Microbial Ecology, Nutrition and Health, IATA-CSIC, Valencia, Spain
| |
Collapse
|
86
|
Santos-Paulo S, Costello SP, Forster SC, Travis SP, Bryant RV. The gut microbiota as a therapeutic target for obesity: a scoping review. Nutr Res Rev 2022; 35:207-220. [PMID: 34100344 DOI: 10.1017/s0954422421000160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
There is mounting evidence that microbiome composition is intimately and dynamically connected with host energy balance and metabolism. The gut microbiome is emerging as a novel target for counteracting the chronically positive energy balance in obesity, a disease of pandemic scale which contributes to >70 % of premature deaths. This scoping review explores the potential for therapeutic modulation of gut microbiota as a means of prevention and/or treatment of obesity and obesity-associated metabolic disorders. The evidence base for interventional approaches which have been shown to affect the composition and function of the intestinal microbiome is summarised, including dietary strategies, oral probiotic treatment, faecal microbiota transplantation and bariatric surgery. Evidence in this field is still largely derived from preclinical rodent models, but interventional studies in obese populations have demonstrated metabolic improvements effected by microbiome-modulating treatments such as faecal microbiota transplantation, as well as drawing attention to the unappreciated role of microbiome modulation in well-established anti-obesity interventions, such as dietary change or bariatric surgery. The complex relationship between microbiome composition and host metabolism will take time to unravel, but microbiome modulation is likely to provide a novel strategy in the limited armamentarium of effective treatments for obesity.
Collapse
Affiliation(s)
- Stephanie Santos-Paulo
- University of Oxford, Medical Sciences Division, John Radcliffe Hospital, Oxford, United Kingdom
| | - Samuel P Costello
- Queen Elizabeth Hospital, Department of Gastroenterology, Adelaide, SA, Australia
- The University of Adelaide Faculty of Health Sciences, School of Medicine, Adelaide, SA, Australia
| | - Samuel C Forster
- Hudson Institute of Medical Research, Centre for Innate Immunity and Infectious Diseases, Clayton, VIC, Australia
- Monash University, Department of Molecular and Translational Sciences, Clayton, VIC, Australia
| | - Simon P Travis
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Nuffield Department of Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Robert V Bryant
- Queen Elizabeth Hospital, Department of Gastroenterology, Adelaide, SA, Australia
- The University of Adelaide Faculty of Health Sciences, School of Medicine, Adelaide, SA, Australia
| |
Collapse
|
87
|
Mayneris-Perxachs J, Moreno-Navarrete JM, Fernández-Real JM. The role of iron in host-microbiota crosstalk and its effects on systemic glucose metabolism. Nat Rev Endocrinol 2022; 18:683-698. [PMID: 35986176 DOI: 10.1038/s41574-022-00721-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 11/09/2022]
Abstract
Iron is critical for the appearance and maintenance of life on Earth. Almost all organisms compete or cooperate for iron acquisition, demonstrating the importance of this essential element for the biological and physiological processes that are key for the preservation of metabolic homeostasis. In humans and other mammals, the bidirectional interactions between the bacterial component of the gut microbiota and the host for iron acquisition shape both host and microbiota metabolism. Bacterial functions influence host iron absorption, whereas the intake of iron, iron deficiency and iron excess in the host affect bacterial biodiversity, taxonomy and function, resulting in changes in bacterial virulence. These consequences of the host-microbial crosstalk affect systemic levels of iron, its storage in different tissues and host glucose metabolism. At the interface between the host and the microbiota, alterations in the host innate immune system and in circulating soluble factors that regulate iron (that is, hepcidin, lipocalin 2 and lactoferrin) are associated with metabolic disease. In fact, patients with obesity-associated metabolic dysfunction and insulin resistance exhibit dysregulation in iron homeostasis and alterations in their gut microbiota profile. From an evolutionary point of view, the pursuit of two important nutrients - glucose and iron - has probably driven human evolution towards the most efficient pathways and genes for human survival and health.
Collapse
Affiliation(s)
- Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.
- Department of Medicine, Universitat de Girona, Girona, Spain.
| |
Collapse
|
88
|
Is bariatric surgery improving mitochondrial function in the renal cells of patients with obesity-induced kidney disease? Pharmacol Res 2022; 185:106488. [DOI: 10.1016/j.phrs.2022.106488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022]
|
89
|
Muratore E, Leardini D, Baccelli F, Venturelli F, Prete A, Masetti R. Nutritional modulation of the gut microbiome in allogeneic hematopoietic stem cell transplantation recipients. Front Nutr 2022; 9:993668. [PMID: 36337625 PMCID: PMC9632163 DOI: 10.3389/fnut.2022.993668] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) represents a potentially curative strategy for many oncological and non-oncological diseases, but it is associated with marked morbidity and mortality. The disruption of gut microbiota (GM) eubiosis has been linked to major allo-HSCT complications, including infections and acute graft vs. host disease (aGvHD), and correlates with mortality. This increasing knowledge on the role of the GM in the allo-HSCT procedure has led to fascinating ideas for modulating the intestinal ecosystem in order to improve clinical outcomes. Nutritional strategies, either by changing the route of nutritional supplementation or by administering specific molecules, are increasingly being considered as cost- and risk-effective methods of modulating the GM. Nutritional support has also emerged in the past several years as a key feature in supportive care for allo-HSCT recipients, and deterioration of nutritional status is associated with decreased overall survival and higher complication rates during treatment. Herein we provide a complete overview focused on nutritional modulation of the GM in allo-HSCT recipients. We address how pre transplant diet could affect GM composition and its ability to withstand the upsetting events occurring during transplantation. We also provide a complete overview on the influence of the route of nutritional administration on the intestinal ecosystem, with a particular focus on the comparison between enteral and parenteral nutrition (PN). Moreover, as mounting evidence are showing how specific components of post-transplant diet, such as lactose, could drastically shape the GM, we will also summarize the role of prebiotic supplementation in the modulation of the intestinal flora and in allo-HSCT outcomes.
Collapse
Affiliation(s)
- Edoardo Muratore
- Pediatric Oncology and Hematology “Lalla Seràgnoli,” IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Davide Leardini
- Pediatric Oncology and Hematology “Lalla Seràgnoli,” IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Baccelli
- Pediatric Oncology and Hematology “Lalla Seràgnoli,” IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- *Correspondence: Francesco Baccelli,
| | - Francesco Venturelli
- Pediatric Oncology and Hematology “Lalla Seràgnoli,” IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Arcangelo Prete
- Pediatric Oncology and Hematology “Lalla Seràgnoli,” IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Riccardo Masetti
- Pediatric Oncology and Hematology “Lalla Seràgnoli,” IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| |
Collapse
|
90
|
Sarmiento-Andrade Y, Suárez R, Quintero B, Garrochamba K, Chapela SP. Gut microbiota and obesity: New insights. Front Nutr 2022; 9:1018212. [PMID: 36313072 PMCID: PMC9614660 DOI: 10.3389/fnut.2022.1018212] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Obesity is a pathology whose incidence is increasing throughout the world. There are many pathologies associated with obesity. In recent years, the influence of the microbiota on both health and pathological states has been known. There is growing information related to changes in the microbiome and obesity, as well as its associated pathologies. Changes associated with age, exercise, and weight changes have been described. In addition, metabolic changes associated with the microbiota, bariatric surgery, and fecal matter transplantation are described. In this review, we summarize the biology and physiology of microbiota in obese patients, its role in the pathophysiology of several disorders associated, and the emerging therapeutic applications of prebiotics, probiotics, and fecal microbiota transplantation.
Collapse
Affiliation(s)
| | - Rosario Suárez
- School of Medicine, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Beatriz Quintero
- School of Medicine, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Kleber Garrochamba
- Department of Health Sciences, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Sebastián Pablo Chapela
- Departamento de Bioquímica Humana, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Nutritional Support Team, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
91
|
Gibiino G, Binda C, Cristofaro L, Sbrancia M, Coluccio C, Petraroli C, Jung CFM, Cucchetti A, Cavaliere D, Ercolani G, Sambri V, Fabbri C. Dysbiosis and Gastrointestinal Surgery: Current Insights and Future Research. Biomedicines 2022; 10:2532. [PMID: 36289792 PMCID: PMC9599064 DOI: 10.3390/biomedicines10102532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Surgery of the gastrointestinal tract can result in deep changes among the gut commensals in terms of abundance, function and health consequences. Elective colorectal surgery can occur for neoplastic or inflammatory bowel disease; in these settings, microbiota imbalance is described as a preoperative condition, and it is linked to post-operative complications, as well. The study of bariatric patients led to several insights into the role of gut microbiota in obesity and after major surgical injuries. Preoperative dysbiosis and post-surgical microbiota reassessment are still poorly understood, and they could become a key part of preventing post-surgical complications. In the current review, we outline the most recent literature regarding agents and molecular pathways involved in pre- and post-operative dysbiosis in patients undergoing gastrointestinal surgery. Defining the standard method for microbiota assessment in these patients could set up the future approach and clinical practice.
Collapse
Affiliation(s)
- Giulia Gibiino
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
| | - Cecilia Binda
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
| | - Ludovica Cristofaro
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
- Department of Medical and Surgical Sciences—DIMEC, Alma Mater Studiorum—University of Bologna, 40138 Bologna, Italy
| | - Monica Sbrancia
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
| | - Chiara Coluccio
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
| | - Chiara Petraroli
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
| | - Carlo Felix Maria Jung
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
| | - Alessandro Cucchetti
- Department of Medical and Surgical Sciences—DIMEC, Alma Mater Studiorum—University of Bologna, 40138 Bologna, Italy
- General and Oncologic Surgery, Morgagni—Pierantoni Hospital, AUSL Romagna, 47121 Forlì-Cesena, Italy
| | - Davide Cavaliere
- General and Oncologic Surgery, Morgagni—Pierantoni Hospital, AUSL Romagna, 47121 Forlì-Cesena, Italy
| | - Giorgio Ercolani
- Department of Medical and Surgical Sciences—DIMEC, Alma Mater Studiorum—University of Bologna, 40138 Bologna, Italy
- General and Oncologic Surgery, Morgagni—Pierantoni Hospital, AUSL Romagna, 47121 Forlì-Cesena, Italy
| | - Vittorio Sambri
- Department of Medical and Surgical Sciences—DIMEC, Alma Mater Studiorum—University of Bologna, 40138 Bologna, Italy
- Microbiology Unit, Hub Laboratory, AUSL della Romagna, 47121 Forlì-Cesena, Italy
| | - Carlo Fabbri
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
| |
Collapse
|
92
|
Penney NC, Yeung DKT, Garcia-Perez I, Posma JM, Kopytek A, Garratt B, Ashrafian H, Frost G, Marchesi JR, Purkayastha S, Hoyles L, Darzi A, Holmes E. Multi-omic phenotyping reveals host-microbe responses to bariatric surgery, glycaemic control and obesity. COMMUNICATIONS MEDICINE 2022; 2:127. [PMID: 36217535 PMCID: PMC9546886 DOI: 10.1038/s43856-022-00185-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 09/12/2022] [Indexed: 11/05/2022] Open
Abstract
Background Resolution of type 2 diabetes (T2D) is common following bariatric surgery, particularly Roux-en-Y gastric bypass. However, the underlying mechanisms have not been fully elucidated. Methods To address this we compare the integrated serum, urine and faecal metabolic profiles of participants with obesity ± T2D (n = 80, T2D = 42) with participants who underwent Roux-en-Y gastric bypass or sleeve gastrectomy (pre and 3-months post-surgery; n = 27), taking diet into account. We co-model these data with shotgun metagenomic profiles of the gut microbiota to provide a comprehensive atlas of host-gut microbe responses to bariatric surgery, weight-loss and glycaemic control at the systems level. Results Here we show that bariatric surgery reverses several disrupted pathways characteristic of T2D. The differential metabolite set representative of bariatric surgery overlaps with both diabetes (19.3% commonality) and body mass index (18.6% commonality). However, the percentage overlap between diabetes and body mass index is minimal (4.0% commonality), consistent with weight-independent mechanisms of T2D resolution. The gut microbiota is more strongly correlated to body mass index than T2D, although we identify some pathways such as amino acid metabolism that correlate with changes to the gut microbiota and which influence glycaemic control. Conclusion We identify multi-omic signatures associated with responses to surgery, body mass index, and glycaemic control. Improved understanding of gut microbiota - host co-metabolism may lead to novel therapies for weight-loss or diabetes. However, further experiments are required to provide mechanistic insight into the role of the gut microbiota in host metabolism and establish proof of causality.
Collapse
Affiliation(s)
- Nicholas C. Penney
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W2 1NY UK
| | - Derek K. T. Yeung
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W2 1NY UK
| | - Isabel Garcia-Perez
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
| | - Joram M. Posma
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
- Health Data Research UK, London, NW1 2BE UK
| | - Aleksandra Kopytek
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
| | - Bethany Garratt
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W2 1NY UK
| | - Hutan Ashrafian
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W2 1NY UK
| | - Gary Frost
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
| | - Julian R. Marchesi
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
| | - Sanjay Purkayastha
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W2 1NY UK
| | - Lesley Hoyles
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
- Department of Biosciences, Nottingham Trent University, Nottingham, NG11 8NS UK
| | - Ara Darzi
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W2 1NY UK
- Institute of Global Health Innovation, Imperial College London, London, W2 1NY UK
| | - Elaine Holmes
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
- Centre for Computational & Systems Medicine, Health Futures Institute, Murdoch University, Perth, WA 6150 Australia
| |
Collapse
|
93
|
Palmnäs-Bédard MSA, Costabile G, Vetrani C, Åberg S, Hjalmarsson Y, Dicksved J, Riccardi G, Landberg R. The human gut microbiota and glucose metabolism: a scoping review of key bacteria and the potential role of SCFAs. Am J Clin Nutr 2022; 116:862-874. [PMID: 36026526 PMCID: PMC9535511 DOI: 10.1093/ajcn/nqac217] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/16/2022] [Indexed: 01/26/2023] Open
Abstract
The gut microbiota plays a fundamental role in human nutrition and metabolism and may have direct implications for type 2 diabetes and associated preconditions. An improved understanding of relations between human gut microbiota and glucose metabolism could lead to novel opportunities for type 2 diabetes prevention, but human observational studies reporting on such findings have not been extensively reviewed. Here, we review the literature on associations between gut microbiota and markers and stages of glucose dysregulation and insulin resistance in healthy adults and in adults with metabolic disease and risk factors. We present the current evidence for identified key bacteria and their potential roles in glucose metabolism independent of overweight, obesity, and metabolic drugs. We provide support for SCFAs mediating such effects and discuss the role of diet, as well as metabolites derived from diet and gut microbiota interactions. From 5983 initially identified PubMed records, 45 original studies were eligible and reviewed. α Diversity and 45 bacterial taxa were associated with selected outcomes. Six taxa were most frequently associated with glucose metabolism: Akkermansia muciniphila, Bifidobacterium longum, Clostridium leptum group, Faecalibacterium prausnitzii, and Faecalibacterium (inversely associated) and Dorea (directly associated). For Dorea and A. muciniphila, associations were independent of metabolic drugs and body measures. For A. muciniphila and F. prausnitzii, limited evidence supported SCFA mediation of potential effects on glucose metabolism. We conclude that observational studies applying metagenomics sequencing to identify species-level relations are warranted, as are studies accounting for confounding factors and investigating SCFA and postprandial glucose metabolism. Such advances in the field will, together with mechanistic and prospective studies and investigations into diet-gut microbiota interactions, have the potential to bring critical insight into roles of gut microbiota and microbial metabolites in human glucose metabolism and to contribute toward the development of novel prevention strategies for type 2 diabetes, including precision nutrition.
Collapse
Affiliation(s)
- Marie S A Palmnäs-Bédard
- Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Giuseppina Costabile
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Claudia Vetrani
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Sebastian Åberg
- Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Yommine Hjalmarsson
- Department of Communication and Learning in Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Johan Dicksved
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gabriele Riccardi
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Rikard Landberg
- Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
94
|
Chen G, Peng Y, Huang Y, Xie M, Dai Z, Cai H, Dong W, Xu W, Xie Z, Chen D, Fan X, Zhou W, Kan X, Yang T, Chen C, Sun Y, Zeng X, Liu Z. Fluoride induced leaky gut and bloom of Erysipelatoclostridium ramosum mediate the exacerbation of obesity in high-fat-diet fed mice. J Adv Res 2022:S2090-1232(22)00239-9. [PMID: 36341987 PMCID: PMC10403698 DOI: 10.1016/j.jare.2022.10.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/18/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Fluoride is widely presented in drinking water and foods. A strong relation between fluoride exposure and obesity has been reported. However, the potential mechanisms on fluoride-induced obesity remain unexplored. Objectives and methods The effects of fluoride on the obesity were investigated using mice model. Furthermore, the role of gut homeostasis in exacerbation of the obesity induced by fluoride was evaluated. Results The results showed that fluoride alone did not induce obesity in normal diet (ND) fed mice, whereas, it could trigger exacerbation of obesity in high-fat diet (HFD) fed mice. Fluoride impaired intestinal barrier and activated Toll-like receptor 4 (TLR4) signaling to induce obesity, which was further verified in TLR4-/- mice. Furthermore, fluoride could deteriorate the gut microbiota in HFD mice. The fecal microbiota transplantation from fluoride-induced mice was sufficient to induce obesity, while the exacerbation of obesity by fluoride was blocked upon gut microbiota depletion. The fluoride-induced bloom of Erysipelatoclostridium ramosum was responsible for exacerbation of obesity. In addition, a potential strategy for prevention of fluoride-induced obesity was proposed by intervention with polysaccharides from Fuzhuan brick tea. Conclusion Overall, these results provide the first evidence of a comprehensive cross-talk mechanism between fluoride and obesity in HFD fed mice, which is mediated by gut microbiota and intestinal barrier. E. ramosum was identified as a crucial mediator of fluoride induced obesity, which could be explored as potential target for prevention and treatment of obesity with exciting translational value.
Collapse
|
95
|
Li HY, Huang SY, Xiong RG, Wu SX, Zhou DD, Saimaiti A, Luo M, Zhu HL, Li HB. Anti-Obesity Effect of Theabrownin from Dark Tea in C57BL/6J Mice Fed a High-Fat Diet by Metabolic Profiles through Gut Microbiota Using Untargeted Metabolomics. Foods 2022; 11:foods11193000. [PMID: 36230076 PMCID: PMC9564053 DOI: 10.3390/foods11193000] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
The epidemic of obesity is a serious public health problem. In this study, the effect of theabrownin from dark tea on obesity was evaluated by biochemical tests and nuclear magnetic resonance in C57BL/6J mice fed a high-fat diet. A mixture of antibiotics was used to deplete gut microbiota and then fecal microbiota transplant was used to restore gut microbiota. Untargeted metabolomics was used to reveal the effects of theabrownin on metabolic profiles through gut microbiota. The results showed that theabrownin significantly reduced body weight gain (83.0%) and body fat accumulation (30.29%) without affecting appetite. Also, theabrownin promoted lipid clearance with a hepatoprotective effect. The extra antibiotics disrupted the regulation of theabrownin on weight control while fecal microbiota transplant restored the beneficial regulation. That is, gut microbiota was important for theabrownin to reduce body weight gain. The untargeted metabolomics indicated that 18 metabolites were related to the anti-obesity effect of theabrownin mediated by gut microbiota. Furthermore, phenylalanine metabolism, histidine metabolism, as well as protein digestion and absorption pathway played a role in the anti-obesity of theabrownin. Our findings suggested that theabrownin significantly alleviated obesity via gut microbiota-related metabolic pathways, and theabrownin could be used for the prevention and treatment of obesity.
Collapse
|
96
|
Wang C, Wang Y, Yang H, Tian Z, Zhu M, Sha X, Ran J, Li L. Uygur type 2 diabetes patient fecal microbiota transplantation disrupts blood glucose and bile acid levels by changing the ability of the intestinal flora to metabolize bile acids in C57BL/6 mice. BMC Endocr Disord 2022; 22:236. [PMID: 36151544 PMCID: PMC9503279 DOI: 10.1186/s12902-022-01155-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Our epidemiological study showed that the intestinal flora of Uygur T2DM patients differed from that of normal glucose-tolerant people. However, whether the Uygur T2DM fecal microbiota transplantation could reproduce the glucose metabolism disorder and the mechanism behind has not been reported. This study was designed to explore whether Uygur T2DM fecal microbiota transplantation could reproduce the glucose metabolism disorder and its mechanism. METHODS The normal diet and high fat diet group consisted of C57BL/6 mice orally administered 0.2 mL sterile normal saline. For the MT (microbiota transplantation) intervention groups, C57BL/6 mice received oral 0.2 mL faecal microorganisms from Uygur T2DM. All mice were treated daily for 8 weeks and Blood glucose levels of mice were detected. Mice faecal DNA samples were sequenced and quantified using 16S rDNA gene sequencing. Then we detected the ability of the intestinal flora to metabolize bile acids (BAs) through co-culture of fecal bacteria and BAs. BA levels in plasma were determined by UPLC-MS. Further BA receptors and glucagon-like peptide-1 (GLP-1) expression levels were determined with RT-q PCR and western blotting. RESULTS MT impaired insulin and oral glucose tolerance. Deoxycholic acid increased and tauro-β-muricholic acid and the non-12-OH BA:12-OH BA ratio decreased in plasma. MT improved the ability of intestinal flora to produce deoxycholic acid. Besides, the vitamin D receptor in the liver and ileum and GLP-1 in the ileum decreased significantly. CONCLUSIONS Uygur T2DM fecal microbiota transplantation disrupts glucose metabolism by changing the ability of intestinal flora to metabolize BAs and the BAs/GLP-1 pathway.
Collapse
Affiliation(s)
- Chanyue Wang
- Pharmacological Department, Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Ye Wang
- Pharmacological Department, Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hao Yang
- Pharmacological Department, Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zirun Tian
- Pharmacological Department, Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Manli Zhu
- Pharmacological Department, Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiaoting Sha
- Pharmacological Department, Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Ju Ran
- Pharmacological Department, Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Linlin Li
- Pharmacological Department, Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, China.
- Key Laboratory of Active Components of Xinjiang Natural Medicine and Drug Release Technology, Urumqi, Xinjiang, China.
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia of Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
97
|
Wang N, Chen L, Yi K, Zhang B, Li C, Zhou X. The effects of microbiota on reproductive health: A review. Crit Rev Food Sci Nutr 2022; 64:1486-1507. [PMID: 36066460 DOI: 10.1080/10408398.2022.2117784] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Reproductive issues are becoming an increasing global problem. There is increasing interest in the relationship between microbiota and reproductive health. Stable microbiota communities exist in the gut, reproductive tract, uterus, testes, and semen. Various effects (e.g., epigenetic modifications, nervous system, metabolism) of dysbiosis in the microbiota can impair gamete quality; interfere with zygote formation, embryo implantation, and embryo development; and increase disease susceptibility, thus adversely impacting reproductive capacity and pregnancy. The maintenance of a healthy microbiota can protect the host from pathogens, increase reproductive potential, and reduce the rates of adverse pregnancy outcomes. In conclusion, this review discusses microbiota in the male and female reproductive systems of multiple animal species. It explores the effects and mechanisms of microbiota on reproduction, factors that influence microbiota composition, and applications of microbiota in reproductive disorder treatment and detection. The findings support novel approaches for managing reproductive diseases through microbiota improvement and monitoring. In addition, it will stimulate further systematic explorations of microbiota-mediated effects on reproduction.
Collapse
Affiliation(s)
- Nan Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Lu Chen
- College of Animal Sciences, Jilin University, Changchun, China
| | - Kangle Yi
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Baizhong Zhang
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, China
| |
Collapse
|
98
|
Salazar N, Ponce-Alonso M, Garriga M, Sánchez-Carrillo S, Hernández-Barranco AM, Redruello B, Fernández M, Botella-Carretero JI, Vega-Piñero B, Galeano J, Zamora J, Ferrer M, de Los Reyes-Gavilán CG, Del Campo R. Fecal Metabolome and Bacterial Composition in Severe Obesity: Impact of Diet and Bariatric Surgery. Gut Microbes 2022; 14:2106102. [PMID: 35903014 PMCID: PMC9341356 DOI: 10.1080/19490976.2022.2106102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The aim of this study was to monitor the impact of a preoperative low-calorie diet and bariatric surgery on the bacterial gut microbiota composition and functionality in severe obesity and to compare sleeve gastrectomy (SG) versus Roux-en-Y gastric bypass (RYGB). The study also aimed to incorporate big data analysis for the omics results and machine learning by a Lasso-based analysis to detect the potential markers for excess weight loss. Forty patients who underwent bariatric surgery were recruited (14 underwent SG, and 26 underwent RYGB). Each participant contributed 4 fecal samples (baseline, post-diet, 1 month after surgery and 3 months after surgery). The bacterial composition was determined by 16S rDNA massive sequencing using MiSeq (Illumina). Metabolic signatures associated to fecal concentrations of short-chain fatty acids, amino acids, biogenic amines, gamma-aminobutyric acid and ammonium were determined by gas and liquid chromatography. Orange 3 software was employed to correlate the variables, and a Lasso analysis was employed to predict the weight loss at the baseline samples. A correlation between Bacillota (formerly Firmicutes) abundance and excess weight was observed only for the highest body mass indexes. The low-calorie diet had little impact on composition and targeted metabolic activity. RYGB had a deeper impact on bacterial composition and putrefactive metabolism than SG, although the excess weight loss was comparable in the two groups. Significantly higher ammonium concentrations were detected in the feces of the RYGB group. We detected individual signatures of composition and functionality, rather than a gut microbiota characteristic of severe obesity, with opposing tendencies for almost all measured variables in the two surgical approaches. The gut microbiota of the baseline samples was not useful for predicting excess weight loss after the bariatric process.
Collapse
Affiliation(s)
- Nuria Salazar
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa & Diet, Microbiota and Health Group. Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Manuel Ponce-Alonso
- Department of Microbiology, Servicio de Microbiología. Hospital Universitario Ramón y Cajal, & Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), & CIBERINFECT, Madrid, Spain
| | - María Garriga
- Servicio de Endocrinología y Nutrición, Hospital Universitario Ramón y Cajal, & Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), Madrid, Spain
| | | | | | - Begoña Redruello
- Servicios Científico-Técnicos, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
| | - María Fernández
- Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa & Molecular Microbiology Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| | - José Ignacio Botella-Carretero
- Servicio de Endocrinología y Nutrición, Hospital Universitario Ramón y Cajal, & Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), Madrid, Spain,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain,Universidad de Alcalá, Madrid, Spain
| | - Belén Vega-Piñero
- Servicio de Endocrinología y Nutrición, Hospital Universitario Ramón y Cajal, & Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), Madrid, Spain
| | - Javier Galeano
- Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, Spain
| | - Javier Zamora
- Unidad de Bioestadística Clínica, Hospital Universitario Ramón y Cajal, & Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), & CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain & Women’s Health Research Unit. Queen Mary University of London, London, UK
| | - Manuel Ferrer
- Instituto de Catálisis, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Clara G de Los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa & Diet, Microbiota and Health Group. Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain,CONTACT Clara G. de Los Reyes-Gavilán Department of Microbiology and Biochemistry of Dairy Products Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa & Diet, Microbiota and Health Group. Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Rosa Del Campo
- Department of Microbiology, Servicio de Microbiología. Hospital Universitario Ramón y Cajal, & Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), & CIBERINFECT, Madrid, Spain,Universidad Alfonso X El Sabio, Villanueva de la Cañada, Spain,Rosa del Campo Department of Microbiology, Hospital Ramon y Cajal, Madrid, Spain
| |
Collapse
|
99
|
Pais R, Aron-Wisnewsky J, Bedossa P, Ponnaiah M, Oppert JM, Siksik JM, Genser L, Charlotte F, Thabut D, Clement K, Ratziu V. Persistence of severe liver fibrosis despite substantial weight loss with bariatric surgery. Hepatology 2022; 76:456-468. [PMID: 35076966 DOI: 10.1002/hep.32358] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/26/2021] [Accepted: 01/03/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS It remains unclear to what extent and which components of advanced liver disease improve after bariatric surgery. We herein describe the histological outcome in patients with advanced NASH and its relationship with weight loss and metabolic improvement. APPROACH AND RESULTS One hundred ninety-six patients with advanced NASH underwent bariatric surgery, 66 of whom agreed to a follow-up liver biopsy at 6 ± 3 years (36 with advanced fibrosis [AF] and 30 with high activity [HA] grade without AF). Liver biopsies LBs were centrally read and histological response was defined as the disappearance of AF or HA. Bariatric surgery induced major histological improvement: 29% of patients had normal histology at follow-up biopsy; 74% had NASH resolution without fibrosis progression; and 70% had ≥1 stage fibrosis regression. However, AF persisted in 47% of patients despite NASH resolution and some degree of fibrosis reversal, only evidenced by the EPoS seven-tier staging classification. These patients had lower weight loss and reduced hypertension or diabetes remission rates. Older age and sleeve gastrectomy were the only independent predictors for persistent AF after adjustment for duration of follow-up. All HA patients had major histological improvement: 50% normal histology, 80% NASH resolution, and 86% a ≥1 grade steatosis reduction. Patients with normal liver at follow-up had the largest weight loss and metabolic improvement. Independent predictors of normal liver were amount of weight loss, high histological activity, and the absence of AF before surgery. CONCLUSIONS Although bariatric surgery successfully reverses active steatohepatitis, AF can persist for many years and is associated with lesser weight loss and metabolic improvement. Weight loss alone may not be sufficient to reverse AF.
Collapse
Affiliation(s)
- Raluca Pais
- Assistance Publique Hôpitaux De Paris, Hôpital Pitié-Salpêtrière, Paris, France.,Sorbonne Université, Paris, France.,Institute of Cardiometabolism and Nutrition, Paris, France.,Centre de Recherche Saint Antoine, INSERM UMRS_938, Paris, France
| | - Judith Aron-Wisnewsky
- Assistance Publique Hôpitaux De Paris, Hôpital Pitié-Salpêtrière, Paris, France.,Sorbonne Université, Paris, France.,CRNH Ile de France, INSERM, UMRS U1269, Nutrition and Obesities Systemic Approaches (NutriOmics), Paris, France
| | - Pierre Bedossa
- INSERM UMRS 1138 CRC, Paris, France.,LiverPat, Paris, France
| | | | - Jean-Michel Oppert
- Assistance Publique Hôpitaux De Paris, Hôpital Pitié-Salpêtrière, Paris, France.,Sorbonne Université, Paris, France
| | - Jean-Michel Siksik
- Assistance Publique Hôpitaux De Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Laurent Genser
- Assistance Publique Hôpitaux De Paris, Hôpital Pitié-Salpêtrière, Paris, France.,Sorbonne Université, Paris, France.,CRNH Ile de France, INSERM, UMRS U1269, Nutrition and Obesities Systemic Approaches (NutriOmics), Paris, France
| | - Frederic Charlotte
- Assistance Publique Hôpitaux De Paris, Hôpital Pitié-Salpêtrière, Paris, France.,Sorbonne Université, Paris, France
| | - Dominique Thabut
- Assistance Publique Hôpitaux De Paris, Hôpital Pitié-Salpêtrière, Paris, France.,Sorbonne Université, Paris, France.,Centre de Recherche Saint Antoine, INSERM UMRS_938, Paris, France
| | - Karine Clement
- Assistance Publique Hôpitaux De Paris, Hôpital Pitié-Salpêtrière, Paris, France.,Sorbonne Université, Paris, France.,CRNH Ile de France, INSERM, UMRS U1269, Nutrition and Obesities Systemic Approaches (NutriOmics), Paris, France
| | - Vlad Ratziu
- Assistance Publique Hôpitaux De Paris, Hôpital Pitié-Salpêtrière, Paris, France.,Sorbonne Université, Paris, France.,Institute of Cardiometabolism and Nutrition, Paris, France.,INSERM UMRS 1138 CRC, Paris, France
| |
Collapse
|
100
|
Münzker J, Haase N, Till A, Sucher R, Haange SB, Nemetschke L, Gnad T, Jäger E, Chen J, Riede SJ, Chakaroun R, Massier L, Kovacs P, Ost M, Rolle-Kampczyk U, Jehmlich N, Weiner J, Heiker JT, Klöting N, Seeger G, Morawski M, Keitel V, Pfeifer A, von Bergen M, Heeren J, Krügel U, Fenske WK. Functional changes of the gastric bypass microbiota reactivate thermogenic adipose tissue and systemic glucose control via intestinal FXR-TGR5 crosstalk in diet-induced obesity. MICROBIOME 2022; 10:96. [PMID: 35739571 PMCID: PMC9229785 DOI: 10.1186/s40168-022-01264-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/25/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Bariatric surgery remains the most effective therapy for adiposity reduction and remission of type 2 diabetes. Although different bariatric procedures associate with pronounced shifts in the gut microbiota, their functional role in the regulation of energetic and metabolic benefits achieved with the surgery are not clear. METHODS To evaluate the causal as well as the inherent therapeutic character of the surgery-altered gut microbiome in improved energy and metabolic control in diet-induced obesity, an antibiotic cocktail was used to eliminate the gut microbiota in diet-induced obese rats after gastric bypass surgery, and gastric bypass-shaped gut microbiota was transplanted into obese littermates. Thorough metabolic profiling was combined with omics technologies on samples collected from cecum and plasma to identify adaptions in gut microbiota-host signaling, which control improved energy balance and metabolic profile after surgery. RESULTS In this study, we first demonstrate that depletion of the gut microbiota largely reversed the beneficial effects of gastric bypass surgery on negative energy balance and improved glucolipid metabolism. Further, we show that the gastric bypass-shaped gut microbiota reduces adiposity in diet-induced obese recipients by re-activating energy expenditure from metabolic active brown adipose tissue. These beneficial effects were linked to improved glucose homeostasis, lipid control, and improved fatty liver disease. Mechanistically, these effects were triggered by modulation of taurine metabolism by the gastric bypass gut microbiota, fostering an increased abundance of intestinal and circulating taurine-conjugated bile acid species. In turn, these bile acids activated gut-restricted FXR and systemic TGR5 signaling to stimulate adaptive thermogenesis. CONCLUSION Our results establish the role of the gut microbiome in the weight loss and metabolic success of gastric bypass surgery. We here identify a signaling cascade that entails altered bile acid receptor signaling resulting from a collective, hitherto undescribed change in the metabolic activity of a cluster of bacteria, thereby readjusting energy imbalance and metabolic disease in the obese host. These findings strengthen the rationale for microbiota-targeted strategies to improve and refine current therapies of obesity and metabolic syndrome. Video Abstract Bariatric Surgery (i.e. RYGB) or the repeated fecal microbiota transfer (FMT) from RYGB donors into DIO (diet-induced obesity) animals induces shifts in the intestinal microbiome, an effect that can be impaired by oral application of antibiotics (ABx). Our current study shows that RYGB-dependent alterations in the intestinal microbiome result in an increase in the luminal and systemic pool of Taurine-conjugated Bile acids (TCBAs) by various cellular mechanisms acting in the intestine and the liver. TCBAs induce signaling via two different receptors, farnesoid X receptor (FXR, specifically in the intestines) and the G-protein-coupled bile acid receptor TGR5 (systemically), finally resulting in metabolic improvement and advanced weight management. BSH, bile salt hydrolase; BAT brown adipose tissue.
Collapse
Affiliation(s)
- Julia Münzker
- Medical Department III, Endocrinology, Nephrology, Rheumatology, University Hospital of Leipzig, Leipzig, Germany
| | - Nadine Haase
- Medical Department III, Endocrinology, Nephrology, Rheumatology, University Hospital of Leipzig, Leipzig, Germany
| | - Andreas Till
- Department of Internal Medicine I, Division of Endocrinology, Diabetes and Metabolism, University Medical Center Bonn, Bonn, Germany
| | - Robert Sucher
- Department of Visceral-, Transplant-, Thoracic- and Vascular Surgery, University of Leipzig, Leipzig, Germany
| | - Sven-Bastiaan Haange
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research Leipzig-UFZ, Leipzig, Germany
| | - Linda Nemetschke
- Medical Department III, Endocrinology, Nephrology, Rheumatology, University Hospital of Leipzig, Leipzig, Germany
| | - Thorsten Gnad
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Elisabeth Jäger
- Medical Department III, Endocrinology, Nephrology, Rheumatology, University Hospital of Leipzig, Leipzig, Germany
- Department for Pathology, Cedars-Sinai Medical Center Los Angeles, Los Angeles, USA
| | - Jiesi Chen
- Medical Department III, Endocrinology, Nephrology, Rheumatology, University Hospital of Leipzig, Leipzig, Germany
| | - Sjaak J Riede
- Medical Department III, Endocrinology, Nephrology, Rheumatology, University Hospital of Leipzig, Leipzig, Germany
| | - Rima Chakaroun
- Medical Department III, Endocrinology, Nephrology, Rheumatology, University Hospital of Leipzig, Leipzig, Germany
| | - Lucas Massier
- Medical Department III, Endocrinology, Nephrology, Rheumatology, University Hospital of Leipzig, Leipzig, Germany
| | - Peter Kovacs
- Medical Department III, Endocrinology, Nephrology, Rheumatology, University Hospital of Leipzig, Leipzig, Germany
| | - Mario Ost
- Department of Neuropathology, University of Leipzig, Leipzig, Germany
- German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research Leipzig-UFZ, Leipzig, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research Leipzig-UFZ, Leipzig, Germany
| | - Juliane Weiner
- Medical Department III, Endocrinology, Nephrology, Rheumatology, University Hospital of Leipzig, Leipzig, Germany
| | - John T Heiker
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Gudrun Seeger
- Paul Flechsig Institute of Brain Research, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Markus Morawski
- Paul Flechsig Institute of Brain Research, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research Leipzig-UFZ, Leipzig, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ute Krügel
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Wiebke K Fenske
- Department of Internal Medicine I, Division of Endocrinology, Diabetes and Metabolism, University Medical Center Bonn, Bonn, Germany.
| |
Collapse
|