51
|
Haspinger DC, Klinge S, Holzapfel GA. Numerical analysis of the impact of cytoskeletal actin filament density alterations onto the diffusive vesicle-mediated cell transport. PLoS Comput Biol 2021; 17:e1008784. [PMID: 33939706 PMCID: PMC8130967 DOI: 10.1371/journal.pcbi.1008784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 05/18/2021] [Accepted: 02/09/2021] [Indexed: 11/21/2022] Open
Abstract
The interior of a eukaryotic cell is a highly complex composite material which consists of water, structural scaffoldings, organelles, and various biomolecular solutes. All these components serve as obstacles that impede the motion of vesicles. Hence, it is hypothesized that any alteration of the cytoskeletal network may directly impact or even disrupt the vesicle transport. A disruption of the vesicle-mediated cell transport is thought to contribute to several severe diseases and disorders, such as diabetes, Parkinson’s and Alzheimer’s disease, emphasizing the clinical relevance. To address the outlined objective, a multiscale finite element model of the diffusive vesicle transport is proposed on the basis of the concept of homogenization, owed to the complexity of the cytoskeletal network. In order to study the microscopic effects of specific nanoscopic actin filament network alterations onto the vesicle transport, a parametrized three-dimensional geometrical model of the actin filament network was generated on the basis of experimentally observed filament densities and network geometries in an adenocarcinomic human alveolar basal epithelial cell. Numerical analyzes of the obtained effective diffusion properties within two-dimensional sampling domains of the whole cell model revealed that the computed homogenized diffusion coefficients can be predicted statistically accurate by a simple two-parameter power law as soon as the inaccessible area fraction, due to the obstacle geometries and the finite size of the vesicles, is known. This relationship, in turn, leads to a massive reduction in computation time and allows to study the impact of a variety of different cytoskeletal alterations onto the vesicle transport. Hence, the numerical simulations predicted a 35% increase in transport time due to a uniformly distributed four-fold increase of the total filament amount. On the other hand, a hypothetically reduced expression of filament cross-linking proteins led to sparser filament networks and, thus, a speed up of the vesicle transport. Many vital processes in our eukaryotic cells and organs require an astonishingly precise routing of intermediate products to various intra- and extracellular destinations using vesicles as transporters. This can be illustrated by numerous examples, such as the production and destruction of proteins, the export of neurotransmitters or insulin to the extracellular domain, etc. However, the inside of a cell is tightly packed with numerous structural scaffoldings (filaments), which serve as obstacles and impede the vesicle motion. It is thought that any disturbances of the vesicle-mediated cell transport contribute to numerous degenerative diseases and disorders, which highlights the clinical relevance for investigating this intracellular transport mechanism by developing computational models and performing experimental studies. In this study, we numerically quantified how different specific alterations of the filament density inside a human lung cell—due to changed mechanical loadings or genetic disorders of proteins being responsible for filament branching—affect the diffusion of vesicles inside the intracellular fluid. Therefore, based on the concept of homogenization, a computationally efficient numerical method was developed and utilized to simulate the diffusion of vesicles inside the whole cell, considering the detailed structural information of the filament network.
Collapse
Affiliation(s)
| | - Sandra Klinge
- Chair of Structural Mechanics and Analysis, TU Berlin, Berlin, Germany
| | - Gerhard A. Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- Faculty of Engineering Science and Technology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- * E-mail:
| |
Collapse
|
52
|
Cheah JS, Jacobs KA, Lai TW, Caballelo R, Yee JL, Ueda S, Heinrich V, Yamada S. Spatial proximity of proteins surrounding zyxin under force-bearing conditions. Mol Biol Cell 2021; 32:1221-1228. [PMID: 33909446 PMCID: PMC8351546 DOI: 10.1091/mbc.e19-10-0568] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Sensing physical forces is a critical first step in mechano-transduction of cells. Zyxin, a LIM domain-containing protein, is recruited to force-bearing actin filaments and is thought to repair and strengthen them. Yet, the precise force-induced protein interactions surrounding zyxin remain unclear. Using BioID analysis, we identified proximal proteins surrounding zyxin under normal and force-bearing conditions by label-free mass spectrometry analysis. Under force-bearing conditions, increased biotinylation of α-actinin 1, α-actinin 4, and AFAP1 were detected, and these proteins accumulated along force-bearing actin fibers independently from zyxin, albeit at a lower intensity than zyxin. VASP also accumulated along force-bearing actin fibers in a zyxin-dependent manner, but the biotinylation of VASP remained constant regardless of force, supporting the model of a free zyxin-VASP complex in the cytoplasm being corecruited to tensed actin fibers. In addition, ARHGAP42, a RhoA GAP, was also identified as a proximal protein of zyxin and colocalized with zyxin along contractile actin bundles. The overexpression of ARHGAP42 reduced the rate of small wound closure, a zyxin-dependent process. These results demonstrate that the application of proximal biotinylation can resolve the proximity and composition of protein complexes as a function of force, which had not been possible with traditional biochemical analysis.
Collapse
Affiliation(s)
- Joleen S Cheah
- Biomedical Engineering Department, University of California Davis, Davis, CA 95616.,Biosciences Program, Stanford University, Stanford, CA 94305
| | - Kyle A Jacobs
- Biomedical Engineering Department, University of California Davis, Davis, CA 95616
| | - Tzu Wei Lai
- Biomedical Engineering Department, University of California Davis, Davis, CA 95616
| | - Reca Caballelo
- Biomedical Engineering Department, University of California Davis, Davis, CA 95616
| | - Jacqueline L Yee
- Biomedical Engineering Department, University of California Davis, Davis, CA 95616
| | - Shuji Ueda
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan 657
| | - Volkmar Heinrich
- Biomedical Engineering Department, University of California Davis, Davis, CA 95616
| | - Soichiro Yamada
- Biomedical Engineering Department, University of California Davis, Davis, CA 95616
| |
Collapse
|
53
|
Li J, Jiang M, Su M, Tian L, Shi W, Yu C. Stretchable and Transparent Electrochemical Sensor Based on Nanostructured Au on Carbon Nanotube Networks for Real-Time Analysis of H 2O 2 Release from Cells. Anal Chem 2021; 93:6723-6730. [PMID: 33891403 DOI: 10.1021/acs.analchem.1c00336] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Various electrochemical biosensors have been developed for direct and real-time recording of biomolecules released from living cells. However, since these traditional electrodes are commonly rigid and nonflexible, in situ monitoring of biochemical signals while cell deformation occurs remains a great challenge. Herein, we report a facile approach for the development of a stretchable and transparent electrochemical cell-sensing platform based on Au nanostructures (nano-Au) and carbon nanotube (CNT) films embedded in PDMS (nano-Au/CNTs/PDMS). The sandwich-like nanostructured network of nano-Au/CNTs endows the sensor with excellent mechanical stability and electrochemical performance. The obtained nano-Au/CNTs/PDMS electrode displays desired performance for H2O2 detection with a wide linear range (20 nM-25.8 μM) and low detection limit (8 nM). Owing to good biocompatibility and flexibility, HeLa and human umbilical vein endothelial cells can be directly cultured on the electrode and real-time monitoring of H2O2 release from cells under their stretched state was realized. The proposed strategy demonstrated in this work provides an effective way for design of stretchable sensors and more opportunities for sensing biomolecules from mechanically sensitive cells.
Collapse
Affiliation(s)
- Jing Li
- School of Public Health, Nantong University, Nantong 226019, P. R. China
| | - Mengyuan Jiang
- School of Public Health, Nantong University, Nantong 226019, P. R. China
| | - Mengjie Su
- School of Public Health, Nantong University, Nantong 226019, P. R. China
| | - Liang Tian
- School of Public Health, Nantong University, Nantong 226019, P. R. China
| | - Weishan Shi
- School of Public Health, Nantong University, Nantong 226019, P. R. China
| | - Chunmei Yu
- School of Public Health, Nantong University, Nantong 226019, P. R. China
| |
Collapse
|
54
|
Wang Y, Yang Y, Wang X, Yoshitomi T, Kawazoe N, Yang Y, Chen G. Micropattern-controlled chirality of focal adhesions regulates the cytoskeletal arrangement and gene transfection of mesenchymal stem cells. Biomaterials 2021; 271:120751. [PMID: 33740614 DOI: 10.1016/j.biomaterials.2021.120751] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
Cell chirality has been demonstrated to be important for controlling cell functions. However, it is not clear how the chirality of the extracellular microenvironment regulates cell adhesion and cytoskeletal structures and therefore affects gene transfection. In this study, the chirality of focal adhesions and the cytoskeleton of single human mesenchymal stem cells (hMSCs) was controlled by specially designed micropatterns, and its influence on gene transfection was investigated. Micropatterns with different cell adhesion areas and swirling stripe lines were prepared by micropatterning fibronectin on polystyrene surfaces. The chiral micropatterns induced the formation of chiral focal adhesions and chiral cytoskeletal structures. Gene transfection efficiency was enhanced with increasing adhesion area, while hMSCs on left-handed and right-handed swirling micropatterns showed the same level of gene transfection. When the swirling angle was changed from 0°, 30°, and 60° to 90°, the gene transfection efficiency at a swirling angle of 60° was the lowest. The influence of cell chirality on gene transfection was strongly associated with cellular uptake capacity, DNA synthesis and cytoskeletal mechanics. The results demonstrated that cytoskeletal swirling had a significant influence on gene transfection.
Collapse
Affiliation(s)
- Yongtao Wang
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yingjun Yang
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Xinlong Wang
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Toru Yoshitomi
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Naoki Kawazoe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yingnan Yang
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Guoping Chen
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| |
Collapse
|
55
|
Morales X, Cortés-Domínguez I, Ortiz-de-Solorzano C. Modeling the Mechanobiology of Cancer Cell Migration Using 3D Biomimetic Hydrogels. Gels 2021; 7:17. [PMID: 33673091 PMCID: PMC7930983 DOI: 10.3390/gels7010017] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Understanding how cancer cells migrate, and how this migration is affected by the mechanical and chemical composition of the extracellular matrix (ECM) is critical to investigate and possibly interfere with the metastatic process, which is responsible for most cancer-related deaths. In this article we review the state of the art about the use of hydrogel-based three-dimensional (3D) scaffolds as artificial platforms to model the mechanobiology of cancer cell migration. We start by briefly reviewing the concept and composition of the extracellular matrix (ECM) and the materials commonly used to recreate the cancerous ECM. Then we summarize the most relevant knowledge about the mechanobiology of cancer cell migration that has been obtained using 3D hydrogel scaffolds, and relate those discoveries to what has been observed in the clinical management of solid tumors. Finally, we review some recent methodological developments, specifically the use of novel bioprinting techniques and microfluidics to create realistic hydrogel-based models of the cancer ECM, and some of their applications in the context of the study of cancer cell migration.
Collapse
Affiliation(s)
| | | | - Carlos Ortiz-de-Solorzano
- IDISNA, Ciberonc and Solid Tumors and Biomarkers Program, Center for Applied Medical Research, University of Navarra, 31008 Pamplona, Spain; (X.M.); (I.C.-D.)
| |
Collapse
|
56
|
Ascolani G, Skerry TM, Lacroix D, Dall'Ara E, Shuaib A. Analysis of mechanotransduction dynamics during combined mechanical stimulation and modulation of the extracellular-regulated kinase cascade uncovers hidden information within the signalling noise. Interface Focus 2021; 11:20190136. [PMID: 33343875 PMCID: PMC7739911 DOI: 10.1098/rsfs.2019.0136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2020] [Indexed: 12/27/2022] Open
Abstract
Osteoporosis is a bone disease characterized by brittle bone and increased fracture incidence. With ageing societies worldwide, the disease presents a high burden on health systems. Furthermore, there are limited treatments for osteoporosis with just two anabolic pharmacological agents approved by the US Food and Drug Administration. Healthy bones are believed to be maintained via an intricate relationship between dual biochemical and mechanical (bio-mechanical) stimulations. It is widely considered that osteoporosis emerges as a result of disturbances to said relationship. The mechanotransduction process is key to this balance, and disruption of its dynamics in bone cells plays a role in osteoporosis development. Nonetheless, the exact details and mechanisms that drive and secure the health of bones are still elusive at the cellular and molecular scales. This study examined the dual modulation of mechanical stimulation and mechanotransduction activation dynamics in an osteoblast (OB). The aim was to find patterns of mechanotransduction dynamics demonstrating a significant change that can be mapped to alterations in the OB responses, specifically at the level of gene expression and osteogenic markers such as alkaline phosphatase. This was achieved using a three-dimensional hybrid multiscale computational model simulating mechanotransduction in the OB and its interaction with the extracellular matrix, combined with a numerical analytical technique. The model and the analysis method predict that within the noise of mechanotransduction, owing to modulation of the bio-mechanical stimulus and consequent gene expression, there are unique events that provide signatures for a shift in the system's dynamics. Furthermore, the study uncovered molecular interactions that can be potential drug targets.
Collapse
Affiliation(s)
- Gianluca Ascolani
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Insigneo Institute of In Silico Medicine, University of Sheffield, Sheffield, UK
| | - Timothy M. Skerry
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Damien Lacroix
- Insigneo Institute of In Silico Medicine, University of Sheffield, Sheffield, UK
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| | - Enrico Dall'Ara
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Insigneo Institute of In Silico Medicine, University of Sheffield, Sheffield, UK
| | - Aban Shuaib
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Insigneo Institute of In Silico Medicine, University of Sheffield, Sheffield, UK
| |
Collapse
|
57
|
Kim S, Uroz M, Bays JL, Chen CS. Harnessing Mechanobiology for Tissue Engineering. Dev Cell 2021; 56:180-191. [PMID: 33453155 PMCID: PMC7855912 DOI: 10.1016/j.devcel.2020.12.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/10/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022]
Abstract
A primary challenge in tissue engineering is to recapitulate both the structural and functional features of whole tissues and organs. In vivo, patterning of the body plan and constituent tissues emerges from the carefully orchestrated interactions between the transcriptional programs that give rise to cell types and the mechanical forces that drive the bending, twisting, and extensions critical to morphogenesis. Substantial recent progress in mechanobiology-understanding how mechanics regulate cell behaviors and what cellular machineries are responsible-raises the possibility that one can begin to use these insights to help guide the strategy and design of functional engineered tissues. In this perspective, we review and propose the development of different approaches, from providing appropriate extracellular mechanical cues to interfering with cellular mechanosensing machinery, to aid in controlling cell and tissue structure and function.
Collapse
Affiliation(s)
- Sudong Kim
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Marina Uroz
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Jennifer L Bays
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Christopher S Chen
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
58
|
The Actomyosin Cortex of Cells: A Thin Film of Active Matter. J Indian Inst Sci 2021. [DOI: 10.1007/s41745-020-00220-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
59
|
Wioland H, Frémont S, Guichard B, Echard A, Jégou A, Romet-Lemonne G. Actin filament oxidation by MICAL1 suppresses protections from cofilin-induced disassembly. EMBO Rep 2021; 22:e50965. [PMID: 33393173 DOI: 10.15252/embr.202050965] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/18/2020] [Accepted: 11/27/2020] [Indexed: 02/01/2023] Open
Abstract
Proteins of the ADF/cofilin family play a central role in the disassembly of actin filaments, and their activity must be tightly regulated in cells. Recently, the oxidation of actin filaments by the enzyme MICAL1 was found to amplify the severing action of cofilin through unclear mechanisms. Using single filament experiments in vitro, we found that actin filament oxidation by MICAL1 increases, by several orders of magnitude, both cofilin binding and severing rates, explaining the dramatic synergy between oxidation and cofilin for filament disassembly. Remarkably, we found that actin oxidation bypasses the need for cofilin activation by dephosphorylation. Indeed, non-activated, phosphomimetic S3D-cofilin binds and severs oxidized actin filaments rapidly, in conditions where non-oxidized filaments are unaffected. Finally, tropomyosin Tpm1.8 loses its ability to protect filaments from cofilin severing activity when actin is oxidized by MICAL1. Together, our results show that MICAL1-induced oxidation of actin filaments suppresses their physiological protection from the action of cofilin. We propose that, in cells, direct post-translational modification of actin filaments by oxidation is a way to trigger their disassembly.
Collapse
Affiliation(s)
- Hugo Wioland
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Stéphane Frémont
- Membrane Traffic and Cell Division Lab, Institut Pasteur, UMR3691, CNRS, Paris, France
| | | | - Arnaud Echard
- Membrane Traffic and Cell Division Lab, Institut Pasteur, UMR3691, CNRS, Paris, France
| | - Antoine Jégou
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | | |
Collapse
|
60
|
Arya RK, Goswami R, Rahaman SO. Mechanotransduction via a TRPV4-Rac1 signaling axis plays a role in multinucleated giant cell formation. J Biol Chem 2021; 296:100129. [PMID: 33262217 PMCID: PMC7948992 DOI: 10.1074/jbc.ra120.014597] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/13/2020] [Accepted: 12/01/2020] [Indexed: 12/21/2022] Open
Abstract
Multinucleated giant cells are formed by the fusion of macrophages and are a characteristic feature in numerous pathophysiological conditions including the foreign body response (FBR). Foreign body giant cells (FBGCs) are inflammatory and destructive multinucleated macrophages and may cause damage and/or rejection of implants. However, while these features of FBGCs are well established, the molecular mechanisms underlying their formation remain elusive. Improved understanding of the molecular mechanisms underlying the formation of FBGCs may permit the development of novel implants that eliminate or reduce the FBR. Our previous study showed that transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive ion channel/receptor, is required for FBGC formation and FBR to biomaterials. Here, we have determined that (a) TRPV4 is directly involved in fusogenic cytokine (interleukin-4 plus granulocyte macrophage-colony stimulating factor)-induced activation of Rac1, in bone marrow-derived macrophages; (b) TRPV4 directly interacts with Rac1, and their interaction is further augmented in the presence of fusogenic cytokines; (c) TRPV4-dependent activation of Rac1 is essential for the augmentation of intracellular stiffness and regulation of cytoskeletal remodeling; and (d) TRPV4-Rac1 signaling axis is critical in fusogenic cytokine-induced FBGC formation. Together, these data suggest a novel mechanism whereby a functional interaction between TRPV4 and Rac1 leads to cytoskeletal remodeling and intracellular stiffness generation to modulate FBGC formation.
Collapse
Affiliation(s)
- Rakesh K Arya
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| | - Rishov Goswami
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| | - Shaik O Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
61
|
Zandi Shafagh R, Shen JX, Youhanna S, Guo W, Lauschke VM, van der Wijngaart W, Haraldsson T. Facile Nanoimprinting of Robust High-Aspect-Ratio Nanostructures for Human Cell Biomechanics. ACS APPLIED BIO MATERIALS 2020; 3:8757-8767. [PMID: 35019647 DOI: 10.1021/acsabm.0c01087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-aspect-ratio and hierarchically nanostructured surfaces are common in nature. Synthetic variants are of interest for their specific chemical, mechanic, electric, photonic, or biologic properties but are cumbersome in fabrication or suffer from structural collapse. Here, we replicated and directly biofunctionalized robust, large-area, and high-aspect-ratio nanostructures by nanoimprint lithography of an off-stoichiometric thiol-ene-epoxy polymer. We structured-in a single-step process-dense arrays of pillars with a diameter as low as 100 nm and an aspect ratio of 7.2; holes with a diameter of 70 nm and an aspect ratio of >20; and complex hierarchically layered structures, all with minimal collapse and defectivity. We show that the nanopillar arrays alter mechanosensing of human hepatic cells and provide precise spatial control of cell attachment. We speculate that our results can enable the widespread use of high-aspect-ratio nanotopograhy applications in mechanics, optics, and biomedicine.
Collapse
Affiliation(s)
- Reza Zandi Shafagh
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden.,Division of Micro- and Nanosystems, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Joanne X Shen
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Weijin Guo
- Division of Micro- and Nanosystems, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Tommy Haraldsson
- Division of Micro- and Nanosystems, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| |
Collapse
|
62
|
Chen L, Wu C, Wei D, Chen S, Xiao Z, Zhu H, Luo H, Sun J, Fan H. Biomimetic mineralized microenvironment stiffness regulated BMSCs osteogenic differentiation through cytoskeleton mediated mechanical signaling transduction. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111613. [PMID: 33321656 DOI: 10.1016/j.msec.2020.111613] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 01/03/2023]
Abstract
Construction of biomimetic microenvironment is vital to understand the relationship between matrix mechanical cues and cell fate, as well as to explore potential tissue engineering scaffolds for clinical application. In this study, through the enzymatic mineralizable collagen hydrogel system, we established the biomimetic bone matrix which was capable of realizing mechanical regulation independent of mineralization by incorporation of phosphorylated molecules (vinylphosphonic acid, VAP). Then, based on the biomimetic mineralized matrix with same composition but significantly different mechanical stiffness, we further investigated the effect of matrix stiffness on osteogenic differentiation of bone marrow stromal cells (BMSCs). The results clearly demonstrated that biomimetic mineralized microenvironment with higher mechanical strength promoted osteogenic differentiation of BMSCs. Further mechanism analysis demonstrated that the mineralized hydrogel with higher stiffness promoted cytoskeletal assembly, which enhanced the expression and nuclear colocalization of YAP and RUNX2, thereby promoted the osteogenic differentiation of stem cells. This study supplies a promising material platform not only for bone tissue engineering but also for exploring the mechanism of biomimetic bone matrix mechanics on osteogenesis.
Collapse
Affiliation(s)
- Lu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, PR China; Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, Sichuan, PR China
| | - Chengheng Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, PR China
| | - Dan Wei
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, PR China
| | - Suping Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, PR China
| | - Zhanwen Xiao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, PR China
| | - Hua Zhu
- College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, PR China
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, PR China
| | - Jing Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, PR China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, PR China.
| |
Collapse
|
63
|
Naqvi SM, McNamara LM. Stem Cell Mechanobiology and the Role of Biomaterials in Governing Mechanotransduction and Matrix Production for Tissue Regeneration. Front Bioeng Biotechnol 2020; 8:597661. [PMID: 33381498 PMCID: PMC7767888 DOI: 10.3389/fbioe.2020.597661] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Mechanobiology has underpinned many scientific advances in understanding how biophysical and biomechanical cues regulate cell behavior by identifying mechanosensitive proteins and specific signaling pathways within the cell that govern the production of proteins necessary for cell-based tissue regeneration. It is now evident that biophysical and biomechanical stimuli are as crucial for regulating stem cell behavior as biochemical stimuli. Despite this, the influence of the biophysical and biomechanical environment presented by biomaterials is less widely accounted for in stem cell-based tissue regeneration studies. This Review focuses on key studies in the field of stem cell mechanobiology, which have uncovered how matrix properties of biomaterial substrates and 3D scaffolds regulate stem cell migration, self-renewal, proliferation and differentiation, and activation of specific biological responses. First, we provide a primer of stem cell biology and mechanobiology in isolation. This is followed by a critical review of key experimental and computational studies, which have unveiled critical information regarding the importance of the biophysical and biomechanical cues for stem cell biology. This review aims to provide an informed understanding of the intrinsic role that physical and mechanical stimulation play in regulating stem cell behavior so that researchers may design strategies that recapitulate the critical cues and develop effective regenerative medicine approaches.
Collapse
Affiliation(s)
- S M Naqvi
- Mechanobiology and Medical Device Research Group, Department of Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| | - L M McNamara
- Mechanobiology and Medical Device Research Group, Department of Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
64
|
Jo J, Abdi Nansa S, Kim DH. Molecular Regulators of Cellular Mechanoadaptation at Cell-Material Interfaces. Front Bioeng Biotechnol 2020; 8:608569. [PMID: 33364232 PMCID: PMC7753015 DOI: 10.3389/fbioe.2020.608569] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022] Open
Abstract
Diverse essential cellular behaviors are determined by extracellular physical cues that are detected by highly orchestrated subcellular interactions with the extracellular microenvironment. To maintain the reciprocity of cellular responses and mechanical properties of the extracellular matrix, cells utilize a variety of signaling pathways that transduce biophysical stimuli to biochemical reactions. Recent advances in the micromanipulation of individual cells have shown that cellular responses to distinct physical and chemical features of the material are fundamental determinants of cellular mechanosensation and mechanotransduction. In the process of outside-in signal transduction, transmembrane protein integrins facilitate the formation of focal adhesion protein clusters that are connected to the cytoskeletal architecture and anchor the cell to the substrate. The linkers of nucleoskeleton and cytoskeleton molecular complexes, collectively termed LINC, are critical signal transducers that relay biophysical signals between the extranuclear cytoplasmic region and intranuclear nucleoplasmic region. Mechanical signals that involve cytoskeletal remodeling ultimately propagate into the nuclear envelope comprising the nuclear lamina in assistance with various nuclear membrane proteins, where nuclear mechanics play a key role in the subsequent alteration of gene expression and epigenetic modification. These intracellular mechanical signaling cues adjust cellular behaviors directly associated with mechanohomeostasis. Diverse strategies to modulate cell-material interfaces, including alteration of surface rigidity, confinement of cell adhesive region, and changes in surface topology, have been proposed to identify cellular signal transduction at the cellular and subcellular levels. In this review, we will discuss how a diversity of alterations in the physical properties of materials induce distinct cellular responses such as adhesion, migration, proliferation, differentiation, and chromosomal organization. Furthermore, the pathological relevance of misregulated cellular mechanosensation and mechanotransduction in the progression of devastating human diseases, including cardiovascular diseases, cancer, and aging, will be extensively reviewed. Understanding cellular responses to various extracellular forces is expected to provide new insights into how cellular mechanoadaptation is modulated by manipulating the mechanics of extracellular matrix and the application of these materials in clinical aspects.
Collapse
Affiliation(s)
| | | | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| |
Collapse
|
65
|
Harris AR, Jreij P, Belardi B, Joffe AM, Bausch AR, Fletcher DA. Biased localization of actin binding proteins by actin filament conformation. Nat Commun 2020; 11:5973. [PMID: 33239610 PMCID: PMC7688639 DOI: 10.1038/s41467-020-19768-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/30/2020] [Indexed: 11/09/2022] Open
Abstract
The assembly of actin filaments into distinct cytoskeletal structures plays a critical role in cell physiology, but how proteins localize differentially to these structures within a shared cytoplasm remains unclear. Here, we show that the actin-binding domains of accessory proteins can be sensitive to filament conformational changes. Using a combination of live cell imaging and in vitro single molecule binding measurements, we show that tandem calponin homology domains (CH1-CH2) can be mutated to preferentially bind actin networks at the front or rear of motile cells. We demonstrate that the binding kinetics of CH1-CH2 domain mutants varies as actin filament conformation is altered by perturbations that include stabilizing drugs and other binding proteins. These findings suggest that conformational changes of actin filaments in cells could help to direct accessory binding proteins to different actin cytoskeletal structures through a biophysical feedback loop.
Collapse
Affiliation(s)
- Andrew R Harris
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, 648 Stanley Hall MC 1762, Berkeley, CA, 94720, USA
| | - Pamela Jreij
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, 648 Stanley Hall MC 1762, Berkeley, CA, 94720, USA
| | - Brian Belardi
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, 648 Stanley Hall MC 1762, Berkeley, CA, 94720, USA
| | - Aaron M Joffe
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, 648 Stanley Hall MC 1762, Berkeley, CA, 94720, USA
| | - Andreas R Bausch
- Lehrstuhl für Biophysik (E27), Technische Universität München, Garching, 85748, Germany
| | - Daniel A Fletcher
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, 648 Stanley Hall MC 1762, Berkeley, CA, 94720, USA.
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 648 Stanley Hall MC 1762, Berkeley, CA, 94720, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
66
|
Mechanically tuning actin filaments to modulate the action of actin-binding proteins. Curr Opin Cell Biol 2020; 68:72-80. [PMID: 33160108 DOI: 10.1016/j.ceb.2020.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/16/2022]
Abstract
In cells, the actin cytoskeleton is regulated by an interplay between mechanics and biochemistry. A key mechanism, which has emerged based on converging indications from structural, cellular, and biophysical data, depicts the actin filament as a mechanically tunable substrate: mechanical stress applied to an actin filament induces conformational changes, which modify the binding and the regulatory action of actin-binding proteins. For a long time, however, direct evidence of this mechanotransductive mechanism was very scarce. This situation is changing rapidly, and recent in vitro single-filament studies using different techniques have revealed that several actin-binding proteins are able to sense tension, curvature, and/or torsion, applied to actin filaments. Here, we discuss these recent advances and their possible implications.
Collapse
|
67
|
Liebman C, McColloch A, Rabiei M, Bowling A, Cho M. Mechanics of the cell: Interaction mechanisms and mechanobiological models. CURRENT TOPICS IN MEMBRANES 2020; 86:143-184. [PMID: 33837692 DOI: 10.1016/bs.ctm.2020.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The importance of cell mechanics has long been recognized for the cell development and function. Biomechanics plays an important role in cell metabolism, regulation of mechanotransduction pathways and also modulation of nuclear response. The mechanical properties of the cell are likely determined by, among many others, the cytoskeleton elasticity, membrane tension and cell-substrate adhesion. This coordinated but complex mechanical interplay is required however, for the cell to respond to and influence in a reciprocal manner the chemical and mechanical signals from the extracellular matrix (ECM). In an effort to better and more fully understand the cell mechanics, the role of nuclear mechanics has emerged as an important contributor to the overall cellular mechanics. It is not too difficult to appreciate the physical connection between the nucleus and the cytoskeleton network that may be connected to the ECM through the cell membrane. Transmission of forces from ECM through this connection is essential for a wide range of cellular behaviors and functions such as cytoskeletal reorganization, nuclear movement, cell migration and differentiation. Unlike the cellular mechanics that can be measured using a number of biophysical techniques that were developed in the past few decades, it still remains a daunting challenge to probe the nuclear mechanics directly. In this paper, we therefore aim to provide informative description of the cell membrane and cytoskeleton mechanics, followed by unique computational modeling efforts to elucidate the nucleus-cytoskeleton coupling. Advances in our knowledge of complete cellular biomechanics and mechanotransduction may lead to clinical relevance and applications in mechano-diseases such as atherosclerosis, stem cell-based therapies, and the development of tissue engineered products.
Collapse
Affiliation(s)
- Caleb Liebman
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Andrew McColloch
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Manoochehr Rabiei
- Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, TX, United States
| | - Alan Bowling
- Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, TX, United States.
| | - Michael Cho
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States.
| |
Collapse
|
68
|
Mei L, Espinosa de Los Reyes S, Reynolds MJ, Leicher R, Liu S, Alushin GM. Molecular mechanism for direct actin force-sensing by α-catenin. eLife 2020; 9:62514. [PMID: 32969337 PMCID: PMC7588232 DOI: 10.7554/elife.62514] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
The actin cytoskeleton mediates mechanical coupling between cells and their tissue microenvironments. The architecture and composition of actin networks are modulated by force; however, it is unclear how interactions between actin filaments (F-actin) and associated proteins are mechanically regulated. Here we employ both optical trapping and biochemical reconstitution with myosin motor proteins to show single piconewton forces applied solely to F-actin enhance binding by the human version of the essential cell-cell adhesion protein αE-catenin but not its homolog vinculin. Cryo-electron microscopy structures of both proteins bound to F-actin reveal unique rearrangements that facilitate their flexible C-termini refolding to engage distinct interfaces. Truncating α-catenin’s C-terminus eliminates force-activated F-actin binding, and addition of this motif to vinculin confers force-activated binding, demonstrating that α-catenin’s C-terminus is a modular detector of F-actin tension. Our studies establish that piconewton force on F-actin can enhance partner binding, which we propose mechanically regulates cellular adhesion through α-catenin. All of the cells in our bodies rely on cues from their surrounding environment to alter their behavior. As well sending each other chemical signals, such as hormones, cells can also detect pressure and physical forces applied by the cells around them. These physical interactions are coordinated by a network of proteins called the cytoskeleton, which provide the internal scaffold that maintains a cell’s shape. However, it is not well understood how forces transmitted through the cytoskeleton are converted into mechanical signals that control cell behavior. The cytoskeleton is primarily made up protein filaments called actin, which are frequently under tension from external and internal forces that push and pull on the cell. Many proteins bind directly to actin, including adhesion proteins that allow the cell to ‘stick’ to its surroundings. One possibility is that when actin filaments feel tension, they convert this into a mechanical signal by altering how they bind to other proteins. To test this theory, Mei et al. isolated and studied an adhesion protein called α-catenin which is known to interact with actin. This revealed that when tiny forces – similar to the amount cells experience in the body – were applied to actin filaments, this caused α-catenin and actin to bind together more strongly. However, applying the same level of physical force did not alter how well actin bound to a similar adhesion protein called vinculin. Further experiments showed that this was due to differences in a small, flexible region found on both proteins. Manipulating this region revealed that it helps α-catenin attach to actin when a force is present, and was thus named a ‘force detector’. Proteins that bind to actin are essential in all animals, making it likely that force detectors are a common mechanism. Scientists can now use this discovery to identify and manipulate force detectors in other proteins across different cells and animals. This may help to develop drugs that target the mechanical signaling process, although this will require further understanding of how force detectors work at the molecular level.
Collapse
Affiliation(s)
- Lin Mei
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, United States.,Tri-Institutional PhD Program in Chemical Biology, The Rockefeller University, New York, United States
| | | | - Matthew J Reynolds
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, United States
| | - Rachel Leicher
- Tri-Institutional PhD Program in Chemical Biology, The Rockefeller University, New York, United States.,Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, United States
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, United States
| | - Gregory M Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, United States
| |
Collapse
|
69
|
Najminejad H, Farhadihosseinabadi B, Dabaghian M, Dezhkam A, Rigi Yousofabadi E, Najminejad R, Abdollahpour-Alitappeh M, Karimi MH, Bagheri N, Mahi-Birjand M, Ghasemi N, Mazaheri M, Kalantar SM, Seifalian A, Sheikhha MH. Key Regulatory miRNAs and their Interplay with Mechanosensing and Mechanotransduction Signaling Pathways in Breast Cancer Progression. Mol Cancer Res 2020; 18:1113-1128. [PMID: 32430354 DOI: 10.1158/1541-7786.mcr-19-1229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/14/2020] [Accepted: 05/15/2020] [Indexed: 11/16/2022]
Abstract
According to the WHO, breast cancer is the most common cancer in women worldwide. Identification of underlying mechanisms in breast cancer progression is the main concerns of researches. The mechanical forces within the tumor microenvironment, in addition to biochemical stimuli such as different growth factors and cytokines, activate signaling cascades, resulting in various changes in cancer cell physiology. Cancer cell proliferation, invasiveness, migration, and, even, resistance to cancer therapeutic agents are changed due to activation of mechanotransduction signaling. The mechanotransduction signaling is frequently dysregulated in breast cancer, indicating its important role in cancer cell features. So far, a variety of experimental investigations have been conducted to determine the main regulators of the mechanotransduction signaling. Currently, the role of miRNAs has been well-defined in the cancer process through advances in molecular-based approaches. miRNAs are small groups of RNAs (∼22 nucleotides) that contribute to various biological events in cells. The central role of miRNAs in the regulation of various mediators involved in the mechanotransduction signaling has been well clarified over the last decade. Unbalanced expression of miRNAs is associated with different pathologic conditions. Overexpression and downregulation of certain miRNAs were found to be along with dysregulation of mechanotransduction signaling effectors. This study aimed to critically review the role of miRNAs in the regulation of mediators involved in the mechanosensing pathways and clarify how the cross-talk between miRNAs and their targets affect the cell behavior and physiology of breast cancer cells.
Collapse
Affiliation(s)
- Hamid Najminejad
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Behrouz Farhadihosseinabadi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center (NRC), Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Dabaghian
- Research and Development Department, Razi Vaccine and serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Asiyeh Dezhkam
- Department of Midwifery, School of Nursing and Midwifery, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | | | - Reza Najminejad
- Department of Internal Medicine, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | | | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Motahareh Mahi-Birjand
- Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Nasrin Ghasemi
- Abortion Research Centre, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahta Mazaheri
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mehdi Kalantar
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (Ltd), The London BioScience Innovation Centre, London, United Kingdom.
| | - Mohammad Hasan Sheikhha
- Genetics and Biotechnology Lab, Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
70
|
Domingues C, Geraldo AM, Anjo SI, Matos A, Almeida C, Caramelo I, Lopes-da-Silva JA, Paiva A, Carvalho J, Pires das Neves R, Manadas B, Grãos M. Cofilin-1 Is a Mechanosensitive Regulator of Transcription. Front Cell Dev Biol 2020; 8:678. [PMID: 32903827 PMCID: PMC7438942 DOI: 10.3389/fcell.2020.00678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022] Open
Abstract
The mechanical properties of the extracellular environment are interrogated by cells and integrated through mechanotransduction. Many cellular processes depend on actomyosin-dependent contractility, which is influenced by the microenvironment’s stiffness. Here, we explored the influence of substrate stiffness on the proteome of proliferating undifferentiated human umbilical cord-matrix mesenchymal stem/stromal cells. The relative abundance of several proteins changed significantly by expanding cells on soft (∼3 kPa) or stiff substrates (GPa). Many such proteins are associated with the regulation of the actin cytoskeleton, a major player of mechanotransduction and cell physiology in response to mechanical cues. Specifically, Cofilin-1 levels were elevated in cells cultured on soft comparing with stiff substrates. Furthermore, Cofilin-1 was de-phosphorylated (active) and present in the nuclei of cells kept on soft substrates, in contrast with phosphorylated (inactive) and widespread distribution in cells on stiff. Soft substrates promoted Cofilin-1-dependent increased RNA transcription and faster RNA polymerase II-mediated transcription elongation. Cofilin-1 is part of a novel mechanism linking mechanotransduction and transcription.
Collapse
Affiliation(s)
- Catarina Domingues
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, Portugal
| | - A Margarida Geraldo
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Sandra Isabel Anjo
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - André Matos
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Polytechnic Institute of Coimbra, Coimbra College of Agriculture, Coimbra, Portugal
| | - Cláudio Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Polytechnic Institute of Coimbra, Coimbra College of Agriculture, Coimbra, Portugal
| | - Inês Caramelo
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, Portugal
| | | | - Artur Paiva
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Ciências Biomédicas Laboratoriais, Coimbra, Portugal
| | - João Carvalho
- Centro de Física da Universidade de Coimbra (CFisUC), Department of Physics, University of Coimbra, Coimbra, Portugal
| | - Ricardo Pires das Neves
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, Portugal
| | - Bruno Manadas
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Mário Grãos
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, Portugal.,Biocant, Technology Transfer Association, Cantanhede, Portugal
| |
Collapse
|
71
|
Durand-Smet P, Spelman TA, Meyerowitz EM, Jönsson H. Cytoskeletal organization in isolated plant cells under geometry control. Proc Natl Acad Sci U S A 2020; 117:17399-17408. [PMID: 32641513 PMCID: PMC7382239 DOI: 10.1073/pnas.2003184117] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The cytoskeleton plays a key role in establishing robust cell shape. In animals, it is well established that cell shape can also influence cytoskeletal organization. Cytoskeletal proteins are well conserved between animal and plant kingdoms; nevertheless, because plant cells exhibit major structural differences to animal cells, the question arises whether the plant cytoskeleton also responds to geometrical cues. Recent numerical simulations predicted that a geometry-based rule is sufficient to explain the microtubule (MT) organization observed in cells. Due to their high flexural rigidity and persistence length of the order of a few millimeters, MTs are rigid over cellular dimensions and are thus expected to align along their long axis if constrained in specific geometries. This hypothesis remains to be tested in cellulo Here, we explore the relative contribution of geometry to the final organization of actin and MT cytoskeletons in single plant cells of Arabidopsis thaliana We show that the cytoskeleton aligns with the long axis of the cells. We find that actin organization relies on MTs but not the opposite. We develop a model of self-organizing MTs in three dimensions, which predicts the importance of MT severing, which we confirm experimentally. This work is a first step toward assessing quantitatively how cellular geometry contributes to the control of cytoskeletal organization in living plant cells.
Collapse
Affiliation(s)
- Pauline Durand-Smet
- The Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Tamsin A Spelman
- The Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Elliot M Meyerowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125;
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125
| | - Henrik Jönsson
- The Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom;
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom
- Department of Astronomy and Theoretical Physics, Computational Biology and Biological Physics, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
72
|
Udgaonkar JB. Introducing the Mechanical Forces in Biochemistry Special Issue. Biochemistry 2020; 58:4655-4656. [PMID: 31766850 DOI: 10.1021/acs.biochem.9b00999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jayant B Udgaonkar
- Indian Institute of Science Education and Research , Pune 411008 , India.,National Centre for Biological Sciences , Tata Institute of Fundamental Research , Bengaluru 560065 , India
| |
Collapse
|
73
|
Morabito C, Guarnieri S, Cucina A, Bizzarri M, Mariggiò MA. Antioxidant Strategy to Prevent Simulated Microgravity-Induced Effects on Bone Osteoblasts. Int J Mol Sci 2020; 21:ijms21103638. [PMID: 32455731 PMCID: PMC7279347 DOI: 10.3390/ijms21103638] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/01/2023] Open
Abstract
The effects induced by microgravity on human body functions have been widely described, in particular those on skeletal muscle and bone tissues. This study aims to implement information on the possible countermeasures necessary to neutralize the oxidative imbalance induced by microgravity on osteoblastic cells. Using the model of murine MC3T3-E1 osteoblast cells, cellular morphology, proliferation, and metabolism were investigated during exposure to simulated microgravity on a random positioning machine in the absence or presence of an antioxidant—the 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox). Our results confirm that simulated microgravity-induced morphological and metabolic alterations characterized by increased levels of reactive oxygen species and a slowdown of the proliferative rate. Interestingly, the use of Trolox inhibited the simulated microgravity-induced effects. Indeed, the antioxidant-neutralizing oxidants preserved cell cytoskeletal architecture and restored cell proliferation rate and metabolism. The use of appropriate antioxidant countermeasures could prevent the modifications and damage induced by microgravity on osteoblastic cells and consequently on bone homeostasis.
Collapse
Affiliation(s)
- Caterina Morabito
- Department of Neuroscience, Imaging and clinical Sciences—Center for Advanced Studies and Technology (CAST), University G. d’Annunzio of Chieti-Pescara, 06100 Chieti, Italy; (C.M.); (S.G.)
| | - Simone Guarnieri
- Department of Neuroscience, Imaging and clinical Sciences—Center for Advanced Studies and Technology (CAST), University G. d’Annunzio of Chieti-Pescara, 06100 Chieti, Italy; (C.M.); (S.G.)
| | - Alessandra Cucina
- Department of Surgery “Pietro Valdoni”, Sapienza University of Rome, 00161 Rome, Italy;
- Azienda Policlinico Umberto I, 00161 Rome, Italy
| | - Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, Systems Biology Group Lab, 00161 Rome, Italy;
| | - Maria A. Mariggiò
- Department of Neuroscience, Imaging and clinical Sciences—Center for Advanced Studies and Technology (CAST), University G. d’Annunzio of Chieti-Pescara, 06100 Chieti, Italy; (C.M.); (S.G.)
- Correspondence: ; Tel.: +39-0871-541399
| |
Collapse
|
74
|
Janota CS, Calero-Cuenca FJ, Gomes ER. The role of the cell nucleus in mechanotransduction. Curr Opin Cell Biol 2020; 63:204-211. [PMID: 32361559 DOI: 10.1016/j.ceb.2020.03.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/25/2020] [Accepted: 03/06/2020] [Indexed: 01/12/2023]
Abstract
Mechanical forces are known to influence cellular processes with consequences at the cellular and physiological level. The cell nucleus is the largest and stiffest organelle, and it is connected to the cytoskeleton for proper cellular function. The connection between the nucleus and the cytoskeleton is in most cases mediated by the linker of nucleoskeleton and cytoskeleton (LINC) complex. Not surprisingly, the nucleus and the associated cytoskeleton are implicated in multiple mechanotransduction pathways important for cellular activities. Herein, we review recent advances describing how the LINC complex, the nuclear lamina, and nuclear pore complexes are involved in nuclear mechanotransduction. We will also discuss how the perinuclear actin cytoskeleton is important for the regulation of nuclear mechanotransduction. Additionally, we discuss the relevance of nuclear mechanotransduction for cell migration, development, and how nuclear mechanotransduction impairment leads to multiple disorders.
Collapse
Affiliation(s)
- Cátia S Janota
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Francisco Javier Calero-Cuenca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Edgar R Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal; Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
75
|
Role of UDP-Sugar Receptor P2Y 14 in Murine Osteoblasts. Int J Mol Sci 2020; 21:ijms21082747. [PMID: 32326617 PMCID: PMC7216066 DOI: 10.3390/ijms21082747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
The purinergic (P2) receptor P2Y14 is the only P2 receptor that is stimulated by uridine diphosphate (UDP)-sugars and its role in bone formation is unknown. We confirmed P2Y14 expression in primary murine osteoblasts (CB-Ob) and the C2C12-BMP2 osteoblastic cell line (C2-Ob). UDP-glucose (UDPG) had undiscernible effects on cAMP levels, however, induced dose-dependent elevations in the cytosolic free calcium concentration ([Ca2+]i) in CB-Ob, but not C2-Ob cells. To antagonize the P2Y14 function, we used the P2Y14 inhibitor PPTN or generated CRISPR-Cas9-mediated P2Y14 knockout C2-Ob clones (Y14KO). P2Y14 inhibition facilitated calcium signalling and altered basal cAMP levels in both models of osteoblasts. Importantly, P2Y14 inhibition augmented Ca2+ signalling in response to ATP, ADP and mechanical stimulation. P2Y14 knockout or inhibition reduced osteoblast proliferation and decreased ERK1/2 phosphorylation and increased AMPKα phosphorylation. During in vitro osteogenic differentiation, P2Y14 inhibition modulated the timing of osteogenic gene expression, collagen deposition, and mineralization, but did not significantly affect differentiation status by day 28. Of interest, while P2ry14-/- mice from the International Mouse Phenotyping Consortium were similar to wild-type controls in bone mineral density, their tibia length was significantly increased. We conclude that P2Y14 in osteoblasts reduces cell responsiveness to mechanical stimulation and mechanotransductive signalling and modulates osteoblast differentiation.
Collapse
|
76
|
Ma Z, Sagrillo-Fagundes L, Mok S, Vaillancourt C, Moraes C. Mechanobiological regulation of placental trophoblast fusion and function through extracellular matrix rigidity. Sci Rep 2020; 10:5837. [PMID: 32246004 PMCID: PMC7125233 DOI: 10.1038/s41598-020-62659-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/17/2020] [Indexed: 01/13/2023] Open
Abstract
The syncytiotrophoblast is a multinucleated layer that plays a critical role in regulating functions of the human placenta during pregnancy. Maintaining the syncytiotrophoblast layer relies on ongoing fusion of mononuclear cytotrophoblasts throughout pregnancy, and errors in this fusion process are associated with complications such as preeclampsia. While biochemical factors are known to drive fusion, the role of disease-specific extracellular biophysical cues remains undefined. Since substrate mechanics play a crucial role in several diseases, and preeclampsia is associated with placental stiffening, we hypothesize that trophoblast fusion is mechanically regulated by substrate stiffness. We developed stiffness-tunable polyacrylamide substrate formulations that match the linear elasticity of placental tissue in normal and disease conditions, and evaluated trophoblast morphology, fusion, and function on these surfaces. Our results demonstrate that morphology, fusion, and hormone release is mechanically-regulated via myosin-II; optimal on substrates that match healthy placental tissue stiffness; and dysregulated on disease-like and supraphysiologically-stiff substrates. We further demonstrate that stiff regions in heterogeneous substrates provide dominant physical cues that inhibit fusion, suggesting that even focal tissue stiffening limits widespread trophoblast fusion and tissue function. These results confirm that mechanical microenvironmental cues influence fusion in the placenta, provide critical information needed to engineer better in vitro models for placental disease, and may ultimately be used to develop novel mechanically-mediated therapeutic strategies to resolve fusion-related disorders during pregnancy.
Collapse
Affiliation(s)
- Zhenwei Ma
- Department of Chemical Engineering, McGill University, Montréal, QC, Canada
| | - Lucas Sagrillo-Fagundes
- Department of Chemical Engineering, McGill University, Montréal, QC, Canada
- INRS-Centre Armand Frappier Santé Biotechnologie and Réseau Intersectoriel de Recherche en Santé de l'Université du Québec, Laval, QC, Canada
- Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Université du Québec à Montréal, Montréal, QC, Canada
| | - Stephanie Mok
- Department of Chemical Engineering, McGill University, Montréal, QC, Canada
| | - Cathy Vaillancourt
- INRS-Centre Armand Frappier Santé Biotechnologie and Réseau Intersectoriel de Recherche en Santé de l'Université du Québec, Laval, QC, Canada
- Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Université du Québec à Montréal, Montréal, QC, Canada
| | - Christopher Moraes
- Department of Chemical Engineering, McGill University, Montréal, QC, Canada.
- Department of Biological and Biomedical Engineering, McGill University, Montréal, QC, Canada.
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada.
| |
Collapse
|
77
|
Ascolani G, Skerry TM, Lacroix D, Dall'Ara E, Shuaib A. Revealing hidden information in osteoblast's mechanotransduction through analysis of time patterns of critical events. BMC Bioinformatics 2020; 21:114. [PMID: 32183690 PMCID: PMC7079370 DOI: 10.1186/s12859-020-3394-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/04/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Mechanotransduction in bone cells plays a pivotal role in osteoblast differentiation and bone remodelling. Mechanotransduction provides the link between modulation of the extracellular matrix by mechanical load and intracellular activity. By controlling the balance between the intracellular and extracellular domains, mechanotransduction determines the optimum functionality of skeletal dynamics. Failure of this relationship was suggested to contribute to bone-related diseases such as osteoporosis. RESULTS A hybrid mechanical and agent-based model (Mech-ABM), simulating mechanotransduction in a single osteoblast under external mechanical perturbations, was utilised to simulate and examine modulation of the activation dynamics of molecules within mechanotransduction on the cellular response to mechanical stimulation. The number of molecules and their fluctuations have been analysed in terms of recurrences of critical events. A numerical approach has been developed to invert subordination processes and to extract the direction processes from the molecular signals in order to derive the distribution of recurring events. These predict that there are large fluctuations enclosing information hidden in the noise which is beyond the dynamic variations of molecular baselines. Moreover, studying the system under different mechanical load regimes and altered dynamics of feedback loops, illustrate that the waiting time distributions of each molecule are a signature of the system's state. CONCLUSIONS The behaviours of the molecular waiting times change with the changing of mechanical load regimes and altered dynamics of feedback loops, presenting the same variation of patterns for similar interacting molecules and identifying specific alterations for key molecules in mechanotransduction. This methodology could be used to provide a new tool to identify potent molecular candidates to modulate mechanotransduction, hence accelerate drug discovery towards therapeutic targets for bone mass upregulation.
Collapse
Affiliation(s)
- Gianluca Ascolani
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Insigneo Institute of In Silico Medicine, University of Sheffield, Sheffield, UK
| | - Timothy M Skerry
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Damien Lacroix
- Insigneo Institute of In Silico Medicine, University of Sheffield, Sheffield, UK
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| | - Enrico Dall'Ara
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Insigneo Institute of In Silico Medicine, University of Sheffield, Sheffield, UK
| | - Aban Shuaib
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK.
- Insigneo Institute of In Silico Medicine, University of Sheffield, Sheffield, UK.
| |
Collapse
|
78
|
Moose DL, Krog BL, Kim TH, Zhao L, Williams-Perez S, Burke G, Rhodes L, Vanneste M, Breheny P, Milhem M, Stipp CS, Rowat AC, Henry MD. Cancer Cells Resist Mechanical Destruction in Circulation via RhoA/Actomyosin-Dependent Mechano-Adaptation. Cell Rep 2020; 30:3864-3874.e6. [PMID: 32187555 PMCID: PMC7219793 DOI: 10.1016/j.celrep.2020.02.080] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/31/2020] [Accepted: 02/20/2020] [Indexed: 12/27/2022] Open
Abstract
During metastasis, cancer cells are exposed to potentially destructive hemodynamic forces including fluid shear stress (FSS) while en route to distant sites. However, prior work indicates that cancer cells are more resistant to brief pulses of high-level FSS in vitro relative to non-transformed epithelial cells. Herein, we identify a mechano-adaptive mechanism of FSS resistance in cancer cells. Our findings demonstrate that cancer cells activate RhoA in response to FSS, which protects them from FSS-induced plasma membrane damage. We show that cancer cells freshly isolated from mouse and human tumors are resistant to FSS, that formin and myosin II activity protects circulating tumor cells (CTCs) from destruction, and that short-term inhibition of myosin II delays metastasis in mouse models. Collectively, our data indicate that viable CTCs actively resist destruction by hemodynamic forces and are likely to be more mechanically robust than is commonly thought.
Collapse
Affiliation(s)
- Devon L Moose
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Cancer Biology Program, Biomedical Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Benjamin L Krog
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Tae-Hyung Kim
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lei Zhao
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | - Gretchen Burke
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Lillian Rhodes
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Marion Vanneste
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Patrick Breheny
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Mohammed Milhem
- Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA; Division of Hematology and Oncology, Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Christopher S Stipp
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA; Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Amy C Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael D Henry
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Cancer Biology Program, Biomedical Sciences, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA; Departments of Pathology, Urology and Radiation Oncology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
79
|
Ma Z, Sagrillo-Fagundes L, Tran R, Parameshwar PK, Kalashnikov N, Vaillancourt C, Moraes C. Biomimetic Micropatterned Adhesive Surfaces To Mechanobiologically Regulate Placental Trophoblast Fusion. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47810-47821. [PMID: 31773938 DOI: 10.1021/acsami.9b19906] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The placental syncytiotrophoblast is a giant multinucleated cell that forms a tree-like structure and regulates transport between mother and baby during development. It is maintained throughout pregnancy by continuous fusion of trophoblast cells, and disruptions in fusion are associated with considerable adverse health effects including diseases such as preeclampsia. Developing predictive control over cell fusion in culture models is hence of critical importance in placental drug discovery and transport studies, but this can currently be only partially achieved with biochemical factors. Here, we investigate whether biophysical signals associated with budding morphogenesis during development of the placental villous tree can synergistically direct and enhance trophoblast fusion. We use micropatterning techniques to manipulate physical stresses in engineered microtissues and demonstrate that biomimetic geometries simulating budding robustly enhance fusion and alter spatial patterns of synthesis of pregnancy-related hormones. These findings indicate that biophysical signals play a previously unrecognized and significant role in regulating placental fusion and function, in synergy with established soluble signals. More broadly, our studies demonstrate that biomimetic strategies focusing on tissue mechanics can be important approaches to design, build, and test placental tissue cultures for future studies of pregnancy-related drug safety, efficacy, and discovery.
Collapse
Affiliation(s)
- Zhenwei Ma
- Department of Chemical Engineering , McGill University , Montréal , QC H3A 0C5 , Canada
| | - Lucas Sagrillo-Fagundes
- Department of Chemical Engineering , McGill University , Montréal , QC H3A 0C5 , Canada
- INRS-Centre Armand Frappier Santé Biotehnologie and Réseau Intersectoriel de Recherche en Santé de l'Université du Québec , Laval , QC H7V 1B7 , Canada
- Center for Interdisciplinary Research on Well-Being, Health, Society and Environment , Université du Québec à Montréal , Montréal , QC H3C 3P8 , Canada
| | - Raymond Tran
- Department of Chemical Engineering , McGill University , Montréal , QC H3A 0C5 , Canada
| | - Prabu Karthick Parameshwar
- Department of Biological and Biomedical Engineering , McGill University , Montréal , QC H3A 2B4 , Canada
| | - Nikita Kalashnikov
- Department of Chemical Engineering , McGill University , Montréal , QC H3A 0C5 , Canada
| | - Cathy Vaillancourt
- INRS-Centre Armand Frappier Santé Biotehnologie and Réseau Intersectoriel de Recherche en Santé de l'Université du Québec , Laval , QC H7V 1B7 , Canada
- Center for Interdisciplinary Research on Well-Being, Health, Society and Environment , Université du Québec à Montréal , Montréal , QC H3C 3P8 , Canada
| | - Christopher Moraes
- Department of Chemical Engineering , McGill University , Montréal , QC H3A 0C5 , Canada
- Department of Biological and Biomedical Engineering , McGill University , Montréal , QC H3A 2B4 , Canada
- Rosalind and Morris Goodman Cancer Research Centre , McGill University , Montréal , QC H3A 1A3 , Canada
| |
Collapse
|
80
|
Harris AR, Belardi B, Jreij P, Wei K, Shams H, Bausch A, Fletcher DA. Steric regulation of tandem calponin homology domain actin-binding affinity. Mol Biol Cell 2019; 30:3112-3122. [PMID: 31693446 PMCID: PMC6938246 DOI: 10.1091/mbc.e19-06-0317] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/03/2019] [Accepted: 10/29/2019] [Indexed: 11/11/2022] Open
Abstract
Tandem calponin homology (CH1-CH2) domains are common actin-binding domains in proteins that interact with and organize the actin cytoskeleton. Despite regions of high sequence similarity, CH1-CH2 domains can have remarkably different actin-binding properties, with disease-associated point mutants known to increase as well as decrease affinity for F-actin. To investigate features that affect CH1-CH2 affinity for F-actin in cells and in vitro, we perturbed the utrophin actin-binding domain by making point mutations at the CH1-CH2 interface, replacing the linker domain, and adding a polyethylene glycol (PEG) polymer to CH2. Consistent with a previous model describing CH2 as a steric negative regulator of actin binding, we find that utrophin CH1-CH2 affinity is both increased and decreased by modifications that change the effective "openness" of CH1 and CH2 in solution. We also identified interface mutations that caused a large increase in affinity without changing solution "openness," suggesting additional influences on affinity. Interestingly, we also observe nonuniform subcellular localization of utrophin CH1-CH2 that depends on the N-terminal flanking region but not on bulk affinity. These observations provide new insights into how small sequence changes, such as those found in diseases, can affect CH1-CH2 binding properties.
Collapse
Affiliation(s)
- Andrew R. Harris
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720
| | - Brian Belardi
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720
| | - Pamela Jreij
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720
| | - Kathy Wei
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720
| | - Hengameh Shams
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720
| | - Andreas Bausch
- Lehrstuhl für Biophysik (E27), Technische Universität München, Garching 85748, Germany
| | - Daniel A. Fletcher
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| |
Collapse
|
81
|
Wioland H, Suzuki E, Cao L, Romet-Lemonne G, Jegou A. The advantages of microfluidics to study actin biochemistry and biomechanics. J Muscle Res Cell Motil 2019; 41:175-188. [PMID: 31749040 PMCID: PMC7109186 DOI: 10.1007/s10974-019-09564-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 10/26/2019] [Indexed: 11/24/2022]
Abstract
The regulated assembly of actin filaments is essential in nearly all cell types. Studying actin assembly dynamics can pose many technical challenges. A number of these challenges can be overcome by using microfluidics to observe and manipulate single actin filaments under an optical microscope. In particular, microfluidics can be tremendously useful for applying different mechanical stresses to actin filaments and determining how the physical context of the filaments affects their regulation by biochemical factors. In this review, we summarize the main features of microfluidics for the study of actin assembly dynamics, and we highlight some recent developments that have emerged from the combination of microfluidics and other techniques. We use two case studies to illustrate our points: the rapid assembly of actin filaments by formins and the disassembly of filaments by actin depolymerizing factor (ADF)/cofilin. Both of these protein families play important roles in cells. They regulate actin assembly through complex molecular mechanisms that are sensitive to the filaments’ mechanical context, with multiple activities that need to be quantified separately. Microfluidics-based experiments have been extremely useful for gaining insight into the regulatory actions of these two protein families.
Collapse
Affiliation(s)
- Hugo Wioland
- Institut Jacques Monod, CNRS, Université de Paris, 75013, Paris, France
| | - Emiko Suzuki
- Institut Jacques Monod, CNRS, Université de Paris, 75013, Paris, France
| | - Luyan Cao
- Institut Jacques Monod, CNRS, Université de Paris, 75013, Paris, France
| | | | - Antoine Jegou
- Institut Jacques Monod, CNRS, Université de Paris, 75013, Paris, France.
| |
Collapse
|
82
|
Argentati C, Morena F, Tortorella I, Bazzucchi M, Porcellati S, Emiliani C, Martino S. Insight into Mechanobiology: How Stem Cells Feel Mechanical Forces and Orchestrate Biological Functions. Int J Mol Sci 2019; 20:E5337. [PMID: 31717803 PMCID: PMC6862138 DOI: 10.3390/ijms20215337] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
The cross-talk between stem cells and their microenvironment has been shown to have a direct impact on stem cells' decisions about proliferation, growth, migration, and differentiation. It is well known that stem cells, tissues, organs, and whole organisms change their internal architecture and composition in response to external physical stimuli, thanks to cells' ability to sense mechanical signals and elicit selected biological functions. Likewise, stem cells play an active role in governing the composition and the architecture of their microenvironment. Is now being documented that, thanks to this dynamic relationship, stemness identity and stem cell functions are maintained. In this work, we review the current knowledge in mechanobiology on stem cells. We start with the description of theoretical basis of mechanobiology, continue with the effects of mechanical cues on stem cells, development, pathology, and regenerative medicine, and emphasize the contribution in the field of the development of ex-vivo mechanobiology modelling and computational tools, which allow for evaluating the role of forces on stem cell biology.
Collapse
Affiliation(s)
- Chiara Argentati
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Ilaria Tortorella
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Martina Bazzucchi
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Serena Porcellati
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
- CEMIN, Center of Excellence on Nanostructured Innovative Materials, Via del Giochetto, 06126 Perugia, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
- CEMIN, Center of Excellence on Nanostructured Innovative Materials, Via del Giochetto, 06126 Perugia, Italy
| |
Collapse
|
83
|
Skamrahl M, Colin-York H, Barbieri L, Fritzsche M. Simultaneous Quantification of the Interplay Between Molecular Turnover and Cell Mechanics by AFM-FRAP. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902202. [PMID: 31419037 PMCID: PMC7612032 DOI: 10.1002/smll.201902202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/22/2019] [Indexed: 06/02/2023]
Abstract
Quantifying the adaptive mechanical behavior of living cells is essential for the understanding of their inner working and function. Yet, despite the establishment of quantitative methodologies correlating independent measurements of cell mechanics and its underlying molecular kinetics, explicit evidence and knowledge of the sensitivity of the feedback mechanisms of cells controlling their adaptive mechanics behavior remains elusive. Here, a combination of atomic force microscopy and fluorescence recovery after photobleaching is introduced offering simultaneous quantification and direct correlation of molecule kinetics and mechanics in living cells. Systematic application of this optomechanical atomic force microscopy-fluorescence recovery after photobleaching platform reveals changes in the actin turnover and filament lengths of ventral actin stress fibers in response to constant mechanical force at the apical actin cortex with a dynamic range from 0.1 to 10 nN, highlighting a direct relationship of active mechanosensation and adaptation of the cellular actin cytoskeleton. Simultaneous quantification of the relationship between molecule kinetics and cell mechanics may thus open-up unprecedented insights into adaptive mechanobiological mechanisms of cells.
Collapse
Affiliation(s)
- Mark Skamrahl
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford. OX3 9DS, United Kingdom
| | - Huw Colin-York
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford. OX3 9DS, United Kingdom
| | - Liliana Barbieri
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford. OX3 9DS, United Kingdom
| | - Marco Fritzsche
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford. OX3 9DS, United Kingdom
- Kennedy Institute for Rheumatology, Roosevelt Drive, University of Oxford, Oxford, OX3 7LF, United Kingdom
| |
Collapse
|
84
|
Abstract
The cytoskeleton provides structural integrity to cells and serves as a key component in mechanotransduction. Tensins are thought to provide a force-bearing linkage between integrins and the actin cytoskeleton; yet, direct evidence of tensin’s role in mechanotransduction is lacking. We here report that local force application to epithelial cells using a micrometer-sized needle leads to rapid accumulation of cten (tensin 4), but not tensin 1, along a fibrous intracellular network. Surprisingly, cten-positive fibers are not actin fibers; instead, these fibers are keratin intermediate filaments. The dissociation of cten from tension-free keratin fibers depends on the duration of cell stretch, demonstrating that the external force favors maturation of cten−keratin network interactions over time and that keratin fibers retain remarkable structural memory of a cell’s force-bearing state. These results establish the keratin network as an integral part of force-sensing elements recruiting distinct proteins like cten and suggest the existence of a mechanotransduction pathway via keratin network.
Collapse
|
85
|
Dasbiswas K, Hu S, Bershadsky AD, Safran SA. Registry Kinetics of Myosin Motor Stacks Driven by Mechanical Force-Induced Actin Turnover. Biophys J 2019; 117:856-866. [PMID: 31427069 DOI: 10.1016/j.bpj.2019.07.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/13/2019] [Accepted: 07/23/2019] [Indexed: 01/26/2023] Open
Abstract
Actin filaments associated with myosin motors constitute the cytoskeletal force-generating machinery for many types of adherent cells. These actomyosin units are structurally ordered in muscle cells and, in particular, may be spatially registered across neighboring actin bundles. Such registry or stacking of myosin filaments have been recently observed in ordered actin bundles of even fibroblasts with super-resolution microscopy techniques. We introduce here a model for the dynamics of stacking arising from long-range mechanical interactions between actomyosin units through mutual contractile deformations of the intervening cytoskeletal network. The dynamics of registry involve two key processes: 1) polymerization and depolymerization of actin filaments and 2) remodeling of cross-linker-rich actin adhesion zones, both of which are, in principle, mechanosensitive. By calculating the elastic forces that drive registry and their effect on actin polymerization rates, we estimate a characteristic timescale of tens of minutes for registry to be established, in agreement with experimentally observed timescales for individual kinetic processes involved in myosin stack formation, which we track and quantify. This model elucidates the role of actin turnover dynamics in myosin stacking and explains the loss of stacks seen when actin assembly or disassembly and cross-linking is experimentally disrupted in fibroblasts.
Collapse
Affiliation(s)
- Kinjal Dasbiswas
- Department of Physics, University of California, Merced, California.
| | - Shiqiong Hu
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Alexander D Bershadsky
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Samuel A Safran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
86
|
Begum HM, Ta HP, Zhou H, Ando Y, Kang D, Nemes K, Mariano CF, Hao J, Yu M, Shen K. Spatial Regulation of Mitochondrial Heterogeneity by Stromal Confinement in Micropatterned Tumor Models. Sci Rep 2019; 9:11187. [PMID: 31371796 PMCID: PMC6671984 DOI: 10.1038/s41598-019-47593-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/19/2019] [Indexed: 01/16/2023] Open
Abstract
Heterogeneity of mitochondrial activities in cancer cells exists across different disease stages and even in the same patient, with increased mitochondrial activities associated with invasive cancer phenotypes and circulating tumor cells. Here, we use a micropatterned tumor-stromal assay (μTSA) comprised of MCF-7 breast cancer cells and bone marrow stromal cells (BMSCs) as a model to investigate the role of stromal constraints in altering the mitochondrial activities of cancer cells within the tumor microenvironment (TME). Using microdissection and RNA sequencing, we revealed a differentially regulated pattern of gene expression related to mitochondrial activities and metastatic potential at the tumor-stromal interface. Gene expression was confirmed by immunostaining of mitochondrial mass, and live microscopic imaging of mitochondrial membrane potential (ΔΨm) and optical redox ratio. We demonstrated that physical constraints by the stromal cells play a major role in ΔΨm heterogeneity, which was positively associated with nuclear translocation of the YAP/TAZ transcriptional co-activators. Importantly, inhibiting actin polymerization and Rho-associated protein kinase disrupted the differential ΔΨm pattern. In addition, we showed a positive correlation between ΔΨm level and metastatic burden in vivo in mice injected with MDA-MB-231 breast cancer cells. This study supports a new regulatory role for the TME in mitochondrial heterogeneity and metastatic potential.
Collapse
Affiliation(s)
- Hydari Masuma Begum
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Hoang P Ta
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Hao Zhou
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yuta Ando
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Diane Kang
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Kristen Nemes
- Mork Family Department of Chemical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Chelsea F Mariano
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jia Hao
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Keyue Shen
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- USC Stem Cell, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
87
|
Moosazadeh Moghaddam M, Bonakdar S, Shokrgozar MA, Zaminy A, Vali H, Faghihi S. Engineered substrates with imprinted cell-like topographies induce direct differentiation of adipose-derived mesenchymal stem cells into Schwann cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1022-1035. [PMID: 30942113 DOI: 10.1080/21691401.2019.1586718] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Differentiation of stem cells to Schwann is considered efficient way for nerve regeneration since the sources of human Schwann cells are limited for clinical application. It is demonstrated that mimicking micromechanical forces or micro/nanotopographical environments that stem cells are experienced in vivo could control their fate. Here, the potency of substrates with imprinted cell-like topographies for direct differentiation of adipose-derived mesenchymal stem cells (ADSCs) into Schwann cells (SCs) is reported. For the preparation of substrates with imprinted SC-Like topographies, SCs are isolated from the sciatic nerve, grown, fixed, and then SC morphologies are transferred to polydimethylsiloxane (PDMS) substrates by mold casting. Subsequently, mesenchymal stem cells (MSCs) are seeded on the SC-imprinted substrates and their differentiation to SCs is evaluated by immunocytochemistry, real-time PCR, and western blotting. Analysis of morphology and expression of SC-specific markers show that MSCs cultured on the imprinted substrates have the typical SC-like morphology and express SC-specific markers including S100b, p75NTR, and Sox10. It is believed that specific cell-like topographies and related micromechanical cues can be sufficient for direct differentiation of ADSCs into Schwann cells by cell-imprinting method as a physical technique.
Collapse
Affiliation(s)
- Mehrdad Moosazadeh Moghaddam
- a Stem Cell and Regenerative Medicine Group , National Institute of Genetic Engineering and Biotechnology (NIGEB) , Tehran , Iran
| | - Shahin Bonakdar
- b National Cell Bank , Pasteur Institute of Iran , Tehran , Iran
| | | | - Arash Zaminy
- c Neuroscience Research Center, Faculty of Medicine , Guilan University of Medical Sciences , Rasht , Iran
| | - Hojatollah Vali
- d Department of Anatomy and Cell Biology , McGill University , Montréal , QC , Canada.,e Facility for Electron Microscopy Research , McGill University , Montréal , QC , Canada
| | - Shahab Faghihi
- a Stem Cell and Regenerative Medicine Group , National Institute of Genetic Engineering and Biotechnology (NIGEB) , Tehran , Iran
| |
Collapse
|
88
|
Qiu Y, Myers DR, Lam WA. The biophysics and mechanics of blood from a materials perspective. NATURE REVIEWS. MATERIALS 2019; 4:294-311. [PMID: 32435512 PMCID: PMC7238390 DOI: 10.1038/s41578-019-0099-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cells actively interact with their microenvironment, constantly sensing and modulating biochemical and biophysical signals. Blood comprises a variety of non-adherent cells that interact with each other and with endothelial and vascular smooth muscle cells of the blood vessel walls. Blood cells are further experiencing a range of external forces by the hemodynamic environment and they also exert forces to remodel their local environment. Therefore, the biophysics and material properties of blood cells and blood play an important role in determining blood behaviour in health and disease. In this Review, we discuss blood cells and tissues from a materials perspective, considering the mechanical properties and biophysics of individual blood cells and endothelial cells as well as blood cell collectives. We highlight how blood vessels provide a mechanosensitive barrier between blood and tissues and how changes in vessel stiffness and flow shear stress can be correlated to plaque formation and exploited for the design of vascular grafts. We discuss the effect of the properties of fibrin on blood clotting, and investigate how forces exerted by platelets are correlated to disease. Finally, we hypothesize that blood and vascular cells are constantly establishing a mechanical homeostasis, which, when imbalanced, can lead to hematologic and vascular diseases.
Collapse
Affiliation(s)
- Yongzhi Qiu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - David R. Myers
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Wilbur A. Lam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Corresponding author,
| |
Collapse
|
89
|
Moghaddam MM, Bonakdar S, Shariatpanahi MR, Shokrgozar MA, Faghihi S. The Effect of Physical Cues on the Stem Cell Differentiation. Curr Stem Cell Res Ther 2019; 14:268-277. [DOI: 10.2174/1574888x14666181227120706] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/05/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022]
Abstract
Development of multicellular organisms is a very complex and organized process during which cells respond to various factors and features in extracellular environments. It has been demonstrated that during embryonic evolvement, under certain physiological or experimental conditions, unspecialized cells or stem cells can be induced to become tissue or organ-specific cells with special functions. Considering the importance of physical cues in stem cell fate, the present study reviews the role of physical factors in stem cells differentiation and discusses the molecular mechanisms associated with these factors.
Collapse
Affiliation(s)
- Mehrdad M. Moghaddam
- Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, 14965/161, Iran
| | - Shahin Bonakdar
- National Cell Bank, Pasteur Institute of Iran, Tehran 3159915111, Iran
| | | | | | - Shahab Faghihi
- Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, 14965/161, Iran
| |
Collapse
|
90
|
Zimmermann D, Kovar DR. Feeling the force: formin's role in mechanotransduction. Curr Opin Cell Biol 2019; 56:130-140. [PMID: 30639952 DOI: 10.1016/j.ceb.2018.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/13/2018] [Accepted: 12/16/2018] [Indexed: 11/15/2022]
Abstract
Fundamental cellular processes such as division, polarization, and motility require the tightly regulated spatial and temporal assembly and disassembly of the underlying actin cytoskeleton. The actin cytoskeleton has been long viewed as a central player facilitating diverse mechanotransduction pathways due to the notion that it is capable of receiving, processing, transmitting, and generating mechanical stresses. Recent work has begun to uncover the roles of mechanical stresses in modulating the activity of key regulatory actin-binding proteins and their interactions with actin filaments, thereby controlling the assembly (formin and Arp2/3 complex) and disassembly (ADF/Cofilin) of actin filament networks. In this review, we will focus on discussing the current molecular understanding of how members of the formin protein family sense and respond to forces and the potential implications for formin-mediated mechanotransduction in cells.
Collapse
Affiliation(s)
- Dennis Zimmermann
- Massachusetts Institute of Technology, David H. Koch Institute for Integrative Cancer Research, 77 Massachusetts Ave, 76-361F, Cambridge, MA 02139-4307, United States.
| | - David R Kovar
- The University of Chicago, Department of Molecular Genetics and Cell Biology, 90 E. 58th Street, CSLC 212, Chicago, IL 60637, United States.
| |
Collapse
|
91
|
Kanoldt V, Fischer L, Grashoff C. Unforgettable force – crosstalk and memory of mechanosensitive structures. Biol Chem 2018; 400:687-698. [DOI: 10.1515/hsz-2018-0328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/11/2018] [Indexed: 12/11/2022]
Abstract
Abstract
The ability of cells to sense and respond to mechanical stimuli is crucial for many developmental and homeostatic processes, while mechanical dysfunction of cells has been associated with numerous pathologies including muscular dystrophies, cardiovascular defects and epithelial disorders. Yet, how cells detect and process mechanical information is still largely unclear. In this review, we outline major mechanisms underlying cellular mechanotransduction and we summarize the current understanding of how cells integrate information from distinct mechanosensitive structures to mediate complex mechanoresponses. We also discuss the concept of mechanical memory and describe how cells store information on previous mechanical events for different periods of time.
Collapse
Affiliation(s)
- Verena Kanoldt
- Group of Molecular Mechanotransduction , Max Planck Institute of Biochemistry , 82152 Martinsried , Germany
| | - Lisa Fischer
- Group of Molecular Mechanotransduction , Max Planck Institute of Biochemistry , 82152 Martinsried , Germany
| | - Carsten Grashoff
- Group of Molecular Mechanotransduction , Max Planck Institute of Biochemistry , 82152 Martinsried , Germany
- Department of Quantitative Cell Biology , Institute of Molecular Cell Biology, University of Münster , 48149 Münster , Germany
| |
Collapse
|