51
|
Craven RR, Hall JD, Fuller JR, Taft-Benz S, Kawula TH. Francisella tularensis invasion of lung epithelial cells. Infect Immun 2008; 76:2833-42. [PMID: 18426871 PMCID: PMC2446690 DOI: 10.1128/iai.00043-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 02/19/2008] [Accepted: 04/11/2008] [Indexed: 01/16/2023] Open
Abstract
Francisella tularensis, a gram-negative facultative intracellular bacterial pathogen, causes disseminating infections in humans and other mammalian hosts. Macrophages and other monocytes have long been considered the primary site of F. tularensis replication in infected animals. However, recently it was reported that F. tularensis also invades and replicates within alveolar epithelial cells following inhalation in a mouse model of tularemia. TC-1 cells, a mouse lung epithelial cell line, were used to study the process of F. tularensis invasion and intracellular trafficking within nonphagocytic cells. Live and paraformaldehyde-fixed F. tularensis live vaccine strain organisms associated with, and were internalized by, TC-1 cells at similar frequencies and with indistinguishable differences in kinetics. Inhibitors of microfilament and microtubule activity resulted in significantly decreased F. tularensis invasion, as did inhibitors of phosphatidylinositol 3-kinase and tyrosine kinase activity. Collectively, these results suggest that F. tularensis epithelial cell invasion is mediated by a preformed ligand on the bacterial surface and driven entirely by host cell processes. Once internalized, F. tularensis-containing endosomes associated with early endosome antigen 1 (EEA1) followed by lysosome-associated membrane protein 1 (LAMP-1), with peak coassociation frequencies occurring at 30 and 120 min postinoculation, respectively. By 2 h postinoculation, 70.0% (+/- 5.5%) of intracellular bacteria were accessible to antibody delivered to the cytoplasm, indicating vacuolar breakdown and escape into the cytoplasm.
Collapse
Affiliation(s)
- Robin R Craven
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7290, USA
| | | | | | | | | |
Collapse
|
52
|
Pan H, Xie J, Ye F, Gao SJ. Modulation of Kaposi's sarcoma-associated herpesvirus infection and replication by MEK/ERK, JNK, and p38 multiple mitogen-activated protein kinase pathways during primary infection. J Virol 2007; 80:5371-82. [PMID: 16699017 PMCID: PMC1472170 DOI: 10.1128/jvi.02299-05] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is etiologically associated with Kaposi's sarcoma, a dominant AIDS-related tumor of endothelial cells, and several other lymphoproliferative malignancies. While activation of the phosphatidylinositol 3-kinase-protein kinase C-MEK-ERK pathway is essential for KSHV infection, we have recently shown that KSHV also activates JNK and p38 mitogen-activated protein kinase (MAPK) pathways during primary infection (J. Xie, H. Y. Pan, S. Yoo, and S.-J. Gao, J. Virol. 79:15027-15037, 2005). Here, we found that activation of both JNK and p38 pathways was also essential for KSHV infection. Inhibitors of all three MAPK pathways reduced KSHV infectivity in both human umbilical vein endothelial cells (HUVEC) and 293 cells. These inhibitory effects were dose dependent and occurred at the virus entry stage of infection. Consistently, inhibition of all three MAPK pathways with dominant-negative constructs reduced KSHV infectivity whereas activation of the ERK pathway but not the JNK and p38 pathways enhanced KSHV infectivity. Importantly, inhibition of all three MAPK pathways also reduced the yield of infectious virions during KSHV productive infection of HUVEC. While the reduction of infectious virions was in part due to the reduced infectivity, it was also the result of direct modulation of KSHV lytic replication by the MAPK pathways. Accordingly, KSHV upregulated the expression of RTA (Orf50), a master transactivator of KSHV lytic replication, and activated its promoter during primary infection. Furthermore, KSHV activation of RTA promoter during primary infection was modulated by all three MAPK pathways, predominantly through their downstream target AP-1. Together, these results indicate that, by modulating multiple MAPK pathways, KSHV manipulates the host cells to facilitate its entry into the cells and postentry productive lytic replication during primary infection.
Collapse
Affiliation(s)
- Hongyi Pan
- Tumor Virology Program, Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | |
Collapse
|
53
|
Scibelli A, Roperto S, Manna L, Pavone LM, Tafuri S, Della Morte R, Staiano N. Engagement of integrins as a cellular route of invasion by bacterial pathogens. Vet J 2007; 173:482-91. [PMID: 16546423 DOI: 10.1016/j.tvjl.2006.01.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Integrins are heterodimeric receptors that mediate important cell functions, including cell adhesion, migration and tissue organisation. These transmembrane receptors regulate the direct association of cells with each other and with extracellular matrix proteins. However, by binding their ligands, integrins provide a transmembrane link for the bidirectional transmission of mechanical forces and biochemical signals across the plasma membrane. Interestingly, several of this family of receptors are exploited by pathogens to establish contact with the host cells. Hence, microbes subvert normal eukaryotic cell processes to create a specialised niche which allows their survival. This review highlights the fundamental role of integrins in bacterial pathogenesis.
Collapse
Affiliation(s)
- Antonio Scibelli
- Dipartimento di Strutture, Funzioni e Tecnologie Biologiche, Università di Napoli Federico II, Via F. Delpino 1, 80137 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
54
|
Wang Q, Liang C, Song J, Chen X. HA2 from the Helicoverpa armigera nucleopolyhedrovirus: a WASP-related protein that activates Arp2/3-induced actin filament formation. Virus Res 2007; 127:81-7. [PMID: 17467839 DOI: 10.1016/j.virusres.2007.03.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 03/22/2007] [Accepted: 03/23/2007] [Indexed: 10/23/2022]
Abstract
Filamentous actin is required for the productive replication of lepidopteran nucleopolyhedroviruses. We have demonstrated that nucleocapsids of the Helicoverpa armigera nucleopolyhedrovirus (HearNPV) are capable of nucleating actin polymerization in vitro in a dose-dependent manner. Actin polymerization is the main mechanism used in cell locomotion and is also utilized by the Listeria bacteria and by vaccinia virus for intracellular and intercellular movements. The WASP family of proteins has been shown to stimulate the assembly of branched actin filaments by the Arp2/3 complex. The process is conserved in eukaryotic cells. HearNPV ORF 2 (HA2), a WASP homologue, could nucleate branched actin filaments in the presence of Arp2/3 complex in vitro. We also demonstrate that HA2 co-localizes with Arp2/3 complex in the nucleus of infected cells, suggesting that HA2 and Arp2/3 complex are involved in nuclear actin polymerization. In summary, HA2 activates Arp2/3-induced actin filament network formation in vitro and in vivo.
Collapse
Affiliation(s)
- Qian Wang
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | | | | | | |
Collapse
|
55
|
Gullberg E, Keita AV, Salim SY, Andersson M, Caldwell KD, Söderholm JD, Artursson P. Identification of cell adhesion molecules in the human follicle-associated epithelium that improve nanoparticle uptake into the Peyer's patches. J Pharmacol Exp Ther 2006; 319:632-9. [PMID: 16914557 DOI: 10.1124/jpet.106.107847] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to identify cell adhesion molecules that could serve as targets of the human follicle-associated epithelium (FAE) overlying Peyer's patches and to assess nanoparticle uptake levels across this epithelium. We first studied the expression of the mouse M-cell marker beta(1)-integrin and used a model of human FAE derived from intestinal epithelial Caco-2 cells and Raji B-cells to identify additional potential targets by cDNA array. The protein expression of potential targets in the model FAE and in human ileal FAE tissues was quantified by immunofluorescence. Integrin targeting was studied by investigating the transport of Arg-Gly-Asp (RGD)-coated (integrin-binding), Arg-Gly-Glu (RGE)-coated (nonintegrin-binding), and uncoated nanoparticles across ileal specimens mounted in Ussing chambers. Both beta(1)-integrin and the cell adhesion molecule CD9 were more abundantly expressed in the model and human FAE compared with the Caco-2 control cells or villus epithelium (VE). Uncoated nanoparticles were not taken up across either FAE or VE. General integrin targeting with RGD improved the nanoparticle transport dramatically across the FAE and to a lower extent across the VE. Compared with RGE, RGD improved transport 4-fold across the FAE. There was no difference in the transport of RGD- and RGE-coated nanoparticles across the VE. In conclusion, beta(1)-integrin and CD9 were identified as targets in human FAE. The difference in RGD- and RGE-mediated transport across the FAE, but not the VE, suggests that a specific integrin interaction was the dominating mechanism for improved nanoparticle uptake across the FAE., whereas charge interaction contributed substantially to the improved VE uptake.
Collapse
|
56
|
Slevogt H, Seybold J, Tiwari KN, Hocke AC, Jonatat C, Dietel S, Hippenstiel S, Singer BB, Bachmann S, Suttorp N, Opitz B. Moraxella catarrhalis is internalized in respiratory epithelial cells by a trigger-like mechanism and initiates a TLR2- and partly NOD1-dependent inflammatory immune response. Cell Microbiol 2006; 9:694-707. [PMID: 17054439 DOI: 10.1111/j.1462-5822.2006.00821.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Moraxella catarrhalis is an important pathogen in patients with chronic obstructive lung disease (COPD). While M. catarrhalis has been categorized as an extracellular bacterium so far, the potential to invade human respiratory epithelium has not yet been explored. Our results obtained by electron and confocal microscopy demonstrated a considerable potential of M. catarrhalis to invade bronchial epithelial (BEAS-2B) cells, type II pneumocytes (A549) and primary small airway epithelial cells (SAEC). Moraxella invasion was dependent on cellular microfilament as well as on bacterial viability, and characterized by macropinocytosis leading to the formation of lamellipodia and engulfment of the invading organism into macropinosomes, thus indicating a trigger-like uptake mechanism. In addition, the cells examined expressed TLR2 as well as NOD1, a recently found cytosolic protein implicated in the intracellular recognition of bacterial cell wall components. Importantly, inhibition of TLR2 or NOD1 expression by RNAi significantly reduced the M. catarrhalis-induced IL-8 secretion. The role of TLR2 and NOD1 was further confirmed by overexpression assays in HEK293 cells. Overall, M. catarrhalis may employ lung epithelial cell invasion to colonize and to infect the respiratory tract, nonetheless, the bacteria are recognized by cell surface TLR2 and the intracellular surveillance molecule NOD1.
Collapse
Affiliation(s)
- Hortense Slevogt
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité- Universitätsmedizin Berlin, 13353 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Krishnan HH, Sharma-Walia N, Streblow DN, Naranatt PP, Chandran B. Focal adhesion kinase is critical for entry of Kaposi's sarcoma-associated herpesvirus into target cells. J Virol 2006; 80:1167-80. [PMID: 16414994 PMCID: PMC1346954 DOI: 10.1128/jvi.80.3.1167-1180.2006] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 (KSHV/HHV-8) interacts with cell surface alpha3beta1 integrin early during in vitro infection of human endothelial cells and fibroblasts and activates the focal adhesion kinase (FAK) that is immediately downstream in the outside-in signaling pathway by integrins, leading to the activation of several downstream signaling molecules. In this study, using real-time DNA and reverse transcription-PCR assays to measure total internalized viral DNA, viral DNA associated with infected nuclei, and viral gene expression, we examined the stage of infection at which FAK plays the most significant role. Early during KSHV infection, FAK was phosphorylated in FAK-positive Du17 mouse embryonic fibroblasts. The absence of FAK in Du3 (FAK(-/-)) cells resulted in about 70% reduction in the internalization of viral DNA, suggesting that FAK plays a role in KSHV entry. Expression of FAK in Du3 (FAK(-/-)) cells via an adenovirus vector augmented the internalization of viral DNA. Expression of the FAK dominant-negative mutant FAK-related nonkinase (FRNK) in Du17 cells significantly reduced the entry of virus. Virus entry in Du3 cells, albeit in reduced quantity, delivery of viral DNA to the infected cell nuclei, and expression of KSHV genes suggested that in the absence of FAK, another molecule(s) may be partially compensating for FAK function. Infection of Du3 cells induced the phosphorylation of the FAK-related proline-rich tyrosine kinase (Pyk2) molecule, which has been shown to complement some of the functions of FAK. Expression of an autophosphorylation site mutant of Pyk2 in which Y402 is mutated to F (F402 Pyk2) reduced viral entry in Du3 cells, suggesting that Pyk2 facilitates viral entry moderately in the absence of FAK. These results suggest a critical role for KSHV infection-induced FAK in the internalization of viral DNA into target cells.
Collapse
Affiliation(s)
- Harinivas H Krishnan
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | | | | | | | | |
Collapse
|
58
|
Onfelt B, Purbhoo MA, Nedvetzki S, Sowinski S, Davis DM. Long-distance calls between cells connected by tunneling nanotubules. Sci Signal 2005; 2005:pe55. [PMID: 16333019 DOI: 10.1126/stke.3132005pe55] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Long membrane tethers between cells, known as membrane nantotubes or tunneling nanotubules, create supracellular structures that allow multiple cell bodies to act in a synchronized manner. Calcium fluxes, vesicles, and cell-surface components can all traffic between cells connected by nanotubes. Thus, complex and specific messages can be transmitted between multiple cells, and the strength of signal will suffer relatively little with the distance traveled, as compared to the use of soluble factors to transmit messages. Connecting multiple antigen-presenting cells, for example, can help amplify and coordinate immune responses that are distal to an antigenic site. Conversely, because the ability of a pathogen to spread between cells is a key determinant of its capacity to multiply, pathogens may exploit nanotubes for their own transmission.
Collapse
Affiliation(s)
- Björn Onfelt
- Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
59
|
Suparak S, Kespichayawattana W, Haque A, Easton A, Damnin S, Lertmemongkolchai G, Bancroft GJ, Korbsrisate S. Multinucleated giant cell formation and apoptosis in infected host cells is mediated by Burkholderia pseudomallei type III secretion protein BipB. J Bacteriol 2005; 187:6556-60. [PMID: 16159789 PMCID: PMC1236626 DOI: 10.1128/jb.187.18.6556-6560.2005] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Supaporn Suparak
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Pran-nok Road, Bangkoknoi, Bangkok 10700, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Rodriguez MA, LeClaire LL, Roberts TM. Preparing to move: assembly of the MSP amoeboid motility apparatus during spermiogenesis in Ascaris. ACTA ACUST UNITED AC 2005; 60:191-9. [PMID: 15751099 DOI: 10.1002/cm.20058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We exploited the rapid, inducible conversion of non-motile Ascaris spermatids into crawling spermatozoa to examine the pattern of assembly of the MSP motility apparatus that powers sperm locomotion. In live sperm, the first detectable motile activity is the extension of spikes and, later, blebs from the cell surface. However, examination of cells by EM revealed that the formation of surface protrusions is preceded by assembly of MSP filament tails on the membranous organelles in the peripheral cytoplasm. These organelle-associated filament meshworks assemble within 30 sec after induction of spermiogenesis and persist until the membranous organelles are sequestered into the cell body when the lamellipod extends. The filopodia-like spikes, which are packed with bundles of filaments, extend and retract rapidly but last only a few seconds before giving way to, or converting into, blebs. Coalescence of these blebs, each supported by a dense mesh of filaments, often initiates lamellipod extension, which culminates in the formation of the robust, dynamic MSP fiber complexes that generate sperm motility. The same membrane phosphoprotein that orchestrates assembly of the fiber complexes at the leading edge of the lamellipod of mature sperm is also found at all sites of filament assembly during spermiogenesis. The orderly progression of steps that leads to construction of a functional motility apparatus illustrates the precise spatio-temporal control of MSP filament assembly in the developing cell and highlights the remarkable similarity in organization and plasticity shared by the MSP cytoskeleton and the actin filament arrays in conventional crawling cells.
Collapse
|
61
|
Abstract
Bartonellae are arthropod-borne bacterial pathogens that typically cause persistent infection of erythrocytes and endothelial cells in their mammalian hosts. In human infection, these host-cell interactions result in a broad range of clinical manifestations. Most remarkably, bartonellae can trigger massive proliferation of endothelial cells, leading to vascular tumour formation. The recent availability of infection models and bacterial molecular genetic techniques has fostered research on the pathogenesis of the bartonellae and has advanced our understanding of the virulence mechanisms that underlie the host-cell tropism, the subversion of host-cell functions during bacterial persistence, as well as the formation of vascular tumours by these intriguing pathogens.
Collapse
Affiliation(s)
- Christoph Dehio
- Division of Molecular Microbiology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland.
| |
Collapse
|
62
|
Menozzi FD, Reddy VM, Cayet D, Raze D, Debrie AS, Dehouck MP, Cecchelli R, Locht C. Mycobacterium tuberculosis heparin-binding haemagglutinin adhesin (HBHA) triggers receptor-mediated transcytosis without altering the integrity of tight junctions. Microbes Infect 2005; 8:1-9. [PMID: 15914062 DOI: 10.1016/j.micinf.2005.03.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Accepted: 03/21/2005] [Indexed: 11/25/2022]
Abstract
Mycobacterium tuberculosis, the etiologic agent of tuberculosis, adheres to, invades and multiplies in both professional phagocytes and epithelial cells. Adherence to epithelial cells is predominantly mediated by the 28-kDa heparin-binding haemagglutinin adhesin (HBHA), which is also required for the extrapulmonary dissemination of the bacilli. To study the cellular mechanisms that might result in HBHA-mediated extrapulmonary dissemination, we used a transwell model of cellular barrier and fluorescence microscopy and found that HBHA induces a reorganization of the actin filament network in confluent endothelial cells, but does not affect the tight junctions that link them. When coupled to colloidal gold particles, HBHA-mediated a rapid attachment of the particles to the membrane of human laryngeal epithelial cells (non polarized HEp-2 cells) and human type II pneumocytes (polarized A-549 pneumocytes). After attachment, the particles were internalized in membrane-bound vacuoles that migrated across the polarized pneumocytes to reach the basal side. Attachment of the HBHA-coated particles was not observed when the epithelial cells were pretreated with heparinase III, a lyase that specifically cleaves the heparan sulfate chains borne by the proteoglycans. Furthermore, no binding was observed when the gold particles were coated with HBHA lacking its C-terminal heparin-binding domain. These observations indicate that HBHA induces receptor-mediated endocytosis through the recognition of heparan sulfate-containing proteoglycans by the heparin-binding domain of the adhesin. In addition, the transcellular migration of the endocytic vacuoles containing HBHA-coated particles suggests that HBHA induces epithelial transcytosis, which may represent a macrophage-independent extrapulmonary dissemination mechanism leading to systemic infection by M. tuberculosis.
Collapse
Affiliation(s)
- Franco D Menozzi
- Inserm, U629, Mécanismes Moléculaires de la Pathogénie Microbienne, Institut Pasteur de Lille, 1, rue du professeur Calmette, 59019 Lille cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Mortara RA, Andreoli WK, Taniwaki NN, Fernandes AB, Silva CVD, Fernandes MCDC, L'Abbate C, Silva SD. Mammalian cell invasion and intracellular trafficking by Trypanosoma cruzi infective forms. AN ACAD BRAS CIENC 2005; 77:77-94. [PMID: 15692679 DOI: 10.1590/s0001-37652005000100006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas’ disease, occurs as different strains or isolates that may be grouped in two major phylogenetic lineages: T. cruzi I, associated with the sylvatic cycle and T. cruzi II, linked to the human disease. In the mammalian host the parasite has to invade cells and many studies implicated the flagellated trypomastigotes in this process. Several parasite surface components and some of host cell receptors with which they interact have been identified. Our work focused on how amastigotes, usually found growing in the cytoplasm, can invade mammalian cells with infectivities comparable to that of trypomastigotes. We found differences in cellular responses induced by amastigotes and trypomastigotes regarding cytoskeletal components and actin-rich projections. Extracellularly generated amastigotes of T. cruzi I strains may display greater infectivity than metacyclic trypomastigotes towards cultured cell lines as well as target cells that have modified expression of different classes of cellular components. Cultured host cells harboring the bacterium Coxiella burnetii allowed us to gain new insights into the trafficking properties of the different infective forms of T. cruzi, disclosing unexpected requirements for the parasite to transit between the parasitophorous vacuole to its final destination in the host cell cytoplasm.
Collapse
Affiliation(s)
- Renato A Mortara
- Departamento de Microbiologia, Imunologia e Parasitologia, UNIFESP, Escola Paulista de Medicina, Rua Botucatu, 862, 6 andar, 04023-062 São Paulo, SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Seral C, Barcia-Macay M, Mingeot-Leclercq MP, Tulkens PM, Van Bambeke F. Comparative activity of quinolones (ciprofloxacin, levofloxacin, moxifloxacin and garenoxacin) against extracellular and intracellular infection by Listeria monocytogenes and Staphylococcus aureus in J774 macrophages. J Antimicrob Chemother 2005; 55:511-7. [PMID: 15731197 DOI: 10.1093/jac/dki059] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Quinolones accumulate in eukaryotic cells and show activity against a large array of intracellular organisms, but systematic studies aimed at examining their pharmacodynamic profile against intracellular bacteria are scarce. The present work aims at comparing intracellular-to-extracellular activities in this context. METHODS We assessed the activities of ciprofloxacin, levofloxacin, moxifloxacin and garenoxacin against the extracellular (broth) and intracellular (infected J774 macrophages) forms of Listeria monocytogenes (cytosolic infection) and Staphylococcus aureus (phagolysosomal infection) using a range of clinically meaningful extracellular concentrations (0.06-4 mg/L). RESULTS All four quinolones displayed concentration-dependent bactericidal activity against extracellular and intracellular L. monocytogenes and S. aureus for extracellular concentrations in the range 1-4-fold their MIC. Compared at equipotent extracellular concentrations, intracellular activities against L. monocytogenes were roughly equal to those that were extracellular, but were 50-100 times lower against S. aureus. Because quinolones accumulate in cells (ciprofloxacin, approximately 3 times; levofloxacin, approximately 5 times; garenoxacin, approximately 10 times, moxifloxacin, approximately 13 times), these data show that, intracellularly, quinolones are 5-10 times less potent against L. monocytogenes (P=0.065 [ANCOVA]), and at least 100 times less potent (P < 0.0001) against S. aureus. Because of their lower MICs and higher accumulation levels, garenoxacin and moxifloxacin were, however, more active than ciprofloxacin and levofloxacin when compared at similar extracellular concentrations. CONCLUSIONS Quinolone activity is reduced intracellulary. This suggests that either only a fraction of cell-associated quinolones exert an antibacterial effect, or that intracellular activity is defeated by the local environment, or that intracellular bacteria only poorly respond to the action of quinolones.
Collapse
Affiliation(s)
- C Seral
- Unité de pharmacologie cellulaire et moléculaire, Université catholique de Louvain, Brussels, Belgium
| | | | | | | | | |
Collapse
|
65
|
Naranatt PP, Krishnan HH, Smith MS, Chandran B. Kaposi's sarcoma-associated herpesvirus modulates microtubule dynamics via RhoA-GTP-diaphanous 2 signaling and utilizes the dynein motors to deliver its DNA to the nucleus. J Virol 2005; 79:1191-206. [PMID: 15613346 PMCID: PMC538527 DOI: 10.1128/jvi.79.2.1191-1206.2005] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Human herpesvirus 8 (HHV-8; also called Kaposi's sarcoma-associated herpesvirus), which is implicated in the pathogenesis of Kaposi's sarcoma (KS) and lymphoproliferative disorders, infects a variety of target cells both in vivo and in vitro. HHV-8 binds to several in vitro target cells via cell surface heparan sulfate and utilizes the alpha3beta1 integrin as one of its entry receptors. Interactions with cell surface molecules induce the activation of host cell signaling cascades and cytoskeletal changes (P. P. Naranatt, S. M. Akula, C. A. Zien, H. H. Krishnan, and B. Chandran, J. Virol. 77:1524-1539, 2003). However, the mechanism by which the HHV-8-induced signaling pathway facilitates the complex events associated with the internalization and nuclear trafficking of internalized viral DNA is as yet undefined. Here we examined the role of HHV-8-induced cytoskeletal dynamics in the infectious process and their interlinkage with signaling pathways. The depolymerization of microtubules did not affect HHV-8 binding and internalization, but it inhibited the nuclear delivery of viral DNA and infection. In contrast, the depolymerization of actin microfilaments did not have any effect on virus binding, entry, nuclear delivery, or infection. Early during infection, HHV-8 induced the acetylation of microtubules and the activation of the RhoA and Rac1 GTPases. The inactivation of Rho GTPases by Clostridium difficile toxin B significantly reduced microtubular acetylation and the delivery of viral DNA to the nucleus. In contrast, the activation of Rho GTPases by Escherichia coli cytotoxic necrotizing factor significantly augmented the nuclear delivery of viral DNA. Among the Rho GTPase-induced downstream effector molecules known to stabilize the microtubules, the activation of RhoA-GTP-dependent diaphanous 2 was observed, with no significant activation in the Rac- and Cdc42-dependent PAK1/2 and stathmin molecules. The nuclear delivery of viral DNA increased in cells expressing a constitutively active RhoA mutant and decreased in cells expressing a dominant-negative mutant of RhoA. HHV-8 capsids colocalized with the microtubules, as observed by confocal microscopic examination, and the colocalization was abolished by the destabilization of microtubules with nocodazole and by the phosphatidylinositol 3-kinase inhibitor affecting the Rho GTPases. These results suggest that HHV-8 induces Rho GTPases, and in doing so, modulates microtubules and promotes the trafficking of viral capsids and the establishment of infection. This is the first demonstration of virus-induced host cell signaling pathways in the modulation of microtubule dynamics and in the trafficking of viral DNA to the infected cell nucleus. These results further support our hypothesis that HHV-8 manipulates the host cell signaling pathway to create an appropriate intracellular environment that is conducive to the establishment of a successful infection.
Collapse
Affiliation(s)
- Pramod P Naranatt
- Department of Microbiology, Molecular Genetics and Immunology, Mail Stop 3029, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
66
|
Yonezawa A, Cavrois M, Greene WC. Studies of ebola virus glycoprotein-mediated entry and fusion by using pseudotyped human immunodeficiency virus type 1 virions: involvement of cytoskeletal proteins and enhancement by tumor necrosis factor alpha. J Virol 2005; 79:918-26. [PMID: 15613320 PMCID: PMC538559 DOI: 10.1128/jvi.79.2.918-926.2005] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Ebola filoviruses are aggressive pathogens that cause severe and often lethal hemorrhagic fever syndromes in humans and nonhuman primates. To date, no effective therapies have been identified. To analyze the entry and fusion properties of Ebola virus, we adapted a human immunodeficiency virus type 1 (HIV-1) virion-based fusion assay by substituting Ebola virus glycoprotein (GP) for the HIV-1 envelope. Fusion was detected by cleavage of the fluorogenic substrate CCF2 by beta-lactamase-Vpr incorporated into virions and released as a result of virion fusion. Entry and fusion induced by the Ebola virus GP occurred with much slower kinetics than with vesicular stomatitis virus G protein (VSV-G) and were blocked by depletion of membrane cholesterol and by inhibition of vesicular acidification with bafilomycin A1. These properties confirmed earlier studies and validated the assay for exploring other properties of Ebola virus GP-mediated entry and fusion. Entry and fusion of Ebola virus GP pseudotypes, but not VSV-G or HIV-1 Env pseudotypes, were impaired in the presence of the microtubule-disrupting agent nocodazole but were enhanced in the presence of the microtubule-stabilizing agent paclitaxel (Taxol). Agents that impaired microfilament function, including cytochalasin B, cytochalasin D, latrunculin A, and jasplakinolide, also inhibited Ebola virus GP-mediated entry and fusion. Together, these findings suggest that both microtubules and microfilaments may play a role in the effective trafficking of vesicles containing Ebola virions from the cell surface to the appropriate acidified vesicular compartment where fusion occurs. In terms of Ebola virus GP-mediated entry and fusion to various target cells, primary macrophages proved highly sensitive, while monocytes from the same donors displayed greatly reduced levels of entry and fusion. We further observed that tumor necrosis factor alpha, which is released by Ebola virus-infected monocytes/macrophages, enhanced Ebola virus GP-mediated entry and fusion to human umbilical vein endothelial cells. Thus, Ebola virus infection of one target cell may induce biological changes that facilitate infection of secondary target cells that play a key role in filovirus pathogenesis. Finally, these studies indicate that pseudotyping in the HIV-1 virion-based fusion assay may be a valuable approach to the study of entry and fusion properties mediated through the envelopes of other viral pathogens.
Collapse
Affiliation(s)
- Akihito Yonezawa
- Gladstone Institute of Virology and Immunology, 1650 Owens St., San Francisco, CA 94158, USA
| | | | | |
Collapse
|
67
|
Kaposi's sarcoma-associated herpesvirus modulates microtubule dynamics via RhoA-GTP-diaphanous 2 signaling and utilizes the dynein motors to deliver its DNA to the nucleus. J Virol 2004. [PMID: 15613346 DOI: 10.1128/jvi.79.2.1191–1206.2005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human herpesvirus 8 (HHV-8; also called Kaposi's sarcoma-associated herpesvirus), which is implicated in the pathogenesis of Kaposi's sarcoma (KS) and lymphoproliferative disorders, infects a variety of target cells both in vivo and in vitro. HHV-8 binds to several in vitro target cells via cell surface heparan sulfate and utilizes the alpha3beta1 integrin as one of its entry receptors. Interactions with cell surface molecules induce the activation of host cell signaling cascades and cytoskeletal changes (P. P. Naranatt, S. M. Akula, C. A. Zien, H. H. Krishnan, and B. Chandran, J. Virol. 77:1524-1539, 2003). However, the mechanism by which the HHV-8-induced signaling pathway facilitates the complex events associated with the internalization and nuclear trafficking of internalized viral DNA is as yet undefined. Here we examined the role of HHV-8-induced cytoskeletal dynamics in the infectious process and their interlinkage with signaling pathways. The depolymerization of microtubules did not affect HHV-8 binding and internalization, but it inhibited the nuclear delivery of viral DNA and infection. In contrast, the depolymerization of actin microfilaments did not have any effect on virus binding, entry, nuclear delivery, or infection. Early during infection, HHV-8 induced the acetylation of microtubules and the activation of the RhoA and Rac1 GTPases. The inactivation of Rho GTPases by Clostridium difficile toxin B significantly reduced microtubular acetylation and the delivery of viral DNA to the nucleus. In contrast, the activation of Rho GTPases by Escherichia coli cytotoxic necrotizing factor significantly augmented the nuclear delivery of viral DNA. Among the Rho GTPase-induced downstream effector molecules known to stabilize the microtubules, the activation of RhoA-GTP-dependent diaphanous 2 was observed, with no significant activation in the Rac- and Cdc42-dependent PAK1/2 and stathmin molecules. The nuclear delivery of viral DNA increased in cells expressing a constitutively active RhoA mutant and decreased in cells expressing a dominant-negative mutant of RhoA. HHV-8 capsids colocalized with the microtubules, as observed by confocal microscopic examination, and the colocalization was abolished by the destabilization of microtubules with nocodazole and by the phosphatidylinositol 3-kinase inhibitor affecting the Rho GTPases. These results suggest that HHV-8 induces Rho GTPases, and in doing so, modulates microtubules and promotes the trafficking of viral capsids and the establishment of infection. This is the first demonstration of virus-induced host cell signaling pathways in the modulation of microtubule dynamics and in the trafficking of viral DNA to the infected cell nucleus. These results further support our hypothesis that HHV-8 manipulates the host cell signaling pathway to create an appropriate intracellular environment that is conducive to the establishment of a successful infection.
Collapse
|
68
|
Servin AL. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol Rev 2004; 28:405-40. [PMID: 15374659 DOI: 10.1016/j.femsre.2004.01.003] [Citation(s) in RCA: 752] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Revised: 11/19/2003] [Accepted: 01/28/2004] [Indexed: 12/16/2022] Open
Abstract
The gastrointestinal tract is a complex ecosystem that associates a resident microbiota and cells of various phenotypes lining the epithelial wall expressing complex metabolic activities. The resident microbiota in the digestive tract is a heterogeneous microbial ecosystem containing up to 1 x 10(14) colony-forming units (CFUs) of bacteria. The intestinal microbiota plays an important role in normal gut function and maintaining host health. The host is protected from attack by potentially harmful microbial microorganisms by the physical and chemical barriers created by the gastrointestinal epithelium. The cells lining the gastrointestinal epithelium and the resident microbiota are two partners that properly and/or synergistically function to promote an efficient host system of defence. The gastrointestinal cells that make up the epithelium, provide a physical barrier that protects the host against the unwanted intrusion of microorganisms into the gastrointestinal microbiota, and against the penetration of harmful microorganisms which usurp the cellular molecules and signalling pathways of the host to become pathogenic. One of the basic physiological functions of the resident microbiota is that it functions as a microbial barrier against microbial pathogens. The mechanisms by which the species of the microbiota exert this barrier effect remain largely to be determined. There is increasing evidence that lactobacilli and bifidobacteria, which inhabit the gastrointestinal microbiota, develop antimicrobial activities that participate in the host's gastrointestinal system of defence. The objective of this review is to analyze the in vitro and in vivo experimental and clinical studies in which the antimicrobial activities of selected lactobacilli and bifidobacteria strains have been documented.
Collapse
Affiliation(s)
- Alain L Servin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 510, Pathogénes et Fonctions des Cellules Epithéliales Polarisées, Faculté de Pharmacie Paris XI, F-92296 Châtenay-Malabry, France.
| |
Collapse
|
69
|
Seveau S, Bierne H, Giroux S, Prévost MC, Cossart P. Role of lipid rafts in E-cadherin-- and HGF-R/Met--mediated entry of Listeria monocytogenes into host cells. ACTA ACUST UNITED AC 2004; 166:743-53. [PMID: 15337781 PMCID: PMC2172418 DOI: 10.1083/jcb.200406078] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Listeria monocytogenes uptake by nonphagocytic cells is promoted by the bacterial invasion proteins internalin and InlB, which bind to their host receptors E-cadherin and hepatocyte growth factor receptor (HGF-R)/Met, respectively. Here, we present evidence that plasma membrane organization in lipid domains is critical for Listeria uptake. Cholesterol depletion by methyl-β-cyclodextrin reversibly inhibited Listeria entry. Lipid raft markers, such as glycosylphosphatidylinositol-linked proteins, a myristoylated and palmitoylated peptide and the ganglioside GM1 were recruited at the bacterial entry site. We analyzed which molecular events require membrane cholesterol and found that the presence of E-cadherin in lipid domains was necessary for initial interaction with internalin to promote bacterial entry. In contrast, the initial interaction of InlB with HGF-R did not require membrane cholesterol, whereas downstream signaling leading to F-actin polymerization was cholesterol dependent. Our work, in addition to documenting for the first time the role of lipid rafts in Listeria entry, provides the first evidence that E-cadherin and HGF-R require lipid domain integrity for their full activity.
Collapse
Affiliation(s)
- Stéphanie Seveau
- Unité des Interactions Bactéries-Cellules, INSERM U604, Institut Pasteur, 75015 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
70
|
Rottner K, Lommel S, Wehland J, Stradal TEB. Pathogen-induced actin filament rearrangement in infectious diseases. J Pathol 2004; 204:396-406. [PMID: 15495265 DOI: 10.1002/path.1638] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Host defence mechanisms involve the establishment and maintenance of numerous barriers to infectious microbes, including skin and mucosal surfaces, connective tissues, and a sophisticated immune system to detect and destroy invaders. Defeating these defence mechanisms and breaching the cell membrane barrier is the ultimate challenge for most pathogens. By invading the host and, moreover, by penetrating into individual host cells, pathogens gain access to a protective niche, not only to avoid immune clearance, but also to replicate and to disseminate from cell to cell within the infected host. Many pathogens are accomplishing these challenges by exploiting the actin cytoskeleton in a highly sophisticated manner as a result of having evolved common as well as unique strategies.
Collapse
Affiliation(s)
- Klemens Rottner
- Cytoskeleton Dynamics Group, German Research Centre for Biotechnology (GBF), Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | | | | | | |
Collapse
|
71
|
Mendes-Giannini MJS, Hanna SA, da Silva JLM, Andreotti PF, Vincenzi LR, Benard G, Lenzi HL, Soares CP. Invasion of epithelial mammalian cells by Paracoccidioides brasiliensis leads to cytoskeletal rearrangement and apoptosis of the host cell. Microbes Infect 2004; 6:882-91. [PMID: 15310464 DOI: 10.1016/j.micinf.2004.05.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Accepted: 05/11/2004] [Indexed: 11/26/2022]
Abstract
Paracoccidioides brasiliensis (Pb) yeast cells can enter mammalian cells and probably manipulate the host cell environment to favor their own growth and survival. We studied the uptake of strain Pb 18 into A549 lung and Vero epithelial cells, with an emphasis on the repercussions in the cytoskeleton and the apoptosis of host cells. Cytoskeleton components of the host cells, such as actin and tubulin, were involved in the P. brasiliensis invasion process. Cytochalasin D and colchicine treatment substantially reduced invasion, indicating the functional participation of microfilaments (MFs) and microtubules (MTs) in this mechanism. Cytokeratin could also play a role in the P. brasiliensis interaction with the host. Gp43 was recognized by anti-actin and anti-cytokeratin antibodies, but not by anti-tubulin. The apoptosis induced by this fungus in infected epithelial cells was demonstrated by various techniques: TUNEL, DNA fragmentation and Bak and Bcl-2 immunocytochemical expression. DNA fragmentation was observed in infected cells but not in uninfected ones, by both TUNEL and gel electrophoresis methods. Moreover, Bcl-2 and Bak did not show any differences until 24 h after infection of cells, suggesting a competitive mechanism that allows persistence of infection. Overexpression of Bak was observed after 48 h, indicating the loss of competition between death and survival signals. In conclusion, the mechanisms of invasion of host cells, persistence within them, and the subsequent induction of apoptosis of such cells may explain the efficient dissemination of P. brasiliensis.
Collapse
Affiliation(s)
- Maria José Soares Mendes-Giannini
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas-UNESP, Rua Expedicionários do Brasil, 1621-CEP, 14801-902 Araraquara, SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Abstract
The genus Bartonella comprises several important human pathogens that cause a wide range of clinical manifestations: cat-scratch disease, trench fever, Carrion's disease, bacteremia with fever, bacillary angiomatosis and peliosis, endocarditis, and neuroretinitis. Common features of bartonellae include transmission by blood-sucking arthropods and the specific interaction with endothelial cells and erythrocytes of their mammalian hosts. For each Bartonella species, the invasion and persistent intracellular colonization of erythrocytes are limited to a specific human or animal reservoir host. In contrast, endothelial cells are target host cells in probably all mammals, including humans. Bartonellae subvert multiple cellular functions of human endothelial cells, resulting in cell invasion, proinflammatory activation, suppression of apoptosis, and stimulation of proliferation, which may cumulate in vasoproliferative tumor growth. This review summarizes our understanding of Bartonella-host cell interactions and the molecular mechanisms of bacterial virulence and persistence. In addition, current controversies and unanswered questions in this area are highlighted.
Collapse
Affiliation(s)
- Christoph Dehio
- Division of Molecular Microbiology, Biozentrum, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
73
|
Abstract
Listeria monocytogenes is the etiological agent of listeriosis, a severe human foodborne infection characterized by gastroenteritis, meningitis, encephalitis, abortions, and perinatal infections. This gram-positive bacterium is a facultative intracellular pathogen that induces its own uptake into nonphagocytic cells and spreads from cell to cell using an actin-based motility process. This review covers both well-established and recent advances in the characterization of L. monocytogenes virulence determinants and their role in the pathophysiology of listeriosis.
Collapse
Affiliation(s)
- Olivier Dussurget
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, INSERM U604, 75015 Paris, France.
| | | | | |
Collapse
|
74
|
Sharma-Walia N, Naranatt PP, Krishnan HH, Zeng L, Chandran B. Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 envelope glycoprotein gB induces the integrin-dependent focal adhesion kinase-Src-phosphatidylinositol 3-kinase-rho GTPase signal pathways and cytoskeletal rearrangements. J Virol 2004; 78:4207-23. [PMID: 15047836 PMCID: PMC374261 DOI: 10.1128/jvi.78.8.4207-4223.2004] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human herpesvirus 8 (HHV-8; Kaposi's sarcoma-associated herpesvirus) envelope glycoprotein gB possesses an RGD motif, interacts with alpha 3 beta 1 integrin, and uses it as one of the entry receptors. HHV-8 induces the integrin-dependent focal adhesion kinase (FAK), a critical step in the outside-in signaling pathways necessary for the subsequent phosphorylation of other cellular kinases, cytoskeletal rearrangements, and other functions. As an initial step toward deciphering the role of HHV-8 gB-integrin interaction in infection, signal pathways induced by gB were examined. A truncated form of gB without the transmembrane and carboxyl domains (gB Delta TM), a gB Delta TM mutant form (gB Delta TM-RGA) with an RGD-to-RGA mutation, and inhibitors of cellular kinases were used. HHV-8 gB Delta TM, but not gB Delta TM-RGA, induced FAK phosphorylation in target cells, which was in part dependent on the presence of alpha 3 beta 1 integrin. FAK was critical for the subsequent phosphorylation of Src by gB Delta TM, and Src induction was essential for the phosphorylation of phosphatidylinositol 3-kinase (PI-3K). HHV-8 gB Delta TM-induced PI-3K was essential for the induction of RhoA and Cdc42 Rho GTPases that was accompanied by the cytoskeletal rearrangements. These gB-induced morphological changes were inhibited by the PI-3K inhibitors. Ezrin, one of the essential elements required to cross-link the actin cytoskeleton with the plasma membrane and to induce the morphological changes, was induced by the Rho GTPases. Inhibition of cellular tyrosine kinases by the brief treatment of cells with 4',5,7-trihydroxyisoflavone (genistein) blocked the entry of HHV-8 into target cells. These findings suggest that, independently of other viral glycoproteins and via its RGD motif, HHV-8 gB induces integrin-dependent pre-existing FAK-Src-PI-3K-Rho GTPase kinases. Since these signal pathways play vital roles in host cell endocytosis and movement of particulate materials in the cytoplasm, the early stages of HHV-8 gB interaction with host cells may provide a very conducive environment for the successful infection of target cells.
Collapse
Affiliation(s)
- Neelam Sharma-Walia
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | |
Collapse
|
75
|
Mavris M, Sansonetti P. Microbial-gut interactions in health and disease. Epithelial cell responses. Best Pract Res Clin Gastroenterol 2004; 18:373-86. [PMID: 15123076 DOI: 10.1016/j.bpg.2003.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pathogenic bacteria use many strategies to secure their survival within the host. Enteropathogens exploit intestinal epithelial cells in many ways, including the manipulation of normal cellular functioning, or of cellular structural components, or by the induction of signalling pathways, such as the production of pro-inflammatory cytokines. However, the enterocyte warns the host of impending danger and, in turn, elicits a protective response. Pathogens are detected by epithelial cells owing to their vast array of surface antigens and secreted products. Epithelial cells have developed both extracellular and intracellular sensing proteins that function as a first line of defence against pathogens; this is followed by acquired immunity, namely IgA, which is used as reinforcement. Thus, in a game of constant attack and defence, the pathogen and the enterocyte aim to outsmart each other in an effort to survive.
Collapse
Affiliation(s)
- Maria Mavris
- Unité de Pathogénie Microbienne Moléculaire, INSERM U389, Institut Pasteur, 28, rue du Dr Roux, 75724 Paris 15, France.
| | | |
Collapse
|
76
|
Saïb A. [Viral hijacking of cell functions]. ACTA ACUST UNITED AC 2004; 52:58-9. [PMID: 15001231 DOI: 10.1016/j.patbio.2003.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2003] [Accepted: 05/05/2003] [Indexed: 11/25/2022]
|
77
|
Abstract
Internalization of receptors, lipids, pathogens, and other cargo at the plasma membrane involves several different pathways and requires coordinated interactions between a variety of protein and lipid molecules. The actin cytoskeleton is an integral part of the cell cortex, and there is growing evidence that F-actin plays a direct role in these endocytic events. Genetic studies in yeast have firmly established a functional connection between actin and endocytosis. Identification of several proteins that may function at the interface between actin and the endocytic machinery has provided further evidence for this association in both yeast and mammalian cells. Several of these proteins are directly involved in regulating actin assembly and could thus harness forces produced during actin polymerization to facilitate specific steps in the endocytic process. Recent microscopy studies in mammalian cells provide powerful evidence that localized recruitment and polymerization of actin occurs at endocytic sites. In this review, we focus on progress made in elucidating the functions of the actin cytoskeleton in endocytosis.
Collapse
Affiliation(s)
- Asa E Y Engqvist-Goldstein
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA
| | | |
Collapse
|
78
|
Masignani V, Balducci E, Di Marcello F, Savino S, Serruto D, Veggi D, Bambini S, Scarselli M, Aricò B, Comanducci M, Adu-Bobie J, Giuliani MM, Rappuoli R, Pizza M. NarE: a novel ADP-ribosyltransferase from Neisseria meningitidis. Mol Microbiol 2004; 50:1055-67. [PMID: 14617161 DOI: 10.1046/j.1365-2958.2003.03770.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mono ADP-ribosyltransferases (ADPRTs) are a class of functionally conserved enzymes present in prokaryotic and eukaryotic organisms. In bacteria, these enzymes often act as potent toxins and play an important role in pathogenesis. Here we report a profile-based computational approach that, assisted by secondary structure predictions, has allowed the identification of a previously undiscovered ADP-ribosyltransferase in Neisseria meningitidis (NarE). NarE shows structural homologies with E. coli heat-labile enterotoxin (LT) and cholera toxin (CT) and possesses ADP-ribosylating and NAD-glycohydrolase activities. As in the case of LT and CT, NarE catalyses the transfer of the ADP-ribose moiety to arginine residues. Despite the absence of a signal peptide, the protein is efficiently exported into the periplasm of Neisseria. The narE gene is present in 25 out of 43 strains analysed, is always present in ET-5 and Lineage 3 but absent in ET-37 and Cluster A4 hypervirulent lineages. When present, the gene is 100% conserved in sequence and is inserted upstream of and co-transcribed with the lipoamide dehydrogenase E3 gene. Possible roles in the pathogenesis of N. meningitidis are discussed.
Collapse
Affiliation(s)
- Vega Masignani
- IRIS, Chiron s.r.l, via Fiorentina 1, 53100 Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Grenklo S, Johansson T, Bertilson L, Karlsson R. Anti-actin antibodies generated against profilin:actin distinguish between non-filamentous and filamentous actin, and label cultured cells in a dotted pattern. Eur J Cell Biol 2004; 83:413-23. [PMID: 15506565 DOI: 10.1078/0171-9335-00400] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Actin polymerization is a prominent feature of migrating cells, where it powers the protrusion of the leading edge. Many studies have characterized the well-ordered and dynamic arrangement of filamentous actin in this submembraneous space. However, less is known about the organization of unpolymerized actin. Previously, we reported on the use of covalently coupled profilin:actin to study actin dynamics and presented evidence that profilin-bound actin is a major source of actin for filament growth. To locate profilin:actin in the cell we have now used this non-dissociable complex for antibody generation, and obtained monospecific anti-actin and anti-profilin antibodies from two separate immunizations. Fluorescence microscopy revealed drastic differences in the staining pattern generated by the anti-actin antibody preparations. With one, distinct puncta appeared at the actin-rich leading edge and sometimes aligned with microtubules in the interior of the lamella, while the other displayed typical actin filament staining. Labelling experiments in vitro demonstrated failure of the first antibody to recognize filamentous actin and none of the two bound microtubules. The two anti-profilin antibodies purified in parallel generated a punctated pattern similar to that seen with the first anti-actin antibody. All antibody preparations labelled the nuclei.
Collapse
Affiliation(s)
- Staffan Grenklo
- Department of Cell Biology, WGI, Stockholm University, S-10691 Stockholm, Sweden
| | | | | | | |
Collapse
|
80
|
Schwab UE, Ribeiro CMP, Neubauer H, Boucher RC. Role of actin filament network in Burkholderia multivorans invasion in well-differentiated human airway epithelia. Infect Immun 2003; 71:6607-9. [PMID: 14573682 PMCID: PMC219579 DOI: 10.1128/iai.71.11.6607-6609.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of the actin-based cytoskeleton in the internalization process of Burkholderia multivorans by well-differentiated human airway epithelia was investigated by immunohistology and confocal microscopy. Our data suggest that an intact actin cytoskeleton is required for biofilm formation but not single cell entry or paracytosis.
Collapse
Affiliation(s)
- Ute E Schwab
- Cystic Fibrosis/Pulmonary Research and Treatment Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA.
| | | | | | | |
Collapse
|
81
|
Servin AL, Coconnier MH. Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract Res Clin Gastroenterol 2003; 17:741-54. [PMID: 14507585 DOI: 10.1016/s1521-6918(03)00052-0] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Probiotic lactic acid strains are live micro-organisms that, when consumed in adequate amounts as part of food, confer a health benefit on the host. The scientific basis for the use of selected probiotic strains has only recently been firmly established, and appropriate and well-conducted experimental in vitro and in vivo studies, as well as clinical studies, are now beginning to be published, especially with regard to the effectiveness of probiotic strains in antagonizing pathogens. In particular, experimental data have allowed new insights into selected probiotic strains that express strain-specific probiotic properties and into the mechanism of action of these strains. The objective of this review is to analyse the in vitro or in vivo experimental studies in which the antimicrobial activity of selected Lactobacillus and Bifidobacterium strains has been documented.
Collapse
Affiliation(s)
- Alain L Servin
- Institut National de la Santé et de la Recherche Médicale, Unité 510, Pathogènes et Fonctions des Cellules Epithéliales Polarisées, Faculté de Pharmacie Paris XI, Châtenay-Malabry 92296, France.
| | | |
Collapse
|
82
|
Abstract
Actin polymerization provides a major driving force for eukaryotic cell motility. Successive intercalation of monomeric actin subunits between the plasma membrane and the filamentous actin network results in protrusions of the membrane enabling the cell to move or to change shape. One of the challenges in understanding eukaryotic cell motility is to dissect the elementary biochemical and biophysical steps that link actin polymerization to mechanical force generation. Recently, significant progress was made using biomimetic, in vitro systems that are inspired by the actin-based motility of bacterial pathogens such as Listeria monocytogenes. Polystyrene microspheres and synthetic phospholipid vesicles coated with proteins that initiate actin polymerization display motile behavior similar to Listeria, mimicking the leading edge of lamellipodia and filopodia. A major advantage of these biomimetic systems is that both biochemical and physical parameters can be controlled precisely. These systems provide a test bed for validating theoretical models on force generation and polarity establishment resulting from actin polymerization. In this review, we discuss recent experimental progress using biomimetic systems propelled by actin polymerization and discuss these results in the light of recent theoretical models on actin-based motility.
Collapse
Affiliation(s)
- Arpita Upadhyaya
- Massachusetts Institute of Technology, Department of Physics, Cambridge, MA 02139, USA
| | | |
Collapse
|
83
|
Petit C, Giron ML, Tobaly-Tapiero J, Bittoun P, Real E, Jacob Y, Tordo N, De The H, Saib A. Targeting of incoming retroviral Gag to the centrosome involves a direct interaction with the dynein light chain 8. J Cell Sci 2003; 116:3433-42. [PMID: 12857789 DOI: 10.1242/jcs.00613] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The role of cellular proteins in the replication of retroviruses, especially during virus assembly, has been partly unraveled by recent studies. Paradoxically, little is known about the route taken by retroviruses to reach the nucleus at the early stages of infection. To get insight into this stage of virus replication, we have studied the trafficking of foamy retroviruses and have previously shown that incoming viral proteins reach the microtubule organizing center (MTOC) prior to nuclear translocation of the viral genome. Here, we show that incoming viruses concentrate around the MTOC as free and structured capsids. Interestingly, the Gag protein, the scaffold component of viral capsids, targets the pericentrosomal region in transfected cells in the absence of any other viral components but in a microtubule- and dynein/dynactin-dependent manner. Trafficking of Gag towards the centrosome requires a minimal 30 amino acid coiled-coil motif in the N-terminus of the molecule. Finally, we describe a direct interaction between Gag and dynein light chain 8 that probably accounts for the specific routing of the incoming capsids to the centrosome prior to nuclear import of the viral genome.
Collapse
Affiliation(s)
- Coralie Petit
- CNRS UPR9051, Hôpital Saint-Louis, Conventionné par l'Université Paris 7, 1 avenue Claude Vellefaux, 75475 Paris Cedex 10, France
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
Although it is generally accepted that mitochondria and chloroplasts are descended in evolution from bacteria, the potential contributions of their endosymbiont ancestors to specialized cellular pathways in development remain largely unexplored. Here we show that a motile behavior of mitochondria in Drosophila spermiogenesis is strikingly similar to the actin-based "comet tail" motility of several bacteria. A combination of electron and fluorescence microscopy demonstrates major reorganization and movement of mitochondria ahead of, and in close association with, dense conical arrays of actin filaments in the sperm individualization complex, which mediates the resolution of male germline syncytia into separate gametes. Because of several other parallels between the movement of the individualization complex and the motility behavior of some rickettsiae, the bacterial family from which mitochondria are most likely descended, this motility phenomenon is a strong candidate for a true vestige of endosymbiont behavior in contemporary mitochondria. The potential conservation of an ancient endosymbiont motility mechanism within a highly conserved feature of gametogenesis, the resolution of germline syncytia, may indicate a formative role for the endosymbiotic ancestor of mitochondria in the evolution of this developmental pathway.
Collapse
Affiliation(s)
- Christopher Bazinet
- Department of Biological Sciences, St. John's University, Jamaica, NY 11439, USA.
| | | |
Collapse
|
85
|
Abstract
The ability of cells to extend cell membranes is central to numerous biological processes, including cell migration, cadherin-mediated junction formation and phagocytosis. Much attention has been focused on understanding the signals that trigger membrane protrusion and the architecture of the resulting extension. Similarly, cell adhesion has been extensively studied, yielding a wealth of information about the proteins involved and how they signal to the cytoplasm. Although we have learned much about membrane protrusion and cell adhesion, we know less about how these two processes are coupled. Traditionally it has been thought that they are linked by the signaling pathways they employ - for example, those involving Rho family GTPases. However, there are also physical links between the cellular machineries that mediate cell adhesion and membrane protrusion, such as vinculin.
Collapse
Affiliation(s)
- Kris A DeMali
- Department of Cell and Developmental Biology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill 27599, USA.
| | | |
Collapse
|
86
|
Dramsi S, Cossart P. Listeriolysin O-mediated calcium influx potentiates entry of Listeria monocytogenes into the human Hep-2 epithelial cell line. Infect Immun 2003; 71:3614-8. [PMID: 12761148 PMCID: PMC155716 DOI: 10.1128/iai.71.6.3614-3618.2003] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate factors which modulate the entry of Listeria monocytogenes into mammalian cells, we have analyzed the role of Ca(2+). We show that L. monocytogenes induced Ca(2+) transients into the human Hep-2 epithelial cell line. The nonpathogenic species L. innocua or a L. monocytogenes mutant strain defective in listeriolysin O (LLO) production was unable to induce these calcium fluxes. Addition of plasma membrane calcium channel antagonists or chelation of extracellular calcium markedly reduced L. monocytogenes entry. In contrast, chelation of host cytosolic Ca(2+) or blockade of Ca(2+) release from intracellular stores did not affect invasion. These results indicate that L. monocytogenes-induced mobilization of extracellular Ca(2+) by LLO and activation of downstream Ca(2+)-dependent signaling are required for efficient cell invasion.
Collapse
Affiliation(s)
- Shaynoor Dramsi
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, 75724 Paris Cedex 15, France
| | | |
Collapse
|
87
|
Machner MP, Frese S, Schubert WD, Orian-Rousseau V, Gherardi E, Wehland J, Niemann HH, Heinz DW. Aromatic amino acids at the surface of InlB are essential for host cell invasion by Listeria monocytogenes. Mol Microbiol 2003; 48:1525-36. [PMID: 12791136 DOI: 10.1046/j.1365-2958.2003.03532.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The surface protein InlB of the pathogen Listeria monocytogenes promotes invasion of this bacterium into host cells by binding to and activating the receptor tyrosine kinase Met. The curved leucine-rich repeat (LRR) domain of InlB, which is essential for this process, contains a string of five surface-exposed aromatic amino acid residues positioned along its concave face. Here, we show that the replacement of four of these residues (F104, W124, Y170 or Y214) by serine leads to a complete loss of uptake of latex beads coated with InlB', a truncated functional variant of InlB. The mutants correspondingly display severely reduced binding to Met. To abrogate fully invasion of bacteria expressing full-length InlB, exchange of at least four aromatic amino acids is required. We conclude that InlB binds to Met through its concave surface of the LRR domain, and that aromatic amino acids are critical for binding and signalling before invasion.
Collapse
Affiliation(s)
- Matthias P Machner
- Department of Structural Biology, German Research Centre for Biotechnology (GBF), Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Abstract
Eukaryotic cells use actin polymerization to change shape, move, and internalize extracellular materials by phagocytosis and endocytosis, and to form contractile structures. In addition, several pathogens have evolved to use host cell actin assembly for attachment, internalization, and cell-to-cell spread. Although cells possess multiple mechanisms for initiating actin polymerization, attention in the past five years has focused on the regulation of actin nucleation-the formation of new actin filaments from actin monomers. The Arp2/3 complex and the multiple nucleation-promoting factors (NPFs) that regulate its activity comprise the only known cellular actin-nucleating factors and may represent a universal machine, conserved across eukaryotic phyla, that nucleates new actin filaments for various cellular structures with numerous functions. This review focuses on our current understanding of the mechanism of actin nucleation by the Arp2/3 complex and NPFs and how these factors work with other cytoskeletal proteins to generate structurally and functionally diverse actin arrays in cells.
Collapse
Affiliation(s)
- Matthew D Welch
- Department of Molecular and Cell Biology, 301 LSA, University of California, Berkeley 94720-3200, USA.
| | | |
Collapse
|
89
|
Abstract
The growth of an actin network against an obstacle that stimulates branching locally is studied using several variants of a kinetic rate model based on the orientation-dependent number density of filaments. The model emphasizes the effects of branching and capping on the density of free filament ends. The variants differ in their treatment of side versus end branching and dimensionality, and assume that new branches are generated by existing branches (autocatalytic behavior) or independently of existing branches (nucleation behavior). In autocatalytic models, the network growth velocity is rigorously independent of the opposing force exerted by the obstacle, and the network density is proportional to the force. The dependence of the growth velocity on the branching and capping rates is evaluated by a numerical solution of the rate equations. In side-branching models, the growth velocity drops gradually to zero with decreasing branching rate, while in end-branching models the drop is abrupt. As the capping rate goes to zero, it is found that the behavior of the velocity is sensitive to the thickness of the branching region. Experiments are proposed for using these results to shed light on the nature of the branching process.
Collapse
Affiliation(s)
- A E Carlsson
- Department of Physics, Washington University, St. Louis, Missouri 63130-4899, USA.
| |
Collapse
|
90
|
Upadhyaya A, Chabot JR, Andreeva A, Samadani A, van Oudenaarden A. Probing polymerization forces by using actin-propelled lipid vesicles. Proc Natl Acad Sci U S A 2003; 100:4521-6. [PMID: 12657740 PMCID: PMC153588 DOI: 10.1073/pnas.0837027100] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2002] [Indexed: 11/18/2022] Open
Abstract
Actin polymerization provides a powerful propulsion force for numerous types of cell motility. Although tremendous progress has been made in identifying the biochemical components necessary for actin-based motility, the precise biophysical mechanisms of force generation remain unclear. To probe the polymerization forces quantitatively, we introduce an experimental system in which lipid vesicles coated with the Listeria monocytogenes virulence factor ActA are propelled by actin polymerization. The polymerization forces cause significant deformations of the vesicle. We have used these deformations to obtain a spatially resolved measure of the forces exerted on the membrane using a model based on the competition between osmotic pressure and membrane stretching. Our results indicate that actin exerts retractile or propulsive forces depending on the local membrane curvature and that the membrane is strongly bound to the actin gel. These results are consistent with the observed dynamics. After a slow elongation of the vesicle from a spherical shape, the strong bonds between the actin gel and the membrane rupture if the retractile forces exceed a critical value, leading to a rapid release of the vesicle's trailing edge.
Collapse
Affiliation(s)
- Arpita Upadhyaya
- Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
91
|
Yang R, Yutzy WH, Viscidi RP, Roden RBS. Interaction of L2 with beta-actin directs intracellular transport of papillomavirus and infection. J Biol Chem 2003; 278:12546-53. [PMID: 12560332 DOI: 10.1074/jbc.m208691200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Viruses that replicate in the nucleus, including the primary causative agent of cervical cancer, human papillomavirus type 16 (HPV16), must first cross the cytoplasm. We compared the uptake of HPV16 virus-like particles (VLPs) either with or without the minor capsid protein L2. Whereas VLPs containing only the major capsid protein L1 were diffusely distributed within the cytoplasm even 6 h post-infection, VLPs comprising both L1 and L2 exhibited a radial distribution in the cytoplasm and accumulated in the perinuclear region of BPHE-1 cells within 2 h. L2 of HPV16 or bovine papillomavirus was shown to bind to a 43-kDa cellular protein that was subsequently identified as beta-actin by matrix-assisted laser desorption ionization time-of-flight analysis. A conserved domain comprising residues 25-45 of HPV16 L2 was sufficient for interaction with beta-actin. HPV16 L2 residues 25-45 fused to green fluorescent protein, but not green fluorescent protein alone, colocalized with actin and caused cell retraction and disruption of the microfilament network. Finally, wild-type L2, but not L2 with residues 25-45 deleted, facilitated HPV16 pseudovirion infection. Thus, binding of beta-actin by L2 residues 25-45 facilitates transport of HPV16 across the cytoplasm during infection, and blockade of this novel interaction may be useful for prophylaxis.
Collapse
Affiliation(s)
- Rongcun Yang
- Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
92
|
Wang FZ, Akula SM, Sharma-Walia N, Zeng L, Chandran B. Human herpesvirus 8 envelope glycoprotein B mediates cell adhesion via its RGD sequence. J Virol 2003; 77:3131-47. [PMID: 12584338 PMCID: PMC149745 DOI: 10.1128/jvi.77.5.3131-3147.2003] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human herpesvirus 8 (HHV-8) or Kaposi's sarcoma-associated herpesvirus, implicated in the pathogenesis of Kaposi's sarcoma, utilizes heparan sulfate-like molecules to bind the target cells via its envelope-associated glycoproteins gB and gpK8.1A. HHV-8-gB possesses the Arg-Gly-Asp (RGD) motif, the minimal peptide region of many proteins known to interact with subsets of host cell surface integrins. HHV-8 utilizes alpha3beta1 integrin as one of the receptors for its entry into the target cells via its gB interaction and induces the activation of focal adhesion kinase (FAK) (S. M. Akula, N. P. Pramod, F.-Z. Wang, and B. Chandran, Cell 108:407-419, 2002). Since FAK activation is the first step in the outside-in signaling necessary for integrin-mediated cytoskeletal rearrangements, cell adhesions, motility, and proliferation, the ability of HHV-8-gB to mediate the target cell adhesion was examined. A truncated form of gB without the transmembrane and carboxyl domains (gBdeltaTM) and a gBdeltaTM mutant (gBdeltaTM-RGA) with a single amino acid mutation (RGD to RGA) were expressed in a baculovirus system and purified. Radiolabeled HHV-8-gBdeltaTM, gBdeltaTM-RGA, and deltaTMgpK8.1A proteins bound to the human foreskin fibroblasts (HFFs), human dermal microvascular endothelial (HMVEC-d) cells, human B (BJAB) cells, and Chinese hamster ovary (CHO-K1) cells with equal efficiency, which was blocked by preincubation of proteins with soluble heparin. Maxisorp plate-bound gBdeltaTM protein induced the adhesion of HFFs and HMVEC-d and monkey kidney epithelial (CV-1) cells in a dose-dependent manner. In contrast, the gBdeltaTM-RGA and DeltaTMgpK8.1A proteins did not mediate adhesion. Adhesion mediated by gBdeltaTM was blocked by the preincubation of target cells with RGD-containing peptides or by the preincubation of plate-bound gBdeltaTM protein with rabbit antibodies against gB peptide containing the RGD sequence. In contrast, adhesion was not blocked by the preincubation of plate-bound gBdeltaTM protein with heparin, suggesting that the adhesion is mediated by the RGD amino acids of gB, which is independent of the heparin-binding domain of gB. Integrin-ligand interaction is dependent on divalent cations. Adhesion induced by the gBdeltaTM was blocked by EDTA, thus suggesting the role of integrins in the observed adhesions. Focal adhesion components such as FAK and paxillin were activated by the binding of gBdeltaTM protein to the target cells but not by gBdeltaTM-RGA protein binding. Inhibition of FAK phosphorylation by genistein blocked gBdeltaTM-induced FAK activation and cell adhesion. These findings suggest that HHV-8-gB could mediate cell adhesion via its RGD motif interaction with the cell surface integrin molecules and indicate the induction of cellular signaling pathways, which may play roles in the infection of target cells and in Kaposi's sarcoma pathogenesis.
Collapse
Affiliation(s)
- Fu-Zhang Wang
- Department of Microbiology, Molecular Genetics and Immunology, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | |
Collapse
|
93
|
Ibrahim-Granet O, Philippe B, Boleti H, Boisvieux-Ulrich E, Grenet D, Stern M, Latgé JP. Phagocytosis and intracellular fate of Aspergillus fumigatus conidia in alveolar macrophages. Infect Immun 2003; 71:891-903. [PMID: 12540571 PMCID: PMC145364 DOI: 10.1128/iai.71.2.891-903.2003] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Aspergillus fumigatus is the most prevalent airborne fungal pathogen responsible for fatal invasive aspergillosis in immunocompromised patients. Upon arrival in the lung alveolus, conidia of A. fumigatus are phagocytosed by alveolar macrophages, the major phagocytic cells of the lung. Engulfment and intracellular trafficking of A. fumigatus conidia in alveolar macrophages of two different origins, the murine cell line MH-S and human pulmonary alveolar macrophages, were analyzed by electron microscopy and immunofluorescence. Phagocytosis of A. fumigatus conidia required actin polymerization and phosphatidylinositol 3-kinase activity. Fusion of A. fumigatus phagosomes with early and late endosomes was shown by immunolabeling with specific markers for the transferrin receptor, early endosome antigen, and Rab7. Maturation of A. fumigatus phagolysosomes was monitored by using a fixable acidotropic probe, LysoTracker Red DND-99, and an anti-cathepsin D antibody. Bafilomycin A-induced inhibition of lysosomal acidification abolished the conidial killing by the macrophages. These data suggest that the maturation of A. fumigatus phagosomes results from fusion with the compartments of the endocytic pathway and that the killing of conidia depends on phagolysosome acidification. A model for the phagocytosis of A. fumigatus conidia by alveolar macrophages is proposed on the basis of these results.
Collapse
Affiliation(s)
- O Ibrahim-Granet
- Unité des Aspergillus, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
94
|
Carlier MF, Wiesner S, Le Clainche C, Pantaloni D. Actin-based motility as a self-organized system: mechanism and reconstitution in vitro. C R Biol 2003; 326:161-70. [PMID: 12754935 DOI: 10.1016/s1631-0691(03)00067-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Site-directed actin polymerisation in response to signalling is responsible for the formation of cell protrusions. These elementary 'actin-based motility processes' are involved in cell locomotion, cell metastasis, organ morphogenesis and microbial pathogenesis. We have reconstituted actin-based propulsive movement of particles of various sizes and geometries (rods, microspheres) in a minimum motility medium containing five pure proteins. The ATP-supported treadmilling of actin filaments, regulated by Actin Depolymerizing Factor (ADF/cofilin), profilin and capping proteins provides the thermodynamic basis for sustained actin-based movement. Local activation of Arp2/3 complex at the surface of the particle promotes autocatalytic barbed end branching of filaments, generating a polarized arborescent array. Barbed end growth of branched filaments against the surface generates a propulsive force and is eventually arrested by capping proteins. Understanding the mechanism of actin-based movement requires elucidation of the biochemical properties and mode of action of Arp2/3 complex in filament branching, in particular the role of ATP binding and hydrolysis in Arp2/3, and a physical analysis of the movement of functionalised particles. Because the functionalisation of the particle by an activator of Arp2/3 complex (N-WASP or the Listeria protein ActA) and the concentrations of effectors in the medium are controlled, the reconstituted motility assay allows an analysis of the mechanism of force production at the mesoscopic and molecular levels.
Collapse
Affiliation(s)
- Marie-France Carlier
- Laboratoire d'enzymologie et biochimie structurales, CNRS, 91198 Gif-sur-Yvette, France.
| | | | | | | |
Collapse
|
95
|
Gatfield J, Pieters J. Molecular Mechanisms of Host–Pathogen Interaction: Entry and Survival of Mycobacteria in Macrophages. Adv Immunol 2003; 81:45-96. [PMID: 14711053 DOI: 10.1016/s0065-2776(03)81002-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- John Gatfield
- Biozentrum der Universitaet Basel, Department of Biochemistry, Klingelbergstrasse 50-70, 4056 Basel, Switzerland
| | | |
Collapse
|
96
|
Ponta H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 2003; 4:33-45. [PMID: 12511867 DOI: 10.1038/nrm1004] [Citation(s) in RCA: 1795] [Impact Index Per Article: 81.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell-adhesion molecules, once believed to function primarily in tethering cells to extracellular ligands, are now recognized as having broader functions in cellular signalling cascades. The CD44 transmembrane glycoprotein family adds new aspects to these roles by participating in signal-transduction processes--not only by establishing specific transmembrane complexes, but also by organizing signalling cascades through association with the actin cytoskeleton. CD44 and its associated partner proteins monitor changes in the extracellular matrix that influence cell growth, survival and differentiation.
Collapse
Affiliation(s)
- Helmut Ponta
- Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, PO Box 3640, 76021 Karlsruhe, Germany
| | | | | |
Collapse
|
97
|
Naranatt PP, Akula SM, Zien CA, Krishnan HH, Chandran B. Kaposi's sarcoma-associated herpesvirus induces the phosphatidylinositol 3-kinase-PKC-zeta-MEK-ERK signaling pathway in target cells early during infection: implications for infectivity. J Virol 2003; 77:1524-39. [PMID: 12502866 PMCID: PMC140802 DOI: 10.1128/jvi.77.2.1524-1539.2003] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human herpesvirus 8 (HHV-8) is implicated in the pathogenesis of Kaposi's sarcoma. HHV-8 envelope glycoprotein B (gB) possesses the RGD motif known to interact with integrin molecules, and HHV-8 infectivity was inhibited by RGD peptides, by antibodies against alpha3 and beta1 integrins, and by soluble alpha3beta1 integrin (S. M. Akula, N. P. Pramod, F.-Z. Wang, and B. Chandran, Cell 108:407-419, 2002). Anti-gB antibodies immunoprecipitated the virus alpha3 and beta1 complexes, and virus-binding studies suggest a role for alpha3beta1 in HHV-8 entry. HHV-8 infection induced the integrin-mediated activation of focal adhesion kinase (FAK), implicating a role for integrin and the associated signaling pathways in HHV-8 entry into the target cells. Immediately after infection, target cells exhibited morphological changes and cytoskeletal rearrangements, suggesting the induction of signal pathways. As early as 5 min postinfection, HHV-8 activated the MEK-ERK1/2 pathway. The focal adhesion components phosphatidylinositol 3-kinase (PI 3-kinase) and protein kinase C-zeta (PKC-zeta) were recruited as upstream mediators of the HHV-8-induced ERK pathway. Anti-HHV-8 gB-neutralizing antibodies and soluble alpha3beta1 integrin inhibited the virus-induced signaling pathways. Early kinetics of the cellular signaling pathway and its activation by UV-inactivated HHV-8 suggest a role for virus binding and/or entry but not viral gene expression in this induction. Studies with human alpha3 integrin-transfected Chinese hamster ovary cells and FAK-negative mouse DU3 cells suggest that the alpha3beta1 integrin and FAK play roles in the HHV-8 mediated signal induction. Inhibitors specific for PI 3-kinase, PKC-zeta, MEK, and ERK significantly reduced the virus infectivity without affecting virus binding to the target cells. Examination of viral DNA entry suggests a role for PI 3-kinase in HHV-8 entry into the target cells and a role for PKC-zeta, MEK, and ERK at a post-viral entry stage of infection. These findings implicate a critical role for integrin-associated mitogenic signaling in HHV-8's infection of target cells and suggest that, by orchestrating the signal cascade, HHV-8 may create an appropriate intracellular environment to facilitate the infection.
Collapse
Affiliation(s)
- Pramod P Naranatt
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City 66160, USA
| | | | | | | | | |
Collapse
|
98
|
Affiliation(s)
- Michael K Shaw
- G452 Stopford Building, School of Biological Sciences, University of Manchester, Oxford Road, Manchester, UK, M13 9PT.
| |
Collapse
|
99
|
Casali N, Konieczny M, Schmidt MA, Riley LW. Invasion activity of a Mycobacterium tuberculosis peptide presented by the Escherichia coli AIDA autotransporter. Infect Immun 2002; 70:6846-52. [PMID: 12438361 PMCID: PMC133103 DOI: 10.1128/iai.70.12.6846-6852.2002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mce1A gene of Mycobacterium tuberculosis was initially identified by its ability to promote uptake of Escherichia coli into HeLa cells. It was subsequently shown that this activity was confined to a 58-amino-acid region of the protein. A 72-amino-acid fragment (InvX) incorporating this active peptide was expressed in E. coli as a fusion to the AIDA (adhesin involved in diffuse adherence) autotransporter translocator, and its stable expression on the surface of the bacterium was demonstrated. Recombinant E. coli expressing InvX-AIDA showed extensive association with HeLa cells, and InvX was shown to be sufficient for internalization. Uptake was found to be both microtubule and microfilament dependent and required the Rho family of GTPases. Thus, the E. coli AIDA system facilitated both the qualitative and quantitative analysis of the functional domain of a heterologous protein.
Collapse
Affiliation(s)
- Nicola Casali
- School of Public Health, University of California at Berkeley, 94720, USA
| | | | | | | |
Collapse
|
100
|
Abstract
Several virulence factors of Listeria monocytogenes have been identified and extensively characterized at the molecular and cell biologic levels, including the hemolysin (listeriolysin O), two distinct phospholipases, a protein (ActA), several internalins, and others. Their study has yielded an impressive amount of information on the mechanisms employed by this facultative intracellular pathogen to interact with mammalian host cells, escape the host cell's killing mechanisms, and spread from one infected cell to others. In addition, several molecular subtyping tools have been developed to facilitate the detection of different strain types and lineages of the pathogen, including those implicated in common-source outbreaks of the disease. Despite these spectacular gains in knowledge, the virulence of L. monocytogenes as a foodborne pathogen remains poorly understood. The available pathogenesis and subtyping data generally fail to provide adequate insight about the virulence of field isolates and the likelihood that a given strain will cause illness. Possible mechanisms for the apparent prevalence of three serotypes (1/2a, 1/2b, and 4b) in human foodborne illness remain unidentified. The propensity of certain strain lineages (epidemic clones) to be implicated in common-source outbreaks and the prevalence of serotype 4b among epidemic-associated stains also remain poorly understood. This review first discusses current progress in understanding the general features of virulence and pathogenesis of L. monocytogenes. Emphasis is then placed on areas of special relevance to the organism's involvement in human foodborne illness, including (i) the relative prevalence of different serotypes and serotype-specific features and genetic markers; (ii) the ability of the organism to respond to environmental stresses of relevance to the food industry (cold, salt, iron depletion, and acid); (iii) the specific features of the major known epidemic-associated lineages; and (iv) the possible reservoirs of the organism in animals and the environment and the pronounced impact of environmental contamination in the food processing facilities. Finally, a discussion is provided on the perceived areas of special need for future research of relevance to food safety, including (i) theoretical modeling studies of niche complexity and contamination in the food processing facilities; (ii) strain databases for comprehensive molecular typing; and (iii) contributions from genomic and proteomic tools, including DNA microarrays for genotyping and expression signatures. Virulence-related genomic and proteomic signatures are expected to emerge from analysis of the genomes at the global level, with the support of adequate epidemiologic data and access to relevant strains.
Collapse
Affiliation(s)
- Sophia Kathariou
- Food Science Department, North Carolina State University, Raleigh 27695, USA.
| |
Collapse
|