51
|
Rosser NL, Thomas L, Stankowski S, Richards ZT, Kennington WJ, Johnson MS. Phylogenomics provides new insight into evolutionary relationships and genealogical discordance in the reef-building coral genus Acropora. Proc Biol Sci 2017; 284:20162182. [PMID: 28077772 PMCID: PMC5247495 DOI: 10.1098/rspb.2016.2182] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/12/2016] [Indexed: 01/08/2023] Open
Abstract
Understanding the genetic basis of reproductive isolation is a long-standing goal of speciation research. In recently diverged populations, genealogical discordance may reveal genes and genomic regions that contribute to the speciation process. Previous work has shown that conspecific colonies of Acropora that spawn in different seasons (spring and autumn) are associated with highly diverged lineages of the phylogenetic marker PaxC Here, we used 10 034 single-nucleotide polymorphisms to generate a genome-wide phylogeny and compared it with gene genealogies from the PaxC intron and the mtDNA Control Region in 20 species of Acropora, including three species with spring- and autumn-spawning cohorts. The PaxC phylogeny separated conspecific autumn and spring spawners into different genetic clusters in all three species; however, this pattern was not supported in two of the three species at the genome level, suggesting a selective connection between PaxC and reproductive timing in Acropora corals. This genome-wide phylogeny provides an improved foundation for resolving phylogenetic relationships in Acropora and, combined with PaxC, provides a fascinating platform for future research into regions of the genome that influence reproductive isolation and speciation in corals.
Collapse
Affiliation(s)
- Natalie L Rosser
- School of Animal Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Luke Thomas
- School of Plant Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Sean Stankowski
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Zoe T Richards
- Department of Aquatic Zoology, Western Australian Museum, 49 Kew Street, Welshpool, Western Australia 6106, Australia
| | - W Jason Kennington
- School of Animal Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Michael S Johnson
- School of Animal Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
52
|
Yuan H, Wang W, Hu B, Pan C, Chen M, Ke L, Yang L, Chen J. Cloning and Functional Analysis of Pax6 from the Hydrothermal Vent Tubeworm Ridgeia piscesae. PLoS One 2016; 11:e0168579. [PMID: 28005979 PMCID: PMC5179022 DOI: 10.1371/journal.pone.0168579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 12/02/2016] [Indexed: 12/04/2022] Open
Abstract
The paired box 6 (Pax6) gene encodes a transcription factor essential for eye development in a wide range of animal lineages. Here we describe the cloning and characterization of Pax6 gene from the blind hydrothermal vent tubeworm Ridgeia piscesae (RpPax6). The deduced RpPax6 protein shares extensive sequence identity with Pax6 proteins from other species and contains both the paired domain and a complete homeodomain. Phylogenetic analysis indicates that it clusters with the corresponding sequence from the closely related species Platynereis dumerilii (P. dumerilii) of Annelida. Luciferase reporter assay indicate that RpPax6 protein suppresses the transcription of sine oculis (so) in D. melanogaster, interfering with the C-terminal of RpPax6. Taking advantage of Drosophila model, we show that RpPax6 expression is not able to rescue small eye phenotype of ey2 mutant, only to cause a more severe headless phenotype. In addition, RpPax6 expression induced apoptosis and inhibition of apoptosis can partially rescue RpPax6-induced headless phenotype. We provide evidence RpPax6 plays at least two roles: it blocks the expression of later-acting transcription factors in the eye development cascade, and it promotes cell apoptosis. Our results indicate alternation of the Pax6 function may be one of the possible causes that lead the eye absence in vestimentiferan tubeworms.
Collapse
Affiliation(s)
- Huifang Yuan
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian Province, China
| | - Wei Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian Province, China
- * E-mail: (JC); (WW)
| | - Bin Hu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian Province, China
| | - Changkun Pan
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian Province, China
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Mingliang Chen
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian Province, China
| | - Linlin Ke
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian Province, China
| | - Lirong Yang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian Province, China
| | - Jianming Chen
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian Province, China
- * E-mail: (JC); (WW)
| |
Collapse
|
53
|
Han KH, Lee HJ, Ha IS, Kang HG, Cheong HI. A nonsense PAX6 mutation in a family with congenital aniridia. KOREAN JOURNAL OF PEDIATRICS 2016; 59:S1-S4. [PMID: 28018434 PMCID: PMC5177687 DOI: 10.3345/kjp.2016.59.11.s1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/11/2016] [Accepted: 04/17/2016] [Indexed: 11/27/2022]
Abstract
Congenital aniridia is a rare ocular malformation that presents with severe hypoplasia of the iris and various ocular manifestations. Most cases of congenital aniridia are known to be related to mutations in the paired box gene-6 (PAX6), which is an essential gene in eye development. Herein, we report a familial case of autosomal dominant congenital aniridia with four affected members in 3 consecutive generations and describe the detailed ophthalmologic findings for one of these members. As expected, mutational analysis revealed a nonsense mutation (p.Ser122*) in the PAX6 gene. Thus, our findings reiterate the importance of PAX6 mutations in congenital aniridia.
Collapse
Affiliation(s)
- Kyoung Hee Han
- Department of Pediatrics, Jeju National University School of Medicine, Jeju, Korea
| | - Hye Jin Lee
- Department of Ophthalmology, Jeju National University School of Medicine, Jeju, Korea
| | - Il-Soo Ha
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
| | - Hee Gyung Kang
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea.; Research Coordination Center for Rare Diseases, Seoul National University Hospital, Seoul, Korea
| | - Hae Il Cheong
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea.; Research Coordination Center for Rare Diseases, Seoul National University Hospital, Seoul, Korea.; Kidney Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
54
|
Capetian P, Azmitia L, Pauly MG, Krajka V, Stengel F, Bernhardi EM, Klett M, Meier B, Seibler P, Stanslowsky N, Moser A, Knopp A, Gillessen-Kaesbach G, Nikkhah G, Wegner F, Döbrössy M, Klein C. Plasmid-Based Generation of Induced Neural Stem Cells from Adult Human Fibroblasts. Front Cell Neurosci 2016; 10:245. [PMID: 27822179 PMCID: PMC5075569 DOI: 10.3389/fncel.2016.00245] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/06/2016] [Indexed: 01/01/2023] Open
Abstract
Direct reprogramming from somatic to neural cell types has become an alternative to induced pluripotent stem cells. Most protocols employ viral expression systems, posing the risk of random genomic integration. Recent developments led to plasmid-based protocols, lowering this risk. However, these protocols either relied on continuous presence of a variety of small molecules or were only able to reprogram murine cells. We therefore established a reprogramming protocol based on vectors containing the Epstein-Barr virus (EBV)-derived oriP/EBNA1 as well as the defined expression factors Oct3/4, Sox2, Klf4, L-myc, Lin28, and a small hairpin directed against p53. We employed a defined neural medium in combination with the neurotrophins bFGF, EGF and FGF4 for cultivation without the addition of small molecules. After reprogramming, cells demonstrated a temporary increase in the expression of endogenous Oct3/4. We obtained induced neural stem cells (iNSC) 30 days after transfection. In contrast to previous results, plasmid vectors as well as a residual expression of reprogramming factors remained detectable in all cell lines. Cells showed a robust differentiation into neuronal (72%) and glial cells (9% astrocytes, 6% oligodendrocytes). Despite the temporary increase of pluripotency-associated Oct3/4 expression during reprogramming, we did not detect pluripotent stem cells or non-neural cells in culture (except occasional residual fibroblasts). Neurons showed electrical activity and functional glutamatergic synapses. Our results demonstrate that reprogramming adult human fibroblasts to iNSC by plasmid vectors and basic neural medium without small molecules is possible and feasible. However, a full set of pluripotency-associated transcription factors may indeed result in the acquisition of a transient (at least partial) pluripotent intermediate during reprogramming. In contrast to previous reports, the EBV-based plasmid system remained present and active inside the cells at all time points.
Collapse
Affiliation(s)
- Philipp Capetian
- Institute of Neurogenetics, University of LübeckLübeck, Germany; Department of Neurology, University of LübeckLübeck, Germany
| | - Luis Azmitia
- Department of Neurosurgery, University of Kiel Kiel, Germany
| | - Martje G Pauly
- Institute of Neurogenetics, University of Lübeck Lübeck, Germany
| | - Victor Krajka
- Institute of Neurogenetics, University of Lübeck Lübeck, Germany
| | - Felix Stengel
- Institute of Neurogenetics, University of Lübeck Lübeck, Germany
| | | | - Mariana Klett
- Laboratory of Stereotaxy and Interventional Neuroscience, Department of Stereotactic and Functional Neuroscience, University Medical Center Freiburg Freiburg im Breisgau, Germany
| | - Britta Meier
- Institute of Neurogenetics, University of Lübeck Lübeck, Germany
| | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck Lübeck, Germany
| | | | - Andreas Moser
- Department of Neurology, University of Lübeck Lübeck, Germany
| | - Andreas Knopp
- Institute of Physiology, University of Kiel Kiel, Germany
| | | | - Guido Nikkhah
- Department of Neurosurgery, University of Erlangen-Nuremberg Erlangen, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School Hanover, Germany
| | - Máté Döbrössy
- Laboratory of Stereotaxy and Interventional Neuroscience, Department of Stereotactic and Functional Neuroscience, University Medical Center Freiburg Freiburg im Breisgau, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck Lübeck, Germany
| |
Collapse
|
55
|
Three Dimensional Human Neuro-Spheroid Model of Alzheimer's Disease Based on Differentiated Induced Pluripotent Stem Cells. PLoS One 2016; 11:e0163072. [PMID: 27684569 PMCID: PMC5042502 DOI: 10.1371/journal.pone.0163072] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/01/2016] [Indexed: 12/15/2022] Open
Abstract
The testing of candidate drugs to slow progression of Alzheimer’s disease (AD) requires clinical trials that are lengthy and expensive. Efforts to model the biochemical milieu of the AD brain may be greatly facilitated by combining two cutting edge technologies to generate three-dimensional (3D) human neuro-spheroid from induced pluripotent stem cells (iPSC) derived from AD subjects. We created iPSC from blood cells of five AD patients and differentiated them into 3D human neuronal culture. We characterized neuronal markers of our 3D neurons by immunocytochemical staining to validate the differentiation status. To block the generation of pathologic amyloid β peptides (Aβ), the 3D-differentiated AD neurons were treated with inhibitors targeting β-secretase (BACE1) and γ-secretases. As predicted, both BACE1 and γ-secretase inhibitors dramatically decreased Aβ generation in iPSC-derived neural cells derived from all five AD patients, under standard two-dimensional (2D) differentiation conditions. However, BACE1 and γ-secretase inhibitors showed less potency in decreasing Aβ levels in neural cells differentiated under 3D culture conditions. Interestingly, in a single subject AD1, we found that BACE1 inhibitor treatment was not able to significantly reduce Aβ42 levels. To investigate underlying molecular mechanisms, we performed proteomic analysis of 3D AD human neuronal cultures including AD1. Proteomic analysis revealed specific reduction of several proteins that might contribute to a poor inhibition of BACE1 in subject AD1. To our knowledge, this is the first iPSC-differentiated 3D neuro-spheroid model derived from AD patients’ blood. Our results demonstrate that our 3D human neuro-spheroid model can be a physiologically relevant and valid model for testing efficacy of AD drug.
Collapse
|
56
|
Reis AH, Moreno MM, Maia LA, Oliveira FP, Santos AS, Abreu JG. Cholesterol-rich membrane microdomains modulate Wnt/β-catenin morphogen gradient during Xenopus development. Mech Dev 2016; 142:30-39. [PMID: 27687541 DOI: 10.1016/j.mod.2016.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/19/2016] [Accepted: 09/22/2016] [Indexed: 11/30/2022]
Abstract
Wnt/β-catenin has been described as crucial for dorsal-ventral and antero-posterior patterning, playing multiple roles at different stages of development. Cholesterol-rich membrane microdomains (CRMMs), cholesterol- and sphingolipid-enriched domains of the plasma membrane, are known as platforms for signaling pathways. Although we have demonstrated the importance of the CRMMs for head development, how they participate in prechordal plate formation and embryo axis patterning remains an open question. Moreover, the participation of the CRMMs in the Wnt/β-catenin signaling pathway activity in vivo is unclear, particularly during embryonic development. In this study, we demonstrated that CRMMs disruption by methyl-beta-cyclodextrin (MβCD) potentiates the activation of the Wnt/β-catenin signaling pathway in vitro and in vivo during embryonic development, causing head defects by expanding the Wnt expression domain. Furthermore, we also found that the action of CRMMs depends on the microenvironmental context because it also works in conjunction with dkk1, when dkk1 is overexpressed. Thus, we propose CRMMs as a further mechanism of prechordal plate protection against the Wnt signals secreted by posterolateral cells, complementing the action of secreted antagonists.
Collapse
Affiliation(s)
- Alice H Reis
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Marcela M Moreno
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Lorena A Maia
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Fernanda P Oliveira
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Andressa S Santos
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - José Garcia Abreu
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.
| |
Collapse
|
57
|
Pibiri V, Ravarino A, Gerosa C, Pintus MC, Fanos V, Faa G. Stem/progenitor cells in the developing human cerebellum: an immunohistochemical study. Eur J Histochem 2016; 60:2686. [PMID: 27734996 PMCID: PMC5062635 DOI: 10.4081/ejh.2016.2686] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/28/2016] [Accepted: 07/30/2016] [Indexed: 11/25/2022] Open
Abstract
The aim of this study was to analyze, by immunohistochemistry, the occurrence of stem/progenitor cells localized in the different niches of the developing human cerebellum. To this end, cerebellar samples were obtained from 3 fetuses and 3 newborns ranging, respectively, from 11 to 24 and from 30 to 38 weeks of gestation. Specimens were 10% formalin-fixed, routinely processed and paraffin-embedded; 3 μm-tick sections were immunostained with anti-SOX2 and PAX6 antibodies. Our study evidenced SOX2 and PAX6 immunoreactivity in precursors cells in all six developing human cerebella. SOX2 was expressed in precursors of different neural cell types, including Purkinje neurons, stellate cells, basket cells and Golgi cells. In the cerebellar cortex, SOX2 expression changed during gestation, being highly expressed from the 20th up to the 24th week, whereas at the 30th and at the 34th week SOX2 immunoreactivity was restricted to the Purkinje cell layer and the inner zone. Cerebellar human cortex was negative at the 38th week of gestation. PAX6 immunoreactivity was restricted to granule cell precursors in the external granule layer (EGL), being detected at all gestational ages. Our study indicates SOX2 and PAX6 as two useful markers of stem/progenitor cells that highlight the different germinative zones in the developing human cerebellum.
Collapse
|
58
|
Sun J, Zhao Y, McGreal R, Cohen-Tayar Y, Rockowitz S, Wilczek C, Ashery-Padan R, Shechter D, Zheng D, Cvekl A. Pax6 associates with H3K4-specific histone methyltransferases Mll1, Mll2, and Set1a and regulates H3K4 methylation at promoters and enhancers. Epigenetics Chromatin 2016; 9:37. [PMID: 27617035 PMCID: PMC5018195 DOI: 10.1186/s13072-016-0087-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 08/31/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Pax6 is a key regulator of the entire cascade of ocular lens formation through specific binding to promoters and enhancers of batteries of target genes. The promoters and enhancers communicate with each other through DNA looping mediated by multiple protein-DNA and protein-protein interactions and are marked by specific combinations of histone posttranslational modifications (PTMs). Enhancers are distinguished from bulk chromatin by specific modifications of core histone H3, including H3K4me1 and H3K27ac, while promoters show increased H3K4me3 PTM. Previous studies have shown the presence of Pax6 in as much as 1/8 of lens-specific enhancers but a much smaller fraction of tissue-specific promoters. Although Pax6 is known to interact with EP300/p300 histone acetyltransferase responsible for generation of H3K27ac, a potential link between Pax6 and histone H3K4 methylation remains to be established. RESULTS Here we show that Pax6 co-purifies with H3K4 methyltransferase activity in lens cell nuclear extracts. Proteomic studies show that Pax6 immunoprecipitates with Set1a, Mll1, and Mll2 enzymes, and their associated proteins, i.e., Wdr5, Rbbp5, Ash2l, and Dpy30. ChIP-seq studies using chromatin prepared from mouse lens and cultured lens cells demonstrate that Pax6-bound regions are mostly enriched with H3K4me2 and H3K4me1 in enhancers and promoters, though H3K4me3 marks only Pax6-containing promoters. The shRNA-mediated knockdown of Pax6 revealed down-regulation of a set of direct target genes, including Cap2, Farp1, Pax6, Plekha1, Prox1, Tshz2, and Zfp536. Pax6 knockdown was accompanied by reduced H3K4me1 at enhancers and H3K4me3 at promoters, with little or no changes of the H3K4me2 modifications. These changes were prominent in Plekha1, a gene regulated by Pax6 in both lens and retinal pigmented epithelium. CONCLUSIONS Our study supports a general model of Pax6-mediated recruitment of histone methyltransferases Mll1 and Mll2 to lens chromatin, especially at distal enhancers. Genome-wide data in lens show that Pax6 binding correlates with H3K4me2, consistent with the idea that H3K4me2 PTMs correlate with the binding of transcription factors. Importantly, partial reduction of Pax6 induces prominent changes in local H3K4me1 and H3K4me3 modification. Together, these data open the field to mechanistic studies of Pax6, Mll1, Mll2, and H3K4me1/2/3 dynamics at distal enhancers and promoters of developmentally controlled genes.
Collapse
Affiliation(s)
- Jian Sun
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Yilin Zhao
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Rebecca McGreal
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA ; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Yamit Cohen-Tayar
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol school of Neuroscience, Tel-Aviv University, Tel Aviv, 69978 Israel
| | - Shira Rockowitz
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Carola Wilczek
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol school of Neuroscience, Tel-Aviv University, Tel Aviv, 69978 Israel
| | - David Shechter
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA ; Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461 USA ; Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA ; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| |
Collapse
|
59
|
Inami W, Islam MR, Nakamura K, Yoshikawa T, Yasumuro H, Casco-Robles MM, Toyama F, Maruo F, Chiba C. Expression of Two Classes of Pax6 Transcripts in Reprogramming Retinal Pigment Epithelium Cells of the Adult Newt. Zoolog Sci 2016; 33:21-30. [PMID: 26853865 DOI: 10.2108/zs150111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The adult newt has the remarkable ability to regenerate a functional retina from retinal pigment epithelium (RPE) cells, even when the neural retina (NR) is completely lost from the eye. In this system, RPE cells are reprogrammed into a unique state of multipotent cells, named RPESCs, in an early phase of retinal regeneration. However, the signals that trigger reprogramming remain unknown. Here, to approach this issue we focused on Pax6, a transcription factor known to be expressed in RPESCs. We first identified four classes (v1, v2, v3 and v4) of Pax6 variants in the eye of adult newt, Cynops pyrrhogaster. These variants were expressed in most tissues of the intact eye in different combinations but not in the RPE, choroid or sclera. On the basis of this information, we investigated the expression of Pax6 in RPE cells after the NR was removed from the eye by surgery (retinectomy), and found that two classes (v1 and v2) of Pax6 variants were newly expressed in RPE cells 10 days after retinectomy, both in vivo and in vitro (RLEC system). In the RLEC system, we found that Pax6 expression is mediated through a pathway separate from the MEK-ERK pathway, which is required for cell cycle re-entry of RPE cells. These results predict the existence of a pathway that may be of fundamental importance to a better understanding of the reprogramming of RPE cells in vivo.
Collapse
Affiliation(s)
- Wataru Inami
- 1 Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Md Rafiqul Islam
- 1 Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Kenta Nakamura
- 2 Faculty of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Taro Yoshikawa
- 1 Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Hirofumi Yasumuro
- 1 Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Martin Miguel Casco-Robles
- 2 Faculty of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Fubito Toyama
- 3 Graduate School of Engineering, Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585, Japan
| | - Fumiaki Maruo
- 2 Faculty of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Chikafumi Chiba
- 2 Faculty of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
60
|
Cvekl A, Callaerts P. PAX6: 25th anniversary and more to learn. Exp Eye Res 2016; 156:10-21. [PMID: 27126352 DOI: 10.1016/j.exer.2016.04.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/12/2016] [Accepted: 04/22/2016] [Indexed: 01/29/2023]
Abstract
The DNA-binding transcription factor PAX6 was cloned 25 years ago by multiple teams pursuing identification of human and mouse eye disease causing genes, cloning vertebrate homologues of pattern-forming regulatory genes identified in Drosophila, or abundant eye-specific transcripts. Since its discovery in 1991, genetic, cellular, molecular and evolutionary studies on Pax6 mushroomed in the mid 1990s leading to the transformative thinking regarding the genetic program orchestrating both early and late stages of eye morphogenesis as well as the origin and evolution of diverse visual systems. Since Pax6 is also expressed outside of the eye, namely in the central nervous system and pancreas, a number of important insights into the development and function of these organs have been amassed. In most recent years, genome-wide technologies utilizing massively parallel DNA sequencing have begun to provide unbiased insights into the regulatory hierarchies of specification, determination and differentiation of ocular cells and neurogenesis in general. This review is focused on major advancements in studies on mammalian eye development driven by studies of Pax6 genes in model organisms and future challenges to harness the technology-driven opportunities to reconstruct, step-by-step, the transition from naïve ectoderm, neuroepithelium and periocular mesenchyme/neural crest cells into the three-dimensional architecture of the eye.
Collapse
Affiliation(s)
- Ales Cvekl
- The Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; The Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Patrick Callaerts
- Laboratory of Behavioral and Developmental Genetics, K.U. Leuven, VIB, 3000, Leuven, Belgium.
| |
Collapse
|
61
|
Pax6 in Collembola: Adaptive Evolution of Eye Regression. Sci Rep 2016; 6:20800. [PMID: 26856893 PMCID: PMC4746759 DOI: 10.1038/srep20800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 01/12/2016] [Indexed: 11/12/2022] Open
Abstract
Unlike the compound eyes in insects, collembolan eyes are comparatively simple: some species have eyes with different numbers of ocelli (1 + 1 to 8 + 8), and some species have no apparent eye structures. Pax6 is a universal master control gene for eye morphogenesis. In this study, full-length Pax6 cDNAs, Fc-Pax6 and Cd-Pax6, were cloned from an eyeless collembolan (Folsomia candida, soil-dwelling) and an eyed one (Ceratophysella denticulata, surface-dwelling), respectively. Their phylogenetic positions are between the two Pax6 paralogs in insects, eyeless (ey) and twin of eyeless (toy), and their protein sequences are more similar to Ey than to Toy. Both Fc-Pax6 and Cd-Pax6 could induce ectopic eyes in Drosophila, while Fc-Pax6 exhibited much weaker transactivation ability than Cd-Pax6. The C-terminus of collembolan Pax6 is indispensable for its transactivation ability, and determines the differences of transactivation ability between Fc-Pax6 and Cd-Pax6. One of the possible reasons is that Fc-Pax6 accumulated more mutations at some key functional sites of C-terminus under a lower selection pressure on eye development due to the dark habitats of F. candida. The composite data provide a first molecular evidence for the monophyletic origin of collembolan eyes, and indicate the eye degeneration of collembolans is caused by adaptive evolution.
Collapse
|
62
|
Sia PI, Wood JP, Chidlow G, Sharma S, Craig J, Casson RJ. Role of the nucleolus in neurodegenerative diseases with particular reference to the retina: a review. Clin Exp Ophthalmol 2016; 44:188-95. [PMID: 26427048 DOI: 10.1111/ceo.12661] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/17/2015] [Accepted: 09/21/2015] [Indexed: 01/20/2023]
Abstract
The nucleolus has emerged as a key regulator of cellular growth and the response to stress, in addition to its traditionally understood function in ribosome biogenesis. The association between nucleolar function and neurodegenerative disease is increasingly being explored. There is also recent evidence indicating that the nucleolus may well be crucial in the development of the eye. In this present review, the role of the nucleolus in retinal development as well as in neurodegeneration with an emphasis on the retina is discussed.
Collapse
Affiliation(s)
- Paul I Sia
- Ophthalmic Research Laboratories, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - John Pm Wood
- Ophthalmic Research Laboratories, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Glyn Chidlow
- Ophthalmic Research Laboratories, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Shiwani Sharma
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Jamie Craig
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Robert J Casson
- Ophthalmic Research Laboratories, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
63
|
|
64
|
Delroisse J, Ortega-Martinez O, Dupont S, Mallefet J, Flammang P. De novo transcriptome of the European brittle star Amphiura filiformis pluteus larvae. Mar Genomics 2015; 23:109-21. [PMID: 26044617 DOI: 10.1016/j.margen.2015.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND In non-classical model species, Next Generation Sequencing increases the ability to analyze the expression of transcripts/genes. In this study, paired-end Illumina HiSeq sequencing technology has been employed to describe a larval transcriptome generated from 64 h post-fertilization pluteus larvae of the brittle star Amphiura filiformis. We focused our analysis on the detection of actors involved in the opsin based light perception, respectively the opsins and the phototransduction actors. METHODS & RESULTS In this research, about 47 million high quality reads were generated and 86,572 total unigenes were predicted after de novo assembly. Of all the larval unigenes, 18% show significant matches with reference online databases. 46% of annotated larval unigenes were significantly similar to transcripts from the purple sea urchin. COG, GO and KEGG analyses were performed on predicted unigenes. Regarding the opsin-based photoreception process, even if possible actors of ciliary and rhabdomeric phototransduction cascades were detected, no ciliary or rhabdomeric opsin was identified in these larvae. Additionally, partial non-visual RGR (retinal G protein coupled receptor) opsin mRNAs were identified,possibly indicating the presence of visual cycle reaction in early pluteus larvae. The eye morphogene Pax 6 was also identified in the pluteus transcriptome. CONCLUSIONS Contrary to sea-urchin larvae, brittle star larvae appear to be characterized by an absence of visual-like opsins. These RNA-seq data also provide a useful resource for the echinoderm research community and researchers with an interest in larval biology.
Collapse
Affiliation(s)
- Jérôme Delroisse
- University of Mons - UMONS, Research Institute for Biosciences, Biology of Marine Organisms and Biomimetics, 23 Place du Parc, 7000 Mons, Belgium.
| | - Olga Ortega-Martinez
- University of Gothenburg, Department of Biological and Environmental Science, The Sven Lovén Centre for Marine Sciences, Kristineberg, 45178 Fiskebäckskil, Sweden.
| | - Sam Dupont
- University of Gothenburg, Department of Biological and Environmental Science, The Sven Lovén Centre for Marine Sciences, Kristineberg, 45178 Fiskebäckskil, Sweden.
| | - Jérôme Mallefet
- Catholic University of Louvain-La-Neuve, Marine Biology Laboratory, Place croix du Sud, Louvain-La-Neuve, Belgium.
| | - Patrick Flammang
- University of Mons - UMONS, Research Institute for Biosciences, Biology of Marine Organisms and Biomimetics, 23 Place du Parc, 7000 Mons, Belgium.
| |
Collapse
|
65
|
Stubbington MJ, Mahata B, Svensson V, Deonarine A, Nissen JK, Betz AG, Teichmann SA. An atlas of mouse CD4(+) T cell transcriptomes. Biol Direct 2015; 10:14. [PMID: 25886751 PMCID: PMC4384382 DOI: 10.1186/s13062-015-0045-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/23/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND CD4(+) T cells are key regulators of the adaptive immune system and can be divided into T helper (Th) cells and regulatory T (Treg) cells. During an immune response Th cells mature from a naive state into one of several effector subtypes that exhibit distinct functions. The transcriptional mechanisms that underlie the specific functional identity of CD4(+) T cells are not fully understood. RESULTS To assist investigations into the transcriptional identity and regulatory processes of these cells we performed mRNA-sequencing on three murine T helper subtypes (Th1, Th2 and Th17) as well as on splenic Treg cells and induced Treg (iTreg) cells. Our integrated analysis of this dataset revealed the gene expression changes associated with these related but distinct cellular identities. Each cell subtype differentially expresses a wealth of 'subtype upregulated' genes, some of which are well known whilst others promise new insights into signalling processes and transcriptional regulation. We show that hundreds of genes are regulated purely by alternative splicing to extend our knowledge of the role of post-transcriptional regulation in cell differentiation. CONCLUSIONS This CD4(+) transcriptome atlas provides a valuable resource for the study of CD4(+) T cell populations. To facilitate its use by others, we have made the data available in an easily accessible online resource at www.th-express.org.
Collapse
Affiliation(s)
- Michael Jt Stubbington
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| | - Bidesh Mahata
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Valentine Svensson
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| | | | - Jesper K Nissen
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK.
| | | | - Sarah A Teichmann
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| |
Collapse
|
66
|
Nakayama T, Fisher M, Nakajima K, Odeleye AO, Zimmerman KB, Fish MB, Yaoita Y, Chojnowski JL, Lauderdale JD, Netland PA, Grainger RM. Xenopus pax6 mutants affect eye development and other organ systems, and have phenotypic similarities to human aniridia patients. Dev Biol 2015; 408:328-44. [PMID: 25724657 DOI: 10.1016/j.ydbio.2015.02.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/13/2015] [Accepted: 02/16/2015] [Indexed: 02/06/2023]
Abstract
Mutations in the Pax6 gene cause ocular defects in both vertebrate and invertebrate animal species, and the disease aniridia in humans. Despite extensive experimentation on this gene in multiple species, including humans, we still do not understand the earliest effects on development mediated by this gene. This prompted us to develop pax6 mutant lines in Xenopus tropicalis taking advantage of the utility of the Xenopus system for examining early development and in addition to establish a model for studying the human disease aniridia in an accessible lower vertebrate. We have generated mutants in pax6 by using Transcription Activator-Like Effector Nuclease (TALEN) constructs for gene editing in X. tropicalis. Embryos with putative null mutations show severe eye abnormalities and changes in brain development, as assessed by changes in morphology and gene expression. One gene that we found is downregulated very early in development in these pax6 mutants is myc, a gene involved in pluripotency and progenitor cell maintenance and likely a mediator of some key pax6 functions in the embryo. Changes in gene expression in the developing brain and pancreas reflect other important functions of pax6 during development. In mutations with partial loss of pax6 function eye development is initially relatively normal but froglets show an underdeveloped iris, similar to the classic phenotype (aniridia) seen in human patients with PAX6 mutations. Other eye abnormalities observed in these froglets, including cataracts and corneal defects, are also common in human aniridia. The frog model thus allows us to examine the earliest deficits in eye formation as a result of pax6 lesions, and provides a useful model for understanding the developmental basis for the aniridia phenotype seen in humans.
Collapse
Affiliation(s)
- Takuya Nakayama
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Marilyn Fisher
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Keisuke Nakajima
- Division of Embryology and Genetics, Institute for Amphibian Biology, Hiroshima University, Higashihiroshima 739-8526, Japan
| | - Akinleye O Odeleye
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Keith B Zimmerman
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Margaret B Fish
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Yoshio Yaoita
- Division of Embryology and Genetics, Institute for Amphibian Biology, Hiroshima University, Higashihiroshima 739-8526, Japan
| | - Jena L Chojnowski
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - James D Lauderdale
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Peter A Netland
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Robert M Grainger
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA; Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
67
|
Cantù C, Zimmerli D, Hausmann G, Valenta T, Moor A, Aguet M, Basler K. Pax6-dependent, but β-catenin-independent, function of Bcl9 proteins in mouse lens development. Genes Dev 2014; 28:1879-84. [PMID: 25184676 PMCID: PMC4197948 DOI: 10.1101/gad.246140.114] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bcl9 and Bcl9l (Bcl9/9l) encode Wnt signaling components that mediate the interaction between β-catenin and Pygo. Cantù et al. find that Bcl9/9l contribute in a Pygo-dependent, but β-catenin-independent, fashion to eye lens formation. Pax6, the master regulator of eye differentiation, directly activates Bcl9 and Bcl9l transcription. Bcl9 and Bcl9l (Bcl9/9l) encode Wnt signaling components that mediate the interaction between β-catenin and Pygopus (Pygo) via two evolutionarily conserved domains, HD1 and HD2, respectively. We generated mouse strains lacking these domains to probe the β-catenin-dependent and β-catenin-independent roles of Bcl9/9l and Pygo during mouse development. While lens development is critically dependent on the presence of the HD1 domain, it is not affected by the lack of the HD2 domain, indicating that Bcl9/9l act in this context in a β-catenin-independent manner. Furthermore, we uncover a new regulatory circuit in which Pax6, the master regulator of eye development, directly activates Bcl9/9l transcription.
Collapse
Affiliation(s)
- Claudio Cantù
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Dario Zimmerli
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - George Hausmann
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Tomas Valenta
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Andreas Moor
- Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, 1011 Lausanne, Switzerland
| | - Michel Aguet
- Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, 1011 Lausanne, Switzerland
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland;
| |
Collapse
|
68
|
Henley JM, Craig TJ, Wilkinson KA. Neuronal SUMOylation: mechanisms, physiology, and roles in neuronal dysfunction. Physiol Rev 2014; 94:1249-85. [PMID: 25287864 PMCID: PMC4187031 DOI: 10.1152/physrev.00008.2014] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Protein SUMOylation is a critically important posttranslational protein modification that participates in nearly all aspects of cellular physiology. In the nearly 20 years since its discovery, SUMOylation has emerged as a major regulator of nuclear function, and more recently, it has become clear that SUMOylation has key roles in the regulation of protein trafficking and function outside of the nucleus. In neurons, SUMOylation participates in cellular processes ranging from neuronal differentiation and control of synapse formation to regulation of synaptic transmission and cell survival. It is a highly dynamic and usually transient modification that enhances or hinders interactions between proteins, and its consequences are extremely diverse. Hundreds of different proteins are SUMO substrates, and dysfunction of protein SUMOylation is implicated in a many different diseases. Here we briefly outline core aspects of the SUMO system and provide a detailed overview of the current understanding of the roles of SUMOylation in healthy and diseased neurons.
Collapse
Affiliation(s)
- Jeremy M Henley
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Tim J Craig
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Kevin A Wilkinson
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
69
|
Luan Q, Chen Q, Friedrich M. The Pax6 genes eyeless and twin of eyeless are required for global patterning of the ocular segment in the Tribolium embryo. Dev Biol 2014; 394:367-81. [PMID: 25149513 DOI: 10.1016/j.ydbio.2014.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 06/23/2014] [Accepted: 08/06/2014] [Indexed: 01/08/2023]
Abstract
The transcription factor gene Pax6 is widely considered a master regulator of eye development in bilaterian animals. However, the existence of visual organs that develop without Pax6 input and the considerable pleiotropy of Pax6 outside the visual system dictate further studies into defining ancestral functions of this important regulator. Previous work has shown that the combinatorial knockdown of the insect Pax6 orthologs eyeless (ey) and twin of eyeless (toy) perturbs the development of the visual system but also other areas of the larval head in the red flour beetle Tribolium castaneum. To elucidate the role of Pax6 during Tribolium head development in more detail, we studied head cuticle morphology, brain anatomy, embryonic head morphogenesis, and developmental marker gene expression in combinatorial ey and toy knockdown animals. Our experiments reveal that Pax6 is broadly required for patterning the anterior embryonic head. One of the earliest detectable roles is the formation of the embryonic head lobes, which originate from within the ocular segment and give rise to large parts of the supraesophageal brain including the mushroom body, a part of the posterior head capsule cuticle, and the visual system. We present further evidence that toy continues to be required for the development of the larval eyes after formation of the embryonic head lobes in cooperation with the eye developmental transcription factor dachshund (dac). The sum of our findings suggests that Pax6 functions as a competence factor throughout the development of the insect ocular segment. Comparative evidence identifies this function as an ancestral aspect of bilaterian head development.
Collapse
Affiliation(s)
- Qing Luan
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA; Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
| | - Qing Chen
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA; Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA.
| |
Collapse
|
70
|
The newt reprograms mature RPE cells into a unique multipotent state for retinal regeneration. Sci Rep 2014; 4:6043. [PMID: 25116407 PMCID: PMC4131214 DOI: 10.1038/srep06043] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 07/17/2014] [Indexed: 12/20/2022] Open
Abstract
The reprogramming of retinal pigment epithelium (RPE) cells in the adult newt immediately after retinal injury is an area of active research for the study of retinal disorders and regeneration. We demonstrate here that unlike embryonic/larval retinal regeneration, adult newt RPE cells are not directly reprogrammed into retinal stem/progenitor cells; instead, they are programmed into a unique state of multipotency that is similar to the early optic vesicle (embryo) but preserves certain adult characteristics. These cells then differentiate into two populations from which the prospective-neural retina and -RPE layers are formed with the correct polarity. Furthermore, our findings provide insight into the similarity between these unique multipotent cells in newts and those implicated in retinal disorders, such as proliferative vitreoretinopathy, in humans. These findings provide a foundation for biomedical approaches that aim to induce retinal self-regeneration for the treatment of RPE-mediated retinal disorders.
Collapse
|
71
|
Holmström G, Bondeson ML, Eriksson U, Åkerblom H, Larsson E. 'Congenital' nystagmus may hide various ophthalmic diagnoses. Acta Ophthalmol 2014; 92:412-6. [PMID: 23889849 DOI: 10.1111/aos.12250] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 06/29/2013] [Indexed: 01/23/2023]
Abstract
PURPOSE To investigate whether patients registered at a low-vision centre with 'nystagmus' had any underlying, but so far unknown, ophthalmic diagnosis. METHODS All patients registered at the low-vision centre of Uppsala county with nystagmus as their major diagnosis were identified. Their medical records were studied to exclude those with other general diagnoses that could explain the nystagmus. The remaining group of patients underwent an ophthalmic examination, refraction and optical coherence tomography (OCT). Electroretinogram and genetic analyses were performed when indicated. RESULTS Sixty-two patients with nystagmus as their main diagnosis were registered at the low-vision centre, Uppsala, and 43 of them had a major diagnosis other than nystagmus. Nystagmus was the major diagnosis in 19 patients, 15 of whom, aged 6-76 years, participated in the study. Two of the patients had foveal hypoplasia and albinism, four a seemingly isolated foveal hypoplasia, three achromatopsia, one rod-cone dystrophy, one degenerative high myopia, and two could not be evaluated. Only two patients appeared to have 'congenital' nystagmus. Eleven of the patients underwent a comprehensive genetic investigation of the PAX 6 gene. In addition, four of the patients were analysed for mutations in FOXC1 and PITX2 and one in FRMD7. No mutations were found in any of the patients analysed. CONCLUSION The study illustrates that many patients in our study group with nystagmus had underlying ophthalmic diagnoses. Early diagnosis is important to facilitate habilitation and to provide genetic counselling and, in the future, possibly also gene therapy.
Collapse
Affiliation(s)
- Gerd Holmström
- Department of Neuroscience/Ophthalmology, Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
72
|
Daughterless homodimer synergizes with Eyeless to induce Atonal expression and retinal neuron differentiation. Dev Biol 2014; 392:256-65. [PMID: 24886829 DOI: 10.1016/j.ydbio.2014.05.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 03/18/2014] [Accepted: 05/25/2014] [Indexed: 12/19/2022]
Abstract
Class I Basic Helix-Loop-Helix (bHLH) transcription factors form homodimers or heterodimers with class II bHLH proteins. While bHLH heterodimers are known to have diverse roles, little is known about the role of class I homodimers. In this manuscript, we show that a linked dimer of Daughterless (Da), the only Drosophila class I bHLH protein, activates Atonal (Ato) expression and retinal neuron differentiation synergistically with the retinal determination factor Eyeless (Ey). The HLH protein Extramacrocheate (Emc), which forms heterodimer with Da, antagonizes the synergistic activation from Da but not the Da-Da linked dimer with Ey. We show that Da directly interacts with Ey and promotes Ey binding to the Ey binding site in the Ato 3׳ enhancer. Interestingly, the Ey binding site in the Ato 3׳ enhancer contains an embedded E-box that is also required for the synergistic activation by Ey and Da. Finally we show that mammalian homologs of Ey and Da can functionally replace their Drosophila counterparts to synergistically activate the Ato enhancer, suggesting that the observed function is evolutionary conserved.
Collapse
|
73
|
Glossop NRJ, Gummadova JO, Ghangrekar I, Hardin PE, Coutts GA. Effects of TWIN-OF-EYELESS on Clock Gene Expression and Central-Pacemaker Neuron Development in Drosophila. J Biol Rhythms 2014; 29:151-166. [PMID: 24916389 PMCID: PMC4262727 DOI: 10.1177/0748730414534819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Circadian oscillators are autonomous molecular rhythms that reside in cells to align whole-organism physiology and behavior to the 24-h day. In flies, as in mammals, the oscillator operates in cells that coexpress CLOCK (CLK) and CYCLE (CYC). Recent work in Drosophila has shown that CLK is unique in its ability to generate heterologous oscillators, indicating that Clk gene expression defines the circadian cell fate. Here, using standard in vitro and in vivo techniques, we show that TWIN-OF-EYELESS (TOY; dPax6) regulates Clk expression in small ventrolateral neurons (s-LNvs) that coordinate sleep-wake cycles. Crucially, toy binds multiple sites at the Clk locus, is expressed independent of CLK-CYC in LNvs, regulates CLK protein levels under optimal photoperiodic conditions, and sets clock-speed during endogenous free-run. Furthermore, TOY is necessary for the onset of Clk expression in LNvs during embryogenesis. We propose that TOY contributes to a transcription complex that functions upstream of the oscillator to promote Clk expression in s-LNvs.
Collapse
Affiliation(s)
| | | | - Indrayani Ghangrekar
- Faculty of Life Sciences, University of Manchester, Manchester, UK Cancer Research UK, London, UK
| | | | - Graham A Coutts
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
74
|
Abstract
PURPOSE The PAX6 gene is among the most studied genes in high myopia, but reported findings of association studies on PAX6 and high myopia are inconsistent. We conducted a systematic review and meta-analysis to evaluate the association of PAX6 polymorphisms and high myopia. METHODS All case-control association studies on PAX6 and high myopia reported in EMBASE and MEDLINE were retrieved. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated for single-nucleotide polymorphisms (SNPs) that have been involved in at least two studies. Heterogeneity and publication bias analyses were also conducted. RESULTS There were totally 63 publications on PAX6 and myopia. Among them, six articles met all the inclusion criteria, involving 3626 patients and 3262 controls of Asian ancestry. Five PAX6 SNPs, rs3026354, rs667773, rs2071754, rs644242, and rs3026393, were meta-analyzed in high myopia and two, rs667773 and rs644242, in extreme myopia. Single-nucleotide polymorphism rs644242 was associated with high myopia in the dominant model (OR = 0.87; 95% CI, 0.76 to 0.99; p = 0.035) and heterozygous model (OR = 0.85; 95% CI, 0.74 to 0.97; p = 0.019) and with extreme myopia in the dominant model (OR = 0.79; 95% CI, 0.65 to 0.95; p = 0.015), allelic model (OR = 0.81; 95% CI, 0.68 to 0.96; p = 0.014), and heterozygous model (OR = 0.80; 95% CI, 0.65 to 0.97; p = 0.024). However, the associations cannot withstand Bonferroni correction (p > 0.005). The other four SNPs did not show significant association with high myopia. CONCLUSIONS Meta-analysis of existing data revealed a suggestive association of PAX6 rs644242 with extreme and high myopia, which awaits validation in further studies. Nevertheless, PAX6 may only confer a small effect to myopia development.
Collapse
|
75
|
Immunohistochemical analysis of Pax6 and Pax7 expression in the CNS of adult Xenopus laevis. J Chem Neuroanat 2014; 57-58:24-41. [DOI: 10.1016/j.jchemneu.2014.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 11/22/2022]
|
76
|
Assawachananont J, Mandai M, Okamoto S, Yamada C, Eiraku M, Yonemura S, Sasai Y, Takahashi M. Transplantation of embryonic and induced pluripotent stem cell-derived 3D retinal sheets into retinal degenerative mice. Stem Cell Reports 2014; 2:662-74. [PMID: 24936453 PMCID: PMC4050483 DOI: 10.1016/j.stemcr.2014.03.011] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 03/27/2014] [Accepted: 03/27/2014] [Indexed: 02/09/2023] Open
Abstract
In this article, we show that mouse embryonic stem cell- or induced pluripotent stem cell-derived 3D retinal tissue developed a structured outer nuclear layer (ONL) with complete inner and outer segments even in an advanced retinal degeneration model (rd1) that lacked ONL. We also observed host-graft synaptic connections by immunohistochemistry. This study provides a "proof of concept" for retinal sheet transplantation therapy for advanced retinal degenerative diseases.
Collapse
Affiliation(s)
- Juthaporn Assawachananont
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan ; Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Satoshi Okamoto
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan ; Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Chikako Yamada
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Mototsugu Eiraku
- Organogenesis and Neurogenesis Group, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Shigenobu Yonemura
- Electron Microscope Laboratory, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Yoshiki Sasai
- Organogenesis and Neurogenesis Group, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| |
Collapse
|
77
|
Brzeszczynska J, Samuel K, Greenhough S, Ramaesh K, Dhillon B, Hay DC, Ross JA. Differentiation and molecular profiling of human embryonic stem cell-derived corneal epithelial cells. Int J Mol Med 2014; 33:1597-606. [PMID: 24676408 DOI: 10.3892/ijmm.2014.1714] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/14/2014] [Indexed: 11/06/2022] Open
Abstract
It has been suggested that the isolation of scalable populations of limbal stem cells may lead to radical changes in ocular therapy. In particular, the derivation and transplantation of corneal stem cells from these populations may result in therapies providing clinical normality of the diseased or damaged cornea. Although feasible in theory, the lack of donor material in sufficient quantity and quality currently limits such a strategy. A potential scalable source of corneal cells could be derived from pluripotent stem cells (PSCs). We developed an in vitro and serum-free corneal differentiation model which displays significant promise. Our stepwise differentiation model was designed with reference to development and gave rise to cells which displayed similarities to epithelial progenitor cells which can be specified to cells displaying a corneal epithelial phenotype. We believe our approach is novel, provides a robust model of human development and in the future, may facilitate the generation of corneal epithelial cells that are suitable for clinical use. Additionally, we demonstrate that following continued cell culture, stem cell-derived corneal epithelial cells undergo transdifferentiation and exhibit squamous metaplasia and therefore, also offer an in vitro model of disease.
Collapse
Affiliation(s)
- J Brzeszczynska
- Tissue Injury and Repair Group, MRC Centre for Regenerative Medicine, Chancellor's Building, University of Edinburgh, Edinburgh EH16 4SB, Scotland, UK
| | - K Samuel
- SNBTS Cellular Therapy Group, MRC Centre for Regenerative Medicine, Chancellor's Building, University of Edinburgh, Edinburgh EH16 4SB, Scotland, UK
| | - S Greenhough
- Pluripotent Stem Cell Hepatocyte Development Group, MRC Centre for Regenerative Medicine, Chancellor's Building, University of Edinburgh, Edinburgh EH16 4SB, Scotland, UK
| | - K Ramaesh
- Tennent Institute of Ophthalmology, Gartnavel General Hospital, Glasgow G12 0YN, Scotland, UK
| | - B Dhillon
- Department of Clinical and Surgical Sciences, Ophthalmology Section, Princess Alexandra Eye Pavilion, Royal Infirmary of Edinburgh, Edinburgh EH3 9HA, Scotland, UK
| | - D C Hay
- Pluripotent Stem Cell Hepatocyte Development Group, MRC Centre for Regenerative Medicine, Chancellor's Building, University of Edinburgh, Edinburgh EH16 4SB, Scotland, UK
| | - J A Ross
- Tissue Injury and Repair Group, MRC Centre for Regenerative Medicine, Chancellor's Building, University of Edinburgh, Edinburgh EH16 4SB, Scotland, UK
| |
Collapse
|
78
|
Simoniello P, Trinchella F, Filosa S, Scudiero R, Magnani D, Theil T, Motta CM. Cadmium contaminated soil affects retinogenesis in lizard embryos. ACTA ACUST UNITED AC 2014; 321:207-19. [DOI: 10.1002/jez.1852] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 12/07/2013] [Accepted: 01/06/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Palma Simoniello
- Department of Biology; University Federico II; Napoli Italy
- Department of Biophysics; GSI Helmholtz Center for Heavy Ion Research; Darmstadt Germany
| | | | - Silvana Filosa
- Department of Biology; University Federico II; Napoli Italy
| | | | - Dario Magnani
- Centre for Integrative Physiology; The University of Edinburgh; Edinburgh United Kingdom
| | - Thomas Theil
- Centre for Integrative Physiology; The University of Edinburgh; Edinburgh United Kingdom
| | | |
Collapse
|
79
|
Chen Y, Cao W, Zhou S, Shen L, Wen J. Mutant PAX6 downregulates prohormone convertase 2 expression in mouse islets. Exp Biol Med (Maywood) 2013; 238:1259-64. [PMID: 24047795 DOI: 10.1177/1535370213502627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Transcriptional factor paired box 6 (PAX6) is very important for the development of the eyes, central nervous system, and pancreas. PAX6 mutations are associated with a diabetic phenotype and abnormal glucose metabolism. Our previous study showed that PAX6 directly bound to and activated the prohormone convertase 1/3 (Pc1/3) gene promoter and subsequently regulated proinsulin processing. Prohormone convertase 2 (PC2) is the essential enzyme for pancreatic proinsulin processing. To study the regulation of PAX6 in Pc2 expression, we did research on the pancreas of Pax6 R266Stop mutant mice, where truncated mutations happened in the C-terminal of the PAX6 protein. Our studies showed that the mutant PAX6 protein was stable and regulated the activity of Pc2 promoter as shown by luciferase activity assays. We found that the wild-type PAX6 protein imparts a transcriptional effect, and the mutant PAX6 can also regulate the downstream molecules. The results provide new insights into the mechanism of truncated PAX6 in regulating the functions of the pancreas and endocrine system.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Peking University Stem Cell Research Center, and Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | | | | | | | | |
Collapse
|
80
|
Sahu M, Sharma R, Yadav S, Wakamiya M, Chaudhary P, Awasthi S, Awasthi YC. Lens specific RLIP76 transgenic mice show a phenotype similar to microphthalmia. Exp Eye Res 2013; 118:125-34. [PMID: 24188744 DOI: 10.1016/j.exer.2013.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 10/18/2013] [Accepted: 10/24/2013] [Indexed: 10/26/2022]
Abstract
RALBP1/RLIP76 is a ubiquitously expressed protein, involved in promotion and regulation of functions initiated by Ral and R-Ras small GTPases. Presence of multiple domains in its structure enables RLIP76 to be involved in a number of physiological processes such as endocytosis, exocytosis, mitochondrial fission, actin cytoskeleton remodeling, and transport of exogenous and endogenous toxicants. Previously, we have established that RLIP76 provides protection to ocular tissues against oxidative stress by transporting the glutathione-conjugates of the toxic, electrophilic products of lipid peroxidation generated during oxidative stress. Therefore, we developed lens specific RLIP76 transgenic mice (lensRLIP76 Tg) to elucidate the role of RLIP76 in protection against oxidative stress, but these transgenic mice showed impaired lens development and a phenotype with small eyes similar to that observed in microphthalmia. These findings prompted us to investigate the mechanisms via which RLIP76 affects lens and eye development. In the present study, we report engineering of lensRLIP76 Tg mice, characterization of the associated phenotype, and the possible molecular mechanisms that lead to the impaired development of eye and lens in these mice. The results of microarray array analysis indicate that the genes involved in pathways for G-Protein signaling, actin cytoskeleton reorganization, endocytosis, and apoptosis are affected in these transgenic mice. The expression of transcription factors, Pax6, Hsf1, and Hsf4b known to be involved in lens development is down regulated in the lens of these Tg mice. However, the expression of heat shock proteins (Hsps), the downstream targets of Hsfs, is differentially affected in the lens showing down regulation of Hsp27, Hsp40, up regulation of Hsp60, and no effect on Hsp70 and Hsp90 expression. The disruption in the organization of actin cytoskeleton of these Tg mice was associated with the inhibition of the activation of Cdc42 and down regulation of cofilin phosphorylation. These mice may provide useful animal model for elucidating the mechanisms of lens development, and etiology of microphthalmia.
Collapse
Affiliation(s)
- Mukesh Sahu
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Rajendra Sharma
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Sushma Yadav
- Division of Diabetes, Endocrinology & Metabolism, Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, National Medical Center, Duarte, CA 91010, USA
| | - Maki Wakamiya
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Pankaj Chaudhary
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Sanjay Awasthi
- Division of Diabetes, Endocrinology & Metabolism, Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, National Medical Center, Duarte, CA 91010, USA
| | - Yogesh C Awasthi
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA.
| |
Collapse
|
81
|
Bevacqua R, Canel N, Hiriart M, Sipowicz P, Rozenblum G, Vitullo A, Radrizzani M, Fernandez Martin R, Salamone D. Simple gene transfer technique based on I-SceI meganuclease and cytoplasmic injection in IVF bovine embryos. Theriogenology 2013; 80:104-13.e1-29. [DOI: 10.1016/j.theriogenology.2013.03.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 03/08/2013] [Accepted: 03/08/2013] [Indexed: 12/24/2022]
|
82
|
Eriksson BJ, Samadi L, Schmid A. The expression pattern of the genes engrailed, pax6, otd and six3 with special respect to head and eye development in Euperipatoides kanangrensis Reid 1996 (Onychophora: Peripatopsidae). Dev Genes Evol 2013; 223:237-46. [PMID: 23625086 PMCID: PMC3781328 DOI: 10.1007/s00427-013-0442-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/15/2013] [Indexed: 11/29/2022]
Abstract
The genes otd/otx, six3, pax6 and engrailed are involved in eye patterning in many animals. Here, we describe the expression pattern of the homologs to otd/otx, six3, pax6 and engrailed in the developing Euperipatoides kanangrensis embryos. Special reference is given to the expression in the protocerebral/ocular region. E. kanangrensis otd is expressed in the posterior part of the protocerebral/ocular segment before, during and after eye invagination. E. kanangrensis otd is also expressed segmentally in the developing ventral nerve cord. The E. kanangrensis six3 is located at the extreme anterior part of the protocerebral/ocular segment and not at the location of the developing eyes. Pax6 is expressed in a broad zone at the posterior part of the protocerebral/ocular segment but only weak expression can be seen at the early onset of eye invagination. In late stages of development, the expression in the eye is upregulated. Pax6 is also expressed in the invaginating hypocerebral organs, thus supporting earlier suggestions that the hypocerebral organs in onychophorans are glands. Pax6 transcripts are also present in the developing ventral nerve cord. The segment polarity gene engrailed is expressed at the dorsal side of the developing eye including only a subset of the cells of the invaginating eye vesicle. We show that engrailed is not expressed in the neuroectoderm of the protocerebral/ocular segment as in the other segments. In addition, we discuss other aspect of otd, six3 and pax6 expression that are relevant to our understanding of evolutionary changes in morphology and function in arthropods.
Collapse
Affiliation(s)
- Bo Joakim Eriksson
- Department of Neurobiology, University of Vienna, Althanstrasse 14, 1090, Wien, Austria.
| | | | | |
Collapse
|
83
|
Weasner BM, Kumar JP. Competition among gene regulatory networks imposes order within the eye-antennal disc of Drosophila. Development 2013; 140:205-15. [PMID: 23222441 DOI: 10.1242/dev.085423] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The eye-antennal disc of Drosophila gives rise to numerous adult tissues, including the compound eyes, ocelli, antennae, maxillary palps and surrounding head capsule. The fate of each tissue is governed by the activity of unique gene regulatory networks (GRNs). The fate of the eye, for example, is controlled by a set of fourteen interlocking genes called the retinal determination (RD) network. Mutations within network members lead to replacement of the eyes with head capsule. Several studies have suggested that in these instances all retinal progenitor and precursor cells are eliminated via apoptosis and as a result the surrounding head capsule proliferates to compensate for retinal tissue loss. This model implies that the sole responsibility of the RD network is to promote the fate of the eye. We have re-analyzed eyes absent mutant discs and propose an alternative model. Our data suggests that in addition to promoting an eye fate the RD network simultaneously functions to actively repress GRNs that are responsible for directing antennal and head capsule fates. Compromising the RD network leads to the inappropriate expression of several head capsule selector genes such as cut, Lim1 and wingless. Instead of undergoing apoptosis, a population of mutant retinal progenitors and precursor cells adopt a head capsule fate. This transformation is accompanied by an adjustment of cell proliferation rates such that just enough head capsule is generated to produce an intact adult head. We propose that GRNs simultaneously promote primary fates, inhibit alternative fates and establish cell proliferation states.
Collapse
Affiliation(s)
- Bonnie M Weasner
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
84
|
Ravi V, Bhatia S, Gautier P, Loosli F, Tay BH, Tay A, Murdoch E, Coutinho P, van Heyningen V, Brenner S, Venkatesh B, Kleinjan DA. Sequencing of Pax6 loci from the elephant shark reveals a family of Pax6 genes in vertebrate genomes, forged by ancient duplications and divergences. PLoS Genet 2013; 9:e1003177. [PMID: 23359656 PMCID: PMC3554528 DOI: 10.1371/journal.pgen.1003177] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 10/31/2012] [Indexed: 11/18/2022] Open
Abstract
Pax6 is a developmental control gene essential for eye development throughout the animal kingdom. In addition, Pax6 plays key roles in other parts of the CNS, olfactory system, and pancreas. In mammals a single Pax6 gene encoding multiple isoforms delivers these pleiotropic functions. Here we provide evidence that the genomes of many other vertebrate species contain multiple Pax6 loci. We sequenced Pax6-containing BACs from the cartilaginous elephant shark (Callorhinchus milii) and found two distinct Pax6 loci. Pax6.1 is highly similar to mammalian Pax6, while Pax6.2 encodes a paired-less Pax6. Using synteny relationships, we identify homologs of this novel paired-less Pax6.2 gene in lizard and in frog, as well as in zebrafish and in other teleosts. In zebrafish two full-length Pax6 duplicates were known previously, originating from the fish-specific genome duplication (FSGD) and expressed in divergent patterns due to paralog-specific loss of cis-elements. We show that teleosts other than zebrafish also maintain duplicate full-length Pax6 loci, but differences in gene and regulatory domain structure suggest that these Pax6 paralogs originate from a more ancient duplication event and are hence renamed as Pax6.3. Sequence comparisons between mammalian and elephant shark Pax6.1 loci highlight the presence of short- and long-range conserved noncoding elements (CNEs). Functional analysis demonstrates the ancient role of long-range enhancers for Pax6 transcription. We show that the paired-less Pax6.2 ortholog in zebrafish is expressed specifically in the developing retina. Transgenic analysis of elephant shark and zebrafish Pax6.2 CNEs with homology to the mouse NRE/Pα internal promoter revealed highly specific retinal expression. Finally, morpholino depletion of zebrafish Pax6.2 resulted in a "small eye" phenotype, supporting a role in retinal development. In summary, our study reveals that the pleiotropic functions of Pax6 in vertebrates are served by a divergent family of Pax6 genes, forged by ancient duplication events and by independent, lineage-specific gene losses.
Collapse
Affiliation(s)
- Vydianathan Ravi
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Shipra Bhatia
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Philippe Gautier
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Felix Loosli
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Boon-Hui Tay
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Alice Tay
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Emma Murdoch
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Pedro Coutinho
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Veronica van Heyningen
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Sydney Brenner
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Biopolis, Singapore, Singapore
- * E-mail: (DA Kleinjan); (B Venkatesh)
| | - Dirk A. Kleinjan
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (DA Kleinjan); (B Venkatesh)
| |
Collapse
|
85
|
Shi F, Fan Y, Zhang L, Meng L, Zhi H, Hu H, Lin A. The expression of Pax6 variants is subject to posttranscriptional regulation in the developing mouse eyelid. PLoS One 2013; 8:e53919. [PMID: 23326536 PMCID: PMC3542254 DOI: 10.1371/journal.pone.0053919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 12/04/2012] [Indexed: 01/09/2023] Open
Abstract
Pax6 is a pivotal transcription factor that plays a role during early eye morphogenesis, but its expression and function in eyelid development remain unknown. In this study, the expression patterns of Pax6 mRNA and protein were examined in the developing mouse eyelid at embryonic days 14.5, 15.5, and 16.5. The function of Pax6 in eyelid development was determined by comparing it to that in the eyes-open-at-birth mutant mouse. In the normally developing eyelid, Pax6 and Pax6(5a) mRNA levels were low at E14.5, increased at E15.5, and then declined at E16.5, accompanied by a change in the Pax6/Pax6(5a) ratio. Pax6 protein was mainly located in the mesenchyme and conjunctiva. It was expressed at low levels in the epidermis at E14.5, severely reduced at E15.5, but re-expressed in the keratinocyte cells of the periderm at E16.5. In contrast, Pax6 and the Pax6/Pax6(5a) ratio were considerably higher with strong nuclear expression in the mutant at E15.5. Next, we examined the relationship of Pax6 to epidermal cell proliferation, migration, and the associated signalling pathways. The Pax6 protein in the developing eyelid was negatively correlated with epidermal cell proliferation but not migration, and it is in contrast to the activation of the EGFR-ERK pathway. Our in vivo data suggest that Pax6 expression and the Pax6/Pax6(5a) ratio are at relatively low levels in the eyelid, and acting as a transcription factor, Pax6 is required for the initiation of eyelid formation and for differential development of the keratinised cells in the closed eyelid. The Pax6 protein is likely to be controlled by the EGFR-ERK pathways. An abnormal increase in Pax6 expression and the Pax6/Pax6(5a) ratio due to alteration of the pathway activity could suppress epidermal cell proliferation leading to the eyes-open-at-birth defect. This study offers insight into the function of the Pax6 protein in eyelid development.
Collapse
Affiliation(s)
- Fangyu Shi
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yannan Fan
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Laiguang Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lu Meng
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Huifang Zhi
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hongyu Hu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail: (AL); (HH)
| | - Aixin Lin
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail: (AL); (HH)
| |
Collapse
|
86
|
Pax6 interactions with chromatin and identification of its novel direct target genes in lens and forebrain. PLoS One 2013; 8:e54507. [PMID: 23342162 PMCID: PMC3544819 DOI: 10.1371/journal.pone.0054507] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 12/12/2012] [Indexed: 01/22/2023] Open
Abstract
Pax6 encodes a specific DNA-binding transcription factor that regulates the development of multiple organs, including the eye, brain and pancreas. Previous studies have shown that Pax6 regulates the entire process of ocular lens development. In the developing forebrain, Pax6 is expressed in ventricular zone precursor cells and in specific populations of neurons; absence of Pax6 results in disrupted cell proliferation and cell fate specification in telencephalon. In the pancreas, Pax6 is essential for the differentiation of α-, β- and δ-islet cells. To elucidate molecular roles of Pax6, chromatin immunoprecipitation experiments combined with high-density oligonucleotide array hybridizations (ChIP-chip) were performed using three distinct sources of chromatin (lens, forebrain and β-cells). ChIP-chip studies, performed as biological triplicates, identified a total of 5,260 promoters occupied by Pax6. 1,001 (133) of these promoter regions were shared between at least two (three) distinct chromatin sources, respectively. In lens chromatin, 2,335 promoters were bound by Pax6. RNA expression profiling from Pax6+/− lenses combined with in vivo Pax6-binding data yielded 76 putative Pax6-direct targets, including the Gaa, Isl1, Kif1b, Mtmr2, Pcsk1n, and Snca genes. RNA and ChIP data were validated for all these genes. In lens cells, reporter assays established Kib1b and Snca as Pax6 activated and repressed genes, respectively. In situ hybridization revealed reduced expression of these genes in E14 cerebral cortex. Moreover, we examined differentially expressed transcripts between E9.5 wild type and Pax6−/− lens placodes that suggested Efnb2, Fat4, Has2, Nav1, and Trpm3 as novel Pax6-direct targets. Collectively, the present studies, through the identification of Pax6-direct target genes, provide novel insights into the molecular mechanisms of Pax6 gene control during mouse embryonic development. In addition, the present data demonstrate that Pax6 interacts preferentially with promoter regions in a tissue-specific fashion. Nevertheless, nearly 20% of the regions identified are accessible to Pax6 in multiple tissues.
Collapse
|
87
|
Ferreiro-Galve S, Candal E, Rodríguez-Moldes I. Dynamic expression of Pax6 in the shark olfactory system: evidence for the presence of Pax6 cells along the olfactory nerve pathway. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2012; 318:79-90. [PMID: 22532471 DOI: 10.1002/jezb.21444] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pax6 is involved in the control of neuronal specification, migration, and differentiation in the olfactory epithelium and in the generation of different interneuron subtypes in the olfactory bulb. Whether these roles are conserved during evolution is not known. Cartilaginous fish are extremely useful models for assessing the ancestral condition of brain organization because of their phylogenetic position. To shed light on the evolution of development of the olfactory system in vertebrates and on the involvement of Pax6 in this process, we analyzed by in situ hybridization and immunohistochemistry the expression pattern of Pax6 in the developing olfactory system in a basal vertebrate, the lesser spotted dogfish Scyliorhinus canicula. This small shark is becoming an important fish model in studies of vertebrate development. We report Pax6 expression in cells of the olfactory epithelium and olfactory bulb, and present the first evidence in vertebrates of strings of Pax6-expressing cells extending along the developing olfactory nerve. The results indicate the olfactory epithelium as the origin of these cells. These data are compatible with a role for Pax6 in the development of the olfactory epithelium and fibers, and provide a basis for future investigations into the mechanisms that regulate development of the olfactory system throughout evolution.
Collapse
Affiliation(s)
- Susana Ferreiro-Galve
- Department of Cell Biology and Ecology, University of Santiago de Compostela, Compostela, Spain
| | | | | |
Collapse
|
88
|
Dhillon SS, Gingerich S, Virtanen C, Belsham DD. Gene array analysis of embryonic- versus adult-derived hypothalamic NPY-expressing cell lines. Mol Cell Endocrinol 2012; 358:116-26. [PMID: 22476083 DOI: 10.1016/j.mce.2012.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 01/24/2012] [Accepted: 03/20/2012] [Indexed: 10/28/2022]
Abstract
Few studies have utilized microarray analysis to understand the genome wide changes involved in the development of the hypothalamus despite its overall importance to basic physiology. Gene expression profiling of immortalized, clonal hypothalamic neurons, embryonic-derived mHypoE-46 and adult-derived mHypoA-2/12, reveals that the expression of 1225 probes was significantly changed between the two neuronal models. Further comparison of the gene expression profiles identified two categories of genes that were confirmed with qRT-PCR: (i) genes implicated in the Wnt signaling pathway; and (ii) transcription factors previously implicated in the development of the central nervous system. Yet, functional analysis of the two cell lines, including hormonal responses and secretion, indicate that they are comparable despite their developmental origin. This study provides a comprehensive analysis of embryonic- and adult-derived hypothalamic neuronal cell models that both express neuropeptide Y, and identifies novel genes as candidates for mediating the development of specific hypothalamic neurons.
Collapse
Affiliation(s)
- Sandeep S Dhillon
- Department of Physiology, University Health Network, Toronto, ON, Canada M5S 1A8
| | | | | | | |
Collapse
|
89
|
Balmer NV, Weng MK, Zimmer B, Ivanova VN, Chambers SM, Nikolaeva E, Jagtap S, Sachinidis A, Hescheler J, Waldmann T, Leist M. Epigenetic changes and disturbed neural development in a human embryonic stem cell-based model relating to the fetal valproate syndrome. Hum Mol Genet 2012; 21:4104-14. [DOI: 10.1093/hmg/dds239] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
90
|
Durston AJ. Developmental principles: fact or fiction. ScientificWorldJournal 2012; 2012:980151. [PMID: 22489210 PMCID: PMC3296223 DOI: 10.1100/2012/980151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 10/25/2011] [Indexed: 11/25/2022] Open
Abstract
While still at school, most of us are deeply impressed by the underlying principles that so beautifully explain why the chemical elements are ordered as they are in the periodic table, and may wonder, with the theoretician Brian Goodwin, “whether there might be equally powerful principles that account for the awe-inspiring diversity of body forms in the living realm”. We have considered the arguments for developmental principles, conclude that they do exist and have specifically identified features that may generate principles associated with Hox patterning of the main body axis in bilaterian metazoa in general and in the vertebrates in particular. We wonder whether this exercise serves any purpose. The features we discuss were already known to us as parts of developmental mechanisms and defining developmental principles (how, and at which level?) adds no insight. We also see little profit in the proposal by Goodwin that there are principles outside the emerging genetic mechanisms that need to be taken into account. The emerging developmental genetic hierarchies already reveal a wealth of interesting phenomena, whatever we choose to call them.
Collapse
Affiliation(s)
- A J Durston
- Sylvius Laboratory, Institute of Biology, University of Leiden, Wassenaarseweg 72, 2333 BE Leiden, The Netherlands.
| |
Collapse
|
91
|
|
92
|
Analysis of embryoid bodies derived from human induced pluripotent stem cells as a means to assess pluripotency. Stem Cells Int 2012; 2012:738910. [PMID: 22550517 PMCID: PMC3328185 DOI: 10.1155/2012/738910] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 11/29/2011] [Indexed: 01/29/2023] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) have core properties of unlimited self-renewal and differentiation potential and have emerged as exciting cell sources for applications in regenerative medicine, drug discovery, understanding of development, and disease etiology. Key among numerous criteria to assess pluripotency includes the in vivo teratoma assay that has been widely proposed as a standard functional assay to demonstrate the pluripotency of hiPSCs. Yet, the lack of reliability across methodologies, lack of definitive clinical significance, and associated expenses bring into question use of the teratoma assay as the “gold standard” for determining pluripotency. We propose use of the in vitro embryoid body (EB) assay as an important alternative to the teratoma assay. This paper summarizes the methodologies for creating EBs from hiPSCs and the subsequent analyses to assess pluripotency and proposes its use as a cost-effective, controlled, and reproducible approach that can easily be adopted to determine pluripotency of generated hiPSCs.
Collapse
|
93
|
Shukla S, Mishra R. Predictions on impact of missense mutations on structure function relationship of PAX6 and its alternatively spliced isoform PAX6(5a). Interdiscip Sci 2012; 4:54-73. [PMID: 22392277 DOI: 10.1007/s12539-012-0114-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 04/11/2011] [Accepted: 05/17/2011] [Indexed: 05/31/2023]
Abstract
The PAX6 contains two DNA-binding domains, paired domain (PD), homeodomain (HD), and a transactivation domain (TD). Only the crystal structure of PD and the solution structure of HD of PAX6 are known. Mutations in PAX6 show variable penetrance, and expressivity of ocular and neural diseases, but the mechanism is poorly understood. Its alternatively spliced isoform PAX6(5a), is also required in a specific ratio for optimal functions. To understand impact of missense mutations on stability, and conformation of PAX6, whose functional analyses are described in PAX6 allelic variant database, were considered. Representative mutations like PAX6-L46R, -C52R, -V126D, -R128C, -R242T, -P375Q, -Q422R, -V256E, and -S259P from PD, HD, and TD of PAX6 were explored. The secondary structures were analyzed through PSIPRED, and relative solvent accessibilities (RSA) of the mutant and the wild type amino acid residues were compared through SABLE. The change in the contact residues and calculations of energy level were studied through SVMcon, MUpro, and FoldX, respectively. The 3D modeling was performed with the help of MODELLER and models were visualized in Chimera. Predictions suggest mutation induced alterations in local conformation or misfolding in DNA-binding domains of PAX6 and PAX6(5a). The predicted impact of mutations via secondary structure, changes in free energy, stability, conformation, and experimental reports on DNA-binding and transactivation, necessarily provides a strong background to explain structure-function relationship of PAX6 and PAX6(5a). However, because of their predictive nature, these findings need to be validated with other experimental evidences when structure of full length PAX6 is available.
Collapse
Affiliation(s)
- Sachin Shukla
- Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | | |
Collapse
|
94
|
Duan D, Fu Y, Paxinos G, Watson C. Spatiotemporal expression patterns of Pax6 in the brain of embryonic, newborn, and adult mice. Brain Struct Funct 2012; 218:353-72. [PMID: 22354470 DOI: 10.1007/s00429-012-0397-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 02/07/2012] [Indexed: 12/17/2022]
Abstract
The transcription factor Pax6 has been reported to specify neural progenitor cell fates during development and maintain neuronal commitments in the adult. The spatiotemporal patterns of Pax6 expression were examined in sagittal and horizontal sections of the embryonic, postnatal, and adult brains using immunohistochemistry and double immunolabeling. The proportion of Pax6-immunopositive cells in various parts of the adult brain was estimated using the isotropic fractionator methodology. It was shown that at embryonic day 11 (E11) Pax6 was robustly expressed in the proliferative neuroepithelia of the ventricular zone in the forebrain and hindbrain, and in the floor and the mesencephalic reticular formation (mRt) in the midbrain. At E12, its expression emerged in the nucleus of the lateral lemniscus in the rhombencephalon and disappeared from the floor of the midbrain. As neurodevelopment proceeds, the expression pattern of Pax6 changes from the mitotic germinal zone in the ventricular zone to become extensively distributed in cell groups in the forebrain and hindbrain, and the expression persisted in the mRt. The majority of Pax6-positive cell groups were maintained until adult life, but the intensity of Pax6 expression became much weaker. Pax6 expression was maintained in the mitotic subventricular zone in the adult brain, but not in the germinal region dentate gyrus in the adult hippocampus. There was no obvious colocalization of Pax6 and NeuN during embryonic development, suggesting Pax6 is found primarily in developing progenitor cells. In the adult brain, however, Pax6 maintains neuronal features of some subtypes of neurons, as indicated by 97.1% of Pax6-positive cells co-expressing NeuN in the cerebellum, 40.7% in the olfactory bulb, 38.3% in the cerebrum, and 73.9% in the remaining brain except the hippocampus. Differentiated tyrosine hydroxylase (TH) neurons were observed in the floor of the E11 midbrain where Pax6 was also expressed, but no obvious colocaliztion of TH and Pax6 was detected. No Pax6 expression was observed in TH-expressing areas in the midbrain at E12, E14, and postnatal day 1. These results support the notion that Pax6 plays pivotal roles in specifying neural progenitor cell commitments and maintaining certain mature neuronal fates.
Collapse
Affiliation(s)
- Deyi Duan
- Neuroscience Research Australia, Randwick, Sydney, NSW, 2031, Australia
| | | | | | | |
Collapse
|
95
|
Conserved role for the Dachshund protein with Drosophila Pax6 homolog Eyeless in insulin expression. Proc Natl Acad Sci U S A 2012; 109:2406-11. [PMID: 22308399 DOI: 10.1073/pnas.1116050109] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Members of the insulin family peptides have conserved roles in the regulation of growth and metabolism in a wide variety of metazoans. The Drosophila genome encodes seven insulin-like peptide genes, dilp1-7, and the most prominent dilps (dilp2, dilp3, and dilp5) are expressed in brain neurosecretory cells known as "insulin-producing cells" (IPCs). Although these dilps are expressed in the same cells, the expression of each dilp is regulated independently. However, the molecular mechanisms that regulate the expression of individual dilps in the IPCs remain largely unknown. Here, we show that Dachshund (Dac), which is a highly conserved nuclear protein, is a critical transcription factor that specifically regulates dilp5 expression. Dac was strongly expressed in IPCs throughout development. dac loss-of-function analyses revealed a severely reduced dilp5 expression level in young larvae. Dac interacted physically with the Drosophila Pax6 homolog Eyeless (Ey), and these proteins synergistically promoted dilp5 expression. In addition, the mammalian homolog of Dac, Dach1/2, facilitated the promoting action of Pax6 on the expression of islet hormone genes in cultured mammalian cells. These observations indicate the conserved role of Dac/Dach in controlling insulin expression in conjunction with Ey/Pax6.
Collapse
|
96
|
Measurement of purine release with microelectrode biosensors. Purinergic Signal 2011; 8:27-40. [PMID: 22095158 DOI: 10.1007/s11302-011-9273-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 09/19/2011] [Indexed: 12/22/2022] Open
Abstract
Purinergic signalling departs from traditional paradigms of neurotransmission in the variety of release mechanisms and routes of production of extracellular ATP and adenosine. Direct real-time measurements of these purinergic agents have been of great value in understanding the functional roles of this signalling system in a number of diverse contexts. Here, we review the methods for measuring purine release, introduce the concept of microelectrode biosensors for ATP and adenosine and explain how these have been used to provide new mechanistic insight in respiratory chemoreception, synaptic physiology, eye development and purine salvage. We finish by considering the association of purine release with pathological conditions and examine the possibilities that biosensors for purines may one day be a standard part of the clinical diagnostic tool chest.
Collapse
|
97
|
Gómez-López S, Wiskow O, Favaro R, Nicolis SK, Price DJ, Pollard SM, Smith A. Sox2 and Pax6 maintain the proliferative and developmental potential of gliogenic neural stem cells In vitro. Glia 2011; 59:1588-99. [PMID: 21766338 DOI: 10.1002/glia.21201] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 05/25/2011] [Indexed: 02/02/2023]
Abstract
Radial-glia-like neural stem (NS) cells may be derived from neural tissues or via differentiation of pluripotent embryonic stem (ES) cells. However, the mechanisms controlling NS cell propagation and differentiation are not yet fully understood. Here we investigated the roles of Sox2 and Pax6, transcription factors widely expressed in central nervous system (CNS) progenitors, in mouse NS cells. Conditional deletion of either Sox2 or Pax6 in forebrain-derived NS cells reduced their clonogenicity in a gene dosage-dependent manner. Cells heterozygous for either gene displayed moderate proliferative defects, which may relate to human pathologies attributed to SOX2 or PAX6 deficiencies. In the complete absence of Sox2, cells exited the cell cycle with concomitant downregulation of neural progenitor markers Nestin and Blbp. This occurred despite expression of the close relative Sox3. Ablation of Pax6 also caused major proliferative defects. However, a subpopulation of cells was able to expand continuously without Pax6. These Pax6-null cells retained progenitor markers but had altered morphology. They exhibited compromised differentiation into astrocytes and oligodendrocytes, highlighting that the role of Pax6 extends beyond neurogenic competence. Overall these findings indicate that Sox2 and Pax6 are both critical for self-renewal of differentiation-competent radial glia-like NS cells.
Collapse
Affiliation(s)
- Sandra Gómez-López
- Wellcome Trust Centre for Stem Cell Research and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QR, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
98
|
Thompson JA, Ziman M. Pax genes during neural development and their potential role in neuroregeneration. Prog Neurobiol 2011; 95:334-51. [DOI: 10.1016/j.pneurobio.2011.08.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 08/30/2011] [Indexed: 12/18/2022]
|
99
|
Theunissen PT, Robinson JF, Pennings JLA, de Jong E, Claessen SMH, Kleinjans JCS, Piersma AH. Transcriptomic concentration-response evaluation of valproic acid, cyproconazole, and hexaconazole in the neural embryonic stem cell test (ESTn). Toxicol Sci 2011; 125:430-8. [PMID: 22045034 DOI: 10.1093/toxsci/kfr293] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Alternative developmental toxicity assays are urgently needed to reduce animal use in regulatory developmental toxicology. We previously designed an in vitro murine neural embryonic stem cell test (ESTn) as a model for neurodevelopmental toxicity testing (Theunissen et al., 2010). Toxicogenomic approaches have been suggested for incorporation into the ESTn to further increase predictivity and to provide mechanistic insights. Therefore, in this study, using a transcriptomic approach, we investigated the concentration-dependent effects of three known (neuro) developmental toxicants, two triazoles, cyproconazole (CYP) and hexaconazole (HEX), and the anticonvulsant valproic acid (VPA). Compound effects on gene expression during neural differentiation and corresponding regulated gene ontology (GO) terms were identified after 24 h of exposure in relation to morphological changes on day 11 of culture. Concentration-dependent responses on individual gene expression and on biological processes were determined for each compound, providing information on mechanism and concentration-response characteristics. All compounds caused enrichment of the embryonic development process. CYP and VPA but not HEX significantly enriched the neuron development process. Furthermore, specific responses for triazole compounds and VPA were observed within the GO-term sterol metabolic process. The incorporation of transcriptomics in the ESTn was shown to enable detection of effects, which precede morphological changes and provide a more sensitive measure of concentration-dependent effects as compared with classical morphological assessments. Furthermore, mechanistic insight can be instrumental in the extrapolation of effects in the ESTn to human hazard assessment.
Collapse
Affiliation(s)
- Peter T Theunissen
- Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
100
|
Bermingham-McDonogh O, Reh TA. Regulated reprogramming in the regeneration of sensory receptor cells. Neuron 2011; 71:389-405. [PMID: 21835338 DOI: 10.1016/j.neuron.2011.07.015] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2011] [Indexed: 12/15/2022]
Abstract
Vision, olfaction, hearing, and balance are mediated by receptors that reside in specialized sensory epithelial organs. Age-related degeneration of the photoreceptors in the retina and the hair cells in the cochlea, caused by macular degeneration and sensorineural hearing loss, respectively, affect a growing number of individuals. Although sensory receptor cells in the mammalian retina and inner ear show only limited or no regeneration, in many nonmammalian vertebrates, these sensory epithelia show remarkable regenerative potential. We summarize the current state of knowledge of regeneration in the specialized sense organs in both nonmammalian vertebrates and mammals and discuss possible areas where new advances in regenerative medicine might provide approaches to successfully stimulate sensory receptor cell regeneration. The field of regenerative medicine is still in its infancy, but new approaches using stem cells and reprogramming suggest ways in which the potential for regeneration may be restored in individuals suffering from sensory loss.
Collapse
Affiliation(s)
- Olivia Bermingham-McDonogh
- Department of Biological Structure, Institute for Stem Cells and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|