51
|
Song L, Liu H, Yang W, Yin H, Wang J, Guo M, Yang Z. Biological functions of the m6A reader YTHDF2 and its role in central nervous system disorders. Biochem Pharmacol 2024; 230:116576. [PMID: 39424201 DOI: 10.1016/j.bcp.2024.116576] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
N6-methyladenosine (m6A) is a prevalent mRNA modification in eukaryotic cells, characterized by its reversible nature. YTH structural domain family protein 2 (YTHDF2), a key reader of m6A, plays a crucial role in identifying and binding m6A-containing RNAs, thereby influencing RNA metabolism through various functional mechanisms. The upstream and downstream targets of YTHDF2 are critical in the pathogenesis of various central nervous system (CNS) diseases, affecting disease development by regulating signaling pathways and gene expression. This paper provides an overview of current research on the role of YTHDF2 in CNS diseases and investigates the regulatory mechanisms by which YTHDF2 influences the development of these conditions. This exploration aims to improve understanding of disease pathogenesis and offer novel insights for the targeted prevention and treatment of neurological disorders.
Collapse
Affiliation(s)
- Lili Song
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, China
| | - Huimin Liu
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, China
| | - Weiyu Yang
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, China
| | - Hongqing Yin
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, China
| | - Jiayi Wang
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, China
| | - Maojuan Guo
- Department of Pathology, School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, China
| | - Zhen Yang
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, China.
| |
Collapse
|
52
|
Chen W, Liu M, Li Z, Luo Z, Wu J. Phloretin alleviates sleep deprivation-induced cognitive impairment by reducing inflammation through PPARγ/NF-κB signaling pathway. Exp Neurol 2024; 382:114949. [PMID: 39284540 DOI: 10.1016/j.expneurol.2024.114949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Sleep loss leads to significant pathophysiological consequences, including cognitive impairment. The neuroinflammation are pivotal factors in the pathogenesis of cognitive impairment induced by sleep loss. The phloretin (PHL), derived from peel of juicy fruits, has demonstrated potent anti-inflammatory properties. However, the precise influence of PHL on the cognitive impairment triggered by sleep loss and its underlying mechanism remain uncertain. In the present study, mice were subjected to sleep deprivation (SD) paradigm. Cognitive impairment induced by SD were significantly relieved by administration of PHL in a dose-dependent manner. Furthermore, PHL not only mitigated the synaptic losses but also enhanced dendritic spine density and neuronal activity within mice hippocampus following exposure to SD. Moreover, PHL treatment decreased the microglial numbers and altered microglial morphology in the hippocampus to restore the M1/M2 balances; these effects were accompanied by regulation of pro-/anti-inflammatory cytokine production and secretion in SD-exposed mice. Additionally, in vivo and in vitro studies showed PHL might attenuate the inflammation through the PPARγ/NF-κB pathway. Our findings suggest that PHL exerts inhibitory effects on microglia-mediated neuroinflammation, thereby providing protection against cognitive impairment induced by SD through a PPAR-γ dependent mechanism. The results indicate PHL is expected to provide a valuable candidate for new drug development for SD-induced cognitive impairment in the future.
Collapse
Affiliation(s)
- Wenjun Chen
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou 514031, China; Meizhou Clinical Medical College of Guangdong Medical University, Meizhou 514000, China; Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou 514000, China.
| | - Mei Liu
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Afffliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Ziming Li
- Department of Neurobiology, Southern Medical University, Guangzhou 510515, China
| | - Zhoucai Luo
- National Canine Laboratory Animal Resources Center, Guangzhou General Pharmaceutical Research Institute Co., Ltd., Guangzhou 510240, China
| | - Jianlin Wu
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou 514031, China; Meizhou Clinical Medical College of Guangdong Medical University, Meizhou 514000, China; Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou 514000, China.
| |
Collapse
|
53
|
Stankozi C. Imagination, ecologized and enacted: driven by the historicity of affordance competition. Front Psychol 2024; 15:1369820. [PMID: 39679160 PMCID: PMC11637882 DOI: 10.3389/fpsyg.2024.1369820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024] Open
Abstract
Together, ecological psychology and enactivism can explain imagination as being driven by affordance competition. This paper presents synaptic plasticity as a hotspot for the respective historicity. First, (i) affordances are introduced as directly perceptible on the ecological view, and as co-created by an individual on the enactive view. After pointing out their compatibility, (ii) empirical underpinnings of the historicity of affordance competition are summarized and followed by a non-representational interpretation thereof. They are used to explain: (iii) What affords imagining? After discussing both van Dijk and Rietveld's in 2020 non-representational answer and McClelland's in 2020 representational one, I propose a more general explanation: a stand-off between competing affordances can be resolved by imagination, driven by affordance competition. Arguably, (iv) the sensorimotor traces of previous interactions (e.g., strengthened synapses) can be repurposed as representations - grounding even representational explanations in an ecologized enactive framework.
Collapse
Affiliation(s)
- Caroline Stankozi
- Institute for Philosophy II, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
54
|
Qi S, Yu J, Li L, Dong C, Ji Z, Cao L, Wei Z, Liang Z. Advances in non-invasive brain stimulation: enhancing sports performance function and insights into exercise science. Front Hum Neurosci 2024; 18:1477111. [PMID: 39677404 PMCID: PMC11638246 DOI: 10.3389/fnhum.2024.1477111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/06/2024] [Indexed: 12/17/2024] Open
Abstract
The cerebral cortex, as the pinnacle of human complexity, poses formidable challenges to contemporary neuroscience. Recent advancements in non-invasive brain stimulation have been pivotal in enhancing human locomotor functions, a burgeoning area of interest in exercise science. Techniques such as transcranial direct current stimulation, transcranial alternating current stimulation, transcranial random noise stimulation, and transcranial magnetic stimulation are widely recognized for their neuromodulator capabilities. Despite their broad applications, these methods are not without limitations, notably in spatial and temporal resolution and their inability to target deep brain structures effectively. The advent of innovative non-invasive brain stimulation modalities, including transcranial focused ultrasound stimulation and temporal interference stimulation technology, heralds a new era in neuromodulation. These approaches offer superior spatial and temporal precision, promising to elevate athletic performance, accelerate sport science research, and enhance recovery from sports-related injuries and neurological conditions. This comprehensive review delves into the principles, applications, and future prospects of non-invasive brain stimulation in the realm of exercise science. By elucidating the mechanisms of action and potential benefits, this study aims to arm researchers with the tools necessary to modulate targeted brain regions, thereby deepening our understanding of the intricate interplay between brain function and human behavior.
Collapse
Affiliation(s)
- Shuo Qi
- School of Sport and Health, Shandong Sport University, Jinan, China
| | - Jinglun Yu
- College of Sports and Health Sciences, Xi’an Physical Education University, Xi’an, China
| | - Li Li
- Physical Education and Arts College, Shandong Sport University, Jinan, China
| | - Chen Dong
- College of Sports Management, Shandong Sport University, Jinan, China
| | - Zhe Ji
- College of Physical Education, Anhui Normal University, Wuhu, China
| | - Lei Cao
- National Football Academy, Shandong Sport University, Jinan, China
| | - Zhen Wei
- The Second Clinical Medical School, Xuzhou Medical University, Xuzhou, China
| | - Zhiqiang Liang
- Faculty of Sports Science, Ningbo University, Ningbo, China
| |
Collapse
|
55
|
Xie H, Liu K, Li D, Zhang CS, Hilgetag CC, Guan JS. Rectified activity-dependent population plasticity implicates cortical adaptation for memory and cognitive functions. Commun Biol 2024; 7:1487. [PMID: 39528683 PMCID: PMC11555404 DOI: 10.1038/s42003-024-07186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Cortical network undergoes rewiring everyday due to learning and memory events. To investigate the trends of population adaptation in neocortex overtime, we record cellular activity of large-scale cortical populations in response to neutral environments and conditioned contexts and identify a general intrinsic cortical adaptation mechanism, naming rectified activity-dependent population plasticity (RAPP). Comparing each adjacent day, the previously activated neurons reduce activity, but remain with residual potentiation, and increase population variability in proportion to their activity during previous recall trials. RAPP predicts both the decay of context-induced activity patterns and the emergence of sparse memory traces. Simulation analysis reveal that the local inhibitory connections might account for the residual potentiation in RAPP. Intriguingly, introducing the RAPP phenomenon in the artificial neural network show promising improvement in small sample size pattern recognition tasks. Thus, RAPP represents a phenomenon of cortical adaptation, contributing to the emergence of long-lasting memory and high cognitive functions.
Collapse
Affiliation(s)
- Hong Xie
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, Shanghai, China.
- Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai, China.
| | - Kaiyuan Liu
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Dong Li
- Institut für Computational Neuroscience, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, Hamburg, Germany
| | - Chang-Shui Zhang
- Department of Automation, Tsinghua University, Beijing, China
- State Key Lab of Intelligent Technologies and Systems, Tsinghua National Laboratory for Information Science and Technology (TNList), Beijing, P.R. China
| | - Claus C Hilgetag
- Institut für Computational Neuroscience, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, Hamburg, Germany
| | - Ji-Song Guan
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China.
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
56
|
Noh Y, Smolyanitsky A. Synaptic-like plasticity in 2D nanofluidic memristor from competitive bicationic transport. SCIENCE ADVANCES 2024; 10:eadr1531. [PMID: 39504376 PMCID: PMC11540034 DOI: 10.1126/sciadv.adr1531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024]
Abstract
Synaptic plasticity, the dynamic tuning of signal transmission strength between neurons, serves as a fundamental basis for memory and learning in biological organisms. This adaptive nature of synapses is considered one of the key features contributing to the superior energy efficiency of the brain. Here, we use molecular dynamics simulations to demonstrate synaptic-like plasticity in a subnanoporous two-dimensional membrane. We show that a train of voltage spikes dynamically modifies the membrane's ionic permeability in a process involving competitive bicationic transport. This process is shown to be repeatable after a given resting period. Because of a combination of subnanometer pore size and the atomic thinness of the membrane, this system exhibits energy dissipation of 0.1 to 100 aJ per voltage spike, which is several orders of magnitude lower than 0.1 to 10 fJ per spike in the human synapse. We reveal the underlying physical mechanisms at molecular detail and investigate the local energetics underlying this apparent synaptic-like behavior.
Collapse
Affiliation(s)
- Yechan Noh
- Department of Physics, University of Colorado Boulder, Boulder, CO 80309, USA
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Alex Smolyanitsky
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
| |
Collapse
|
57
|
Duarte JM, Nguyen R, Kyprou M, Li K, Milentijevic A, Cerquetella C, Forro T, Ciocchi S. Hippocampal contextualization of social rewards in mice. Nat Commun 2024; 15:9493. [PMID: 39489746 PMCID: PMC11532361 DOI: 10.1038/s41467-024-53866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
Acquiring and exploiting memories of rewarding experiences is critical for survival. The spatial environment in which a rewarding stimulus is encountered regulates memory retrieval. The ventral hippocampus (vH) has been implicated in contextual memories involving rewarding stimuli such as food, social cues or drugs. Yet, the neuronal representations and circuits underlying contextual memories of socially rewarding stimuli are poorly understood. Here, using in vivo electrophysiological recordings, in vivo one-photon calcium imaging, and optogenetics during a social reward contextual conditioning paradigm in male mice, we show that vH neurons discriminate between contexts with neutral or acquired social reward value. The formation of context-discriminating vH neurons following learning was contingent upon the presence of unconditioned stimuli. Moreover, vH neurons showed distinct contextual representations during the retrieval of social reward compared to fear contextual memories. Finally, optogenetic inhibition of locus coeruleus (LC) projections in the vH selectively disrupted social reward contextual memory by impairing vH contextual representations. Collectively, our findings reveal that the vH integrates contextual and social reward information, with memory encoding of these representations supported by input from the LC.
Collapse
Affiliation(s)
- Joana Mendes Duarte
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bern, Switzerland
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Robin Nguyen
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bern, Switzerland
- Department of Neuroscience, The Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Jerome L. Greene Science Center, Columbia University, New York, NY, USA
| | - Marios Kyprou
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bern, Switzerland
| | - Kaizhen Li
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bern, Switzerland
| | - Anastasija Milentijevic
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bern, Switzerland
| | - Carlo Cerquetella
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bern, Switzerland
| | - Thomas Forro
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bern, Switzerland
| | - Stéphane Ciocchi
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bern, Switzerland.
| |
Collapse
|
58
|
Narattil NR, Maroun M. Differential role of NMDA receptors in hippocampal-dependent spatial memory and plasticity in juvenile male and female rats. Hippocampus 2024; 34:564-574. [PMID: 39143939 DOI: 10.1002/hipo.23631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/17/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024]
Abstract
Early life, or juvenility, stands out as the most pivotal phase in neurodevelopment due to its profound impact over the long-term cognition. During this period, significant changes are made in the brain's connections both within and between different areas, particularly in tandem with the development of more intricate behaviors. The hippocampus is among the brain regions that undergo significant postnatal remodeling, including dendritic arborization, synaptogenesis, the formation of complex spines and neuron proliferation. Given the crucial role of the hippocampus in spatial memory processing, it has been observed that spatial memory abilities continue to develop as the hippocampus matures, particularly before puberty. The N-methyl-d-aspartate (NMDA) type of glutamate receptor channel is crucial for the induction of activity-dependent synaptic plasticity and spatial memory formation in both rodents and humans. Although extensive evidence shows the role of NMDA receptors (NMDAr) in spatial memory and synaptic plasticity, the studies addressing the role of NMDAr in spatial memory of juveniles are sparse and mostly limited to adult males. In the present study, we, therefore, aimed to investigate the effects of systemic NMDAr blockade by the MK-801 on spatial memory (novel object location memory, OLM) and hippocampal plasticity in the form of long-term potentiation (LTP) of both male and female juvenile rats. Our results show the sex-dimorphic role of NMDAr in spatial memory and plasticity during juvenility, as systemic NMDAr blockade impairs the OLM and LTP in juvenile males without an effect on juvenile females. Taken together, our results demonstrate that spatial memory and hippocampal plasticity are NMDAr-dependent in juvenile males and NMDAr-independent in juvenile females. These sex-specific differences in the mechanisms of spatial memory and plasticity may imply gender-specific treatment for spatial memory disorders even in children.
Collapse
Affiliation(s)
- Nisha Rajan Narattil
- Sagol Department of Neurobiology, Faculty of Natural Sciences, and the Integrated Brain and Behavior Center, University of Haifa, Haifa, Israel
| | - Mouna Maroun
- Sagol Department of Neurobiology, Faculty of Natural Sciences, and the Integrated Brain and Behavior Center, University of Haifa, Haifa, Israel
| |
Collapse
|
59
|
Flores AI, Liester MB. The Role of Cells in Encoding and Storing Information: A Narrative Review of Cellular Memory. Cureus 2024; 16:e73063. [PMID: 39640131 PMCID: PMC11620785 DOI: 10.7759/cureus.73063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Memory, a fundamental aspect of human cognition and consciousness, is multifaceted and extends beyond traditional conceptualizations of mental recall. This review article explores memory through various lenses, including brain-based, body-based, and cellular mechanisms. At its core, memory involves the encoding, storage, and retrieval of information. Advances in neuroscience reveal that synaptic changes and molecular modifications, particularly in the hippocampus, are crucial for memory consolidation. Additionally, body memory, or somatic memory, highlights how sensory experiences and traumatic events are stored and influence behavior, underscoring the role of implicit memory. Multiple studies have demonstrated that memories can be encoded and stored in cells. Evidence suggests that these memories can then be transferred between individuals through organ transplantation. Additionally, observations in organisms that lack a nervous system, such as bacteria, fungi, and plants, expand traditional memory concepts. This review highlights and compiles novel research from the last few decades that explores information encoding and storage at a cellular level across a wide variety of disciplines. Our aim is to integrate these findings into a cohesive framework that helps explain the role of cellular processes in memory retention and transfer. By compiling research across diverse fields, this review aims to establish a foundation for future investigation into the physiological and psychological significance of cellular memory. Despite substantial progress, critical gaps persist in our understanding of how cellular memory interfaces with neural memory systems and the precise pathways through which information is encoded, stored, retrieved, and transferred at the cellular level. There has been a noticeable lack of research focused on cellular memory, and more rigorous investigations are needed to uncover how cells participate in memory and the extent to which these processes influence human behavior and cognition.
Collapse
Affiliation(s)
- Ana I Flores
- Department of Psychology, University of California San Diego, San Diego, USA
| | - Mitchell B Liester
- Department of Psychiatry, University of Colorado School of Medicine, Colorado Springs, USA
| |
Collapse
|
60
|
Costa ACS. On the Therapeutic Use of Monoclonal Antibodies Against Amyloid Plaques in Older Adults with Down Syndrome: A Narrative Review and Perspective. Brain Sci 2024; 14:1084. [PMID: 39595846 PMCID: PMC11591668 DOI: 10.3390/brainsci14111084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Down syndrome (DS) is a genetic disorder caused by an extra copy of chromosome 21 (trisomy 21 or T21) and is associated with an increased risk of early-onset Alzheimer's disease (AD), also known as DS-associated AD (DSAD). Individuals with DS typically develop amyloid neuropathology in their late-thirties to early-forties and the mean age of onset of clinical dementia is approximately 55 years. Recent advances in AD clinical research have focused on monoclonal antibodies (mAbs) targeting amyloid-β (Aβ) plaques as a potential therapeutic approach. Therefore, there has been guarded enthusiasm about using anti-amyloid mAbs in the prevention/treatment of DSAD. This narrative review and perspective explores the current understanding of amyloid pathology in AD and DSAD, the rationale for using anti-amyloid mAbs in the treatment of DSAD, and the challenges and opportunities for research toward the application of this therapeutic strategy to older adults with DS.
Collapse
Affiliation(s)
- Alberto C S Costa
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106-6090, USA
| |
Collapse
|
61
|
Ramdeo KR, Adams FC, Drapeau CC, Foglia SD, Cuizon MC, Sader MA, Nucci R, Nelson AJ. The influence of menstrual phase on synaptic plasticity induced via intermittent theta-burst stimulation. Neuroscience 2024; 558:122-127. [PMID: 39168176 DOI: 10.1016/j.neuroscience.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/04/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Ovarian hormones influence the propensity for short-term plasticity induced by repetitive transcranial magnetic stimulation (rTMS). Estradiol appears to enhance the propensity for neural plasticity. It is currently unknown how progesterone influences short-term plasticity induced by rTMS. OBJECTIVE The present research investigates whether the luteal versus follicular phase of the menstrual cycle influence short-term plasticity induced by intermittent theta-burst stimulation (iTBS). We tested the hypothesis that iTBS would increase motor evoked potentials (MEPs) during the follicular phase. Further, we explored the effects of the luteal phase on iTBS-induced neural plasticity. METHOD Twenty-nine adult females participated in a placebo-controlled study that delivered real and sham iTBS to the left primary motor cortex in separate sessions corresponding to the follicular phase (real iTBS), luteal phase (real iTBS), and a randomly selected day (sham iTBS). Outcomes included corticospinal excitability as measured by the amplitude of MEPs and short-interval intracortical inhibition (SICI) recorded from the right first dorsal interosseous muscle before and following iTBS (612 pulses). RESULTS MEP amplitude was increased following real iTBS during the follicular condition. No significant changes in MEP amplitude were observed during the luteal or sham visits. SICI was unchanged by iTBS irrespective of menstrual phase. CONCLUSION These findings suggest women experience a variable propensity for iTBS-induced short-term plasticity across the menstrual cycle. This information is important for designing studies aiming to induce plasticity via rTMS in women.
Collapse
Affiliation(s)
- K R Ramdeo
- Department of Kinesiology, McMaster University, 1280, Main Street West Hamilton, Ontario L8S 4L8, Canada
| | - F C Adams
- Department of Kinesiology, McMaster University, 1280, Main Street West Hamilton, Ontario L8S 4L8, Canada
| | - C C Drapeau
- Department of Kinesiology, McMaster University, 1280, Main Street West Hamilton, Ontario L8S 4L8, Canada
| | - S D Foglia
- School of Biomedical Engineering, McMaster University, 1280, Main Street West Hamilton, Ontario L8S 4L8, Canada
| | - M C Cuizon
- Department of Kinesiology, McMaster University, 1280, Main Street West Hamilton, Ontario L8S 4L8, Canada
| | - M A Sader
- Department of Kinesiology, McMaster University, 1280, Main Street West Hamilton, Ontario L8S 4L8, Canada
| | - R Nucci
- Department of Kinesiology, McMaster University, 1280, Main Street West Hamilton, Ontario L8S 4L8, Canada
| | - A J Nelson
- Department of Kinesiology, McMaster University, 1280, Main Street West Hamilton, Ontario L8S 4L8, Canada; School of Biomedical Engineering, McMaster University, 1280, Main Street West Hamilton, Ontario L8S 4L8, Canada.
| |
Collapse
|
62
|
Ma JQ, Wang L, Zhang Y, Bian YQ, Qu XP, Song LJ, Wang C, Gao L, Fang QX, Zhao DC, Shen LL, Liu B. Single-nucleus RNA sequencing-based construction of a hippocampal neuron atlas in mice with epileptic cognitive impairment. iScience 2024; 27:111065. [PMID: 39635132 PMCID: PMC11615225 DOI: 10.1016/j.isci.2024.111065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/13/2024] [Accepted: 09/25/2024] [Indexed: 12/07/2024] Open
Abstract
The hippocampus plays a critical role in learning and memory, and mice with epileptic cognitive impairment exhibit hippocampal atrophy. However, there is still a lack of research on the hippocampal cell atlas related to these disorders. Here, we utilized snRNA-seq to characterize the transcriptomic changes in hippocampal neurons of drug-resistant epilepsy (DRE) cognitive-impaired mice. The intercellular heterogeneity of 20 subpopulations of neurons was analyzed, focusing on aspects such as cell communication, gene expressions, GO and KEGG enrichment analysis, and module gene set analysis. Based on the degree of relevance to synaptic biological functions, the subpopulations associated with cognitive impairment (ExN1, 3, 8 and InN1, 6) were preliminarily identified. We also identified some key biomarkers in DRE cognitive-impaired mice, such as Ptprz1 and Calb1. Finally, we integrate and validate our dataset using identified well-annotated marker genes in the hippocampal region, further supporting the functional annotation of neuronal subpopulations.
Collapse
Affiliation(s)
- Jia-Qi Ma
- Department of Neurosurgery, Tangdu Hospital, Airforce Military Medical University, Xi’an, China
| | - Lu Wang
- Department of Neurosurgery, Tangdu Hospital, Airforce Military Medical University, Xi’an, China
- College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, China
| | - Yue Zhang
- Department of Neurosurgery, Tangdu Hospital, Airforce Military Medical University, Xi’an, China
| | - Yong-Qian Bian
- Department of Plastic and Burn Surgery, Tangdu Hospital, Airforce Military Medical University, Xi’an, China
| | - Xiao-Peng Qu
- Department of Neurosurgery, Tangdu Hospital, Airforce Military Medical University, Xi’an, China
| | - Li-Jia Song
- Department of Pediatrics, Tangdu Hospital, Airforce Military Medical University, Xi’an, China
| | - Chao Wang
- Department of Neurosurgery, Tangdu Hospital, Airforce Military Medical University, Xi’an, China
| | - Li Gao
- Department of Neurosurgery, Tangdu Hospital, Airforce Military Medical University, Xi’an, China
| | - Qi-Xing Fang
- Department of Neurosurgery, Tangdu Hospital, Airforce Military Medical University, Xi’an, China
| | - De-Chang Zhao
- Department of Neurosurgery, Tangdu Hospital, Airforce Military Medical University, Xi’an, China
| | - Liang-Liang Shen
- Department of Biochemistry and Molecular Biology, Airforce Military Medical University, Xi’an, China
| | - Bei Liu
- Department of Neurosurgery, Tangdu Hospital, Airforce Military Medical University, Xi’an, China
| |
Collapse
|
63
|
Qi S, Cao L, Wang Q, Sheng Y, Yu J, Liang Z. The Physiological Mechanisms of Transcranial Direct Current Stimulation to Enhance Motor Performance: A Narrative Review. BIOLOGY 2024; 13:790. [PMID: 39452099 PMCID: PMC11504865 DOI: 10.3390/biology13100790] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique that applies a stable, low-intensity (1-2 mA) direct current to modulate neuronal activity in the cerebral cortex. This technique is effective, simple to operate, affordable, and widely employed across various fields. tDCS has been extensively used in clinical and translational research, with growing applications in military and competitive sports domains. In recent years, the use of tDCS in sports science has garnered significant attention from researchers. Numerous studies have demonstrated that tDCS can enhance muscle strength, explosive power, and aerobic metabolism, reduce fatigue, and improve cognition, thereby serving as a valuable tool for enhancing athletic performance. Additionally, recent research has shed light on the physiological mechanisms underlying tDCS, including its modulation of neuronal resting membrane potential to alter cortical excitability, enhancement of synaptic plasticity to regulate long-term potentiation, modulation of neurovascular coupling to improve regional cerebral blood flow, and improvement of cerebral network functional connectivity, which activates and reinforces specific brain regions. tDCS also enhances the release of excitatory neurotransmitters, further regulating brain function. This article, after outlining the role of tDCS in improving physical performance, delves into its mechanisms of action to provide a deeper understanding of how tDCS enhances athletic performance and offers novel approaches and perspectives for physical performance enhancement.
Collapse
Affiliation(s)
- Shuo Qi
- School of Sport and Health, Shandong Sport University, Jinan 250102, China; (S.Q.)
| | - Lei Cao
- National Football Academy, Shandong Sport University, Jinan 250102, China
| | - Qingchun Wang
- School of Sport and Health, Shandong Sport University, Jinan 250102, China; (S.Q.)
| | - Yin Sheng
- College of Competitive Sports, Shandong Sport University, Jinan 250102, China
| | - Jinglun Yu
- School of Exercise and Health Sciences, Xi’an Physical Education University, Xi’an 710068, China
| | - Zhiqiang Liang
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
| |
Collapse
|
64
|
Zhuge C, Zhang Y, Jiang J, Li X, Zhao Y, Fu Y, Wang Q, He D. Reliable Low-Current and Multilevel Memristive Electrochemical Neuromorphic Devices with Semi-Metal Sb Filament. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400599. [PMID: 38860549 DOI: 10.1002/smll.202400599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/01/2024] [Indexed: 06/12/2024]
Abstract
Memristors are used in artificial neural networks owing to their exceptional integration capabilities and scalability. However, traditional memristors are hampered by limited resistance states and randomness, which curtails their application. The migration of metal ions critically influences the number of conductance states and the linearity of weight updates. Semi-metal filaments can provide subquantum conductance changes to the memristors due to the smaller single-atom conductance, such as Sb (≈0.01 G0 = 7.69 × 10-7 S). Here, a memristor featuring an active electrode composed of semi-metal Sb is introduced for the first time. This memristor demonstrates precise conductance control, a large on/off ratio, consistent switching, and prolonged retention exceeding 105 s. Density functional theory (DFT) calculations and characterization methods reveal the formation of Sb filaments during a set process. The interaction between Sb and O within the dielectric layer facilitates the Sb filaments' ability to preserve their morphology in the absence of electric fields.
Collapse
Affiliation(s)
- Chenyu Zhuge
- School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| | - Yukun Zhang
- School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| | - Jiandong Jiang
- School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| | - Xiang Li
- School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| | - Yanfei Zhao
- School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| | - Yujun Fu
- School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| | - Qi Wang
- School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| | - Deyan He
- School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
65
|
Shouval HZ, Flores-Obando RE, Sacktor TC. Maintenance of synaptic plasticity by negative-feedback of synaptic protein elimination: Dynamic modeling of KIBRA- PKM ζ interactions in LTP and memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614943. [PMID: 39386672 PMCID: PMC11463625 DOI: 10.1101/2024.09.25.614943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Activity-dependent modifications of synaptic efficacies are a cellular substrate of learning and memory. Current theories propose that the long-term maintenance of synaptic efficacies and memory is accomplished via a positive-feedback loop at the level of production of a protein species or a protein state. Here we propose a qualitatively different theoretical framework based on negative-feedback at the level of protein elimination. This theory is motivated by recent experimental findings regarding the binding of P K M ζ and KIBRA, two synaptic proteins involved in maintenance of memory, and on how this binding affects the proteins' degradation. We demonstrate this theoretical framework with two different models, a simple abstract model to explore generic features of such a process, and an experimentally motivated phenomenological model. The results of these models are qualitatively consistent with existing data, and generate novel predictions that could be experimentally tested to further validate or reject the negative-feedback theory.
Collapse
Affiliation(s)
- Harel Z. Shouval
- Department of Neurobiology and Anatomy, University of Texas Medical School, Houston, TX 77030, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | - Rafael E. Flores-Obando
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY. 11203. USA
| | - Todd C. Sacktor
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY. 11203. USA
- Department of Physiology, Pharmacology, Anesthesiology, and Neurology, SUNY Downstate Health Sciences University, Brooklyn, NY. 11203. USA
| |
Collapse
|
66
|
Zhu D, Zhang J, Ma X, Hu M, Gao F, Hashem JB, Lyu J, Wei J, Cui Y, Qiu S, Chen C. Overabundant endocannabinoids in neurons are detrimental to cognitive function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613513. [PMID: 39345517 PMCID: PMC11430108 DOI: 10.1101/2024.09.17.613513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
2-Arachidonoylglycerol (2-AG) is the most prevalent endocannabinoid involved in maintaining brain homeostasis. Previous studies have demonstrated that inactivating monoacylglycerol lipase (MAGL), the primary enzyme responsible for degrading 2-AG in the brain, alleviates neuropathology and prevents synaptic and cognitive decline in animal models of neurodegenerative diseases. However, we show that selectively inhibiting 2-AG metabolism in neurons impairs cognitive function in mice. This cognitive impairment appears to result from decreased expression of synaptic proteins and synapse numbers, impaired long-term synaptic plasticity and cortical circuit functional connectivity, and diminished neurogenesis. Interestingly, the synaptic and cognitive deficits induced by neuronal MAGL inactivation can be counterbalanced by inhibiting astrocytic 2-AG metabolism. Transcriptomic analyses reveal that inhibiting neuronal 2-AG degradation leads to widespread changes in expression of genes associated with synaptic function. These findings suggest that crosstalk in 2-AG signaling between astrocytes and neurons is crucial for maintaining synaptic and cognitive functions and that excessive 2-AG in neurons alone is detrimental to cognitive function.
Collapse
Affiliation(s)
- Dexiao Zhu
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Jian Zhang
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Xiaokuang Ma
- Departments of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Mei Hu
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Fei Gao
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Jack B. Hashem
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Jianlu Lyu
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Jing Wei
- Departments of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Yuehua Cui
- Departments of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Shenfeng Qiu
- Departments of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Chu Chen
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| |
Collapse
|
67
|
Wei H, Feng C, Li F. Modeling biological memory network by an autonomous and adaptive multi-agent system. Brain Inform 2024; 11:23. [PMID: 39277566 PMCID: PMC11401808 DOI: 10.1186/s40708-024-00237-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024] Open
Abstract
At the intersection of computation and cognitive science, graph theory is utilized as a formalized description of complex relationships description of complex relationships and structures, but traditional graph models are static, lack the dynamic and autonomous behaviors of biological neural networks, rely on algorithms with a global view. This study introduces a multi-agent system (MAS) model based on the graph theory, each agent equipped with adaptive learning and decision-making capabilities, thereby facilitating decentralized dynamic information memory, modeling and simulation of the brain's memory process. This decentralized approach transforms memory storage into the management of MAS paths, with each agent utilizing localized information for the dynamic formation and modification of these paths, different path refers to different memory instance. The model's unique memory algorithm avoids a global view, instead relying on neighborhood-based interactions to enhance resource utilization. Emulating neuron electrophysiology, each agent's adaptive learning behavior is represented through a microcircuit centered around a variable resistor. Using principles of Ohm's and Kirchhoff's laws, we validated the model's efficacy in memorizing and retrieving data through computer simulations. This approach offers a plausible neurobiological explanation for memory realization and validates the memory trace theory at a system level.
Collapse
Affiliation(s)
- Hui Wei
- Laboratory of Algorithms for Cognitive Models, School of Computer Science, Fudan University, No. 2005 Songhu Rd, Yangpu District, Shanghai, 200438, China.
| | - Chenyue Feng
- Laboratory of Algorithms for Cognitive Models, School of Computer Science, Fudan University, No. 2005 Songhu Rd, Yangpu District, Shanghai, 200438, China
| | - Fushun Li
- Laboratory of Algorithms for Cognitive Models, School of Computer Science, Fudan University, No. 2005 Songhu Rd, Yangpu District, Shanghai, 200438, China
| |
Collapse
|
68
|
Lee N, Pujar P, Hong S. Low-Cost, High-Efficiency Aluminum Zinc Oxide Synaptic Transistors: Blue LED Stimulation for Enhanced Neuromorphic Computing Applications. Biomimetics (Basel) 2024; 9:547. [PMID: 39329569 PMCID: PMC11430796 DOI: 10.3390/biomimetics9090547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
Neuromorphic devices are electronic devices that mimic the information processing methods of neurons and synapses, enabling them to perform multiple tasks simultaneously with low power consumption and exhibit learning ability. However, their large-scale production and efficient operation remain a challenge. Herein, we fabricated an aluminum-doped zinc oxide (AZO) synaptic transistor via solution-based spin-coating. The transistor is characterized by low production costs and high performance. It demonstrates high responsiveness under UV laser illumination. In addition, it exhibits effective synaptic behaviors under blue LED illumination, indicating high-efficiency operation. The paired-pulse facilitation (PPF) index measured from optical stimulus modulation was 179.6%, indicating strong synaptic connectivity and effective neural communication and processing. Furthermore, by modulating the blue LED light pulse frequency, an excitatory postsynaptic current gain of 4.3 was achieved, demonstrating efficient neuromorphic functionality. This study shows that AZO synaptic transistors are promising candidates for artificial synaptic devices.
Collapse
Affiliation(s)
- Namgyu Lee
- Department of Physics, Gachon University, Seongnam 13120, Republic of Korea
| | - Pavan Pujar
- Department of Ceramic Engineering, Indian Institute of Technology (IIT-BHU), Varanasi 221005, Uttar Pradesh, India
| | - Seongin Hong
- Department of Physics, Gachon University, Seongnam 13120, Republic of Korea
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
69
|
Falsaperla R, Sortino V, Gambilonghi F, Vitaliti G, Striano P. Human Milk Oligosaccharides and Their Pivotal Role in Gut-Brain Axis Modulation and Neurologic Development: A Narrative Review to Decipher the Multifaceted Interplay. Nutrients 2024; 16:3009. [PMID: 39275324 PMCID: PMC11397282 DOI: 10.3390/nu16173009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
BACKGROUND Human milk oligosaccharides (HMOs), which are unique bioactive components in human milk, are increasingly recognized for their multifaceted roles in infant health. A deeper understanding of the nexus between HMOs and the gut-brain axis can revolutionize neonatal nutrition and neurodevelopmental strategies. METHODS We performed a narrative review using PubMed, Embase, and Google Scholar to source relevant articles. The focus was on studies detailing the influence of HMOs on the gut and brain systems, especially in neonates. Articles were subsequently synthesized based on their exploration into the effects and mechanisms of HMOs on these interconnected systems. RESULTS HMOs significantly influence the neonatal gut-brain axis. Specific concentrations of HMO, measured 1 and 6 months after birth, would seem to agree with this hypothesis. HMOs are shown to influence gut microbiota composition and enhance neurotransmitter production, which are crucial for brain development. For instance, 2'-fucosyllactose has been demonstrated to support cognitive development by fostering beneficial gut bacteria that produce essential short-chain fatty acids. CONCLUSIONS HMOs serve as crucial modulators of the neonatal gut-brain axis, underscoring their importance in infant nutrition and neurodevelopment. Their dual role in shaping the infant gut while influencing brain function presents them as potential game-changers in neonatal health strategies.
Collapse
Affiliation(s)
- Raffaele Falsaperla
- Neonatal Intensive Care Unit and Neonatal Accompaniment Unit, Azienda Ospedaliero-Universitaria Policlinico “Rodolico-San Marco”, San Marco Hospital, University of Catania, 95123 Catania, Italy
- Unit of Pediatrics and Pediatric Emergency, Azienda Ospedaliero-Universitaria Policlinico “Rodolico-San Marco”, San Marco Hospital, University of Catania, 95123 Catania, Italy; (V.S.); (G.V.)
- Department of Medical Science-Pediatrics, University of Ferrara, 44124 Ferrara, Italy
| | - Vincenzo Sortino
- Unit of Pediatrics and Pediatric Emergency, Azienda Ospedaliero-Universitaria Policlinico “Rodolico-San Marco”, San Marco Hospital, University of Catania, 95123 Catania, Italy; (V.S.); (G.V.)
| | - Francesco Gambilonghi
- Postgraduate Training Program in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy;
| | - Giovanna Vitaliti
- Unit of Pediatrics and Pediatric Emergency, Azienda Ospedaliero-Universitaria Policlinico “Rodolico-San Marco”, San Marco Hospital, University of Catania, 95123 Catania, Italy; (V.S.); (G.V.)
| | - Pasquale Striano
- IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy
| |
Collapse
|
70
|
Cranston AL, Kraev I, Stewart MG, Horsley D, Santos RX, Robinson L, Dreesen E, Armstrong P, Palliyil S, Harrington CR, Wischik CM, Riedel G. Rescue of synaptosomal glutamate release defects in tau transgenic mice by the tau aggregation inhibitor hydromethylthionine. Cell Signal 2024; 121:111269. [PMID: 38909930 DOI: 10.1016/j.cellsig.2024.111269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Glutamatergic neurotransmission, important for learning and memory, is disrupted in different ways in patients with Alzheimer's disease (AD) and frontotemporal dementia (FTD) tauopathies. We have previously reported that two tau transgenic mouse models, L1 and L66, produce different phenotypes resembling AD and FTD, respectively. The AD-like L1 model expresses the truncated core aggregation domain of the AD paired helical filament (PHF) form of tau (tau296-390) whereas the FTD-like L66 model expresses full-length tau carrying two mutations at P301S/G335D. We have used synaptosomes isolated from these mice to investigate K+-evoked glutamate release and, if abnormal, to determine responsiveness to hydromethylthionine, a tau aggregation inhibitor previously shown to reduce tau pathology in these models. We report that the transgenes in these two mouse lines cause opposite abnormalities in glutamate release. Over-expression of the core tau unit in L1 produces a significant reduction in glutamate release and a loss of Ca2+-dependency compared with wild-type control mice. Full-length mutant tau produces an increase in glutamate release that retains normal Ca2+-dependency. Chronic pre-treatment with hydromethylthionine normalises both reduced (L1) and excessive glutamate (L66) and restores normal Ca2+-dependency in L1 mice. This implies that both patterns of impairment are the result of tau aggregation, but that the direction and Ca2+-dependency of the abnormality is determined by expression of the disease-specific transgene. Our results lead to the conclusion that the tauopathies need not be considered a single entity in terms of the downstream effects of pathological aggregation of tau protein. In this case, directionally opposite abnormalities in glutamate release resulting from different types of tau aggregation in the two mouse models can be corrected by hydromethylthionine. This may help to explain the activity of hydromethylthionine on cognitive decline and brain atrophy in both AD and behavioural-variant FTD.
Collapse
Affiliation(s)
- Anna L Cranston
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK
| | - Igor Kraev
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - Mike G Stewart
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - David Horsley
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK
| | - Renato X Santos
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK
| | - Lianne Robinson
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK
| | - Eline Dreesen
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK
| | - Paul Armstrong
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK
| | - Soumya Palliyil
- Scottish Biologics Facility, University of Aberdeen, Foresterhill AB25 2ZP, UK
| | - Charles R Harrington
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK; TauRx Therapeutics Ltd, 395 King Street, Aberdeen, AB24 5RP, UK
| | - Claude M Wischik
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK; TauRx Therapeutics Ltd, 395 King Street, Aberdeen, AB24 5RP, UK
| | - Gernot Riedel
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK.
| |
Collapse
|
71
|
Withers PC, Morrill HJ, Parrish RR. An Open-Source 3D-Printed Recording Stage with Customizable Chambers for Ex Vivo Experiments. eNeuro 2024; 11:ENEURO.0257-24.2024. [PMID: 39197950 PMCID: PMC11404268 DOI: 10.1523/eneuro.0257-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024] Open
Abstract
Much of what has been discovered concerning neurophysiological mechanisms can be credited to ex vivo biomedical experiments. Beyond these discoveries, ex vivo research techniques have enhanced the global understanding of human physiology and pathology in almost every biomedical specialty. Naturally, ex vivo experiments are among the most desired methods of research, particularly in the field of neuroscience. Ex vivo experiment platforms may be purchased commercially. However, their substantial cost and sometimes limited availability can render them inaccessible to many research labs. Moreover, these manufactured systems are often rigid in function with no possibility of customization, severely narrowing their capabilities. However, developing essential components for ex vivo laboratory systems with a fused deposition modeling printer provides a practical solution to each of these obstacles. Here, we provide the designs and construction process for an easily accessible, highly adaptable recording stage with modifiable submersion chambers using a 3D printer for a total cost under $15.00. With the versatility afforded by the exchangeable custom chambers, the system may be used to conduct research on a variety of ex vivo tissue preparations, paving the way for novel research.
Collapse
Affiliation(s)
- Preston C Withers
- Department of Cell Biology and Physiology, Brigham Young University, Provo, Utah 84602
- Neuroscience Center, Brigham Young University, Provo, Utah 84602
| | - Hunter J Morrill
- Department of Cell Biology and Physiology, Brigham Young University, Provo, Utah 84602
| | - R Ryley Parrish
- Department of Cell Biology and Physiology, Brigham Young University, Provo, Utah 84602
- Neuroscience Center, Brigham Young University, Provo, Utah 84602
| |
Collapse
|
72
|
Wu F, Yi Y, Lian Y, Chen Q, Luo L, Yang H, Li H, Feng Y, Feng S, Zhou S, Huang Y, Li Z, Zhang X. Sex differences in the association between suicidal ideation and neurocognitive function in Chinese patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 2024; 274:1355-1363. [PMID: 37184751 DOI: 10.1007/s00406-023-01616-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/26/2023] [Indexed: 05/16/2023]
Abstract
There is increasing evidence that sex differences exist in many clinical manifestations of patients with schizophrenia, including suicidal ideation (SI) and neurocognitive function. The present study was performed to explore the sex differences in the association between SI and neurocognitive function in Chinese patients with schizophrenia. A total of 1188 inpatients with schizophrenia were recruited from multicenter psychiatric hospitals. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) was utilized to evaluate the neurocognitive function of all patients. The Positive and Negative Syndrome Scale (PANSS) was utilized to assess the psychopathology of patients. The Beck Scale for Suicide Ideation (BSSI) was used to assess the severity of SI. In male patients, the suicide risk score was significantly associated with PANSS negative symptoms (r = 0.167, p = 0.043), visuospatial subscale (r = - 0.261, p = 0.001), and RBANS total scores (r = - 0.172, p = 0.037). Furthermore, multivariate linear regression analysis showed that the visuospatial subscale (β = - 0.490, t = - 3.273, p = 0.001) was independently associated with the suicide risk score in male patients. In female patients, the suicide risk score was significantly correlated with PANSS positive symptoms (r = 0.249, p = 0.021), negative symptoms (r = 0.394, p < 0.001), general psychopathology (r = 0.276, p = 0.01) and PANSS total score (r = 0.365, p = 0.001). Multivariate linear regression analysis showed that PANSS negative symptoms (β = 1.849, t = 3.933, p = 0.001) were significantly associated with suicide risk scores in female patients. Our findings indicate that there are sex differences in the association between SI and neurocognitive function in patients with schizophrenia. Based on the findings of our study, gender-specific prevention and intervention strategies may make a difference in reducing SI in Chinese schizophrenia patients.
Collapse
Affiliation(s)
- Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Rd, Liwan District, Guangzhou, 510370, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Yun Yi
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Rd, Liwan District, Guangzhou, 510370, China
- Department of Psychiatry, The Brain Hospital of Guangxi Zhuang Autonomous Region, Guangxi, China
| | - Yunling Lian
- Department of Psychiatry, Qingdao Mental Health Center, Qingdao, China
| | - Qiang Chen
- Department of Psychiatry, The Brain Hospital of Guangxi Zhuang Autonomous Region, Guangxi, China
| | - Lanfang Luo
- Department of Psychiatry, The Brain Hospital of Guangxi Zhuang Autonomous Region, Guangxi, China
| | - Hanlun Yang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou, China
| | - Hehua Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Rd, Liwan District, Guangzhou, 510370, China
| | - Yangdong Feng
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Rd, Liwan District, Guangzhou, 510370, China
| | - Shixuan Feng
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Rd, Liwan District, Guangzhou, 510370, China
| | - Sumiao Zhou
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Rd, Liwan District, Guangzhou, 510370, China
| | - Yuanyuan Huang
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Rd, Liwan District, Guangzhou, 510370, China.
| | - Zezhi Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Rd, Liwan District, Guangzhou, 510370, China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China.
| | - Xiangyang Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Rd, Liwan District, Guangzhou, 510370, China.
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
73
|
Ng T, Noh E, Spencer RMC. Does slow oscillation-spindle coupling contribute to sleep-dependent memory consolidation? A Bayesian meta-analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610060. [PMID: 39257832 PMCID: PMC11383665 DOI: 10.1101/2024.08.28.610060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The active system consolidation theory suggests that information transfer between the hippocampus and cortex during sleep underlies memory consolidation. Neural oscillations during sleep, including the temporal coupling between slow oscillations (SO) and sleep spindles (SP), may play a mechanistic role in memory consolidation. However, differences in analytical approaches and the presence of physiological and behavioral moderators have led to inconsistent conclusions. This meta-analysis, comprising 23 studies and 297 effect sizes, focused on four standard phase-amplitude coupling measures including coupling phase, strength, percentage, and SP amplitude, and their relationship with memory retention. We developed a standardized approach to incorporate non-normal circular-linear correlations. We found strong evidence supporting that precise and strong SO-fast SP coupling in the frontal lobe predicts memory consolidation. The strength of this association is mediated by memory type, aging, and dynamic spatio-temporal features, including SP frequency and cortical topography. In conclusion, SO-SP coupling should be considered as a general physiological mechanism for memory consolidation.
Collapse
Affiliation(s)
- Thea Ng
- Neuroscience & Behavior Program, Mount Holyoke College
- Department of Mathematics & Statistics, Mount Holyoke College
| | - Eunsol Noh
- Neuroscience & Behavior Program, University of Massachusetts, Amherst
| | - Rebecca M. C. Spencer
- Neuroscience & Behavior Program, University of Massachusetts, Amherst
- Department of Psychological & Brain Sciences, University of Massachusetts, Amherst
- Institute of Applied Life Sciences, University of Massachusetts, Amherst
| |
Collapse
|
74
|
López-García S, López-Merino E, Fernández-Rodrigo A, Zamorano-González P, Gutiérrez-Eisman S, Jiménez-Sánchez R, Esteban JA. PI3K couples long-term synaptic potentiation with cofilin recruitment and actin polymerization in dendritic spines via its regulatory subunit p85α. Cell Mol Life Sci 2024; 81:358. [PMID: 39158722 PMCID: PMC11335278 DOI: 10.1007/s00018-024-05394-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/16/2024] [Accepted: 08/02/2024] [Indexed: 08/20/2024]
Abstract
Long-term synaptic plasticity is typically associated with morphological changes in synaptic connections. However, the molecular mechanisms coupling functional and structural aspects of synaptic plasticity are still poorly defined. The catalytic activity of type I phosphoinositide-3-kinase (PI3K) is required for specific forms of synaptic plasticity, such as NMDA receptor-dependent long-term potentiation (LTP) and mGluR-dependent long-term depression (LTD). On the other hand, PI3K signaling has been linked to neuronal growth and synapse formation. Consequently, PI3Ks are promising candidates to coordinate changes in synaptic strength with structural remodeling of synapses. To investigate this issue, we targeted individual regulatory subunits of type I PI3Ks in hippocampal neurons and employed a combination of electrophysiological, biochemical and imaging techniques to assess their role in synaptic plasticity. We found that a particular regulatory isoform, p85α, is selectively required for LTP. This specificity is based on its BH domain, which engages the small GTPases Rac1 and Cdc42, critical regulators of the actin cytoskeleton. Moreover, cofilin, a key regulator of actin dynamics that accumulates in dendritic spines after LTP induction, failed to do so in the absence of p85α or when its BH domain was overexpressed as a dominant negative construct. Finally, in agreement with this convergence on actin regulatory mechanisms, the presence of p85α in the PI3K complex determined the extent of actin polymerization in dendritic spines during LTP. Therefore, this study reveals a molecular mechanism linking structural and functional synaptic plasticity through the coordinate action of PI3K catalytic activity and a specific isoform of the regulatory subunits.
Collapse
Affiliation(s)
- Sergio López-García
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Esperanza López-Merino
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Alba Fernández-Rodrigo
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Pablo Zamorano-González
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Current address: Universidad de Málaga, Málaga, Spain
| | - Silvia Gutiérrez-Eisman
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Raquel Jiménez-Sánchez
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - José A Esteban
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
75
|
Miranda-Riestra A, Cercós MG, Trueta C, Oikawa-Sala J, Argueta J, Constantino-Jonapa LA, Cruz-Garduño R, Benítez-King G, Estrada-Reyes R. Participation of Ca 2+-Calmodulin-Dependent Protein Kinase II in the Antidepressant-Like Effects of Melatonin. Mol Pharmacol 2024; 106:107-116. [PMID: 39079719 DOI: 10.1124/molpharm.124.000890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/26/2024] [Indexed: 08/18/2024] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is an indoleamine secreted by the pineal gland during the dark phase of the photoperiod. Its main function is the synchronization of different body rhythms with the dark-light cycle. Research on melatonin has significantly advanced since its discovery and we now know that it has considerable significance in various physiological processes, including immunity, aging, and reproduction. Moreover, in recent years evidence of the pharmacological possibilities of melatonin has increased. Indoleamine, on the other hand, has antidepressant-like effects in rodents, which may be mediated by the activation of calcium-calmodulin-dependent kinase II (CaMKII) and are also related to the regulation of neuroplasticity processes, including neurogenesis, synaptic maintenance, and long-term potentiation. Remarkably, patients with major depression show decreased levels of circulating melatonin in plasma. This review presents evidence of the antidepressant-like effects of melatonin in preclinical models and the participation of CaMKII in these actions. CaMKII's role in cognition and memory processes, which are altered in depressive states, are part of the review, and the effects of melatonin in these processes are also reviewed. Furthermore, participation of CaMKII on structural and synaptic plasticity and the effects of melatonin are also described. Finally, the advantages of using melatonin in combination with other antidepressants such as ketamine for neuroplasticity are described. Evidence supports that CaMKII is activated by melatonin and downstream melatonin receptors and may be the common effector in the synergistic effects of melatonin with other antidepressants. SIGNIFICANCE STATEMENT: This review compiled evidence supporting that melatonin causes antidepressant-like effects in mice through calmodulin kinase II stimulation of downstream melatonin receptors as well as the participation of this enzyme in neuroplasticity, memory, and cognition. Finally, we describe evidence about the effectiveness of antidepressant-like effects of melatonin in combination with ketamine.
Collapse
Affiliation(s)
- Armida Miranda-Riestra
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Montserrat G Cercós
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Citlali Trueta
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Julián Oikawa-Sala
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Jesús Argueta
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Luis A Constantino-Jonapa
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Ricardo Cruz-Garduño
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Gloria Benítez-King
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Rosa Estrada-Reyes
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| |
Collapse
|
76
|
Ge Y, Craig AM. Haploinsufficiency of GABA A Receptor-Associated Clptm1 Enhances Phasic and Tonic Inhibitory Neurotransmission, Suppresses Excitatory Synaptic Plasticity, and Impairs Memory. J Neurosci 2024; 44:e0521242024. [PMID: 38942471 PMCID: PMC11308325 DOI: 10.1523/jneurosci.0521-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024] Open
Abstract
The mechanisms utilized by neurons to regulate the efficacy of phasic and tonic inhibition and their impacts on synaptic plasticity and behavior are incompletely understood. Cleft lip and palate transmembrane protein 1 (Clptm1) is a membrane-spanning protein that interacts with multiple γ-aminobutyric acid type A receptor (GABAAR) subunits, trapping them in the endoplasmic reticulum and Golgi network. Overexpression and knock-down studies suggest that Clptm1 modulates GABAAR-mediated phasic inhibition and tonic inhibition as well as activity-induced inhibitory synaptic homeostasis in cultured hippocampal neurons. To investigate the role of Clptm1 in the modulation of GABAARs in vivo, we generated Clptm1 knock-out (KO) mice. Here, we show that genetic KO of Clptm1 elevated phasic and tonic inhibitory transmission in both male and female heterozygous mice. Although basal excitatory synaptic transmission was not affected, Clptm1 haploinsufficiency significantly blocked high-frequency stimulation-induced long-term potentiation (LTP) in hippocampal CA3→CA1 synapses. In the hippocampus-dependent contextual fear-conditioning behavior task, both male and female Clptm1 heterozygous KO mice exhibited impairment in contextual fear memory. In addition, LTP and contextual fear memory were rescued by application of L-655,708, a negative allosteric modulator of the extrasynaptic GABAAR α5 subunit. These results suggest that haploinsufficiency of Clptm1 contributes to cognitive deficits through altered synaptic transmission and plasticity by elevation of inhibitory neurotransmission, with tonic inhibition playing a major role.
Collapse
Affiliation(s)
- Yuan Ge
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Ann Marie Craig
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| |
Collapse
|
77
|
Navakkode S, Kennedy BK. Neural ageing and synaptic plasticity: prioritizing brain health in healthy longevity. Front Aging Neurosci 2024; 16:1428244. [PMID: 39161341 PMCID: PMC11330810 DOI: 10.3389/fnagi.2024.1428244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
Ageing is characterized by a gradual decline in the efficiency of physiological functions and increased vulnerability to diseases. Ageing affects the entire body, including physical, mental, and social well-being, but its impact on the brain and cognition can have a particularly significant effect on an individual's overall quality of life. Therefore, enhancing lifespan and physical health in longevity studies will be incomplete if cognitive ageing is over looked. Promoting successful cognitive ageing encompasses the objectives of mitigating cognitive decline, as well as simultaneously enhancing brain function and cognitive reserve. Studies in both humans and animal models indicate that cognitive decline related to normal ageing and age-associated brain disorders are more likely linked to changes in synaptic connections that form the basis of learning and memory. This activity-dependent synaptic plasticity reorganises the structure and function of neurons not only to adapt to new environments, but also to remain robust and stable over time. Therefore, understanding the neural mechanisms that are responsible for age-related cognitive decline becomes increasingly important. In this review, we explore the multifaceted aspects of healthy brain ageing with emphasis on synaptic plasticity, its adaptive mechanisms and the various factors affecting the decline in cognitive functions during ageing. We will also explore the dynamic brain and neuroplasticity, and the role of lifestyle in shaping neuronal plasticity.
Collapse
Affiliation(s)
- Sheeja Navakkode
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, Centre for Healthy Longevity, National University Health System, National University of Singapore, Singapore, Singapore
- Life Sciences Institute Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
| | - Brian K. Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, Centre for Healthy Longevity, National University Health System, National University of Singapore, Singapore, Singapore
- Life Sciences Institute Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Departments of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Buck Institute for Research on Ageing, Novato, CA, United States
| |
Collapse
|
78
|
Wi S, Jeong M, Lee K, Lee Y. Optoelectronic Synapse Behaviors in Tb 3+ and Al 3+ Co-Doped CaSnO 3 with Long-Persistent Luminescence. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402848. [PMID: 38923300 PMCID: PMC11348126 DOI: 10.1002/advs.202402848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/22/2024] [Indexed: 06/28/2024]
Abstract
Neuromorphic computation draws inspiration from the remarkable features of the human brain including low energy consumption, parallelism, adaptivity, cognitive functions, and learning ability. These qualities hold the promise of unlocking groundbreaking computational techniques that surpass the limitations of traditional computing systems. This paper reports a remarkable photo-synaptic behavior in the field of rare earth ion-doped luminescent oxides by using long-persistent luminescence (LPL). This system utilizes electron trap states to regulate the synaptic behavior, operating through a fundamentally different mechanism from that of electronic-based synaptic devices. To realize this strategy, Tb3+ doped CaSnO3, which shows a significant LPL property under UV-light excitation, is prepared. The luminescent system shows key neuromorphic characteristics such as paired-pulse facilitation, pulse-number/timing dependent potentiation, and pulse-number/timing dependent short- to long-term plasticity transition, which are required for realizing synaptic devices. This feature expands the way for advanced neuromorphic technologies employing light stimuli.
Collapse
Affiliation(s)
- Sangwon Wi
- Department of Physics and Integrative Institute of Basic SciencesSoongsil UniversitySeoul06978Republic of Korea
| | - Minjae Jeong
- Department of Physics and Integrative Institute of Basic SciencesSoongsil UniversitySeoul06978Republic of Korea
| | - Kwanchul Lee
- Department of Physics and Integrative Institute of Basic SciencesSoongsil UniversitySeoul06978Republic of Korea
| | - Yunsang Lee
- Department of Physics and Integrative Institute of Basic SciencesSoongsil UniversitySeoul06978Republic of Korea
| |
Collapse
|
79
|
Navarro-Lobato I, Masmudi-Martín M, López-Aranda MF, López-Téllez JF, Delgado G, Granados-Durán P, Gaona-Romero C, Carretero-Rey M, Posadas S, Quiros-Ortega ME, Khan ZU. Promotion of structural plasticity in area V2 of visual cortex prevents against object recognition memory deficits in aging and Alzheimer's disease rodents. Neural Regen Res 2024; 19:1835-1841. [PMID: 38103251 PMCID: PMC10960297 DOI: 10.4103/1673-5374.389301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/23/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202408000-00038/figure1/v/2023-12-16T180322Z/r/image-tiff Memory deficit, which is often associated with aging and many psychiatric, neurological, and neurodegenerative diseases, has been a challenging issue for treatment. Up till now, all potential drug candidates have failed to produce satisfactory effects. Therefore, in the search for a solution, we found that a treatment with the gene corresponding to the RGS14414 protein in visual area V2, a brain area connected with brain circuits of the ventral stream and the medial temporal lobe, which is crucial for object recognition memory (ORM), can induce enhancement of ORM. In this study, we demonstrated that the same treatment with RGS14414 in visual area V2, which is relatively unaffected in neurodegenerative diseases such as Alzheimer's disease, produced long-lasting enhancement of ORM in young animals and prevent ORM deficits in rodent models of aging and Alzheimer's disease. Furthermore, we found that the prevention of memory deficits was mediated through the upregulation of neuronal arborization and spine density, as well as an increase in brain-derived neurotrophic factor (BDNF). A knockdown of BDNF gene in RGS14414-treated aging rats and Alzheimer's disease model mice caused complete loss in the upregulation of neuronal structural plasticity and in the prevention of ORM deficits. These findings suggest that BDNF-mediated neuronal structural plasticity in area V2 is crucial in the prevention of memory deficits in RGS14414-treated rodent models of aging and Alzheimer's disease. Therefore, our findings of RGS14414 gene-mediated activation of neuronal circuits in visual area V2 have therapeutic relevance in the treatment of memory deficits.
Collapse
Affiliation(s)
- Irene Navarro-Lobato
- Laboratory of Neurobiology, Centro de Investigaciones Médico Sanitarias (CIMES), University of Malaga, Malaga, Spain
- Department of Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Mariam Masmudi-Martín
- Laboratory of Neurobiology, Centro de Investigaciones Médico Sanitarias (CIMES), University of Malaga, Malaga, Spain
- Department of Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Manuel F. López-Aranda
- Laboratory of Neurobiology, Centro de Investigaciones Médico Sanitarias (CIMES), University of Malaga, Malaga, Spain
- Department of Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Juan F. López-Téllez
- Laboratory of Neurobiology, Centro de Investigaciones Médico Sanitarias (CIMES), University of Malaga, Malaga, Spain
- Department of Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Gloria Delgado
- Laboratory of Neurobiology, Centro de Investigaciones Médico Sanitarias (CIMES), University of Malaga, Malaga, Spain
- Department of Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Pablo Granados-Durán
- Laboratory of Neurobiology, Centro de Investigaciones Médico Sanitarias (CIMES), University of Malaga, Malaga, Spain
- Department of Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Celia Gaona-Romero
- Laboratory of Neurobiology, Centro de Investigaciones Médico Sanitarias (CIMES), University of Malaga, Malaga, Spain
- Department of Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Marta Carretero-Rey
- Laboratory of Neurobiology, Centro de Investigaciones Médico Sanitarias (CIMES), University of Malaga, Malaga, Spain
- Department of Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Sinforiano Posadas
- Laboratory of Neurobiology, Centro de Investigaciones Médico Sanitarias (CIMES), University of Malaga, Malaga, Spain
- Department of Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - María E. Quiros-Ortega
- Laboratory of Neurobiology, Centro de Investigaciones Médico Sanitarias (CIMES), University of Malaga, Malaga, Spain
- Department of Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Zafar U. Khan
- Laboratory of Neurobiology, Centro de Investigaciones Médico Sanitarias (CIMES), University of Malaga, Malaga, Spain
- Department of Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
80
|
Bin Ibrahim MZ, Wang Z, Sajikumar S. Synapses tagged, memories kept: synaptic tagging and capture hypothesis in brain health and disease. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230237. [PMID: 38853570 PMCID: PMC11343274 DOI: 10.1098/rstb.2023.0237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 06/11/2024] Open
Abstract
The synaptic tagging and capture (STC) hypothesis lays the framework on the synapse-specific mechanism of protein synthesis-dependent long-term plasticity upon synaptic induction. Activated synapses will display a transient tag that will capture plasticity-related products (PRPs). These two events, tag setting and PRP synthesis, can be teased apart and have been studied extensively-from their electrophysiological and pharmacological properties to the molecular events involved. Consequently, the hypothesis also permits interactions of synaptic populations that encode different memories within the same neuronal population-hence, it gives rise to the associativity of plasticity. In this review, the recent advances and progress since the experimental debut of the STC hypothesis will be shared. This includes the role of neuromodulation in PRP synthesis and tag integrity, behavioural correlates of the hypothesis and modelling in silico. STC, as a more sensitive assay for synaptic health, can also assess neuronal aberrations. We will also expound how synaptic plasticity and associativity are altered in ageing-related decline and pathological conditions such as juvenile stress, cancer, sleep deprivation and Alzheimer's disease. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Mohammad Zaki Bin Ibrahim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117597, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore119077, Singapore
| | - Zijun Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117597, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore119077, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117597, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore119077, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117597, Singapore
| |
Collapse
|
81
|
Ingram R, Volianskis R, Georgiou J, Jane DE, Michael-Titus AT, Collingridge GL, Volianskis A. Incremental induction of NMDAR-STP and NMDAR-LTP in the CA1 area of ventral hippocampal slices relies on graded activation of discrete NMDA receptors. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230239. [PMID: 38853568 PMCID: PMC11343233 DOI: 10.1098/rstb.2023.0239] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 06/11/2024] Open
Abstract
N-methyl-d-aspartate receptor (NMDAR)-dependent short- and long-term types of potentiation (STP and LTP, respectively) are frequently studied in the CA1 area of dorsal hippocampal slices (DHS). Far less is known about the NMDAR dependence of STP and LTP in ventral hippocampal slices (VHS), where both types of potentiation are smaller in magnitude than in the DHS. Here, we first briefly review our knowledge about the NMDAR dependence of STP and LTP and some other forms of synaptic plasticity. We then show in new experiments that the decay of NMDAR-STP in VHS, similar to dorsal hippocampal NMDAR-STP, is not time- but activity-dependent. We also demonstrate that the induction of submaximal levels of NMDAR-STP and NMDAR-LTP in VHS differs from the induction of saturated levels of plasticity in terms of their sensitivity to subunit-preferring NMDAR antagonists. These data suggest that activation of distinct NMDAR subtypes in a population of neurons results in an incremental increase in the induction of different phases of potentiation with changing sensitivity to pharmacological agents. Differences in pharmacological sensitivity, which arise due to differences in the levels of agonist-evoked biological response, might explain the disparity of the results concerning NMDAR subunit involvement in the induction of NMDAR-dependent plasticity.This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Rachael Ingram
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Rasa Volianskis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, Ontario, Canada
- TANZ Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - David E. Jane
- Hello Bio Limited, Cabot Park, Avonmouth, Bristol, UK
| | - Adina T. Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Graham L. Collingridge
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- TANZ Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Arturas Volianskis
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, UK
| |
Collapse
|
82
|
Ingram R, Volianskis A. Promiscuous involvement of metabotropic glutamate receptors in the storage of N-methyl-d-aspartate receptor-dependent short-term potentiation. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230445. [PMID: 38853548 PMCID: PMC11343307 DOI: 10.1098/rstb.2023.0445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 06/11/2024] Open
Abstract
Short- and long-term forms of N-methyl-d-aspartate receptor (NMDAR)-dependent potentiation (most commonly termed short-term potentiation (STP) and long-term potentiation (LTP)) are co-induced in hippocampal slices by theta-burst stimulation, which mimics naturally occurring patterns of neuronal activity. While NMDAR-dependent LTP (NMDAR-LTP) is said to be the cellular correlate of long-term memory storage, NMDAR-dependent STP (NMDAR-STP) is thought to underlie the encoding of shorter-lasting memories. The mechanisms of NMDAR-LTP have been researched much more extensively than those of NMDAR-STP, which is characterized by its extreme stimulation dependence. Thus, in the absence of low-frequency test stimulation, which is used to test the magnitude of potentiation, NMDAR-STP does not decline until the stimulation is resumed. NMDAR-STP represents, therefore, an inverse variant of Hebbian synaptic plasticity, illustrating that inactive synapses can retain their strength unchanged until they become active again. The mechanisms, by which NMDAR-STP is stored in synapses without a decrement, are unknown and we report here that activation of metabotropic glutamate receptors may be critical in maintaining the potentiated state of synaptic transmission. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Rachael Ingram
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, LondonE1 2AT, UK
| | - Arturas Volianskis
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, LondonE1 2AT, UK
- School of Biosciences, Cardiff University, Museum Avenue, CardiffCF10 3AX, UK
| |
Collapse
|
83
|
Kim Y, Hong I, Kaang BK. Synaptic correlates of the corticocortical circuit in motor learning. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230228. [PMID: 38853557 PMCID: PMC11343186 DOI: 10.1098/rstb.2023.0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/15/2024] [Accepted: 04/04/2024] [Indexed: 06/11/2024] Open
Abstract
Rodents actively learn new motor skills for survival in reaction to changing environments. Despite the classic view of the primary motor cortex (M1) as a simple muscle relay region, it is now known to play a significant role in motor skill acquisition. The secondary motor cortex (M2) is reported to be a crucial region for motor learning as well as for its role in motor execution and planning. Although these two regions are known for the part they play in motor learning, the role of direct connection and synaptic correlates between these two regions remains elusive. Here, we confirm M2 to M1 connectivity with a series of tracing experiments. We also show that the accelerating rotarod task successfully induces motor skill acquisition in mice. For mice that underwent rotarod training, learner mice showed increased synaptic density and spine head size for synapses between activated cell populations of M2 and M1. Non-learner mice did not show these synaptic changes. Collectively, these data suggest the potential importance of synaptic plasticity between activated cell populations as a potential mechanism of motor learning. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Yeonjun Kim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, South Korea
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul08826, South Korea
| | - Ilgang Hong
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, South Korea
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul08826, South Korea
| | - Bong-Kiun Kaang
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, South Korea
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul08826, South Korea
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul08826, South Korea
| |
Collapse
|
84
|
Xu QW, Larosa A, Wong TP. Roles of AMPA receptors in social behaviors. Front Synaptic Neurosci 2024; 16:1405510. [PMID: 39056071 PMCID: PMC11269240 DOI: 10.3389/fnsyn.2024.1405510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
As a crucial player in excitatory synaptic transmission, AMPA receptors (AMPARs) contribute to the formation, regulation, and expression of social behaviors. AMPAR modifications have been associated with naturalistic social behaviors, such as aggression, sociability, and social memory, but are also noted in brain diseases featuring impaired social behavior. Understanding the role of AMPARs in social behaviors is timely to reveal therapeutic targets for treating social impairment in disorders, such as autism spectrum disorder and schizophrenia. In this review, we will discuss the contribution of the molecular composition, function, and plasticity of AMPARs to social behaviors. The impact of targeting AMPARs in treating brain disorders will also be discussed.
Collapse
Affiliation(s)
- Qi Wei Xu
- Douglas Hospital Research Centre, Montreal, QC, Canada
| | - Amanda Larosa
- Douglas Hospital Research Centre, Montreal, QC, Canada
| | - Tak Pan Wong
- Douglas Hospital Research Centre, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
85
|
Yu K, Yao KR, Aguinaga MA, Choquette JM, Liu C, Wang Y, Liao D. G272V and P301L Mutations Induce Isoform Specific Tau Mislocalization to Dendritic Spines and Synaptic Dysfunctions in Cellular Models of 3R and 4R Tau Frontotemporal Dementia. J Neurosci 2024; 44:e1215232024. [PMID: 38858079 PMCID: PMC11236579 DOI: 10.1523/jneurosci.1215-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 06/12/2024] Open
Abstract
Tau pathologies are detected in the brains of some of the most common neurodegenerative diseases including Alzheimer's disease (AD), Lewy body dementia (LBD), chronic traumatic encephalopathy (CTE), and frontotemporal dementia (FTD). Tau proteins are expressed in six isoforms with either three or four microtubule-binding repeats (3R tau or 4R tau) due to alternative RNA splicing. AD, LBD, and CTE brains contain pathological deposits of both 3R and 4R tau. FTD patients can exhibit either 4R tau pathologies in most cases or 3R tau pathologies less commonly in Pick's disease, which is a subfamily of FTD. Here, we report the isoform-specific roles of tau in FTD. The P301L mutation, linked to familial 4R tau FTD, induces mislocalization of 4R tau to dendritic spines in primary hippocampal cultures that were prepared from neonatal rat pups of both sexes. Contrastingly, the G272V mutation, linked to familial Pick's disease, induces phosphorylation-dependent mislocalization of 3R tau but not 4R tau proteins to dendritic spines. The overexpression of G272V 3R tau but not 4R tau proteins leads to the reduction of dendritic spine density and suppression of mEPSCs in 5-week-old primary rat hippocampal cultures. The decrease in mEPSC amplitude caused by G272V 3R tau is dynamin-dependent whereas that caused by P301L 4R tau is dynamin-independent, indicating that the two tau isoforms activate different signaling pathways responsible for excitatory synaptic dysfunction. Our 3R and 4R tau studies here will shed new light on diverse mechanisms underlying FTD, AD, LBD, and CTE.
Collapse
Affiliation(s)
- Ke Yu
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- Department of General Practice, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Katherine R Yao
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- College of Biological Sciences, University of Minnesota, St Paul, Minnesota 55108
| | - Miguel A Aguinaga
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- College of Biological Sciences, University of Minnesota, St Paul, Minnesota 55108
| | - Jessica M Choquette
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Chengliang Liu
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Yuxin Wang
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Dezhi Liao
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
86
|
Caya-Bissonnette L, Béïque JC. Half a century legacy of long-term potentiation. Curr Biol 2024; 34:R640-R662. [PMID: 38981433 DOI: 10.1016/j.cub.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
In 1973, two papers from Bliss and Lømo and from Bliss and Gardner-Medwin reported that high-frequency synaptic stimulation in the dentate gyrus of rabbits resulted in a long-lasting increase in synaptic strength. This form of synaptic plasticity, commonly referred to as long-term potentiation (LTP), was immediately considered as an attractive mechanism accounting for the ability of the brain to store information. In this historical piece looking back over the past 50 years, we discuss how these two landmark contributions directly motivated a colossal research effort and detail some of the resulting milestones that have shaped our evolving understanding of the molecular and cellular underpinnings of LTP. We highlight the main features of LTP, cover key experiments that defined its induction and expression mechanisms, and outline the evidence supporting a potential role of LTP in learning and memory. We also briefly explore some ramifications of LTP on network stability, consider current limitations of LTP as a model of associative memory, and entertain future research orientations.
Collapse
Affiliation(s)
- Léa Caya-Bissonnette
- Graduate Program in Neuroscience, University of Ottawa, 451 ch. Smyth Road (3501N), Ottawa, ON K1H 8M5, Canada; Brain and Mind Research Institute's Centre for Neural Dynamics and Artificial Intelligence, 451 ch. Smyth Road (3501N), Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 ch. Smyth Road (3501N), Ottawa, ON K1H 8M5, Canada
| | - Jean-Claude Béïque
- Brain and Mind Research Institute's Centre for Neural Dynamics and Artificial Intelligence, 451 ch. Smyth Road (3501N), Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 ch. Smyth Road (3501N), Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
87
|
Blum Moyse L, Berry H. A coupled neural field model for the standard consolidation theory. J Theor Biol 2024; 588:111818. [PMID: 38621583 DOI: 10.1016/j.jtbi.2024.111818] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024]
Abstract
The standard consolidation theory states that short-term memories located in the hippocampus enable the consolidation of long-term memories in the neocortex. In other words, the neocortex slowly learns long-term memories with a transient support of the hippocampus that quickly learns unstable memories. However, it is not clear yet what could be the neurobiological mechanisms underlying these differences in learning rates and memory time-scales. Here, we propose a novel modeling approach of the standard consolidation theory, that focuses on its potential neurobiological mechanisms. In addition to synaptic plasticity and spike frequency adaptation, our model incorporates adult neurogenesis in the dentate gyrus as well as the difference in size between the neocortex and the hippocampus, that we associate with distance-dependent synaptic plasticity. We also take into account the interconnected spatial structure of the involved brain areas, by incorporating the above neurobiological mechanisms in a coupled neural field framework, where each area is represented by a separate neural field with intra- and inter-area connections. To our knowledge, this is the first attempt to apply neural fields to this process. Using numerical simulations and mathematical analysis, we explore the short-term and long-term dynamics of the model upon alternance of phases of hippocampal replay and retrieval cue of an external input. This external input is encodable as a memory pattern in the form of a multiple bump attractor pattern in the individual neural fields. In the model, hippocampal memory patterns become encoded first, before neocortical ones, because of the smaller distances between the bumps of the hippocampal memory patterns. As a result, retrieval of the input pattern in the neocortex at short time-scales necessitates the additional input delivered by the memory pattern of the hippocampus. Neocortical memory patterns progressively consolidate at longer times, up to a point where their retrieval does not need the support of the hippocampus anymore. At longer times, perturbation of the hippocampal neural fields by neurogenesis erases the hippocampus pattern, leading to a final state where the memory pattern is exclusively evoked in the neocortex. Therefore, the dynamics of our model successfully reproduces the main features of the standard consolidation theory. This suggests that neurogenesis in the hippocampus and distance-dependent synaptic plasticity coupled to synaptic depression and spike frequency adaptation, are indeed critical neurobiological processes in memory consolidation.
Collapse
Affiliation(s)
- Lisa Blum Moyse
- LIRIS, CNRS UMR 5205, Villeurbanne, F-69621, France; AIstroSight, Inria, Hospices Civils de Lyon, Universite Claude Bernard Lyon 1, Villeurbanne, F-69603, France.
| | - Hugues Berry
- AIstroSight, Inria, Hospices Civils de Lyon, Universite Claude Bernard Lyon 1, Villeurbanne, F-69603, France.
| |
Collapse
|
88
|
Qiao M, Huang Q, Wang X, Han J. ZBTB21 suppresses CRE-mediated transcription to impair synaptic function in Down syndrome. SCIENCE ADVANCES 2024; 10:eadm7373. [PMID: 38959316 PMCID: PMC11221507 DOI: 10.1126/sciadv.adm7373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
Down syndrome (DS) is the most common chromosomal disorder and a major cause of intellectual disability. The genetic etiology of DS is the extra copy of chromosome 21 (HSA21)-encoded genes; however, the contribution of specific HSA21 genes to DS pathogenesis remains largely unknown. Here, we identified ZBTB21, an HSA21-encoded zinc-finger protein, as a transcriptional repressor in the regulation of synaptic function. We found that normalization of the Zbtb21 gene copy number in DS mice corrected deficits in cognitive performance, synaptic function, and gene expression. Moreover, we demonstrated that ZBTB21 binds to canonical cAMP-response element (CRE) DNA and that its binding to CRE could be competitive with CRE-binding factors such as CREB. ZBTB21 represses CRE-dependent gene expression and results in the negative regulation of synaptic plasticity, learning and memory. Together, our results identify ZBTB21 as a CRE-binding protein and repressor in cAMP-dependent gene regulation, contributing to cognitive defects in DS.
Collapse
Affiliation(s)
- Muzhen Qiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qianwen Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361002, China
- Laboratory Animal Center, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
- Laboratory Animal Center, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
- Research Unit of Cellular Stress of CAMS, Xiang’an Hospital of Xiamen University, Cancer Research Center of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| |
Collapse
|
89
|
Zhang M, Jia F, Wang Q, Yang C, Wang X, Liu T, Tang Q, Yang Z, Wang H. Kapβ2 Inhibits Perioperative Neurocognitive Disorders in Rats with Mild Cognitive Impairment by Reversing the Nuclear-Cytoplasmic Mislocalization of hnRNPA2/B1. Mol Neurobiol 2024; 61:4488-4507. [PMID: 38102516 DOI: 10.1007/s12035-023-03789-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023]
Abstract
Harmful stimuli trigger mutations lead to uncontrolled accumulation of hnRNPA2/B1 in the cytoplasm, exacerbating neuronal damage. Kapβ2 mediates the bidirectional transport of most substances between the cytoplasm and the nucleus. Kapβ2 guides hnRNPA2/B1 back into the nucleus and restores its function, alleviating related protein toxicity. Here, we aim to explore the involvement of Kapβ2 in neurodegeneration in rats with MCI following sevoflurane anesthesia and surgery. Firstly, novel object recognition test and Barnes maze were conducted to assess behavioral performances, and we found Kapβ2 positively regulated the recovery of memory and cognitive function. In vivo electrophysiological experiments revealed that the hippocampal theta rhythm energy distribution was disrupted, coherence was reduced, and long-term potentiation was attenuated in MCI rats. LTP was greatly improved with positive modulation of Kapβ2. Next, functional MRI and BOLD imaging will be employed to examine the AFLL and FC values of dynamic connectivity between the cortex and hippocampus of the brain. The findings show that regulating Kapβ2 in the hippocampus region enhances functional activity and connections between brain regions in MCI rats. WB results showed that increasing Kapβ2 expression improved the expression and recovery of cognitive-related proteins in the hippocampus of MCI rats. Finally, WB and immunofluorescence were used to examine the changes in hnRNPA2/B1 expression in the nucleus and cytoplasm after overexpression of Kapβ2, and it was found that nucleocytoplasmic mis location was alleviated. Overall, these data show that Kapβ2 reverses the nucleoplasmic misalignment of hnRNPA2/B1, which slows neurodegeneration towards dementia in MCI after sevoflurane anesthesia and surgery. Our findings may lead to new approaches for perioperative neuroprotection of MCI patients.
Collapse
Affiliation(s)
- Miao Zhang
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Nankai University Affinity the Third Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin, China
| | - Feiyu Jia
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Nankai University Affinity the Third Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin, China
| | - Qiang Wang
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Nankai University Affinity the Third Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin, China
| | - Chenyi Yang
- Nankai University Affinity the Third Central Hospital, Tianjin, China
| | - Xinyi Wang
- Nankai University Affinity the Third Central Hospital, Tianjin, China
| | - Tianyue Liu
- Nankai University Affinity the Third Central Hospital, Tianjin, China
| | - Qingkai Tang
- Nankai University Affinity the Third Central Hospital, Tianjin, China
| | - Zhuo Yang
- College of Medicine, Nankai University, Tianjin, China.
| | - Haiyun Wang
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China.
- Nankai University Affinity the Third Central Hospital, Tianjin, China.
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin, China.
| |
Collapse
|
90
|
Tsokas P, Hsieh C, Flores-Obando RE, Bernabo M, Tcherepanov A, Hernández AI, Thomas C, Bergold PJ, Cottrell JE, Kremerskothen J, Shouval HZ, Nader K, Fenton AA, Sacktor TC. KIBRA anchoring the action of PKMζ maintains the persistence of memory. SCIENCE ADVANCES 2024; 10:eadl0030. [PMID: 38924398 PMCID: PMC11204205 DOI: 10.1126/sciadv.adl0030] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
How can short-lived molecules selectively maintain the potentiation of activated synapses to sustain long-term memory? Here, we find kidney and brain expressed adaptor protein (KIBRA), a postsynaptic scaffolding protein genetically linked to human memory performance, complexes with protein kinase Mzeta (PKMζ), anchoring the kinase's potentiating action to maintain late-phase long-term potentiation (late-LTP) at activated synapses. Two structurally distinct antagonists of KIBRA-PKMζ dimerization disrupt established late-LTP and long-term spatial memory, yet neither measurably affects basal synaptic transmission. Neither antagonist affects PKMζ-independent LTP or memory that are maintained by compensating PKCs in ζ-knockout mice; thus, both agents require PKMζ for their effect. KIBRA-PKMζ complexes maintain 1-month-old memory despite PKMζ turnover. Therefore, it is not PKMζ alone, nor KIBRA alone, but the continual interaction between the two that maintains late-LTP and long-term memory.
Collapse
Affiliation(s)
- Panayiotis Tsokas
- Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Department of Anesthesiology, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Changchi Hsieh
- Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Rafael E. Flores-Obando
- Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Matteo Bernabo
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Andrew Tcherepanov
- Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - A. Iván Hernández
- Department of Pathology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Christian Thomas
- Internal Medicine D (MedD), Department of Molecular Nephrology, University Hospital of Münster, 48149 Münster, Germany
| | - Peter J. Bergold
- Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - James E. Cottrell
- Department of Anesthesiology, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Joachim Kremerskothen
- Internal Medicine D (MedD), Department of Molecular Nephrology, University Hospital of Münster, 48149 Münster, Germany
| | - Harel Z. Shouval
- Department of Neurobiology and Anatomy, University of Texas Medical at Houston, Houston, TX 77030, USA
| | - Karim Nader
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - André A. Fenton
- Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Center for Neural Science, New York University, New York, NY 10003, USA
- Neuroscience Institute at NYU Langone Medical Center, New York, NY 10016, USA
| | - Todd C. Sacktor
- Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Department of Anesthesiology, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Department of Neurology, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
| |
Collapse
|
91
|
Bredenberg C, Savin C. Desiderata for Normative Models of Synaptic Plasticity. Neural Comput 2024; 36:1245-1285. [PMID: 38776950 DOI: 10.1162/neco_a_01671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/06/2024] [Indexed: 05/25/2024]
Abstract
Normative models of synaptic plasticity use computational rationales to arrive at predictions of behavioral and network-level adaptive phenomena. In recent years, there has been an explosion of theoretical work in this realm, but experimental confirmation remains limited. In this review, we organize work on normative plasticity models in terms of a set of desiderata that, when satisfied, are designed to ensure that a given model demonstrates a clear link between plasticity and adaptive behavior, is consistent with known biological evidence about neural plasticity and yields specific testable predictions. As a prototype, we include a detailed analysis of the REINFORCE algorithm. We also discuss how new models have begun to improve on the identified criteria and suggest avenues for further development. Overall, we provide a conceptual guide to help develop neural learning theories that are precise, powerful, and experimentally testable.
Collapse
Affiliation(s)
- Colin Bredenberg
- Center for Neural Science, New York University, New York, NY 10003, U.S.A
- Mila-Quebec AI Institute, Montréal, QC H2S 3H1, Canada
| | - Cristina Savin
- Center for Neural Science, New York University, New York, NY 10003, U.S.A
- Center for Data Science, New York University, New York, NY 10011, U.S.A.
| |
Collapse
|
92
|
Pali E, D’Angelo E, Prestori F. Understanding Cerebellar Input Stage through Computational and Plasticity Rules. BIOLOGY 2024; 13:403. [PMID: 38927283 PMCID: PMC11200477 DOI: 10.3390/biology13060403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
A central hypothesis concerning brain functioning is that plasticity regulates the signal transfer function by modifying the efficacy of synaptic transmission. In the cerebellum, the granular layer has been shown to control the gain of signals transmitted through the mossy fiber pathway. Until now, the impact of plasticity on incoming activity patterns has been analyzed by combining electrophysiological recordings in acute cerebellar slices and computational modeling, unraveling a broad spectrum of different forms of synaptic plasticity in the granular layer, often accompanied by forms of intrinsic excitability changes. Here, we attempt to provide a brief overview of the most prominent forms of plasticity at the excitatory synapses formed by mossy fibers onto primary neuronal components (granule cells, Golgi cells and unipolar brush cells) in the granular layer. Specifically, we highlight the current understanding of the mechanisms and their functional implications for synaptic and intrinsic plasticity, providing valuable insights into how inputs are processed and reconfigured at the cerebellar input stage.
Collapse
Affiliation(s)
- Eleonora Pali
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (E.P.)
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (E.P.)
- Digital Neuroscience Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (E.P.)
| |
Collapse
|
93
|
Nunes M, Madeira N, Fonseca R. Cdc42 activation is necessary for heterosynaptic cooperation and competition. Mol Cell Neurosci 2024; 129:103921. [PMID: 38428552 DOI: 10.1016/j.mcn.2024.103921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024] Open
Abstract
Synapses change their weights in response to neuronal activity and in turn, neuronal networks alter their response properties and ultimately allow the brain to store information as memories. As for memories, not all events are maintained over time. Maintenance of synaptic plasticity depends on the interplay between functional changes at synapses and the synthesis of plasticity-related proteins that are involved in stabilizing the initial functional changes. Different forms of synaptic plasticity coexist in time and across the neuronal dendritic area. Thus, homosynaptic plasticity refers to activity-dependent synaptic modifications that are input-specific, whereas heterosynaptic plasticity relates to changes in non-activated synapses. Heterosynaptic forms of plasticity, such as synaptic cooperation and competition allow neurons to integrate events that occur separated by relatively large time windows, up to one hour. Here, we show that activation of Cdc42, a Rho GTPase that regulates actin cytoskeleton dynamics, is necessary for the maintenance of long-term potentiation (LTP) in a time-dependent manner. Inhibiting Cdc42 activation does not alter the time-course of LTP induction and its initial expression but blocks its late maintenance. We show that Cdc42 activation is involved in the phosphorylation of cofilin, a protein involved in modulating actin filaments and that weak and strong synaptic activation leads to similar levels on cofilin phosphorylation, despite different levels of LTP expression. We show that Cdc42 activation is required for synapses to interact by cooperation or competition, supporting the hypothesis that modulation of the actin cytoskeleton provides an activity-dependent and time-restricted permissive state of synapses allowing synaptic plasticity to occur. We found that under competition, the sequence in which synapses are activated determines the degree of LTP destabilization, demonstrating that competition is an active destabilization process. Taken together, we show that modulation of actin cytoskeleton by Cdc42 activation is necessary for the expression of homosynaptic and heterosynaptic forms of plasticity. Determining the temporal and spatial rules that determine whether synapses cooperate or compete will allow us to understand how memories are associated.
Collapse
Affiliation(s)
- Mariana Nunes
- Cellular and Systems Neurobiology, NOVA Medical Research, NOVA Medical School, Universidade NOVA de Lisboa, Portugal
| | - Natália Madeira
- Cellular and Systems Neurobiology, NOVA Medical Research, NOVA Medical School, Universidade NOVA de Lisboa, Portugal
| | - Rosalina Fonseca
- Cellular and Systems Neurobiology, NOVA Medical Research, NOVA Medical School, Universidade NOVA de Lisboa, Portugal.
| |
Collapse
|
94
|
Gonçalves FQ, Valada P, Matos M, Cunha RA, Tomé AR. Feedback facilitation by adenosine A 2A receptors of ATP release from mouse hippocampal nerve terminals. Purinergic Signal 2024; 20:247-255. [PMID: 36997740 PMCID: PMC11189372 DOI: 10.1007/s11302-023-09937-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/25/2023] [Indexed: 04/01/2023] Open
Abstract
The adenosine modulation system is mostly composed by inhibitory A1 receptors (A1R) and the less abundant facilitatory A2A receptors (A2AR), the latter selectively engaged at high frequency stimulation associated with synaptic plasticity processes in the hippocampus. A2AR are activated by adenosine originated from extracellular ATP through ecto-5'-nucleotidase or CD73-mediated catabolism. Using hippocampal synaptosomes, we now investigated how adenosine receptors modulate the synaptic release of ATP. The A2AR agonist CGS21680 (10-100 nM) enhanced the K+-evoked release of ATP, whereas both SCH58261 and the CD73 inhibitor α,β-methylene ADP (100 μM) decreased ATP release; all these effects were abolished in forebrain A2AR knockout mice. The A1R agonist CPA (10-100 nM) inhibited ATP release, whereas the A1R antagonist DPCPX (100 nM) was devoid of effects. The presence of SCH58261 potentiated CPA-mediated ATP release and uncovered a facilitatory effect of DPCPX. Overall, these findings indicate that ATP release is predominantly controlled by A2AR, which are involved in an apparent feedback loop of A2AR-mediated increased ATP release together with dampening of A1R-mediated inhibition. This study is a tribute to María Teresa Miras-Portugal.
Collapse
Affiliation(s)
- Francisco Q Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Pedro Valada
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Marco Matos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.
- FMUC - Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal.
| | - Angelo R Tomé
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3004-517, Coimbra, Portugal
| |
Collapse
|
95
|
Wang X, Pang Q, Hu J, Luo B, Lu Y, Sun X, Meng S, Jiang Q. Cognitive decline in Sprague-Dawley rats induced by neuroplasticity changes after occlusal support loss. CNS Neurosci Ther 2024; 30:e14750. [PMID: 38898731 PMCID: PMC11187409 DOI: 10.1111/cns.14750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/28/2024] [Accepted: 04/20/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Tooth loss is closely related to cognitive impairment, especially affecting cognitive functions involving hippocampus. The most well-known function of the hippocampus is learning and memory, and the mechanism behind is neuroplasticity, which strongly depends on the level of brain-derived neurotrophic factor (BDNF). While research has delved into the possible mechanisms behind the loss of teeth leading to cognitive dysfunction, there are few studies on the plasticity of sensory neural pathway after tooth loss, and the changes in related indicators of synaptic plasticity still need to be further explored. METHODS In this study, the bilateral maxillary molars were extracted in Sprague-Dawley rats of two age ranges (young and middle age) to establish occlusal support loss model; then, the spatial cognition was tested by Morris Water Maze (MWM). Quantitative real-time PCR (qPCR) and Western Blotting (WB) were used to detect BDNF, AKT, and functional proteins (viz., PSD95 and NMDAR) of hippocampal synapses. Golgi staining was used to observe changes in ascending nerve pathway. IF was used to confirm the location of BDNF and AKT expressed in hippocampus. RESULTS MWM showed that the spatial cognitive level of rats dropped after occlusal support loss. qPCR, WB, and IF suggested that the BDNF/AKT pathway was down-regulated in the hippocampus. Golgi staining showed the neurons of ascending sensory pathway decreased in numbers. CONCLUSION Occlusal support loss caused plastic changes in ascending nerve pathway and induced cognitive impairment in rats by down-regulating BDNF and synaptic plasticity.
Collapse
Affiliation(s)
- Xiaoyu Wang
- School of StomatologyCapital Medical UniversityBeijingChina
| | - Qian Pang
- Department of Prosthodontics, Beijing Stomatological HospitalCapital Medical UniversityBeijingChina
| | - Jiangqi Hu
- Department of Prosthodontics, Beijing Stomatological HospitalCapital Medical UniversityBeijingChina
| | - Bin Luo
- Department of Prosthodontics, Beijing Stomatological HospitalCapital Medical UniversityBeijingChina
| | - Yunping Lu
- Department of Prosthodontics, Beijing Stomatological HospitalCapital Medical UniversityBeijingChina
| | - Xu Sun
- School of StomatologyCapital Medical UniversityBeijingChina
| | - Shixiang Meng
- School of StomatologyCapital Medical UniversityBeijingChina
| | - Qingsong Jiang
- Department of Prosthodontics, Beijing Stomatological HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
96
|
Flores JC, Zito K. A synapse-specific refractory period for plasticity at individual dendritic spines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595787. [PMID: 38826343 PMCID: PMC11142223 DOI: 10.1101/2024.05.24.595787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
How newly formed memories are preserved while brain plasticity is ongoing has been a source of debate. One idea is that synapses which experienced recent plasticity become resistant to further plasticity, a type of metaplasticity often referred to as saturation. Here, we probe the local dendritic mechanisms that limit plasticity at recently potentiated synapses. We show that recently potentiated individual synapses exhibit a synapse-specific refractory period for further potentiation. We further found that the refractory period is associated with reduced postsynaptic CaMKII signaling; however, stronger synaptic activation only partially restored the ability for further plasticity. Importantly, the refractory period is released after one hour, a timing that coincides with the enrichment of several postsynaptic proteins to pre-plasticity levels. Notably, increasing the level of the postsynaptic scaffolding protein, PSD95, but not of PSD93, overcomes the refractory period. Our results support a model in which potentiation at a single synapse is sufficient to initiate a synapse-specific refractory period that persists until key postsynaptic proteins regain their steady-state synaptic levels.
Collapse
Affiliation(s)
- Juan C. Flores
- Center for Neuroscience, University of California, Davis, CA 95618
| | - Karen Zito
- Center for Neuroscience, University of California, Davis, CA 95618
| |
Collapse
|
97
|
Lu C, Wang X, Liu XY. Flexible Meso Electronics and Photonics Based on Cocoon Silk and Applications. ACS Biomater Sci Eng 2024; 10:2784-2804. [PMID: 38597279 DOI: 10.1021/acsbiomaterials.4c00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Flexible electronics, applicable to enlarged health, AI big data medications, etc., have been one of the most important technologies of this century. Due to its particular mechanical properties, biocompatibility, and biodegradability, cocoon silk (or SF, silk fibroin) plays a key role in flexible electronics/photonics. The review begins with an examination of the hierarchical meso network structures of SF materials and introduces the concepts of meso reconstruction, meso doping, and meso hybridization based on the correlation between the structure and performance of silk materials. The SF meso functionalization was developed according to intermolecular nuclear templating. By implementation of the techniques of meso reconstruction and functionalization in the refolding of SF materials, extraordinary performance can be achieved. Relying on this strategy, particularly designed flexible electronic and photonic components can be developed. This review covers the latest ideas and technologies of meso flexible electronics and photonics based on SF materials/meso functionalization. As silk materials are biocompatible and human skin-friendly, SF meso flexible electronic/photonic components can be applied to wearable or implanted devices. These devices are applicable in human physiological signals and activities sensing/monitoring. In the case of human-machine interaction, the devices can be applicable in in-body information transmission, computation, and storage, with the potential for the combination of artificial intelligence and human intelligence.
Collapse
Affiliation(s)
- Changsheng Lu
- State Key Laboratory of Marine Environmental Science (MEL), College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Xiao Wang
- State Key Laboratory of Marine Environmental Science (MEL), College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Xiang Yang Liu
- State Key Laboratory of Marine Environmental Science (MEL), College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, P.R. China
| |
Collapse
|
98
|
van der Pal Z, Walhovd KB, Amlien IK, Guichelaar CJ, Kaiser A, Bottelier MA, Geurts HM, Reneman L, Schrantee A. Stimulant medication use and apparent cortical thickness development in attention-deficit/hyperactivity disorder: a prospective longitudinal study. Front Psychiatry 2024; 15:1365159. [PMID: 38774436 PMCID: PMC11107082 DOI: 10.3389/fpsyt.2024.1365159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/09/2024] [Indexed: 05/24/2024] Open
Abstract
Background Stimulant medication is commonly prescribed as treatment for attention-deficit/hyperactivity disorder (ADHD). While we previously found that short-term stimulant-treatment influences apparent cortical thickness development in an age-dependent manner, it remains unknown whether these effects persist throughout development into adulthood. Purpose Investigate the long-term age-dependent effects of stimulant medication use on apparent cortical thickness development in adolescents and adults previously diagnosed with ADHD. Methods This prospective study included the baseline and 4-year follow-up assessment of the "effects of Psychotropic drugs On the Developing brain-MPH" ("ePOD-MPH") project, conducted between June-1-2011 and December-28-2019. The analyses were pre-registered (https://doi.org/10.17605/OSF.IO/32BHF). T1-weighted MR scans were obtained from male adolescents and adults, and cortical thickness was estimated for predefined regions of interest (ROIs) using Freesurfer. We determined medication use and assessed symptoms of ADHD, anxiety, and depression at both time points. Linear mixed models were constructed to assess main effects and interactions of stimulant medication use, time, and age group on regional apparent cortical thickness. Results A total of 32 male adolescents (aged mean ± SD, 11.2 ± 0.9 years at baseline) and 24 men (aged mean ± SD, 29.9 ± 5.0 years at baseline) were included that previously participated in the ePOD-MPH project. We found no evidence for long-term effects of stimulant medication use on ROI apparent cortical thickness. As expected, we did find age-by-time interaction effects in all ROIs (left prefrontal ROI: P=.002, right medial and posterior ROIs: P<.001), reflecting reductions in apparent cortical thickness in adolescents. Additionally, ADHD symptom severity (adolescents: P<.001, adults: P=.001) and anxiety symptoms (adolescents: P=0.03) were reduced, and more improvement of ADHD symptoms was associated with higher medication use in adults (P=0.001). Conclusion We found no evidence for long-term effects of stimulant-treatment for ADHD on apparent cortical thickness development in adolescents and adults. The identified age-dependent differences in apparent cortical thickness development are consistent with existing literature on typical cortical development.
Collapse
Affiliation(s)
- Zarah van der Pal
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center (UMC) location University of Amsterdam, Amsterdam, Netherlands
| | - Kristine B. Walhovd
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Inge K. Amlien
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | | | - Antonia Kaiser
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center (UMC) location University of Amsterdam, Amsterdam, Netherlands
- CIBM, Center for Biomedical Imaging, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Marco A. Bottelier
- Accare, Centre for Academic Child and Adolescent Psychiatry, University Medical Center (UMC) Groningen, Groningen, Netherlands
| | - Hilde M. Geurts
- Division of Brain & Cognition, Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Liesbeth Reneman
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center (UMC) location University of Amsterdam, Amsterdam, Netherlands
| | - Anouk Schrantee
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center (UMC) location University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
99
|
Ma X, Wang X, Zhu K, Ma R, Chu F, Liu X, Zhang S, Yin T, Zhou X, Liu Z. Study on the Role of Physical Fields in TMAS to Modulate Synaptic Plasticity in Mice. IEEE Trans Biomed Eng 2024; 71:1531-1541. [PMID: 38117631 DOI: 10.1109/tbme.2023.3342012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
OBJECTIVE Transcranial magneto-acoustic stimulation (TMAS) is a composite technique combining static magnetic and coupled electric fields with transcranial ultrasound stimulation (TUS) and has shown advantages in neuromodulation. However, the role of these physical fields in neuromodulation is unclear. Synaptic plasticity is the cellular basis for learning and memory. In this paper, we varied the intensity of static magnetic, electric and ultrasonic fields respectively to investigate the modulation of synaptic plasticity by these physical fields. METHODS There are control, static magnetic field (0.1 T/0.2 T), TUS (0.15/0.3 MPa), and TMAS (0.15 MPa + 0.2 V/m, 0.3 MPa + 0.2 V/m, 0.3 MPa + 0.4 V/m) groups. Hippocampal areas were stimulated at 5 min daily for 7 days and in vivo electrophysiological experiments were performed. RESULTS TMAS induced greater LTP, LTD, and paired-pulse ratio (PPR) than TUS, reflecting that TMAS has a more significant modulation in both long- and short- term synaptic plasticity. In TMAS, a doubling of the electric field amplitude increases LTP, LTD and PPR to a greater extent than a doubling of the acoustic pressure. Increasing the static magnetic field intensity has no significant effect on the modulation of synaptic plasticity. CONCLUSION This paper argues that electric fields should be the main reason for the difference in modulation between TMAS and TUS and that changing the amplitude of the electric field affected the modulation of TMAS more than changing the acoustic pressure. SIGNIFICANCE This study elucidates the roles of the physical fields in TMAS and provides a parameterisation way to guide TMAS applications based on the dominant roles of the physical fields.
Collapse
|
100
|
Donahue MM, Colgin LL. Seed-stashing chickadees overturn ideas about location memory. Nature 2024; 629:1005-1006. [PMID: 38783155 DOI: 10.1038/d41586-024-01500-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
|