51
|
Abstract
Obesity has increased in prevalence worldwide, attributed in part to the influences of an obesity-promoting environment and genetic factors. While obesity and overweight increasingly seem to be the norm, there remain individuals who resist obesity. We present here an overview of data supporting the idea that hypothalamic neuropeptide orexin A (OXA; hypocretin 1) may be a key component of brain mechanisms underlying obesity resistance. Prior work with models of obesity and obesity resistance in rodents has shown that increased orexin and/or orexin sensitivity is correlated with elevated spontaneous physical activity (SPA), and that orexin-induced SPA contributes to obesity resistance via increased non-exercise activity thermogenesis (NEAT). However, central hypothalamic orexin signaling mechanisms that regulate SPA remain undefined. Our ongoing studies and work of others support the hypothesis that one such mechanism may be upregulation of a hypoxia-inducible factor 1 alpha (HIF-1α)-dependent pathway, suggesting that orexin may promote obesity resistance both by increasing SPA and by influencing the metabolic state of orexin-responsive hypothalamic neurons. We discuss potential mechanisms based on both animal and in vitro pharmacological studies, in the context of elucidating potential molecular targets for obesity prevention and therapy.
Collapse
Affiliation(s)
- Tammy A. Butterick
- Minneapolis Veterans Affairs Health Care System, Research 151, One Veterans Drive, Minneapolis, MN USA 55417
| | - Charles J. Billington
- Minneapolis Veterans Affairs Health Care System, Research 151, One Veterans Drive, Minneapolis, MN USA 55417
- Department of Food Science and Nutrition, University of Minnesota, 225 Food Science and Nutrition, 1334 Eckles Avenue, St. Paul, MN USA 55108
- Department of Medicine, University of Minnesota Medical School, Suite 14-110 Phillips-Wangensteen Bldg, 420 Delaware Street SE, MMC 194, Minneapolis, MN USA 55455
| | - Catherine M. Kotz
- Minneapolis Veterans Affairs Health Care System, Research 151, One Veterans Drive, Minneapolis, MN USA 55417
- Department of Food Science and Nutrition, University of Minnesota, 225 Food Science and Nutrition, 1334 Eckles Avenue, St. Paul, MN USA 55108
| | - Joshua P. Nixon
- Minneapolis Veterans Affairs Health Care System, Research 151, One Veterans Drive, Minneapolis, MN USA 55417
- Department of Food Science and Nutrition, University of Minnesota, 225 Food Science and Nutrition, 1334 Eckles Avenue, St. Paul, MN USA 55108
| |
Collapse
|
52
|
Teske JA, Billington CJ, Kotz CM. Mechanisms underlying obesity resistance associated with high spontaneous physical activity. Neuroscience 2013; 256:91-100. [PMID: 24161277 DOI: 10.1016/j.neuroscience.2013.10.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/11/2013] [Accepted: 10/11/2013] [Indexed: 12/12/2022]
Abstract
Obesity resistance due to elevated orexin signaling is accompanied by high levels of spontaneous physical activity (SPA). The behavioral and neural mechanisms underlying this observation have not been fully worked out. We determined the contribution of hypothalamic orexin receptors (OXRs) to SPA stimulated by orexin A (OXA), whether OXA-stimulated SPA was secondary to arousal and whether voluntary wheel running led to compensations in 24-h SPA. We further tested whether orexin action on dopamine one receptors (DA1R) in the substantia nigra (SN) plays an important role in the generation of SPA. To test this, SPA response was determined in lean and obese rats with cannulae targeted toward the rostral lateral hypothalamus (rLH) or SN. Sleep/wake states were also measured in rats with rLH cannula and electroencephalogram/electromyogram radiotelemetry transmitters. SPA in lean rats was more sensitive to antagonism of the OX1R and in the early response to the orexin 2 agonist. OXA increased arousal equally in lean and obese rodents, which is discordant from the greater SPA response in lean rats. Obesity-resistant rats ran more and wheel running was directly related to 24-h SPA levels. The OX1R antagonist, SB-334867-A, and the DA1R antagonist, SCH3390, in SN more effectively reduced SPA stimulated by OXA in obesity-resistant rats. These data suggest OXA-stimulated SPA is not secondary to enhanced arousal, propensity for SPA parallels inclination to run and that orexin action on dopaminergic neurons in SN may participate in the mediation of SPA and running wheel activity.
Collapse
Affiliation(s)
- J A Teske
- Department of Nutritional Sciences, University of Arizona and Southern Arizona, VA Health Care System, Tucson, AZ, USA; Minneapolis VA Health Care System, Minneapolis, MN 55417, USA; Minnesota Obesity Center, 1334 Eckles Avenue, Saint Paul, MN 55108, USA; Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, Saint Paul, MN 55108, USA.
| | - C J Billington
- Minneapolis VA Health Care System, Minneapolis, MN 55417, USA; Minnesota Obesity Center, 1334 Eckles Avenue, Saint Paul, MN 55108, USA; Department of Medicine, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, USA; Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, Saint Paul, MN 55108, USA.
| | - C M Kotz
- Minneapolis VA Health Care System, Minneapolis, MN 55417, USA; Minnesota Obesity Center, 1334 Eckles Avenue, Saint Paul, MN 55108, USA; Geriatric Research, Education and Clinical Center, One Veterans Drive, Minneapolis, MN 55417, USA; Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, Saint Paul, MN 55108, USA.
| |
Collapse
|
53
|
Perez-Leighton CE, Boland K, Billington CJ, Kotz CM. High and low activity rats: elevated intrinsic physical activity drives resistance to diet-induced obesity in non-bred rats. Obesity (Silver Spring) 2013; 21:353-60. [PMID: 23404834 PMCID: PMC3610816 DOI: 10.1002/oby.20045] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 08/01/2012] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Humans and rodents show large variability in their individual sensitivity to diet-induced obesity (DIO), which has been associated with differences in intrinsic spontaneous physical activity (SPA). Evidence from genetic and out-bred rat obesity models shows that higher activity of the orexin peptides results in higher intrinsic SPA and protection against DIO. Based on this, we hypothesized that naturally occurring variation in SPA and orexin signaling is sufficient to drive differences in sensitivity to DIO. DESIGN AND METHODS Orexin expression, behavioral responses to orexin-A, basal energy expenditure and sensitivity to DIO were measured in in non-manipulated male Sprague-Dawley rats selected for high and low intrinsic SPA. RESULTS Male Sprague-Dawley rats were classified as high-activity or low-activity based on differences in intrinsic SPA. High-activity rats showed higher expression of prepro-orexin mRNA, higher sensitivity to behavioral effects of orexin injection, higher basal energy expenditure and were more resistant to obesity caused by high-fat diet consumption than low-activity rats. CONCLUSION Our results define a new model of differential DIO sensitivity, the high-activity and low-activity rats, and suggest that naturally occurring variations in intrinsic SPA cause differences in energy expenditure that are mediated by orexin signaling and alter DIO sensitivity.
Collapse
|
54
|
Perez-Leighton CE, Boland K, Teske JA, Billington C, Kotz CM. Behavioral responses to orexin, orexin receptor gene expression, and spontaneous physical activity contribute to individual sensitivity to obesity. Am J Physiol Endocrinol Metab 2012; 303:E865-74. [PMID: 22829584 PMCID: PMC3469621 DOI: 10.1152/ajpendo.00119.2012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 07/20/2012] [Indexed: 01/08/2023]
Abstract
There is significant variability in diet-induced obesity (DIO) among humans and rodents, which has been associated with differences in intrinsic spontaneous physical activity (SPA). The orexin neuropeptides positively modulate SPA through multiple brain sites, but the effects of DIO on orexin's activity are not well understood. In this study, we tested the hypothesis that DIO sensitivity is mediated by decreased SPA and changes in the function of the orexins. As a DIO model, we used male Sprague-Dawley rats fed a high-fat (HF; 45% kcal from fat) or a low-fat (LF; 10% kcal from fat) diet for 10 wk. We measured SPA before and after HF or LF feeding and expression of orexin receptors by real-time PCR after dietary treatments. We tested DIO effects on orexin signaling by measuring SPA after injection of orexin A in the rostral lateral hypothalamus (RLH) before and after 10 wk of HF feeding. Finally, we tested whether daily orexin A RLH injections prevent DIO caused by HF feeding. Our results show that resistance to DIO is associated with an increase in SPA, SPA after injection of orexin A in RLH, and orexin receptor expression in sites that mediate orexin's effect on SPA, including RLH. We show that daily injections of orexin peptide in RLH prevent DIO without altering food intake. We estimate that the energetic cost of SPA after orexin A RLH injection accounts for approximately 61% of the extra caloric intake associated with HF intake, suggesting additional effects of orexins. In summary, our results suggest that variability in DIO sensitivity is mediated through adaptations in the activity of the orexin peptides and their receptors.
Collapse
|
55
|
Kotz C, Nixon J, Butterick T, Perez-Leighton C, Teske J, Billington C. Brain orexin promotes obesity resistance. Ann N Y Acad Sci 2012; 1264:72-86. [PMID: 22803681 PMCID: PMC3464355 DOI: 10.1111/j.1749-6632.2012.06585.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Resistance to obesity is becoming an exception rather than the norm, and understanding mechanisms that lead some to remain lean in spite of an obesigenic environment is critical if we are to find new ways to reverse this trend. Levels of energy intake and physical activity both contribute to body weight management, but it is challenging for most to adopt major long-term changes in either factor. Physical activity outside of formal exercise, also referred to as activity of daily living, and in stricter form, spontaneous physical activity (SPA), may be an attractive modifiable variable for obesity prevention. In this review, we discuss individual variability in SPA and NEAT (nonexercise thermogenesis, or the energy expended by SPA) and its relationship to obesity resistance. The hypothalamic neuropeptide orexin (hypocretin) may play a key role in regulating SPA and NEAT. We discuss how elevated orexin signaling capacity, in the context of a brain network modulating SPA, may play a major role in defining individual variability in SPA and NEAT. Greater activation of this SPA network leads to a lower propensity for fat mass gain and therefore may be an attractive target for obesity prevention and therapy.
Collapse
Affiliation(s)
- Catherine Kotz
- Department of Veterans Affairs, GRECC and Research Service, Minneapolis, Minnesota 55417, USA.
| | | | | | | | | | | |
Collapse
|
56
|
Leenaars CHC, Kalsbeek A, Hanegraaf MAJ, Foppen E, Joosten RNJMA, Post G, Dematteis M, Feenstra MGP, van Someren EJW. Unaltered instrumental learning and attenuated body-weight gain in rats during non-rotating simulated shiftwork. Chronobiol Int 2012; 29:344-55. [PMID: 22390247 DOI: 10.3109/07420528.2011.654018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Exposure to shiftwork has been associated with multiple health disorders and cognitive impairments in humans. We tested if we could replicate metabolic and cognitive consequences of shiftwork, as reported in humans, in a rat model comparable to 5 wks of non-rotating night shifts. The following hypotheses were addressed: (i) shiftwork enhances body-weight gain, which would indicate metabolic effects; and (ii) shiftwork negatively affects learning of a simple goal-directed behavior, i.e., the association of lever pressing with food reward (instrumental learning), which would indicate cognitive effects. We used a novel method of forced locomotion to model work during the animals' normal resting period. We first show that Wistar rats, indeed, are active throughout a shiftwork protocol. In contrast with previous findings, the shiftwork protocol attenuated the normal weight gain to 76 ± 8 g in 5 wks as compared to 123 ± 15 g in the control group. The discrepancy with previous work may be explained by the concurrent observation that with our shiftwork protocol rats did not adjust their between-work circadian activity pattern. They maintained a normal level of activity during the "off-work" periods. In the control experiment, rats were kept active during the dark period, normally dominated by activity. This demonstrated that forced activity, per se, did not affect body-weight gain (mean ± SEM: 85 ± 11 g over 5 wks as compared to 84 ± 11 g in the control group). Rats were trained on an instrumental learning paradigm during the fifth week of the protocol. All groups showed equivalent increases in lever pressing from the first (3.8 ± .7) to the sixth (21.3 ± 2.4) session, and needed a similar amount of sessions (5.1 ± .3) to reach a learning criterion (≥ 27 out of 30 lever presses). These results suggest that while on prolonged non-rotating shiftwork, not fully reversing the circadian rhythm might actually be beneficial to prevent body-weight gain and cognitive impairments.
Collapse
Affiliation(s)
- C H C Leenaars
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, The Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Effects of orexin-monoaminergic interactions on oxytocin secretion in rat neurohypophyseal cell cultures. ACTA ACUST UNITED AC 2012; 175:43-8. [DOI: 10.1016/j.regpep.2012.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 11/03/2011] [Accepted: 01/10/2012] [Indexed: 11/23/2022]
|
58
|
Abstract
The orexin peptides and their two receptors are involved in multiple physiological processes, including energy homeostasis, arousal, stress and reward. Higher signaling of the orexin peptides at the orexin receptors (OXR) protects against obesity, but it is less clear how their activation in different brain regions contributes to this behavioral output. This review summarizes the evidence available for a role of central OXR in energy homeostasis and their contribution to obesity. A detailed analysis of anatomical, cellular and behavioral evidence shows that modulation of energy homeostasis by the OXR is largely dependent upon anatomical and cellular context. It also shows that obesity resistance provided by activation of the OXR is distributed across multiple brain sites with site-specific actions. We suggest that understanding the role of the OXR in the development of obesity requires considering both specific mechanisms within brain regions and interactions of orexinergic input between multiple sites.
Collapse
|
59
|
Rusyniak DE, Zaretsky DV, Zaretskaia MV, Durant PJ, DiMicco JA. The orexin-1 receptor antagonist SB-334867 decreases sympathetic responses to a moderate dose of methamphetamine and stress. Physiol Behav 2012; 107:743-50. [PMID: 22361264 DOI: 10.1016/j.physbeh.2012.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 02/01/2012] [Accepted: 02/07/2012] [Indexed: 11/29/2022]
Abstract
We recently discovered that inhibiting neurons in the dorsomedial hypothalamus (DMH) attenuated hyperthermia, tachycardia, hypertension, and hyperactivity evoked by the substituted amphetamine 3, 4-methylenedioxymethamphetamine (MDMA). Neurons that synthesize orexin are also found in the region of the DMH. As orexin and its receptors are involved in the regulation of heart rate and temperature, they would seem to be logical candidates as mediators of the effects evoked by amphetamines. The goal of this study was to determine if blockade of orexin-1 receptors in conscious rats would suppress cardiovascular and thermogenic responses evoked by a range of methamphetamine (METH) doses. Male Sprague-Dawley rats (n=6 per group) were implanted with telemetric transmitters measuring body temperature, heart rate, and mean arterial pressure. Animals were randomized to receive pretreatment with either the orexin-1 receptor antagonist SB-334867 (10mg/kg) or an equal volume of vehicle. Thirty minutes later animals were given intraperitoneal (i.p.) injections of either saline, a low (1mg/kg), moderate (5mg/kg) or high (10mg/kg) dose of METH. Pretreatment with SB-334867 significantly attenuated increases in body temperature and mean arterial pressure evoked by the moderate but not the low or high dose of METH. Furthermore, animals treated with SB-334867, compared to vehicle, had lower temperature and heart rate increases after the stress of an i.p. injection. In conclusion, temperature and cardiovascular responses to a moderate dose of METH and to stress appear to involve orexin-1 receptors. The failure to affect a low and a high dose of METH suggests a complex pharmacology dependent on dose. A better understanding of this may lead to the knowledge of how monoamines influence the orexin system and vice versa.
Collapse
Affiliation(s)
- Daniel E Rusyniak
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| | | | | | | | | |
Collapse
|
60
|
Abstract
The orexins/hypocretins are endogenous, modulatory and multifunctional neuropeptides with prominent influence on several physiological processes. The influence of orexins on energy expenditure is highlighted with focus on orexin action on individual components of energy expenditure. As orexin stabilizes and maintains normal states of arousal and the sleep/wake cycle, we also highlight orexin mediation of sleep and how sleep interacts with energy expenditure.
Collapse
Affiliation(s)
- Jennifer A Teske
- Department of Nutritional Sciences, University of Arizona and Southern Arizona VA Health Care System, Tucson, Arizona, USA
| | | |
Collapse
|
61
|
Nixon JP, Kotz CM, Novak CM, Billington CJ, Teske JA. Neuropeptides controlling energy balance: orexins and neuromedins. Handb Exp Pharmacol 2012:77-109. [PMID: 22249811 DOI: 10.1007/978-3-642-24716-3_4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this chapter, we review the feeding and energy expenditure effects of orexin (also known as hypocretin) and neuromedin. Orexins are multifunctional neuropeptides that affect energy balance by participating in regulation of appetite, arousal, and spontaneous physical activity. Central orexin signaling for all functions originates in the lateral hypothalamus-perifornical area and is likely functionally differentiated based on site of action and on interacting neural influences. The effect of orexin on feeding is likely related to arousal in some ways but is nonetheless a separate neural process that depends on interactions with other feeding-related neuropeptides. In a pattern distinct from other neuropeptides, orexin stimulates both feeding and energy expenditure. Orexin increases in energy expenditure are mainly by increasing spontaneous physical activity, and this energy expenditure effect is more potent than the effect on feeding. Global orexin manipulations, such as in transgenic models, produce energy balance changes consistent with a dominant energy expenditure effect of orexin. Neuromedins are gut-brain peptides that reduce appetite. There are gut sources of neuromedin, but likely the key appetite-related neuromedin-producing neurons are in the hypothalamus and parallel other key anorectic neuropeptide expression in the arcuate to paraventricular hypothalamic projection. As with other hypothalamic feeding-related peptides, hindbrain sites are likely also important sources and targets of neuromedin anorectic action. Neuromedin increases physical activity in addition to reducing appetite, thus producing a consistent negative energy balance effect. Together with the other various neuropeptides, neurotransmitters, neuromodulators, and neurohormones, neuromedin and orexin act in the appetite network to produce changes in food intake and energy expenditure, which ultimately influences the regulation of body weight.
Collapse
Affiliation(s)
- Joshua P Nixon
- Veterans Affairs Medical Center, Research Service (151), Minneapolis, MN, USA
| | | | | | | | | |
Collapse
|
62
|
|
63
|
Remmers F, Delemarre-van de Waal HA. Developmental programming of energy balance and its hypothalamic regulation. Endocr Rev 2011; 32:272-311. [PMID: 21051592 DOI: 10.1210/er.2009-0028] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Developmental programming is an important physiological process that allows different phenotypes to originate from a single genotype. Through plasticity in early life, the developing organism can adopt a phenotype (within the limits of its genetic background) that is best suited to its expected environment. In humans, together with the relative irreversibility of the phenomenon, the low predictive value of the fetal environment for later conditions in affluent countries makes it a potential contributor to the obesity epidemic of recent decades. Here, we review the current evidence for developmental programming of energy balance. For a proper understanding of the subject, knowledge about energy balance is indispensable. Therefore, we first present an overview of the major hypothalamic routes through which energy balance is regulated and their ontogeny. With this background, we then turn to the available evidence for programming of energy balance by the early nutritional environment, in both man and rodent models. A wealth of studies suggest that energy balance can indeed be permanently affected by the early-life environment. However, the direction of the effects of programming appears to vary considerably, both between and within different animal models. Because of these inconsistencies, a comprehensive picture is still elusive. More standardization between studies seems essential to reach veritable conclusions about the role of developmental programming in adult energy balance and obesity.
Collapse
Affiliation(s)
- Floor Remmers
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Germany.
| | | |
Collapse
|
64
|
Leenaars CH, Dematteis M, Joosten RN, Eggels L, Sandberg H, Schirris M, Feenstra MG, Van Someren EJ. A new automated method for rat sleep deprivation with minimal confounding effects on corticosterone and locomotor activity. J Neurosci Methods 2011; 196:107-17. [DOI: 10.1016/j.jneumeth.2011.01.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 01/13/2011] [Accepted: 01/14/2011] [Indexed: 10/18/2022]
|
65
|
Garland T, Schutz H, Chappell MA, Keeney BK, Meek TH, Copes LE, Acosta W, Drenowatz C, Maciel RC, van Dijk G, Kotz CM, Eisenmann JC. The biological control of voluntary exercise, spontaneous physical activity and daily energy expenditure in relation to obesity: human and rodent perspectives. J Exp Biol 2011; 214:206-229. [PMID: 21177942 PMCID: PMC3008631 DOI: 10.1242/jeb.048397] [Citation(s) in RCA: 331] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2010] [Indexed: 12/11/2022]
Abstract
Mammals expend energy in many ways, including basic cellular maintenance and repair, digestion, thermoregulation, locomotion, growth and reproduction. These processes can vary tremendously among species and individuals, potentially leading to large variation in daily energy expenditure (DEE). Locomotor energy costs can be substantial for large-bodied species and those with high-activity lifestyles. For humans in industrialized societies, locomotion necessary for daily activities is often relatively low, so it has been presumed that activity energy expenditure and DEE are lower than in our ancestors. Whether this is true and has contributed to a rise in obesity is controversial. In humans, much attention has centered on spontaneous physical activity (SPA) or non-exercise activity thermogenesis (NEAT), the latter sometimes defined so broadly as to include all energy expended due to activity, exclusive of volitional exercise. Given that most people in Western societies engage in little voluntary exercise, increasing NEAT may be an effective way to maintain DEE and combat overweight and obesity. One way to promote NEAT is to decrease the amount of time spent on sedentary behaviours (e.g. watching television). The effects of voluntary exercise on other components of physical activity are highly variable in humans, partly as a function of age, and have rarely been studied in rodents. However, most rodent studies indicate that food consumption increases in the presence of wheels; therefore, other aspects of physical activity are not reduced enough to compensate for the energetic cost of wheel running. Most rodent studies also show negative effects of wheel access on body fat, especially in males. Sedentary behaviours per se have not been studied in rodents in relation to obesity. Several lines of evidence demonstrate the important role of dopamine, in addition to other neural signaling networks (e.g. the endocannabinoid system), in the control of voluntary exercise. A largely separate literature points to a key role for orexins in SPA and NEAT. Brain reward centers are involved in both types of physical activities and eating behaviours, likely leading to complex interactions. Moreover, voluntary exercise and, possibly, eating can be addictive. A growing body of research considers the relationships between personality traits and physical activity, appetite, obesity and other aspects of physical and mental health. Future studies should explore the neurobiology, endocrinology and genetics of physical activity and sedentary behaviour by examining key brain areas, neurotransmitters and hormones involved in motivation, reward and/or the regulation of energy balance.
Collapse
Affiliation(s)
- Theodore Garland
- Department of Biology, University of California, Riverside, CA 92521, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Health status and behavior among middle-school children in a midwest community: what are the underpinnings of childhood obesity? Am Heart J 2010; 160:1185-9. [PMID: 21146676 DOI: 10.1016/j.ahj.2010.09.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 09/17/2010] [Indexed: 11/23/2022]
Abstract
BACKGROUND Childhood obesity is one of the nation's foremost health challenges. How much of this is due to lifestyle choices? The objective of the study was to determine health behaviors that contribute to obesity in sixth-grade children. METHODS To assess which health habits contribute to childhood obesity, we studied body mass index, blood pressure, lipid profile, glucose, and heart rate recovery after a 3-minute step test among sixth-grade children enrolled in a school-based intervention study from 2004 to 2009, comparing health behaviors and physiologic markers in obese versus nonobese children. Univariate associations with obesity (P values≤.10) were entered into a stepwise logistic regression to identify independent predictors. RESULTS Among 1,003 sixth graders (55% white, 15% African American; average age 11.5 years), 150 (15%) were obese. Obese students had higher levels of total cholesterol, low-density lipoprotein cholesterol, triglycerides, blood pressure, and recovery heart rates. They consumed more regular soda and school lunches but were less likely to engage in physical activities. Obese students were more likely to watch TV≥2 hours per day. Independent predictors were watching TV or video games (odds ratio [OR] 1.19, 95% CI 1.06-1.33) and school lunch consumption (OR 1.29, 95% CI 1.02-1.64); moderate exercise was protective (OR 0.89, 95% CI 0.82-0.98). CONCLUSIONS Obesity is present in 15% of our sixth graders and is associated with major differences in cardiovascular risk factors. Opportunities to improve childhood health should emphasize programs that increase physical activity, reduce recreational screen time, and improve nutritional value of school lunches. Whether genetic or not, childhood obesity can be attacked.
Collapse
|
67
|
Matsuo E, Mochizuki A, Nakayama K, Nakamura S, Yamamoto T, Shioda S, Sakurai T, Yanagisawa M, Shiuchi T, Minokoshi Y, Inoue T. Decreased Intake of Sucrose Solutions in Orexin Knockout Mice. J Mol Neurosci 2010; 43:217-24. [DOI: 10.1007/s12031-010-9475-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 11/04/2010] [Indexed: 10/18/2022]
|
68
|
Morganstern I, Chang GQ, Karatayev O, Leibowitz SF. Increased orexin and melanin-concentrating hormone expression in the perifornical lateral hypothalamus of rats prone to overconsuming a fat-rich diet. Pharmacol Biochem Behav 2010; 96:413-22. [PMID: 20600243 PMCID: PMC2930054 DOI: 10.1016/j.pbb.2010.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 06/18/2010] [Accepted: 06/25/2010] [Indexed: 11/21/2022]
Abstract
The goal of this study is to examine the expression pattern of orexigenic peptides, orexin (OX) and melanin-concentrating hormone (MCH), in the perifornical lateral hypothalamus (PFLH) in subpopulations of Sprague-Dawley rats differing in their propensity to overconsume a high-fat diet. Immediately after an initial 5-day screening test that predicts long-term consumption, rats identified as high-fat consumers (HFC), ingesting 35% more calories of a high-fat relative to low-fat chow diet, had significantly elevated mRNA expression of OX in the perifornical but not lateral hypothalamic area and of MCH mRNA in both areas, when compared to control rats that consume similar amounts of these diets. This same OX and MCH expression pattern was seen in HFC rats maintained for two weeks on a low-fat chow diet, indicating that increased expression of these orexigenic peptides, occurring independently of the high-fat diet, may be an inherent characteristic of these rats. These HFC rats were also more active and slightly more anxious than controls, as measured by line crossings and time spent in the periphery or middle segments of an open field. Together, these results demonstrate that animals prone to overeating a high-fat diet show a baseline increase in orexigenic peptide expression in the PFLH along with higher behavioral arousal, which together may contribute to their increased consummatory behavior.
Collapse
Affiliation(s)
- Irene Morganstern
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Guo-Qing Chang
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Olga Karatayev
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
69
|
Verty ANA, Allen AM, Oldfield BJ. The endogenous actions of hypothalamic peptides on brown adipose tissue thermogenesis in the rat. Endocrinology 2010; 151:4236-46. [PMID: 20685882 DOI: 10.1210/en.2009-1235] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although the neuronal pathways within the hypothalamus critical in controlling feeding and energy expenditure and projecting to brown adipose tissue (BAT) have been identified and their peptidergic content characterized, endogenous action of such peptides in the control of BAT activity has not been elucidated. Here male Sprague Dawley rats received infusions of either melanin-concentrating hormone antagonist (SNAP-7941) (1 microg/microl x h), orexin A receptor antagonist (SB-334867-A; 1 microg/microl x h), combined SB-334867-A (1 microg/microl x h), and SNAP-7941 (1 microg/microl x h), or melanocortin-3/4 receptor antagonist (SHU9119) (1 microg/microl x h) via an indwelling cannula in the lateral ventricle attached to s.c. implanted osmotic minipump. BAT temperature, physical activity, body weight, food intake, and changes in uncoupling protein (UCP)-1 were measured. SB-334867-A and SNAP-7941 significantly increased BAT temperature and UCP1 expression and reduced food intake and body weight. Combined infusion of SB-334867-A and SNAP-7941 produced a pronounced response that was greater than the addition of the individual effects in all parameters measured. SHU9119 significantly decreased BAT temperature and UCP1 expression and increased feeding and body weight. In a second series of experiments, the effect of SB-334867-A and SNAP-7941 alone or combination on the expression of the Fos protein was determined. SB-334867-A and SNAP-7941 increased Fos expression in key hypothalamic and brainstem feeding-related regions. In combination, these antagonists produced a greater than additive elevation of Fos expression in most of the regions evaluated. These findings support a role for endogenous orexigenic and anorexigenic hypothalamic peptides acting in concert to create a thermogenic tone via BAT activity.
Collapse
MESH Headings
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, Brown/physiology
- Animals
- Benzoxazoles/pharmacology
- Blotting, Western
- Body Weight/drug effects
- Eating/drug effects
- Energy Metabolism/physiology
- Hypothalamic Hormones/antagonists & inhibitors
- Hypothalamic Hormones/metabolism
- Hypothalamic Hormones/physiology
- Ion Channels/metabolism
- Male
- Melanins/antagonists & inhibitors
- Melanins/metabolism
- Melanins/physiology
- Melanocyte-Stimulating Hormones/pharmacology
- Mitochondrial Proteins/metabolism
- Naphthyridines
- Orexin Receptors
- Piperidines/pharmacology
- Pituitary Hormones/antagonists & inhibitors
- Pituitary Hormones/metabolism
- Pituitary Hormones/physiology
- Pyrimidines/pharmacology
- Random Allocation
- Rats
- Rats, Sprague-Dawley
- Receptor, Melanocortin, Type 3/antagonists & inhibitors
- Receptor, Melanocortin, Type 4/antagonists & inhibitors
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, Neuropeptide/antagonists & inhibitors
- Thermogenesis/drug effects
- Thermogenesis/physiology
- Uncoupling Protein 1
- Urea/analogs & derivatives
- Urea/pharmacology
Collapse
Affiliation(s)
- Aaron N A Verty
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | | | | |
Collapse
|
70
|
Novak CM, Escande C, Burghardt PR, Zhang M, Barbosa MT, Chini EN, Britton SL, Koch LG, Akil H, Levine JA. Spontaneous activity, economy of activity, and resistance to diet-induced obesity in rats bred for high intrinsic aerobic capacity. Horm Behav 2010; 58:355-67. [PMID: 20350549 PMCID: PMC2923555 DOI: 10.1016/j.yhbeh.2010.03.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 03/11/2010] [Accepted: 03/13/2010] [Indexed: 01/05/2023]
Abstract
Though obesity is common, some people remain resistant to weight gain even in an obesogenic environment. The propensity to remain lean may be partly associated with high endurance capacity along with high spontaneous physical activity and the energy expenditure of activity, called non-exercise activity thermogenesis (NEAT). Previous studies have shown that high-capacity running rats (HCR) are lean compared to low-capacity runners (LCR), which are susceptible to cardiovascular disease and metabolic syndrome. Here, we examine the effect of diet on spontaneous activity and NEAT, as well as potential mechanisms underlying these traits, in rats selectively bred for high or low intrinsic aerobic endurance capacity. Compared to LCR, HCR were resistant to the sizeable increases in body mass and fat mass induced by a high-fat diet; HCR also had lower levels of circulating leptin. HCR were consistently more active than LCR, and had lower fuel economy of activity, regardless of diet. Nonetheless, both HCR and LCR showed a similar decrease in daily activity levels after high-fat feeding, as well as decreases in hypothalamic orexin-A content. The HCR were more sensitive to the NEAT-activating effects of intra-paraventricular orexin-A compared to LCR, especially after high-fat feeding. Lastly, levels of cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) in the skeletal muscle of HCR were consistently higher than LCR, and the high-fat diet decreased skeletal muscle PEPCK-C in both groups of rats. Differences in muscle PEPCK were not secondary to the differing amount of activity. This suggests the possibility that intrinsic differences in physical activity levels may originate at the level of the skeletal muscle, which could alter brain responsiveness to neuropeptides and other factors that regulate spontaneous daily activity and NEAT.
Collapse
Affiliation(s)
- Colleen M Novak
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
The hypocretins or orexins are endogenous neuropeptides synthesized in discrete lateral, perifornical and dorsal hypothalamic neurones. These multi-functional neuropeptides modulate energy homeostasis, arousal, stress, reward, reproduction and cardiovascular function. This review summarizes the role of hypocretins in modulating non-sleep-related energy expenditure with specific focus on the augmentation of whole body energy expenditure as well as hypocretin-induced physical activity and sympathetic outflow. We compare the efficacy of hypocretin-1 and 2 on energy expenditure and evaluate whether the literature implicates hypocretin signalling though the hypocretin-1 and -2 receptor as having shared and or functionally specific physiological effects. Thus far data suggest that hypocretin-1 has a more robust stimulatory effect relative to hypocretin-2. Furthermore, hypocretin-1 receptor predominantly mediates behaviours known to influence energy expenditure. Further studies on the hypocretin-2 receptor are needed.
Collapse
Affiliation(s)
- J A Teske
- Veterans Affairs Medical Center, Minneapolis, MN 55417, USA.
| | | | | |
Collapse
|
72
|
Samson WK, Bagley SL, Ferguson AV, White MM. Orexin receptor subtype activation and locomotor behaviour in the rat. Acta Physiol (Oxf) 2010; 198:313-24. [PMID: 19889100 DOI: 10.1111/j.1748-1716.2009.02056.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM Orexin-producing neurones, located primarily in the perifornical region of the lateral hypothalamus, project to a wide spectrum of brain sites where they influence numerous behaviours as well as modulating the neuroendocrine and autonomic responses to stress. While some of the actions of orexin appear to be mediated via the type 1 receptor, some are not, including its action on the release of one stress hormone, prolactin. We describe here the ability of orexin to increase locomotor behaviours and identify the importance of both receptor subtypes in these actions. METHODS Rats were tested for their behavioural responses to the central activation of both the type 1 (OX(1)R) and type 2 (OX(2)R) receptor (ICV orexin A), compared to OX(2)R activation using a relatively selective OX(2)R agonist in the absence or presence of an orexin receptor antagonist that possesses highest affinity for OX(1)R. RESULTS Increases in locomotor activity were observed, effects which were expressed by not only orexin A, which binds to both the OX(1)R and the OX(2)R receptors, but also by the relatively selective OX(2)R agonist [(Ala(11), Leu(15))-orexin B]. Furthermore, the OX(1)R selective antagonist only partially blocked the action of orexin A on most locomotor behaviours and did not block the actions of [(Ala(11), Leu(15))-orexin B]. CONCLUSION We conclude that orexin A exerts its effects on locomotor behaviour via both the OX(1)R and OX(2)R and that agonism or antagonism of only one of these receptors for therapeutic purposes (i.e. sleep disorders) would not provide selectivity in terms of associated behavioural side effects.
Collapse
Affiliation(s)
- W K Samson
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63131, USA.
| | | | | | | |
Collapse
|
73
|
Adeghate E, Fernandez-Cabezudo M, Hameed R, El-Hasasna H, El Wasila M, Abbas T, Al-Ramadi B. Orexin-1 receptor co-localizes with pancreatic hormones in islet cells and modulates the outcome of streptozotocin-induced diabetes mellitus. PLoS One 2010; 5:e8587. [PMID: 20062799 PMCID: PMC2799220 DOI: 10.1371/journal.pone.0008587] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 12/04/2009] [Indexed: 02/07/2023] Open
Abstract
Recent studies have shown that orexins play a critical role in the regulation of sleep/wake states, feeding behaviour, and reward processes. The exocrine and endocrine pancreas are involved in the regulation of food metabolism and energy balance. This function is deranged in diabetes mellitus. This study examined the pattern of distribution of orexin-1 receptor (OX1R) in the endocrine cells of the pancreas of normal and diabetic Wistar (a model of type 1 diabetes), Goto-Kakizaki (GK, a model of type 2 diabetes) rats and in orexin-deficient (OX−/−) and wild type mice. Diabetes mellitus (DM) was induced in Wistar rats and mice by streptozotocin (STZ). At different time points (12 h, 24 h, 4 weeks, 8 months and 15 months) after the induction of DM, pancreatic fragments of normal and diabetic rats were processed for immunohistochemistry and Western blotting. OX1R-immunoreactive nerves were observed in the pancreas of normal and diabetic Wistar rats. OX1R was also discernible in the pancreatic islets of normal and diabetic Wistar and GK rats, and wild type mice. OX1R co-localized with insulin (INS) and glucagon (GLU) in the pancreas of Wistar and GK rats. The number of OX1R-positive cells in the islets increased markedly (p<0.0001) after the onset of DM. The increase in the number of OX1R-positive cells is associated with a high degree of co-localization with GLU. The number of GLU- positive cells expressing OX1R was significantly (p<0.0001) higher after the onset of DM. The tissue level of OX1R protein increased with the duration of DM especially in type 1 diabetes where it co-localized with cleaved caspase 3 in islet cells. In comparison to STZ-treated wild type mice, STZ-treated OX−/− animals exhibited reduced hyperglycemia and handled glucose more efficiently in glucose tolerance test. The findings suggest an important role for the OX-OX1R pathway in STZ-induced experimental diabetes.
Collapse
Affiliation(s)
- Ernest Adeghate
- Department of Anatomy, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | | | | | | | | | | | | |
Collapse
|
74
|
Conzett-Baumann K, Jaggi GP, Hüsler A, Hüsler J, Beer JH. The daily walking distance of young doctors and their body mass index. Eur J Intern Med 2009; 20:622-4. [PMID: 19782925 DOI: 10.1016/j.ejim.2009.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 06/23/2009] [Accepted: 06/27/2009] [Indexed: 10/20/2022]
Abstract
CONTEXT Non-exercise physical activity thermogenesis (NEAT) has been shown to differ in obese and non-obese subjects. OBJECTIVE To explore whether NEAT is determined by the body mass index (BMI) even within the normal range, we hypothesized that the daily walking distance of young doctors in training at a teaching hospital is inversely correlated with the BMI. DESIGN Prospective, single blind, controlled trial. SETTING Identical wards of a 400 bed university-based teaching hospital, highly standardized for patient number treated, the severity of disease, the clinical experience of the doctors and their time spent in the institution. INTERVENTION The walking distance was measured daily by a pedometer over one week and standardized for the setting, workload, and insurance status. MAIN OUTCOME MEASURES Mean daily walking distance as a measure of NEAT. RESULTS The mean daily distance walked was 2323+/-627 m with a more than 4-fold difference between the daily maximum of 4310 m and the minimum of 1003 m. There was an inverse correlation of the walking distance with the BMI (Spearman rho=0.750, p=0.02), and with the time spent in the hospital (rho=-0.800, p=0.01), but not with the months of clinical experience, age, gender, number of patients, disease, severity nor with the insurance status of the patients cared for. There was no mean difference between the distance walked in the morning vs. in the afternoon nor was there a trend from Monday through Friday. CONCLUSION The results of this pilot study indicate that NEAT is related to the BMI in the non-obese stage.
Collapse
|
75
|
Boschen KE, Fadel JR, Burk JA. Systemic and intrabasalis administration of the orexin-1 receptor antagonist, SB-334867, disrupts attentional performance in rats. Psychopharmacology (Berl) 2009; 206:205-13. [PMID: 19575184 DOI: 10.1007/s00213-009-1596-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 06/16/2009] [Indexed: 01/13/2023]
Abstract
RATIONALE Orexin neurons project to a number of brain regions, including onto basal forebrain cholinergic neurons. Basal forebrain corticopetal cholinergic neurons are known to be necessary for normal attentional performance. Thus, the orexin system may contribute to attentional processing. OBJECTIVES We tested whether blockade of orexin-1 receptors would disrupt attentional performance. METHODS Rats were trained in a two-lever sustained attention task that required discrimination of a visual signal (500, 100, 25 ms) from trials with no signal presentation. Rats received systemic or intrabasalis administration of the orexin-1 receptor antagonist, SB-334867, prior to task performance. RESULTS Systemic administration of the orexin-1 receptor antagonist, SB-334867 (5.0 mg/kg), decreased detection of the longest duration signal. Intrabasalis SB-334867 (0.60 microg) decreased overall accuracy on trials with longer signal durations. CONCLUSIONS These findings suggest that orexins contribute to attentional processing, although neural circuits outside of basal forebrain corticopetal cholinergic neurons may mediate some of these effects.
Collapse
Affiliation(s)
- Karen E Boschen
- Department of Psychology, College of William & Mary, Williamsburg, VA 23187, USA
| | | | | |
Collapse
|
76
|
Abstract
The neuropeptide orexin (hypocretin) increases energy expenditure partially through increasing spontaneous physical activity. The ability of exogenous orexin to alter body weight has never been established, however. We sought to determine whether orexin-A microinjected into the paraventricular nucleus of the hypothalamus (PVN) induced weight loss in rats. Chronic guide cannulae were implanted into rats, aimed at the PVN. Rats were given daily microinjections of orexin (0.5 nmol) or vehicle into the PVN for 6 days; food intake and body weight were measured daily. In a separate group of rats, we injected orexin-A and vehicle intra-PVN and measured daily activity levels. Daily orexin treatment induced weight loss: orexin-A-treated rats lost significantly more weight than their vehicle-injected counterparts without a significant difference in food intake. Rats were significantly more active after intra-PVN orexin compared to vehicle. These results support the concept that orexinergic agents have the potential to produce negative energy balance through increasing physical activity. This presents a promising, untapped potential resource for weight loss.
Collapse
Affiliation(s)
- Colleen M Novak
- Endocrine Research Unit, Mayo Clinic, St Marys Hospital, Rochester, Minnesota, USA.
| | | |
Collapse
|
77
|
Haskell-Luevano C, Schaub JW, Andreasen A, Haskell KR, Moore MC, Koerper LM, Rouzaud F, Baker HV, Millard WJ, Walter G, Litherland SA, Xiang Z. Voluntary exercise prevents the obese and diabetic metabolic syndrome of the melanocortin-4 receptor knockout mouse. FASEB J 2008; 23:642-55. [PMID: 18971258 DOI: 10.1096/fj.08-109686] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Exercise is a mechanism for maintenance of body weight in humans. Morbidly obese human patients have been shown to possess single nucleotide polymorphisms in the melanocortin-4 receptor (MC4R). MC4R knockout mice have been well characterized as a genetic model that possesses phenotypic metabolic disorders, including obesity, hyperphagia, hyperinsulinemia, and hyperleptinemia, similar to those observed in humans possessing dysfunctional hMC4Rs. Using this model, we examined the effect of voluntary exercise of MC4R knockout mice that were allowed access to a running wheel for a duration of 8 wk. Physiological parameters that were measured included body weight, body composition of fat and lean mass, food consumption, body length, and blood levels of cholesterol and nonfasted glucose, insulin, and leptin. At the termination of the experiment, hypothalamic mRNA expression levels of neuropeptide Y (NPY), agouti-related protein (AGRP), proopiomelanocortin (POMC), cocaine- and amphetamine-regulated transcript (CART), orexin, brain-derived neurotropic factor (BDNF), phosphatase with tensin homology (Pten), melanocortin-3 receptor (MC3R), and NPY-Y1R were determined. In addition, islet cell distribution and function in the pancreas were examined. In the exercising MC4R knockout mice, the pancreatic islet cell morphology and other physiological parameters resembled those observed in the wild-type littermate controls. Gene expression profiles identified exercise as having a significant effect on hypothalamic POMC, orexin, and MC3R levels. Genotype had a significant effect on AGRP, POMC, CART, and NPY-Y1R, with an exercise and genotype interaction effect on NPY gene expression. These data support the hypothesis that voluntary exercise can prevent the genetic predisposition of melanocortin-4 receptor-associated obesity and diabetes.
Collapse
Affiliation(s)
- Carrie Haskell-Luevano
- Department of Pharmacodynamics, University of Florida, PO Box 100487, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Abstract
Brain-gut axis represents a complex reflex circuit that integrates the communication between cortex and the digestive system. Disturbances of the neuromodulatory processes in the brain-gut axis generate functional digestive disorders mainly centered on the pain symptoms and motility disorders. This article reviews structural and patho-physiological aspects of the brain-gut axis and explains how the neuromodulatory interventions currently used in order to treat GI conditions related to the brain-gut axis disturbances. The neuromodulation can be realized by pharmacological targeting mainly receptors in the periphery or using electrical stimulation applied at different levels of the nervous system or directly in the muscular layers of the bowels resulting in modulation of the digestive system activity. The efficacy of the methods using electrostimulation is dependent on the parameters of the physical system used: amplitude, frequency, burst time of the electrical current and also the positioning of the electrodes. While pharmacological interventions are largely used at the moment, neuromodulatory interventions involving electrical stimulation showed clinical efficacy in research trials and have promise.
Collapse
Affiliation(s)
- Alexandru Gaman
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
79
|
Developmental switch in neuropeptide Y and melanocortin effects in the paraventricular nucleus of the hypothalamus. Neuron 2008; 56:1103-15. [PMID: 18093530 DOI: 10.1016/j.neuron.2007.10.034] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 09/12/2007] [Accepted: 10/18/2007] [Indexed: 11/20/2022]
Abstract
Homeostatic regulation of energy balance in rodents changes dramatically during the first 3 postnatal weeks. Neuropeptide Y (NPY) and melanocortin neurons in the arcuate nucleus, a primary energy homeostatic center in adults, do not fully innervate the paraventricular nucleus (PVN) until the third postnatal week. We have identified two classes of PVN neurons responsive to these neuropeptides, tonically firing neurosecretory (NS) and burst-firing preautonomic (PA) cells. In neonates, NPY could inhibit GABAergic inputs to nearly all NS and PA neurons, while melanocortin regulation was minimal. However, there was a dramatic, age-dependent decrease in NPY responses specifically in the PA neurons, and a 3-fold increase in melanocortin responses in NS cells. These age-dependent changes were accompanied by changes in spontaneous GABAergic currents onto these neurons. This primarily NPYergic regulation in the neonates likely promotes the positive energy balance necessary for growth, while the developmental switch correlates with maturation of homeostatic regulation of energy balance.
Collapse
|
80
|
Levine JA, McCrady SK, Lanningham-Foster LM, Kane PH, Foster RC, Manohar CU. The role of free-living daily walking in human weight gain and obesity. Diabetes 2008; 57:548-54. [PMID: 18003759 DOI: 10.2337/db07-0815] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Diminished daily physical activity explains, in part, why obesity and diabetes have become worldwide epidemics. In particular, chair use has replaced ambulation, so that obese individuals tend to sit for approximately 2.5 h/day more than lean counterparts. Here, we address the hypotheses that free-living daily walking distance is decreased in obesity compared with lean subjects and that experimental weight gain precipitates decreased daily walking. RESEARCH DESIGN AND METHODS During weight-maintenance feeding, we measured free-living walking using a validated system that captures locomotion and body movement for 10 days in 22 healthy lean and obese sedentary individuals. These measurements were then repeated after the lean and obese subjects were overfed by 1,000 kcal/day for 8 weeks. RESULTS We found that free-living walking comprises many (approximately 47) short-duration (<15 min), low-velocity ( approximately 1 mph) walking bouts. Lean subjects walked 3.5 miles/day more than obese subjects (n = 10, 10.3 +/- 2.5 vs. n = 12, 6.7 +/- 1.8 miles/day; P = 0.0009). With overfeeding, walking distance decreased by 1.5 miles/day compared with baseline values (-1.5 +/- 1.7 miles/day; P = 0.0005). The decrease in walking that accompanied overfeeding occurred to a similar degree in the lean (-1.4 +/- 1.9 miles/day; P = 0.04) and obese (-1.6 +/- 1.7 miles/day; P = 0.008) subjects. CONCLUSIONS Walking is decreased in obesity and declines with weight gain. This may represent a continuum whereby progressive increases in weight are associated with progressive decreases in walking distance. By identifying walking as pivotal in weight gain and obesity, we hope to add credence to an argument for an ambulatory future.
Collapse
Affiliation(s)
- James A Levine
- Endocrine Research Unit, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | | | |
Collapse
|
81
|
Choi YH, Li C, Hartzell DL, Little DE, Della-Fera MA, Baile CA. ICV leptin effects on spontaneous physical activity and feeding behavior in rats. Behav Brain Res 2008; 188:100-8. [DOI: 10.1016/j.bbr.2007.10.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 10/19/2007] [Accepted: 10/25/2007] [Indexed: 10/22/2022]
|
82
|
Kotz CM, Teske JA, Billington CJ. Neuroregulation of nonexercise activity thermogenesis and obesity resistance. Am J Physiol Regul Integr Comp Physiol 2008; 294:R699-710. [PMID: 18160530 DOI: 10.1152/ajpregu.00095.2007] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
High levels of spontaneous physical activity in lean people and the nonexercise activity thermogenesis (NEAT) derived from that activity appear to protect lean people from obesity during caloric challenge, while obesity in humans is characterized by dramatically reduced spontaneous physical activity. We have similarly demonstrated that obesity-resistant rats have significantly greater spontaneous physical activity than obesity-prone rats, and that spontaneous physical activity predicts body weight gain. Although the energetic cost of activity varies between types of activity and may be regulated, individual level of spontaneous physical activity is important in determining propensity for obesity. We review the current status of knowledge about the brain mechanisms involved in controlling the level of spontaneous physical activity and the NEAT so generated. Focus is on potential neural mediators of spontaneous physical activity and NEAT, including orexin A (also known as hypocretin 1), agouti-related protein, ghrelin, and neuromedin U, in addition to brief mention of neuropeptide Y, corticotrophin releasing hormone, cholecystokinin, estrogen, leptin, and dopamine effects on spontaneous physical activity. We further review evidence that strain differences in orexin stimulation pathways for spontaneous physical activity and NEAT appear to track with the body weight phenotype, thus providing a potential mechanistic explanation for reduced activity and weight gain.
Collapse
Affiliation(s)
- Catherine M Kotz
- Veterans Affairs Medical Center, GRECC (11G) One Veterans Drive, Minneapolis, MN 55417, USA.
| | | | | |
Collapse
|
83
|
Webb IC, Patton DF, Hamson DK, Mistlberger RE. Neural correlates of arousal-induced circadian clock resetting: hypocretin/orexin and the intergeniculate leaflet. Eur J Neurosci 2008; 27:828-35. [DOI: 10.1111/j.1460-9568.2008.06074.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
84
|
Teske JA, Billington CJ, Kotz CM. Neuropeptidergic mediators of spontaneous physical activity and non-exercise activity thermogenesis. Neuroendocrinology 2008; 87:71-90. [PMID: 17984627 DOI: 10.1159/000110802] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 09/20/2007] [Indexed: 01/29/2023]
Abstract
Lean individuals have high levels of spontaneous physical activity (SPA) and the energy expenditure derived from that activity, termed non-exercise activity thermogenesis or NEAT, appears to protect them from obesity. Conversely, obesity in different human populations is characterized by low levels of SPA and NEAT. Like in humans, elevated SPA in rats appears to protect against obesity: obesity-resistant rats have significantly greater SPA and NEAT than obesity-prone rats. We review the literature on brain mechanisms important in mediating SPA and NEAT. The focus is on neuropeptides, including cholecystokinin, corticotropin-releasing hormone (also known as corticotropin-releasing factor), neuromedin U, neuropeptide Y, leptin, agouti-related protein, orexin-A (also known as hypocretin-1), and ghrelin. We also review information regarding interactions between these neuropeptides and dopamine, a neurotransmitter important in mediating motor function. Finally, we present evidence that elevated signaling of pathways mediating SPA and NEAT may protect against weight gain and obesity.
Collapse
Affiliation(s)
- J A Teske
- VA Medical Center, University of Minnesota, Minneapolis, MN 55417, USA
| | | | | |
Collapse
|
85
|
Novak CM, Levine JA. Central neural and endocrine mechanisms of non-exercise activity thermogenesis and their potential impact on obesity. J Neuroendocrinol 2007; 19:923-40. [PMID: 18001322 DOI: 10.1111/j.1365-2826.2007.01606.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The rise in obesity is associated with a decline in the amount of physical activity in which people engage. The energy expended through everyday non-exercise activity, called non-exercise activity thermogenesis (NEAT), has a considerable potential impact on energy balance and weight gain. Comparatively little attention has been paid to the central mechanisms of energy expenditure and how decreases in NEAT might contribute to obesity. In this review, we first examine the sensory and endocrine mechanisms through which energy availability and energy balance are detected that may influence NEAT. Second, we describe the neural pathways that integrate these signals. Lastly, we consider the effector mechanisms that modulate NEAT through the alteration of activity levels as well as through changes in the energy efficiency of movement. Systems that regulate NEAT according to energy balance may be linked to neural circuits that modulate sleep, addiction and the stress response. The neural and endocrine systems that control NEAT are potential targets for the treatment of obesity.
Collapse
Affiliation(s)
- C M Novak
- Mayo Clinic, Endocrine Research Unit, Rochester, MN, USA.
| | | |
Collapse
|
86
|
Novak CM, Zhang M, Levine JA. Sensitivity of the hypothalamic paraventricular nucleus to the locomotor-activating effects of neuromedin U in obesity. Brain Res 2007; 1169:57-68. [PMID: 17706946 PMCID: PMC2735201 DOI: 10.1016/j.brainres.2007.06.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 06/15/2007] [Accepted: 06/25/2007] [Indexed: 11/25/2022]
Abstract
Obesity is associated with a decrease in energy expenditure relative to energy intake. The decrease in physical activity associated with obesity in several species, including humans, contributes to decreased energy expenditure. Several hormones and neuropeptides that affect appetite also modulate physical activity, including neuromedin U (NMU), a peptide found in the gut and brain. We have demonstrated that NMU microinjected into the hypothalamic paraventricular nucleus (PVN) in rats increases the energy expenditure associated with physical activity, called non-exercise activity thermogenesis (NEAT). Here we examined whether obesity in rats is related to decreased sensitivity of the PVN to the locomotor-activating effect of NMU. Diet-induced obese (DIO) rats and lean, diet-resistant (DR) rats were given PVN microinjections of increasing doses of NMU both before and after 1 month on a high-fat diet. We found that NMU increases physical activity, energy expenditure, and NEAT in a dose-dependent manner in both DR and DIO rats, both before and after 1 month on the high-fat diet. Before high-fat feeding, the obesity-prone and lean rats showed similar levels of physical activity after intra-PVN microinjections of NMU. After 1 month of the high-fat diet, however, the obesity-resistant rats showed significantly more NMU-induced physical activity compared to the obese DIO rats. Taken together with previous studies, these results suggest that obesity may represent a state associated with decreased central sensitivity to neuropeptides such as NMU that increase physical activity and therefore energy expenditure.
Collapse
Affiliation(s)
- Colleen M Novak
- Mayo Clinic, Endocrine Research Unit, St Marys Hospital, Joseph 5-194, 200 1st St. SW, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
87
|
Schneider ER, Rada P, Darby RD, Leibowitz SF, Hoebel BG. Orexigenic peptides and alcohol intake: differential effects of orexin, galanin, and ghrelin. Alcohol Clin Exp Res 2007; 31:1858-65. [PMID: 17850217 DOI: 10.1111/j.1530-0277.2007.00510.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The question is which hypothalamic systems for food intake might play a role in ethanol intake and contribute to alcohol abuse. The peptide orexin was found to exhibit similar properties to galanin in its relation to dietary fat and may therefore be similar to galanin in having a stimulatory effect on alcohol intake. METHODS Rats were trained to drink 10% ethanol, implanted with brain cannulas, and then injected in the paraventricular nucleus (PVN), lateral hypothalamus (LH), or nucleus accumbens (NAc) with galanin, orexin-A, and for comparison, ghrelin. Ethanol, food, and water intake were measured at 1, 2, and 4 hours postinjection. RESULTS In the PVN, both orexin and galanin significantly increased ethanol intake, whereas ghrelin increased food intake. In the LH, orexin again induced ethanol intake, while ghrelin increased eating. In the NAc, orexin failed to influence ethanol intake but did stimulate food intake. CONCLUSIONS In ethanol-drinking rats, injection of orexin or galanin into the appropriate locus in the hypothalamus induced significant ethanol intake instead of food intake. Ghrelin, as a positive control, failed to influence ethanol intake at the same hypothalamic sites. In the NAc, as an anatomical control, orexin augmented eating but not ethanol intake. Thus orexin and galanin in the hypothalamus selectively stimulated ethanol intake at sites where other studies have shown that both ethanol and fat increase expression of the endogenous peptides. Thus, a neural circuit that evolved with the capability to augment food intake is apparently co-opted by ethanol and may serve as a potential positive feedback circuit for alcohol abuse.
Collapse
Affiliation(s)
- Eve R Schneider
- Department of Psychology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | | | |
Collapse
|
88
|
Wang C, Bomberg E, Billington C, Levine A, Kotz CM. Brain-derived neurotrophic factor in the hypothalamic paraventricular nucleus increases energy expenditure by elevating metabolic rate. Am J Physiol Regul Integr Comp Physiol 2007; 293:R992-1002. [PMID: 17567712 DOI: 10.1152/ajpregu.00516.2006] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) decreases food intake and body weight, but few central sites of action have been identified. The hypothalamic paraventricular nucleus (PVN) is important in energy metabolism regulation, and expresses both BDNF and its receptor. We tested three hypotheses: 1) PVN BDNF reduces feeding and increases energy expenditure (EE), 2) PVN BDNF-enhanced thermogenesis results from increased spontaneous physical activity (SPA) and resting metabolic rate (RMR), and 3) PVN BDNF thermogenic effects are mediated, in part, by uncoupling protein 1 (UCP1) in brown adipose tissue (BAT). BDNF (0.5 microg) was injected into the PVN of Sprague-Dawley rats; and oxygen consumption, carbon dioxide production, food intake, and SPA were measured for 24 h in an indirect calorimeter. SPA was also measured in open-field activity chambers for 48 h after BDNF injection. Animals were killed 6 or 24 h after BDNF injection, and BAT UCP1 gene expression was measured with quantitative real-time PCR. BDNF significantly decreased food intake and body weight gain 24 h after injection. Heat production and RMR were significantly elevated for 7 h immediately after BDNF injection. BDNF had no effect on SPA, but increased UCP1 gene expression in BAT at 6 h, but not 24 h after injection. In conclusion, PVN BDNF reduces body weight by decreasing food intake and increasing EE consequent to increased RMR, which may be due, in part, to BAT UCP1 activity. These data suggest that the PVN is an important site of BDNF action to influence energy balance.
Collapse
Affiliation(s)
- ChuanFeng Wang
- Veterans Affairs Medical Center, Research Service (151), One Veterans Drive, Minneapolis, MN 55417, USA.
| | | | | | | | | |
Collapse
|
89
|
Nixon JP, Smale L. A comparative analysis of the distribution of immunoreactive orexin A and B in the brains of nocturnal and diurnal rodents. Behav Brain Funct 2007; 3:28. [PMID: 17567902 PMCID: PMC1913054 DOI: 10.1186/1744-9081-3-28] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2006] [Accepted: 06/13/2007] [Indexed: 12/02/2022] Open
Abstract
Background The orexins (hypocretins) are a family of peptides found primarily in neurons in the lateral hypothalamus. Although the orexinergic system is generally thought to be the same across species, the orexins are involved in behaviors which show considerable interspecific variability. There are few direct cross-species comparisons of the distributions of cells and fibers containing these peptides. Here, we addressed the possibility that there might be important species differences by systematically examining and directly comparing the distribution of orexinergic neurons and fibers within the forebrains of species with very different patterns of sleep-wake behavior. Methods We compared the distribution of orexin-immunoreactive cell bodies and fibers in two nocturnal species (the lab rat, Rattus norvegicus and the golden hamster, Mesocricetus auratus) and two diurnal species (the Nile grass rat, Arvicanthis niloticus and the degu, Octodon degus). For each species, tissue from the olfactory bulbs through the brainstem was processed for immunoreactivity for orexin A and orexin B (hypocretin-1 and -2). The distribution of orexin-positive cells was noted for each species. Orexin fiber distribution and density was recorded and analyzed using a principal components factor analysis to aid in evaluating potential species differences. Results Orexin-positive cells were observed in the lateral hypothalamic area of each species, though there were differences with respect to distribution within this region. In addition, cells positive for orexin A but not orexin B were observed in the paraventricular nucleus of the lab rat and grass rat, and in the supraoptic nucleus of the lab rat, grass rat and hamster. Although the overall distributions of orexin A and B fibers were similar in the four species, some striking differences were noted, especially in the lateral mammillary nucleus, ventromedial hypothalamic nucleus and flocculus. Conclusion The orexin cell and fiber distributions observed in this study were largely consistent with those described in previous studies. However, the present study shows significant species differences in the distribution of orexin cell bodies and in the density of orexin-IR fibers in some regions. Finally, we note previously undescribed populations of orexin-positive neurons outside the lateral hypothalamus in three of the four species examined.
Collapse
Affiliation(s)
- Joshua P Nixon
- Department of Zoology, Michigan State University, 203 Natural Science Building, East Lansing, MI 48824-1115 USA
- Department of Food Science and Nutrition and Minnesota Craniofacial Research Training Program (MinnCResT), 17-164 Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455-0357 USA
| | - Laura Smale
- Department of Zoology, Michigan State University, 203 Natural Science Building, East Lansing, MI 48824-1115 USA
| |
Collapse
|
90
|
King NA, Caudwell P, Hopkins M, Byrne NM, Colley R, Hills AP, Stubbs JR, Blundell JE. Metabolic and behavioral compensatory responses to exercise interventions: barriers to weight loss. Obesity (Silver Spring) 2007; 15:1373-83. [PMID: 17557973 DOI: 10.1038/oby.2007.164] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An activity-induced increase in energy expenditure theoretically disturbs energy balance (EB) by creating an acute energy deficit. Compensatory responses could influence the weight loss associated with the energy deficit. Individual variability in compensation for perturbations in EB could partly explain why some individuals fail to lose weight with exercise. It is accepted that the regulatory system will readily defend impositions that promote a negative EB. Therefore, a criticism of exercise interventions is that they will be ineffective and futile methods of weight control because the acute energy deficit is counteracted. Compensation for exercise-induced energy deficits can be categorized into behavioral or metabolic responses and automatic or volitional. An automatic compensatory response is a biological inevitability and considered to be obligatory. An automatic compensatory response is typically a metabolic consequence (e.g., reduced resting metabolic rate) of a negative EB. In contrast, a volitional compensatory response tends to be deliberate and behavioral, which the individual intentionally performs (e.g., increased snack intake). The purpose of this review is to highlight the various metabolic and behavioral compensatory responses that could reduce the effectiveness of exercise and explain why some individuals experience a lower than expected weight loss. We propose that the extent and degree of compensation will vary between individuals. That is, some individuals will be predisposed to compensatory responses that render them resistant to the weight loss benefits theoretically associated with an exercise-induced increase in energy expenditure. Therefore, given the inter-individual variability in behavioral and metabolic compensatory responses, exercise prescriptions might be more effective if tailored to suit individuals.
Collapse
Affiliation(s)
- Neil A King
- Human Movement Studies, Queensland University of Technology, Brisbane, Queensland 4059, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Zhang S, Zeitzer JM, Sakurai T, Nishino S, Mignot E. Sleep/wake fragmentation disrupts metabolism in a mouse model of narcolepsy. J Physiol 2007; 581:649-63. [PMID: 17379635 PMCID: PMC2075199 DOI: 10.1113/jphysiol.2007.129510] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Recent population studies have identified important interrelationships between sleep duration and body weight regulation. The hypothalamic hypocretin/orexin neuropeptide system is able to influence each of these. Disruption of the hypocretin system, such as occurs in narcolepsy, leads to a disruption of sleep and is often associated with increased body mass index. We examined the potential interrelationship between the hypocretin system, metabolism and sleep by measuring locomotion, feeding, drinking, body temperature, sleep/wake and energy metabolism in a mouse model of narcolepsy (ataxin-ablation of hypocretin-expressing neurons). We found that locomotion, feeding, drinking and energy expenditure were significantly reduced in the narcoleptic mice. These mice also exhibited severe sleep/wake fragmentation. Upon awakening, transgenic and control mice displayed a similar rate of increase in locomotion and food/water intake with time. A lack of long wake episodes partially or entirely explains observed differences in overall locomotion, feeding and drinking in these transgenic mice. Like other parameters, energy expenditure also rose and fell depending on the sleep/wake status. Unlike other parameters, however, energy expenditure in control mice increased upon awakening at a greater rate than in the narcoleptic mice. We conclude that the profound sleep/wake fragmentation is a leading cause of the reduced locomotion, feeding, drinking and energy expenditure in the narcoleptic mice under unperturbed conditions. We also identify an intrinsic role of the hypocretin system in energy expenditure that may not be dependent on sleep/wake regulation, locomotion, or food intake. This investigation illustrates the need for coordinated study of multiple phenotypes in mouse models with altered sleep/wake patterns.
Collapse
Affiliation(s)
- Shengwen Zhang
- Psychiatry and Behavioural Sciences, Stanford University, Palo Alto, CA 94304-5742, USA
| | | | | | | | | |
Collapse
|
92
|
Samson WK, Bagley SL, Ferguson AV, White MM. Hypocretin/orexin type 1 receptor in brain: role in cardiovascular control and the neuroendocrine response to immobilization stress. Am J Physiol Regul Integr Comp Physiol 2007; 292:R382-7. [PMID: 16902182 DOI: 10.1152/ajpregu.00496.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypocretin/orexin acts pharmacologically in the hypothalamus to stimulate stress hormone secretion at least in part by an action in the hypothalamic paraventricular nucleus, where the peptide's receptors have been localized. In addition, orexin acts in the brain to increase sympathetic tone and, therefore, mean arterial pressure and heart rate. We provide evidence for the role of endogenously produced hypocretin/orexin in the physiological response to immobilization stress and identify the receptor subtype responsible for this action of the peptide. Antagonism of the orexin type 1 receptor (OX1R) in the brain prevented the ACTH-stimulating effect of centrally administered hypocretin/orexin. Furthermore, pretreatment of animals with the OX1R antagonist blocked the ACTH response to immobilization/restraint stress. The OX1R antagonist did not, however, block the pharmacological or physiological release of prolactin in these two models. Antagonism of the OX1R also blocked the central action of orexin to elevate mean arterial pressures and heart rates in conscious rats. These data suggest receptor subtype-selective responses to hypocretin/orexin and provide further evidence for the importance of endogenously produced peptide in the physiological control of stress hormone secretion.
Collapse
Affiliation(s)
- Willis K Samson
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| | | | | | | |
Collapse
|
93
|
Thorpe AJ, Doane DF, Sweet DC, Beverly JL, Kotz CM. Orexin A in the rostrolateral hypothalamic area induces feeding by modulating GABAergic transmission. Brain Res 2006; 1125:60-6. [PMID: 17092492 PMCID: PMC1779580 DOI: 10.1016/j.brainres.2006.09.075] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2006] [Revised: 09/21/2006] [Accepted: 09/22/2006] [Indexed: 11/19/2022]
Abstract
The neuromodulatory peptides orexin A and B are important central nervous system regulators of appetite. We previously identified the rostral lateral portion of the hypothalamus as an area important to orexin A feeding regulation. As gamma-aminobutyric-acid (GABA) within the lateral hypothalamus also mediates feeding, we sought to determine the relationship between orexin and GABA signaling within this site. Adult male Sprague-Dawley rats were implanted with cannulae directed to the rostral lateral hypothalamus and saclofen (GABA-B receptor antagonist), biccuculine (GABA-A receptor antagonist) or muscimol (GABA-A receptor agonist) were injected prior to orexin A. Both GABA antagonists failed to significantly affect orexin A-induced feeding, but muscimol significantly and dose dependently inhibited orexin A-induced feeding. Using in vivo microdialysis GABA release within this region significantly dropped during the first hour following orexin A administration, coinciding with orexin A-induced feeding. Together, these data indicate that orexin A may influence food intake by decreasing GABAergic tone within the rostral lateral hypothalamus.
Collapse
Affiliation(s)
- A J Thorpe
- Division of Nutritional Sciences, University of Illinois at Urbana, Champaign, 1207 W. Gregory Dr., Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
94
|
Harris AM, Macbride LR, Foster RC, McCrady SK, Levine JA. Does Non-Exercise Activity Thermogenesis Contribute to Non-Shivering Thermogenesis? J Therm Biol 2006; 31:634-638. [PMID: 17404604 PMCID: PMC1847420 DOI: 10.1016/j.jtherbio.2006.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We wanted to examine if spontaneous physical activity contributes to non-shivering thermogenesis. Ten lean, healthy male subjects wore a physical activity, micro-measurement system whilst the room temperature was randomly altered at two hourly intervals between thermoneutral (72°F), cool (62°F) and warm (82°F) temperatures. Physical activity measured during the thermoneutral, cooling and warming periods was not significantly different. Cooling, increased EE above basal and thermoneutral values 2061 ± 344 kcal/day (p <0.01). Thus, the increase in energy expenditure associated with short-term environmental cooling in lean, healthy males does not appear to be due to increased spontaneous physical activity or fidgeting.
Collapse
Affiliation(s)
- Ann M Harris
- Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota, 55905
| | | | | | | | | |
Collapse
|
95
|
Chow LS, Greenlund LJ, Asmann YW, Short KR, McCrady SK, Levine JA, Nair KS. Impact of endurance training on murine spontaneous activity, muscle mitochondrial DNA abundance, gene transcripts, and function. J Appl Physiol (1985) 2006; 102:1078-89. [PMID: 17110513 DOI: 10.1152/japplphysiol.00791.2006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We hypothesized that enhanced skeletal muscle mitochondrial function following aerobic exercise training is related to an increase in mitochondrial transcription factors, DNA abundance [mitochondrial DNA (mtDNA)], and mitochondria-related gene transcript levels, as well as spontaneous physical activity (SPA) levels. We report the effects of daily treadmill training on 12-wk-old FVB mice for 5 days/wk over 8 wk at 80% peak O(2) consumption and studied the training effect on changes in body composition, glucose tolerance, muscle mtDNA muscle, mitochondria-related gene transcripts, in vitro muscle mitochondrial ATP production capacity (MATPC), and SPA levels. Compared with the untrained mice, the trained mice had higher peak O(2) consumption (+18%; P < 0.001), lower percentage of abdominal (-25.4%; P < 0.02) and body fat (-19.5%; P < 0.01), improved glucose tolerance (P < 0.04), and higher muscle mitochondrial enzyme activity (+19.5-43.8%; P < 0.04) and MATPC (+28.9 to +32.4%; P < 0.01). Gene array analysis showed significant differences in mRNAs of mitochondria-related ontology groups between the trained and untrained mice. Training also increased muscle mtDNA (+88.4 to +110%; P < 0.05), peroxisome proliferative-activated receptor-gamma coactivator-1alpha protein (+99.5%; P < 0.04), and mitochondrial transcription factor A mRNA levels (+21.7%; P < 0.004) levels. SPA levels were higher in trained mice (P = 0.056, two-sided t-test) and significantly correlated with two separate substrate-based measurements of MATPC (P < 0.02). In conclusion, aerobic exercise training enhances muscle mitochondrial transcription factors, mtDNA abundance, mitochondria-related gene transcript levels, and mitochondrial function, and this enhancement in mitochondrial function occurs in association with increased SPA.
Collapse
Affiliation(s)
- Lisa S Chow
- Division of Endocrinology, Nutrition and Metabolism, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
96
|
Kotz CM, Wang C, Teske JA, Thorpe AJ, Novak CM, Kiwaki K, Levine JA. Orexin A mediation of time spent moving in rats: Neural mechanisms. Neuroscience 2006; 142:29-36. [PMID: 16809007 DOI: 10.1016/j.neuroscience.2006.05.028] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2005] [Revised: 04/14/2006] [Accepted: 05/14/2006] [Indexed: 11/27/2022]
Abstract
The brain regulates energy balance and spontaneous physical activity, including both small- and large-motor activities. Neural mediators of spontaneous physical activity are currently undefined, although the amount of time spent in sedentary positions versus standing and ambulating may be important in the energetics of human obesity. Orexin A, a neuropeptide produced in caudal hypothalamic areas and projecting throughout the neuraxis, enhances arousal and spontaneous physical activity. To test the hypothesis that orexin A affects the amount of time spent moving, we injected orexin A (0-1000 pmol) into three orexin projection sites in male Sprague-Dawley rats: hypothalamic paraventricular nucleus, rostral lateral hypothalamic area and substantia nigra pars compacta, and measured spontaneous physical activity. Orexin A affects local GABA release and we co-injected orexin A with a GABA agonist, muscimol, in each brain site. Dopamine signaling is important to substantia nigra function and so we also co-injected a dopamine 1 receptor antagonist (SCH 23390) in the substantia nigra pars compacta. In all brain sites orexin A significantly increased time spent vertical and ambulating. Muscimol significantly and dose-dependently inhibited orexin A effects on time spent moving only when administered to the rostral lateral hypothalamic area. In the substantia nigra pars compacta, SCH 23390 completely blocked orexin A-induced ambulation. These data indicate that orexin A influences time spent moving, in three brain sites utilizing separate signaling mechanisms. That orexin A modulation of spontaneous physical activity occurs in brain areas with multiple roles indicates generalization across brain site, and may reflect a fundamental mechanism for enhancing activity levels. This potential for conferring physical activity stimulation may be useful for inducing shifts in time spent moving, which has important implications for obesity.
Collapse
Affiliation(s)
- C M Kotz
- Veterans Affairs Medical Center, Geriatric Research, Education and Clinical Care (11G), One Veterans Drive, Minneapolis, MN 55417, USA.
| | | | | | | | | | | | | |
Collapse
|
97
|
Novak CM, Zhang M, Levine JA. Neuromedin U in the paraventricular and arcuate hypothalamic nuclei increases non-exercise activity thermogenesis. J Neuroendocrinol 2006; 18:594-601. [PMID: 16867180 DOI: 10.1111/j.1365-2826.2006.01454.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Brain neuromedin U (NMU) has been associated with the regulation of both energy intake and expenditure. We hypothesized that NMU induces changes in spontaneous physical activity and nonexercise activity thermogenesis (NEAT) through its actions on hypothalamic nuclei. We applied increasing doses of NMU directly to the paraventricular (PVN) and arcuate hypothalamic nuclei using chronic unilateral guide cannulae. In both nuclei, NMU significantly and dose-dependently increased physical activity and NEAT. Moreover, NMU increased physical activity and NEAT during the first hour of the dark phase, indicating that the reduction of sleep is unlikely to account for the increased physical activity seen with NMU treatment. As a positive control, we demonstrated that paraventricular NMU also significantly decreased food intake, as well as body weight. These data demonstrate that NMU is positively associated with NEAT through its actions in the PVN and arcuate nucleus. In co-ordination with its suppressive effects on feeding, the NEAT-activating effects of NMU make it a potential candidate in the combat of obesity.
Collapse
Affiliation(s)
- C M Novak
- Endocrine Research Unit, Mayo Clinic and Mayo Foundation, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
98
|
Abstract
Spontaneous physical activity is activity that is non-volitional, or subconscious, such as fidgeting and shifting in one's seat, and time spent moving (standing and ambulating). Recent evidence indicates that spontaneous physical activity, and the resulting thermogenesis (non-exercise activity thermogenesis) may be regulated by brain systems. A large number of brain areas, with their associated neurotransmitter populations and connectivity, participate in the regulation of feeding behavior by acting as energy sensing and modulating centers. Although less well characterized, it is likely that a multitude of neurotransmitters and brain areas act to mediate spontaneous physical activity. These two behaviors, feeding and spontaneous physical activity, affect energy intake and expenditure and thus are important to body weight. Interestingly, often the two behaviors are affected simultaneously; when feeding is affected, so too is spontaneous physical activity, and both food intake and physical activity (whether spontaneous or volitional) influence activity of brain areas important to both. Several brain areas and neuropeptides are important to feeding and spontaneous physical activity. The lateral hypothalamus is one area that appears important to both behaviors, as stimulation or lesion of this region produces alterations in feeding behavior and spontaneous physical activity. Orexin neurons, with their central location in the lateral hypothalamus, widespread projections and connectivity to other brain areas important to energy homeostasis, are well situated to perform an integrative function. This review focuses on how hypothalamic orexins participate in both feeding and spontaneous physical activity, and provides potential models for the integration of signals important to both.
Collapse
Affiliation(s)
- Catherine M Kotz
- Veterans Affairs Medical Center, One Veterans Drive, GRECC (11G), Minneapolis, MN 55417, USA.
| |
Collapse
|
99
|
Teske JA, Levine AS, Kuskowski M, Levine JA, Kotz CM. Elevated hypothalamic orexin signaling, sensitivity to orexin A, and spontaneous physical activity in obesity-resistant rats. Am J Physiol Regul Integr Comp Physiol 2006; 291:R889-99. [PMID: 16763079 DOI: 10.1152/ajpregu.00536.2005] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Selectively-bred obesity-resistant [diet resistant (DR)] rats weigh less than obesity-prone [diet-induced obese (DIO)] rats, despite comparable daily caloric intake, suggesting phenotypic energy expenditure differences. Human data suggest that obesity is maintained by reduced ambulatory or spontaneous physical activity (SPA). The neuropeptide orexin A robustly stimulates SPA. We hypothesized that DR rats have greater: 1) basal SPA, 2) orexin A-induced SPA, and 3) preproorexin, orexin 1 and 2 receptor (OX1R and OX2R) mRNA, compared with DIO rats. A group of age-matched out-bred Sprague-Dawley rats were used as additional controls for the behavioral studies. DIO, DR, and Sprague-Dawley rats with dorsal-rostral lateral hypothalamic (rLHa) cannulas were injected with orexin A (0, 31.25, 62.5, 125, 250, and 500 pmol/0.5 microl). SPA and food intake were measured for 2 h after injection. Preproorexin, OX1R and OX2R mRNA in the rLHa, and whole hypothalamus were measured by real-time RT-PCR. Orexin A significantly stimulated feeding in all rats. Orexin A-induced SPA was significantly greater in DR and Sprague-Dawley rats than in DIO rats. Two-mo-old DR rats had significantly greater rLHa OX1R and OX2R mRNA than DIO rats but comparable preproorexin levels. Eight-mo-old DR rats had elevated OX1R and OX2R mRNA compared with DIO rats, although this increase was significant for OX2R only at this age. Thus DR rats show elevated basal and orexin A-induced SPA associated with increased OX1R and OX2R gene expression, suggesting that differences in orexin A signaling through OX1R and OX2R may mediate DIO and DR phenotypes.
Collapse
Affiliation(s)
- J A Teske
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, USA
| | | | | | | | | |
Collapse
|
100
|
Sullivan EL, Koegler FH, Cameron JL. Individual differences in physical activity are closely associated with changes in body weight in adult female rhesus monkeys (Macaca mulatta). Am J Physiol Regul Integr Comp Physiol 2006; 291:R633-42. [PMID: 16614060 PMCID: PMC2837074 DOI: 10.1152/ajpregu.00069.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The increased prevalence of overweight adults has serious health consequences. Epidemiological studies suggest an association between low activity and being overweight; however, few studies have objectively measured activity during a period of weight gain, so it is unknown whether low activity is a cause or consequence of being overweight. To determine whether individual differences in adult weight gain are linked to an individual's activity level, we measured activity, via accelerometry, over a prolonged period (9 mo) in 18 adult female rhesus monkeys. Weight, food intake, metabolic rate, and activity were first monitored over a 3-mo period. During this period, there was mild but significant weight gain (5.5 +/- 0.88%; t =-6.3, df = 17, P < 0.0001), whereas caloric intake and activity remained stable. Metabolic rate increased, as expected, with weight gain. Activity level correlated with weight gain (r = -0.52, P = 0.04), and the most active monkeys gained less weight than the least active monkeys (t = -2.74, df = 8, P = 0.03). Moreover, there was an eightfold difference in activity between the most and least active monkeys, and initial activity of each monkey was highly correlated with their activity after 9 mo (r = 0.85, P < 0.0001). In contrast, food intake did not correlate with weight gain, and there was no difference in weight gain between monkeys with the highest vs. lowest caloric intake, total metabolic rate, or basal metabolic rate. We conclude that physical activity is a particularly important factor contributing to weight change in adulthood and that there are large, but stable, differences in physical activity among individuals.
Collapse
Affiliation(s)
- Elinor L Sullivan
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, USA
| | | | | |
Collapse
|