51
|
Wang M, Li Y, Li S, Lv J. Endothelial Dysfunction and Diabetic Cardiomyopathy. Front Endocrinol (Lausanne) 2022; 13:851941. [PMID: 35464057 PMCID: PMC9021409 DOI: 10.3389/fendo.2022.851941] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/14/2022] [Indexed: 12/22/2022] Open
Abstract
The cardiovascular complications contribute to a majority of diabetes associated morbidity and mortality, accounting for 44% of death in those patients with type 1 diabetes mellitus (DM) and 52% of deaths in type 2 DM. Diabetes elicits cardiovascular dysfunction through 2 major mechanisms: ischemic and non-ischemic. Non-ischemic injury is usually under-recognized although common in DM patients, and also a pathogenic factor of heart failure in those diabetic individuals complicated with ischemic heart disease. Diabetic cardiomyopathy (DCM) is defined as a heart disease in which the myocardium is structurally and functionally abnormal in the absence of coronary artery disease, hypertensive, valvular, or congenital heart disorders in diabetic patients, theoretically caused by non-ischemic injury solely. Current therapeutic strategies targeting DCM mainly address the increased blood glucose levels, however, the effects on heart function are disappointed. Accumulating data indicate endothelial dysfunction plays a critical role in the initiation and development of DCM. Hyperglycemia, hyperinsulinemia, and insulin resistance cause the damages of endothelial function, including barrier dysfunction, impaired nitric oxide (NO) activity, excessive reactive oxygen species (ROS) production, oxidative stress, and inflammatory dysregulation. In turn, endothelial dysfunction promotes impaired myocardial metabolism, intracellular Ca2+ mishandling, endoplasmic reticulum (ER) stress, mitochondrial defect, accumulation of advanced glycation end products, and extracellular matrix (ECM) deposit, leads to cardiac stiffness, fibrosis, and remodeling, eventually results in cardiac diastolic dysfunction, systolic dysfunction, and heart failure. While endothelial dysfunction is closely related to cardiac dysfunction and heart failure seen in DCM, clinical strategies for restoring endothelial function are still missing. This review summarizes the timely findings related to the effects of endothelial dysfunction on the disorder of myocardium as well as cardiac function, provides mechanical insights in pathogenesis and pathophysiology of DCM developing, and highlights potential therapeutic targets.
Collapse
Affiliation(s)
- Moran Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongsheng Li
- Department of Emergency, Tongji Hospital, Tongji Medical College, Science and Technology, Huazhong University, Wuhan, China
- *Correspondence: Yongsheng Li, ; Sheng Li, ;
| | - Sheng Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yongsheng Li, ; Sheng Li, ;
| | - Jiagao Lv
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
52
|
Shang R, Lal N, Lee CS, Zhai Y, Puri K, Seira O, Boushel RC, Sultan I, Räsänen M, Alitalo K, Hussein B, Rodrigues B. Cardiac-specific VEGFB overexpression reduces lipoprotein lipase activity and improves insulin action in rat heart. Am J Physiol Endocrinol Metab 2021; 321:E753-E765. [PMID: 34747201 DOI: 10.1152/ajpendo.00219.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac muscle uses multiple sources of energy including glucose and fatty acid (FA). The heart cannot synthesize FA and relies on obtaining it from other sources, with lipoprotein lipase (LPL) breakdown of lipoproteins suggested to be a key source of FA for cardiac use. Recent work has indicated that cardiac vascular endothelial growth factor B (VEGFB) overexpression expands the coronary vasculature and facilitates metabolic reprogramming that favors glucose utilization. We wanted to explore whether this influence of VEGFB on cardiac metabolism involves regulation of LPL activity with consequent effects on lipotoxicity and insulin signaling. The transcriptomes of rats with and without cardiomyocyte-specific overexpression of human VEGFB were compared by using RNA sequencing. Isolated perfused hearts or cardiomyocytes incubated with heparin were used to enable measurement of LPL activity. Untargeted metabolomic analysis was performed for quantification of cardiac lipid metabolites. Cardiac insulin sensitivity was evaluated using fast-acting insulin. Isolated heart and cardiomyocytes were used to determine transgene-encoded VEGFB isoform secretion patterns and mitochondrial oxidative capacity using high-resolution respirometry and extracellular flux analysis. In vitro, transgenic cardiomyocytes incubated overnight and thus exposed to abundantly secreted VEGFB isoforms, in the absence of any in vivo confounding regulators of cardiac metabolism, demonstrated higher basal oxygen consumption. In the whole heart, VEGFB overexpression induced an angiogenic response that was accompanied by limited cardiac LPL activity through multiple mechanisms. This was associated with a lowered accumulation of lipid intermediates, diacylglycerols and lysophosphatidylcholine, that are known to influence insulin action. In response to exogenous insulin, transgenic hearts demonstrated increased insulin sensitivity. In conclusion, the interrogation of VEGFB function on cardiac metabolism uncovered an intriguing and previously unappreciated effect to lower LPL activity and prevent lipid metabolite accumulation to improve insulin action. VEGFB could be a potential cardioprotective therapy to treat metabolic disorders, for example, diabetes.NEW & NOTEWORTHY In hearts overexpressing vascular endothelial growth factor B (VEGFB), besides its known angiogenic response, multiple regulatory mechanisms lowered coronary LPL. This was accompanied by limited cardiac lipid metabolite accumulation with an augmentation of cardiac insulin action. Our data for the first time links VEGFB to coronary LPL in regulation of cardiac metabolism. VEGFB may be cardioprotective in metabolic disorders like diabetes.
Collapse
Affiliation(s)
- Rui Shang
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nathaniel Lal
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chae Syng Lee
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yajie Zhai
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karanjit Puri
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Oscar Seira
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert C Boushel
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ibrahim Sultan
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Markus Räsänen
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Bahira Hussein
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
53
|
Aboouf MA, Armbruster J, Thiersch M, Gassmann M, Gödecke A, Gnaiger E, Kristiansen G, Bicker A, Hankeln T, Zhu H, Gorr TA. Myoglobin, expressed in brown adipose tissue of mice, regulates the content and activity of mitochondria and lipid droplets. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159026. [PMID: 34384891 DOI: 10.1016/j.bbalip.2021.159026] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/19/2022]
Abstract
The identification of novel physiological regulators that stimulate energy expenditure through brown adipose tissue (BAT) activity in substrate catalysis is of utmost importance to understand and treat metabolic diseases. Myoglobin (MB), known to store or transport oxygen in heart and skeletal muscles, has recently been found to bind fatty acids with physiological constants in its oxygenated form (i.e., MBO2). Here, we investigated the in vivo effect of MB expression on BAT activity. In particular, we studied mitochondrial function and lipid metabolism as essential determinants of energy expenditure in this tissue. We show in a MB-null (MBko) mouse model that MB expression in BAT impacts on the activity of brown adipocytes in a twofold manner: i) by elevating mitochondrial density plus maximal respiration capacity, and through that, by stimulating BAT oxidative metabolism along with the organelles` uncoupled respiration; and ii) by influencing the free fatty acids pool towards a palmitate-enriched composition and shifting the lipid droplet (LD) equilibrium towards higher counts of smaller droplets. These metabolic changes were accompanied by the up-regulated expression of thermogenesis markers UCP1, CIDEA, CIDEC, PGC1-α and PPAR-α in the BAT of MB wildtype (MBwt) mice. Along with the emergence of the "browning" BAT morphology, MBwt mice exhibited a leaner phenotype when compared to MBko littermates at 20 weeks of age. Our data shed novel insights into MB's role in linking oxygen and lipid-based thermogenic metabolism. The findings suggest potential new strategies of targeting the MB pathway to treat metabolic disorders related to diminishing energy expenditure.
Collapse
Affiliation(s)
- Mostafa A Aboouf
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; Molecular and Translational Biomedicine PhD Program, Life Science Zurich Graduate School, 8057 Zurich, Switzerland; Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Julia Armbruster
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; Molecular and Translational Biomedicine PhD Program, Life Science Zurich Graduate School, 8057 Zurich, Switzerland
| | - Markus Thiersch
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Axel Gödecke
- Institute of Cardiovascular Physiology (A.G.), Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Erich Gnaiger
- Department of Visceral, Transplant and Thoracic Surgery, D. Swarovski Research Laboratory, Medical University Innsbruck, Innrain 66/6, A-6020 Innsbruck, Austria
| | - Glen Kristiansen
- Institute of Pathology, University Hospital Bonn, University of Bonn, D-53127 Bonn, Germany
| | - Anne Bicker
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University, D-55099 Mainz, Germany
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University, D-55099 Mainz, Germany
| | - Hao Zhu
- Department of Clinical Laboratory Sciences, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Thomas A Gorr
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
54
|
Systolic Dysfunction of the Heart in Type 1 Diabetes Mellitus. Bull Exp Biol Med 2021; 172:14-17. [PMID: 34792713 DOI: 10.1007/s10517-021-05321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Indexed: 10/19/2022]
Abstract
Impaired insulin synthesis is accompanied by hyperglycemia and the development of diabetic cardiomyopathy. Echocardiography and left-ventricular catheterization were employed for studying the contractile function of the left ventricle in 2 weeks after administration of streptozotocin (60 mg/kg). The results obtained by both methods were similar and indicated the development of systolic dysfunction with a 27% decrease in cardiac output. The invasive study showed that the maximum rate of left-ventricular pressure development, the contractility index, and systolic left-ventricular pressure were within the normal range, but the peak ejection rate was reduced by 28%. BP was normal, but the vascular stiffness index was increased by about 1.5 times and inversely correlated with the peak ejection rate (r=-0.69). The results showed that systolic dysfunction in type 1 diabetes model was due to reduced ejection from the left ventricle at normal rate of left-ventricular pressure development.
Collapse
|
55
|
Lee TW, Liu HW, Lin YF, Lee TI, Kao YH, Chen YJ. Histone deacetylase inhibition improves metabolism and mitochondrial dynamics: A potential novel therapeutic strategy for sarcopenia coexisting with diabetes mellitus. Med Hypotheses 2021; 158:110724. [PMID: 34753007 DOI: 10.1016/j.mehy.2021.110724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/14/2021] [Accepted: 10/10/2021] [Indexed: 11/16/2022]
Abstract
Sarcopenia, the age-associated-fragility with loss of skeletal muscle mass and function, often coexists with type 2 diabetes (T2D) in older individuals. Derangement of muscle metabolism and mitochondrial dynamics is critical, particularly in high-energy-demand organs in patients with metabolic disorder. However, targeted therapies to halt or reverse the pathological progression of sarcopenia coexisting with T2D are unavailable. Studies have identified the pathological roles of class I histone deacetylases (HDACs) in both T2D and sarcopenia. In addition to their proinflammatory properties, HDACs are known to modify muscle metabolism and mitochondrial dynamics in both the development of sarcopenia and pathogenesis of diabetes. Proper quality control of mitochondrial dynamics through protein degradation and the synthesis of new proteins may improve skeletal muscle function in sarcopenia. Class I HDAC inhibitors improve energy metabolism and modulate autophagy-related genes in skeletal muscle. However, class IIa HDAC4 plays a protective role in preserving skeletal muscle structure following long-term denervation, and selective inhibition of class IIa HDAC activity had no impact on oxidative metabolism of muscle mitochondria. These findings suggest the vital role of class I HDAC modulation in bioenergetics and mitochondria quality control, and may lead to a novel therapeutic strategy targeting sarcopenia that coexists with T2D. HDAC inhibitors have been approved for clinical applications, and interventions targeting on HDACs may be promising for the treatment of sarcopenia.
Collapse
Affiliation(s)
- Ting-Wei Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Han-Wen Liu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yuan-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ting-I Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan.
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Cardiovascular Research Center, Wan Fan Hospital, Taipei Medical University, Taipei, Taiwan; Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
56
|
Henson SM, Aksentijevic D. Senescence and Type 2 Diabetic Cardiomyopathy: How Young Can You Die of Old Age? Front Pharmacol 2021; 12:716517. [PMID: 34690759 PMCID: PMC8529062 DOI: 10.3389/fphar.2021.716517] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/16/2021] [Indexed: 01/10/2023] Open
Abstract
Inflammation is well understood to be a physiological process of ageing however it also underlies many chronic diseases, including conditions without an obvious pathogenic inflammatory element. Recent findings have unequivocally identified type 2 diabetes (T2D) as a chronic inflammatory disease characterized by inflammation and immune senescence. Immunosenescence is a hallmark of the prolonged low-grade systemic inflammation, in particular associated with metabolic syndrome and can be a cause as well as a consequence of T2D. Diabetes is a risk factor for cardiovascular mortality and remodelling and with particular changes to myocardial structure, function, metabolism and energetics collectively resulting in diabetic cardiomyopathy. Both cardiomyocytes and immune cells undergo metabolic remodelling in T2D and as a result become trapped in a vicious cycle of lost metabolic flexibility, thus losing their key adaptive mechanisms to dynamic changes in O2 and nutrient availability. Immunosenescence driven by metabolic stress may be both the cause and key contributing factor to cardiac dysfunction in diabetic cardiomyopathy by inducing metabolic perturbations that can lead to impaired energetics, a strong predictor of cardiac mortality. Here we review our current understanding of the cross-talk between inflammaging and cardiomyocytes in T2D cardiomyopathy. We discuss potential mechanisms of metabolic convergence between cell types which, we hypothesize, might tip the balance between resolution of the inflammation versus adverse cardiac metabolic remodelling in T2D cardiomyopathy. A better understanding of the multiple biological paradigms leading to T2D cardiomyopathy including the immunosenescence associated with inflammaging will provide a powerful target for successful therapeutic interventions.
Collapse
Affiliation(s)
- Sian M Henson
- Centre for Translational Medicine and Therapeutics, London, United Kingdom
| | - Dunja Aksentijevic
- Centre for Biochemical Pharmacology, London, United Kingdom.,Centre for Inflammation and Therapeutic Innovation William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
57
|
Detection of early ultrasonographic markers of cardiovascular dysfunction in prediabetes patients: Cardiovascular markers in prediabetes. Ann Vasc Surg 2021; 82:339-346. [PMID: 34656709 DOI: 10.1016/j.avsg.2021.07.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/21/2021] [Accepted: 07/25/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Prediabetes individuals may present incipient signals of cardiovascular injury and evaluate with unfavorable outcome. The aim of this study was to identify early ultrasonographic markers of cardiac dysfunction and arterial stiffness among glucose intolerant patients compared to healthy individuals. METHODS Cross-sectional study with the composition of two groups: Prediabetes (PD) who met the criteria for pre-diabetes and Normoglycemic (NG): presented no criteria of pre-diabetes and diabetes mellitus in all applied tests. Clinical evaluation, assessment of cardiac function by transthoracic echocardiogram, carotid intima-media thickness by carotid ultrasonographic and evaluation of arterial stiffness by SphygmoCor®ฏ device were performed. RESULTS Eighty adults were included in this study: PD (n=43) and NG (n=37). PD patients were more dyslipidemic and presented early alterations in echocardiographic variables, like: peak mitral velocity E (E (cm/s): NG 84±13 vs PD 77±11, p = 0.03), E/A Tricuspid inflow (NG: 1.5±0.4 vs PD 1.3±0.3, p=0.03), Tricuspid tissue Doppler E' (E'tric (cm/s): NG 15.2±4.4 vs PD 13.4±3.2, p=0.04) and increased arterial stiffness (Pulse Wave Velocity: PWV (m/s): NG 7.2±1.5 vs PD 7.9±1.7, p = 0.03). In the regression analysis, having an impaired oral glucose test was shown to be independently associated with reduced E Mitral, even after adjusting for a set of confounding factors. CONCLUSION PD patients showed early signals of an impaired cardiac function and an increased pulse wave velocity when compared with healthy individuals. These results point to treatment optimization strategies, especially when considering preventive measures for cardiovascular outcomes, like diabetic cardiomyopathy.
Collapse
|
58
|
Sharma A, Mah M, Ritchie RH, De Blasio MJ. The adiponectin signalling pathway - A therapeutic target for the cardiac complications of type 2 diabetes? Pharmacol Ther 2021; 232:108008. [PMID: 34610378 DOI: 10.1016/j.pharmthera.2021.108008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/17/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
Diabetes is associated with an increased risk of heart failure (HF). This is commonly termed diabetic cardiomyopathy and is often characterised by increased cardiac fibrosis, pathological hypertrophy, increased oxidative and endoplasmic reticulum stress as well as diastolic dysfunction. Adiponectin is a cardioprotective adipokine that is downregulated in settings of type 2 diabetes (T2D) and obesity. Furthermore, both adiponectin receptors (AdipoR1 and R2) are also downregulated in these settings which further results in impaired cardiac adiponectin signalling and reduced cardioprotection. In many cardiac pathologies, adiponectin signalling has been shown to protect against cardiac remodelling and lipotoxicity, however its cardioprotective actions in T2D-induced cardiomyopathy remain unresolved. Diabetic cardiomyopathy has historically lacked effective treatment options. In this review, we summarise the current evidence for links between the suppressed adiponectin signalling pathway and cardiac dysfunction, in diabetes. We describe adiponectin receptor-mediated signalling pathways that are normally associated with cardioprotection, as well as current and potential future therapeutic approaches that could target this pathway as possible interventions for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Abhipree Sharma
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Michael Mah
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia; Department of Medicine, Monash University, Clayton, VIC 3800, Australia
| | - Miles J De Blasio
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
59
|
Lin HB, Li FX, Zhang JY, You ZJ, Xu SY, Liang WB, Zhang HF. Cerebral-Cardiac Syndrome and Diabetes: Cardiac Damage After Ischemic Stroke in Diabetic State. Front Immunol 2021; 12:737170. [PMID: 34512671 PMCID: PMC8430028 DOI: 10.3389/fimmu.2021.737170] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/06/2021] [Indexed: 12/24/2022] Open
Abstract
Cerebral-cardiac syndrome (CCS) refers to cardiac dysfunction following varying brain injuries. Ischemic stroke is strongly evidenced to induce CCS characterizing as arrhythmia, myocardial damage, and heart failure. CCS is attributed to be the second leading cause of death in the post-stroke stage; however, the responsible mechanisms are obscure. Studies indicated the possible mechanisms including insular cortex injury, autonomic imbalance, catecholamine surge, immune response, and systemic inflammation. Of note, the characteristics of the stroke population reveal a common comorbidity with diabetes. The close and causative correlation of diabetes and stroke directs the involvement of diabetes in CCS. Nevertheless, the role of diabetes and its corresponding molecular mechanisms in CCS have not been clarified. Here we conclude the features of CCS and the potential role of diabetes in CCS. Diabetes drives establish a “primed” inflammatory microenvironment and further induces severe systemic inflammation after stroke. The boosted inflammation is suspected to provoke cardiac pathological changes and hence exacerbate CCS. Importantly, as the key element of inflammation, NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome is indicated to play an important role in diabetes, stroke, and the sequential CCS. Overall, we characterize the corresponding role of diabetes in CCS and speculate a link of NLRP3 inflammasome between them.
Collapse
Affiliation(s)
- Hong-Bin Lin
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Feng-Xian Li
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Jin-Yu Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Jian You
- Guangxi Health Commission Key Laboratory of Clinical Biotechnology, Liuzhou People's Hospital, Liuzhou, China
| | - Shi-Yuan Xu
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Wen-Bin Liang
- University of Ottawa Heart Institute and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hong-Fei Zhang
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
60
|
Levanovich PE, Chung CS, Komnenov D, Rossi NF. Fructose plus High-Salt Diet in Early Life Results in Salt-Sensitive Cardiovascular Changes in Mature Male Sprague Dawley Rats. Nutrients 2021; 13:3129. [PMID: 34579006 PMCID: PMC8465679 DOI: 10.3390/nu13093129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 01/18/2023] Open
Abstract
Fructose and salt intake remain high, particularly in adolescents and young adults. The present studies were designed to evaluate the impact of high fructose and/or salt during pre- and early adolescence on salt sensitivity, blood pressure, arterial compliance, and left ventricular (LV) function in maturity. Male 5-week-old Sprague Dawley rats were studied over three 3-week phases (Phases I, II, and III). Two reference groups received either 20% glucose + 0.4% NaCl (GCS-GCS) or 20% fructose + 4% NaCl (FHS-FHS) throughout this study. The two test groups ingested fructose + 0.4% NaCl (FCS) or FHS during Phase I, then GCS in Phase II, and were then challenged with 20% glucose + 4% NaCl (GHS) in Phase III: FCS-GHS and FHS-GHS, respectively. Compared with GCS-GCS, systolic and mean pressures were significantly higher at the end of Phase III in all groups fed fructose during Phase I. Aortic pulse wave velocity (PWV) was elevated at the end of Phase I in FHS-GHS and FHS-FHS (vs. GCS-GCS). At the end of Phase III, PWV and renal resistive index were higher in FHS-GHS and FHS-FHS vs. GCS-GCS. Diastolic, but not systolic, LV function was impaired in the FHS-GHS and FHS-FHS but not FCS-FHS rats. Consumption of 20% fructose by male rats during adolescence results in salt-sensitive hypertension in maturity. When ingested with a high-salt diet during this early plastic phase, dietary fructose also predisposes to vascular stiffening and LV diastolic dysfunction in later life.
Collapse
Affiliation(s)
- Peter E. Levanovich
- Department of Physiology, Wayne State University, Detroit, MI 48201, USA; (P.E.L.); (C.S.C.)
| | - Charles S. Chung
- Department of Physiology, Wayne State University, Detroit, MI 48201, USA; (P.E.L.); (C.S.C.)
| | - Dragana Komnenov
- Department of Internal Medicine, Wayne State University, Detroit, MI 48201, USA;
| | - Noreen F. Rossi
- Department of Physiology, Wayne State University, Detroit, MI 48201, USA; (P.E.L.); (C.S.C.)
- Department of Internal Medicine, Wayne State University, Detroit, MI 48201, USA;
- John D. Dingell VA Medical Center, Detroit, MI 48201, USA
| |
Collapse
|
61
|
Zhang C, Yu H, Yang H, Liu B. Activation of PI3K/PKB/GSK-3β signaling by sciadopitysin protects cardiomyocytes against high glucose-induced oxidative stress and apoptosis. J Biochem Mol Toxicol 2021; 35:e22887. [PMID: 34392578 DOI: 10.1002/jbt.22887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/12/2021] [Accepted: 08/06/2021] [Indexed: 01/09/2023]
Abstract
Diabetic cardiomyopathy (DCM), a diabetes complication, accounts for diabetes-associated morbidity, mortality, and heart failure. Biflavonoids have been demonstrated to possess extensive pharmacological properties, such as antidiabetic and antioxidant activities. Our study aimed to explore the effects of sciadopitysin, a type of biflavonoid, on DCM and the mechanism involved. An experimental cell model was established in AC16 cardiomyocytes by exposure to high glucose (HG). Cell injury was estimated by detecting cell viability and lactate dehydrogenase (LDH) release. Oxidative stress was determined by measuring malondialdehyde (MDA) level and activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT). Apoptosis was assessed by flow cytometry analysis, caspase-3/7 activity assay, and Western blot analysis of cytochrome C (Cyt C) expression. Alternation of the phosphatidylinositol-3 kinase (PI3K)/protein kinase B (PKB)/glycogen synthase kinase-3β (GSK-3β) pathway was detected by Western blot. Results showed that HG exposure reduced viability and increased LDH release in AC16 cells, which was abolished by sciadopitysin treatment. Sciadopitysin inhibited HG-induced oxidative stress, as evidenced by the reduced MDA content, and the increased activities of SOD, CAT, and GSH-Px. Sciadopitysin suppressed HG-induced apoptosis, an increase of caspase-3/7 activity, and Cyt C expression in AC16 cells. Mechanistically, sciadopitysin activated the PI3K/PKB/GSK-3β pathway under HG stimulation in AC16 cells. Inhibition of PI3K/PKB/GSK-3β pathway by LY294002 blocked the effects of sciadopitysin on HG-induced injury, oxidative stress, and apoptosis in AC16 cells. Summarily, sciadopitysin alleviated HG-caused oxidative stress and apoptosis in cardiomyocytes by activating the PI3K/PKB/GSK-3β pathway.
Collapse
Affiliation(s)
- Chujie Zhang
- Intensive Care Unit, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Huimei Yu
- Department of Endocrinology, Huaiyin Hospital, Huai'an, China
| | - Han Yang
- Department of Geriatrics, Nanshi Hospital, Nanyang, China
| | - Ben Liu
- Pediatric Intensive Care Unit, Affiliated Hospital 4 of Nantong University, The First people's Hospital of Yancheng, Yancheng, China
| |
Collapse
|
62
|
Tayanloo-Beik A, Roudsari PP, Rezaei-Tavirani M, Biglar M, Tabatabaei-Malazy O, Arjmand B, Larijani B. Diabetes and Heart Failure: Multi-Omics Approaches. Front Physiol 2021; 12:705424. [PMID: 34421642 PMCID: PMC8378451 DOI: 10.3389/fphys.2021.705424] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetes and heart failure, as important global issues, cause substantial expenses to countries and medical systems because of the morbidity and mortality rates. Most people with diabetes suffer from type 2 diabetes, which has an amplifying effect on the prevalence and severity of many health problems such as stroke, neuropathy, retinopathy, kidney injuries, and cardiovascular disease. Type 2 diabetes is one of the cornerstones of heart failure, another health epidemic, with 44% prevalence. Therefore, finding and targeting specific molecular and cellular pathways involved in the pathophysiology of each disease, either in diagnosis or treatment, will be beneficial. For diabetic cardiomyopathy, there are several mechanisms through which clinical heart failure is developed; oxidative stress with mediation of reactive oxygen species (ROS), reduced myocardial perfusion due to endothelial dysfunction, autonomic dysfunction, and metabolic changes, such as impaired glucose levels caused by insulin resistance, are the four main mechanisms. In the field of oxidative stress, advanced glycation end products (AGEs), protein kinase C (PKC), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) are the key mediators that new omics-driven methods can target. Besides, diabetes can affect myocardial function by impairing calcium (Ca) homeostasis, the mechanism in which reduced protein phosphatase 1 (PP1), sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a), and phosphorylated SERCA2a expressions are the main effectors. This article reviewed the recent omics-driven discoveries in the diagnosis and treatment of type 2 diabetes and heart failure with focus on the common molecular mechanisms.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyvand Parhizkar Roudsari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mahmood Biglar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ozra Tabatabaei-Malazy
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
63
|
Mendez DA, Ortiz RM. Thyroid hormones and the potential for regulating glucose metabolism in cardiomyocytes during insulin resistance and T2DM. Physiol Rep 2021; 9:e14858. [PMID: 34405550 PMCID: PMC8371345 DOI: 10.14814/phy2.14858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/30/2022] Open
Abstract
In order for the heart to maintain its continuous mechanical work and provide the systolic movement to uphold coronary blood flow, substantial synthesis of adenosine triphosphate (ATP) is required. Under normal conditions cardiac tissue utilizes roughly 70% fatty acids (FA), and 30% glucose for the production of ATP; however, during impaired metabolic conditions like insulin resistance and diabetes glucose metabolism is dysregulated and FA account for 99% of energy production. One of the major consequences of a shift in FA metabolism in cardiac tissue is an increase in reactive oxygen species (ROS) and lipotoxicity, which ultimately lead to mitochondrial dysfunction. Thyroid hormones (TH) have direct effects on cardiac function and glucose metabolism during impaired metabolic conditions suggesting that TH may improve glucose metabolism in an insulin resistant condition. None-classical TH signaling in the heart has shown to phosphorylate protein kinase B (Akt) and increase activity of phosphoinositide-3-kinase (PI3K), which are critical mediators in the insulin-stimulated glucose uptake pathway. Studies on peripheral tissues such as skeletal muscle and adipocytes have demonstrated TH treatment improved glucose intolerance in a diabetic model and increased insulin-regulated glucose transporter (GLUT4) mRNA levels. GLUT4 is a downstream target of thyroid response element (TRE), which demonstrates that THs regulate glucose via GLUT4. Elevated 3,5,3'-triiodothyronine (T3) increased glucose oxidation rate and decreased the glycolytic intermediate, fructose 6-phosphate (F6P) in cardiomyocytes, in addition to increasing mitochondrial biogenesis and pyruvate transport across the mitochondrial membrane. These findings along with a few other studies on T3 treatment in cardiac tissue suggest TH may improve glucose metabolism in an insulin resistant model and ameliorate the effects of diabetes and metabolic syndrome. This review highlights the potential benefits of exogenous TH on ameliorating metabolic dysfunction in the heart.
Collapse
Affiliation(s)
- Dora A. Mendez
- Department of Molecular & Cell BiologySchool of Natural SciencesUniversity of CaliforniaMercedCAUSA
| | - Rudy M. Ortiz
- Department of Molecular & Cell BiologySchool of Natural SciencesUniversity of CaliforniaMercedCAUSA
| |
Collapse
|
64
|
Shang R, Rodrigues B. Lipoprotein Lipase and Its Delivery of Fatty Acids to the Heart. Biomolecules 2021; 11:biom11071016. [PMID: 34356640 PMCID: PMC8301904 DOI: 10.3390/biom11071016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 02/05/2023] Open
Abstract
Ninety percent of plasma fatty acids (FAs) are contained within lipoprotein-triglyceride, and lipoprotein lipase (LPL) is robustly expressed in the heart. Hence, LPL-mediated lipolysis of lipoproteins is suggested to be a key source of FAs for cardiac use. Lipoprotein clearance by LPL occurs at the apical surface of the endothelial cell lining of the coronary lumen. In the heart, the majority of LPL is produced in cardiomyocytes and subsequently is translocated to the apical luminal surface. Here, vascular LPL hydrolyzes lipoprotein-triglyceride to provide the heart with FAs for ATP generation. This article presents an overview of cardiac LPL, explains how the enzyme works, describes key molecules that regulate its activity and outlines how changes in LPL are brought about by physiological and pathological states such as fasting and diabetes, respectively.
Collapse
|
65
|
Guo W, Zhao L, Mo F, Peng C, Li L, Xu Y, Guo W, Sun A, Yan H, Wang L. The prognostic value of the triglyceride glucose index in patients with chronic heart failure and type 2 diabetes: A retrospective cohort study. Diabetes Res Clin Pract 2021; 177:108786. [PMID: 33812901 DOI: 10.1016/j.diabres.2021.108786] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/27/2021] [Accepted: 03/29/2021] [Indexed: 02/08/2023]
Abstract
AIMS The triglyceride glucose (TyG) index is a marker of insulin resistance. However, the prognostic value thereof in patients with chronic heart failure (CHF) and type 2 diabetes remains unclear. METHODS This study included patients diagnosed with CHF and type 2 diabetes in Fuwai Hospital of Chinese Academy of Medical Sciences, Shenzhen, from January 2017 to July 2019. The primary endpoint was cardiovascular death or rehospitalization for heart failure. RESULTS The study included 546 patients with CHF and type 2 diabetes. We divided the patients into three groups (T1 [TyG index < 8.55], T2 [TyG index ≥ 8.55 and < 9.06], and T3 [TyG index ≥ 9.06]) according to the TyG index level. The incidence of the primary outcome in the T3 group was significantly higher than that in the T1 group. There was no significant difference between the T1 and T2 groups. The trend test revealed a positive correlation between the TyG index and the incidence of the primary outcome (P = 0.001). CONCLUSIONS There is a positive correlation between the TyG index and the prognosis of patients with CHF and type 2 diabetes.
Collapse
Affiliation(s)
- Wenqin Guo
- Department of Cardiology, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China
| | - Lingyue Zhao
- Department of Ambulatory Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital,Shenzhen, China
| | - Fanrui Mo
- Department of Cardiology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Changnong Peng
- Department of Cardiology, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China
| | - Lang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan Xu
- Department of Cardiology, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China
| | - Wenyu Guo
- Department of Cardiology, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China
| | - Aimei Sun
- Department of Cardiology, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China
| | - Hongbing Yan
- Department of Cardiology, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China.
| | - Lili Wang
- Department of Cardiology, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China.
| |
Collapse
|
66
|
Song XT, Fan L, Yan ZN, Rui YF. Echocardiographic evaluation of the effect of poor blood glucose control on left ventricular function and ascending aorta elasticity. J Diabetes Complications 2021; 35:107943. [PMID: 33934972 DOI: 10.1016/j.jdiacomp.2021.107943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/07/2021] [Accepted: 04/18/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS Type 2 diabetes mellitus (T2DM) is associated with high cardiovascular risk. Preclinical left ventricular (LV) dysfunction and subclinical arterial stiffness have been documented in patients with T2DM. The aims of this study were to investigate whether there were any differences in LV function and ascending aorta elasticity between T2DM patients with controlled [defined as glycosylated hemoglobin (HbA1c) <6.5%] and uncontrolled (HbA1c ≥6.5%) blood glucose. METHODS We studied 86 T2DM patients: 42 T2DM patients with controlled blood glucose (controlled T2DM group) and 44 T2DM patients with uncontrolled blood glucose (uncontrolled T2DM group), and 40 healthy subjects as control. They all underwent transthoracic echocardiography examination, LV systolic function was evaluated by global longitudinal strain (GLS) and LV diastolic function was defined as the ratio of the early diastolic transmitral flow velocity (E) to average mitral annular velocity (e¯). Ascending aorta inner diameters and brachial blood pressure were measured to calculate ascending aorta elastic parameters: compliance (C), distensibility (D), strain (S), stiffness index (SI), Peterson's elastic modulus (EM). RESULTS Compared to control, T2DM patients had reduced GLS, increased E/e ̅ and impaired ascending aorta elasticity. Furthermore, LV function and ascending aorta elasticity were more severely damaged in uncontrolled T2DM group compared with controlled T2DM group. By Pearson correlation analysis, the level of HbA1c was independently associated with the parameters of the LV function and ascending aorta elasticity. CONCLUSIONS T2DM can impair the LV myocardial function and ascending aorta elastic properties, which may be further impaired by poor blood glucose control.
Collapse
Affiliation(s)
- Xiang-Ting Song
- Department of Echocardiography, Changzhou No.2 People's Hospital Affiliated to Nanjing Medical University, Changzhou 213003, China.
| | - Li Fan
- Department of Echocardiography, Changzhou No.2 People's Hospital Affiliated to Nanjing Medical University, Changzhou 213003, China
| | - Zi-Ning Yan
- Department of Echocardiography, Changzhou No.2 People's Hospital Affiliated to Nanjing Medical University, Changzhou 213003, China
| | - Yi-Fei Rui
- Department of Echocardiography, Changzhou No.2 People's Hospital Affiliated to Nanjing Medical University, Changzhou 213003, China
| |
Collapse
|
67
|
Zhang B, Li X, Liu G, Zhang C, Zhang X, Shen Q, Sun G, Sun X. Peroxiredomin-4 ameliorates lipotoxicity-induced oxidative stress and apoptosis in diabetic cardiomyopathy. Biomed Pharmacother 2021; 141:111780. [PMID: 34130124 DOI: 10.1016/j.biopha.2021.111780] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/11/2021] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
Diabetic cardiomyopathy (DCM), one severe complication in the diabetes, leads to high mortality in the diabetic patients. However, the understanding of molecular mechanisms underlying DCM is far from completion. Herein, we investigated the disease-related differences in the proteomes of DCM based on db/db mice and verified the protective roles of peroxiredoxin-4 (Prdx4) in H9c2 cardiomyocytes treated by palmitic acid (PA). Fasting blood glucose (FBG) and cardiac function was detected in the 6-month-old control and diabetic mice. The hearts were then collected and analyzed by a coupled label-free and mass spectrometry approach. In vivo investigation indicated that body weight and FBG of db/db mice markedly increased, and diabetic heart exhibited obvious cardiac hypertrophy and lipid droplet accumulation, and cardiac dysfunction as is indicated by the increases of left ventricle posterior wall thickness in systole (LVPWd) and diastole (LVPWs), and reduction of fractional shortening (FS). We used proteomic analysis and then detected a grand total of 2636 proteins. 175 differentially expressed proteins (DEPs) were markedly detected in the diabetic heart. Thereinto, Prdx4 was markedly down-regulated in the diabetic heart. In vitro experiments revealed that 250 μM PA significantly inhibited viability of H9c2 cell. PA induced much accumulation of lipid droplet in cardiomyocytes and resulted in an increase of mRNA expressions of lipogenic genes (FASN and SCD1) and cardiac hypertrophic genes. Additionally, protein level of Prdx4 evidently reduced in the PA-treated H9c2 cell. It was further found that shRNA-mediated Prdx4 knockdown exacerbated PA-induced oxidative stress and cardiomyocyte apoptosis, whereas overexpressing Prdx4 in the H9c2 cells noteworthily limited PA-induced ROS generation and cardiomyocytes apoptosis. These data collectively reveal the essential role of abnormal Prdx4 in pathological alteration of DCM, and provide potentially therapeutic target for the prevention of DCM.
Collapse
Affiliation(s)
- Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Xiaoya Li
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Guoxin Liu
- Department of Pharmacy, The Third People's Hospital of Qingdao, Qingdao 266071, Shandong, China.
| | - Chenyang Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Xuelian Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Qiang Shen
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| |
Collapse
|
68
|
Mukai N, Nakayama Y, Abdali SA, Yoshioka J. Cardiomyocyte-specific Txnip C247S mutation improves left ventricular functional reserve in streptozotocin-induced diabetic mice. Am J Physiol Heart Circ Physiol 2021; 321:H259-H274. [PMID: 34085839 DOI: 10.1152/ajpheart.00174.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Underlying molecular mechanisms for the development of diabetic cardiomyopathy remain to be determined. Long-term exposure to hyperglycemia causes oxidative stress, which leads to cardiomyocyte dysfunction. Previous studies established the importance of thioredoxin-interacting protein (Txnip) in cellular redox homeostasis and glucose metabolism. Txnip is a highly glucose-responsive molecule that interacts with the catalytic center of reduced thioredoxin and inhibits the antioxidant function of thioredoxin. Here, we show that the molecular interaction between Txnip and thioredoxin plays a pivotal role in the regulation of redox balance in the diabetic myocardium. High glucose increased Txnip expression, decreased thioredoxin activities, and caused oxidative stress in cells. The Txnip-thioredoxin complex was detected in cells with overexpressing wild-type Txnip but not Txnip cysteine 247 to serine (C247S) mutant that disrupts the intermolecular disulfide bridge. Then, diabetes was induced in cardiomyocyte-specific Txnip C247S knock-in mice and their littermate control animals by injections of streptozotocin (STZ). Prolonged hyperglycemia upregulated myocardial Txnip expression in both genotypes. The absence of Txnip's inhibition of thioredoxin in Txnip C247S mutant hearts promoted mitochondrial antioxidative capacities in cardiomyocytes, thereby protecting the heart from oxidative damage by diabetes. Stress hemodynamic analysis uncovered that Txnip C247S knock-in hearts have a greater left ventricular contractile reserve than wild-type hearts under STZ-induced diabetic conditions. These results provide novel evidence that Txnip serves as a regulator of hyperglycemia-induced cardiomyocyte toxicities through direct inhibition of thioredoxin and identify the single cysteine residue in Txnip as a therapeutic target for diabetic injuries.NEW & NORTEWORTHY Thioredoxin-interacting protein (Txnip) has been of great interest as a molecular mechanism to mediate diabetic organ damage. Here, we provide novel evidence that a single mutation of Txnip confers a defense mechanism against myocardial oxidative stress in streptozotocin-induced diabetic mice. The results demonstrate the importance of Txnip as a cysteine-containing redox protein that regulates antioxidant thioredoxin via disulfide bond-switching mechanism and identify the cysteine in Txnip as a therapeutic target for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Nobuhiro Mukai
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, City College of New York, New York, New York
| | - Yoshinobu Nakayama
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, City College of New York, New York, New York
| | - Syed Amir Abdali
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, City College of New York, New York, New York
| | - Jun Yoshioka
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, City College of New York, New York, New York
| |
Collapse
|
69
|
Hadova K, Mesarosova L, Kralova E, Doka G, Krenek P, Klimas J. The tyrosine kinase inhibitor crizotinib influences blood glucose and mRNA expression of GLUT4 and PPARs in the heart of rats with experimental diabetes. Can J Physiol Pharmacol 2021; 99:635-643. [PMID: 33201727 DOI: 10.1139/cjpp-2020-0572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tyrosine kinases inhibitors (TKIs) may alter glycaemia and may be cardiotoxic with importance in the diabetic heart. We investigated the effect of multi-TKI crizotinib after short-term administration on metabolic modulators of the heart of diabetic rats. Experimental diabetes mellitus (DM) was induced by streptozotocin (STZ; 80 mg·kg-1, i.p.), and controls (C) received vehicle. Three days after STZ, crizotinib (STZ+CRI; 25 mg·kg-1 per day p.o.) or vehicle was administered for 7 days. Blood glucose, C-peptide, and glucagon were assessed in plasma samples. Receptor tyrosine kinases (RTKs), cardiac glucose transporters, and peroxisome proliferator-activated receptors (PPARs) were determined in rat left ventricle by RT-qPCR method. Crizotinib moderately reduced blood glucose (by 25%, P < 0.05) when compared to STZ rats. The drug did not affect levels of C-peptide, an indicator of insulin secretion, suggesting altered tissue glucose utilization. Crizotinib had no impact on cardiac RTKs. However, an mRNA downregulation of insulin-dependent glucose transporter Glut4 in the hearts of STZ rats was attenuated after crizotinib treatment. Moreover, crizotinib normalized Ppard and reduced Pparg mRNA expression in diabetic hearts. Crizotinib decreased blood glucose independently of insulin and glucagon. This could be related to changes in regulators of cardiac metabolism such as GLUT4 and PPARs.
Collapse
Affiliation(s)
- Katarina Hadova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
| | - Lucia Mesarosova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, the Netherlands
| | - Eva Kralova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
| | - Gabriel Doka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
| | - Peter Krenek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
| | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
| |
Collapse
|
70
|
Karwi QG, Ho KL, Pherwani S, Ketema EB, Sun QY, Lopaschuk GD. Concurrent diabetes and heart failure: interplay and novel therapeutic approaches. Cardiovasc Res 2021; 118:686-715. [PMID: 33783483 DOI: 10.1093/cvr/cvab120] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus increases the risk of developing heart failure, and the co-existence of both diseases worsens cardiovascular outcomes, hospitalization and the progression of heart failure. Despite current advancements on therapeutic strategies to manage hyperglycemia, the likelihood of developing diabetes-induced heart failure is still significant, especially with the accelerating global prevalence of diabetes and an ageing population. This raises the likelihood of other contributing mechanisms beyond hyperglycemia in predisposing diabetic patients to cardiovascular disease risk. There has been considerable interest in understanding the alterations in cardiac structure and function in the diabetic patients, collectively termed as "diabetic cardiomyopathy". However, the factors that contribute to the development of diabetic cardiomyopathies is not fully understood. This review summarizes the main characteristics of diabetic cardiomyopathies, and the basic mechanisms that contribute to its occurrence. This includes perturbations in insulin resistance, fuel preference, reactive oxygen species generation, inflammation, cell death pathways, neurohormonal mechanisms, advanced glycated end-products accumulation, lipotoxicity, glucotoxicity, and posttranslational modifications in the heart of the diabetic. This review also discusses the impact of antihyperglycemic therapies on the development of heart failure, as well as how current heart failure therapies influence glycemic control in diabetic patients. We also highlight the current knowledge gaps in understanding how diabetes induces heart failure.
Collapse
Affiliation(s)
- Qutuba G Karwi
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Kim L Ho
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Simran Pherwani
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Ezra B Ketema
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Qiu Yu Sun
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
71
|
Shatoor AS, Al Humayed S, Almohiy HM. Short-term administration of C. aronia stimulates insulin signaling, suppresses fatty acids metabolism, and increases glucose uptake and utilization in the hearts of healthy rats. Saudi J Biol Sci 2021; 28:1966-1977. [PMID: 33732083 PMCID: PMC7938129 DOI: 10.1016/j.sjbs.2020.12.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 11/03/2022] Open
Abstract
This study evaluated the effect of Crataegus aronia (C. aronia) aqueous extract on cardiac substrate utilization and insulin signaling in adult male healthy Wistar rats. Rats (n = 18/group) were either administered normal saline (vehicle) or treated with C. aronia aqueous extract (200 mg/kg) for 7 days, daily. Fasting plasma glucose and insulin levels were not significantly changed in C. aronia-treated rats but were significantly reduced after both the intraperitoneal glucose or insulin tolerance tests. Besides, C. aronia significantly increased the left ventricular (LV) activities of phosphofructokinase (PFK) and pyruvate dehydrogenase (PDH), two markers of glycolysis and glucose oxidation, respectively, and suppressed the levels of pyruvate dehydrogenase kinase 4 (PDK4), an inhibitor of PDH. Concomitantly, it significantly reduced the LV levels of carnitine palmitoyltransferase 1 (CPT1) and PPARα, two markers of fatty acid (FAs) oxidations. Under basal and insulin stimulation, C. aronia aqueous extract boosted insulin signaling in the LV of rats by increasing the protein levels of p-IRS (Tyr612) and p-Akt (Ser473) and suppressing protein levels of p-mTOR (Ser 2448) and p-IRS (Ser307). In parallel, C. aronia also increased the protein levels of GLUT-4 in the membrane fraction of the treated LVs. All these effects were also associated with a significant increase in AMPK activity (phosphorylation at Thr172), a major energy modulator that stimulates glucose utilization. In conclusion, short-term administration of C. aronia aqueous extract shifts the cardiac metabolism toward glucose utilization, thus making this plant a potential therapeutic medication in cardiac disorders with impaired metabolism.
Collapse
Affiliation(s)
- Abdullah S Shatoor
- Department of Medicine, Cardiology Section, College of Medicine, King Khalid University (KKU), Abha, Saudi Arabia
| | - Suliman Al Humayed
- Department of Internal Medicine, College of Medicine, King Khalid University (KKU), Abha, Saudi Arabia
| | - Hussain M Almohiy
- Depatrtment of Radiology Science, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
72
|
Carnicer R, Duglan D, Ziberna K, Recalde A, Reilly S, Simon JN, Mafrici S, Arya R, Rosello-Lleti E, Chuaiphichai S, Tyler D, Lygate CA, Channon KM, Casadei B. BH4 Increases nNOS Activity and Preserves Left Ventricular Function in Diabetes. Circ Res 2021; 128:585-601. [PMID: 33494625 PMCID: PMC7612785 DOI: 10.1161/circresaha.120.316656] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022]
Abstract
RATIONALE In diabetic patients, heart failure with predominant left ventricular (LV) diastolic dysfunction is a common complication for which there is no effective treatment. Oxidation of the NOS (nitric oxide synthase) cofactor tetrahydrobiopterin (BH4) and dysfunctional NOS activity have been implicated in the pathogenesis of the diabetic vascular and cardiomyopathic phenotype. OBJECTIVE Using mice models and human myocardial samples, we evaluated whether and by which mechanism increasing myocardial BH4 availability prevented or reversed LV dysfunction induced by diabetes. METHODS AND RESULTS In contrast to the vascular endothelium, BH4 levels, superoxide production, and NOS activity (by liquid chromatography) did not differ in the LV myocardium of diabetic mice or in atrial tissue from diabetic patients. Nevertheless, the impairment in both cardiomyocyte relaxation and [Ca2+]i (intracellular calcium) decay and in vivo LV function (echocardiography and tissue Doppler) that developed in wild-type mice 12 weeks post-diabetes induction (streptozotocin, 42-45 mg/kg) was prevented in mGCH1-Tg (mice with elevated myocardial BH4 content secondary to trangenic overexpression of GTP-cyclohydrolase 1) and reversed in wild-type mice receiving oral BH4 supplementation from the 12th to the 18th week after diabetes induction. The protective effect of BH4 was abolished by CRISPR/Cas9-mediated knockout of nNOS (the neuronal NOS isoform) in mGCH1-Tg. In HEK (human embryonic kidney) cells, S-nitrosoglutathione led to a PKG (protein kinase G)-dependent increase in plasmalemmal density of the insulin-independent glucose transporter GLUT-1 (glucose transporter-1). In cardiomyocytes, mGCH1 overexpression induced a NO/sGC (soluble guanylate cyclase)/PKG-dependent increase in glucose uptake via GLUT-1, which was instrumental in preserving mitochondrial creatine kinase activity, oxygen consumption rate, LV energetics (by 31phosphorous magnetic resonance spectroscopy), and myocardial function. CONCLUSIONS We uncovered a novel mechanism whereby myocardial BH4 prevents and reverses LV diastolic and systolic dysfunction associated with diabetes via an nNOS-mediated increase in insulin-independent myocardial glucose uptake and utilization. These findings highlight the potential of GCH1/BH4-based therapeutics in human diabetic cardiomyopathy. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
| | - Drew Duglan
- Cardiovascular Medicine, University of Oxford
| | | | | | | | | | | | - Ritu Arya
- Cardiovascular Medicine, University of Oxford
| | | | | | - Damian Tyler
- Physiology, Anatomy and Genetics, University of Oxford
| | | | | | | |
Collapse
|
73
|
Tian JH, Wu Q, He YX, Shen QY, Rekep M, Zhang GP, Luo JD, Xue Q, Liu YH. Zonisamide, an antiepileptic drug, alleviates diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress. Acta Pharmacol Sin 2021; 42:393-403. [PMID: 32647341 PMCID: PMC8026994 DOI: 10.1038/s41401-020-0461-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 06/11/2020] [Indexed: 02/06/2023]
Abstract
Endoplasmic reticulum stress (ER stress) plays a key role in the development of cardiac hypertrophy and diabetic cardiomyopathy (DCM). Zonisamide (ZNS) was originally developed as an antiepileptic drug. Studies have shown that ZNS suppresses ER stress-induced neuronal cell damage in the experimental models of Parkinson's disease. Herein, we investigated whether ZNS improved DCM by attenuating ER stress-induced apoptosis. C57BL/6J mice were fed with high-fat diet (HFD) and intraperitoneally injected with low-dose streptozotocin (STZ) to induce type 2 diabetes mellitus (T2DM), and then treated with ZNS (40 mg·kg-1·d-1, i.g.) for 16 weeks. We showed that ZNS administration slightly ameliorated the blood glucose levels, but significantly alleviated diabetes-induced cardiac dysfunction and hypertrophy. Furthermore, ZNS administration significantly inhibited the Bax and caspase-3 activity, upregulated Bcl-2 activity, and decreased the proportion of TUNEL-positive cells in heart tissues. We analyzed the hallmarks of ER stress in heart tissues, and revealed that ZNS administration significantly decreased the protein levels of GRP78, XBP-1s, ATF6, PERK, ATF4, and CHOP, and elevated Hrd1 protein. In high glucose (HG)-treated primary cardiomyocytes, application of ZNS (3 μM) significantly alleviated HG-induced cardiomyocyte hypertrophy and apoptosis. ZNS application also suppressed activated ER stress in HG-treated cardiomyocytes. Moreover, preapplication of the specific ER stress inducer tunicamycin (10 ng/mL) eliminated the protective effects of ZNS against HG-induced cardiac hypertrophy and ER stress-mediated apoptosis. Our findings suggest that ZNS improves the cardiac diastolic function in diabetic mice and prevents T2DM-induced cardiac hypertrophy by attenuating ER stress-mediated apoptosis.
Collapse
Affiliation(s)
- Jia-Hui Tian
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qian Wu
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yong-Xiang He
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qi-Ying Shen
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Mubarak Rekep
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Gui-Ping Zhang
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jian-Dong Luo
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qin Xue
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Ying-Hua Liu
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
74
|
Lee TW, Lee TI, Lin YK, Chen YC, Kao YH, Chen YJ. Effect of antidiabetic drugs on the risk of atrial fibrillation: mechanistic insights from clinical evidence and translational studies. Cell Mol Life Sci 2021; 78:923-934. [PMID: 32965513 PMCID: PMC11072414 DOI: 10.1007/s00018-020-03648-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/18/2020] [Accepted: 09/12/2020] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus (DM) is an independent risk factor for atrial fibrillation (AF), which is the most common sustained arrhythmia and is associated with substantial morbidity and mortality. Advanced glycation end product and its receptor activation, cardiac energy dysmetabolism, structural and electrical remodeling, and autonomic dysfunction are implicated in AF pathophysiology in diabetic hearts. Antidiabetic drugs have been demonstrated to possess therapeutic potential for AF. However, clinical investigations of AF in patients with DM have been scant and inconclusive. This article provides a comprehensive review of research findings on the association between DM and AF and critically analyzes the effect of different pharmacological classes of antidiabetic drugs on AF.
Collapse
Affiliation(s)
- Ting-Wei Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ting-I Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
75
|
Dhandapany PS, Kang S, Kashyap DK, Rajagopal R, Sundaresan NR, Singh R, Thangaraj K, Jayaprakash S, Manjunath CN, Shenthar J, Lebeche D. Adiponectin receptor 1 variants contribute to hypertrophic cardiomyopathy that can be reversed by rapamycin. SCIENCE ADVANCES 2021; 7:eabb3991. [PMID: 33523960 PMCID: PMC7787482 DOI: 10.1126/sciadv.abb3991] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is a heterogeneous genetic heart muscle disease characterized by hypertrophy with preserved or increased ejection fraction in the absence of secondary causes. However, recent studies have demonstrated that a substantial proportion of individuals with HCM also have comorbid diabetes mellitus (~10%). Whether genetic variants may contribute a combined phenotype of HCM and diabetes mellitus is not known. Here, using next-generation sequencing methods, we identified novel and ultrarare variants in adiponectin receptor 1 (ADIPOR1) as risk factors for HCM. Biochemical studies showed that ADIPOR1 variants dysregulate glucose and lipid metabolism and cause cardiac hypertrophy through the p38/mammalian target of rapamycin and/or extracellular signal-regulated kinase pathways. A transgenic mouse model expressing an ADIPOR1 variant displayed cardiomyopathy that recapitulated the cellular findings, and these features were rescued by rapamycin. Our results provide the first evidence that ADIPOR1 variants can cause HCM and provide new insights into ADIPOR1 regulation.
Collapse
Affiliation(s)
- Perundurai S Dhandapany
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India.
- The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239, USA
- Departments of Medicine, Molecular, and Medical Genetics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Soojeong Kang
- Cardiovascular Research Center, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Deepak K Kashyap
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
- CSIR-Center for Cellular and Molecular Biology, Hyderabad, India
| | - Raksha Rajagopal
- Department of Microbiology and Cell Biology, Indian Institute of Science, CV Raman Avenue, Bangalore, India
| | - Nagalingam R Sundaresan
- Department of Microbiology and Cell Biology, Indian Institute of Science, CV Raman Avenue, Bangalore, India
| | - Rajvir Singh
- Cardiovascular Research Center, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Kumarasamy Thangaraj
- CSIR-Center for Cellular and Molecular Biology, Hyderabad, India
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Shilpa Jayaprakash
- Department of Cardiology, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bengaluru, India
| | - Cholenahally N Manjunath
- Department of Cardiology, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bengaluru, India
| | - Jayaprakash Shenthar
- Department of Cardiology, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bengaluru, India
| | - Djamel Lebeche
- Cardiovascular Research Center, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
- Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
76
|
Yu FR, Xia YW, Wang SB, Xiao LH. Long noncoding RNA PVT1 facilitates high glucose-induced cardiomyocyte death through the miR-23a-3p/CASP10 axis. Cell Biol Int 2020; 45:154-163. [PMID: 33049089 DOI: 10.1002/cbin.11479] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/14/2022]
Abstract
Dilated cardiomyopathy (DCM) is the leading cause of morbidity and mortality in diabetic patients. Long noncoding RNA plasmacytoma variant translocation 1 (PVT1) has been shown to be related to the pathogenesis of DCM. However, the mechanism by which PVT1 regulates DCM pathogenesis is unclear. High glucose level was employed to construct a DCM cell model in vitro. Cell viability was determined via cell counting kit-8 assay. The level of lactate dehydrogenase (LDH) was measured with the corresponding kit. Expression levels of PVT1, miR-23a-3p, and caspase-10 (CASP10) messenger RNA were evaluated with a quantitative real-time polymerase chain reaction. Cell apoptosis was assessed by flow cytometry assay. Protein levels of B-cell lymphoma 2-associated X (Bax), cleaved-caspase-3 (cleaved-casp-3), and CASP10 were examined via western blot analysis. The relationship between PVT1 or CASP10 and miR-23a-3p was verified with dual-luciferase reporter assay. We observed that PVT1 and CASP10 were upregulated while miR-23a-3p was downregulated in high glucose-induced cardiomyocytes. High glucose levels repressed cardiomyocyte activity and induced cardiomyocyte apoptosis, but this influence was antagonized by PVT1 knockdown or miR-23a-3p overexpression. Furthermore, PVT1 acted as a sponge for miR-23a-3p, and miR-23a-3p inhibition counterbalanced the influence of PVT1 silencing on viability and apoptosis of cardiomyocytes under high glucose level treatment. PVT1 could increase CASP10 expression via sponging miR-23a-3p. In conclusion, PVT1 acted as a deleterious lncRNA in DCM. PVT1 facilitated cardiomyocyte death by regulating the miR-23a-3p/CASP10, which offered a new mechanism to comprehend the pathogenesis of DCM.
Collapse
Affiliation(s)
- Feng-Rong Yu
- Department of Cardiology, Hanchuan City People's Hospital, Hanchuan, Hubei, China
| | - Yin-Wen Xia
- Department of Cardiology, Hanchuan City People's Hospital, Hanchuan, Hubei, China
| | - Shao-Bo Wang
- Department of Cardiology, Hanchuan City People's Hospital, Hanchuan, Hubei, China
| | - Li-Hua Xiao
- Department of Cardiology, Hanchuan City People's Hospital, Hanchuan, Hubei, China
| |
Collapse
|
77
|
The Mitochondria: A Target of Polyphenols in the Treatment of Diabetic Cardiomyopathy. Int J Mol Sci 2020; 21:ijms21144962. [PMID: 32674299 PMCID: PMC7404043 DOI: 10.3390/ijms21144962] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a constellation of symptoms consisting of ventricular dysfunction and cardiomyocyte disarray in the presence of diabetes. The exact cause of this type of cardiomyopathy is still unknown; however, several processes involving the mitochondria, such as lipid and glucose metabolism, reactive oxygen species (ROS) production, apoptosis, autophagy and mitochondrial biogenesis have been implicated. In addition, polyphenols have been shown to improve the progression of diabetes. In this review, we discuss some of the mechanisms by which polyphenols, particularly resveratrol, play a role in slowing the progression of DCM. The most important intermediates by which polyphenols exert their protective effect include Bcl-2, UCP2, SIRT-1, AMPK and JNK1. Bcl-2 acts to attenuate apoptosis, UCP2 decreases oxidative stress, SIRT-1 increases mitochondrial biogenesis and decreases oxidative stress, AMPK increases autophagy, and JNK1 decreases apoptosis and increases autophagy. Our dissection of these molecular players aims to provide potential therapeutic targets for the treatment of DCM.
Collapse
|
78
|
Trivedi PC, Bartlett JJ, Mercer A, Slade L, Surette M, Ballabio A, Flibotte S, Hussein B, Rodrigues B, Kienesberger PC, Pulinilkunnil T. Loss of function of transcription factor EB remodels lipid metabolism and cell death pathways in the cardiomyocyte. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165832. [PMID: 32437957 DOI: 10.1016/j.bbadis.2020.165832] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
Abstract
Glucolipotoxicity following nutrient overload causes cardiomyocyte injury by inhibiting TFEB and suppressing lysosomal function. We ascertained whether in addition to the amount, the type of fatty acids (FAs) and duration of FA exposure regulate TFEB action and dictate cardiomyocyte viability. Saturated FA, palmitate, but not polyunsaturated FAs decreased TFEB content in a concentration- and time-dependent manner in cardiomyocytes. Hearts from high-fat high-sucrose diet-fed mice exhibited a temporal decline in nuclear TFEB content with marked elevation of diacylglycerol and triacylglycerol, suggesting that lipid deposition and TFEB loss are concomitant molecular events. Next, we examined the identity of signaling and metabolic pathways engaged by the loss of TFEB action in the cardiomyocyte. Transcriptome analysis in murine cardiomyocytes with targeted deletion of myocyte TFEB (TFEB-/-) revealed enrichment of differentially expressed genes (DEG) representing pathways of nutrient metabolism, DNA damage and repair, cell death and cardiac function. Strikingly, genes involved in macroautophagy, mitophagy and lysosome function constituted a small portion of DEGs in TFEB-/- cardiomyocytes. In myoblasts and/or myocytes, nutrient overload-induced lipid droplet accumulation and caspase-3 activation were exacerbated by silencing TFEB or attenuated by overexpressing constitutively active TFEB. The effect of TFEB overexpression were persistent in the presence of Atg7 loss-of-function, signifying that the effect of TFEB in the myocyte is independent of changes in the macroautophagy pathway. In the cardiomyocyte, the non-canonical effect of TFEB to reprogram energy metabolism is more evident than the canonical action of TFEB on lysosomal autophagy. Loss of TFEB function perturbs metabolic pathways in the cardiomyocyte and renders the heart prematurely susceptible to nutrient overload-induced injury.
Collapse
Affiliation(s)
- Purvi C Trivedi
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada; Dalhousie Medicine New Brunswick, E2L 4L5 Saint John, NB, Canada
| | - Jordan J Bartlett
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada; Dalhousie Medicine New Brunswick, E2L 4L5 Saint John, NB, Canada
| | - Angella Mercer
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada; Dalhousie Medicine New Brunswick, E2L 4L5 Saint John, NB, Canada
| | - Logan Slade
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada; Dalhousie Medicine New Brunswick, E2L 4L5 Saint John, NB, Canada
| | - Marc Surette
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Stephane Flibotte
- Department of Zoology, University of British Columbia, 4200 University Blvd, V6T 1Z4 Vancouver, BC, Canada
| | - Bahira Hussein
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, V6T 1Z3 Vancouver, BC, Canada
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, V6T 1Z3 Vancouver, BC, Canada
| | - Petra C Kienesberger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada; Dalhousie Medicine New Brunswick, E2L 4L5 Saint John, NB, Canada
| | - Thomas Pulinilkunnil
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada; Dalhousie Medicine New Brunswick, E2L 4L5 Saint John, NB, Canada.
| |
Collapse
|
79
|
Quantitative evaluation of subclinical left ventricular dysfunction in patients with type 2 diabetes mellitus by three-dimensional echocardiography. Int J Cardiovasc Imaging 2020; 36:1311-1319. [DOI: 10.1007/s10554-020-01833-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/30/2020] [Indexed: 12/27/2022]
|
80
|
Human induced pluripotent stem cell-derived cardiomyocytes reveal abnormal TGFβ signaling in type 2 diabetes mellitus. J Mol Cell Cardiol 2020; 142:53-64. [PMID: 32251671 DOI: 10.1016/j.yjmcc.2020.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus is a serious metabolic condition associated with a multitude of cardiovascular complications. Moreover, the prevalence of diabetes in heart failure populations is higher than that in control populations. However, the role of cardiomyocyte alterations in type 2 diabetes mellitus (T2DM) has not been well characterized and the underlying mechanisms remain elusive. In this study, two patients who were diagnosed as T2DM were recruited and patient-specific induced pluripotent stem cells (iPSCs) were generated from urine epithelial cells using nonintegrated Sendai virus. The iPSC lines derived from five healthy subjects were used as controls. All iPSCs were differentiated into cardiomyocytes (iPSC-CMs) using the monolayer-based differentiation protocol. T2DM iPSC-CMs exhibited various disease phenotypes, including cellular hypertrophy and lipid accumulation. Moreover, T2DM iPSC-CMs exhibited higher susceptibility to high-glucose/high-lipid challenge than control iPSC-CMs, manifesting an increase in apoptosis. RNA-Sequencing analysis revealed a differential transcriptome profile and abnormal activation of TGFβ signaling pathway in T2DM iPSC-CMs. We went on to show that inhibition of TGFβ significantly rescued the hypertrophic phenotype in T2DM iPSC-CMs. In conclusion, we demonstrate that the iPSC-CM model is able to recapitulate cellular phenotype of T2DM. Our results indicate that iPSC-CMs can therefore serve as a suitable model for investigating molecular mechanisms underlying diabetic cardiomyopathies and for screening therapeutic drugs.
Collapse
|
81
|
Cardiac ketone body metabolism. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165739. [PMID: 32084511 DOI: 10.1016/j.bbadis.2020.165739] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 12/14/2022]
Abstract
The ketone bodies, d-β-hydroxybutyrate and acetoacetate, are soluble 4-carbon compounds derived principally from fatty acids, that can be metabolised by many oxidative tissues, including heart, in carbohydrate-depleted conditions as glucose-sparing energy substrates. They also have important signalling functions, acting through G-protein coupled receptors and histone deacetylases to regulate metabolism and gene expression including that associated with anti-oxidant activity. Their concentration, and hence availability, increases in diabetes mellitus and heart failure. Whilst known to be substrates for ATP production, especially in starvation, their role(s) in the heart, and in heart disease, is uncertain. Recent evidence, reviewed here, indicates that increased ketone body metabolism is a feature of heart failure, and is accompanied by other changes in substrate selection. Whether the change in myocardial ketone body metabolism is adaptive or maladaptive is unknown, but it offers the possibility of using exogenous ketones to treat the failing heart.
Collapse
|
82
|
Landa-Galvan HV, Rios-Castro E, Romero-Garcia T, Rueda A, Olivares-Reyes JA. Metabolic syndrome diminishes insulin-induced Akt activation and causes a redistribution of Akt-interacting proteins in cardiomyocytes. PLoS One 2020; 15:e0228115. [PMID: 31995605 PMCID: PMC6988918 DOI: 10.1371/journal.pone.0228115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/07/2020] [Indexed: 12/31/2022] Open
Abstract
Metabolic syndrome (MetS) is a cluster of cardiometabolic risk factors, with insulin resistance as a critical component for its development. Insulin signaling in the heart leads to Akt (also known as PKB) activation, a serine/threonine protein kinase, which regulates cardiac glucose metabolism and growth. Cardiac metabolic inflexibility, characterized by impaired insulin-induced glucose uptake and oxidation, has been reported as an early and consistent change in the heart of different models of MetS and diabetes; however, the evaluation of Akt activation has yielded variable results. Here we report in cardiomyocytes of MetS rats, diminished insulin-induced glucose uptake and Akt activation, evaluated by its impaired mobilization towards the plasma membrane and phosphorylation, and reflected in a re-distribution of its interacting proteins, assessed by label-free mass spectrometry (data are available via ProteomeXchange with identifier PXD013260). We report 45 proteins with diminished abundance in Akt complex of MetS cardiomyocytes, mainly represented by energy metabolism-related proteins, and also, 31 Akt-interacting proteins with increased abundance, which were mainly related to contraction, endoplasmic reticulum stress, and Akt negative regulation. These results emphasize the relevance of Akt in the regulation of energy metabolism in the heart and highlight Akt-interacting proteins that could be involved in the detrimental effects of MetS in the heart.
Collapse
Affiliation(s)
| | - Emmanuel Rios-Castro
- Unidad de Genomica, Proteomica y Metabolomica (UGPM), LaNSE-Cinvestav-IPN, Mexico City, Mexico
| | | | - Angelica Rueda
- Departamento de Bioquimica, Cinvestav-IPN, Mexico City, Mexico
| | | |
Collapse
|
83
|
Andres DA, Young LEA, Veeranki S, Hawkinson TR, Levitan BM, He D, Wang C, Satin J, Sun RC. Improved workflow for mass spectrometry-based metabolomics analysis of the heart. J Biol Chem 2020; 295:2676-2686. [PMID: 31980460 DOI: 10.1074/jbc.ra119.011081] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/17/2020] [Indexed: 01/08/2023] Open
Abstract
MS-based metabolomics methods are powerful techniques to map the complex and interconnected metabolic pathways of the heart; however, normalization of metabolite abundance to sample input in heart tissues remains a technical challenge. Herein, we describe an improved GC-MS-based metabolomics workflow that uses insoluble protein-derived glutamate for the normalization of metabolites within each sample and includes normalization to protein-derived amino acids to reduce biological variation and detect small metabolic changes. Moreover, glycogen is measured within the metabolomics workflow. We applied this workflow to study heart metabolism by first comparing two different methods of heart removal: the Langendorff heart method (reverse aortic perfusion) and in situ freezing of mouse heart with a modified tissue freeze-clamp approach. We then used the in situ freezing method to study the effects of acute β-adrenergic receptor stimulation (through isoproterenol (ISO) treatment) on heart metabolism. Using our workflow and within minutes, ISO reduced the levels of metabolites involved in glycogen metabolism, glycolysis, and the Krebs cycle, but the levels of pentose phosphate pathway metabolites and of many free amino acids remained unchanged. This observation was coupled to a 6-fold increase in phosphorylated adenosine nucleotide abundance. These results support the notion that ISO acutely accelerates oxidative metabolism of glucose to meet the ATP demand required to support increased heart rate and cardiac output. In summary, our MS-based metabolomics workflow enables improved quantification of cardiac metabolites and may also be compatible with other methods such as LC or capillary electrophoresis.
Collapse
Affiliation(s)
- Douglas A Andres
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536; Gill Heart and Vascular Institute, University of Kentucky College of Medicine, Lexington, Kentucky 40536; Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536; Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Lyndsay E A Young
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Sudhakar Veeranki
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536; Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Tara R Hawkinson
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky 40536
| | - Bryana M Levitan
- Gill Heart and Vascular Institute, University of Kentucky College of Medicine, Lexington, Kentucky 40536; Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Daheng He
- Department of Biostatistics, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Chi Wang
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536; Department of Biostatistics, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Jonathan Satin
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Ramon C Sun
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536; Department of Neuroscience, University of Kentucky, Lexington, Kentucky 40536.
| |
Collapse
|
84
|
Li J, Li L, Guo D, Li S, Zeng Y, Liu C, Fu R, Huang M, Xie W. Triglyceride metabolism and angiopoietin-like proteins in lipoprotein lipase regulation. Clin Chim Acta 2020; 503:19-34. [PMID: 31923423 DOI: 10.1016/j.cca.2019.12.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 12/21/2022]
Abstract
Hypertriglyceridemia is a risk factor for a series of diseases, such as cardiovascular disease (CVD), diabetes and nonalcoholic fatty liver disease (NAFLD). Angiopoietin-like proteins (ANGPTLs) family, especially ANGPTL3, ANGPTL4 and ANGPTL8, which regulate lipoprotein lipase (LPL) activity, play pivotal roles in triglyceride (TG) metabolism and related diseases/complications. There are many transcriptional and post-transcriptional factors that participate in physiological and pathological regulation of ANGPTLs to affect triglyceride metabolism. This review is intended to focus on the similarity and difference in the expression, structural features, regulation profile of the three ANGPTLs and inhibitory models for LPL. Description of the regulatory factors of ANGPTLs and the properties in regulating the lipid metabolism involved in the underlying mechanisms in pathological effects on diseases will provide potential therapeutic approaches for the treatment of dyslipidemia related diseases.
Collapse
Affiliation(s)
- Jing Li
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China; 2016 Class of Clinical Medicine, University of South China, Hengyang 421001, Hunan, China
| | - Liang Li
- Department of Pathophysiology, University of South China, Hengyang 421001, Hunan, China
| | - DongMing Guo
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China
| | - SuYun Li
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China
| | - YuXin Zeng
- 2018 Class of Excellent Doctor, University of South China, Hengyang 421001, Hunan, China
| | - ChuHao Liu
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China; 2016 Class of Clinical Medicine, University of South China, Hengyang 421001, Hunan, China
| | - Ru Fu
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China; 2016 Class of Clinical Medicine, University of South China, Hengyang 421001, Hunan, China
| | - MengQian Huang
- 2015 Class of Clinical Medicine, Fuxing Hospital, Capital Medical University, Beijing 100038, China.
| | - Wei Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
85
|
Wang SY, Zhu S, Wu J, Zhang M, Xu Y, Xu W, Cui J, Yu B, Cao W, Liu J. Exercise enhances cardiac function by improving mitochondrial dysfunction and maintaining energy homoeostasis in the development of diabetic cardiomyopathy. J Mol Med (Berl) 2020; 98:245-261. [PMID: 31897508 DOI: 10.1007/s00109-019-01861-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022]
Abstract
Diabetic cardiomyopathy (DCM) is a major cause of morbidity and mortality in diabetic patients. Reactive oxygen species (ROS) produced by oxidative stress play an important role in the development of DCM. DCM involves abnormal energy metabolism, thereby reducing energy production. Exercise has been reported to be effective in protecting the heart against ROS accumulation during the development of DCM. We hypothesize that the AMPK/PGC-1α axis may play a crucial role in exercise-induced bioenergetic metabolism and aerobic respiration on oxidative stress parameters in the development of diabetic cardiomyopathy. Using a streptozotocin/high-fat diet mouse to generate a diabetic model, our aim was to evaluate the effects of exercise on the cardiac function, mitochondrial oxidative capacity, mitochondrial function, and cardiac expression of PGC-1α. Mice fed a high-fat diet were given MO-siPGC-1α or treated with AMPK inhibitor. Mitochondrial structure and effects of switching between the Warburg effect and aerobic respiration were analysed. Exercise improved blood pressure and systolic dysfunction in diabetic mouse hearts. The beneficial effects of exercise were also observed in a mitochondrial function study, as reflected by an enhanced oxidative phosphorylation level, increased membrane potential, and decreased ROS level and oxygen consumption. On the other hand, depletion of PGC-1α attenuated the effects of exercise on the enhancement of mitochondrial function. In addition, PGC-1α may be responsible for reversing the Warburg effect to aerobic respiration, thus enhancing mitochondrial metabolism and energy homoeostasis. In this study, we demonstrate the protective effects of exercise on shifting energy metabolism from fatty acid oxidation to glucose oxidation in an established diabetic stage. These data suggest that exercise is effective at ameliorating diabetic cardiomyopathy by improving mitochondrial function and reducing metabolic disturbances.
Collapse
Affiliation(s)
- Shawn Yongshun Wang
- Cardiology Department, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, 150086, Heilongjiang, China.,Department of Biomedical Science, University of Hong Kong, Pokfulam, Hong Kong
| | - Siyu Zhu
- Department of Medical Imaging, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Jian Wu
- Cardiology Department, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, 150086, Heilongjiang, China
| | - Maomao Zhang
- Cardiology Department, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, 150086, Heilongjiang, China
| | - Yousheng Xu
- Cardiology Department, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, 150086, Heilongjiang, China
| | - Wei Xu
- Cardiology Department, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, 150086, Heilongjiang, China
| | - Jinjin Cui
- Cardiology Department, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, 150086, Heilongjiang, China
| | - Bo Yu
- Cardiology Department, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, 150086, Heilongjiang, China
| | - Wei Cao
- Cardiology Department, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China. .,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, 150086, Heilongjiang, China.
| | - Jingjin Liu
- Cardiology Department, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China. .,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, 150086, Heilongjiang, China. .,Department of Anesthesiology, University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
86
|
Mukharjee S, Bank S, Maiti S. Chronic Tobacco Exposure by Smoking Develops Insulin Resistance. Endocr Metab Immune Disord Drug Targets 2020; 20:869-877. [PMID: 32065107 DOI: 10.2174/1871530320666200217123901] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVES The present review critically discusses the high occurrence rate, insulin resistance and type-2 diabetes in tobacco exposed individuals. Tobacco extracts and smoke contain a large number of toxic materials and a significant number of those are metabolic disintegrators. DISCUSSION Glucose and lipid homeostasis is severely impaired by this compound. Tobacco exposure contributes to adverse effects by impairing the physical, biochemical and molecular mechanisms in the tissues. The immunological components are damaged by tobacco with high production of proinflammatory cytokines (IL-6, TNF-∞) and augmentation of inflammatory responses. These events result in damages to cytoskeletal structures of different tissues. Degradation of matrix structure (by activation of different types of MMPs) results in the permanent damages to the tissues and their metabolic functions. Cellular antioxidant defense system mostly cannot or hardly nullify CS-induced ROS production that activates polymorphonuclear neutrophils (PMNs), which are a major source of cytokines and chemokines (TNFα, IL6, IL8, INFγ). Additive effects of these immediately promote the low energy-metabolism as well as inflammation. Oxidative stress, mitochondrial dysfunction, and inflammation contribute to the direct nicotine toxicity via nAChRs in diabetes. The investigator identified that skeletal muscle insulin-resistance occurs in smokers due to phosphorylation of insulin receptor substrate1 (IRS1) at Ser-636 position. CONCLUSION Tobacco exposure initiates free radical related immunological impairment, DNA damage, and inflammation. So, the present analysis is of importance to figure out the mechanistic layout of tobacco-induced tissue damage and its possible therapeutic interventions.
Collapse
Affiliation(s)
- Suchismita Mukharjee
- Post Graduate Department of Biochemistry, Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and Technology, Rangamati, Midnapore, WB, 721102, India
| | - Sarbashri Bank
- Post Graduate Department of Biochemistry, Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and Technology, Rangamati, Midnapore, WB, 721102, India
| | - Smarajit Maiti
- Post Graduate Department of Biochemistry, Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and Technology, Rangamati, Midnapore, WB, 721102, India
| |
Collapse
|
87
|
Shang R, Lal N, Puri K, Hussein B, Rodrigues B. Involvement of Heparanase in Endothelial Cell-Cardiomyocyte Crosstalk. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:721-745. [PMID: 32274734 DOI: 10.1007/978-3-030-34521-1_30] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traditionally, the management of diabetes has focused mainly on controlling high blood glucose levels. Unfortunately, despite valiant efforts to normalize this blood glucose, poor medication management predisposes these patients to heart failure. Following diabetes, how the heart utilizes different sources of fuel for energy is key to the development of heart failure. The diabetic heart switches from using both glucose and fats, to predominately using fats as an energy resource for maintaining its activities. This transformation to using fats as an exclusive source of energy is helpful in the initial stages of the disease and is tightly controlled. However, over the progression of diabetes, there is a loss of this controlled supply and use of fats, which ultimately has terrible consequences since the uncontrolled use of fats produces toxic by-products which weaken heart function and cause heart disease. Heparanase is a key player that directs how much fats are provided to the heart and does so in association with several partners like LPL and VEGFs. Together, they regulate the amount of fats supplied, and their subsequent breakdown to provide energy. Following diabetes, there is a disruption in this network resulting in fat oversupply and cell death. Understanding how the heparanase-LPL-VEGFs "ensemble" cooperates, and its dysfunction in the diabetic heart would be useful in restoring metabolic equilibrium and limiting diabetes-related cardiac damage.
Collapse
Affiliation(s)
- Rui Shang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Nathaniel Lal
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Karanjit Puri
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Bahira Hussein
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
88
|
Ferraz APCR, Garcia JL, Costa MR, Almeida CCVD, Gregolin CS, Alves PHR, Hasimoto FK, Berchieri-Ronchi CB, dos Santos KC, Corrêa CR. Yacon (Smallanthus sonchifolius) use as an antioxidant in diabetes. Pathology 2020. [DOI: 10.1016/b978-0-12-815972-9.00036-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
89
|
Pugia MJ, Pradhan M, Qi R, Eastes DL, Vorsilak A, Mills BJ, Baird Z, Wijeratne A, McAhren SM, Mosley A, Shekhar A, Robertson DH. Utilization of electronic health records for the assessment of adiponectin receptor autoantibodies during the progression of cardio-metabolic comorbidities. ARCHIVES OF AUTOIMMUNE DISEASES 2020; 1:17-27. [PMID: 33511378 PMCID: PMC7839988 DOI: 10.46439/autoimmune.1.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Diabetes is a complex, multi-symptomatic disease whose complications drives increases in healthcare costs as the diabetes prevalence grows rapidly world-wide. Real-world electronic health records (EHRs) coupled with patient biospecimens, biological understanding, and technologies can characterize emerging diagnostic autoimmune markers resulting from proteomic discoveries. METHODS Circulating autoantibodies for C-terminal fragments of adiponectin receptor 1 (IgG-CTF) were measured by immunoassay to establish the reference range using midpoint samples from 1862 participants in a 20-year observational study of type 2 diabetes and cardiovascular arterial disease (CVAD) conducted by the Fairbanks Institute. The White Blood Cell elastase activity in these patients was assessed using immunoassays for Bikunin and Uristatin. Participants were assigned to four cohorts (healthy, T2D, CV, CV+T2D) based on analysis of their EHRs and the diagnostic biomarkers values and patient status were assessed ten-years post-sample. RESULTS The IgG-CTF reference range was determined to be 75-821 ng/mL and IgG-CTF out-of-range values did not predict cohort or comorbidity as determined from the EHRs at 10 years after sample collection nor did IgG-CTF demonstrate a significant risk for comorbidity or death. Many patients at sample collection time had other conditions (hypertension, hyperlipidemia, or other risk factors) of which only hypertension, Uristatin and Bikunin values correlated with increased risk of developing additional comorbidities (odds ratio 2.58-13.11, P<0.05). CONCLUSIONS This study confirms that retrospective analysis of biorepositories coupled with EHRs can establish reference ranges for novel autoimmune diagnostic markers and provide insights into prediction of specific health outcomes and correlations to other markers.
Collapse
Affiliation(s)
- Michael J. Pugia
- Bioanalytical Research Core, Indiana Biosciences Research Institute, Indianapolis IN, USA
| | - Meeta Pradhan
- Applied Data Sciences Center, Indiana Biosciences Research Institute, Indianapolis IN, USA
| | - Rong Qi
- Applied Data Sciences Center, Indiana Biosciences Research Institute, Indianapolis IN, USA
| | - Doreen L. Eastes
- Bioanalytical Research Core, Indiana Biosciences Research Institute, Indianapolis IN, USA
| | - Anna Vorsilak
- Bioanalytical Research Core, Indiana Biosciences Research Institute, Indianapolis IN, USA
| | - Bradley J. Mills
- Applied Data Sciences Center, Indiana Biosciences Research Institute, Indianapolis IN, USA
| | - Zane Baird
- Bioanalytical Research Core, Indiana Biosciences Research Institute, Indianapolis IN, USA
| | | | - Scott M. McAhren
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis IN, USA
| | - Amber Mosley
- Indiana University School of Medicine, Indianapolis IN, USA
| | | | - Daniel H. Robertson
- Applied Data Sciences Center, Indiana Biosciences Research Institute, Indianapolis IN, USA
| |
Collapse
|
90
|
Parnall M, Perdios C, Pang KL, Rochette S, Loughna S. Characterisation of the developing heart in a pressure overloaded model utilising RNA sequencing to direct functional analysis. J Anat 2019; 236:549-563. [PMID: 31724174 PMCID: PMC7018637 DOI: 10.1111/joa.13112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2019] [Indexed: 12/14/2022] Open
Abstract
Cardiogenesis is influenced by both environmental and genetic factors, with blood flow playing a critical role in cardiac remodelling. Perturbation of any of these factors could lead to abnormal heart development and hence the formation of congenital heart defects. Although abnormal blood flow has been associated with a number of heart defects, the effects of abnormal pressure load on the developing heart gene expression profile have to date not clearly been defined. To determine the heart transcriptional response to haemodynamic alteration during development, outflow tract (OFT) banding was employed in the chick embryo at Hamburger and Hamilton stage (HH) 21. Stereological and expression studies, including the use of global expression analysis by RNA sequencing with an optimised procedure for effective globin depletion, were subsequently performed on HH29 OFT-banded hearts and compared with sham control hearts, with further targeted expression investigations at HH35. The OFT-banded hearts were found to have an abnormal morphology with a rounded appearance and left-sided dilation in comparison with controls. Internal analysis showed they typically had a ventricular septal defect and reductions in the myocardial wall and trabeculae, with an increase in the lumen on the left side of the heart. There was also a significant reduction in apoptosis. The differentially expressed genes were found to be predominately involved in contraction, metabolism, apoptosis and neural development, suggesting a cardioprotective mechanism had been induced. Therefore, altered haemodynamics during development leads to left-sided dilation and differential expression of genes that may be associated with stress and maintaining cardiac output.
Collapse
Affiliation(s)
- Matthew Parnall
- School of Life Sciences, Medical School, University of Nottingham, Nottingham, UK
| | - Chrysostomos Perdios
- School of Life Sciences, Medical School, University of Nottingham, Nottingham, UK
| | - Kar Lai Pang
- School of Life Sciences, Medical School, University of Nottingham, Nottingham, UK
| | - Sophie Rochette
- School of Life Sciences, Medical School, University of Nottingham, Nottingham, UK
| | - Siobhan Loughna
- School of Life Sciences, Medical School, University of Nottingham, Nottingham, UK
| |
Collapse
|
91
|
Puri K, Lal N, Shang R, Ghosh S, Flibotte S, Dyer R, Hussein B, Rodrigues B. Diabetes Mellitus Severity and a Switch From Using Lipoprotein Lipase to Adipose-Derived Fatty Acid Results in a Cardiac Metabolic Signature That Embraces Cell Death. J Am Heart Assoc 2019; 8:e014022. [PMID: 31665961 PMCID: PMC6898854 DOI: 10.1161/jaha.119.014022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Fatty acid (FA) provision to the heart is from cardiomyocyte and adipose depots, plus lipoprotein lipase action. We tested how a graded reduction in insulin impacts the source of FA used by cardiomyocytes and the cardiac adaptations required to process these FA. Methods and Results Rats injected with 55 (D55) or 100 (D100) mg/kg streptozotocin were terminated after 4 days. Although D55 and D100 were equally hyperglycemic, D100 showed markedly lower pancreatic and plasma insulin and loss of lipoprotein lipase, which in D55 hearts had expanded. There was minimal change in plasma FA in D55. However, D100 exhibited a 2‐ to 3‐fold increase in various saturated, monounsaturated, and polyunsaturated FA in the plasma. D100 demonstrated dramatic cardiac transcriptomic changes with 1574 genes differentially expressed compared with only 49 in D55. Augmented mitochondrial and peroxisomal β‐oxidation in D100 was not matched by elevated tricarboxylic acid or oxidative phosphorylation. With increasing FA, although control myocytes responded by augmenting basal respiration, this was minimized in D55 and reversed in D100. Metabolomic profiling identified significant lipid accumulation in D100 hearts, which also exhibited sizeable change in genes related to apoptosis and terminal deoxynucleotidyl transferase dUTP nick‐end labeling–positive cells. Conclusions With increasing severity of diabetes mellitus, when the diabetic heart is unable to control its own FA supply using lipoprotein lipase, it undergoes dramatic reprogramming that is linked to handling of excess FA that arise from adipose tissue. This transition results in a cardiac metabolic signature that embraces mitochondrial FA overload, oxidative stress, triglyceride storage, and cell death.
Collapse
Affiliation(s)
- Karanjit Puri
- Faculty of Pharmaceutical Sciences University of British Columbia Vancouver BC Canada
| | - Nathaniel Lal
- Faculty of Pharmaceutical Sciences University of British Columbia Vancouver BC Canada
| | - Rui Shang
- Faculty of Pharmaceutical Sciences University of British Columbia Vancouver BC Canada
| | - Sanjoy Ghosh
- Department of Biology IKBSAS University of British Columbia-Okanagan Kelowna Canada
| | - Stephane Flibotte
- Department of Zoology University of British Columbia Vancouver BC Canada
| | - Roger Dyer
- Department of Pediatrics University of British Columbia Vancouver BC Canada
| | - Bahira Hussein
- Faculty of Pharmaceutical Sciences University of British Columbia Vancouver BC Canada
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences University of British Columbia Vancouver BC Canada
| |
Collapse
|
92
|
Kanwal A, Pillai VB, Samant S, Gupta M, Gupta MP. The nuclear and mitochondrial sirtuins, Sirt6 and Sirt3, regulate each other's activity and protect the heart from developing obesity-mediated diabetic cardiomyopathy. FASEB J 2019; 33:10872-10888. [PMID: 31318577 PMCID: PMC6766651 DOI: 10.1096/fj.201900767r] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/04/2019] [Indexed: 01/31/2023]
Abstract
Sirtuins (Sirts) are implicated in regulating a myriad of biologic functions ranging from cell growth and metabolism to longevity. Here, we show that nuclear Sirt, Sirt6, and mitochondrial Sirt, Sirt3, regulate each other's activity and protect the heart from developing diabetic cardiomyopathy. We found that expression of both Sirt6 and Sirt3 was reduced in cardiomyocytes treated with palmitate and in hearts of mice fed with a high-fat, high-sucrose (HF-HS) diet to develop obesity and diabetes. Conversely, whole-body overexpressing Sirt6 transgenic (Tg.Sirt6) mice were protected from developing obesity and insulin resistance when fed with the same HF-HS diet. The hearts of Tg.Sirt6 mice were also protected from mitochondrial fragmentation and decline of Sirt3, resulting otherwise from HF-HS diet feeding. Mechanistic studies showed that Sirt3 preserves Sirt6 levels by reducing oxidative stress, whereas Sirt6 maintains Sirt3 levels by up-regulating nuclear respiratory factor 2 (Nrf2)-dependent Sirt3 gene transcription. We found that Sirt6 regulates Nrf2-mediated cardiac gene expression in 2 ways; first, Sirt6 suppresses expression of Kelch-like ECH-associated protein 1 (Keap1), a negative regulator of Nrf2, and second, Sirt6 binds to Nrf2 and antagonizes its interaction with Keap1, thereby stabilizing Nrf2 levels in cardiomyocytes. Together, these studies demonstrate that Sirt6 and Sirt3 maintain each other's activity and protect the heart from developing diabetic cardiomyopathy.-Kanwal, A., Pillai, V. B., Samant, S., Gupta, M., Gupta, M. P. The nuclear and mitochondrial sirtuins, Sirt6 and Sirt3, regulate each other's activity and protect the heart from developing obesity-mediated diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Abhinav Kanwal
- Department of Surgery, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Vinodkumar B. Pillai
- Department of Surgery, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Sadhana Samant
- Department of Surgery, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Madhu Gupta
- Department of Surgery, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Mahesh P. Gupta
- Department of Surgery, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
93
|
Abstract
Metabolic pathways integrate to support tissue homeostasis and to prompt changes in cell phenotype. In particular, the heart consumes relatively large amounts of substrate not only to regenerate ATP for contraction but also to sustain biosynthetic reactions for replacement of cellular building blocks. Metabolic pathways also control intracellular redox state, and metabolic intermediates and end products provide signals that prompt changes in enzymatic activity and gene expression. Mounting evidence suggests that the changes in cardiac metabolism that occur during development, exercise, and pregnancy as well as with pathological stress (eg, myocardial infarction, pressure overload) are causative in cardiac remodeling. Metabolism-mediated changes in gene expression, metabolite signaling, and the channeling of glucose-derived carbon toward anabolic pathways seem critical for physiological growth of the heart, and metabolic inefficiency and loss of coordinated anabolic activity are emerging as proximal causes of pathological remodeling. This review integrates knowledge of different forms of cardiac remodeling to develop general models of how relationships between catabolic and anabolic glucose metabolism may fortify cardiac health or promote (mal)adaptive myocardial remodeling. Adoption of conceptual frameworks based in relational biology may enable further understanding of how metabolism regulates cardiac structure and function.
Collapse
Affiliation(s)
- Andrew A Gibb
- From the Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (A.A.G.)
| | - Bradford G Hill
- the Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville School of Medicine, KY (B.G.H.).
| |
Collapse
|
94
|
Tian CJ, Zhen Z. Reactive Carbonyl Species: Diabetic Complication in the Heart and Lungs. Trends Endocrinol Metab 2019; 30:546-556. [PMID: 31253519 DOI: 10.1016/j.tem.2019.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 12/28/2022]
Abstract
Abnormal chemical reactions in hyperglycemia alter normal metabolic processes in diabetes, which is a key process in the production of reactive carbonyls species (RCS). Increasing the concentration of RCS may result in carbonyl/oxidative stress in both the diabetic heart and lung. Ryanodine receptors (RyRs) not only play a key role in heart contraction, including rhythmic contraction and relaxation of the heart, but they are also important for controlling the airway smooth muscle. RCS modifies RyRs, resulting in RyRs dysfunction, which is involved in important mechanisms in diabetic complications. Very little is known about the mechanistic relationship between the heart and lung in diabetes. This review highlights new findings on the pathophysiological mechanisms and discusses potential approaches to treatment for these complications.
Collapse
Affiliation(s)
- Cheng-Ju Tian
- College of Rehabilitation and Sports Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
| | - Zhong Zhen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
95
|
Myocardial Adipose Triglyceride Lipase Overexpression Protects against Burn-Induced Cardiac Lipid Accumulation and Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6428924. [PMID: 31223422 PMCID: PMC6541965 DOI: 10.1155/2019/6428924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/09/2019] [Indexed: 02/05/2023]
Abstract
Maladaptive cardiac metabolism is a common trigger of cardiac lipid accumulation and cardiac injury under serious burn challenge. Adipose triglyceride lipase (ATGL) is the key enzyme that catalyzes triglyceride hydrolysis; however, its alteration and impact on cardiac function following serious burn injury are still unknown. Here, we found that the cardiac fatty acid (FA) metabolism increased, accompanied by augmented FA accumulation and ATGL expression, after serious burn injury. We generated heterozygous ATGL knockout and heterozygous cardiac-specific ATGL overexpression thermal burn mice. The results demonstrated that partial loss of ATGL could not relieve burn-induced cardiac lipid accumulation and cardiac injury, possibly due to the suppression of cardiac FA metabolism plus insufficient compensatory glucose utilization. In contrast, cardiac-specific overexpression of ATGL alleviated cardiac lipid accumulation and cardiac injury following burn challenge by switching the substrate preference from FA towards increased glucose utilization. The underlying mechanism was possibly related to increased glucose transporter-1 expression and reduced cardiac lipid accumulation induced by ATGL overexpression. Our data first demonstrated that elevated cardiac ATGL expression after serious burn injury is an adaptive, albeit insufficient, response to compensate for the increase in energy consumption and that further overexpression of ATGL is beneficial for ameliorating cardiac injury, indicating its therapeutic potential.
Collapse
|
96
|
Kronlage M, Dewenter M, Grosso J, Fleming T, Oehl U, Lehmann LH, Falcão-Pires I, Leite-Moreira AF, Volk N, Gröne HJ, Müller OJ, Sickmann A, Katus HA, Backs J. O-GlcNAcylation of Histone Deacetylase 4 Protects the Diabetic Heart From Failure. Circulation 2019; 140:580-594. [PMID: 31195810 DOI: 10.1161/circulationaha.117.031942] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Worldwide, diabetes mellitus and heart failure represent frequent comorbidities with high socioeconomic impact and steadily growing incidence, calling for a better understanding of how diabetic metabolism promotes cardiac dysfunction. Paradoxically, some glucose-lowering drugs have been shown to worsen heart failure, raising the question of how glucose mediates protective versus detrimental cardiac signaling. Here, we identified a histone deacetylase 4 (HDAC4) subdomain as a molecular checkpoint of adaptive and maladaptive signaling in the diabetic heart. METHODS A conditional HDAC4 allele was used to delete HDAC4 specifically in cardiomyocytes (HDAC4-knockout). Mice were subjected to diabetes mellitus either by streptozotocin injections (type 1 diabetes mellitus model) or by crossing into mice carrying a leptin receptor mutation (db/db; type 2 diabetes mellitus model) and monitored for remodeling and cardiac function. Effects of glucose and the posttranslational modification by β-linked N-acetylglucosamine (O-GlcNAc) on HDAC4 were investigated in vivo and in vitro by biochemical and cellular assays. RESULTS We show that the cardio-protective N-terminal proteolytic fragment of HDAC4 is enhanced in vivo in patients with diabetes mellitus and mouse models, as well as in vitro under high-glucose and high-O-GlcNAc conditions. HDAC4-knockout mice develop heart failure in models of type 1 and type 2 diabetes mellitus, whereas wild-type mice do not develop clear signs of heart failure, indicating that HDAC4 protects the diabetic heart. Reexpression of the N-terminal fragment of HDAC4 prevents HDAC4-dependent diabetic cardiomyopathy. Mechanistically, the posttranslational modification of HDAC4 at serine (Ser)-642 by O-GlcNAcylation is an essential step for production of the N-terminal fragment of HDAC4, which was attenuated by Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation at Ser-632. Preventing O-GlcNAcylation at Ser-642 not only entirely precluded production of the N-terminal fragment of HDAC4 but also promoted Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation at Ser-632, pointing to a mutual posttranslational modification cross talk of (cardio-detrimental) phosphorylation at Ser-632 and (cardio-protective) O-GlcNAcylation at Ser-642. CONCLUSIONS In this study, we found that O-GlcNAcylation of HDAC4 at Ser-642 is cardio-protective in diabetes mellitus and counteracts pathological Ca2+/calmodulin-dependent protein kinase II signaling. We introduce a molecular model explaining how diabetic metabolism possesses important cardio-protective features besides its known detrimental effects. A deeper understanding of the here-described posttranslational modification cross talk may lay the groundwork for the development of specific therapeutic concepts to treat heart failure in the context of diabetes mellitus.
Collapse
Affiliation(s)
- Mariya Kronlage
- Institute of Experimental Cardiology (M.K., M.D., J.G., U.O., L.H.L., J.B.), Heidelberg University, Germany.,Department of Cardiology (M.K., L.H.L., O.J.M., H.A.K.), Heidelberg University, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (M.K., M.D., J.G., U.O., L.H.L., J.B., L.H.L., O.J.M., H.A.K.)
| | - Matthias Dewenter
- Institute of Experimental Cardiology (M.K., M.D., J.G., U.O., L.H.L., J.B.), Heidelberg University, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (M.K., M.D., J.G., U.O., L.H.L., J.B., L.H.L., O.J.M., H.A.K.)
| | - Johannes Grosso
- Institute of Experimental Cardiology (M.K., M.D., J.G., U.O., L.H.L., J.B.), Heidelberg University, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (M.K., M.D., J.G., U.O., L.H.L., J.B., L.H.L., O.J.M., H.A.K.)
| | - Thomas Fleming
- Department of Internal Medicine I (T.F.), Heidelberg University, Germany
| | - Ulrike Oehl
- Institute of Experimental Cardiology (M.K., M.D., J.G., U.O., L.H.L., J.B.), Heidelberg University, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (M.K., M.D., J.G., U.O., L.H.L., J.B., L.H.L., O.J.M., H.A.K.)
| | - Lorenz H Lehmann
- Institute of Experimental Cardiology (M.K., M.D., J.G., U.O., L.H.L., J.B.), Heidelberg University, Germany.,Department of Cardiology (M.K., L.H.L., O.J.M., H.A.K.), Heidelberg University, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (M.K., M.D., J.G., U.O., L.H.L., J.B., L.H.L., O.J.M., H.A.K.)
| | - Inês Falcão-Pires
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Portugal (I.F.-P., A.F.L.-M.)
| | - Adelino F Leite-Moreira
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Portugal (I.F.-P., A.F.L.-M.)
| | - Nadine Volk
- Tissue Bank of the National Center for Tumor Diseases, Heidelberg, Germany (N.V.)
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg (H.-J.G.).,Institute of Pathology, University of Marburg, Germany (H.-J.G.)
| | - Oliver J Müller
- Department of Cardiology (M.K., L.H.L., O.J.M., H.A.K.), Heidelberg University, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (M.K., M.D., J.G., U.O., L.H.L., J.B., L.H.L., O.J.M., H.A.K.)
| | - Albert Sickmann
- Leibniz Institute for Analysical Sciences (ISAS), Dortmund, Germany (A.S.).,Medical Faculty, Medical Proteomics Center, Ruhr-University Bochum, Germany (A.S.).,Department of Chemistry, College of Physical Sciences, University of Aberdeen, United Kingdom (A.S.). Dr Müller is currently at the Department of Internal Medicine III, University of Kiel, Germany
| | - Hugo A Katus
- Department of Cardiology (M.K., L.H.L., O.J.M., H.A.K.), Heidelberg University, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (M.K., M.D., J.G., U.O., L.H.L., J.B., L.H.L., O.J.M., H.A.K.)
| | - Johannes Backs
- Institute of Experimental Cardiology (M.K., M.D., J.G., U.O., L.H.L., J.B.), Heidelberg University, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (M.K., M.D., J.G., U.O., L.H.L., J.B., L.H.L., O.J.M., H.A.K.)
| |
Collapse
|
97
|
Zeng C, Wang R, Tan H. Role of Pyroptosis in Cardiovascular Diseases and its Therapeutic Implications. Int J Biol Sci 2019; 15:1345-1357. [PMID: 31337966 PMCID: PMC6643148 DOI: 10.7150/ijbs.33568] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/04/2019] [Indexed: 12/19/2022] Open
Abstract
Pyroptotic cell death or pyroptosis is characterized by caspase-1-dependent formation of plasma membrane pores, leading to the release of pro-inflammatory cytokines and cell lysis. Pyroptosis tightly controls the inflammatory responses and coordinates antimicrobial host defenses by releasing pro-inflammatory cellular contents, such as interleukin (IL)-1β and IL-18, and consequently expands or sustains inflammation. It is recognized as an important innate immune effector mechanism against intracellular pathogens. The induction of pyroptosis is closely associated with the activation of the NOD-like receptor 3 (NLRP3) inflammasome which has been linked to key cardiovascular risk factors including hyperlipidemia, diabetes, hypertension, obesity, and hyperhomocysteinemia. Emerging evidence has indicated pyroptosis as an important trigger and endogenous regulator of cardiovascular inflammation. Thus, pyroptosis may play an important role in the pathogenesis of cardiovascular diseases. Design of therapeutic strategies targeting the activation of NLRP3 inflammasome and pyroptosis holds promise for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Renqing Wang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Department of pathology, the Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing 21008, China
| | - Hongmei Tan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
98
|
Huang X, Wu D, Cheng Y, Zhang X, Liu T, Liu Q, Xia P, Zhang G, Hu S, Liu S. Restoration of myocardial glucose uptake with facilitated myocardial glucose transporter 4 translocation contributes to alleviation of diabetic cardiomyopathy in rats after duodenal-jejunal bypass. J Diabetes Investig 2019; 10:626-638. [PMID: 30290074 PMCID: PMC6497603 DOI: 10.1111/jdi.12948] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/10/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022] Open
Abstract
AIMS/INTRODUCTION Duodenal-jejunal bypass (DJB) surgery has been reported to effectively relieve diabetic cardiomyopathy (DCM). However, the specific mechanisms remain largely unknown. The present study was designed to determine the alterations of myocardial glucose uptake (MGU) after DJB and their effects on DCM. MATERIALS AND METHODS Duodenal-jejunal bypass and sham surgeries were carried out in diabetic rats induced by a high-fat diet and a low dose of streptozotocin, with chow-diet fed rats as controls. Bodyweight, food intake, glucose homeostasis and lipid profiles were measured at indicated time-points. Cardiac function was evaluated by transthoracic echocardiography and hemodynamic measurement. Cardiac remodeling was assessed by a series of morphometric analyses along with transmission electron microscopy. Positron-emission tomography with fluorine-18 labeled fluorodeoxyglucose was carried out to evaluate the MGU in vivo. Furthermore, myocardial glucose transporters (GLUT; GLUT1 and GLUT4), myocardial insulin signaling and GLUT-4 translocation-related proteins were investigated to elucidate the underlying mechanisms. RESULTS The DJB group showed restored systolic and diastolic cardiac function, along with significant remission in cardiac hypertrophy, cardiac fibrosis, lipid deposit and ultrastructural disorder independent of weight loss compared with the sham group. Furthermore, the DJB group showed upregulated myocardial insulin signaling, hyperphosphorylation of AKT substrate of 160 kDa (AS160) and TBC1D1, along with preserved soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins, facilitating the GLUT-4 translocation to the myocardial cell surface and restoration of MGU. CONCLUSIONS The present findings provide evidence that restoration of MGU is implicated in the alleviation of DCM after DJB through facilitating GLUT-4 translocation, suggesting a potential choice for treatment of human DCM if properly implemented.
Collapse
Affiliation(s)
- Xin Huang
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Dong Wu
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Yugang Cheng
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Xiang Zhang
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Teng Liu
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Qiaoran Liu
- State Key Laboratory of Diabetes and Obesity SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Pingtian Xia
- State Key Laboratory of Diabetes and Obesity SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Guangyong Zhang
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Sanyuan Hu
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Shaozhuang Liu
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanChina
| |
Collapse
|
99
|
Feng J, Zhao H, Du M, Wu X. The effect of apelin-13 on pancreatic islet beta cell mass and myocardial fatty acid and glucose metabolism of experimental type 2 diabetic rats. Peptides 2019; 114:1-7. [PMID: 30954534 DOI: 10.1016/j.peptides.2019.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 03/20/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023]
Abstract
Apelin, a new identified adipokine, and its G protein-coupled receptor named APJ are widely expressed in various tissues. Apelin has been found to play important roles in the physiopathology of multiple diseases. Our aim is to assess the effect of long-term apelin treatment on serum insulin level and pancreatic islet beta-cell mass in the late stage of type 2 diabetes without hyperinsulinemia and to investigate the role of apelin in myocardial fatty acid and glucose metabolism. In the present study, the high-fat diet fed-streptozotocin-induced experimental type 2 diabetic rats were given once daily intraperitoneal injection of apelin-13 (0.1 μmol/kg) for 10 weeks. We observed that apelin significantly improved serum insulin reduction and reduced hyperglycemia. Histologic analysis showed that long-term apelin treatment significantly increased pancreatic islet beta cell mass. Exogenous apelin failed to change dyslipidaemia of type 2 diabetic rats. Apelin treatment markedly decreased elevated myocardial FFA and glycogen content. Treatment of type 2 diabetic rats with apelin markedly reduced increased gene expressions of the cardiac fatty acid transporter CD36, CPT-1, and Peroxisome proliferator-activated receptor (PPAR)-α. Whereas the gene levels of citrate synthase and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1-α), a transcriptional coactivator, mediating mitochondrial biogenesis in heart were unaltered in response to exogenous apelin. Taken together, longer-term apelin treatment prevented pancreatic beta-cell loss or failure in experimental type 2 diabetic rats. Apelin can regulate myocardial metabolism. Apelin reduced myocadial fatty acid uptake and oxidation through inhibiting PPAR-α but did not affect myocardial mitochondrial biogenesis in type 2 diabetic rats.
Collapse
Affiliation(s)
- Jinghui Feng
- Department of Geratology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Hang Zhao
- Department of Geratology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Mengze Du
- Department of Geratology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Xiuping Wu
- Department of Geratology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| |
Collapse
|
100
|
Antoniou CK, Manolakou P, Magkas N, Konstantinou K, Chrysohoou C, Dilaveris P, Gatzoulis KA, Tousoulis D. Cardiac Resynchronisation Therapy and Cellular Bioenergetics: Effects Beyond Chamber Mechanics. Eur Cardiol 2019; 14:33-44. [PMID: 31131035 PMCID: PMC6523053 DOI: 10.15420/ecr.2019.2.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/15/2019] [Indexed: 12/24/2022] Open
Abstract
Cardiac resynchronisation therapy is a cornerstone in the treatment of advanced dyssynchronous heart failure. However, despite its widespread clinical application, precise mechanisms through which it exerts its beneficial effects remain elusive. Several studies have pointed to a metabolic component suggesting that, both in concert with alterations in chamber mechanics and independently of them, resynchronisation reverses detrimental changes to cellular metabolism, increasing energy efficiency and metabolic reserve. These actions could partially account for the existence of responders that improve functionally but not echocardiographically. This article will attempt to summarise key components of cardiomyocyte metabolism in health and heart failure, with a focus on the dyssynchronous variant. Both chamber mechanics-related and -unrelated pathways of resynchronisation effects on bioenergetics - stemming from the ultramicroscopic level - and a possible common underlying mechanism relating mechanosensing to metabolism through the cytoskeleton will be presented. Improved insights regarding the cellular and molecular effects of resynchronisation on bioenergetics will promote our understanding of non-response, optimal device programming and lead to better patient care.
Collapse
Affiliation(s)
| | - Panagiota Manolakou
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| | - Nikolaos Magkas
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| | - Konstantinos Konstantinou
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| | - Christina Chrysohoou
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| | - Polychronis Dilaveris
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| | - Konstantinos A Gatzoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| | - Dimitrios Tousoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| |
Collapse
|