51
|
Forni MF, Domínguez-Amorocho OA, de Assis LVM, Kinker GS, Moraes MN, Castrucci AMDL, Câmara NOS. An Immunometabolic Shift Modulates Cytotoxic Lymphocyte Activation During Melanoma Progression in TRPA1 Channel Null Mice. Front Oncol 2021; 11:667715. [PMID: 34041030 PMCID: PMC8141816 DOI: 10.3389/fonc.2021.667715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/21/2021] [Indexed: 02/02/2023] Open
Abstract
Melanoma skin cancer is extremely aggressive with increasing incidence and mortality. Among the emerging therapeutic targets in the treatment of cancer, the family of transient receptor potential channels (TRPs) has been reported as a possible pharmacological target. Specifically, the ankyrin subfamily, representing TRPA1 channels, can act as a pro-inflammatory hub. These channels have already been implicated in the control of intracellular metabolism in several cell models, but little is known about their role in immune cells, and how it could affect tumor progression in a process known as immune surveillance. Here, we investigated the participation of the TRPA1 channel in the immune response against melanoma tumor progression in a mouse model. Using Trpa1 +/+ and Trpa1 -/- animals, we evaluated tumor progression using murine B16-F10 cells and assessed isolated CD8+ T cells for respiratory and cytotoxic functions. Tumor growth was significantly reduced in Trpa1 -/- animals. We observed an increase in the frequency of circulating lymphocytes. Using a dataset of CD8+ T cells isolated from metastatic melanoma patients, we found that TRPA1 reduction correlates with several immunological pathways. Naïve CD8+ T cells from Trpa1 +/+ and Trpa1 -/- animals showed different mitochondrial respiration and glycolysis profiles. However, under CD3/CD28 costimulatory conditions, the absence of TRPA1 led to an even more extensive metabolic shift, probably linked to a greater in vitro killling ability of Trpa1 -/- CD8+ T cells. Therefore, these data demonstrate an unprecedented role of TRPA1 channel in the metabolism control of the immune system cells during carcinogenesis.
Collapse
Affiliation(s)
- Maria Fernanda Forni
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Gabriela Sarti Kinker
- Laboratory of Translational Immuno-Oncology A. C. Camargo Cancer Center - International Research Center, São Paulo, Brazil
| | - Maria Nathalia Moraes
- Laboratory of Neurobiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil.,Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
52
|
Stewart L, Turner NA. Channelling the Force to Reprogram the Matrix: Mechanosensitive Ion Channels in Cardiac Fibroblasts. Cells 2021; 10:990. [PMID: 33922466 PMCID: PMC8145896 DOI: 10.3390/cells10050990] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac fibroblasts (CF) play a pivotal role in preserving myocardial function and integrity of the heart tissue after injury, but also contribute to future susceptibility to heart failure. CF sense changes to the cardiac environment through chemical and mechanical cues that trigger changes in cellular function. In recent years, mechanosensitive ion channels have been implicated as key modulators of a range of CF functions that are important to fibrotic cardiac remodelling, including cell proliferation, myofibroblast differentiation, extracellular matrix turnover and paracrine signalling. To date, seven mechanosensitive ion channels are known to be functional in CF: the cation non-selective channels TRPC6, TRPM7, TRPV1, TRPV4 and Piezo1, and the potassium-selective channels TREK-1 and KATP. This review will outline current knowledge of these mechanosensitive ion channels in CF, discuss evidence of the mechanosensitivity of each channel, and detail the role that each channel plays in cardiac remodelling. By better understanding the role of mechanosensitive ion channels in CF, it is hoped that therapies may be developed for reducing pathological cardiac remodelling.
Collapse
Affiliation(s)
| | - Neil A. Turner
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK;
| |
Collapse
|
53
|
Wang A, Cao S, Stowe JC, Valdez-Jasso D. Substrate Stiffness and Stretch Regulate Profibrotic Mechanosignaling in Pulmonary Arterial Adventitial Fibroblasts. Cells 2021; 10:1000. [PMID: 33922850 PMCID: PMC8146344 DOI: 10.3390/cells10051000] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial adventitial fibroblasts (PAAFs) are important regulators of fibrotic vascular remodeling during the progression of pulmonary arterial hypertension (PAH), a disease that currently has no effective anti-fibrotic treatments. We conducted in-vitro experiments in PAAFs cultured on hydrogels attached to custom-made equibiaxial stretchers at 10% stretch and substrate stiffnesses representing the mechanical conditions of mild and severe stages of PAH. The expression of collagens α(1)I and α(1)III and elastin messenger RNAs (Col1a1, Col3a1, Eln) were upregulated by increased stretch and substrate stiffness, while lysyl oxidase-like 1 and α-smooth muscle actin messenger RNAs (Loxl1, Acta2) were only significantly upregulated when the cells were grown on matrices with an elevated stiffness representative of mild PAH but not on a stiffness representative of severe PAH. Fibronectin messenger RNA (Fn1) levels were significantly induced by increased substrate stiffness and transiently upregulated by stretch at 4 h, but was not significantly altered by stretch at 24 h. We modified our published computational network model of the signaling pathways that regulate profibrotic gene expression in PAAFs to allow for differential regulation of mechanically-sensitive nodes by stretch and stiffness. When the model was modified so that stiffness activated integrin β3, the Macrophage Stimulating 1 or 2 (MST1\2) kinases, angiotensin II (Ang II), transforming growth factor-β (TGF-β), and syndecan-4, and stretch-regulated integrin β3, MST1\2, Ang II, and the transient receptor potential (TRP) channel, the model correctly predicted the upregulation of all six genes by increased stiffness and the observed responses to stretch in five out of six genes, although it could not replicate the non-monotonic effects of stiffness on Loxl1 and Acta2 expression. Blocking Ang II Receptor Type 1 (AT1R) with losartan in-vitro uncovered an interaction between the effects of stretch and stiffness and angiotensin-independent activation of Fn1 expression by stretch in PAAFs grown on 3-kPa matrices. This novel combination of in-vitro and in-silico models of PAAF profibrotic cell signaling in response to altered mechanical conditions may help identify regulators of vascular adventitial remodeling due to changes in stretch and matrix stiffness that occur during the progression of PAH in-vivo.
Collapse
Affiliation(s)
| | | | | | - Daniela Valdez-Jasso
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093-0412, USA; (A.W.); (S.C.); (J.C.S.)
| |
Collapse
|
54
|
Liu T, Zhang S, Huang C, Ma S, Bai R, Li Y, Chang Y, Hang C, Saleem A, Dong T, Guo T, Jiang Y, Lu W, Zhang L, Jianwen L, Jiang H, Lan F. Microscale grooves regulate maturation development of hPSC-CMs by the transient receptor potential channels (TRP channels). J Cell Mol Med 2021; 25:3469-3483. [PMID: 33689230 PMCID: PMC8034460 DOI: 10.1111/jcmm.16429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
The use of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is limited in drug discovery and cardiac disease mechanism studies due to cell immaturity. Micro-scaled grooves can promote the maturation of cardiomyocytes by aligning them in order, but the mechanism of cardiomyocytes alignment has not been studied. From the level of calcium activity, gene expression and cell morphology, we verified that the W20H5 grooves can effectively promote the maturation of cardiomyocytes. The transient receptor potential channels (TRP channels) also play an important role in the maturation and development of cardiomyocytes. These findings support the engineered hPSC-CMs as a powerful model to study cardiac disease mechanism and partly mimic the myocardial morphological development. The important role of the TRP channels in the maturation and development of myocardium is first revealed.
Collapse
Affiliation(s)
- Taoyan Liu
- Beijing Lab for Cardiovascular Precision MedicineAnzhen HospitalCapital Medical UniversityBeijingChina
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Siyao Zhang
- Beijing Lab for Cardiovascular Precision MedicineAnzhen HospitalCapital Medical UniversityBeijingChina
| | - Chenwu Huang
- Department of Biomedical EngineeringSchool of MedicineTsinghua UniversityBeijingChina
| | - Shuhong Ma
- Beijing Lab for Cardiovascular Precision MedicineAnzhen HospitalCapital Medical UniversityBeijingChina
| | - Rui Bai
- Beijing Lab for Cardiovascular Precision MedicineAnzhen HospitalCapital Medical UniversityBeijingChina
| | - Yanan Li
- Beijing Lab for Cardiovascular Precision MedicineAnzhen HospitalCapital Medical UniversityBeijingChina
| | - Yun Chang
- Beijing Lab for Cardiovascular Precision MedicineAnzhen HospitalCapital Medical UniversityBeijingChina
| | - Chenwen Hang
- Department of CardiologyPeking University Third HospitalBeijingChina
| | - Amina Saleem
- Beijing Lab for Cardiovascular Precision MedicineAnzhen HospitalCapital Medical UniversityBeijingChina
| | - Tao Dong
- Beijing Lab for Cardiovascular Precision MedicineAnzhen HospitalCapital Medical UniversityBeijingChina
| | - Tianwei Guo
- Beijing Lab for Cardiovascular Precision MedicineAnzhen HospitalCapital Medical UniversityBeijingChina
| | - Youxu Jiang
- Beijing Lab for Cardiovascular Precision MedicineAnzhen HospitalCapital Medical UniversityBeijingChina
| | - Wenjing Lu
- Beijing Lab for Cardiovascular Precision MedicineAnzhen HospitalCapital Medical UniversityBeijingChina
| | - Lina Zhang
- State Key Laboratory of Chemical Resource EngineeringBeijing Laboratory of Biomedical MaterialsBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Luo Jianwen
- Department of Biomedical EngineeringSchool of MedicineTsinghua UniversityBeijingChina
| | - Hongfeng Jiang
- Key Laboratory of Remodeling‐Related Cardiovascular DiseasesMinistry of EducationBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Feng Lan
- Beijing Lab for Cardiovascular Precision MedicineAnzhen HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
55
|
Feng J, Zong P, Yan J, Yue Z, Li X, Smith C, Ai X, Yue L. Upregulation of transient receptor potential melastatin 4 (TRPM4) in ventricular fibroblasts from heart failure patients. Pflugers Arch 2021; 473:521-531. [PMID: 33594499 PMCID: PMC8857941 DOI: 10.1007/s00424-021-02525-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/19/2022]
Abstract
The transient receptor potential melastatin 4 (TRPM4) is a Ca2+-activated nonselective monovalent cation channel belonging to the TRP channel superfamily. TRPM4 is widely expressed in various tissues and most abundantly expressed in the heart. TRPM4 plays a critical role in cardiac conduction. Patients carrying a gain-of-function or loss-of-function mutation of TRPM4 display impaired cardiac conduction. Knockout or over-expression of TRPM4 in mice recapitulates conduction defects in patients. Moreover, recent studies have indicated that TRPM4 plays a role in hypertrophy and heart failure. Whereas the role of TRPM4 mediated by cardiac myocytes has been well investigated, little is known about TRPM4 and its role in cardiac fibroblasts. Here we show that in human left ventricular fibroblasts, TRPM4 exhibits typical Ca2+-activation characteristics, linear current-voltage (I-V) relation, and monovalent permeability. TRPM4 currents recorded in fibroblasts from heart failure patients (HF) are more than 2-fold bigger than those from control individuals (CTL). The enhanced functional TRPM4 in HF is not resulted from changed channel properties, as TRPM4 currents from both HF and CTL fibroblasts demonstrate similar sensitivity to intracellular calcium activation and extracellular 9-phenanthrol (9-phen) blockade. Consistent with enhanced TRPM4 activity, the protein level of TRPM4 is about 2-fold higher in HF than that of CTL hearts. Moreover, TRPM4 current in CTL fibroblasts is increased after 24 hours of TGFβ1 treatment, implying that TRPM4 in vivo may be upregulated by fibrogenesis promotor TGFβ1. The upregulated TRPM4 in HF fibroblasts suggests that TRPM4 may play a role in cardiac fibrogenesis under various pathological conditions.
Collapse
Affiliation(s)
- Jianlin Feng
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut School of Medicine (UConn Health), Farmington, CT, 06030, USA
| | - Pengyu Zong
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut School of Medicine (UConn Health), Farmington, CT, 06030, USA
| | - Jiajie Yan
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Zhichao Yue
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut School of Medicine (UConn Health), Farmington, CT, 06030, USA
| | - Xin Li
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut School of Medicine (UConn Health), Farmington, CT, 06030, USA
| | - Chevaughn Smith
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut School of Medicine (UConn Health), Farmington, CT, 06030, USA
| | - Xun Ai
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Lixia Yue
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut School of Medicine (UConn Health), Farmington, CT, 06030, USA.
| |
Collapse
|
56
|
Marguerite NT, Bernard J, Harrison DA, Harris D, Cooper RL. Effect of Temperature on Heart Rate for Phaenicia sericata and Drosophila melanogaster with Altered Expression of the TrpA1 Receptors. INSECTS 2021; 12:38. [PMID: 33418937 PMCID: PMC7825143 DOI: 10.3390/insects12010038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/24/2020] [Accepted: 01/02/2021] [Indexed: 11/29/2022]
Abstract
The transient receptor potential (TrpA-ankyrin) receptor has been linked to pathological conditions in cardiac function in mammals. To better understand the function of the TrpA1 in regulation of the heart, a Drosophila melanogaster model was used to express TrpA1 in heart and body wall muscles. Heartbeat of in intact larvae as well as hearts in situ, devoid of hormonal and neural input, indicate that strong over-expression of TrpA1 in larvae at 30 or 37 °C stopped the heart from beating, but in a diastolic state. Cardiac function recovered upon cooling after short exposure to high temperature. Parental control larvae (UAS-TrpA1) increased heart rate transiently at 30 and 37 °C but slowed at 37 °C within 3 min for in-situ preparations, while in-vivo larvae maintained a constant heart rate. The in-situ preparations maintained an elevated rate at 30 °C. The heartbeat in the TrpA1-expressing strains could not be revived at 37 °C with serotonin. Thus, TrpA1 activation may have allowed enough Ca2+ influx to activate K(Ca) channels into a form of diastolic stasis. TrpA1 activation in body wall muscle confirmed a depolarization of membrane. In contrast, blowfly Phaenicia sericata larvae increased heartbeat at 30 and 37 °C, demonstrating greater cardiac thermotolerance.
Collapse
Affiliation(s)
- Nicole T. Marguerite
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; (N.T.M.); (J.B.); (D.A.H.)
| | - Jate Bernard
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; (N.T.M.); (J.B.); (D.A.H.)
| | - Douglas A. Harrison
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; (N.T.M.); (J.B.); (D.A.H.)
| | | | - Robin L. Cooper
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; (N.T.M.); (J.B.); (D.A.H.)
| |
Collapse
|
57
|
Liu X, Pan Z. Store-Operated Calcium Entry in the Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:303-333. [DOI: 10.1007/978-981-16-4254-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
58
|
Jiang SJ, Wang W. Research progress on the role of CaMKII in heart disease. Am J Transl Res 2020; 12:7625-7639. [PMID: 33437349 PMCID: PMC7791482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
In the heart, Ca2+ participates in electrical activity and myocardial contraction, which is closely related to the generation of action potential and excitation contraction coupling (ECC) and plays an important role in various signal cascades and regulates different physiological processes. In the Ca2+ related physiological activities, CaMKII is a key downstream regulator, involving autophosphorylation and post-translational modification, and plays an important role in the excitation contraction coupling and relaxation events of cardiomyocytes. This paper reviews the relationship between CaMKII and various substances in the pathological process of myocardial apoptosis and necrosis, myocardial hypertrophy and arrhythmia, and what roles it plays in the development of disease in complex networks. This paper also introduces the drugs targeting at CaMKII to treat heart disease.
Collapse
Affiliation(s)
- Shi-Jun Jiang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Wei Wang
- Department of Cardiology, Affiliated Taihe Hospital of Hubei University of MedicineShiyan 442000, Hubei, China
| |
Collapse
|
59
|
Krajnik A, Brazzo JA, Vaidyanathan K, Das T, Redondo-Muñoz J, Bae Y. Phosphoinositide Signaling and Mechanotransduction in Cardiovascular Biology and Disease. Front Cell Dev Biol 2020; 8:595849. [PMID: 33381504 PMCID: PMC7767973 DOI: 10.3389/fcell.2020.595849] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022] Open
Abstract
Phosphoinositides, which are membrane-bound phospholipids, are critical signaling molecules located at the interface between the extracellular matrix, cell membrane, and cytoskeleton. Phosphoinositides are essential regulators of many biological and cellular processes, including but not limited to cell migration, proliferation, survival, and differentiation, as well as cytoskeletal rearrangements and actin dynamics. Over the years, a multitude of studies have uniquely implicated phosphoinositide signaling as being crucial in cardiovascular biology and a dominant force in the development of cardiovascular disease and its progression. Independently, the cellular transduction of mechanical forces or mechanotransduction in cardiovascular cells is widely accepted to be critical to their homeostasis and can drive aberrant cellular phenotypes and resultant cardiovascular disease. Given the versatility and diversity of phosphoinositide signaling in the cardiovascular system and the dominant regulation of cardiovascular cell functions by mechanotransduction, the molecular mechanistic overlap and extent to which these two major signaling modalities converge in cardiovascular cells remain unclear. In this review, we discuss and synthesize recent findings that rightfully connect phosphoinositide signaling to cellular mechanotransduction in the context of cardiovascular biology and disease, and we specifically focus on phosphatidylinositol-4,5-phosphate, phosphatidylinositol-4-phosphate 5-kinase, phosphatidylinositol-3,4,5-phosphate, and phosphatidylinositol 3-kinase. Throughout the review, we discuss how specific phosphoinositide subspecies have been shown to mediate biomechanically sensitive cytoskeletal remodeling in cardiovascular cells. Additionally, we discuss the direct interaction of phosphoinositides with mechanically sensitive membrane-bound ion channels in response to mechanical stimuli. Furthermore, we explore the role of phosphoinositide subspecies in association with critical downstream effectors of mechanical signaling in cardiovascular biology and disease.
Collapse
Affiliation(s)
- Amanda Krajnik
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Joseph A Brazzo
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Kalyanaraman Vaidyanathan
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Tuhin Das
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Javier Redondo-Muñoz
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, Madrid, Spain.,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Yongho Bae
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| |
Collapse
|
60
|
Camacho Londoño JE, Kuryshev V, Zorn M, Saar K, Tian Q, Hübner N, Nawroth P, Dietrich A, Birnbaumer L, Lipp P, Dieterich C, Freichel M. Transcriptional signatures regulated by TRPC1/C4-mediated Background Ca 2+ entry after pressure-overload induced cardiac remodelling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 159:86-104. [PMID: 32738354 DOI: 10.1016/j.pbiomolbio.2020.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/03/2020] [Accepted: 07/21/2020] [Indexed: 01/17/2023]
Abstract
AIMS After summarizing current concepts for the role of TRPC cation channels in cardiac cells and in processes triggered by mechanical stimuli arising e.g. during pressure overload, we analysed the role of TRPC1 and TRPC4 for background Ca2+ entry (BGCE) and for cardiac pressure overload induced transcriptional remodelling. METHODS AND RESULTS Mn2+-quench analysis in cardiomyocytes from several Trpc-deficient mice revealed that both TRPC1 and TRPC4 are required for BGCE. Electrically-evoked cell shortening of cardiomyocytes from TRPC1/C4-DKO mice was reduced, whereas parameters of cardiac contractility and relaxation assessed in vivo were unaltered. As pathological cardiac remodelling in mice depends on their genetic background, and the development of cardiac remodelling was found to be reduced in TRPC1/C4-DKO mice on a mixed genetic background, we studied TRPC1/C4-DKO mice on a C57BL6/N genetic background. Cardiac hypertrophy was reduced in those mice after chronic isoproterenol infusion (-51.4%) or after one week of transverse aortic constriction (TAC; -73.0%). This last manoeuvre was preceded by changes in the pressure overload induced transcriptional program as analysed by RNA sequencing. Genes encoding specific collagens, the Mef2 target myomaxin and the gene encoding the mechanosensitive channel Piezo2 were up-regulated after TAC in wild type but not in TRPC1/C4-DKO hearts. CONCLUSIONS Deletion of the TRPC1 and TRPC4 channel proteins protects against development of pathological cardiac hypertrophy independently of the genetic background. To determine if the TRPC1/C4-dependent changes in the pressure overload induced alterations in the transcriptional program causally contribute to cardio-protection needs to be elaborated in future studies.
Collapse
Affiliation(s)
- Juan E Camacho Londoño
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, 69120, Germany.
| | - Vladimir Kuryshev
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120, Heidelberg, Germany; Innere Medizin III, Bioinformatik und Systemkardiologie, Klaus Tschira Institute for Computational Cardiology, Ruprecht-Karls-Universität Heidelberg, 69120, Heidelberg, Germany
| | - Markus Zorn
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Kathrin Saar
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), 13125, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany
| | - Qinghai Tian
- Medical Faculty, Centre for Molecular Signalling (PZMS), Institute for Molecular Cell Biology and Research Center for Molecular Imaging and Screening, Saarland University, 66421 Homburg/Saar, Germany
| | - Norbert Hübner
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), 13125, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany; Berlin Institute of Health (BIH), 10178, Berlin, Germany; Charité -Universitätsmedizin, 10117, Berlin, Germany
| | - Peter Nawroth
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, 69120, Heidelberg, Germany; German Center for Diabetes Research (DZD), Germany; Institute for Diabetes and Cancer IDC Helmholtz Center Munich, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Dept. of Medicine I, Heidelberg University Hospital, Heidelberg, Germany
| | - Alexander Dietrich
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Member of the German Center for Lung Research (DZL), Ludwig-Maximilians-Universität, 80336, München, Germany
| | - Lutz Birnbaumer
- Laboratory of Neurobiology, NIEHS, North Carolina, USA and Institute of Biomedical Research (BIOMED), Catholic University of Argentina, C1107AFF Buenos Aires, Argentina
| | - Peter Lipp
- Medical Faculty, Centre for Molecular Signalling (PZMS), Institute for Molecular Cell Biology and Research Center for Molecular Imaging and Screening, Saarland University, 66421 Homburg/Saar, Germany
| | - Christoph Dieterich
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, 69120, Germany; Innere Medizin III, Bioinformatik und Systemkardiologie, Klaus Tschira Institute for Computational Cardiology, Ruprecht-Karls-Universität Heidelberg, 69120, Heidelberg, Germany
| | - Marc Freichel
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, 69120, Germany.
| |
Collapse
|
61
|
Bais S, Greenberg RM. Schistosome TRP channels: An appraisal. Int J Parasitol Drugs Drug Resist 2020; 13:1-7. [PMID: 32250774 PMCID: PMC7138929 DOI: 10.1016/j.ijpddr.2020.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 02/07/2023]
Abstract
Ion channels underlie electrical excitability in cells and are essential for a variety of functions, most notably neuromuscular and sensory activity. They are also validated targets for a preponderance of approved anthelmintic compounds. Transient receptor potential (TRP) channels constitute an ion channel superfamily whose members play important roles in sensory signaling, regulation of ion homeostasis, organellar trafficking, and other key cellular and organismal activities. Unlike most other ion channels, TRP channels are often polymodal, gated by a variety of mechanisms. Furthermore, TRP channels fall into several classes or subtypes based on sequence and structure. Until recently, there had been very little investigation of the properties and functions of TRP channels from parasitic helminths, including schistosomes, but that situation has changed in the past few years. Indeed, it is now clear that at least some schistosome TRP channels exhibit unusual pharmacological properties, and, intriguingly, both a mammalian and a schistosome TRP channel are activated by praziquantel, the current antischistosomal drug of choice. With the latest release of the Schistosoma mansoni genome database, several changes in predicted TRP channel sequences appeared, some of which were significant. This review updates and reassesses the TRP channel repertoire in S. mansoni, examines recent findings regarding these potential therapeutic targets, and provides guideposts for some of the physiological functions that may be mediated by these channels in schistosomes.
Collapse
Affiliation(s)
- Swarna Bais
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA, 19104, USA
| | - Robert M Greenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
62
|
Gao S, Kaudimba KK, Guo S, Zhang S, Liu T, Chen P, Wang R. Transient Receptor Potential Ankyrin Type-1 Channels as a Potential Target for the Treatment of Cardiovascular Diseases. Front Physiol 2020; 11:836. [PMID: 32903613 PMCID: PMC7438729 DOI: 10.3389/fphys.2020.00836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular disease is one of the chronic conditions with the highest mortality rate in the world. Underlying conditions such as hypertension, metabolic disorders, and habits like smoking are contributors to the manifestation of cardiovascular diseases. The treatment of cardiovascular diseases is inseparable from the development of drugs. Consequently, this has led to many researchers to focus on the search for effective drug targets. The transient receptor potential channel Ankyrin 1 (TRPA1) subtype is a non-selective cation channel, which belongs to the transient receptor potential (TRP) ion channel. Previous studies have shown that members of the TRP family contribute significantly to cardiovascular disease. However, many researchers have not explored the role of TRPA1 as a potential target for the treatment of cardiovascular diseases. Furthermore, recent studies revealed that TRPA1 is commonly expressed in the vascular endothelium. The endothelium is linked to the causes of some cardiovascular diseases, such as atherosclerosis, myocardial fibrosis, heart failure, and arrhythmia. The activation of TRPA1 has a positive effect on atherosclerosis, but it has a negative effect on other cardiovascular diseases such as myocardial fibrosis and heart failure. This review introduces the structural and functional characteristics of TRPA1 and its importance on vascular physiology and common cardiovascular diseases. Moreover, this review summarizes some evidence that TRPA1 is correlated to cardiovascular disease risk factors.
Collapse
Affiliation(s)
- Song Gao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | | | - Shanshan Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Shuang Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,Institute of Sport Science, Harbin Sport University, Harbin, China
| | - Tiemin Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,State Key Laboratory of Genetic Engineering, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Department of Endocrinology and Metabolism, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
63
|
Himmel NJ, Gray TR, Cox DN. Phylogenetics Identifies Two Eumetazoan TRPM Clades and an Eighth TRP Family, TRP Soromelastatin (TRPS). Mol Biol Evol 2020; 37:2034-2044. [PMID: 32159767 PMCID: PMC7306681 DOI: 10.1093/molbev/msaa065] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Transient receptor potential melastatins (TRPMs) are most well known as cold and menthol sensors, but are in fact broadly critical for life, from ion homeostasis to reproduction. Yet, the evolutionary relationship between TRPM channels remains largely unresolved, particularly with respect to the placement of several highly divergent members. To characterize the evolution of TRPM and like channels, we performed a large-scale phylogenetic analysis of >1,300 TRPM-like sequences from 14 phyla (Annelida, Arthropoda, Brachiopoda, Chordata, Cnidaria, Echinodermata, Hemichordata, Mollusca, Nematoda, Nemertea, Phoronida, Priapulida, Tardigrada, and Xenacoelomorpha), including sequences from a variety of recently sequenced genomes that fill what would otherwise be substantial taxonomic gaps. These findings suggest: 1) the previously recognized TRPM family is in fact two distinct families, including canonical TRPM channels and an eighth major previously undescribed family of animal TRP channel, TRP soromelastatin; 2) two TRPM clades predate the last bilaterian-cnidarian ancestor; and 3) the vertebrate-centric trend of categorizing TRPM channels as 1-8 is inappropriate for most phyla, including other chordates.
Collapse
Affiliation(s)
| | - Thomas R Gray
- Neuroscience Institute, Georgia State University, Atlanta, GA
| | - Daniel N Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA
| |
Collapse
|
64
|
Shannon AH, Elder CT, Lu G, Su G, Mast A, Salmon MD, Montgomery WG, Spinosa MD, Upchurch GR, Sharma AK. Pharmacologic inhibition of transient receptor channel vanilloid 4 attenuates abdominal aortic aneurysm formation. FASEB J 2020; 34:9787-9801. [PMID: 32506673 DOI: 10.1096/fj.202000251r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/28/2020] [Accepted: 05/17/2020] [Indexed: 11/11/2022]
Abstract
Abdominal aortic aneurysm (AAA) formation is characterized by inflammation, leukocyte infiltration, and vascular remodeling. This study investigates the role of TRPV4 channels, which are transmembrane calcium channels that can regulate vascular tone, in modulating AAA formation. The elastase-treatment model of AAA in C57BL6 (WT) mice and Angiotensin II treatment model in ApoE-/- mice were used to confirm our hypotheses. The administration of a specific TRPV4 antagonist, GSK2193874, in elastase-treated WT mice and in AngII-treated ApoE-/- mice caused a significant attenuation of aortic diameter, decrease in pro-inflammatory cytokines (IL-1β, IL-6, IL-17, MCP-1, MIP-1α, MIP-2, RANTES, and TNF-α), inflammatory cell infiltration (CD3 + T cells, macrophages, and neutrophils), elastic fiber disruption, and an increase in smooth muscle cell α-actin expression compared to untreated mice. Similarly, elastase-treated TRPV4-/- mice had a significant decrease in AAA formation, aortic inflammation, and vascular remodeling compared to elastase-treated WT mice on Day 14. In vitro studies demonstrated that the inhibition of TRPV4 channels mitigates aortic smooth muscle cell-dependent inflammatory cytokine production as well as decreases neutrophil transmigration through aortic endothelial cells. Therefore, our results suggest that TRPV4 antagonism can attenuate aortic inflammation and remodeling via decreased smooth muscle cell activation and neutrophil transendothelial migration during AAA formation.
Collapse
Affiliation(s)
| | - Craig T Elder
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | - Guanyi Lu
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | - Gang Su
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | - Alexis Mast
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | - Morgan D Salmon
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | | | - Michael D Spinosa
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | | | - Ashish K Sharma
- Department of Surgery, University of Florida, Gainesville, FL, USA
| |
Collapse
|
65
|
Guo S, Qiu L, Chen Y, Wang X, Ma B, Qu C, Cui J, Zhang H, Xing C, Zhan Y, An H. TMEM16A-inhibitor loaded pH-responsive nanoparticles: A novel dual-targeting antitumor therapy for lung adenocarcinoma. Biochem Pharmacol 2020; 178:114062. [PMID: 32492446 DOI: 10.1016/j.bcp.2020.114062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/12/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022]
Abstract
To overcome the adverse effects of conventional chemotherapy for cancers, various nanoparticles based drug delivery systems have been developed. However, nanoparticles delivering drugs directly to kill tumor cells still faced with challenges, because tumors possessed adopt complex mechanism to resist damages, which compromised the therapeutic efficacy. TMEM16A/CaCCs (Calcium activates chloride channels) has been identified to be overexpressed in lung adenocarcinoma which can serve as a novel tumor specific drug target in our previous work. Here, we developed a novel dual-targeted antitumor strategy via designing a novel nano-assembled, pH-sensitive drug-delivery system loading with specific inhibitors of TMEM16A against lung adenocarcinoma. For validation, we assayed the novel dual-targeting therapy on xenograft mouse model which exhibited significant antitumor activity and not affect mouse body weight. The dual targeting therapy accomplished in this study will shed light on the development of advanced antitumor strategy.
Collapse
Affiliation(s)
- Shuai Guo
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300130, China; Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Liang Qiu
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Yafei Chen
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Xuzhao Wang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300130, China; Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Biao Ma
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300130, China; Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Chang Qu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300130, China; Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Jianmin Cui
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Chengfen Xing
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Yong Zhan
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300130, China; Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China.
| | - Hailong An
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300130, China; Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
66
|
Severino P, D’Amato A, Pucci M, Infusino F, Birtolo LI, Mariani MV, Lavalle C, Maestrini V, Mancone M, Fedele F. Ischemic Heart Disease and Heart Failure: Role of Coronary Ion Channels. Int J Mol Sci 2020; 21:E3167. [PMID: 32365863 PMCID: PMC7246492 DOI: 10.3390/ijms21093167] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 01/09/2023] Open
Abstract
Heart failure is a complex syndrome responsible for high rates of death and hospitalization. Ischemic heart disease is one of the most frequent causes of heart failure and it is normally attributed to coronary artery disease, defined by the presence of one or more obstructive plaques, which determine a reduced coronary blood flow, causing myocardial ischemia and consequent heart failure. However, coronary obstruction is only an element of a complex pathophysiological process that leads to myocardial ischemia. In the literature, attention paid to the role of microcirculation, in the pathophysiology of ischemic heart disease and heart failure, is growing. Coronary microvascular dysfunction determines an inability of coronary circulation to satisfy myocardial metabolic demands, due to the imbalance of coronary blood flow regulatory mechanisms, including ion channels, leading to the development of hypoxia, fibrosis and tissue death, which may determine a loss of myocardial function, even beyond the presence of atherosclerotic epicardial plaques. For this reason, ion channels may represent the link among coronary microvascular dysfunction, ischemic heart disease and consequent heart failure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Francesco Fedele
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (P.S.); (A.D.); (M.P.); (F.I.); (L.I.B.); (M.V.M.); (C.L.); (V.M.); (M.M.)
| |
Collapse
|
67
|
Andrei SR, Ghosh M, Sinharoy P, Damron DS. Stimulation of TRPA1 attenuates ischemia-induced cardiomyocyte cell death through an eNOS-mediated mechanism. Channels (Austin) 2020; 13:192-206. [PMID: 31161862 PMCID: PMC6557600 DOI: 10.1080/19336950.2019.1623591] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The functional expression of transient receptor potential cation channel of the ankyrin-1 subtype (TRPA1) has recently been identified in adult mouse cardiac tissue where stimulation of this ion channel leads to increases in adult mouse ventricular cardiomyocyte (CM) contractile function via a Ca2+-Calmodulin-dependent kinase (CaMKII) pathway. However, the extent to which TRPA1 induces nitric oxide (NO) production in CMs, and whether this signaling cascade mediates physiological or pathophysiological events in cardiac tissue remains elusive. Freshly isolated CMs from wild-type (WT) or TRPA1 knockout (TRPA1-/-) mouse hearts were treated with AITC (100 µM) and prepared for immunoblot, NO detection or ischemia protocols. Our findings demonstrate that TRPA1 stimulation with AITC results in phosphorylation of protein kinase B (Akt) and endothelial NOS (eNOS) concomitantly with NO production in a concentration- and time-dependent manner. Additionally, we found that TRPA1 induced increases in CM [Ca2+]i and contractility occur independently of Akt and eNOS activation mechanisms. Further analysis revealed that the presence and activation of TRPA1 promotes CM survival and viability following ischemic insult via a mechanism partially dependent upon eNOS. Therefore, activation of the TRPA1/Akt/eNOS pathway attenuates ischemia-induced CM cell death.
Collapse
Affiliation(s)
- Spencer R Andrei
- a Department of Medicine , Vanderbilt University Medical Center , Nashville , TN , USA
| | - Monica Ghosh
- b Department of Biomedical Sciences , Kent State University , Kent , OH , USA
| | - Pritam Sinharoy
- c Department of Biopharmaceutical Development , Medimmune LLC , Gaithersburg , MD , USA
| | - Derek S Damron
- b Department of Biomedical Sciences , Kent State University , Kent , OH , USA
| |
Collapse
|
68
|
Bhat OM, Yuan X, Camus S, Salloum FN, Li PL. Abnormal Lysosomal Positioning and Small Extracellular Vesicle Secretion in Arterial Stiffening and Calcification of Mice Lacking Mucolipin 1 Gene. Int J Mol Sci 2020; 21:1713. [PMID: 32138242 PMCID: PMC7084670 DOI: 10.3390/ijms21051713] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 12/14/2022] Open
Abstract
Recent studies have shown that arterial medial calcification is mediated by abnormal release of exosomes/small extracellular vesicles from vascular smooth muscle cells (VSMCs) and that small extracellular vesicle (sEV) secretion from cells is associated with lysosome activity. The present study was designed to investigate whether lysosomal expression of mucolipin-1, a product of the mouse Mcoln1 gene, contributes to lysosomal positioning and sEV secretion, thereby leading to arterial medial calcification (AMC) and stiffening. In Mcoln1-/- mice, we found that a high dose of vitamin D (Vit D; 500,000 IU/kg/day) resulted in increased AMC compared to their wild-type littermates, which was accompanied by significant downregulation of SM22-α and upregulation of RUNX2 and osteopontin in the arterial media, indicating a phenotypic switch to osteogenic. It was also shown that significantly decreased co-localization of lysosome marker (Lamp-1) with lysosome coupling marker (Rab 7 and ALG-2) in the aortic wall of Mcoln1-/- mice as compared to their wild-type littermates. Besides, Mcoln1-/- mice showed significant increase in the expression of exosome/ sEV markers, CD63, and annexin-II (AnX2) in the arterial medial wall, accompanied by significantly reduced co-localization of lysosome marker (Lamp-1) with multivesicular body (MVB) marker (VPS16), suggesting a reduction of the lysosome-MVB interactions. In the plasma of Mcoln1-/- mice, the number of sEVs significantly increased as compared to the wild-type littermates. Functionally, pulse wave velocity (PWV), an arterial stiffening indicator, was found significantly increased in Mcoln1-/- mice, and Vit D treatment further enhanced such stiffening. All these data indicate that the Mcoln1 gene deletion in mice leads to abnormal lysosome positioning and increased sEV secretion, which may contribute to the arterial stiffness during the development of AMC.
Collapse
Affiliation(s)
- Owais M. Bhat
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (O.M.B.); (X.Y.); (S.C.)
| | - Xinxu Yuan
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (O.M.B.); (X.Y.); (S.C.)
| | - Sarah Camus
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (O.M.B.); (X.Y.); (S.C.)
| | - Fadi N. Salloum
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298-0204, USA;
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (O.M.B.); (X.Y.); (S.C.)
| |
Collapse
|
69
|
Chambers L, Dorrance AM. Regulation of ion channels in the microcirculation by mineralocorticoid receptor activation. CURRENT TOPICS IN MEMBRANES 2020; 85:151-185. [PMID: 32402638 DOI: 10.1016/bs.ctm.2020.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mineralocorticoid receptor (MR) has classically been studied in the renal epithelium for its role in regulating sodium and water balance and, subsequently, blood pressure. However, the MR also plays a critical role in the microvasculature by regulating ion channel expression and function. Activation of the MR by its endogenous agonist aldosterone results in translocation of the MR into the nucleus, where it can act as a transcription factor. Although most of the actions of the aldosterone can be attributed to its genomic activity though MR activation, it can also act by nongenomic mechanisms. Activation of this ubiquitous receptor increases the expression of epithelial sodium channels (ENaC) in both the endothelium and smooth muscle cells of peripheral and cerebral vessels. MR activation also regulates activity of calcium channels, calcium-activated potassium channels, and various transient receptor potential (TRP) channels. Modification of these ion channels results in a myriad of negative consequences, including impaired endothelium-dependent vasodilation, alterations in generation of myogenic tone, and increased inflammation and oxidative stress. Taken together, these studies demonstrate the importance of studying the impact of the MR on ion channel function in the vasculature. While research in this area has made advances in recent years, there are still many large gaps in knowledge that need to be filled. Crucial future directions of study include defining the molecular mechanisms involved in this interaction, as well as elucidating the potential sex differences that may exist, as these areas of understanding are currently lacking.
Collapse
Affiliation(s)
- Laura Chambers
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
70
|
Wen H, Gwathmey JK, Xie LH. Role of Transient Receptor Potential Canonical Channels in Heart Physiology and Pathophysiology. Front Cardiovasc Med 2020; 7:24. [PMID: 32158769 PMCID: PMC7052113 DOI: 10.3389/fcvm.2020.00024] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
Transient receptor potential canonical (TRPC) channels are involved in the regulation of cardiac function under (patho)physiological conditions and are closely associated with the pathogenesis of cardiac hypertrophy, arrhythmias, and myocardial infarction. Understanding the molecular mechanisms and the regulatory pathway/locus of TRPC channels in related heart diseases will provide potential new concepts for designing novel drugs targeting TRPC channels. We will present the properties and regulation of TRPC channels and their roles in the development of various forms of heart disease. This article provides a brief review on the role of TRPC channels in the regulation of myocardial function as well as how TRPC channels may serve as a therapeutic target in heart failure and cardiac arrhythmias including atrial fibrillation.
Collapse
Affiliation(s)
- Hairuo Wen
- Beijing Key Laboratory, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, China.,Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ, United States
| | - Judith K Gwathmey
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ, United States
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
71
|
Cobalt Administration Causes Reduced Contractility with Parallel Increases in TRPC6 and TRPM7 Transporter Protein Expression in Adult Rat Hearts. Cardiovasc Toxicol 2020; 19:276-286. [PMID: 30523498 PMCID: PMC6505488 DOI: 10.1007/s12012-018-9498-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Exposure to circulating cobalt (Co2+) in patients with metal-on-metal orthopaedic hip implants has been linked to cardiotoxicity but the underlying mechanism(s) remain undefined. The aim of the current study was to examine the effects of Co2+ on the heart in vivo and specifically on cardiac fibroblasts in vitro. Adult male rats were treated with CoCl2 (1 mg/kg) for either 7 days or 28 days. Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure Co2+ uptake into various organs of the body. Co2+ accumulated in the heart over time with significant levels evident after only 7 days of treatment. There was no evidence of cardiac remodelling following Co2+ treatment as assessed by heart weight:body weight and left ventricular weight:body weight. However, a decrease in fractional shortening, as measured using echocardiography, was observed after 28 days of Co2+ treatment. This was accompanied by increased protein expression of the ion transient receptor potential (TRP) channels TRPC6 and TRPM7 as assessed by quantitative immunoblotting of whole cardiac homogenates. Uptake of Co2+ specifically into rat cardiac fibroblasts was measured over 72 h and was shown to dramatically increase with increasing concentrations of applied CoCl2. Expression levels of TRPC6 and TRPM7 proteins were both significantly elevated in these cells following Co2+ treatment. In conclusion, Co2+ rapidly accumulates to significant levels in the heart causing compromised contractility in the absence of any overt cardiac remodelling. TRPC6 and TRPM7 expression levels are significantly altered in the heart following Co2+ treatment and this may contribute to the Co2+-induced cardiotoxicity observed over time.
Collapse
|
72
|
Obata K, Morita H, Takaki M. Mechanism underlying the negative inotropic effect in rat left ventricle in hyperthermia: the role of TRPV1. J Physiol Sci 2020; 70:4. [PMID: 32039693 PMCID: PMC7002332 DOI: 10.1186/s12576-020-00734-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/09/2019] [Indexed: 01/10/2023]
Abstract
We have previously reported that the negative inotropic effects of hyperthermia (42 °C) on left ventricular (LV) mechanoenergetics using the excised, cross-circulated rat heart model. Here, we investigated the role of TRPV1 on LV mechanoenergetics in hyperthermia. We analyzed the LV end-systolic pressure-volume relation (ESPVR) and the linear relation between the myocardial oxygen consumption per beat (VO2) and the systolic pressure-volume area (PVA; a total mechanical energy per beat) during infusion of capsazepine (CPZ) in hyperthermia, or capsaicin (Cap) under 300 bpm pacing. LV ESP decreased in each LV volume and the resultant downward-shift of LV ESPVR was suppressed by CPZ infusion in hyperthermia-hearts. In Cap-treated hearts, LV ESPVR shifted downward from the control ESPVR, similar to hyperthermia-hearts. The slopes of VO2-PVA relationship were unchanged. The VO2 intercepts in hyperthermia-hearts did not decrease because of decreased E-C coupling VO2, and inversely increased basal metabolic VO2, which was suppressed by CPZ, though the VO2 intercepts in Cap-treated hearts significantly decreased. The levels of phosphorylated phospholamban at serine 16 decreased significantly in hyperthermia-hearts, as well as Cap-treated hearts. These results indicate that a Cap-induced decrease in the LV contractility, like in cases of hyperthermia, are due to the down-regulation of the total calcium handling in E-C coupling, suggesting that negative inotropic effect in hyperthermia-heart is, at least in part, mediated through TRPV1 signaling pathway.
Collapse
Affiliation(s)
- Koji Obata
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan.
| | - Hironobu Morita
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Miyako Takaki
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| |
Collapse
|
73
|
TRPV2 channel as a possible drug target for the treatment of heart failure. J Transl Med 2020; 100:207-217. [PMID: 31857697 DOI: 10.1038/s41374-019-0349-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
Heart transplantation is currently the only viable option available for the treatment of severe heart failure conditions such as dilated cardiomyopathy. Hence, novel drugs for treating such conditions need to be developed urgently. Recent studies suggest that Ca2+ overload is involved in the onset and progression of dilated cardiomyopathy, and thus heart failure. The expression and activation of the Ca2+ permeable channel, transient receptor potential vanilloid 2 (TRPV2) channel have been found to play an essential role in sustained intracellular Ca2+ concentration increase, leading to heart failure. However, since there have been no TRPV2-specific inhibitors available until recently, the effect of TRPV2 inhibition on the pathology has not been clearly elucidated. Recent reports show that inhibiting TRPV2 activity effectively improves cardiac function, suppressing myocardial fibrosis and ameliorating the prognosis in animal models of cardiomyopathy with heart failure. In addition to that, inflammation is reported to be involved in the development of heart failure. Here, we review the recent findings on TRPV2 in cardiomyocytes and immune cells involved in the development of heart failure and discuss the current progress of drug development for the treatment of heart failure via targeting TRPV2.
Collapse
|
74
|
Wang H, Cheng X, Tian J, Xiao Y, Tian T, Xu F, Hong X, Zhu MX. TRPC channels: Structure, function, regulation and recent advances in small molecular probes. Pharmacol Ther 2020; 209:107497. [PMID: 32004513 DOI: 10.1016/j.pharmthera.2020.107497] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/14/2020] [Indexed: 02/08/2023]
Abstract
Transient receptor potential canonical (TRPC) channels constitute a group of receptor-operated calcium-permeable nonselective cation channels of the TRP superfamily. The seven mammalian TRPC members, which can be further divided into four subgroups (TRPC1, TRPC2, TRPC4/5, and TRPC3/6/7) based on their amino acid sequences and functional similarities, contribute to a broad spectrum of cellular functions and physiological roles. Studies have revealed complexity of their regulation involving several components of the phospholipase C pathway, Gi and Go proteins, and internal Ca2+ stores. Recent advances in cryogenic electron microscopy have provided several high-resolution structures of TRPC channels. Growing evidence demonstrates the involvement of TRPC channels in diseases, particularly the link between genetic mutations of TRPC6 and familial focal segmental glomerulosclerosis. Because TRPCs were discovered by the molecular identity first, their pharmacology had lagged behind. This is rapidly changing in recent years owning to great efforts from both academia and industry. A number of potent tool compounds from both synthetic and natural products that selective target different subtypes of TRPC channels have been discovered, including some preclinical drug candidates. This review will cover recent advancements in the understanding of TRPC channel regulation, structure, and discovery of novel TRPC small molecular probes over the past few years, with the goal of facilitating drug discovery for the study of TRPCs and therapeutic development.
Collapse
Affiliation(s)
- Hongbo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Xiaoding Cheng
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Jinbin Tian
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yuling Xiao
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Tian Tian
- Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College, Department of Chemistry and Environmental Science, School of Science, Tibet University, Lhasa 850000, China
| | - Fuchun Xu
- Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College, Department of Chemistry and Environmental Science, School of Science, Tibet University, Lhasa 850000, China
| | - Xuechuan Hong
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College, Department of Chemistry and Environmental Science, School of Science, Tibet University, Lhasa 850000, China.
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
75
|
Hof T, Chaigne S, Récalde A, Sallé L, Brette F, Guinamard R. Transient receptor potential channels in cardiac health and disease. Nat Rev Cardiol 2020; 16:344-360. [PMID: 30664669 DOI: 10.1038/s41569-018-0145-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transient receptor potential (TRP) channels are nonselective cationic channels that are generally Ca2+ permeable and have a heterogeneous expression in the heart. In the myocardium, TRP channels participate in several physiological functions, such as modulation of action potential waveform, pacemaking, conduction, inotropy, lusitropy, Ca2+ and Mg2+ handling, store-operated Ca2+ entry, embryonic development, mitochondrial function and adaptive remodelling. Moreover, TRP channels are also involved in various pathological mechanisms, such as arrhythmias, ischaemia-reperfusion injuries, Ca2+-handling defects, fibrosis, maladaptive remodelling, inherited cardiopathies and cell death. In this Review, we present the current knowledge of the roles of TRP channels in different cardiac regions (sinus node, atria, ventricles and Purkinje fibres) and cells types (cardiomyocytes and fibroblasts) and discuss their contribution to pathophysiological mechanisms, which will help to identify the best candidates for new therapeutic targets among the cardiac TRP family.
Collapse
Affiliation(s)
- Thomas Hof
- IHU-Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Pessac-Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France.,Université Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Sébastien Chaigne
- IHU-Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Pessac-Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France.,Université Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Alice Récalde
- IHU-Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Pessac-Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France.,Université Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Laurent Sallé
- Normandie Université, UNICAEN, EA4650, Signalisation, Électrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique, Caen, France
| | - Fabien Brette
- IHU-Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Pessac-Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France.,Université Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Romain Guinamard
- Normandie Université, UNICAEN, EA4650, Signalisation, Électrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique, Caen, France.
| |
Collapse
|
76
|
Sakaguchi R, Mori Y. Transient receptor potential (TRP) channels: Biosensors for redox environmental stimuli and cellular status. Free Radic Biol Med 2020; 146:36-44. [PMID: 31682917 DOI: 10.1016/j.freeradbiomed.2019.10.415] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 12/26/2022]
Abstract
Transient receptor potential (TRP) channels are a family of cation channels that depolarizes the membrane potential and regulates intracellular concentrations of cations such as Ca2+. TRP channels are also known to function as "biosensors" to detect changes of the surrounding environment and cellular status. Lines of evidence have unveiled that numerous proteins are subject to redox modification and subsequent signaling. For example, TRPM2, TRPC5, TRPV1, and TRPA1 are known as redox sensors activated by hydrogen peroxide (H2O2), nitric oxide (NO), and electrophiles. Thus, these channels facilitate the influx of cations which in turn triggers the appropriate cellular responses against environmental redox stimuli and cellular redox status. In this review, we focus on the recent findings regarding the functions of TRP channels in relation to other ion channels, and other proteins which also go through redox modification of cysteine (Cys) residues. We aim to understand the structural and molecular basis of the redox-sensing mechanisms of TRP channels in exerting various functions under physiological conditions as well as pathological conditions such as cancer malignancy. Their future potential as drug targets will also be discussed.
Collapse
Affiliation(s)
- Reiko Sakaguchi
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan; The World Premier International Research Initiative-Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, 615-8510, Japan
| | - Yasuo Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan; The World Premier International Research Initiative-Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, 615-8510, Japan.
| |
Collapse
|
77
|
Avila-Medina J, Mayoral-González I, Galeano-Otero I, Redondo PC, Rosado JA, Smani T. Pathophysiological Significance of Store-Operated Calcium Entry in Cardiovascular and Skeletal Muscle Disorders and Angiogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:489-504. [PMID: 31646522 DOI: 10.1007/978-3-030-12457-1_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Store-Operated Ca2+ Entry (SOCE) is an important Ca2+ influx pathway expressed by several excitable and non-excitable cell types. SOCE is recognized as relevant signaling pathway not only for physiological process, but also for its involvement in different pathologies. In fact, independent studies demonstrated the implication of essential protein regulating SOCE, such as STIM, Orai and TRPCs, in different pathogenesis and cell disorders, including cardiovascular disease, muscular dystrophies and angiogenesis. Compelling evidence showed that dysregulation in the function and/or expression of isoforms of STIM, Orai or TRPC play pivotal roles in cardiac hypertrophy and heart failure, vascular remodeling and hypertension, skeletal myopathies, and angiogenesis. In this chapter, we summarized the current knowledge concerning the mechanisms underlying abnormal SOCE and its involvement in some diseases, as well as, we discussed the significance of STIM, Orai and TRPC isoforms as possible therapeutic targets for the treatment of angiogenesis, cardiovascular and skeletal muscle diseases.
Collapse
Affiliation(s)
- Javier Avila-Medina
- Department of Medical Physiology and Biophysics, University of Seville, Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain
| | - Isabel Mayoral-González
- Department of Medical Physiology and Biophysics, University of Seville, Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain
- Department of Surgery, University of Seville, Sevilla, Spain
| | - Isabel Galeano-Otero
- Department of Medical Physiology and Biophysics, University of Seville, Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain
| | - Pedro C Redondo
- Department of Physiology, Cell Physiology Research Group and Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Juan A Rosado
- Department of Physiology, Cell Physiology Research Group and Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysics, University of Seville, Sevilla, Spain.
- Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain.
- CIBERCV, Madrid, Spain.
| |
Collapse
|
78
|
Hsu W, Tsai M, Wu C, Liang J, Lu J, Kahle JS, Yu H, Yen C, Yen C, Hsieh Y, Huang Y, Lin L, Tsai T, Chen C, Yoshioka T. Nociceptive transient receptor potential canonical 7 (TRPC7) mediates aging-associated tumorigenesis induced by ultraviolet B. Aging Cell 2020; 19:e13075. [PMID: 31755176 PMCID: PMC6974716 DOI: 10.1111/acel.13075] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/21/2019] [Accepted: 10/25/2019] [Indexed: 12/14/2022] Open
Abstract
Aging, cancer, and longevity have been linked to intracellular Ca2+ signaling and nociceptive transient receptor potential (TRP) channels. We found that TRP canonical 7 (TRPC7) is a nociceptive mechanoreceptor and that TRPC7 channels specifically mediate the initiation of ultraviolet B (UVB)‐induced skin aging and tumor development due to p53 gene family mutations. Within 30 min after UVB irradiation, TRPC7 mediated UVB‐induced Ca2+ influx and the subsequent production of reactive oxygen species in skin cells. Notably, this function was unique to TRPC7 and was not observed for other TRP channels. In TRPC7 knockout mice, we did not observe the significant UVB‐associated pathology seen in wild‐type mice, including epidermal thickening, abnormal keratinocyte differentiation, and DNA damage response activation. TRPC7 knockout mice also had significantly fewer UVB‐induced cancerous tumors than did wild‐type mice, and UVB‐induced p53 gene family mutations were prevented in TRPC7 knockout mice. These results indicate that TRPC7 activity is pivotal in the initiation of UVB‐induced skin aging and tumorigenesis and that the reduction in TRPC7 activity suppresses the UVB‐induced aging process and tumor development. Our findings support that TRPC7 is a potential tumor initiator gene and that it causes cell aging and genomic instability, followed by a change in the activity of proto‐oncogenes and tumor suppressor genes to promote tumorigenesis.
Collapse
Affiliation(s)
- Wen‐Li Hsu
- Research Organization for Nano & Life Innovation Waseda University, Shinjuku Tokyo Japan
- Emerging Compounds Research Center General Research Service Center National Pingtung University of Science and Technology Pingtung Taiwan
- Regenerative Medicine and Cell Therapy Research Center Kaohsiung Medical University Kaohsiung Taiwan
| | - Ming‐Hsien Tsai
- Emerging Compounds Research Center General Research Service Center National Pingtung University of Science and Technology Pingtung Taiwan
- Department of Child Care College of Humanities and Social Sciences National Pingtung University of Science and Technology Pingtung Taiwan
| | - Ching‐Ying Wu
- Department of Dermatology Kaohsiung Municipal Ta‐Tung Hospital Kaohsiung Medical University Hospital Kaohsiung Medical University Kaohsiung Taiwan
- Graduate Institute of Medicine School of Medicine Kaohsiung Medical University Kaohsiung Taiwan
| | - Jui‐Lin Liang
- Department of General Surgery Chi‐Mei Medical Center, Liouying Tainan Taiwan
| | - Jian‐He Lu
- Graduate Institute of Medicine School of Medicine Kaohsiung Medical University Kaohsiung Taiwan
| | - Jennifer S. Kahle
- Department of Psychological Sciences University of San Diego San Diego CA USA
- BPS, International San Diego CA USA
| | - Hsin‐Su Yu
- Department of Dermatology Kaohsiung Medical University Kaohsiung Taiwan
| | - Chia‐Jung Yen
- Regenerative Medicine and Cell Therapy Research Center Kaohsiung Medical University Kaohsiung Taiwan
- Department of Child Care College of Humanities and Social Sciences National Pingtung University of Science and Technology Pingtung Taiwan
| | - Chen‐Tung Yen
- Department of Life Science National Taiwan University Taipei Taiwan
| | - Yi‐Chun Hsieh
- Emerging Compounds Research Center General Research Service Center National Pingtung University of Science and Technology Pingtung Taiwan
- Department of Child Care College of Humanities and Social Sciences National Pingtung University of Science and Technology Pingtung Taiwan
| | - Yung‐Yun Huang
- School of Medicine Kaohsiung Medical University Kaohsiung Taiwan
| | - Li‐Ching Lin
- School of Medicine Kaohsiung Medical University Kaohsiung Taiwan
| | - Tsung‐Fu Tsai
- School of Medicine Kaohsiung Medical University Kaohsiung Taiwan
| | - Chu‐Huang Chen
- Graduate Institute of Medicine School of Medicine Kaohsiung Medical University Kaohsiung Taiwan
- Center for Lipid Biosciences Kaohsiung Medical University Hospital Kaohsiung Medical University Kaohsiung Taiwan
- Vascular and Medicinal Research Texas Heart Institute Houston TX USA
- New York Heart Research Foundation Mineola NY USA
- Lipid Science and Aging Research Center Kaohsiung Medical University Kaohsiung Taiwan
| | - Tohru Yoshioka
- Regenerative Medicine and Cell Therapy Research Center Kaohsiung Medical University Kaohsiung Taiwan
- Graduate Institute of Medicine School of Medicine Kaohsiung Medical University Kaohsiung Taiwan
| |
Collapse
|
79
|
Norton CE, Jacobsen NL, Sinkler SY, Manrique-Acevedo C, Segal SS. Female sex and Western-style diet protect mouse resistance arteries during acute oxidative stress. Am J Physiol Cell Physiol 2019; 318:C627-C639. [PMID: 31891519 DOI: 10.1152/ajpcell.00342.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A Western-style diet (WD; high in fat and carbohydrates) increases vascular oxidative stress. We hypothesized that vascular cells adapt to a WD by developing resilience to oxidative stress. Male and female C57BL/6J mice (4 wk of age) were fed a control diet (CD) or a WD for 16-20 wk. Superior epigastric arteries (SEAs; diameter, ~125 µm) were isolated and pressurized for study. Basal reactive oxygen species production was greatest in SEAs from males fed the WD. During exposure to H2O2 (200 μM, 50 min), propidium iodide staining identified nuclei of disrupted endothelial cells (ECs) and smooth muscle cells (SMCs). For mice fed the CD, death of SMCs (21%) and ECs (6%) was greater (P < 0.05) in SEAs from males than females (9% and 2%, respectively). WD consumption attenuated cell death most effectively in SEAs from males. With no difference at rest, H2O2 increased intracellular Ca2+ concentration ([Ca2+]i) to the greatest extent in SEAs from males, as shown by fura 2 fluorescence. Selective disruption of the endothelium (luminal air bubble) increased [Ca2+]i and SMC death during H2O2 exposure irrespective of sex; the WD reduced both responses most effectively in males. Nonselective transient receptor potential (TRP) channel inhibition (ruthenium red, 5 μM) attenuated the rise of [Ca2+]i, as did selective inhibition of TRP vanilloid type 4 (TRPV4) channels (HC-067047, 1 μM), which also attenuated cell death. In contrast, inhibition of voltage-gated Ca2+ channels (diltiazem, 50 μM) was without effect. Thus, for resistance arteries during acute oxidative stress: 1) ECs are more resilient than (and can protect) SMCs, 2) vessels from females are inherently more resilient than those from males, and 3) a WD increases vascular resilience by diminishing TRPV4 channel-dependent Ca2+ entry.
Collapse
Affiliation(s)
- Charles E Norton
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Nicole L Jacobsen
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Shenghua Y Sinkler
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Camila Manrique-Acevedo
- Department of Medicine, University of Missouri, Columbia, Missouri.,Research Services, Harry S Truman Memorial Veterans Hospital, Columbia, Missouri.,Dalton Cardiovascular Research Center, Columbia, Missouri
| | - Steven S Segal
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, Columbia, Missouri
| |
Collapse
|
80
|
Cheng H, Li J, Wu Q, Zheng X, Gao Y, Yang Q, Sun N, He M, Zhou Y. Effect of SKF‑96365 on cardiomyocyte hypertrophy induced by angiotensin II. Mol Med Rep 2019; 21:806-814. [PMID: 31974621 PMCID: PMC6947876 DOI: 10.3892/mmr.2019.10877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/06/2019] [Indexed: 02/02/2023] Open
Abstract
Angiotensin II (Ang II) is an important bioactive peptide in the renin-angiotensin system, and it can contribute to cell proliferation and cardiac hypertrophy. Dysfunctions in transient receptor potential canonical (TRPC) channels are involved in many types of cardiovascular diseases. The aim of the present study was to investigate the role of the TRPC channel inhibitor SKF-96365 in cardiomyocyte hypertrophy induced by Ang II and the potential mechanisms of SKF-96365. H9c2 cells were treated with different concentrations of Ang II. The expression levels of cardiomyocyte hypertrophy markers and TRPC channel-related proteins were also determined. The morphology and surface area of the H9c2 cells, the expression of hypertrophic markers and TRPC channel-related proteins and the [3H] leucine incorporation rate were detected in the Ang II-treated H9c2 cells following treatment with the TRPC channel inhibitor SKF-96365. The intracellular Ca2+ concentration was tested by flow cytometry. The present results suggested that the surface area of H9c2 cells treated with Ang II was significantly increased compared with untreated H9c2 cells. The fluorescence intensity of α-actinin, the expression of hypertrophic markers and TRPC-related proteins, the [3H] leucine incorporation rate and the intracellular Ca2+ concentration were all markedly increased in the Ang II-treated H9c2 cells but decreased following SKF-96365 treatment. The present results suggested that Ang II induced cardiomyocyte hypertrophy in H9c2 cells and that the TRPC pathway may be involved in this process. Therefore, SKF-96365 can inhibit cardiomyocyte hypertrophy induced by Ang II by suppressing the TRPC pathway. The present results indicated that TRPC may be a therapeutic target for the development of novel drugs to treat cardiac hypertrophy.
Collapse
Affiliation(s)
- Huijun Cheng
- Nuclear Medicine Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Jiaoxia Li
- Nuclear Medicine Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Qiyan Wu
- Nuclear Medicine Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Xiaodong Zheng
- Nuclear Medicine Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Yongqiang Gao
- Nuclear Medicine Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Qiaofen Yang
- Nuclear Medicine Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Ningxi Sun
- Nuclear Medicine Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Meiqiong He
- Nuclear Medicine Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Youjun Zhou
- Nuclear Medicine Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| |
Collapse
|
81
|
Feng J, Armillei MK, Yu AS, Liang BT, Runnels LW, Yue L. Ca 2+ Signaling in Cardiac Fibroblasts and Fibrosis-Associated Heart Diseases. J Cardiovasc Dev Dis 2019; 6:E34. [PMID: 31547577 PMCID: PMC6956282 DOI: 10.3390/jcdd6040034] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022] Open
Abstract
Cardiac fibrosis is the excessive deposition of extracellular matrix proteins by cardiac fibroblasts and myofibroblasts, and is a hallmark feature of most heart diseases, including arrhythmia, hypertrophy, and heart failure. This maladaptive process occurs in response to a variety of stimuli, including myocardial injury, inflammation, and mechanical overload. There are multiple signaling pathways and various cell types that influence the fibrogenesis cascade. Fibroblasts and myofibroblasts are central effectors. Although it is clear that Ca2+ signaling plays a vital role in this pathological process, what contributes to Ca2+ signaling in fibroblasts and myofibroblasts is still not wholly understood, chiefly because of the large and diverse number of receptors, transporters, and ion channels that influence intracellular Ca2+ signaling. Intracellular Ca2+ signals are generated by Ca2+ release from intracellular Ca2+ stores and by Ca2+ entry through a multitude of Ca2+-permeable ion channels in the plasma membrane. Over the past decade, the transient receptor potential (TRP) channels have emerged as one of the most important families of ion channels mediating Ca2+ signaling in cardiac fibroblasts. TRP channels are a superfamily of non-voltage-gated, Ca2+-permeable non-selective cation channels. Their ability to respond to various stimulating cues makes TRP channels effective sensors of the many different pathophysiological events that stimulate cardiac fibrogenesis. This review focuses on the mechanisms of Ca2+ signaling in fibroblast differentiation and fibrosis-associated heart diseases and will highlight recent advances in the understanding of the roles that TRP and other Ca2+-permeable channels play in cardiac fibrosis.
Collapse
Affiliation(s)
- Jianlin Feng
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Maria K Armillei
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Albert S Yu
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Bruce T Liang
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Loren W Runnels
- Department of Pharmacology, Rutgers, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Lixia Yue
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
82
|
Silva DF, Wenceslau CF, Mccarthy CG, Szasz T, Ogbi S, Webb RC. TRPM8 channel activation triggers relaxation of pudendal artery with increased sensitivity in the hypertensive rats. Pharmacol Res 2019; 147:104329. [PMID: 31340190 DOI: 10.1016/j.phrs.2019.104329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/11/2019] [Accepted: 06/21/2019] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Erectile dysfunction (ED) is frequently encountered in patients with arterial hypertension and there is a recent functional correlation between the expression of thermoreceptor channels TRPM8 (melastatin 8) and alterations in blood pressure in hypertension. The aim of this study was to investigate the function of cold-sensing TRPM8 channel in internal pudendal artery (IPA) in both normotensive and hypertensive rats. METHODS We performed experiments integrating physiological, pharmacological, biochemical and cellular techniques. RESULTS TRPM8 channels are expressed in the IPA and in vascular smooth muscle cells from IPA. In addition, TRPM8 activation, by both a cooling compound icilin (82.1 ± 3.0%, n = 6) and cold temperature [thermal stimulus, basal tone (25 °C, 41.2 ± 3.4%, n = 5) or pre-contracted tone induced by phenylephrine (25 °C, 87.0 ± 3.6%, n = 7)], induced relaxation in IPA. Furthermore, the results showed that the concentration-response curve to icilin was significantly shifted to the right in different conditions, such as: the absence of the vascular endothelium, in the presence of L-NAME (10-4 M), or indomethacin (10-5 M) or by a combination of charybdotoxin (10-7 M) and apamin (5 × 10-6 M), and Y27632 (10-6 M). Interestingly, icilin-induced vasodilation was significantly higher in IPA from spontaneously hypertensive (SHR, E10-4M = 75.3 ± 1.7%) compared to wistar rats (E10-4M = 56.4 ± 2.6%), despite no changes in the TRPM8 expression in IPA between the strains, suggesting that the sensitivity of TRPM8 channels is higher in SHR. CONCLUSIONS These data demonstrate for the first time, the expression and function of TRPM8 channels in the IPA involving, at least in part, endothelium-derived relaxing factors and ROCK inhibition. Overall, this channel could potentially be a new target for the treatment of hypertension associated-ED.
Collapse
Affiliation(s)
- Darizy Flavia Silva
- Department of Bioregulation, Federal University of Bahia, Salvador, BA, Brazil.
| | - Camilla Ferreira Wenceslau
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Cameron G Mccarthy
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Theodora Szasz
- Department of Physiology, Augusta University, Augusta, GA, USA
| | - Safia Ogbi
- Department of Physiology, Augusta University, Augusta, GA, USA
| | - R Clinton Webb
- Department of Physiology, Augusta University, Augusta, GA, USA
| |
Collapse
|
83
|
TRP Channels Expression Profile in Human End-Stage Heart Failure. ACTA ACUST UNITED AC 2019; 55:medicina55070380. [PMID: 31315301 PMCID: PMC6681334 DOI: 10.3390/medicina55070380] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/04/2019] [Accepted: 07/11/2019] [Indexed: 01/05/2023]
Abstract
Objectives: Many studies indicate the involvement of transient receptor potential (TRP) channels in the development of heart hypertrophy. However, the data is often conflicted and has originated in animal models. Here, we provide systematic analysis of TRP channels expression in human failing myocardium. Methods and results: Left-ventricular tissue samples were isolated from explanted hearts of NYHA III-IV patients undergoing heart transplants (n = 43). Quantitative real-time PCR was performed to assess the mRNA levels of TRPC, TRPM and TRPV channels. Analysis of functional, clinical and biochemical data was used to confirm an end-stage heart failure diagnosis. Compared to myocardium samples from healthy donor hearts (n = 5), we detected a distinct increase in the expression of TRPC1, TRPC5, TRPM4 and TRPM7, and decreased expression of TRPC4 and TRPV2. These changes were not dependent on gender, clinical or biochemical parameters, nor functional parameters of the heart. We detected, however, a significant correlation of TRPC1 and MEF2c expression. Conclusions: The end-stage heart failure displays distinct expressional changes of TRP channels. Our findings provide a systematic description of TRP channel expression in human heart failure. The results highlight the complex interplay between TRP channels and the need for deeper analysis of early stages of hypertrophy and heart failure development.
Collapse
|
84
|
Giorgi S, Nikolaeva-Koleva M, Alarcón-Alarcón D, Butrón L, González-Rodríguez S. Is TRPA1 Burning Down TRPV1 as Druggable Target for the Treatment of Chronic Pain? Int J Mol Sci 2019; 20:ijms20122906. [PMID: 31197115 PMCID: PMC6627658 DOI: 10.3390/ijms20122906] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022] Open
Abstract
Over the last decades, a great array of molecular mediators have been identified as potential targets for the treatment of chronic pain. Among these mediators, transient receptor potential (TRP) channel superfamily members have been thoroughly studied. Namely, the nonselective cationic channel, transient receptor potential ankyrin subtype 1 (TRPA1), has been described as a chemical nocisensor involved in noxious cold and mechanical sensation and as rivalling TRPV1, which traditionally has been considered as the most important TRP channel involved in nociceptive transduction. However, few TRPA1-related drugs have succeeded in clinical trials. In the present review, we attempt to discuss the latest data on the topic and future directions for pharmacological intervention.
Collapse
Affiliation(s)
- Simona Giorgi
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - Magdalena Nikolaeva-Koleva
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
- AntalGenics, SL. Ed. Quorum III, Parque Científico Universidad Miguel Hernández, Avda de la Universidad s/n, 03202 Elche, Spain.
| | - David Alarcón-Alarcón
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - Laura Butrón
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - Sara González-Rodríguez
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
| |
Collapse
|
85
|
Saliba Y, Jebara V, Hajal J, Maroun R, Chacar S, Smayra V, Abramowitz J, Birnbaumer L, Farès N. Transient Receptor Potential Canonical 3 and Nuclear Factor of Activated T Cells C3 Signaling Pathway Critically Regulates Myocardial Fibrosis. Antioxid Redox Signal 2019; 30:1851-1879. [PMID: 30318928 PMCID: PMC6486676 DOI: 10.1089/ars.2018.7545] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIMS Cardiac fibroblasts (CFs) are emerging as major contributors to myocardial fibrosis (MF), a final common pathway of many etiologies of heart disease. Here, we studied the functional relevance of transient receptor potential canonical 3 (TRPC3) channels and nuclear factor of activated T cells c3 (NFATc3) signaling in rodent and human ventricular CFs, and whether their modulation would limit MF. RESULTS A positive feedback loop between TRPC3 and NFATc3 drove a rat ventricular CF fibrotic phenotype. In these cells, polyphenols (extract of grape pomace polyphenol [P.E.]) decreased basal and angiotensin II-mediated Ca2+ entries through a direct modulation of TRPC3 channels and subsequently NFATc3 signaling, abrogating myofibroblast differentiation, fibrosis and inflammation, as well as an oxidative stress-associated phenotype. N(ω)-nitro-l-arginine methyl ester (l-NAME) hypertensive rats developed coronary perivascular, sub-epicardial, and interstitial fibrosis with induction of embryonic epicardial progenitor transcription factors in activated CFs. P.E. treatment reduced ventricular CF activation by modulating the TRPC3-NFATc3 pathway, and it ameliorated echocardiographic parameters, cardiac stress markers, and MF in l-NAME hypertensive rats independently of blood pressure regulation. Further, genetic deletion (TRPC3-/-) and pharmacological channel blockade with N-[4-[3,5-Bis(trifluoromethyl)-1H-pyrazol-1-yl]phenyl]-4-methyl-benzenesulfonamide (Pyr10) blunted ventricular CF activation and MF in l-NAME hypertensive mice. Finally, TRPC3 was present in human ventricular CFs and upregulated in MF, whereas pharmacological modulation of TRPC3-NFATc3 decreased proliferation and collagen secretion. Innovation and Conclusion: We demonstrate that TRPC3-NFATc3 signaling is modulated by P.E. and critically regulates ventricular CF phenotype and MF. These findings strongly argue for P.E., through TRPC3 targeting, as potential and interesting therapeutics for MF management.
Collapse
Affiliation(s)
- Youakim Saliba
- Laboratoire de Recherche en Physiologie et Physiopathologie, Pôle Technologie Santé, Faculté de Médecine, Université Saint Joseph, Beirut, Lebanon
| | - Victor Jebara
- Faculté de Médecine, Université Saint Joseph, Beirut, Lebanon
| | - Joelle Hajal
- Laboratoire de Recherche en Physiologie et Physiopathologie, Pôle Technologie Santé, Faculté de Médecine, Université Saint Joseph, Beirut, Lebanon
| | - Richard Maroun
- Unité de Recherche Technologie et Valorisation Alimentaire, Centre d'Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph, Beirut, Lebanon
| | - Stéphanie Chacar
- Laboratoire de Recherche en Physiologie et Physiopathologie, Pôle Technologie Santé, Faculté de Médecine, Université Saint Joseph, Beirut, Lebanon
- Unité de Recherche Technologie et Valorisation Alimentaire, Centre d'Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph, Beirut, Lebanon
| | - Viviane Smayra
- Faculté de Médecine, Université Saint Joseph, Beirut, Lebanon
| | - Joel Abramowitz
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina
- Institute of Biomedical Research (BIOMED), School of Medicine, Catholic University of Argentina, Buenos Aires, Argentina
| | - Nassim Farès
- Laboratoire de Recherche en Physiologie et Physiopathologie, Pôle Technologie Santé, Faculté de Médecine, Université Saint Joseph, Beirut, Lebanon
- Address correspondence to: Prof. Nassim Farès, Laboratoire de Physiologie et Physiopathologie, Pôle Technologie Santé, Faculté de Médecine, Université Saint Joseph, Damascus Street, BP 11-5076 - Riad El Solh, Beirut 1107 2180, Lebanon
| |
Collapse
|
86
|
Jha RM, Desai SM, Zusman BE, Koleck TA, Puccio AM, Okonkwo DO, Park SY, Shutter LA, Kochanek PM, Conley YP. Downstream TRPM4 Polymorphisms Are Associated with Intracranial Hypertension and Statistically Interact with ABCC8 Polymorphisms in a Prospective Cohort of Severe Traumatic Brain Injury. J Neurotrauma 2019; 36:1804-1817. [PMID: 30484364 PMCID: PMC6551973 DOI: 10.1089/neu.2018.6124] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Sulfonylurea-receptor-1(SUR1) and its associated transient-receptor-potential cation channel subfamily-M (TRPM4) channel are key contributors to cerebral edema and intracranial hypertension in traumatic brain injury (TBI) and other neurological disorders. Channel inhibition by glyburide is clinically promising. ABCC8 (encoding SUR1) single-nucleotide polymorphisms (SNPs) are reported as predictors of raised intracranial pressure (ICP). This project evaluated whether TRPM4 SNPs predicted ICP and TBI outcome. DNA was extracted from 435 consecutively enrolled severe TBI patients. Without a priori selection, all 11 TRPM4 SNPs available on the multiplex platform (Illumina:Human-Core-Exome v1.0) were genotyped spanning the 25 exon gene. A total of 385 patients were analyzed after quality control. Outcomes included ICP and 6 month Glasgow Outcome Scale (GOS) score. Proxy SNPs, spatial modeling, and functional predictions were determined using established software programs. rs8104571 (intron-20) and rs150391806 (exon-24) were predictors of ICP. rs8104571 heterozygotes predicted higher average ICP (β = 10.3 mm Hg, p = 0.00000029), peak ICP (β = 19.6 mm Hg, p = 0.0007), and proportion ICP >25 mm Hg (β = 0.16 p = 0.004). rs150391806 heterozygotes had higher mean (β = 7.2 mm Hg, p = 0.042) and peak (β = 28.9 mm Hg, p = 0.0015) ICPs. rs8104571, rs150391806, and 34 associated proxy SNPs in linkage-disequilibrium clustered downstream. This region encodes TRPM4's channel pore and a region postulated to juxtapose SUR1 sequences encoded by an ABCC8 DNA segment containing previously identified relevant SNPs. There was an interaction effect on ICP between rs8104571 and a cluster of predictive ABCC8 SNPs (rs2237982, rs2283261, rs11024286). Although not significant in univariable or a basic multivariable model, in an expanded model additionally accounting for injury pattern, computed tomographic (CT) appearance, and intracranial hypertension, heterozygous rs8104571 was associated with favorable 6 month GOS (odds ratio [OR] = 16.7, p = 0.007951). This trend persisted in a survivor-only subcohort (OR = 20.67, p = 0.0168). In this cohort, two TRPM4 SNPs predicted increased ICP with large effect sizes. Both clustered downstream, spanning a region encoding the channel pore and interacting with SUR1. If validated, this may guide risk stratification and eventually inform treatment-responder classification for SUR1-TRPM4 inhibition in TBI. Larger studies are warranted.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shashvat M. Desai
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Benjamin E. Zusman
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Ava M. Puccio
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David O. Okonkwo
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Seo-Young Park
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lori A. Shutter
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Anesthesia, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania
- University of Pittsburgh Medical Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yvette P. Conley
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
87
|
Peyronnet R, Ravens U. Atria-selective antiarrhythmic drugs in need of alliance partners. Pharmacol Res 2019; 145:104262. [PMID: 31059791 DOI: 10.1016/j.phrs.2019.104262] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/15/2022]
Abstract
Atria-selective antiarrhythmic drugs in need of alliance partners. Guideline-based treatment of atrial fibrillation (AF) comprises prevention of thromboembolism and stroke, as well as antiarrhythmic therapy by drugs, electrical rhythm conversion, ablation and surgical procedures. Conventional antiarrhythmic drugs are burdened with unwanted side effects including a propensity of triggering life-threatening ventricular fibrillation. In order to solve this therapeutic dilemma, 'atria-selective' antiarrhythmic drugs have been developed for the treatment of supraventricular arrhythmias. These drugs are designed to aim at atrial targets, taking advantage of differences in atrial and ventricular ion channel expression and function. However it is not clear, whether such drugs are sufficiently antiarrhythmic or whether they are in need of an alliance partner for clinical efficacy. Atria-selective Na+ channel blockers display fast dissociation kinetics and high binding affinity to inactivated channels. Compounds targeting atria-selective K+ channels include blockers of ultra rapid delayed rectifier (Kv1.5) or acetylcholine-activated inward rectifier K+ channels (Kir3.x), inward rectifying K+ channels (Kir2.x), Ca2+-activated K+ channels of small conductance (SK), weakly rectifying two-pore domain K+ channels (K2P), and transient receptor potential channels (TRP). Despite good antiarrhythmic data from in-vitro and animal model experiments, clinical efficacy of atria-selective antiarrhythmic drugs remains to be demonstrated. In the present review we will briefly summarize the novel compounds and their proposed antiarrhythmic action. In addition, we will discuss the evidence for putative improvement of antiarrhythmic efficacy and potency by addressing multiple pathophysiologically relevant targets as possible alliance partners.
Collapse
Affiliation(s)
- Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, Medical Center, University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ursula Ravens
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, Medical Center, University of Freiburg, Freiburg, Germany; Institute of Physiology, Medical Faculty TU Dresden, Dresden, Germany.
| |
Collapse
|
88
|
Sharma S, Hopkins CR. Review of Transient Receptor Potential Canonical (TRPC5) Channel Modulators and Diseases. J Med Chem 2019; 62:7589-7602. [PMID: 30943030 DOI: 10.1021/acs.jmedchem.8b01954] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transient receptor potential canonical (TRPC) channels are highly homologous, nonselective cation channels that form many homo- and heterotetrameric channels. These channels are highly abundant in the brain and kidney and have been implicated in numerous diseases, such as depression, addiction, and chronic kidney disease, among others. Historically, there have been very few selective modulators of the TRPC family in order to fully understand their role in disease despite their physiological significance. However, that has changed recently and there has been a significant increase in interest in this family of channels which has led to the emergence of selective tool compounds, and even preclinical drug candidates, over the past few years. This review will cover these new advancements in the discovery of TRPC modulators and the emergence of newly reported structural information which will undoubtedly lead to even greater advancements.
Collapse
Affiliation(s)
- Swagat Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Nebraska Medical Center , Omaha , Nebraska 68198-6125 , United States
| | - Corey R Hopkins
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Nebraska Medical Center , Omaha , Nebraska 68198-6125 , United States
| |
Collapse
|
89
|
Zhang K, Wu WY, Li G, Zhang YH, Sun Y, Qiu F, Yang Q, Xiao GS, Li GR, Wang Y. Regulation of the TRPC1 channel by endothelin-1 in human atrial myocytes. Heart Rhythm 2019; 16:1575-1583. [PMID: 30954598 DOI: 10.1016/j.hrthm.2019.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Indexed: 01/13/2023]
Abstract
BACKGROUND Our recent study demonstrated that the nonselective cation current mediated by the transient receptor potential canonical 1 (TRPC1) channel is activated by endothelin-1 (ET-1) in human atrial myocytes; however, the related signal molecules involved are unknown. OBJECTIVE The purpose of this study was to investigate how the TRPC1 channel is regulated by ET-1 and whether it is upregulated in human atria from patients with atrial fibrillation (AF). METHODS Whole-cell patch technique and molecular biology techniques were used in the study. RESULTS The ET-1-evoked TRPC1 current was inhibited by the ET-1 type A (ETA) receptor antagonist BQ123 and the ET-1 type B (ETB) receptor antagonist BQ788 as well as the protein kinase C inhibitor chelerythrine. ETA receptor-mediated TRPC1 channel activity was selectively inhibited by the phosphoinositide-3-kinase inhibitor wortmannin, while ETB receptor-mediated TRPC1 activity was inhibited by the phospholipase C inhibitor U73122. The messenger RNAs and proteins of the TRPC1 channel and ETA receptor, but not the ETB receptor, were significantly upregulated in atria from patients with AF. The basal TRPC1 current increased in AF myocytes, and the response to ET-1 was greater in AF myocytes than in sinus rhythm myocytes. ET-1 induced a delayed repolarization in 20% of AF myocytes. CONCLUSION These results demonstrate for the first time that TRPC1 activation by ET-1 is mediated by protein kinase C through the distinct phospholipids pathways phosphoinositide-3-kinase and phospholipase C and that the TRPC1 channel and ETA receptor are upregulated in AF atria, which are likely involved in atrial electrical remodeling in patients with AF.
Collapse
Affiliation(s)
- Kai Zhang
- Xiamen Cardiovascular Hospital, Medical School of Xiamen University, Xiamen, Fujian, China
| | - Wei-Yin Wu
- Xiamen Cardiovascular Hospital, Medical School of Xiamen University, Xiamen, Fujian, China
| | - Gang Li
- Xiamen Cardiovascular Hospital, Medical School of Xiamen University, Xiamen, Fujian, China
| | - Yan-Hui Zhang
- Xiamen Cardiovascular Hospital, Medical School of Xiamen University, Xiamen, Fujian, China
| | - Yong Sun
- Xiamen Cardiovascular Hospital, Medical School of Xiamen University, Xiamen, Fujian, China
| | - Feng Qiu
- Xiamen Cardiovascular Hospital, Medical School of Xiamen University, Xiamen, Fujian, China
| | - Qian Yang
- Xiamen Cardiovascular Hospital, Medical School of Xiamen University, Xiamen, Fujian, China
| | - Guo-Sheng Xiao
- Xiamen Cardiovascular Hospital, Medical School of Xiamen University, Xiamen, Fujian, China
| | - Gui-Rong Li
- Xiamen Cardiovascular Hospital, Medical School of Xiamen University, Xiamen, Fujian, China.
| | - Yan Wang
- Xiamen Cardiovascular Hospital, Medical School of Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
90
|
Behringer EJ, Hakim MA. Functional Interaction among K Ca and TRP Channels for Cardiovascular Physiology: Modern Perspectives on Aging and Chronic Disease. Int J Mol Sci 2019; 20:ijms20061380. [PMID: 30893836 PMCID: PMC6471369 DOI: 10.3390/ijms20061380] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/07/2019] [Accepted: 03/15/2019] [Indexed: 12/16/2022] Open
Abstract
Effective delivery of oxygen and essential nutrients to vital organs and tissues throughout the body requires adequate blood flow supplied through resistance vessels. The intimate relationship between intracellular calcium ([Ca2+]i) and regulation of membrane potential (Vm) is indispensable for maintaining blood flow regulation. In particular, Ca2+-activated K+ (KCa) channels were ascertained as transducers of elevated [Ca2+]i signals into hyperpolarization of Vm as a pathway for decreasing vascular resistance, thereby enhancing blood flow. Recent evidence also supports the reverse role for KCa channels, in which they facilitate Ca2+ influx into the cell interior through open non-selective cation (e.g., transient receptor potential; TRP) channels in accord with robust electrical (hyperpolarization) and concentration (~20,000-fold) transmembrane gradients for Ca2+. Such an arrangement supports a feed-forward activation of Vm hyperpolarization while potentially boosting production of nitric oxide. Furthermore, in vascular types expressing TRP channels but deficient in functional KCa channels (e.g., collecting lymphatic endothelium), there are profound alterations such as downstream depolarizing ionic fluxes and the absence of dynamic hyperpolarizing events. Altogether, this review is a refined set of evidence-based perspectives focused on the role of the endothelial KCa and TRP channels throughout multiple experimental animal models and vascular types. We discuss the diverse interactions among KCa and TRP channels to integrate Ca2+, oxidative, and electrical signaling in the context of cardiovascular physiology and pathology. Building from a foundation of cellular biophysical data throughout a wide and diverse compilation of significant discoveries, a translational narrative is provided for readers toward the treatment and prevention of chronic, age-related cardiovascular disease.
Collapse
Affiliation(s)
- Erik J Behringer
- Department of Basic Sciences, 11041 Campus Street, Risley Hall, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Md A Hakim
- Department of Basic Sciences, 11041 Campus Street, Risley Hall, Loma Linda University, Loma Linda, CA 92350, USA.
| |
Collapse
|
91
|
Alonso-Carbajo L, Alpizar YA, Startek JB, López-López JR, Pérez-García MT, Talavera K. Activation of the cation channel TRPM3 in perivascular nerves induces vasodilation of resistance arteries. J Mol Cell Cardiol 2019; 129:219-230. [PMID: 30853321 DOI: 10.1016/j.yjmcc.2019.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 10/27/2022]
Abstract
The Transient Receptor Potential Melastatin 3 (TRPM3) is a Ca2+-permeable non-selective cation channel activated by the neurosteroid pregnenolone sulfate (PS). This compound was previously shown to contract mouse aorta by activating TRPM3 in vascular smooth muscle cells (VSMC), and proposed as therapeutic modulator of vascular functions. However, PS effects and the role of TRPM3 in resistance arteries remain unknown. Thus, we aimed at determining the localization and physiological role of TRPM3 in mouse mesenteric arteries. Real-time qPCR experiments, anatomical localization using immunofluorescence microscopy and patch-clamp recordings in isolated VSMC showed that TRPM3 expression in mesenteric arteries is restricted to perivascular nerves. Pressure myography experiments in wild type (WT) mouse arteries showed that PS vasodilates with a concentration-dependence that was best fit by two Hill components (effective concentrations, EC50, of 14 and 100 μM). The low EC50 component was absent in preparations from Trpm3 knockout (KO) mice and in WT arteries in the presence of the CGRP receptor antagonist BIBN 4096. TRPM3-dependent vasodilation was partially inhibited by a cocktail of K+ channel blockers, and not mediated by β-adrenergic signaling. We conclude that, contrary to what was found in aorta, PS dilates mesenteric arteries, partly via an activation of TRPM3 that triggers CGRP release from perivascular nerve endings and a subsequent activation of K+ channels in VSMC. We propose that TRPM3 is implicated in the regulation of the tone of resistance arteries and that its activation by yet unidentified endogenous damage-associated molecules lead to protective vasodilation responses in mesenteric arteries.
Collapse
Affiliation(s)
- Lucía Alonso-Carbajo
- Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, KU Leuven, VIB Center for Brain & Disease Research, Herestraat 49, Campus Gasthuisberg, O&N1 Box 802, 3000 Leuven, Belgium; Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Universidad de Valladolid y CSIC, Sanz y Forés 3, 47003 Valladolid, Spain
| | - Yeranddy A Alpizar
- Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, KU Leuven, VIB Center for Brain & Disease Research, Herestraat 49, Campus Gasthuisberg, O&N1 Box 802, 3000 Leuven, Belgium
| | - Justyna B Startek
- Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, KU Leuven, VIB Center for Brain & Disease Research, Herestraat 49, Campus Gasthuisberg, O&N1 Box 802, 3000 Leuven, Belgium
| | - José Ramón López-López
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Universidad de Valladolid y CSIC, Sanz y Forés 3, 47003 Valladolid, Spain
| | - María Teresa Pérez-García
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Universidad de Valladolid y CSIC, Sanz y Forés 3, 47003 Valladolid, Spain
| | - Karel Talavera
- Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, KU Leuven, VIB Center for Brain & Disease Research, Herestraat 49, Campus Gasthuisberg, O&N1 Box 802, 3000 Leuven, Belgium.
| |
Collapse
|
92
|
TRPC-mediated Ca 2+ signaling and control of cellular functions. Semin Cell Dev Biol 2019; 94:28-39. [PMID: 30738858 DOI: 10.1016/j.semcdb.2019.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/30/2019] [Accepted: 02/06/2019] [Indexed: 12/15/2022]
Abstract
Canonical members of the TRP superfamily of ion channels have long been recognized as key elements of Ca2+ handling in a plethora of cell types. The emerging role of TRPC channels in human physiopathology has generated considerable interest in their pharmacological targeting, which requires detailed understanding of their molecular function. Although consent has been reached that receptor-phospholipase C (PLC) pathways and generation of lipid mediators constitute the prominent upstream signaling process that governs channel activity, multimodal sensing features of TRPC complexes have been demonstrated repeatedly. Downstream signaling by TRPC channels is similarly complex and involves the generation of local and global cellular Ca2+ rises, which are well-defined in space and time to govern specific cellular functions. These TRPC-mediated Ca2+ signals rely in part on Ca2+ permeation through the channels, but are essentially complemented by secondary mechanisms such as Ca2+ mobilization from storage sites and Na+/Ca2+ exchange, which involve coordinated interaction with signaling partners. Consequently, the control of cell functions by TRPC molecules is critically determined by dynamic assembly and subcellular targeting of the TRPC complexes. The very recent availability of high-resolution structure information on TRPC channel complexes has paved the way towards a comprehensive understanding of signal transduction by TRPC channels. Here, we summarize current concepts of cation permeation in TRPC complexes, TRPC-mediated shaping of cellular Ca2+ signals and the associated control of specific cell functions.
Collapse
|
93
|
Falcón D, Galeano-Otero I, Calderón-Sánchez E, Del Toro R, Martín-Bórnez M, Rosado JA, Hmadcha A, Smani T. TRP Channels: Current Perspectives in the Adverse Cardiac Remodeling. Front Physiol 2019; 10:159. [PMID: 30881310 PMCID: PMC6406032 DOI: 10.3389/fphys.2019.00159] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/08/2019] [Indexed: 12/22/2022] Open
Abstract
Calcium is an important second messenger required not only for the excitation-contraction coupling of the heart but also critical for the activation of cell signaling pathways involved in the adverse cardiac remodeling and consequently for the heart failure. Sustained neurohumoral activation, pressure-overload, or myocardial injury can cause pathologic hypertrophic growth of the heart followed by interstitial fibrosis. The consequent heart’s structural and molecular adaptation might elevate the risk of developing heart failure and malignant arrhythmia. Compelling evidences have demonstrated that Ca2+ entry through TRP channels might play pivotal roles in cardiac function and pathology. TRP proteins are classified into six subfamilies: TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPA (ankyrin), TRPML (mucolipin), and TRPP (polycystin), which are activated by numerous physical and/or chemical stimuli. TRP channels participate to the handling of the intracellular Ca2+ concentration in cardiac myocytes and are mediators of different cardiovascular alterations. This review provides an overview of the current knowledge of TRP proteins implication in the pathologic process of some frequent cardiac diseases associated with the adverse cardiac remodeling such as cardiac hypertrophy, fibrosis, and conduction alteration.
Collapse
Affiliation(s)
- Debora Falcón
- Department of Medical Physiology and Biophysics, Institute of Biomedicine of Seville, University of Seville, Sevilla, Spain
| | - Isabel Galeano-Otero
- Department of Medical Physiology and Biophysics, Institute of Biomedicine of Seville, University of Seville, Sevilla, Spain
| | - Eva Calderón-Sánchez
- Department of Medical Physiology and Biophysics, Institute of Biomedicine of Seville, University of Seville, Sevilla, Spain.,CIBERCV, Madrid, Spain
| | - Raquel Del Toro
- Department of Medical Physiology and Biophysics, Institute of Biomedicine of Seville, University of Seville, Sevilla, Spain.,CIBERCV, Madrid, Spain
| | - Marta Martín-Bórnez
- Department of Medical Physiology and Biophysics, Institute of Biomedicine of Seville, University of Seville, Sevilla, Spain
| | - Juan A Rosado
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Cáceres, Spain
| | - Abdelkrim Hmadcha
- Department of Generation and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Sevilla, Spain.,CIBERDEM, Madrid, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysics, Institute of Biomedicine of Seville, University of Seville, Sevilla, Spain.,CIBERCV, Madrid, Spain
| |
Collapse
|
94
|
Gaur N, Hof T, Haissaguerre M, Vigmond EJ. Propagation Failure by TRPM4 Overexpression. Biophys J 2019; 116:469-476. [PMID: 30598284 DOI: 10.1016/j.bpj.2018.11.3137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 11/17/2022] Open
Abstract
Transient receptor potential melastatin member 4 (TRPM4) channels are nonselective monovalent cationic channels found in human atria and conduction system. Overexpression of TRPM4 channels has been found in families suffering from inherited cardiac arrhythmias, notably heart block. In this study, we integrate a mathematical formulation of the TRPM4 channel into a Purkinje cell model (Pan-Rudy model). Instead of simply adding the channel to the model, a combination of existing currents equivalent to the TRPM4 current was constructed, based on TRPM4 current dynamics. The equivalent current was then replaced by the TRPM4 current to preserve the model action potential. Single-cell behavior showed early afterdepolarizations for increases in TRPM4 channel expression above twofold. In a homogeneous strand of tissue, propagation conducted faithfully for lower expression levels but failed completely for more than a doubling of TRPM4 channel expression. Only with a heterogeneous distribution of channel expression was intermittent heart block seen. This study suggests that in Purkinje fibers, TRPM4 channels may account for sodium background current (INab), and that a heterogeneous expression of TRPM4 channels in the His/Purkinje system is required for type II heart block, as seen clinically.
Collapse
Affiliation(s)
- Namit Gaur
- University Bordeaux, IMB UMR 5251, Talence, France; IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
| | - Thomas Hof
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France; Université Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Michel Haissaguerre
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France; Bordeaux University Hospital (CHU), Cardiac Electrophysiology and Cardiac Stimulation Team, Pessac, France
| | - Edward J Vigmond
- University Bordeaux, IMB UMR 5251, Talence, France; IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.
| |
Collapse
|
95
|
Patrone LGA, Duarte JB, Bícego KC, Steiner AA, Romanovsky AA, Gargaglioni LH. TRPV1 Inhibits the Ventilatory Response to Hypoxia in Adult Rats, but Not the CO₂-Drive to Breathe. Pharmaceuticals (Basel) 2019; 12:ph12010019. [PMID: 30682830 PMCID: PMC6469189 DOI: 10.3390/ph12010019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/27/2018] [Accepted: 12/07/2018] [Indexed: 12/31/2022] Open
Abstract
Receptors of the transient receptor potential (TRP) channels superfamily are expressed in many tissues and have different physiological functions. However, there are few studies investigating the role of these channels in cardiorespiratory control in mammals. We assessed the role of central and peripheral TRPV1 receptors in the cardiorespiratory responses to hypoxia (10% O2) and hypercapnia (7% CO2) by measuring pulmonary ventilation (V˙E), heart rate (HR), mean arterial pressure (MAP) and body temperature (Tb) of male Wistar rats before and after intraperitoneal (AMG9810 [2.85 µg/kg, 1 mL/kg]) or intracebroventricular (AMG9810 [2.85 µg/kg, 1 µL] or AMG7905 [28.5 μg/kg, 1 µL]) injections of TRPV1 antagonists. Central or peripheral injection of TRPV1 antagonists did not change cardiorespiratory parameters or Tb during room air and hypercapnic conditions. However, the hypoxic ventilatory response was exaggerated by both central and peripheral injection of AMG9810. In addition, the peripheral antagonist blunted the drop in Tb induced by hypoxia. Therefore, the current data provide evidence that TRPV1 channels exert an inhibitory modulation on the hypoxic drive to breathe and stimulate the Tb reduction during hypoxia.
Collapse
Affiliation(s)
- Luis Gustavo A Patrone
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinarian Sciences, UNESP at Jaboticabal, Rod. Prof. Paulo Donato Castellane s/n, Jaboticabal SP 14870-000, Brazil.
| | - Jaime B Duarte
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinarian Sciences, UNESP at Jaboticabal, Rod. Prof. Paulo Donato Castellane s/n, Jaboticabal SP 14870-000, Brazil.
| | - Kênia Cardoso Bícego
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinarian Sciences, UNESP at Jaboticabal, Rod. Prof. Paulo Donato Castellane s/n, Jaboticabal SP 14870-000, Brazil.
| | - Alexandre A Steiner
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-090, Brazil.
| | - Andrej A Romanovsky
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), Trauma Research, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA.
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinarian Sciences, UNESP at Jaboticabal, Rod. Prof. Paulo Donato Castellane s/n, Jaboticabal SP 14870-000, Brazil.
| |
Collapse
|
96
|
Azarov JE, Semenov I, Casciola M, Pakhomov AG. Excitation of murine cardiac myocytes by nanosecond pulsed electric field. J Cardiovasc Electrophysiol 2019; 30:392-401. [PMID: 30582656 DOI: 10.1111/jce.13834] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Opening of voltage-gated sodium channels takes tens to hundreds of microseconds, and mechanisms of their opening by nanosecond pulsed electric field (nsPEF) stimuli remain elusive. This study was aimed at uncovering the mechanisms of how nsPEF elicits action potentials (APs) in cardiomyocytes. METHODS AND RESULTS Fluorescent imaging of optical APs (FluoVolt) and Ca2+ -transients (Fluo-4) was performed in enzymatically isolated murine ventricular cardiomyocytes stimulated by 200-nanosecond trapezoidal pulses. nsPEF stimulation evoked tetrodotoxin-sensitive APs accompanied or preceded by slow sustained depolarization (SSD) and, in most cells, by transient afterdepolarization waves. SSD threshold was lower than the AP threshold (1.26 ± 0.03 vs 1.34 ± 0.03 kV/cm, respectively, P < 0.001). Inhibition of l-type calcium and sodium-calcium exchanger currents reduced the SSD amplitude and increased the AP threshold ( P < 0.05). The threshold for Ca 2+ -transients (1.40 ± 0.04 kV/cm) was not significantly affected by a tetrodotoxin-verapamil cocktail, suggesting the activation of a Ca 2+ entry pathway independent from the opening of Na + or Ca 2+ voltage-gated channels. Removal of external Ca 2+ decreased the SSD amplitude ( P = 0.004) and blocked Ca 2+ -transients but not APs. The incidence of transient afterdepolarization waves was decreased by verapamil and by removal of external Ca 2+ ( P = 0.002). CONCLUSIONS The study established that nsPEF stimulation caused calcium entry into cardiac myocytes (including routes other than voltage-gated calcium channels) and SSD. Tetrodotoxin-sensitive APs were mediated by SSD, whose amplitude depended on the calcium entry. Plasma membrane electroporation was the most likely primary mechanism of SSD with additional contribution from l-type calcium and sodium-calcium exchanger currents.
Collapse
Affiliation(s)
- Jan E Azarov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia.,Laboratory of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia.,Department of Physiology, Medical Institute of Pitirim Sorokin Syktyvkar State University, Syktyvkar, Russia
| | - Iurii Semenov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
| | - Maura Casciola
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
| | - Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
| |
Collapse
|
97
|
Thornbury KD, Hollywood MA, Sergeant GP. Ion Channels and Intracellular Calcium Signalling in Corpus Cavernosum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1124:171-194. [PMID: 31183827 DOI: 10.1007/978-981-13-5895-1_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The corpus cavernosum smooth muscle is important for both erection of the penis and for maintaining penile flaccidity. Most of the time, the smooth muscle cells are in a contracted state, which limits filling of the corpus sinuses with blood. Occasionally, however, they relax in a co-ordinated manner, allowing filling to occur. This results in an erection. When contractions of the corpus cavernosum are measured, it can be deduced that the muscle cells work together in a syncytium, for not only do they spontaneously contract in a co-ordinated manner, but they also synchronously relax. It is challenging to understand how they achieve this.In this review we will attempt to explain the activity of the corpus cavernosum, firstly by summarising current knowledge regarding the role of ion channels and how they influence tone, and secondly by presenting data on the intracellular Ca2+ signals that interact with the ion channels. We propose that spontaneous Ca2+ waves act as a primary event, driving transient depolarisation by activating Ca2+-activated Cl- channels. Depolarisation then facilitates Ca2+ influx via L-type voltage-dependent Ca2+ channels. We propose that the spontaneous Ca2+ oscillations depend on Ca2+ release from both ryanodine- and inositol trisphosphate (IP3)-sensitive stores and that modulation by signalling molecules is achieved mainly by interactions with the IP3-sensitive mechanism. This pacemaker mechanism is inhibited by nitric oxide (acting through cyclic GMP) and enhanced by noradrenaline. By understanding these mechanisms better, it might be possible to design new treatments for erectile dysfunction.
Collapse
Affiliation(s)
- Keith D Thornbury
- Smooth Muscle Research Centre, Regional Development Centre, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland.
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Regional Development Centre, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Gerard P Sergeant
- Smooth Muscle Research Centre, Regional Development Centre, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| |
Collapse
|
98
|
Bais S, Greenberg RM. TRP channels as potential targets for antischistosomals. Int J Parasitol Drugs Drug Resist 2018; 8:511-517. [PMID: 30224169 PMCID: PMC6287577 DOI: 10.1016/j.ijpddr.2018.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/23/2018] [Accepted: 08/28/2018] [Indexed: 01/08/2023]
Abstract
Ion channels are membrane protein complexes that underlie electrical excitability in cells, allowing ions to diffuse through cell membranes in a regulated fashion. They are essential for normal functioning of the neuromusculature and other tissues. Ion channels are also validated targets for many current anthelmintics, yet the properties of only a small subset of ion channels in parasitic helminths have been explored in any detail. Transient receptor potential (TRP) channels comprise a widely diverse superfamily of ion channels with important roles in sensory signaling, regulation of ion homeostasis, organellar trafficking, and other functions. There are several subtypes of TRP channels, including TRPA1 and TRPV1 channels, both of which are involved in, among other functions, sensory, nociceptive, and inflammatory signaling in mammals. Several lines of evidence indicate that TRPA1-like channels in schistosomes exhibit pharmacological sensitivities that differ from their mammalian counterparts and that may signify unique physiological properties as well. Thus, in addition to responding to TRPA1 modulators, schistosome TRPA1-like channels also respond to compounds that in other organisms modulate TRPV1 channels. Notably, TRPV channel genes are not found in schistosome genomes. Here, we review the evidence leading to these conclusions and examine potential implications. We also discuss recent results showing that praziquantel, the current drug of choice against schistosomiasis, selectively targets host TRP channels in addition to its likely primary targets in the parasite. The results we discuss add weight to the notion that schistosome TRP channels are worthy of investigation as candidate therapeutic targets.
Collapse
Affiliation(s)
- Swarna Bais
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia PA 19104, USA
| | - Robert M Greenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia PA 19104, USA.
| |
Collapse
|
99
|
Diaz-Otero JM, Yen TC, Fisher C, Bota D, Jackson WF, Dorrance AM. Mineralocorticoid receptor antagonism improves parenchymal arteriole dilation via a TRPV4-dependent mechanism and prevents cognitive dysfunction in hypertension. Am J Physiol Heart Circ Physiol 2018; 315:H1304-H1315. [PMID: 30118343 PMCID: PMC6297805 DOI: 10.1152/ajpheart.00207.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/08/2018] [Accepted: 08/15/2018] [Indexed: 02/07/2023]
Abstract
Hypertension and mineralocorticoid receptor activation cause cerebral parenchymal arteriole remodeling; this can limit cerebral perfusion and contribute to cognitive dysfunction. We used a mouse model of angiotensin II-induced hypertension to test the hypothesis that mineralocorticoid receptor activation impairs both transient receptor potential vanilloid (TRPV)4-mediated dilation of cerebral parenchymal arterioles and cognitive function. Mice (16-18 wk old, male, C57Bl/6) were treated with angiotensin II (800 ng·kg-1·min-1) with or without the mineralocorticoid receptor antagonist eplerenone (100 mg·kg-1·day-1) for 4 wk; sham mice served as controls. Data are presented as means ± SE; n = 5-14 mice/group. Eplerenone prevented the increased parenchymal arteriole myogenic tone and impaired carbachol-induced (10-9-10-5 mol/l) dilation observed during hypertension. The carbachol-induced dilation was endothelium-derived hyperpolarization mediated because it could not be blocked by N-nitro-l-arginine methyl ester (10-5 mol/l) and indomethacin (10-4 mol/l). We used GSK2193874 (10-7 mol/l) to confirm that in all groups this dilation was dependent on TRPV4 activation. Dilation in response to the TRPV4 agonist GSK1016790A (10-9-10-5 mol/l) was also reduced in hypertensive mice, and this defect was corrected by eplerenone. In hypertensive and eplerenone-treated animals, TRPV4 inhibition reduced myogenic tone, an effect that was not observed in arterioles from control animals. Eplerenone treatment also improved cognitive function and reduced microglia density in hypertensive mice. These data suggest that the mineralocorticoid receptor is a potential therapeutic target to improve cerebrovascular function and cognition during hypertension. NEW & NOTEWORTHY Vascular dementia is a growing public health issue that lacks effective treatments. Transient receptor potential vanilloid (TRPV)4 channels are important regulators of parenchymal arteriole dilation, and they modulate myogenic tone. The data presented here suggest that TRPV4 channel expression is regulated by the mineralocorticoid receptor (MR). MR blockade also improves cognitive function during hypertension. MR blockade might be a potential therapeutic approach to improve cerebrovascular function and cognition in patients with hypertension.
Collapse
Affiliation(s)
- Janice M Diaz-Otero
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - Ting-Chieh Yen
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - Courtney Fisher
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - Daniel Bota
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| |
Collapse
|
100
|
Arnold C, Feldner A, Zappe M, Komljenovic D, De La Torre C, Ruzicka P, Hecker M, Neuhofer W, Korff T. Genetic ablation of NFAT5/TonEBP in smooth muscle cells impairs flow- and pressure-induced arterial remodeling in mice. FASEB J 2018; 33:3364-3377. [PMID: 30383452 DOI: 10.1096/fj.201801594r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The arterial wall adapts to alterations in blood flow and pressure by remodeling the cellular and extracellular architecture. Biomechanical stress of vascular smooth muscle cells (VSMCs) in the media is thought to precede this process and promote their activation and subsequent proliferation. However, molecular determinants orchestrating the transcriptional phenotype under these conditions have been insufficiently studied. We identified the transcription factor, nuclear factor of activated T cells 5 (NFAT5; or tonicity enhancer-binding protein) as a crucial regulatory element of mechanical stress responses of VSMCs. Here, the relevance of NFAT5 for arterial growth and thickening is investigated in mice upon inducible smooth muscle cell (SMC)-specific genetic ablation of Nfat5. In cultured mouse VSMCs, loss of Nfat5 inhibits the expression of gene sets involved in the control of the cell cycle and the interaction with the extracellular matrix and cytoskeletal dynamics. In vivo, SMC-specific knockout of Nfat5 did not affect the general vascular architecture and blood pressure levels under baseline conditions. However, proliferation of VSMCs and the thickening of the arterial wall were inhibited during both flow-induced collateral remodeling and hypertension-mediated arterial hypertrophy. Whereas originally described as a hypertonicity-responsive transcription factor, these findings identify NFAT5 as a novel molecular determinant of biomechanically induced phenotype changes of VSMCs and wall stress-induced arterial remodeling processes.-Arnold, C., Feldner, A., Zappe, M., Komljenovic, D., De La Torre, C., Ruzicka, P., Hecker, M., Neuhofer, W., Korff, T. Genetic ablation of NFAT5/TonEBP in smooth muscle cells impairs flow- and pressure-induced arterial remodeling in mice.
Collapse
Affiliation(s)
- Caroline Arnold
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Anja Feldner
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Maren Zappe
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Dorde Komljenovic
- Division of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Carolina De La Torre
- Center of Medical Research, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Philipp Ruzicka
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Markus Hecker
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Wolfgang Neuhofer
- Medical Clinic V, University Hospital Mannheim, Heidelberg University, Heidelberg, Germany
| | - Thomas Korff
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany.,European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|