51
|
Shin J, Hong J, Edwards-Glenn J, Krukovets I, Tkachenko S, Adelus ML, Romanoski CE, Rajagopalan S, Podrez E, Byzova TV, Stenina-Adongravi O, Cherepanova OA. Unraveling the Role of Sex in Endothelial Cell Dysfunction: Evidence From Lineage Tracing Mice and Cultured Cells. Arterioscler Thromb Vasc Biol 2024; 44:238-253. [PMID: 38031841 PMCID: PMC10842863 DOI: 10.1161/atvbaha.123.319833] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Biological sex differences play a vital role in cardiovascular diseases, including atherosclerosis. The endothelium is a critical contributor to cardiovascular pathologies since endothelial cells (ECs) regulate vascular tone, redox balance, and inflammatory reactions. Although EC activation and dysfunction play an essential role in the early and late stages of atherosclerosis development, little is known about sex-dependent differences in EC. METHODS We used human and mouse aortic EC as well as EC-lineage tracing (Cdh5-CreERT2 Rosa-YFP [yellow fluorescence protein]) atherosclerotic Apoe-/- mice to investigate the biological sexual dimorphism of the EC functions in vitro and in vivo. Bioinformatics analyses were performed on male and female mouse aortic EC and human lung and aortic EC. RESULTS In vitro, female human and mouse aortic ECs showed more apoptosis and higher cellular reactive oxygen species levels than male EC. In addition, female mouse aortic EC had lower mitochondrial membrane potential (ΔΨm), lower TFAM (mitochondrial transcription factor A) levels, and decreased angiogenic potential (tube formation, cell viability, and proliferation) compared with male mouse aortic EC. In vivo, female mice had significantly higher lipid accumulation within the aortas, impaired glucose tolerance, and lower endothelial-mediated vasorelaxation than males. Using the EC-lineage tracing approach, we found that female lesions had significantly lower rates of intraplaque neovascularization and endothelial-to-mesenchymal transition within advanced atherosclerotic lesions but higher incidents of missing EC lumen coverage and higher levels of oxidative products and apoptosis. RNA-seq analyses revealed that both mouse and human female EC had higher expression of genes associated with inflammation and apoptosis and lower expression of genes related to angiogenesis and oxidative phosphorylation than male EC. CONCLUSIONS Our study delineates critical sex-specific differences in EC relevant to proinflammatory, pro-oxidant, and angiogenic characteristics, which are entirely consistent with a vulnerable phenotype in females. Our results provide a biological basis for sex-specific proatherosclerotic mechanisms.
Collapse
Affiliation(s)
- Junchul Shin
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Junyoung Hong
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jonnelle Edwards-Glenn
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Irene Krukovets
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Svyatoslav Tkachenko
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Maria L. Adelus
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ, USA
- Clinical Translational Sciences Graduate Program, The University of Arizona, Tucson, AZ, USA
| | - Casey E. Romanoski
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ, USA
| | - Sanjay Rajagopalan
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Eugene Podrez
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Tatiana V. Byzova
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Olga Stenina-Adongravi
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Olga A. Cherepanova
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
52
|
Choi R, Narayanan R, Jandu S, Savage W, Kang S, Wodu B, Nandakumar K, Santhanam L, Steppan J. Optimization of resting tension for wire myography in male rat pulmonary arteries. Physiol Rep 2024; 12:e15911. [PMID: 38212292 PMCID: PMC10784191 DOI: 10.14814/phy2.15911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024] Open
Abstract
Wire myography to test vasomotor functions of blood vessels ex-vivo are well-established for the systemic circulation, however, there is no consensus on protocols for pulmonary arteries. We created a standardized wire myography protocol for healthy rat PAs and validated this in a pulmonary hypertension (PH) model. Vessels stretched to higher initial tensions (5.0, 7.5 and 10.0 mN) exhibited a uniform response to phenylephrine, a larger dynamic range, and lower EC50 values. The endothelium-mediated relaxation showed that moderate tensions (7.5 and 10.0 mN) produced robust responses with higher maximum relaxation and lower EC50 values. For endothelium independent responses, the higher initial tension groups had lower and more consistent EC50 values than the lower initial tension groups. Pulmonary arteries from rats with PH were more responsive to vasoactive drugs when subjected to a higher initial tension. Notably, vessels in the PH group subjected to 15.0 mN exhibited high dynamic ranges in contractile and relaxation responses without tearing. Lastly, we observed attenuated cholinergic responses in these vessels-consistent with endothelial dysfunction in PH. Therefore, a moderate initial tension of 7.5-10.0 mN is optimal for healthy rat pulmonary arteries and a higher initial tension of 15.0 mN is optimal for pulmonary arteries from animals with PH.
Collapse
Affiliation(s)
- Rira Choi
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Roshini Narayanan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sandeep Jandu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - William Savage
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sara Kang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Bulouere Wodu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Kavitha Nandakumar
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Lakshmi Santhanam
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jochen Steppan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
53
|
Marzoog BA. Endothelial Dysfunction under the Scope of Arterial Hypertension, Coronary Heart Disease, and Diabetes Mellitus using the Angioscan. Cardiovasc Hematol Agents Med Chem 2024; 22:181-186. [PMID: 37921186 DOI: 10.2174/0118715257246589231018053646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/26/2023] [Accepted: 09/09/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Cardiovascular disease and diabetes mellitus are among the leading causes of mortality. OBJECTIVES Our study evaluated endothelial function in patients with arterial hypertension, coronary heart disease, and diabetes mellitus. AIMS This study aimed to assess the degree of endothelial dysfunction in individuals with cardiovascular risk factors older than 55 years of age. MATERIALS AND METHODS A total of 112 patients were subdivided into three groups according to the existing disease; the first group consisted of 50 patients diagnosed with arterial hypertension (AH), the second group consisted of 30 patients with ischemic heart disease (IHD), and the third group included 20 patients with type 2 diabetes mellitus (DM). The control group included 12 practically healthy volunteers, comparable in age and sex. Exclusion criteria were age under 55 years, severe concomitant diseases in the acute phase or acute infectious diseases, and oncopathology. Considered factors of cardiovascular risk include dyslipidemia, elevated fasting blood glucose, hypertension, obesity, cigarette smoking, and heredity for CVD. Moreover, tests were conducted with the help of the device 'AngioScan-01' (LLC "AngioScan Electronics"). Endothelium-dependent vasodilation (EDV), the index of stiffness of the vascular wall (SI), and the atherogenic index (log (TG/HDL - C )) were evaluated. The analysis of the data obtained was carried out using the IBM SPSS Statistic program. RESULTS In the control group, the atherogenic index was in the range of 3.34 (the normal is up to 3.5). The highest atherogenic index, 4.01, was observed in the DM group (differences with the control group are statistically significant). In the AH and IHD groups, the atherogenic index was 3.57 and 3.65, respectively. In the control group, the level of glycemia was 4.45 mmol/l. The highest level of fasting glucose was reported in the DM group, i.e., 6.7 mmol/l (differences with the control group were statistically significant). In the first and second groups, the fasting glucose level was 5.07 mmol/l and 5.08 mmol/l, respectively. In the control group, the mean EDV score was 2,056 ± 0.757 mm, and the lowest EDV in the DM group was 1.365 ± 0.413, but in the AH and IHD groups, it was also significantly reduced by 1.404 ± 0.440 and 1.377 ± 0.390, respectively. The stiffness index in the control group was 6.725 ± 0.776 m/s. In the DM group, this parameter was 8.258 ± 0.656 m/s; in the AH and IHD groups, it was 7.398 ± 1.330 m/s and 7.486 ± 0.816 m/s, respectively. CONCLUSION In conclusion, the study of endothelial function using non-invasive angioscan reflects the influence of risk factors on the vascular wall. The most severe endothelial dysfunction is expressed in patients with diabetes. The results of endothelium-dependent vasodilation and the vascular wall stiffness index (SI) correspond to the scale of evaluation of the 10-year CVD mortality risk (SCORE). These results indicate a deterioration in the vascular ability to vasodilate in patients in response to mechanical deformation of the endothelium and the effect of NO on smooth muscle vascular cells.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- World-Class Research Center, Digital Biodesign and Personalized Healthcare, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| |
Collapse
|
54
|
Foote CA, Ramirez-Perez FI, Smith JA, Ghiarone T, Morales-Quinones M, McMillan NJ, Augenreich MA, Power G, Burr K, Aroor AR, Bender SB, Manrique-Acevedo C, Padilla J, Martinez-Lemus LA. Neuraminidase inhibition improves endothelial function in diabetic mice. Am J Physiol Heart Circ Physiol 2023; 325:H1337-H1353. [PMID: 37801046 PMCID: PMC10908409 DOI: 10.1152/ajpheart.00337.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/07/2023]
Abstract
Neuraminidases cleave sialic acids from glycocalyx structures and plasma neuraminidase activity is elevated in type 2 diabetes (T2D). Therefore, we hypothesize circulating neuraminidase degrades the endothelial glycocalyx and diminishes flow-mediated dilation (FMD), whereas its inhibition restores shear mechanosensation and endothelial function in T2D settings. We found that compared with controls, subjects with T2D have higher plasma neuraminidase activity, reduced plasma nitrite concentrations, and diminished FMD. Ex vivo and in vivo neuraminidase exposure diminished FMD and reduced endothelial glycocalyx presence in mouse arteries. In cultured endothelial cells, neuraminidase reduced glycocalyx coverage. Inhalation of the neuraminidase inhibitor, zanamivir, reduced plasma neuraminidase activity, enhanced endothelial glycocalyx length, and improved FMD in diabetic mice. In humans, a single-arm trial (NCT04867707) of zanamivir inhalation did not reduce plasma neuraminidase activity, improved glycocalyx length, or enhanced FMD. Although zanamivir plasma concentrations in mice reached 225.8 ± 22.0 ng/mL, in humans were only 40.0 ± 7.2 ng/mL. These results highlight the potential of neuraminidase inhibition for ameliorating endothelial dysfunction in T2D and suggest the current Food and Drug Administration-approved inhaled dosage of zanamivir is insufficient to achieve desired outcomes in humans.NEW & NOTEWORTHY This work identifies neuraminidase as a key mediator of endothelial dysfunction in type 2 diabetes that may serve as a biomarker for impaired endothelial function and predictive of development and progression of cardiovascular pathologies associated with type 2 diabetes (T2D). Data show that intervention with the neuraminidase inhibitor zanamivir at effective plasma concentrations may represent a novel pharmacological strategy for restoring the glycocalyx and ameliorating endothelial dysfunction.
Collapse
Affiliation(s)
- Christopher A Foote
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States
| | | | - James A Smith
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Thaysa Ghiarone
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
| | | | - Neil J McMillan
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Marc A Augenreich
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Gavin Power
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Katherine Burr
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
| | - Annayya R Aroor
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri, United States
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States
| | - Shawn B Bender
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Camila Manrique-Acevedo
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri, United States
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States
| | - Jaume Padilla
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States
| | - Luis A Martinez-Lemus
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States
- Department of Medicine, Center for Precision Medicine, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
55
|
Escobar-Ramírez JL, Santiago-Mejía J, Soto-Núñez M, Barrera-Vázquez OS, Vargas-Querea R, Magos-Guerrero GA. The Hypotensive and Vasodilatory Effects Observed in Rats Exposed to Chiranthodendron pentadactylon Larreat Flowers Can Be Attributed to Cyanidin 3- O-Glucoside. Molecules 2023; 28:7698. [PMID: 38067429 PMCID: PMC10707424 DOI: 10.3390/molecules28237698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Chiranthodendron pentadactylon Larreat is a tree native to southeastern Mexico and Guatemala. Its flower is used in Mexican folk medicine to treat a variety of diseases, including conditions of blood pressure. However, scientific information on its usefulness in this pathology is lacking. The present study evaluates the effect of a methanolic extract (ME) from the flower and its active constituents on heart rate (HR) and mean arterial pressure (MAP) in anesthetized rats (MAPHR). The study also analyzed the effects on rat-isolated aortic rings (RIAR) and the rat mesenteric arterial bed (MABR). Active fractions were chromatographed, which led to the isolation of cyanidin 3-O-glucoside (C3G) identified through HPLC. The Chiranthodendron pentadactylon flowers produced hypotensive and vasorelaxant effects associated with C3G. The vasorelaxant effect is a mechanism underlying the synthesis and release of nitric oxide (NO). Neither cholinergic receptors nor prostaglandins are involved. ME and C3G cause cardiovascular depression in anesthetized rats via cholinergic and prostanoid mechanisms. Our research expands the scientific understanding of the flowers on the rat cardiovascular system. This amplifies the appreciation of the flower's ethnomedicine employed to control blood pressure. However, researchers need to conduct toxicity studies to determine the safety of this plant.
Collapse
Affiliation(s)
| | | | | | | | | | - Gil Alfonso Magos-Guerrero
- Department of Pharmacology, Faculty of Medicine, University National Autonomous of Mexico, Mexico City 04510, Mexico; (J.L.E.-R.); (J.S.-M.); (M.S.-N.); (O.S.B.-V.); (R.V.-Q.)
| |
Collapse
|
56
|
Yamasaki E, Thakore P, Ali S, Solano AS, Wang X, Gao X, Labelle-Dumais C, Chaumeil MM, Gould DB, Earley S. Impaired intracellular Ca 2+ signaling contributes to age-related cerebral small vessel disease in Col4a1 mutant mice. Sci Signal 2023; 16:eadi3966. [PMID: 37963192 PMCID: PMC10726848 DOI: 10.1126/scisignal.adi3966] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023]
Abstract
Humans and mice with mutations in COL4A1 and COL4A2 manifest hallmarks of cerebral small vessel disease (cSVD). Mice with a missense mutation in Col4a1 at amino acid 1344 (Col4a1+/G1344D) exhibit age-dependent intracerebral hemorrhages (ICHs) and brain lesions. Here, we report that this pathology was associated with the loss of myogenic vasoconstriction, an intrinsic vascular response essential for the autoregulation of cerebral blood flow. Electrophysiological analyses showed that the loss of myogenic constriction resulted from blunted pressure-induced smooth muscle cell (SMC) membrane depolarization. Furthermore, we found that dysregulation of membrane potential was associated with impaired Ca2+-dependent activation of large-conductance Ca2+-activated K+ (BK) and transient receptor potential melastatin 4 (TRPM4) cation channels linked to disruptions in sarcoplasmic reticulum (SR) Ca2+ signaling. Col4a1 mutations impair protein folding, which can cause SR stress. Treating Col4a1+/G1344D mice with 4-phenylbutyrate, a compound that promotes the trafficking of misfolded proteins and alleviates SR stress, restored SR Ca2+ signaling, maintained BK and TRPM4 channel activity, prevented loss of myogenic tone, and reduced ICHs. We conclude that alterations in SR Ca2+ handling that impair ion channel activity result in dysregulation of SMC membrane potential and loss of myogenic tone and contribute to age-related cSVD in Col4a1+/G1344D mice.
Collapse
Affiliation(s)
- Evan Yamasaki
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Pratish Thakore
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Sher Ali
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Alfredo Sanchez Solano
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Xiaowei Wang
- Department of Ophthalmology, UCSF School of Medicine, San Francisco, CA 94158, USA
| | - Xiao Gao
- Department of Physical Therapy and Rehabilitation Science, UCSF School of Medicine, San Francisco, CA 94143, USA
- Department of Radiology and Biomedical Imaging, UCSF School of Medicine, San Francisco, CA 94143, USA
| | | | - Myriam M. Chaumeil
- Department of Physical Therapy and Rehabilitation Science, UCSF School of Medicine, San Francisco, CA 94143, USA
- Department of Radiology and Biomedical Imaging, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Douglas B. Gould
- Department of Ophthalmology, UCSF School of Medicine, San Francisco, CA 94158, USA
- Department of Anatomy, Institute for Human Genetics, Cardiovascular Research Institute, Bakar Aging Research Institute, UCSF School of Medicine, San Francisco, CA 94158, USA
| | - Scott Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| |
Collapse
|
57
|
Huda K, Lawrence DJ, Thompson W, Lindsey SH, Bayer CL. In vivo noninvasive systemic myography of acute systemic vasoactivity in female pregnant mice. Nat Commun 2023; 14:6286. [PMID: 37813833 PMCID: PMC10562381 DOI: 10.1038/s41467-023-42041-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023] Open
Abstract
Altered vasoactivity is a major characteristic of cardiovascular and oncological diseases, and many therapies are therefore targeted to the vasculature. Therapeutics which are selective for the diseased vasculature are ideal, but whole-body selectivity of a therapeutic is challenging to assess in practice. Vessel myography is used to determine the functional mechanisms and evaluate pharmacological responses of vascularly-targeted therapeutics. However, myography can only be performed on ex vivo sections of individual arteries. We have developed methods for implementation of spherical-view photoacoustic tomography for non-invasive and in vivo myography. Using photoacoustic tomography, we demonstrate the measurement of acute vascular reactivity in the systemic vasculature and the placenta of female pregnant mice in response to two vasodilators. Photoacoustic tomography simultaneously captures the significant acute vasodilation of major arteries and detects selective vasoactivity of the maternal-fetal vasculature. Photoacoustic tomography has the potential to provide invaluable preclinical information on vascular response that cannot be obtained by other established methods.
Collapse
Affiliation(s)
- Kristie Huda
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Dylan J Lawrence
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
- Photosound Technologies Inc., Houston, TX, USA
| | | | - Sarah H Lindsey
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Carolyn L Bayer
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
58
|
Edwards-Glenn JM, Fontes MT, Waigi EW, Costa TJ, Maiseyeu A, Webb RC, McCarthy CG, Wenceslau CF. Specialized Pro-resolving Mediator Improves Vascular Relaxation via Formyl Peptide Receptor-2. Am J Hypertens 2023; 36:542-550. [PMID: 37439351 PMCID: PMC10502783 DOI: 10.1093/ajh/hpad062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND The resolution of inflammation is an active phenomenon important for switching off inflammatory processes once the harmful stimuli are removed and facilitate the return to homeostasis. Specialized pro-resolving mediators (SPMs), such as lipoxin A4, resolvin D1, and resolvin E1, derived from ω-3 or ω-6 polyunsaturated fatty acids, are crucial for the resolution of inflammation. We hypothesized that SPMs are decreased in hypertension which contributes to the acetylcholine-induced contraction in resistance arteries, which are well known to be mediated by leukotrienes and prostaglandins. Moreover, treatment with SPMs will decrease this contraction via formyl peptide receptor-2 (FPR-2) in resistance arteries from spontaneously hypertensive rats (SHR). METHODS AND RESULTS We performed a comprehensive eicosanoid lipid panel analysis, and our data showed for the first time that precursors of SPMs are decreased in SHR, limiting the production of SPMs and resolution of inflammation in vivo. This phenomenon was associated with an increase in lipid peroxidation in resistance arteries. Although SPMs did not abolish acetylcholine-induced contraction, these lipid mediators improved endothelial function in arteries from SHR via FPR-2 activation at nanomolar concentrations. SPMs also buffered TNF-α-induced reactive oxygen species generation in endothelial cells from C57Bl/6 mice. CONCLUSIONS We suggest that FPR-2 and SPMs could be revealed as a new target or therapeutic agent to improve vascular function in arteries from hypertensive rats.
Collapse
Affiliation(s)
- Jonnelle M Edwards-Glenn
- Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Milene T Fontes
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Emily W Waigi
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Tiago J Costa
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Andrei Maiseyeu
- Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - R Clinton Webb
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina, USA
| | - Cameron G McCarthy
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina, USA
| | - Camilla F Wenceslau
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
59
|
Thakore P, Yamasaki E, Ali S, Sanchez Solano A, Labelle-Dumais C, Gao X, Chaumeil MM, Gould DB, Earley S. PI3K block restores age-dependent neurovascular coupling defects associated with cerebral small vessel disease. Proc Natl Acad Sci U S A 2023; 120:e2306479120. [PMID: 37607233 PMCID: PMC10467353 DOI: 10.1073/pnas.2306479120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/17/2023] [Indexed: 08/24/2023] Open
Abstract
Neurovascular coupling (NVC), a vital physiological process that rapidly and precisely directs localized blood flow to the most active regions of the brain, is accomplished in part by the vast network of cerebral capillaries acting as a sensory web capable of detecting increases in neuronal activity and orchestrating the dilation of upstream parenchymal arterioles. Here, we report a Col4a1 mutant mouse model of cerebral small vessel disease (cSVD) with age-dependent defects in capillary-to-arteriole dilation, functional hyperemia in the brain, and memory. The fundamental defect in aged mutant animals was the depletion of the minor membrane phospholipid phosphatidylinositol 4,5 bisphosphate (PIP2) in brain capillary endothelial cells, leading to the loss of inwardly rectifying K+ (Kir2.1) channel activity. Blocking phosphatidylinositol-3-kinase (PI3K), an enzyme that diminishes the bioavailability of PIP2 by converting it to phosphatidylinositol (3, 4, 5)-trisphosphate (PIP3), restored Kir2.1 channel activity, capillary-to-arteriole dilation, and functional hyperemia. In longitudinal studies, chronic PI3K inhibition also improved the memory function of aged Col4a1 mutant mice. Our data suggest that PI3K inhibition is a viable therapeutic strategy for treating defective NVC and cognitive impairment associated with cSVD.
Collapse
Affiliation(s)
- Pratish Thakore
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System University of Nevada, Reno School of Medicine, Reno, NV89557-0318
| | - Evan Yamasaki
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System University of Nevada, Reno School of Medicine, Reno, NV89557-0318
| | - Sher Ali
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System University of Nevada, Reno School of Medicine, Reno, NV89557-0318
| | - Alfredo Sanchez Solano
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System University of Nevada, Reno School of Medicine, Reno, NV89557-0318
| | - Cassandre Labelle-Dumais
- Department of Ophthalmology and Anatomy, Institute for Human Genetics, University of California San Francisco School of Medicine, San Francisco, CA94143
| | - Xiao Gao
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA94158
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA94143-0628
| | - Myriam M. Chaumeil
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA94158
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA94143-0628
| | - Douglas B. Gould
- Department of Ophthalmology and Anatomy, Institute for Human Genetics, University of California San Francisco School of Medicine, San Francisco, CA94143
| | - Scott Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System University of Nevada, Reno School of Medicine, Reno, NV89557-0318
| |
Collapse
|
60
|
Dennis MR, Pires PW, Banek CT. Vascular Dysfunction in Polycystic Kidney Disease: A Mini-Review. J Vasc Res 2023; 60:125-136. [PMID: 37536302 PMCID: PMC10947982 DOI: 10.1159/000531647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/10/2023] [Indexed: 08/05/2023] Open
Abstract
Polycystic kidney disease (PKD) is one of the most common hereditary kidney diseases, which is characterized by progressive cyst growth and secondary hypertension. In addition to cystogenesis and renal abnormalities, patients with PKD can develop vascular abnormalities and cardiovascular complications. Progressive cyst growth substantially alters renal structure and culminates into end-stage renal disease. There remains no cure beyond renal transplantation, and treatment options remain largely limited to chronic renal replacement therapy. In addition to end-stage renal disease, patients with PKD also present with hypertension and cardiovascular disease, yet the timing and interactions between the cardiovascular and renal effects of PKD progression are understudied. Here, we review the vascular dysfunction found in clinical and preclinical models of PKD, including the clinical manifestations and relationship to hypertension, stroke, and related cardiovascular diseases. Finally, our discussion also highlights the critical questions and emerging areas in vascular research in PKD.
Collapse
Affiliation(s)
- Melissa R Dennis
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, Arizona, USA
| | - Paulo W Pires
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, Arizona, USA
| | - Christopher T Banek
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, Arizona, USA
| |
Collapse
|
61
|
Turner SR, Al‐Ghabkari A, Carlson DA, Chappellaz M, Sutherland C, Haystead TAJ, Cole WC, MacDonald JA. Death-associated protein kinase 3 regulates the myogenic reactivity of cerebral arteries. Exp Physiol 2023; 108:986-997. [PMID: 37084168 PMCID: PMC10988501 DOI: 10.1113/ep090631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 03/28/2023] [Indexed: 04/22/2023]
Abstract
NEW FINDINGS What is the central question of this study? DAPK3 contributes to the Ca2+ -sensitization of vascular smooth muscle contraction: does this protein kinase participate in the myogenic response of cerebral arteries? What is the main finding and its importance? Small molecule inhibitors of DAPK3 effectively block the myogenic responses of cerebral arteries. HS38-dependent changes to vessel constriction occur independent of LC20 phosphorylation, and therefore DAPK3 appears to operate via the actin cytoskeleton. A role for DAPK3 in the myogenic response was not previously reported, and the results support a potential new therapeutic target in the cerebrovascular system. ABSTRACT The vascular smooth muscle (VSM) of resistance blood vessels is a target of intrinsic autoregulatory responses to increased intraluminal pressure, the myogenic response. In the brain, the myogenic reactivity of cerebral arteries is critical to homeostatic blood flow regulation. Here we provide the first evidence to link the death-associated protein kinase 3 (DAPK3) to the myogenic response of rat and human cerebral arteries. DAPK3 is a Ser/Thr kinase involved in Ca2+ -sensitization mechanisms of smooth muscle contraction. Ex vivo administration of a specific DAPK3 inhibitor (i.e., HS38) could attenuate vessel constrictions invoked by serotonin as well as intraluminal pressure elevation. The HS38-dependent dilatation was not associated with any change in myosin light chain (LC20) phosphorylation. The results suggest that DAPK3 does not regulate Ca2+ sensitization pathways during the myogenic response of cerebral vessels but rather operates to control the actin cytoskeleton. A slow return of myogenic tone was observed during the sustained ex vivo exposure of cerebral arteries to HS38. Recovery of tone was associated with greater LC20 phosphorylation that suggests intrinsic signalling compensation in response to attenuation of DAPK3 activity. Additional experiments with VSM cells revealed HS38- and siDAPK-dependent effects on the actin cytoskeleton and focal adhesion kinase phosphorylation status. The translational importance of DAPK3 to the human cerebral vasculature was noted, with robust expression of the protein kinase and significant HS38-dependent attenuation of myogenic reactivity found for human pial vessels.
Collapse
Affiliation(s)
- Sara R. Turner
- Department of Biochemistry & Molecular Biology, Cumming School of MedicineUniversity of CalgaryCalgaryABCanada
| | - Abdulhameed Al‐Ghabkari
- Department of Biochemistry & Molecular Biology, Cumming School of MedicineUniversity of CalgaryCalgaryABCanada
| | - David A. Carlson
- Department of Pharmacology & Cancer BiologyDuke University School of MedicineDurhamNCUSA
| | - Mona Chappellaz
- Department of Biochemistry & Molecular Biology, Cumming School of MedicineUniversity of CalgaryCalgaryABCanada
| | - Cindy Sutherland
- Department of Biochemistry & Molecular Biology, Cumming School of MedicineUniversity of CalgaryCalgaryABCanada
- Department of Physiology and Pharmacology, Cumming School of MedicineUniversity of CalgaryCalgaryABCanada
| | - Timothy A. J. Haystead
- Department of Pharmacology & Cancer BiologyDuke University School of MedicineDurhamNCUSA
| | - William C. Cole
- Department of Physiology and Pharmacology, Cumming School of MedicineUniversity of CalgaryCalgaryABCanada
| | - Justin A. MacDonald
- Department of Biochemistry & Molecular Biology, Cumming School of MedicineUniversity of CalgaryCalgaryABCanada
| |
Collapse
|
62
|
Lindsey ML, Kassiri Z, LeBlanc AJ, Ripplinger CM, Kirk JA, Carter JR, Kleinbongard P, Brunt KR. Spring cleaning: freshening up the portfolio. Am J Physiol Heart Circ Physiol 2023; 324:H840-H842. [PMID: 37115630 PMCID: PMC10190828 DOI: 10.1152/ajpheart.00219.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 04/29/2023]
Affiliation(s)
- Merry L Lindsey
- School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
- Research Service, Nashville Veterans Affairs Medical Center, Nashville, Tennessee, United States
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, Alberta, Canada
| | - Amanda J LeBlanc
- Department of Cardiovascular and Thoracic Surgery and Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, United States
| | - Crystal M Ripplinger
- Department of Pharmacology, UC Davis School of Medicine, Davis, California, United States
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Chicago, Illinois, United States
| | - Jason R Carter
- Robbins College of Health and Human Sciences, Baylor University, Waco, Texas, United States
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Keith R Brunt
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Saint John, New Brunswick, Canada
| |
Collapse
|
63
|
Afolabi JM, Kanthakumar P, Williams JD, Kumar R, Soni H, Adebiyi A. Post-injury Inhibition of Endothelin-1 Dependent Renal Vasoregulation Mitigates Rhabdomyolysis-Induced Acute Kidney Injury. FUNCTION 2023; 4:zqad022. [PMID: 37342410 PMCID: PMC10278989 DOI: 10.1093/function/zqad022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 06/22/2023] Open
Abstract
In patients with rhabdomyolysis, the overwhelming release of myoglobin into the circulation is the primary cause of kidney injury. Myoglobin causes direct kidney injury as well as severe renal vasoconstriction. An increase in renal vascular resistance (RVR) results in renal blood flow (RBF) and glomerular filtration rate (GFR) reduction, tubular injury, and acute kidney injury (AKI). The mechanisms that underlie rhabdomyolysis-induced AKI are not fully understood but may involve the local production of vasoactive mediators in the kidney. Studies have shown that myoglobin stimulates endothelin-1 (ET-1) production in glomerular mesangial cells. Circulating ET-1 is also increased in rats subjected to glycerol-induced rhabdomyolysis. However, the upstream mechanisms of ET-1 production and downstream effectors of ET-1 actions in rhabdomyolysis-induced AKI remain unclear. Vasoactive ET-1 is generated by ET converting enzyme 1 (ECE-1)-induced proteolytic processing of inactive big ET to biologically active peptides. The downstream ion channel effectors of ET-1-induced vasoregulation include the transient receptor potential cation channel, subfamily C member 3 (TRPC3). This study demonstrates that glycerol-induced rhabdomyolysis in Wistar rats promotes ECE-1-dependent ET-1 production, RVR increase, GFR decrease, and AKI. Rhabdomyolysis-induced increases in RVR and AKI in the rats were attenuated by post-injury pharmacological inhibition of ECE-1, ET receptors, and TRPC3 channels. CRISPR/Cas9-mediated knockout of TRPC3 channels attenuated ET-1-induced renal vascular reactivity and rhabdomyolysis-induced AKI. These findings suggest that ECE-1-driven ET-1 production and downstream activation of TRPC3-dependent renal vasoconstriction contribute to rhabdomyolysis-induced AKI. Hence, post-injury inhibition of ET-1-mediated renal vasoregulation may provide therapeutic targets for rhabdomyolysis-induced AKI.
Collapse
Affiliation(s)
- Jeremiah M Afolabi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Praghalathan Kanthakumar
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jada D Williams
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ravi Kumar
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Hitesh Soni
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Adebowale Adebiyi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
64
|
Kirk ME, Merit VT, Moeslund N, Dragsbaek SJ, Hansen JV, Andersen A, Lyhne MD. Impact of sternotomy and pericardiotomy on cardiopulmonary haemodynamics in a large animal model. Exp Physiol 2023; 108:762-771. [PMID: 36892095 PMCID: PMC10988510 DOI: 10.1113/ep090919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/14/2023] [Indexed: 03/10/2023]
Abstract
NEW FINDINGS What is the central question of this study? Invasive cardiovascular instrumentation can occur through closed- or open-chest approaches. To what extent will sternotomy and pericardiotomy affect cardiopulmonary variables? What is the main finding and its importance? Opening of the thorax decreased mean systemic and pulmonary pressures. Left ventricular function improved, but no changes were observed in right ventricular systolic measures. No consensus or recommendation exists regarding instrumentation. Methodological differences risk compromising rigour and reproducibility in preclinical research. ABSTRACT Animal models of cardiovascular disease are often evaluated by invasive instrumentation for phenotyping. As no consensus exists, both open- and closed-chest approaches are used, which might compromise rigour and reproducibility in preclinical research. We aimed to quantify the cardiopulmonary changes induced by sternotomy and pericardiotomy in a large animal model. Seven pigs were anaesthetized, mechanically ventilated and evaluated by right heart catheterization and bi-ventricular pressure-volume loop recordings at baseline and after sternotomy and pericardiotomy. Data were compared by ANOVA or the Friedmann test where appropriate, with post-hoc analyses to control for multiple comparisons. Sternotomy and pericardiotomy caused reductions in mean systemic (-12 ± 11 mmHg, P = 0.027) and pulmonary pressures (-4 ± 3 mmHg, P = 0.006) and airway pressures. Cardiac output decreased non-significantly (-1329 ± 1762 ml/min, P = 0.052). Left ventricular afterload decreased, with an increase in ejection fraction (+9 ± 7%, P = 0.027) and coupling. No changes were observed in right ventricular systolic function or arterial blood gases. In conclusion, open- versus closed-chest approaches to invasive cardiovascular phenotyping cause a systematic difference in key haemodynamic variables. Researchers should adopt the most appropriate approach to ensure rigour and reproducibility in preclinical cardiovascular research.
Collapse
Affiliation(s)
- Mathilde Emilie Kirk
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of CardiologyAarhus University HospitalAarhusDenmark
| | - Victor Tang Merit
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of CardiologyAarhus University HospitalAarhusDenmark
| | - Niels Moeslund
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of Cardiac, Lung and Vascular SurgeryAarhus University HospitalAarhusDenmark
| | - Simone Juel Dragsbaek
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of CardiologyAarhus University HospitalAarhusDenmark
| | - Jacob Valentin Hansen
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of CardiologyAarhus University HospitalAarhusDenmark
| | - Asger Andersen
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of CardiologyAarhus University HospitalAarhusDenmark
| | - Mads Dam Lyhne
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of Anaesthesiology and Intensive CareAarhus University HospitalAarhusDenmark
| |
Collapse
|
65
|
Ma J, Li Y, Yang X, Liu K, Zhang X, Zuo X, Ye R, Wang Z, Shi R, Meng Q, Chen X. Signaling pathways in vascular function and hypertension: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:168. [PMID: 37080965 PMCID: PMC10119183 DOI: 10.1038/s41392-023-01430-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
Hypertension is a global public health issue and the leading cause of premature death in humans. Despite more than a century of research, hypertension remains difficult to cure due to its complex mechanisms involving multiple interactive factors and our limited understanding of it. Hypertension is a condition that is named after its clinical features. Vascular function is a factor that affects blood pressure directly, and it is a main strategy for clinically controlling BP to regulate constriction/relaxation function of blood vessels. Vascular elasticity, caliber, and reactivity are all characteristic indicators reflecting vascular function. Blood vessels are composed of three distinct layers, out of which the endothelial cells in intima and the smooth muscle cells in media are the main performers of vascular function. The alterations in signaling pathways in these cells are the key molecular mechanisms underlying vascular dysfunction and hypertension development. In this manuscript, we will comprehensively review the signaling pathways involved in vascular function regulation and hypertension progression, including calcium pathway, NO-NOsGC-cGMP pathway, various vascular remodeling pathways and some important upstream pathways such as renin-angiotensin-aldosterone system, oxidative stress-related signaling pathway, immunity/inflammation pathway, etc. Meanwhile, we will also summarize the treatment methods of hypertension that targets vascular function regulation and discuss the possibility of these signaling pathways being applied to clinical work.
Collapse
Affiliation(s)
- Jun Ma
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yanan Li
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiangyu Yang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Kai Liu
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xin Zhang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xianghao Zuo
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Runyu Ye
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ziqiong Wang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Rufeng Shi
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Qingtao Meng
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Xiaoping Chen
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
66
|
Ricci TA, Boonpattrawong N, Laher I, Devlin AM. Maternal nutrition and effects on offspring vascular function. Pflugers Arch 2023:10.1007/s00424-023-02807-x. [PMID: 37041303 DOI: 10.1007/s00424-023-02807-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/13/2023]
Abstract
Maternal nutrition during pregnancy may have profound effects on the developing fetus and impact risk for cardiovascular disease later in life. Here, we provide a narrative review on the impact of maternal diet during pregnancy on offspring vascular function. We review studies reporting effects of maternal micronutrient (folic acid, iron) intakes, high-fat diets, dietary energy restriction, and low protein intake on offspring endothelial function. We discuss the differences in study design and outcomes and potential underlying mechanisms contributing to the vascular phenotypes observed in the offspring. We further highlight key gaps in the literature and identify targets for future investigations.
Collapse
Affiliation(s)
- Taylor A Ricci
- Department of Pediatrics, The University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Nicha Boonpattrawong
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology, and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Angela M Devlin
- Department of Pediatrics, The University of British Columbia, Vancouver, British Columbia, Canada.
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.
| |
Collapse
|
67
|
Razan MR, Amissi S, Islam RA, Graham JL, Stanhope KL, Havel PJ, Rahimian R. Moderate-Intensity Exercise Improves Mesenteric Arterial Function in Male UC Davis Type-2 Diabetes Mellitus (UCD-T2DM) Rats: A Shift in the Relative Importance of Endothelium-Derived Relaxing Factors (EDRF). Biomedicines 2023; 11:biomedicines11041129. [PMID: 37189747 DOI: 10.3390/biomedicines11041129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
The beneficial cardiovascular effects of exercise are well documented, however the mechanisms by which exercise improves vascular function in diabetes are not fully understood. This study investigates whether there are (1) improvements in blood pressure and endothelium-dependent vasorelaxation (EDV) and (2) alterations in the relative contribution of endothelium-derived relaxing factors (EDRF) in modulating mesenteric arterial reactivity in male UC Davis type-2 diabetes mellitus (UCD-T2DM) rats, following an 8-week moderate-intensity exercise (MIE) intervention. EDV to acetylcholine (ACh) was measured before and after exposure to pharmacological inhibitors. Contractile responses to phenylephrine and myogenic tone were determined. The arterial expressions of endothelial nitric oxide (NO) synthase (eNOS), cyclooxygenase (COX), and calcium-activated potassium channel (KCa) channels were also measured. T2DM significantly impaired EDV, increased contractile responses and myogenic tone. The impairment of EDV was accompanied by elevated NO and COX importance, whereas the contribution of prostanoid- and NO-independent (endothelium-derived hyperpolarization, EDH) relaxation was not apparent compared to controls. MIE 1) enhanced EDV, while it reduced contractile responses, myogenic tone and systolic blood pressure (SBP), and 2) caused a shift away from a reliance on COX toward a greater reliance on EDH in diabetic arteries. We provide the first evidence of the beneficial effects of MIE via the altered importance of EDRF in mesenteric arterial relaxation in male UCD-T2DM rats.
Collapse
Affiliation(s)
- Md Rahatullah Razan
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA
| | - Said Amissi
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA
| | - Rifat Ara Islam
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA
| | - James L Graham
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Kimber L Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Roshanak Rahimian
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA
| |
Collapse
|
68
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
69
|
Power G, Padilla J. (Re)modeling high-salt diet-induced hypertension in mice. Am J Physiol Heart Circ Physiol 2023; 324:H470-H472. [PMID: 36827228 DOI: 10.1152/ajpheart.00093.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Gavin Power
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States.,NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States.,NextGen Precision Health, University of Missouri, Columbia, Missouri, United States.,Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States
| |
Collapse
|
70
|
Thakore P, Yamasaki E, Ali S, Solano AS, Labelle-Dumais C, Gao X, Chaumeil MM, Gould DB, Earley S. PI3K block restores age-dependent neurovascular coupling defects associated with cerebral small vessel disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.03.531032. [PMID: 36945616 PMCID: PMC10028793 DOI: 10.1101/2023.03.03.531032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Neurovascular coupling (NVC), a vital physiological process that rapidly and precisely directs localized blood flow to the most active regions of the brain, is accomplished in part by the vast network of cerebral capillaries acting as a sensory web capable of detecting increases in neuronal activity and orchestrating the dilation of upstream parenchymal arterioles. Here, we report a Col4a1 mutant mouse model of cerebral small vessel disease (cSVD) with age-dependent defects in capillary-to-arteriole dilation, functional hyperemia in the brain, and memory. The fundamental defect in aged mutant animals was the depletion of the minor membrane phospholipid phosphatidylinositol 4,5 bisphosphate (PIP 2 ) in brain capillary endothelial cells, leading to the loss of inwardly rectifier K + (Kir2.1) channel activity. Blocking phosphatidylinositol-3-kinase (PI3K), an enzyme that diminishes the bioavailability of PIP 2 by converting it to phosphatidylinositol (3,4,5)-trisphosphate (PIP 3 ), restored Kir2.1 channel activity, capillary-to-arteriole dilation, and functional hyperemia. In longitudinal studies, chronic PI3K inhibition also improved the memory function of aged Col4a1 mutant mice. Our data suggest that PI3K inhibition is a viable therapeutic strategy for treating defective NVC and cognitive impairment associated with cSVD. One-sentence summary PI3K inhibition rescues neurovascular coupling defects in cerebral small vessel disease.
Collapse
|
71
|
Murray KO, Mahoney SA, Venkatasubramanian R, Seals DR, Clayton ZS. Aging, aerobic exercise, and cardiovascular health: Barriers, alternative strategies and future directions. Exp Gerontol 2023; 173:112105. [PMID: 36731386 PMCID: PMC10068966 DOI: 10.1016/j.exger.2023.112105] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
Age-associated cardiovascular (CV) dysfunction, namely arterial dysfunction, is a key antecedent to the development of CV disease (CVD). Arterial dysfunction with aging is characterized by impaired vascular endothelial function and stiffening of the large elastic arteries, each of which is an independent predictor of CVD. These processes are largely mediated by an excess production of reactive oxygen species (ROS) and an increase in chronic, low-grade inflammation that ultimately leads to a reduction in bioavailability of the vasodilatory molecule nitric oxide. Additionally, there are other fundamental aging mechanisms that may contribute to excessive ROS and inflammation termed the "hallmarks of aging"; these additional mechanisms of arterial dysfunction may represent therapeutic targets for improving CV health with aging. Aerobic exercise is the most well-known and effective intervention to prevent and treat the effects of aging on CV dysfunction. However, the majority of mid-life and older (ML/O) adults do not meet recommended exercise guidelines due to traditional barriers to aerobic exercise, such as reduced leisure time, motivation, or access to fitness facilities. Therefore, it is a biomedical research priority to develop and implement time- and resource-efficient alternative strategies to aerobic exercise to reduce the burden of CVD in ML/O adults. Alternative strategies that mimic or are inspired by aerobic exercise, that target pathways specific to the fundamental mechanisms of aging, represent a promising approach to accomplish this goal.
Collapse
Affiliation(s)
- Kevin O Murray
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Sophia A Mahoney
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | | | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Zachary S Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America.
| |
Collapse
|
72
|
Soda T, Brunetti V, Berra-Romani R, Moccia F. The Emerging Role of N-Methyl-D-Aspartate (NMDA) Receptors in the Cardiovascular System: Physiological Implications, Pathological Consequences, and Therapeutic Perspectives. Int J Mol Sci 2023; 24:ijms24043914. [PMID: 36835323 PMCID: PMC9965111 DOI: 10.3390/ijms24043914] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ligand-gated ion channels that are activated by the neurotransmitter glutamate, mediate the slow component of excitatory neurotransmission in the central nervous system (CNS), and induce long-term changes in synaptic plasticity. NMDARs are non-selective cation channels that allow the influx of extracellular Na+ and Ca2+ and control cellular activity via both membrane depolarization and an increase in intracellular Ca2+ concentration. The distribution, structure, and role of neuronal NMDARs have been extensively investigated and it is now known that they also regulate crucial functions in the non-neuronal cellular component of the CNS, i.e., astrocytes and cerebrovascular endothelial cells. In addition, NMDARs are expressed in multiple peripheral organs, including heart and systemic and pulmonary circulations. Herein, we survey the most recent information available regarding the distribution and function of NMDARs within the cardiovascular system. We describe the involvement of NMDARs in the modulation of heart rate and cardiac rhythm, in the regulation of arterial blood pressure, in the regulation of cerebral blood flow, and in the blood-brain barrier (BBB) permeability. In parallel, we describe how enhanced NMDAR activity could promote ventricular arrhythmias, heart failure, pulmonary artery hypertension (PAH), and BBB dysfunction. Targeting NMDARs could represent an unexpected pharmacological strategy to reduce the growing burden of several life-threatening cardiovascular disorders.
Collapse
Affiliation(s)
- Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-987613
| |
Collapse
|
73
|
Yamasaki E, Ali S, Sanchez Solano A, Thakore P, Smith M, Wang X, Labelle-Dumais C, Gould DB, Earley S. Faulty TRPM4 channels underlie age-dependent cerebral vascular dysfunction in Gould syndrome. Proc Natl Acad Sci U S A 2023; 120:e2217327120. [PMID: 36693102 PMCID: PMC9945977 DOI: 10.1073/pnas.2217327120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/27/2022] [Indexed: 01/25/2023] Open
Abstract
Gould syndrome is a rare multisystem disorder resulting from autosomal dominant mutations in the collagen-encoding genes COL4A1 and COL4A2. Human patients and Col4a1 mutant mice display brain pathology that typifies cerebral small vessel diseases (cSVDs), including white matter hyperintensities, dilated perivascular spaces, lacunar infarcts, microbleeds, and spontaneous intracerebral hemorrhage. The underlying pathogenic mechanisms are unknown. Using the Col4a1+/G394V mouse model, we found that vasoconstriction in response to internal pressure-the vascular myogenic response-is blunted in cerebral arteries from middle-aged (12 mo old) but not young adult (3 mo old) animals, revealing age-dependent cerebral vascular dysfunction. The defect in the myogenic response was associated with a significant decrease in depolarizing cation currents conducted by TRPM4 (transient receptor potential melastatin 4) channels in native cerebral artery smooth muscle cells (SMCs) isolated from mutant mice. The minor membrane phospholipid phosphatidylinositol 4,5 bisphosphate (PIP2) is necessary for TRPM4 activity. Dialyzing SMCs with PIP2 and selective blockade of phosphoinositide 3-kinase (PI3K), an enzyme that converts PIP2 to phosphatidylinositol (3, 4, 5)-trisphosphate (PIP3), restored TRPM4 currents. Acute inhibition of PI3K activity and blockade of transforming growth factor-beta (TGF-β) receptors also rescued the myogenic response, suggesting that hyperactivity of TGF-β signaling pathways stimulates PI3K to deplete PIP2 and impair TRPM4 channels. We conclude that age-related cerebral vascular dysfunction in Col4a1+/G394V mice is caused by the loss of depolarizing TRPM4 currents due to PIP2 depletion, revealing an age-dependent mechanism of cSVD.
Collapse
Affiliation(s)
- Evan Yamasaki
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV89557-0318
| | - Sher Ali
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV89557-0318
| | - Alfredo Sanchez Solano
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV89557-0318
| | - Pratish Thakore
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV89557-0318
| | - Megan Smith
- Departments of Ophthalmology, Institute for Human Genetics, UCSF School of Medicine, San Francisco, CA94158
| | - Xiaowei Wang
- Departments of Ophthalmology, Institute for Human Genetics, UCSF School of Medicine, San Francisco, CA94158
| | - Cassandre Labelle-Dumais
- Departments of Ophthalmology, Institute for Human Genetics, UCSF School of Medicine, San Francisco, CA94158
| | - Douglas B. Gould
- Departments of Ophthalmology, Institute for Human Genetics, UCSF School of Medicine, San Francisco, CA94158
- Department of Anatomy, Institute for Human Genetics, Cardiovascular Research Institute, Bakar Aging Research Institute, UCSF School of Medicine, San Francisco, CA94158
| | - Scott Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV89557-0318
| |
Collapse
|
74
|
Sullivan MN, Thakore P, Krishnan V, Alphonsa S, Li W, Feng Earley Y, Earley S. Endothelial cell TRPA1 activity exacerbates cerebral hemorrhage during severe hypertension. Front Mol Biosci 2023; 10:1129435. [PMID: 36793787 PMCID: PMC9922848 DOI: 10.3389/fmolb.2023.1129435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Introduction: Hypoxia-induced dilation of cerebral arteries orchestrated by Ca2+-permeable transient receptor potential ankyrin 1 (TRPA1) cation channels on endothelial cells is neuroprotective during ischemic stroke, but it is unknown if the channel has a similar impact during hemorrhagic stroke. TRPA1 channels are endogenously activated by lipid peroxide metabolites generated by reactive oxygen species (ROS). Uncontrolled hypertension, a primary risk factor for the development of hemorrhagic stroke, is associated with increased ROS production and oxidative stress. Therefore, we hypothesized that TRPA1 channel activity is increased during hemorrhagic stroke. Methods: Severe, chronic hypertension was induced in control (Trpa1 fl/fl) and endothelial cell-specific TRPA1 knockout (Trpa1-ecKO) mice using a combination of chronic angiotensin II administration, a high-salt diet, and the addition of a nitric oxide synthase inhibitor to drinking water. Blood pressure was measured in awake, freely-moving mice using surgically placed radiotelemetry transmitters. TRPA1-dependent cerebral artery dilation was evaluated with pressure myography, and expression of TRPA1 and NADPH oxidase (NOX) isoforms in arteries from both groups was determined using PCR and Western blotting techniques. In addition, ROS generation capacity was evaluated using a lucigenin assay. Histology was performed to examine intracerebral hemorrhage lesion size and location. Results: All animals became hypertensive, and a majority developed intracerebral hemorrhages or died of unknown causes. Baseline blood pressure and responses to the hypertensive stimulus did not differ between groups. Expression of TRPA1 in cerebral arteries from control mice was not altered after 28 days of treatment, but expression of three NOX isoforms and the capacity for ROS generation was increased in hypertensive animals. NOX-dependent activation of TRPA1 channels dilated cerebral arteries from hypertensive animals to a greater extent compared with controls. The number of intracerebral hemorrhage lesions in hypertensive animals did not differ between control and Trpa1-ecKO animals but were significantly smaller in Trpa1-ecKO mice. Morbidity and mortality did not differ between groups. Discussion: We conclude that endothelial cell TRPA1 channel activity increases cerebral blood flow during hypertension resulting in increased extravasation of blood during intracerebral hemorrhage events; however, this effect does not impact overall survival. Our data suggest that blocking TRPA1 channels may not be helpful for treating hypertension-associated hemorrhagic stroke in a clinical setting.
Collapse
Affiliation(s)
- Michelle N. Sullivan
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Pratish Thakore
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, NV, United States
| | - Vivek Krishnan
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, NV, United States
| | - Sushma Alphonsa
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, NV, United States
| | - Wencheng Li
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Yumei Feng Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, NV, United States
- Department of Physiology and Cell Biology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, NV, United States
| | - Scott Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, NV, United States
| |
Collapse
|
75
|
Daneva Z, Chen Y, Ta HQ, Manchikalapudi V, Bazaz A, Laubach VE, Sonkusare SK. Endothelial IK and SK channel activation decreases pulmonary arterial pressure and vascular remodeling in pulmonary hypertension. Pulm Circ 2023; 13:e12186. [PMID: 36686408 PMCID: PMC9841469 DOI: 10.1002/pul2.12186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
Endothelial cells (ECs) from small pulmonary arteries (PAs) release nitric oxide (NO) and prostacyclin, which lower pulmonary arterial pressure (PAP). In pulmonary hypertension (PH), the levels of endothelium-derived NO and prostacyclin are reduced, contributing to elevated PAP. Small-and intermediate-conductance Ca2+-activated K+ channels (IK and SK)-additional crucial endothelial mediators of vasodilation-are also present in small PAs, but their function has not been investigated in PH. We hypothesized that endothelial IK and SK channels can be targeted to lower PAP in PH. Whole-cell patch-clamp experiments showed functional IK and SK channels in ECs, but not smooth muscle cells, from small PAs. Using a SU5416 plus chronic hypoxia (Su + CH) mouse model of PH, we found that currents through EC IK and SK channels were unchanged compared with those from normal mice. Moreover, IK/SK channel-mediated dilation of small PAs was preserved in Su + CH mice. Consistent with previous reports, endothelial NO levels and NO-mediated dilation were reduced in small PAs from Su + CH mice. Notably, acute treatment with IK/SK channel activators decreased PAP in Su + CH mice but not in normal mice. Further, chronic activation of IK/SK channels decreased PA remodeling and right ventricular hypertrophy, which are pathological hallmarks of PH, in Su + CH mice. Collectively, our data provide the first evidence that, unlike endothelial NO release, IK/SK channel activity is not altered in PH. Our results also demonstrate proof of principle that IK/SK channel activation can be used as a strategy for lowering PAP in PH.
Collapse
Affiliation(s)
- Zdravka Daneva
- Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Yen‐Lin Chen
- Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Huy Q. Ta
- Department of SurgeryUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Vamsi Manchikalapudi
- Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Abhishek Bazaz
- Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Victor E. Laubach
- Department of SurgeryUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Swapnil K. Sonkusare
- Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA,Department of Molecular Physiology and Biological PhysicsUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
76
|
Morrin AS, Eastham S, Williams AS, Jones GW. Tracking Cardiovascular Comorbidity in Models of Chronic Inflammatory Disease. Methods Mol Biol 2023; 2691:123-137. [PMID: 37355542 DOI: 10.1007/978-1-0716-3331-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
Immune-mediated inflammatory diseases (IMIDs) are commonly associated with complex coexisting conditions, and cardiovascular comorbidities are a common cause of mortality in systemic inflammation. Experimental models of disease provide an opportunity to dissect inflammatory mechanisms that promote damage to vascular tissues affected by comorbidity. Here, we describe methods to recover the thoracic aorta from mice during experimental inflammatory arthritis and assess vascular constriction responses by isometric tension myography. To complement the assessment of functional changes in the vasculature during inflammatory arthritis, we also outline a method to characterize vascular inflammation by immunohistochemistry.
Collapse
Affiliation(s)
- Aisling S Morrin
- Division of Infection and Immunity, and Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Simon Eastham
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, UK
| | - Anwen S Williams
- Division of Infection and Immunity, and Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Gareth W Jones
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, UK.
| |
Collapse
|
77
|
Schubert R, Gaynullina D, Shvetsova A, Tarasova OS. Myography of isolated blood vessels: Considerations for experimental design and combination with supplementary techniques. Front Physiol 2023; 14:1176748. [PMID: 37168231 PMCID: PMC10165122 DOI: 10.3389/fphys.2023.1176748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
The study of the mechanisms of regulation of vascular tone is an urgent task of modern science, since diseases of the cardiovascular system remain the main cause of reduction in the quality of life and mortality of the population. Myography (isometric and isobaric) of isolated blood vessels is one of the most physiologically relevant approaches to study the function of cells in the vessel wall. On the one hand, cell-cell interactions as well as mechanical stretch of the vessel wall remain preserved in myography studies, in contrast to studies on isolated cells, e.g., cell culture. On the other hand, in vitro studies in isolated vessels allow control of numerous parameters that are difficult to control in vivo. The aim of this review was to 1) discuss the specifics of experimental design and interpretation of data obtained by myography and 2) highlight the importance of the combined use of myography with various complementary techniques necessary for a deep understanding of vascular physiology.
Collapse
Affiliation(s)
- Rudolf Schubert
- Physiology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- *Correspondence: Rudolf Schubert,
| | - Dina Gaynullina
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | - Olga S. Tarasova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
- State Research Center of the Russian Federation, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
78
|
Chook CYB, Cheung YM, Ma KY, Leung FP, Zhu H, Niu QJ, Wong WT, Chen ZY. Physiological concentration of protocatechuic acid directly protects vascular endothelial function against inflammation in diabetes through Akt/eNOS pathway. Front Nutr 2023; 10:1060226. [PMID: 37025617 PMCID: PMC10070727 DOI: 10.3389/fnut.2023.1060226] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Background Cardiovascular diseases (CVDs) have been the major cause of mortality in type 2 diabetes. However, new approaches are still warranted since current diabetic medications, which focus mainly on glycemic control, do not effectively lower cardiovascular mortality rate in diabetic patients. Protocatechuic acid (PCA) is a phenolic acid widely distributed in garlic, onion, cauliflower and other plant-based foods. Given the anti-oxidative effects of PCA in vitro, we hypothesized that PCA would also have direct beneficial effects on endothelial function in addition to the systemic effects on vascular health demonstrated by previous studies. Methods and results Since IL-1β is the major pathological contributor to endothelial dysfunction in diabetes, the anti-inflammatory effects of PCA specific on endothelial cells were further verified by the use of IL-1β-induced inflammation model. Direct incubation of db/db mouse aortas with physiological concentration of PCA significantly ameliorated endothelium-dependent relaxation impairment, as well as reactive oxygen species overproduction mediated by diabetes. In addition to the well-studied anti-oxidative activity, PCA demonstrated strong anti-inflammatory effects by suppressing the pro-inflammatory cytokines MCP1, VCAM1 and ICAM1, as well as increasing the phosphorylation of eNOS and Akt in the inflammatory endothelial cell model induced by the key player in diabetic endothelial dysfunction IL-1β. Upon blocking of Akt phosphorylation, p-eNOS/eNOS remained low and the inhibition of pro-inflammatory cytokines by PCA ceased. Conclusion PCA exerts protection on vascular endothelial function against inflammation through Akt/eNOS pathway, suggesting daily acquisition of PCA may be encouraged for diabetic patients.
Collapse
Affiliation(s)
- Chui Yiu Bamboo Chook
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yiu Ming Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ka Ying Ma
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Fung Ping Leung
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hanyue Zhu
- School of Food Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Qingshan Jason Niu
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Wing Tak Wong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- *Correspondence: Wing Tak Wong,
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Zhen-Yu Chen,
| |
Collapse
|
79
|
Increased eHSP70-to-iHSP70 ratio disrupts vascular responses to calcium and activates the TLR4-MD2 complex in type 1 diabetes. Life Sci 2022; 310:121079. [DOI: 10.1016/j.lfs.2022.121079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/24/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
|
80
|
Vitamin C Deficiency Exacerbates Dysfunction of Atherosclerotic Coronary Arteries in Guinea Pigs Fed a High-Fat Diet. Antioxidants (Basel) 2022; 11:antiox11112226. [PMID: 36421412 PMCID: PMC9686655 DOI: 10.3390/antiox11112226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Vitamin C (vitC) deficiency has been associated with an increased risk of cardiovascular disease; while several putative mechanistic links have been proposed, functional evidence supporting a causal relationship is scarce. In this study, we investigated how vitC deficiency affects coronary artery vasomotor function and the development of coronary atherosclerotic plaques in guinea pigs subjected to chronic dyslipidemia by a high-fat diet regime. Female Hartley guinea pigs were fed either a control (low-fat diet and sufficient vitC) (N = 8) or a high-fat diet with either sufficient (N = 8) or deficient (N = 10) vitC for 32 weeks. Guinea pigs subjected to the high-fat diet developed significant atherosclerotic plaques in their coronary arteries, with no quantitative effect of vitC deficiency. In isolated coronary arteries, vasomotor responses to potassium, carbachol, nitric oxide, or bradykinin were studied in a wire myograph. Carbachol, bradykinin, and nitric oxide mediated relaxation in the coronary arteries of the control group. While vasorelaxation to carbachol and nitric oxide was preserved in the two high-fat diet groups, bradykinin-induced vasorelaxation was abolished. Interestingly, bradykinin induced a significant contraction in coronary arteries from vitC-deficient guinea pigs (p < 0.05). The bradykinin-induced contraction was unaffected by L-NAME but significantly inhibited by both indomethacin and vitC, suggesting that, during vitC deficiency, increased release of arachidonic acid metabolites and vascular oxidative stress are involved in the constrictor effects mediated by bradykinin. In conclusion, the present study shows supporting evidence that poor vitC status negatively affects coronary artery function.
Collapse
|
81
|
Keller AC, Chun JH, Knaub L, Henckel M, Hull S, Scalzo R, Pott G, Walker L, Reusch J. Thermoneutrality induces vascular dysfunction and impaired metabolic function in male Wistar rats: a new model of vascular disease. J Hypertens 2022; 40:2133-2146. [PMID: 35881464 PMCID: PMC9553250 DOI: 10.1097/hjh.0000000000003153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Cardiovascular disease is of paramount importance, yet there are few relevant rat models to investigate its pathology and explore potential therapeutics. Housing at thermoneutral temperature (30 °C) is being employed to humanize metabolic derangements in rodents. We hypothesized that housing rats in thermoneutral conditions would potentiate a high-fat diet, resulting in diabetes and dysmetabolism, and deleteriously impact vascular function, in comparison to traditional room temperature housing (22 °C). METHODS Male Wistar rats were housed at either room temperature or thermoneutral temperatures for 16 weeks on either a low or high-fat diet. Glucose and insulin tolerance tests were conducted at the beginning and end of the study. At the study's conclusion, vasoreactivity and mitochondrial respiration of aorta and carotid were conducted. RESULTS We observed diminished vasodilation in vessels from thermoneutral rats ( P < 0.05), whereas high-fat diet had no effect. This effect was also observed in endothelium-denuded aorta in thermoneutral rats ( P < 0.05). Vasoconstriction was significantly elevated in aorta of thermoneutral rats ( P < 0.05). Diminished nitric oxide synthase activity and nitrotyrosine, and elevated glutathione activity were observed in aorta from rats housed under thermoneutral conditions, indicating a climate of lower nitric oxide and excess reactive oxygen species in aorta. Thermoneutral rat aorta also demonstrated less mitochondrial respiration with lipid substrates compared with the controls ( P < 0.05). CONCLUSION Our data support that thermoneutrality causes dysfunctional vasoreactivity, decreased lipid mitochondrial metabolism, and modified cellular signaling. These are critical observations as thermoneutrality is becoming prevalent for translational research models. This new model of vascular dysfunction may be useful for dissection of targetable aspects of cardiovascular disease and is a novel and necessary model of disease.
Collapse
Affiliation(s)
- Amy C. Keller
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado
| | | | - L.A. Knaub
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado
| | - M.M. Henckel
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado
| | - S.E. Hull
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado
| | - R.L. Scalzo
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado
| | - G.B. Pott
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado
| | - L.A. Walker
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - J.E.B. Reusch
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado
| |
Collapse
|
82
|
Clayton ZS, Craighead DH, Darvish S, Coppock M, Ludwig KR, Brunt VE, Seals DR, Rossman MJ. Promoting healthy cardiovascular aging: emerging topics. THE JOURNAL OF CARDIOVASCULAR AGING 2022; 2:43. [PMID: 36337728 PMCID: PMC9632540 DOI: 10.20517/jca.2022.27] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The development of age-related cardiovascular (CV) dysfunction increases the risk of CV disease as well as other chronic age-associated disorders, including chronic kidney disease, and Alzheimer's disease and related dementias. Major manifestations of age-associated CV dysfunction that increase disease risk are vascular dysfunction, primarily vascular endothelial dysfunction and arterial stiffening, and elevated systolic blood pressure. Declines in nitric oxide bioavailability secondary to increased oxidative stress and inflammation are established mechanisms of CV dysfunction with aging. Moreover, fundamental mechanisms of aging, termed the "hallmarks of aging" extend to the CV system and, as such, may be considered "hallmarks of CV aging". These mechanisms represent viable therapeutic targets for treating CV dysfunction with aging. Healthy lifestyle behaviors, such as regular aerobic exercise and certain dietary patterns, are considered "first-line" strategies to prevent and/or treat age-associated CV dysfunction. Despite the well-established benefits of these strategies, many older adults do not meet the recommended guidelines for exercise or consume a healthy diet. Therefore, it is important to establish alternative and/or complementary evidence-based approaches to prevent or reverse age-related CV dysfunction. Targeting fundamental mechanisms of CV aging with interventions such as time-efficient exercise training, food-derived molecules, termed nutraceuticals, or select synthetic pharmacological agents represents a promising approach. In the present review, we will highlight emerging topics in the field of healthy CV aging with a specific focus on how exercise, nutrition/dietary patterns, nutraceuticals and select synthetic pharmacological compounds may promote healthy CV aging, in part, by targeting the hallmarks of CV aging.
Collapse
Affiliation(s)
- Zachary S Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Daniel H Craighead
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Sanna Darvish
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - McKinley Coppock
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Katelyn R Ludwig
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Vienna E Brunt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Matthew J Rossman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
83
|
Shen L, Dashwood MR, Casale C, Orie NN, Evans IM, Sufi P, Gray R, Mohamed-Ali V. Depot- and diabetes-specific differences in norepinephrine-mediated adipose tissue angiogenesis, vascular tone, collagen deposition and morphology in obesity. Life Sci 2022; 305:120756. [PMID: 35780713 DOI: 10.1016/j.lfs.2022.120756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/18/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022]
Abstract
AIMS Norepinephrine (NE) is a known regulator of adipose tissue (AT) metabolism, angiogenesis, vasoconstriction and fibrosis. This may be through autocrine/paracrine effects on local resistance vessel function and morphology. The aims of this study were to investigate, in human subcutaneous and omental adipose tissue (SAT and OAT): NE synthesis, angiogenesis, NE-mediated arteriolar vasoconstriction, the induction of collagen gene expression and its deposition in non-diabetic versus diabetic obese subjects. MATERIALS AND METHODS SAT and OAT from obese patients were used to investigate tissue NE content, tyrosine hydroxylase (TH) density, angiogenesis including capillary density, angiogenic capacity and angiogenic gene expression, NE-mediated arteriolar vasoconstriction and collagen deposition. KEY FINDINGS In the non-diabetic group, NE concentration, TH immunoreactivity, angiogenesis and maximal vasoconstriction were significantly higher in OAT compared to SAT (p < 0.05). However, arterioles from OAT showed lower NE sensitivity compared to SAT (10-8 M to 10-7.5 M, p < 0.05). A depot-specific difference in collagen deposition was also observed, being greater in OAT than SAT. In the diabetic group, no significant depot-specific differences were seen in NE synthesis, angiogenesis, vasoconstriction or collagen deposition. SAT arterioles showed significantly lower sensitivity to NE (10-8 M to 10-7.5 M, p < 0.05) compared to the non-diabetic group. SIGNIFICANCE SAT depot in non-diabetic obese patients exhibited relatively low NE synthesis, angiogenesis, tissue fibrosis and high vasoreactivity, due to preserved NE sensitivity. The local NE synthesis in OAT and diabetes desensitizes NE-induced vasoconstriction, and may also explain the greater tissue angiogenesis and fibrosis in these depots.
Collapse
Affiliation(s)
- Lei Shen
- Rayne Building, University College London, London, UK.
| | | | - Carlo Casale
- Rayne Building, University College London, London, UK
| | - Nelson N Orie
- Royal Free Campus, University College London, London, UK; Anti-Doping Lab Qatar, Doha, Qatar
| | - Ian M Evans
- Cancer Stem Cell Team, Institute of Cancer Research, London, UK
| | | | - Rosaire Gray
- Rayne Building, University College London, London, UK; Whittington Hospital, London, UK
| | - Vidya Mohamed-Ali
- Royal Free Campus, University College London, London, UK; Anti-Doping Lab Qatar, Doha, Qatar
| |
Collapse
|
84
|
Razan MR, Akther F, Islam RA, Graham JL, Stanhope KL, Havel PJ, Rahimian R. 17β-Estradiol Treatment Improves Acetylcholine-Induced Relaxation of Mesenteric Arteries in Ovariectomized UC Davis Type 2 Diabetes Mellitus Rats in Prediabetic State. Front Physiol 2022; 13:900813. [PMID: 35784863 PMCID: PMC9248973 DOI: 10.3389/fphys.2022.900813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022] Open
Abstract
We recently reported sex differences in mesenteric arterial function of the UC Davis type-2 diabetes mellitus (UCD-T2DM) rats as early as the prediabetic state. We reported that mesenteric arteries (MA) from prediabetic male rats exhibited a greater impairment compared to that in prediabetic females. However, when females became diabetic, they exhibited a greater vascular dysfunction than males. Thus, the aim of this study was to investigate whether the female sex hormone, estrogen preserves mesenteric arterial vasorelaxation in UCD-T2DM female rats at an early prediabetic state. Age-matched female Sprague Dawley and prediabetic (PD) UCD-T2DM rats were ovariectomized (OVX) and subcutaneously implanted with either placebo or 17β-estradiol (E2, 1.5 mg) pellets for 45 days. We assessed the contribution of endothelium-derived relaxing factors (EDRF) to acetylcholine (ACh)-induced vasorelaxation, using pharmacological inhibitors. Responses to sodium nitroprusside (SNP) and phenylephrine (PE) were also measured. Additionally, metabolic parameters and expression of some targets associated with vascular and insulin signaling were determined. We demonstrated that the responses to ACh and SNP were severely impaired in the prediabetic state (PD OVX) rats, while E2 treatment restored vasorelaxation in the PD OVX + E2. Moreover, the responses to PE was significantly enhanced in MA of PD OVX groups, regardless of placebo or E2 treatment. Overall, our data suggest that 1) the impairment of ACh responses in PD OVX rats may, in part, result from the elevated contractile responses to PE, loss of contribution of endothelium-dependent hyperpolarization (EDH) to vasorelaxation, and a decreased sensitivity of MA to nitric oxide (NO), and 2) the basis for the protective effects of E2 may be partly attributed to the elevation of the NO contribution to vasorelaxation and its interaction with MA as well as potential improvement of insulin signaling. Here, we provide the first evidence of the role of E2 in protecting MA from early vascular dysfunction in prediabetic female rats.
Collapse
Affiliation(s)
- Md Rahatullah Razan
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| | - Farjana Akther
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| | - Rifat A. Islam
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| | - James L. Graham
- Department of Molecular Biosciences, School of Veterinary Medicine, Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Kimber L. Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine, Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Peter J. Havel
- Department of Molecular Biosciences, School of Veterinary Medicine, Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Roshanak Rahimian
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
- *Correspondence: Roshanak Rahimian,
| |
Collapse
|
85
|
Soares RN, Ramirez-Perez FI, Cabral-Amador FJ, Morales-Quinones M, Foote CA, Ghiarone T, Sharma N, Power G, Smith JA, Rector RS, Martinez-Lemus LA, Padilla J, Manrique-Acevedo C. SGLT2 inhibition attenuates arterial dysfunction and decreases vascular F-actin content and expression of proteins associated with oxidative stress in aged mice. GeroScience 2022; 44:1657-1675. [PMID: 35426600 PMCID: PMC9213629 DOI: 10.1007/s11357-022-00563-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/02/2022] [Indexed: 02/07/2023] Open
Abstract
Aging of the vasculature is characterized by endothelial dysfunction and arterial stiffening, two key events in the pathogenesis of cardiovascular disease (CVD). Treatment with sodium glucose transporter 2 (SGLT2) inhibitors is now known to decrease cardiovascular morbidity and mortality in type 2 diabetes. However, whether SGLT2 inhibition attenuates vascular aging is unknown. We first confirmed in a cohort of adult subjects that aging is associated with impaired endothelial function and increased arterial stiffness and that these two variables are inversely correlated. Next, we investigated whether SGLT2 inhibition with empagliflozin (Empa) ameliorates endothelial dysfunction and reduces arterial stiffness in aged mice with confirmed vascular dysfunction. Specifically, we assessed mesenteric artery endothelial function and stiffness (via flow-mediated dilation and pressure myography mechanical responses, respectively) and aortic stiffness (in vivo via pulse wave velocity and ex vivo via atomic force microscopy) in Empa-treated (14 mg/kg/day for 6 weeks) and control 80-week-old C57BL/6 J male mice. We report that Empa-treated mice exhibited improved mesenteric endothelial function compared with control, in parallel with reduced mesenteric artery and aortic stiffness. Additionally, Empa-treated mice had greater vascular endothelial nitric oxide synthase activation, lower phosphorylated cofilin, and filamentous actin content, with downregulation of pathways involved in production of reactive oxygen species. Our findings demonstrate that Empa improves endothelial function and reduces arterial stiffness in a preclinical model of aging, making SGLT2 inhibition a potential therapeutic alternative to reduce the progression of CVD in older individuals.
Collapse
Affiliation(s)
| | | | | | | | - Christopher A. Foote
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO USA
| | - Thaysa Ghiarone
- Department of Medicine, University of Missouri, Columbia, MO USA
| | - Neekun Sharma
- Department of Medicine, University of Missouri, Columbia, MO USA
| | - Gavin Power
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO USA
| | - James A. Smith
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO USA
| | - R. Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO USA ,Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO USA ,Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO USA
| | - Luis A. Martinez-Lemus
- Department of Medicine, University of Missouri, Columbia, MO USA ,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO USA ,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO USA ,Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO USA
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO USA ,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO USA
| | - Camila Manrique-Acevedo
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO USA ,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO USA ,Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Missouri, Columbia, MO USA
| |
Collapse
|
86
|
Amer A, Fabio F, Valoti M. Perivascular Adipose Tissue Modulates the Effects of Flavonoids on Rat Aorta Rings: Role of Superoxide Anion and β3 Receptors. Pharmacol Res 2022; 180:106231. [DOI: 10.1016/j.phrs.2022.106231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/14/2022] [Accepted: 04/19/2022] [Indexed: 12/23/2022]
|
87
|
Affiliation(s)
- Jo G R De Mey
- Department of Pharmacology and Personalised Medicine, Maastricht University, Maastricht, The Netherlands
| | - Ulf Simonsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Christian Aalkjær
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
88
|
Wenceslau CF, McCarthy CG, Earley S, England SK, Filosa JA, Goulopoulou S, Gutterman DD, Isakson BE, Kanagy NL, Martinez-Lemus LA, Sonkusare SK, Thakore P, Trask AJ, Watts SW, Webb RC. Reply to Boedtkjer and Aalkjaer. Am J Physiol Heart Circ Physiol 2022; 322:H687-H688. [PMID: 35324334 PMCID: PMC8957339 DOI: 10.1152/ajpheart.00117.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 11/22/2022]
Affiliation(s)
- Camilla F Wenceslau
- Cardiovascular Translational Research Center, Department of Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Cameron G McCarthy
- Cardiovascular Translational Research Center, Department of Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Scott Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, Nevada
| | - Sarah K England
- Department of Obstetrics and Gynecology, Washington University School of Medicine, Saint Louis, Missouri
| | - Jessica A Filosa
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Styliani Goulopoulou
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University, School of Medicine, Loma Linda, California
| | - David D Gutterman
- Department of Medicine, Medical College of Wisconsin Cardiovascular Center, Milwaukee, Wisconsin
| | - Brant E Isakson
- Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Nancy L Kanagy
- Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico
| | - Luis A Martinez-Lemus
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Swapnil K Sonkusare
- Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Pratish Thakore
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, Nevada
| | - Aaron J Trask
- Center for Cardiovascular Research, The Heart Center and The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - R Clinton Webb
- Cardiovascular Translational Research Center, Department of Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| |
Collapse
|
89
|
Affiliation(s)
- Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Christian Aalkjaer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
90
|
Wenceslau CF, McCarthy CG, Earley S, England SK, Filosa JA, Goulopoulou S, Gutterman DD, Isakson BE, Kanagy NL, Martinez-Lemus LA, Sonkusare SK, Thakore P, Trask AJ, Watts SW, Webb RC. Reply to De Mey et al. Am J Physiol Heart Circ Physiol 2022; 322:H683-H684. [PMID: 35324332 PMCID: PMC8957323 DOI: 10.1152/ajpheart.00086.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 11/22/2022]
Affiliation(s)
- Camilla F Wenceslau
- Cardiovascular Translational Research Center, Department of Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Cameron G McCarthy
- Cardiovascular Translational Research Center, Department of Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Scott Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, Nevada
| | - Sarah K England
- Department of Obstetrics and Gynecology, Washington University School of Medicine, Saint Louis, Missouri
| | - Jessica A Filosa
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Styliani Goulopoulou
- Lawrence D. Longo, Medical Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, California
| | - David D Gutterman
- Department of Medicine, Medical College of Wisconsin Cardiovascular Center, Milwaukee, Wisconsin
| | - Brant E Isakson
- Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Nancy L Kanagy
- Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico
| | - Luis A Martinez-Lemus
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Swapnil K Sonkusare
- Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Pratish Thakore
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, Nevada
| | - Aaron J Trask
- Center for Cardiovascular Research, The Heart Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - R Clinton Webb
- Cardiovascular Translational Research Center, Department of Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| |
Collapse
|
91
|
Molina SA, Maier-Begandt D, Isakson BE, Koval M. Electrophysiological Measurements of Isolated Blood Vessels. Bio Protoc 2022; 12:e4359. [PMID: 35434187 PMCID: PMC8983162 DOI: 10.21769/bioprotoc.4359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 11/12/2021] [Accepted: 02/07/2022] [Indexed: 10/07/2023] Open
Abstract
The lumen of blood vessels is covered by endothelial cells, which regulate their permeability to ions and solutes. Endothelial permeability depends on the vascular bed and cell phenotype, and is influenced by different disease states. Most characterization of endothelial permeability has been carried out using isolated cells in culture. While analysis of cultured cells is a valuable approach, it does not account for factors of the native cell environment. Building on Ussing chamber studies of intact tissue specimens, here we describe a method to measure the electrophysiological properties of intact arteriole and venule endothelia, including transendothelial electrical resistance (TEER) and ion permselectivity. As an example, vessels isolated from the mesentery were treated ex vivo, then mounted in a custom-made tissue cassette that enable their analysis by classical approaches with an Ussing chamber. This method enables a detailed analysis of electrophysiological vessel responses to stresses such as proinflammatory cytokines, in the context of an intact vessel. Graphic abstract.
Collapse
Affiliation(s)
- Samuel A Molina
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Daniela Maier-Begandt
- Robert M. Berne Cardiovascular Research Center, University of Virginia, School of Medicine, Charlottesville, VA 22908, USA
- Walter Brendel Center of Experimental Medicine, University Hospital, and Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia, School of Medicine, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
92
|
Chun JH, Henckel MM, Knaub LA, Hull SE, Pott GB, Walker LA, Reusch JEB, Keller AC. (-)-Epicatechin Improves Vasoreactivity and Mitochondrial Respiration in Thermoneutral-Housed Wistar Rat Vasculature. Nutrients 2022; 14:nu14051097. [PMID: 35268072 PMCID: PMC8912787 DOI: 10.3390/nu14051097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/12/2022] [Accepted: 02/19/2022] [Indexed: 12/22/2022] Open
Abstract
Cardiovascular disease (CVD) is a global health concern. Vascular dysfunction is an aspect of CVD, and novel treatments targeting vascular physiology are necessary. In the endothelium, eNOS regulates vasodilation and mitochondrial function; both are disrupted in CVD. (−)-Epicatechin, a botanical compound known for its vasodilatory, eNOS, and mitochondrial-stimulating properties, is a potential therapy in those with CVD. We hypothesized that (−)-epicatechin would support eNOS activity and mitochondrial respiration, leading to improved vasoreactivity in a thermoneutral-derived rat model of vascular dysfunction. We housed Wistar rats at room temperature or in thermoneutral conditions for a total of 16 week and treated them with 1mg/kg body weight (−)-epicatechin for 15 day. Vasoreactivity, eNOS activity, and mitochondrial respiration were measured, in addition to the protein expression of upstream cellular signaling molecules including AMPK and CaMKII. We observed a significant improvement of vasodilation in those housed in thermoneutrality and treated with (−)-epicatechin (p < 0.05), as well as dampened mitochondrial respiration (p < 0.05). AMPK and CaMKIIα and β expression were lessened with (−)-epicatechin treatment in those housed at thermoneutrality (p < 0.05). The opposite was observed with animals housed at room temperature supplemented with (−)-epicatechin. These data illustrate a context-dependent vascular response to (−)-epicatechin, a candidate for CVD therapeutic development.
Collapse
Affiliation(s)
- Ji Hye Chun
- Microtek, Inc., San Diego, CA 92127, USA;
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA; (M.M.H.); (L.A.K.); (S.E.H.); (G.B.P.); (J.E.-B.R.)
| | - Melissa M. Henckel
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA; (M.M.H.); (L.A.K.); (S.E.H.); (G.B.P.); (J.E.-B.R.)
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Leslie A. Knaub
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA; (M.M.H.); (L.A.K.); (S.E.H.); (G.B.P.); (J.E.-B.R.)
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sara E. Hull
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA; (M.M.H.); (L.A.K.); (S.E.H.); (G.B.P.); (J.E.-B.R.)
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Greg B. Pott
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA; (M.M.H.); (L.A.K.); (S.E.H.); (G.B.P.); (J.E.-B.R.)
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lori A. Walker
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Jane E.-B. Reusch
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA; (M.M.H.); (L.A.K.); (S.E.H.); (G.B.P.); (J.E.-B.R.)
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amy C. Keller
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA; (M.M.H.); (L.A.K.); (S.E.H.); (G.B.P.); (J.E.-B.R.)
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Correspondence: ; Tel.: +1-303-724-3921
| |
Collapse
|
93
|
Marei I, Abu Samaan T, Al-Quradaghi MA, Farah AA, Mahmud SH, Ding H, Triggle CR. 3D Tissue-Engineered Vascular Drug Screening Platforms: Promise and Considerations. Front Cardiovasc Med 2022; 9:847554. [PMID: 35310996 PMCID: PMC8931492 DOI: 10.3389/fcvm.2022.847554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
Despite the efforts devoted to drug discovery and development, the number of new drug approvals have been decreasing. Specifically, cardiovascular developments have been showing amongst the lowest levels of approvals. In addition, concerns over the adverse effects of drugs to the cardiovascular system have been increasing and resulting in failure at the preclinical level as well as withdrawal of drugs post-marketing. Besides factors such as the increased cost of clinical trials and increases in the requirements and the complexity of the regulatory processes, there is also a gap between the currently existing pre-clinical screening methods and the clinical studies in humans. This gap is mainly caused by the lack of complexity in the currently used 2D cell culture-based screening systems, which do not accurately reflect human physiological conditions. Cell-based drug screening is widely accepted and extensively used and can provide an initial indication of the drugs' therapeutic efficacy and potential cytotoxicity. However, in vitro cell-based evaluation could in many instances provide contradictory findings to the in vivo testing in animal models and clinical trials. This drawback is related to the failure of these 2D cell culture systems to recapitulate the human physiological microenvironment in which the cells reside. In the body, cells reside within a complex physiological setting, where they interact with and respond to neighboring cells, extracellular matrix, mechanical stress, blood shear stress, and many other factors. These factors in sum affect the cellular response and the specific pathways that regulate variable vital functions such as proliferation, apoptosis, and differentiation. Although pre-clinical in vivo animal models provide this level of complexity, cross species differences can also cause contradictory results from that seen when the drug enters clinical trials. Thus, there is a need to better mimic human physiological conditions in pre-clinical studies to improve the efficiency of drug screening. A novel approach is to develop 3D tissue engineered miniaturized constructs in vitro that are based on human cells. In this review, we discuss the factors that should be considered to produce a successful vascular construct that is derived from human cells and is both reliable and reproducible.
Collapse
Affiliation(s)
- Isra Marei
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- *Correspondence: Isra Marei
| | - Tala Abu Samaan
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Asmaa A. Farah
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Hong Ding
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Chris R. Triggle
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
- Chris R. Triggle
| |
Collapse
|
94
|
McCarthy CG, Waigi EW, Yeoh BS, Mell B, Vijay-Kumar M, Wenceslau CF, Joe B. Low-dose 1,3-butanediol reverses age-associated vascular dysfunction independent of ketone body β-hydroxybutyrate. Am J Physiol Heart Circ Physiol 2022; 322:H466-H473. [PMID: 35148235 PMCID: PMC8897007 DOI: 10.1152/ajpheart.00486.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
With an aging global population, identifying novel therapeutics are necessary to increase longevity and decrease the deterioration of essential end organs such as the vasculature. Secondary alcohol, 1,3-butanediol (1,3-BD), is commonly administered to stimulate the biosynthesis of the most abundant ketone body β-hydroxybutyrate (βHB), in lieu of nutrient deprivation. However, suprapharmacological concentrations of 1,3-BD are necessary to significantly increase systemic βHB, and 1,3-BD per se can cause vasodilation at nanomolar concentrations. Therefore, we hypothesized that 1,3-BD could be a novel antiaging therapeutic, independent of βHB biosynthesis. To test this hypothesis, we administered a low-dose (5%) 1,3-BD to young and old Wistar-Kyoto (WKY) rats via drinking water for 4 wk and measured indices of vascular function and metabolism posttreatment. We observed that low-dose 1,3-BD was sufficient to reverse age-associated endothelial-dependent and -independent dysfunction, and this was not associated with increased βHB bioavailability. Further analysis of the direct vasodilator mechanisms of 1,3-BD revealed that it is predominantly an endothelium-dependent vasodilator through activation of potassium channels and nitric oxide synthase. In summary, we report that 1,3-BD, at a concentration that does not stimulate βHB biosynthesis, could be a nutraceutical that can reverse the age-associated decline in vascular function. These results emphasize that 1,3-BD has multiple, concentration-dependent mechanisms of action. Therefore, we suggest alternative approaches to study the physiological and cardiovascular effects of βHB.NEW & NOTEWORTHY 1,3-Butanediol (1,3-BD) is often administered to stimulate the biosynthesis of the most abundant ketone body, β-hydroxybutyrate (βHB), and its purported salubrious effects. Here, we report that a low dose of 1,3-BD (5%) is sufficient to reverse age-associated vascular dysfunction, independent of βHB. Therefore, low-dose 1,3-BD could be a novel therapeutic to increase blood flow and improve the quality of life in the elderly.
Collapse
Affiliation(s)
- Cameron G. McCarthy
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Emily W. Waigi
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Beng San Yeoh
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Blair Mell
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Matam Vijay-Kumar
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Camilla F. Wenceslau
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Bina Joe
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| |
Collapse
|
95
|
Dridi H, Santulli G, Gambardella J, Jankauskas SS, Yuan Q, Yang J, Reiken S, Wang X, Wronska A, Liu X, Lacampagne A, Marks AR. IP3 receptor orchestrates maladaptive vascular responses in heart failure. J Clin Invest 2022; 132:e152859. [PMID: 35166236 PMCID: PMC8843748 DOI: 10.1172/jci152859] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/21/2021] [Indexed: 12/02/2022] Open
Abstract
Patients with heart failure (HF) have augmented vascular tone, which increases cardiac workload, impairing ventricular output and promoting further myocardial dysfunction. The molecular mechanisms underlying the maladaptive vascular responses observed in HF are not fully understood. Vascular smooth muscle cells (VSMCs) control vasoconstriction via a Ca2+-dependent process, in which the type 1 inositol 1,4,5-trisphosphate receptor (IP3R1) on the sarcoplasmic reticulum (SR) plays a major role. To dissect the mechanistic contribution of intracellular Ca2+ release to the increased vascular tone observed in HF, we analyzed the remodeling of IP3R1 in aortic tissues from patients with HF and from controls. VSMC IP3R1 channels from patients with HF and HF mice were hyperphosphorylated by both serine and tyrosine kinases. VSMCs isolated from IP3R1VSMC-/- mice exhibited blunted Ca2+ responses to angiotensin II (ATII) and norepinephrine compared with control VSMCs. IP3R1VSMC-/- mice displayed significantly reduced responses to ATII, both in vivo and ex vivo. HF IP3R1VSMC-/- mice developed significantly less afterload compared with HF IP3R1fl/fl mice and exhibited significantly attenuated progression toward decompensated HF and reduced interstitial fibrosis. Ca2+-dependent phosphorylation of the MLC by MLCK activated VSMC contraction. MLC phosphorylation was markedly increased in VSMCs from patients with HF and HF mice but reduced in VSMCs from HF IP3R1VSMC-/- mice and HF WT mice treated with ML-7. Taken together, our data indicate that VSMC IP3R1 is a major effector of increased vascular tone, which contributes to increased cardiac afterload and decompensation in HF.
Collapse
MESH Headings
- Animals
- Calcium Signaling
- Heart Failure/genetics
- Heart Failure/metabolism
- Heart Failure/physiopathology
- Humans
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Vasoconstriction
Collapse
Affiliation(s)
- Haikel Dridi
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Gaetano Santulli
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, New York, New York, USA
- Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, New York, USA
| | - Jessica Gambardella
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, New York, New York, USA
- International Translational Research and Medical Education (ITME) Consortium, Department of Advanced Biomedical Science, “Federico II” University, Naples, Italy
| | - Stanislovas S. Jankauskas
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, New York, New York, USA
- Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, New York, USA
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Jingyi Yang
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Xujun Wang
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, New York, New York, USA
- Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, New York, USA
| | - Anetta Wronska
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Xiaoping Liu
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Alain Lacampagne
- PhyMedExp, University of Montpellier, CNRS, INSERM, CHRU Montpellier, Montpellier, France
| | - Andrew R. Marks
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
96
|
Chavva H, Belcher AM, Brazeau DA, Rorabaugh BR. Prenatal Exposure to Methamphetamine Causes Vascular Dysfunction in Adult Male Rat Offspring. Front Cardiovasc Med 2022; 9:830983. [PMID: 35155639 PMCID: PMC8826446 DOI: 10.3389/fcvm.2022.830983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/04/2022] [Indexed: 11/22/2022] Open
Abstract
Methamphetamine use during pregnancy can have negative consequences on the offspring. However, most studies investigating the impact of prenatal exposure to methamphetamine have focused on behavioral and neurological outcomes. Relatively little is known regarding the impact of prenatal methamphetamine on the adult cardiovascular system. This study investigated the impact of chronic fetal exposure to methamphetamine on vascular function in adult offspring. Pregnant female rats received daily saline or methamphetamine (5 mg/kg) injections starting on gestational day 1 and continuing until the pups were born. Vascular function was assessed in 5 month old offspring. Prenatal methamphetamine significantly decreased both the efficacy and potency of acetylcholine-induced relaxation in isolated male (but not female) aortas when perivascular adipose tissue (PVAT) remained intact. However, prenatal methamphetamine had no impact on acetylcholine-induced relaxation when PVAT was removed. Nitroprusside-induced relaxation of the aorta was unaffected by prenatal methamphetamine. Angiotensin II-induced contractile responses were significantly potentiated in male (but not female) aortas regardless of the presence of PVAT. This effect was reversed by L-nitro arginine methyl ester (L-NAME). Serotonin- and phenylephrine-induced contraction were unaffected by prenatal methamphetamine. Prenatal methamphetamine had no impact on acetylcholine-induced relaxation of third order mesenteric arteries and no effect on basal blood pressure. These data provide evidence that prenatal exposure to methamphetamine sex-dependently alters vasomotor function in the vasculature and may increase the risk of developing vascular disorders later in adult life.
Collapse
Affiliation(s)
- Hasitha Chavva
- Department of Pharmaceutical Sciences, Marshall University School of Pharmacy, Huntington, WV, United States
| | - Adam M Belcher
- Department of Pharmaceutical Sciences, Marshall University School of Pharmacy, Huntington, WV, United States
| | - Daniel A Brazeau
- Department of Pharmaceutical Sciences, Marshall University School of Pharmacy, Huntington, WV, United States.,Department of Biomedical Sciences, Marshall University School of Medicine, Huntington, WV, United States
| | - Boyd R Rorabaugh
- Department of Pharmaceutical Sciences, Marshall University School of Pharmacy, Huntington, WV, United States.,Department of Biomedical Sciences, Marshall University School of Medicine, Huntington, WV, United States
| |
Collapse
|
97
|
Krishnan V, Ali S, Gonzales AL, Thakore P, Griffin CS, Yamasaki E, Alvarado MG, Johnson MT, Trebak M, Earley S. STIM1-dependent peripheral coupling governs the contractility of vascular smooth muscle cells. eLife 2022; 11:70278. [PMID: 35147077 PMCID: PMC8947769 DOI: 10.7554/elife.70278] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 02/10/2022] [Indexed: 11/28/2022] Open
Abstract
Peripheral coupling between the sarcoplasmic reticulum (SR) and plasma membrane (PM) forms signaling complexes that regulate the membrane potential and contractility of vascular smooth muscle cells (VSMCs). The mechanisms responsible for these membrane interactions are poorly understood. In many cells, STIM1 (stromal interaction molecule 1), a single-transmembrane-domain protein that resides in the endoplasmic reticulum (ER), transiently moves to ER-PM junctions in response to depletion of ER Ca2+ stores and initiates store-operated Ca2+ entry (SOCE). Fully differentiated VSMCs express STIM1 but exhibit only marginal SOCE activity. We hypothesized that STIM1 is constitutively active in contractile VSMCs and maintains peripheral coupling. In support of this concept, we found that the number and size of SR-PM interacting sites were decreased, and SR-dependent Ca2+-signaling processes were disrupted in freshly isolated cerebral artery SMCs from tamoxifen-inducible, SMC-specific STIM1-knockout (Stim1-smKO) mice. VSMCs from Stim1-smKO mice also exhibited a reduction in nanoscale colocalization between Ca2+-release sites on the SR and Ca2+-activated ion channels on the PM, accompanied by diminished channel activity. Stim1-smKO mice were hypotensive, and resistance arteries isolated from them displayed blunted contractility. These data suggest that STIM1 – independent of SR Ca2+ store depletion – is critically important for stable peripheral coupling in contractile VSMCs.
Collapse
Affiliation(s)
- Vivek Krishnan
- Department of Pharmacology, University of Nevada Reno, Reno, United States
| | - Sher Ali
- Department of Pharmacology, University of Nevada Reno, Reno, United States
| | - Albert L Gonzales
- Department of Physiology and Cell Biology, University of Nevada Reno, Reno, United States
| | - Pratish Thakore
- Department of Pharmacology, University of Nevada, Reno, Reno, United States
| | - Caoimhin S Griffin
- Department of Pharmacology, University of Nevada Reno, Reno, United States
| | - Evan Yamasaki
- Department of Pharmacology, University of Nevada Reno, Reno, United States
| | - Michael G Alvarado
- Department of Pharmacology, University of Nevada Reno, Reno, United States
| | - Martin T Johnson
- Department of Cellular and Molecular Physiology, Penn State University, Hershey, United States
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, United States
| | - Scott Earley
- Department of Pharmacology, University of Nevada Reno, Reno, United States
| |
Collapse
|
98
|
Ramirez-Perez FI, Cabral-Amador FJ, Whaley-Connell AT, Aroor AR, Morales-Quinones M, Woodford ML, Ghiarone T, Ferreira-Santos L, Jurrissen TJ, Manrique-Acevedo CM, Jia G, DeMarco VG, Padilla J, Martinez-Lemus LA, Lastra G. Cystamine reduces vascular stiffness in Western diet-fed female mice. Am J Physiol Heart Circ Physiol 2022; 322:H167-H180. [PMID: 34890280 PMCID: PMC8742720 DOI: 10.1152/ajpheart.00431.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Consumption of diets high in fat, sugar, and salt (Western diet, WD) is associated with accelerated arterial stiffening, a major independent risk factor for cardiovascular disease (CVD). Women with obesity are more prone to develop arterial stiffening leading to more frequent and severe CVD compared with men. As tissue transglutaminase (TG2) has been implicated in vascular stiffening, our goal herein was to determine the efficacy of cystamine, a nonspecific TG2 inhibitor, at reducing vascular stiffness in female mice chronically fed a WD. Three experimental groups of female mice were created. One was fed regular chow diet (CD) for 43 wk starting at 4 wk of age. The second was fed a WD for the same 43 wk, whereas a third cohort was fed WD, but also received cystamine (216 mg/kg/day) in the drinking water during the last 8 wk on the diet (WD + C). All vascular stiffness parameters assessed, including aortic pulse wave velocity and the incremental modulus of elasticity of isolated femoral and mesenteric arteries, were significantly increased in WD- versus CD-fed mice, and reduced in WD + C versus WD-fed mice. These changes coincided with respectively augmented and diminished vascular wall collagen and F-actin content, with no associated effect in blood pressure. In cultured human vascular smooth muscle cells, cystamine reduced TG2 activity, F-actin:G-actin ratio, collagen compaction capacity, and cellular stiffness. We conclude that cystamine treatment represents an effective approach to reduce vascular stiffness in female mice in the setting of WD consumption, likely because of its TG2 inhibitory capacity.NEW & NOTEWORTHY This study evaluates the novel role of transglutaminase 2 (TG2) inhibition to directly treat vascular stiffness. Our data demonstrate that cystamine, a nonspecific TG2 inhibitor, improves vascular stiffness induced by a diet rich in fat, fructose, and salt. This research suggests that TG2 inhibition might bear therapeutic potential to reduce the disproportionate burden of cardiovascular disease in females in conditions of chronic overnutrition.
Collapse
Affiliation(s)
- Francisco I. Ramirez-Perez
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,2Biomedical, Biological, and Chemical Engineering Department, University of Missouri, Columbia, Missouri
| | | | - Adam T. Whaley-Connell
- 3Research Service, Harry S. Truman Memorial
Veterans’ Hospital, Columbia, Missouri,4Division of Nephrology and Hypertension, Department of Medicine, University of Missouri, Columbia, Missouri,5Division of Endocrinology and Diabetes, Department of Internal Medicine, University of Missouri, Columbia, Missouri
| | - Annayya R. Aroor
- 3Research Service, Harry S. Truman Memorial
Veterans’ Hospital, Columbia, Missouri,5Division of Endocrinology and Diabetes, Department of Internal Medicine, University of Missouri, Columbia, Missouri
| | | | - Makenzie L. Woodford
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Thaysa Ghiarone
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Larissa Ferreira-Santos
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,6Instituto do Coracao, Hospital das Clínicas da Faculdade de
Medicina da Universidade de São Paulo, Faculdade de Medicina, Universidade
de São Paulo, São Paulo, Brazil
| | - Thomas J. Jurrissen
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,7Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Camila M. Manrique-Acevedo
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,3Research Service, Harry S. Truman Memorial
Veterans’ Hospital, Columbia, Missouri,5Division of Endocrinology and Diabetes, Department of Internal Medicine, University of Missouri, Columbia, Missouri
| | - GuangHong Jia
- 3Research Service, Harry S. Truman Memorial
Veterans’ Hospital, Columbia, Missouri,5Division of Endocrinology and Diabetes, Department of Internal Medicine, University of Missouri, Columbia, Missouri
| | - Vincent G. DeMarco
- 3Research Service, Harry S. Truman Memorial
Veterans’ Hospital, Columbia, Missouri,4Division of Nephrology and Hypertension, Department of Medicine, University of Missouri, Columbia, Missouri,5Division of Endocrinology and Diabetes, Department of Internal Medicine, University of Missouri, Columbia, Missouri,8Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,7Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Luis A. Martinez-Lemus
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,2Biomedical, Biological, and Chemical Engineering Department, University of Missouri, Columbia, Missouri,8Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Guido Lastra
- 3Research Service, Harry S. Truman Memorial
Veterans’ Hospital, Columbia, Missouri,5Division of Endocrinology and Diabetes, Department of Internal Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
99
|
da Silva JF, Bolsoni JA, da Costa RM, Alves JV, Bressan AFM, Silva LEV, Costa TJ, Oliveira AER, Manzato CP, Aguiar CA, Fazan R, Cunha FQ, Nakaya HI, Carneiro FS, Tostes RC. Aryl-hydrocarbon receptor (AhR) activation contributes to high-fat diet-induced vascular dysfunction. Br J Pharmacol 2022; 179:2938-2952. [PMID: 34978070 DOI: 10.1111/bph.15789] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Metabolic and vascular dysfunction are common features of obesity. Aryl hydrocarbons receptors (AhR) regulate lipid metabolism and vascular homeostasis, but whether vascular AhR are activated in obesity or if AhR have protective or harmful effects on vascular function in obesity are not known. Thus, our study addressed whether AhR activation contributes to obesity-associated vascular dysfunction and the mechanisms involved in the AhR effects. EXPERIMENTAL APPROACH Male AhRKO (AhR knockout) and WT (wild type) mice were fed either a control or a HF (high-fat) diet for ten weeks. Metabolic and inflammatory parameters were measured in serum and adipose tissue. Vascular reactivity (isometric force) was evaluated using a myography. eNOS and AhR protein expression was determined by Western blot; Cyp1A1 and eNOS gene expression by RT-PCR. Nitric oxide (NO) production was quantified by DAF fluorescence. KEY RESULTS HF diet increased serum total, HDL, and LDL cholesterol, as well as vascular AhR protein expression and proinflammatory cytokines in the adipose tissue. HF diet decreased endothelium-dependent vasodilation. AhR deletion protected mice from HF diet-induced dyslipidemia, weight gain, and inflammatory processes. HF diet-induced endothelial dysfunction was attenuated in AhRKO mice. Vessels from AhRKO mice exhibited a greater NO reserve. In cultured endothelial cells, lysophosphatidylcholine (LPC, a major component of LDL and oxLDL) reduced eNOS gene expression and NO production. Antagonism of AhR abrogated LPC effects on endothelial cells and LPC-induced decreased endothelium-dependent vasodilation. CONCLUSION AND IMPLICATIONS AhR deletion attenuates HF diet-induced dyslipidemia and vascular dysfunction by improving eNOS/NO signalling. Targeting AhR may prevent obesity-associated vascular dysfunction.
Collapse
Affiliation(s)
- Josiane Fernandes da Silva
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Juliana A Bolsoni
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Rafael M da Costa
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Academic Unit on Health Sciences, Jataí Federal University, Jataí, Brazil
| | - Juliano V Alves
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Alecsander F M Bressan
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Luiz Eduardo V Silva
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | - Antonio E R Oliveira
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Carla P Manzato
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Carlos A Aguiar
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Rubens Fazan
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Helder I Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, Brazil.,Israelita Albert Einstein Hospital, Sao Paulo, Brazil
| | - Fernando S Carneiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
100
|
Straub AC, Beuve A. A primer for measuring cGMP signaling and cGMP-mediated vascular relaxation. Nitric Oxide 2021; 117:40-45. [PMID: 34601102 DOI: 10.1016/j.niox.2021.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/28/2022]
Abstract
Soluble guanylyl cyclase (sGC, also called GC1) is the main receptor for nitric oxide (NO) that catalyzes the production of the second messenger molecule, 3'5' cyclic guanosine monophosphate (cGMP) leading to vasorelaxation, and inhibition of leukocyte recruitment and platelet aggregation. Enhancing cGMP levels, through sGC agonism or inhibition of cGMP breakdown via phosphodiesterase inhibition, has yielded FDA approval for several cGMP modifier therapies for treatment of cardiovascular and pulmonary diseases. While basic research continues to improve our understanding of cGMP signaling and as new therapies evolve to elevate cGMP levels, we provide a short methodological primer for measuring cGMP and cGMP-mediated vascular relaxation for investigators.
Collapse
Affiliation(s)
- Adam C Straub
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA; Center for Microvascular Research, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Annie Beuve
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, 185 South Orange Ave., MSBI655, 07103, Newark, NJ, USA.
| |
Collapse
|