51
|
Schuliga M, Read J, Knight DA. Ageing mechanisms that contribute to tissue remodeling in lung disease. Ageing Res Rev 2021; 70:101405. [PMID: 34242806 DOI: 10.1016/j.arr.2021.101405] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/13/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
Age is a major risk factor for chronic respiratory diseases such as idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and certain phenotypes of asthma. The recent COVID-19 pandemic also highlights the increased susceptibility of the elderly to acute respiratory distress syndrome (ARDS), a diffuse inflammatory lung injury with often long-term effects (ie parenchymal fibrosis). Collectively, these lung conditions are characterized by a pathogenic reparative process that, rather than restoring organ function, contributes to structural and functional tissue decline. In the ageing lung, the homeostatic control of wound healing following challenge or injury has an increased likelihood of being perturbed, increasing susceptibility to disease. This loss of fidelity is a consequence of a diverse range of underlying ageing mechanisms including senescence, mitochondrial dysfunction, proteostatic stress and diminished autophagy that occur within the lung, as well as in other tissues, organs and systems of the body. These ageing pathways are highly interconnected, involving localized and systemic increases in inflammatory mediators and damage associated molecular patterns (DAMPs); along with corresponding changes in immune cell function, metabolism and composition of the pulmonary and gut microbiomes. Here we comprehensively review the roles of ageing mechanisms in the tissue remodeling of lung disease.
Collapse
Affiliation(s)
- Michael Schuliga
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| | - Jane Read
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Providence Health Care Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
52
|
Bittencourt-Mernak MI, Pinheiro NM, da Silva RC, Ponci V, Banzato R, Pinheiro AJMCR, Olivo CR, Tibério IFLC, Lima Neto LG, Santana FPR, Lago JHG, Prado CM. Effects of Eugenol and Dehydrodieugenol B from Nectandra leucantha against Lipopolysaccharide (LPS)-Induced Experimental Acute Lung Inflammation. JOURNAL OF NATURAL PRODUCTS 2021; 84:2282-2294. [PMID: 34264084 DOI: 10.1021/acs.jnatprod.1c00386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Acute lung injury (ALI) is an important public health problem. The present work investigated whether dehydrodieugenol B treatment, a compound isolated from Brazilian plant Nectandra leucantha (Lauraceae), modulates experimental ALI and compared the observed effects to eugenol. Effects of dehydrodieugenol B in vitro in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells were evaluated. The lung and systemic inflammatory profile, lung function, and possible mechanisms involved in BALB/C male mice (6-8 weeks) with ALI induced by LPS instillation (5 mg/kg) was assayed. Dehydrodieugenol B did not affect the cell viability and inhibited the increase in NO release and IL-1β and IL-6 gene expression induced by LPS. In vivo, both compounds reduced lung edema, inflammatory cells, and the IL-6 and IL-1 β levels in bronchoalveolar lavage fluid, as well as reduced inflammatory cell infiltration and those positive to iNOS, MMP-9, and TIMP-1, and reduced the collagen content and the 8-isoprostane expression in lung tissue. Eugenol and dehydrodieugenol B also inhibited the phosphorylation of Jc-Jun-NH2 terminal Kinase (JNK), a signaling protein involved in the MAPKinase pathway. There was no effect of these compounds in lung function. Therefore, eugenol and dehydrodieugenol B ameliorates several features of experimental ALI and could be considered as a pharmacological tool to ameliorate acute lung inflammation.
Collapse
Affiliation(s)
| | - Nathalia M Pinheiro
- Department of Bioscience, Federal University of São Paulo, Santos, SP, 11015-020, Brazil
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, 01246-000, Brazil
| | - Rafael C da Silva
- Department of Biological Science, Federal University of São Paulo, Diadema, SP, 09913-030, Brazil
| | - Vitor Ponci
- Department of Biological Science, Federal University of São Paulo, Diadema, SP, 09913-030, Brazil
| | - Rosana Banzato
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, 01246-000, Brazil
| | - Aruanã J M C R Pinheiro
- Universidade CEUMA, São Luís, MA, 65075-120, Brazil
- Programa de Pós-Graduação da Rede BIONORTE, São Luís, MA, 65055-310, Brazil
| | - Clarice R Olivo
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, 01246-000, Brazil
| | - Iolanda F L C Tibério
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, 01246-000, Brazil
| | - Lídio G Lima Neto
- Universidade CEUMA, São Luís, MA, 65075-120, Brazil
- Programa de Pós-Graduação da Rede BIONORTE, São Luís, MA, 65055-310, Brazil
| | - Fernanda P R Santana
- Department of Biological Science, Federal University of São Paulo, Diadema, SP, 09913-030, Brazil
- Department of Medicine-Nephrology, Federal University of São Paulo, São Paulo, SP, 04023-062, Brazil
| | - João H G Lago
- Center of Natural Sciences and Humanities, Federal University of ABC, Santo André, SP, 09210-170, Brazil
| | - Carla M Prado
- Department of Biological Science, Federal University of São Paulo, Diadema, SP, 09913-030, Brazil
- Department of Bioscience, Federal University of São Paulo, Santos, SP, 11015-020, Brazil
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, 01246-000, Brazil
| |
Collapse
|
53
|
Cabrera Cesar E, Lopez-Lopez L, Lara E, Hidalgo-San Juan MV, Parrado Romero C, Palencia JLRS, Martín-Montañez E, Garcia-Fernandez M. Serum Biomarkers in Differential Diagnosis of Idiopathic Pulmonary Fibrosis and Connective Tissue Disease-Associated Interstitial Lung Disease. J Clin Med 2021; 10:3167. [PMID: 34300333 PMCID: PMC8307287 DOI: 10.3390/jcm10143167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION The goal of this study is to determine whether Advanced glycosylated end-products (AGE), Advanced oxidation protein products (AOPP) and Matrix metalloproteinase 7 (MMP7) could be used as differential biomarkers for idiopathic pulmonary fibrosis (IPF) and connective tissue disease-associated interstitial lung disease (CTD-ILD). METHOD Seventy-three patients were enrolled: 29 with IPF, 14 with CTD-ILD, and 30 healthy controls. The study included a single visit by participants. A blood sample was drawn and serum was analysed for AGE using spectrofluorimetry, AOPP by spectrophotometry, and MMP7 using sandwich-type enzyme-linked immunosorbent assay. RESULTS AGE, AOPP and MMP7 serum levels were significantly higher in both IPF and CTD-ILD patients versus healthy controls; and AGE was also significantly elevated in CTD-ILD compared to the IPF group. AGE plasma levels clearly distinguished CTD-ILD patients from healthy participants (AUC = 0.95; 95% IC 0.86-1), whereas in IPF patients, the distinction was moderate (AUC = 0.78; 95% IC 0.60-0.97). CONCLUSION In summary, our results provide support for the potential value of serum AGE, AOPP and MMP7 concentrations as diagnostic biomarkers in IPF and CTD-ILD to differentiate between ILD patients and healthy controls. Furthermore, this study provides evidence, for the first time, for the possible use of AGE as a differential diagnostic biomarker to distinguish between IPF and CTD-ILD. The value of these biomarkers as additional tools in a multidisciplinary approach to IPF and CTD-ILD diagnosis needs to be considered and further explored. Multicentre studies are necessary to understand the role of AGE in differential diagnosis.
Collapse
Affiliation(s)
- Eva Cabrera Cesar
- Respiratory Service, Universitary Virgen de la Victoria Hospital, 29010 Málaga, Spain; (L.L.-L.); (M.V.H.-S.J.)
| | - Lidia Lopez-Lopez
- Respiratory Service, Universitary Virgen de la Victoria Hospital, 29010 Málaga, Spain; (L.L.-L.); (M.V.H.-S.J.)
| | - Estrella Lara
- Department of Physiology and Human Histology, Faculty of Medicine, University of Málaga, Biomedical Research Institute of Málaga, 29010 Málaga, Spain; (E.L.); (C.P.R.); (M.G.-F.)
| | | | - Concepcion Parrado Romero
- Department of Physiology and Human Histology, Faculty of Medicine, University of Málaga, Biomedical Research Institute of Málaga, 29010 Málaga, Spain; (E.L.); (C.P.R.); (M.G.-F.)
| | - Jose Luis Royo Sánchez Palencia
- Department of Biochemistry, Biomedical Research Institute of Málaga, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain;
| | - Elisa Martín-Montañez
- Department of Pharmacology and Paediatrics, Faculty of Medicine, University of Málaga, Biomedical Research Institute of Málaga, 29010 Málaga, Spain;
| | - Maria Garcia-Fernandez
- Department of Physiology and Human Histology, Faculty of Medicine, University of Málaga, Biomedical Research Institute of Málaga, 29010 Málaga, Spain; (E.L.); (C.P.R.); (M.G.-F.)
| |
Collapse
|
54
|
Circular RNAs: Novel Players in the Oxidative Stress-Mediated Pathologies, Biomarkers, and Therapeutic Targets. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6634601. [PMID: 34257814 PMCID: PMC8245247 DOI: 10.1155/2021/6634601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/24/2021] [Indexed: 12/29/2022]
Abstract
Oxidative stress (OxS) is a wildly described cause of damage to macromolecules, resulting in abnormal physiological conditions. In recent years, a few studies have shown that oxidation/antioxidation imbalance plays a significant role in developing diseases involving different systems and organs. However, the research on the circular RNA (circRNA) roles in OxS is still in its very infancy. Therefore, we hope to provide a comprehensive overview of the recent research that explored the function of circRNAs associated with OxS and its role in the pathogenesis of different diseases that affect different body systems like the nervous system, cardiovascular system, kidneys, and lungs. It provides the possibilities of using these circRNAs as superior diagnostic and therapeutic options for OxS associated with these disease conditions.
Collapse
|
55
|
L-carnitine alleviated acute lung injuries induced by potassium dichromate in rats: involvement of Nrf2/HO-1 signaling pathway. Heliyon 2021; 7:e07207. [PMID: 34169163 PMCID: PMC8207205 DOI: 10.1016/j.heliyon.2021.e07207] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/22/2021] [Accepted: 06/01/2021] [Indexed: 12/25/2022] Open
Abstract
The activation of the Nrf2/HO-1 signaling pathway regulates cellular antioxidant stress and exerts anti-inflammatory and cytoprotective effects against acute lung injury (ALI). The present study aimed to evaluate the therapeutic role of L-carnitine (LC) against potassium dichromate (PD) - induced acute lung injury in adult male albino rats via modulation of Nrf2/HO-1 signaling pathway. For this purpose, forty rats were randomly allocated into 5 groups (8 rats each). The normal group received intranasal (i.n.) saline, while the ALI group received intranasal instillation of PD as a single dose of 2 mg/kg. The 3d - 5th groups received PD then after 24 h administered L-carnitine (25, 50 and 100 mg/kg; orally) for 3 consecutive days. The therapeutic effect of L-carnitine was evaluated by assessment of serum levels of glutathione (GSH) and malondialdehyde (MDA) along with measurement of lung contents of transforming growth factor β1 (TGFβ1), protein kinase B (AKT), Nuclear factor erythroid-2 related factor 2 (Nrf2), Kelch-like ECH-associated protein 1 (Keap1), heme oxygenase-1 (HO-1), NAD(P)H quinone oxidoreductase 1 enzyme (NQO1) and glutathione cysteine ligase modifier subunit (GCLM) expression. Post-treatment with L-carnitine effectively increased the levels of GSH and AKT, elevated Nrf2 and its target genes and decreased the levels of MDA and TGFβ1 in comparison with PD control rats. Additionally, L-carnitine effectively reduced the number of goblet cell, inhibited the mucus formation in bronchioles and interstitial inflammatory infiltrate as well as alleviated the destruction of alveolar walls, and the congestion of blood vessels in lung tissue induced by PD. Our findings showed that L-carnitine may be a promising therapeutic agent against PD-induced acute lung injury.
Collapse
|
56
|
Kasuya Y, Kim JD, Hatano M, Tatsumi K, Matsuda S. Pathophysiological Roles of Stress-Activated Protein Kinases in Pulmonary Fibrosis. Int J Mol Sci 2021; 22:ijms22116041. [PMID: 34204949 PMCID: PMC8199902 DOI: 10.3390/ijms22116041] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/22/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is one of the most symptomatic progressive fibrotic lung diseases, in which patients have an extremely poor prognosis. Therefore, understanding the precise molecular mechanisms underlying pulmonary fibrosis is necessary for the development of new therapeutic options. Stress-activated protein kinases (SAPKs), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38) are ubiquitously expressed in various types of cells and activated in response to cellular environmental stresses, including inflammatory and apoptotic stimuli. Type II alveolar epithelial cells, fibroblasts, and macrophages are known to participate in the progression of pulmonary fibrosis. SAPKs can control fibrogenesis by regulating the cellular processes and molecular functions in various types of lung cells (including cells of the epithelium, interstitial connective tissue, blood vessels, and hematopoietic and lymphoid tissue), all aspects of which remain to be elucidated. We recently reported that the stepwise elevation of intrinsic p38 signaling in the lungs is correlated with a worsening severity of bleomycin-induced fibrosis, indicating an importance of this pathway in the progression of pulmonary fibrosis. In addition, a transcriptome analysis of RNA-sequencing data from this unique model demonstrated that several lines of mechanisms are involved in the pathogenesis of pulmonary fibrosis, which provides a basis for further studies. Here, we review the accumulating evidence for the spatial and temporal roles of SAPKs in pulmonary fibrosis.
Collapse
Affiliation(s)
- Yoshitoshi Kasuya
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (M.H.); (S.M.)
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Correspondence: ; Tel.: +81-432-262-193; Fax: +81-432-262-196
| | - Jun-Dal Kim
- Department of Research and Development, Institute of Natural Medicine (INM), University of Toyama, Toyama 930-0194, Japan;
| | - Masahiko Hatano
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (M.H.); (S.M.)
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Shuichi Matsuda
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (M.H.); (S.M.)
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| |
Collapse
|
57
|
Vardakas P, Skaperda Z, Tekos F, Trompeta AF, Tsatsakis A, Charitidis CA, Kouretas D. An integrated approach for assessing the in vitro and in vivo redox-related effects of nanomaterials. ENVIRONMENTAL RESEARCH 2021; 197:111083. [PMID: 33775680 DOI: 10.1016/j.envres.2021.111083] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Over the last few decades, nanotechnology has risen to the forefront of both the research and industrial interest, resulting in the manufacture and utilization of various nanomaterials, as well as in their integration into a wide range of fields. However, the consequent elevated exposure to such materials raises serious concerns regarding their effects on human health and safety. Existing scientific data indicate that the induction of oxidative stress, through the excessive generation of Reactive Oxygen Species (ROS), might be the principal mechanism of exerting their toxicity. Meanwhile, a number of nanomaterials exhibit antioxidant properties, either intrinsic or resulting from their functionalization with conventional antioxidants. Considering that their redox properties are implicated in the manifestation of their biological effects, we propose an integrated approach for the assessment of the redox-related activities of nanomaterials at three biological levels (in vitro-cell free systems, cell cultures, in vivo). Towards this direction, a battery of translational biomarkers is recommended, and a series of reliable protocols are presented in detail. The aim of the present approach is to acquire a better understanding with respect to the biological actions of nanomaterials in the interrelated fields of Redox Biology and Toxicology.
Collapse
Affiliation(s)
- Periklis Vardakas
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500, Larissa, Greece
| | - Zoi Skaperda
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500, Larissa, Greece
| | - Fotios Tekos
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500, Larissa, Greece
| | - Aikaterini-Flora Trompeta
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St. Zografos, 157 80, Athens, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003, Heraklion, Crete, Greece
| | - Constantinos A Charitidis
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St. Zografos, 157 80, Athens, Greece
| | - Demetrios Kouretas
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500, Larissa, Greece.
| |
Collapse
|
58
|
Li BS, Zhu RZ, Lim SH, Seo JH, Choi BM. Apigenin Alleviates Oxidative Stress-Induced Cellular Senescence via Modulation of the SIRT1-NAD[Formula: see text]-CD38 Axis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1235-1250. [PMID: 34049472 DOI: 10.1142/s0192415x21500592] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidative stress-induced cellular senescence is now regarded as an important driving mechanism in chronic lung diseases-particularly chronic obstructive pulmonary disease (COPD). 4[Formula: see text],5,7-trihydroxyflavone (Apigenin) is a natural flavonoid product abundantly present in fruits, vegetables, and Chinese medicinal herbs. It has been known that apigenin has anti-oxidant, anti-inflammatory and liver-protecting effects. The efficacy of apigenin for lung aging, however, has not been reported. In this study, we selected the hydrogen peroxide (H2O[Formula: see text]- or doxorubicin (DOXO)-induced senescence model in WI-38 human embryonic lung fibroblast cells to determine the potential anti-aging effects of apigenin in vitro and associated molecular mechanisms. We found that apigenin reduced senescence-associated [Formula: see text]-galactosidase (SA-[Formula: see text]-gal) activity and promoted cell growth, concomitant with a decrease in levels of Acetyl (ac)-p53, p21[Formula: see text], and p16[Formula: see text] and an increase in phospho (p)-Rb. Apigenin also increased the activation ratio of silent information regulator 1 (SIRT1), nicotinamide adenine dinucleotide (NAD[Formula: see text], and NAD[Formula: see text]/NADH and inhibited cluster of differentiation 38 (CD38) activity in a concentration-dependent manner. SIRT1 inhibition by SIRT1 siRNA abolished the anti-aging effect of apigenin. In addition, CD38 inhibition by CD38 siRNA or apigenin increased the SIRT1 level and reduced H2O2-induced senescence. Our findings suggest that apigenin is a promising phytochemical for reducing the impact of senescent cells in age-related lung diseases such as COPD.
Collapse
Affiliation(s)
- Bing Si Li
- Department of Biochemistry, Wonkwang University School of Medicine, 460 Iksandaero, Iksan, Jeonbuk 54538, Republic of Korea
| | - Ri Zhe Zhu
- Department of Biochemistry, Wonkwang University School of Medicine, 460 Iksandaero, Iksan, Jeonbuk 54538, Republic of Korea
| | - Seok-Hee Lim
- Department of Biochemistry, Wonkwang University School of Medicine, 460 Iksandaero, Iksan, Jeonbuk 54538, Republic of Korea
| | - Jae Ho Seo
- Department of Biochemistry, Wonkwang University School of Medicine, 460 Iksandaero, Iksan, Jeonbuk 54538, Republic of Korea
| | - Byung-Min Choi
- Department of Biochemistry, Wonkwang University School of Medicine, 460 Iksandaero, Iksan, Jeonbuk 54538, Republic of Korea
| |
Collapse
|
59
|
Schiffers C, Lundblad LKA, Hristova M, Habibovic A, Dustin CM, Daphtary N, Aliyeva M, Seward DJ, Janssen-Heininger YMW, Wouters EFM, Reynaert NL, van der Vliet A. Downregulation of DUOX1 function contributes to aging-related impairment of innate airway injury responses and accelerated senile emphysema. Am J Physiol Lung Cell Mol Physiol 2021; 321:L144-L158. [PMID: 33951398 DOI: 10.1152/ajplung.00021.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Aging is associated with a gradual loss of lung function due to increased cellular senescence, decreased regenerative capacity, and impaired innate host defense. One important aspect of innate airway epithelial host defense to nonmicrobial triggers is the secretion of alarmins such as IL-33 and activation of type 2 inflammation, which were previously found to depend on activation of the NADPH oxidase (NOX) homolog DUOX1, and redox-dependent signaling pathways that promote alarmin secretion. Here, we demonstrate that normal aging of C57BL/6J mice resulted in markedly decreased lung innate epithelial type 2 responses to exogenous triggers such as the airborne allergen Dermatophagoides pteronyssinus, which was associated with marked downregulation of DUOX1, as well as DUOX1-mediated redox-dependent signaling. DUOX1 deficiency was also found to accelerate age-related airspace enlargement and decline in lung function but did not consistently affect other features of lung aging such as senescence-associated inflammation. Intriguingly, observations of age-related DUOX1 downregulation and enhanced airspace enlargement due to DUOX1 deficiency in C57BL/6J mice, which lack a functional mitochondrial nicotinamide nucleotide transhydrogenase (NNT), were much less dramatic in C57BL/6NJ mice with normal NNT function, although the latter mice also displayed impaired innate epithelial injury responses with advancing age. Overall, our findings indicate a marked aging-dependent decline in (DUOX1-dependent) innate airway injury responses to external nonmicrobial triggers, but the impact of aging on DUOX1 downregulation and its significance for age-related senile emphysema development was variable between different C57BL6 substrains, possibly related to metabolic alterations due to differences in NNT function.
Collapse
Affiliation(s)
- Caspar Schiffers
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont.,Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Lennart K A Lundblad
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Milena Hristova
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Aida Habibovic
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Christopher M Dustin
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Nirav Daphtary
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Minara Aliyeva
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - David J Seward
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Yvonne M W Janssen-Heininger
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Emiel F M Wouters
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands.,Ludwig Boltzman Institute for Lung Health, Vienna, Austria
| | - Niki L Reynaert
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
60
|
Schneider JL, Rowe JH, Garcia-de-Alba C, Kim CF, Sharpe AH, Haigis MC. The aging lung: Physiology, disease, and immunity. Cell 2021; 184:1990-2019. [PMID: 33811810 PMCID: PMC8052295 DOI: 10.1016/j.cell.2021.03.005] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/01/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
The population is aging at a rate never seen before in human history. As the number of elderly adults grows, it is imperative we expand our understanding of the underpinnings of aging biology. Human lungs are composed of a unique panoply of cell types that face ongoing chemical, mechanical, biological, immunological, and xenobiotic stress over a lifetime. Yet, we do not fully appreciate the mechanistic drivers of lung aging and why age increases the risk of parenchymal lung disease, fatal respiratory infection, and primary lung cancer. Here, we review the molecular and cellular aspects of lung aging, local stress response pathways, and how the aging process predisposes to the pathogenesis of pulmonary disease. We place these insights into context of the COVID-19 pandemic and discuss how innate and adaptive immunity within the lung is altered with age.
Collapse
Affiliation(s)
- Jaime L Schneider
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Dana Farber Cancer Institute, Boston, MA 02115, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Jared H Rowe
- Division of Hematology Boston Children's Hospital and Division of Pediatric Oncology Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Carolina Garcia-de-Alba
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Carla F Kim
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Disease, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
61
|
Izadi M, Cegolon L, Javanbakht M, Sarafzadeh A, Abolghasemi H, Alishiri G, Zhao S, Einollahi B, Kashaki M, Jonaidi-Jafari N, Asadi M, Jafari R, Fathi S, Nikoueinejad H, Ebrahimi M, Imanizadeh S, Ghazale AH. Ozone therapy for the treatment of COVID-19 pneumonia: A scoping review. Int Immunopharmacol 2021; 92:107307. [PMID: 33476982 PMCID: PMC7752030 DOI: 10.1016/j.intimp.2020.107307] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 01/25/2023]
Abstract
Severe forms of COVID-19 can evolve into pneumonia, featured by acute respiratory failure due to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). In viral diseases, the replication of viruses is seemingly stimulated by an imbalance between pro-oxidant and antioxidant activity as well as by the deprivation of antioxidant mechanisms. In COVID-19 pneumonia, oxidative stress also appears to be highly detrimental to lung tissues. Although inhaling ozone (O3) gas has been shown to be toxic to the lungs, recent evidence suggests that its administration via appropriate routes and at small doses can paradoxically induce an adaptive reaction capable of decreasing the endogenous oxidative stress. Ozone therapy is recommended to counter the disruptive effects of severe COVID-19 on lung tissues, especially if administered in early stages of the disease, thereby preventing the progression to ARDS.
Collapse
Affiliation(s)
- Morteza Izadi
- Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Luca Cegolon
- Local Health Unit N. 2 "Marca Trevigiana", Public Health Department, Treviso, Italy
| | - Mohammad Javanbakht
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Ali Sarafzadeh
- Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Hassan Abolghasemi
- Pediatric Congenital Hematologic Disorders Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Gholamhossein Alishiri
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shi Zhao
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
| | - Behzad Einollahi
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mandana Kashaki
- Shahid Akbarabadi Clinical Research Development, Unit (ShACRDU), Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Mosa Asadi
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ramezan Jafari
- Department of Radiology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Hassan Nikoueinejad
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehrdad Ebrahimi
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sina Imanizadeh
- Student Research Committee (SRC), Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Hosein Ghazale
- Student Research Committee (SRC), Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
62
|
Wills TA, Soneji SS, Choi K, Jaspers I, Tam EK. E-cigarette use and respiratory disorders: an integrative review of converging evidence from epidemiological and laboratory studies. Eur Respir J 2021; 57:13993003.01815-2019. [PMID: 33154031 PMCID: PMC7817920 DOI: 10.1183/13993003.01815-2019] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/10/2020] [Indexed: 12/11/2022]
Abstract
Background Use of electronic cigarettes (e-cigarettes) is prevalent among adolescents and young adults, but there has been limited knowledge about health consequences in human populations. We conduct a systematic review and meta-analysis of results on respiratory disorders from studies of general-population samples and consider the mapping of these results to findings about biological processes linked to e-cigarettes in controlled laboratory studies. Method We conducted a literature search and meta-analysis of epidemiological studies on the association of e-cigarette use with asthma and with COPD. We discuss findings from laboratory studies about effects of e-cigarettes on four biological processes: cytotoxicity, oxidative stress/inflammation, susceptibility to infection and genetic expression. Results Epidemiological studies, both cross-sectional and longitudinal, show a significant association of e-cigarette use with asthma and COPD, controlling for cigarette smoking and other covariates. For asthma (n=15 studies), the pooled adjusted odds ratio (aOR) was 1.39 (95% CI 1.28–1.51); for COPD (n=9 studies) the aOR was 1.49 (95% CI 1.36–1.65). Laboratory studies consistently show an effect of e-cigarettes on biological processes related to respiratory harm and susceptibility to illness, with e-cigarette conditions differing significantly from clean-air controls, although sometimes less than for cigarettes. Conclusions The evidence from epidemiological studies meets established criteria for consistency, strength of effect, temporality, and in some cases a dose–response gradient. Biological plausibility is indicated by evidence from multiple laboratory studies. We conclude that e-cigarette use has consequences for asthma and COPD, which is of concern for respirology and public health. Epidemiological studies show a relationship of e-cigarette use with asthma and COPD, and laboratory studies show their adverse effects on four biological processes. It can be concluded that e-cigarette use is of significant concern for public health.https://bit.ly/3drH4pj
Collapse
Affiliation(s)
- Thomas A Wills
- Cancer Prevention Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Samir S Soneji
- Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Kelvin Choi
- Division of Intramural Research, National Institute on Minority Health and Health Disparities, Bethesda, MD, USA
| | - Ilona Jaspers
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Elizabeth K Tam
- Dept of Medicine, John A. Burns School of Medicine, Honolulu, HI, USA
| |
Collapse
|
63
|
Omote N, Sauler M. Non-coding RNAs as Regulators of Cellular Senescence in Idiopathic Pulmonary Fibrosis and Chronic Obstructive Pulmonary Disease. Front Med (Lausanne) 2020; 7:603047. [PMID: 33425948 PMCID: PMC7785852 DOI: 10.3389/fmed.2020.603047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
Cellular senescence is a cell fate implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). Cellular senescence occurs in response to cellular stressors such as oxidative stress, DNA damage, telomere shortening, and mitochondrial dysfunction. Whether these stresses induce cellular senescence or an alternative cell fate depends on the type and magnitude of cellular stress, but also on intrinsic factors regulating the cellular stress response. Non-coding RNAs, including both microRNAs and long non-coding RNAs, are key regulators of cellular stress responses and susceptibility to cellular senescence. In this review, we will discuss cellular mechanisms that contribute to senescence in IPF and COPD and highlight recent advances in our understanding of how these processes are influenced by non-coding RNAs. We will also discuss the potential therapeutic role for targeting non-coding RNAs to treat these chronic lung diseases.
Collapse
Affiliation(s)
- Norihito Omote
- Pulmonary, Critical Care and Sleep Medicine Section, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Maor Sauler
- Pulmonary, Critical Care and Sleep Medicine Section, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
64
|
Hossain KS, Hossain MG, Moni A, Rahman MM, Rahman UH, Alam M, Kundu S, Rahman MM, Hannan MA, Uddin MJ. Prospects of honey in fighting against COVID-19: pharmacological insights and therapeutic promises. Heliyon 2020; 6:e05798. [PMID: 33363261 PMCID: PMC7750705 DOI: 10.1016/j.heliyon.2020.e05798] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/30/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Honey and its compounds are drawing attention as an effective natural therapy because of its ability to attenuate acute inflammation through enhancing immune response. Several studies have proved its potential healing capability against numerous chronic diseases/conditions, including pulmonary disorders, cardiac disorders, diabetes, hypertension, autophagy dysfunction, bacterial, and fungal infections. More importantly, honey has proved its virucidal effect on several enveloped viruses such as HIV, influenza virus, herpes simplex, and varicella-zoster virus. Honey may be beneficial for patients with COVID-19 which is caused by an enveloped virus SARS-CoV-2 by boosting the host immune system, improving comorbid conditions, and antiviral activities. Moreover, a clinical trial of honey on COVID-19 patients is currently undergoing. In this review, we have tried to summarize the potential benefits of honey and its ingredients in the context of antimicrobial activities, some chronic diseases, and the host immune system. Thus, we have attempted to establish a relationship with honey for the treatment of COVID-19. This review will be helpful to reconsider the insights into the possible potential therapeutic effects of honey in the context of the COVID-19 pandemic. However, the effects of honey on SARS-CoV-2 replication and/or host immune system need to be further investigated by in vitro and in vivo studies.
Collapse
Affiliation(s)
| | - Md. Golzar Hossain
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Akhi Moni
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
| | | | | | - Mohaimanul Alam
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
| | - Sushmita Kundu
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
| | - Md. Masudur Rahman
- Department of Pathology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Md. Abdul Hannan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
| |
Collapse
|
65
|
Li Z, Liu Q, Xu Z, Guo X, Wu S. Association between short-term exposure to ambient particulate air pollution and biomarkers of oxidative stress: A meta-analysis. ENVIRONMENTAL RESEARCH 2020; 191:110105. [PMID: 32835677 DOI: 10.1016/j.envres.2020.110105] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Exposure to ambient particulate air pollution contributes substantially to the mortality and morbidity due to cardiovascular diseases (CVD), respiratory diseases and neurodegenerative diseases. Several hypothetical mechanisms have been proposed to explain these associations, particularly oxidative stress. Malondialdehyde (MDA), 8-hydroxy-2'-deoxyguanosine (8-OHdG), and Superoxide Dismutase (SOD) are typical biomarkers of oxidative stress and have been frequently investigated. However, the association between exposure to ambient particulate matter (PM) and these biomarkers has not been well established. OBJECTIVES Evaluate the association between ambient particulate air pollution and biomarkers of oxidative stress based on existing epidemiological studies. METHODS A systematic literature search was conducted in databases of Science Direct, PubMed, Web of Science, and Scopus up to April 24, 2020 to summarize epidemiological studies reporting the association between exposure to ambient PM (PM2.5, PM10, or both) and biomarkers of oxidative stress, and a meta-analysis was performed for the associations reported in individual studies using a random-effect model. RESULTS This meta-analysis included 23 epidemiological studies (13 identified for 8-OHdG, 11 identified for MDA and 5 identified for SOD). A 10 μg/m3 increase in short-term exposure to ambient PM2.5 was associated with pooled percent changes of 2.10% (95% CIs: -0.13%, 4.38%), 1.60% (95% CIs: 0.21%, 3.01%) and -0.61% (95% CIs: -1.92%, 0.72%) in 8-OHdG, MDA and SOD, respectively. CONCLUSION Short-term exposure to ambient PM2.5 was associated with a significantly increased level of MDA, indicating that ambient particulate air pollution may contribute to increased oxidative stress.
Collapse
Affiliation(s)
- Zichuan Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Qisijing Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Zhouyang Xu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences, Peking University, Ministry of Education, China.
| |
Collapse
|
66
|
Nagasawa R, Hara Y, Murohashi K, Aoki A, Kobayashi N, Takagi S, Hashimoto S, Kawana A, Kaneko T. Serum heme oxygenase-1 measurement is useful for evaluating disease activity and outcomes in patients with acute respiratory distress syndrome and acute exacerbation of interstitial lung disease. BMC Pulm Med 2020; 20:310. [PMID: 33238962 PMCID: PMC7687749 DOI: 10.1186/s12890-020-01341-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Background Oxidative stress plays an important role in acute lung injury, which is associated with the development and progression of acute respiratory failure. Here, we investigated whether the degree of oxidative stress as indicated by serum heme oxygenase-1 (HO-1) is clinically useful for predicting prognosis among the patients with acute respiratory distress syndrome (ARDS) and acute exacerbation of interstitial lung disease (AE-ILD). Methods Serum HO-1 levels of newly diagnosed or untreated ARDS and AE-ILD patients were measured at diagnosis. Relationships between serum HO-1 and other clinical parameters and 1 and 3-month mortality were evaluated. Results Fifty-five patients including 22 of ARDS and 33 of AE-ILD were assessed. Serum HO-1 level at diagnosis was significantly higher in ARDS patients than AE-ILD patients (87.8 ± 60.0 ng/mL vs. 52.5 ± 36.3 ng/mL, P < 0.001). Serum HO-1 correlated with serum total bilirubin (R = 0.454, P < 0.001) and serum LDH (R = 0.500, P < 0.001). In both patients with ARDS and AE-ILDs, serum HO-1 level tended to decrease from diagnosis to 2 weeks after diagnosis, however, did not normalized. Composite parameters including serum HO-1, age, sex, and partial pressure of oxygen in arterial blood/fraction of inspired oxygen (P/F) ratio for prediction of 3-month mortality showed a higher AUC (ARDS: 0.925, AE-ILDs: 0.892) than did AUCs of a single predictor or combination of two or three predictors. Conclusion Oxidative stress assessed by serum HO-1 is persistently high among enrolled patients for 2 weeks after diagnosis. Also, serum HO-1 levels at the diagnosis combined with age, sex, and P/F ratio could be clinically useful for predicting 3-month mortality in both ARDS and AE-ILD patients.
Collapse
Affiliation(s)
- Ryo Nagasawa
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama City, 236-0004, Japan
| | - Yu Hara
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama City, 236-0004, Japan.
| | - Kota Murohashi
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama City, 236-0004, Japan
| | - Ayako Aoki
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama City, 236-0004, Japan
| | - Nobuaki Kobayashi
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama City, 236-0004, Japan
| | - Shigeto Takagi
- Seamen's Insurance Health Management Center, Yokohama, Japan
| | - Satoru Hashimoto
- Division of Intensive Care Unit, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akihiko Kawana
- Division of Infectious Diseases and Pulmonary Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Takeshi Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama City, 236-0004, Japan
| |
Collapse
|
67
|
Farjana M, Moni A, Sohag AAM, Hasan A, Hannan MA, Hossain MG, Uddin MJ. Repositioning Vitamin C as a Promising Option to Alleviate Complications associated with COVID-19. Infect Chemother 2020; 52:461-477. [PMID: 33263242 PMCID: PMC7779993 DOI: 10.3947/ic.2020.52.4.461] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023] Open
Abstract
Vitamin C, also known as L-ascorbic acid, is an essential vitamin with pleiotropic functions, ranging from antioxidant to anti-microbial functions. Evidence suggests that vitamin C acts against inflammation, oxidative stress, autophagy chaos, and immune dysfunction. The ability to activate and enhance the immune system makes this versatile vitamin a prospective therapeutic agent amid the current situation of coronavirus disease 2019 (COVID-19). Being highly effective against the influenza virus, causing the common cold, vitamin C may also function against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and its associated complications. Severe infections need higher doses of the vitamin to compensate for the augmented inflammatory response and metabolic demand that commonly occur during COVID-19. Compelling evidence also suggests that a high dose of vitamin C (1.5 g/kg body weight) in inflammatory conditions can result in effective clinical outcomes and thus can be employed to combat COVID-19. However, further studies are crucial to delineate the mechanism underlying the action of vitamin C against COVID-19. The current review aims to reposition vitamin C as an alternative approach for alleviating COVID-19-associated complications.
Collapse
Affiliation(s)
| | - Akhi Moni
- ABEx Bio-Research Center, East Azampur, Dhaka, Bangladesh
| | - Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Adeba Hasan
- ABEx Bio-Research Center, East Azampur, Dhaka, Bangladesh
| | - Md Abdul Hannan
- ABEx Bio-Research Center, East Azampur, Dhaka, Bangladesh.,Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh.,Department of Anatomy, Dongguk University College of Medicine, Gyeongju, Korea
| | - Md Golzar Hossain
- Division of Virology, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka, Bangladesh.,Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea.
| |
Collapse
|
68
|
Wills TA, Soneji SS, Choi K, Jaspers I, Tam EK. E-cigarette use and respiratory disorders: an integrative review of converging evidence from epidemiological and laboratory studies. Eur Respir J 2020. [PMID: 33154031 DOI: 10.1183/13993003.01815‐2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Use of electronic cigarettes (e-cigarettes) is prevalent among adolescents and young adults, but there has been limited knowledge about health consequences in human populations. We conduct a systematic review and meta-analysis of results on respiratory disorders from studies of general-population samples and consider the mapping of these results to findings about biological processes linked to e-cigarettes in controlled laboratory studies. METHOD We conducted a literature search and meta-analysis of epidemiological studies on the association of e-cigarette use with asthma and with COPD. We discuss findings from laboratory studies about effects of e-cigarettes on four biological processes: cytotoxicity, oxidative stress/inflammation, susceptibility to infection and genetic expression. RESULTS Epidemiological studies, both cross-sectional and longitudinal, show a significant association of e-cigarette use with asthma and COPD, controlling for cigarette smoking and other covariates. For asthma (n=15 studies), the pooled adjusted odds ratio (aOR) was 1.39 (95% CI 1.28-1.51); for COPD (n=9 studies) the aOR was 1.49 (95% CI 1.36-1.65). Laboratory studies consistently show an effect of e-cigarettes on biological processes related to respiratory harm and susceptibility to illness, with e-cigarette conditions differing significantly from clean-air controls, although sometimes less than for cigarettes. CONCLUSIONS The evidence from epidemiological studies meets established criteria for consistency, strength of effect, temporality, and in some cases a dose-response gradient. Biological plausibility is indicated by evidence from multiple laboratory studies. We conclude that e-cigarette use has consequences for asthma and COPD, which is of concern for respirology and public health.
Collapse
Affiliation(s)
- Thomas A Wills
- Cancer Prevention Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Samir S Soneji
- Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Kelvin Choi
- Division of Intramural Research, National Institute on Minority Health and Health Disparities, Bethesda, MD, USA
| | - Ilona Jaspers
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Elizabeth K Tam
- Dept of Medicine, John A. Burns School of Medicine, Honolulu, HI, USA
| |
Collapse
|
69
|
Qu Y, Hao C, Zhai R, Yao W. Folate and macrophage folate receptor-β in idiopathic pulmonary fibrosis disease: the potential therapeutic target? Biomed Pharmacother 2020; 131:110711. [DOI: 10.1016/j.biopha.2020.110711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/10/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
|
70
|
Yang J, Pan X, Wang L, Yu G. Alveolar cells under mechanical stressed niche: critical contributors to pulmonary fibrosis. Mol Med 2020; 26:95. [PMID: 33054759 PMCID: PMC7556585 DOI: 10.1186/s10020-020-00223-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Pulmonary fibrosis arises from the repeated epithelial mild injuries and insufficient repair lead to over activation of fibroblasts and excessive deposition of extracellular matrix, which result in a mechanical stretched niche. However, increasing mechanical stress likely exists before the establishment of fibrosis since early micro injuries increase local vascular permeability and prompt cytoskeletal remodeling which alter cellular mechanical forces. It is noteworthy that COVID-19 patients with severe hypoxemia will receive mechanical ventilation as supportive treatment and subsequent pathology studies indicate lung fibrosis pattern. At advanced stages, mechanical stress originates mainly from the stiff matrix since boundaries between stiff and compliant parts of the tissue could generate mechanical stress. Therefore, mechanical stress has a significant role in the whole development process of pulmonary fibrosis. The alveoli are covered by abundant capillaries and function as the main gas exchange unit. Constantly subject to variety of damages, the alveolar epithelium injuries were recently recognized to play a vital role in the onset and development of idiopathic pulmonary fibrosis. In this review, we summarize the literature regarding the effects of mechanical stress on the fundamental cells constituting the alveoli in the process of pulmonary fibrosis, particularly on epithelial cells, capillary endothelial cells, fibroblasts, mast cells, macrophages and stem cells. Finally, we briefly review this issue from a more comprehensive perspective: the metabolic and epigenetic regulation.
Collapse
Affiliation(s)
- Juntang Yang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Outstanding Overseas Scientists Center for Pulmonary Fibrosis of Henan Province, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Xin Pan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Outstanding Overseas Scientists Center for Pulmonary Fibrosis of Henan Province, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Outstanding Overseas Scientists Center for Pulmonary Fibrosis of Henan Province, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Outstanding Overseas Scientists Center for Pulmonary Fibrosis of Henan Province, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China.
| |
Collapse
|
71
|
Islam MN, Hossain KS, Sarker PP, Ferdous J, Hannan MA, Rahman MM, Chu DT, Uddin MJ. Revisiting pharmacological potentials of Nigella sativa seed: A promising option for COVID-19 prevention and cure. Phytother Res 2020; 35:1329-1344. [PMID: 33047412 PMCID: PMC7675410 DOI: 10.1002/ptr.6895] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/08/2020] [Accepted: 09/17/2020] [Indexed: 01/08/2023]
Abstract
Nigella sativa seed and its active compounds have been historically recognized as an effective herbal panacea that can establish a balanced inflammatory response by suppressing chronic inflammation and promoting healthy immune response. The essential oil and other preparations of N. sativa seed have substantial therapeutic outcomes against immune disturbance, autophagy dysfunction, oxidative stress, ischemia, inflammation, in several COVID‐19 comorbidities such as diabetes, cardiovascular disorders, Kawasaki‐like diseases, and many bacterial and viral infections. Compelling evidence in the therapeutic efficiency of N. sativa along with the recent computational findings is strongly suggestive of combating emerged COVID‐19 pandemic. Also, being an available candidate in nutraceuticals, N. sativa seed oil could be immensely potential and feasible to prevent and cure COVID‐19. This review was aimed at revisiting the pharmacological benefits of N. sativa seed and its active metabolites that may constitute a potential basis for developing a novel preventive and therapeutic strategy against COVID‐19. Bioactive compounds of N. sativa seed, especially thymiquinone, α‐hederin, and nigellidine, could be alternative and promising herbal drugs to combat COVID‐19. Preclinical and clinical trials are required to delineate detailed mechanism of N. sativa's active components and to investigate their efficacy and potency under specific pathophysiological conditions of COVID‐19.
Collapse
Affiliation(s)
- Mohammad Nazrul Islam
- Department of Biotechnology, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh.,ABEx Bio-Research Center, Dhaka, Bangladesh
| | - Khandkar Shaharina Hossain
- ABEx Bio-Research Center, Dhaka, Bangladesh.,Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh
| | - Partha Protim Sarker
- ABEx Bio-Research Center, Dhaka, Bangladesh.,Mawlana Bhashani Science and Technology University Santosh, Tangail, Bangladesh
| | - Jannatul Ferdous
- ABEx Bio-Research Center, Dhaka, Bangladesh.,Department of Physiology, Biochemistry and Pharmacology, Chottogram Veterinary and Animal Science University, Chottogram, Bangladesh
| | - Md Abdul Hannan
- ABEx Bio-Research Center, Dhaka, Bangladesh.,Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh.,Department of Anatomy, Dongguk University College of Medicine, Gyeongju, South Korea
| | - Md Masudur Rahman
- Department of Pathology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Dinh-Toi Chu
- Hanoi National University of Education, Hanoi, Vietnam
| | - Md Jamal Uddin
- ABEx Bio-Research Center, Dhaka, Bangladesh.,Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
72
|
Stilhano RS, Costa AJ, Nishino MS, Shams S, Bartolomeo CS, Breithaupt-Faloppa AC, Silva EA, Ramirez AL, Prado CM, Ureshino RP. SARS-CoV-2 and the possible connection to ERs, ACE2, and RAGE: Focus on susceptibility factors. FASEB J 2020; 34:14103-14119. [PMID: 32965736 PMCID: PMC7537138 DOI: 10.1096/fj.202001394rr] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/15/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has provoked major stresses on the health-care systems of several countries, and caused the death of more than a quarter of a million people globally, mainly in the elderly population with preexisting pathologies. Previous studies with coronavirus (SARS-CoV) point to gender differences in infection and disease progression with increased susceptibility in male patients, indicating that estrogens may be associated with physiological protection against the coronavirus. Therefore, the objectives of this work are threefold. First, we aim to summarize the SARS-CoV-2 infection pathway and the roles both the virus and patient play in COVID-19 (Coronavirus disease 2019) progression, clinical symptomatology, and mortality. Second, we detail the effect estrogen has on viral infection and host infection response, including its role in both the regulation of key viral receptor expression and the mediation of inflammatory activity. Finally, we describe how ERs (estrogen receptors) and RAGE (receptor for advanced glycation end-products) play a critical role in metabolic pathways, which we envisage could maintain a close interplay with SARS-CoV and COVID-19 mortality rates, despite a current lack of research directly determining how. Taken together, we present the current state of the field regarding SARS-CoV-2 research and illuminate where research is needed to better define the role both estrogen and metabolic comorbidities have in the COVID-19 disease state, which can be key in screening potential therapeutic options as the search for effective treatments continue.
Collapse
Affiliation(s)
- Roberta Sessa Stilhano
- Department of Physiological Sciences, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil
| | - Angelica Jardim Costa
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Michelle Sayuri Nishino
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema, Brazil.,Laboratory of Molecular and Translational Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Shahin Shams
- Department of Biomedical Engineering, University of California, Davis, CA, USA
| | - Cynthia Silva Bartolomeo
- Department of Physiological Sciences, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil.,Department of Biosciences, Universidade Federal de São Paulo, Santos, Brazil
| | - Ana Cristina Breithaupt-Faloppa
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Carla Maximo Prado
- Department of Biosciences, Universidade Federal de São Paulo, Santos, Brazil
| | - Rodrigo Portes Ureshino
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema, Brazil.,Laboratory of Molecular and Translational Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
73
|
Bellezza I, Riuzzi F, Chiappalupi S, Arcuri C, Giambanco I, Sorci G, Donato R. Reductive stress in striated muscle cells. Cell Mol Life Sci 2020; 77:3547-3565. [PMID: 32072237 PMCID: PMC11105111 DOI: 10.1007/s00018-020-03476-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/17/2020] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
Abstract
Reductive stress is defined as a condition of sustained increase in cellular glutathione/glutathione disulfide and NADH/NAD+ ratios. Reductive stress is emerging as an important pathophysiological event in several diseased states, being as detrimental as is oxidative stress. Occurrence of reductive stress has been documented in several cardiomyopathies and is an important pathophysiological factor particularly in coronary artery disease and myocardial infarction. Excess activation of the transcription factor, Nrf2-the master regulator of the antioxidant response-, consequent in most cases to defective autophagy, can lead to reductive stress. In addition, hyperglycemia-induced activation of the polyol pathway can lead to increased NADH/NAD+ ratio, which might translate into increased levels of hydrogen sulfide-via enhanced activity of cystathionine β-synthase-that would fuel reductive stress through inhibition of mitochondrial complex I. Reductive stress may be either a potential weapon against cancer priming tumor cells to apoptosis or a cancer's ally promoting tumor cell proliferation and making tumor cells resistant to reactive oxygen species-inducing drugs. In non-cancer pathological states reductive stress is definitely harmful paradoxically leading to reactive oxygen species overproduction via excess NADPH oxidase 4 activity. In face of the documented occurrence of reductive stress in several heart diseases, there is much less information about the occurrence and effects of reductive stress in skeletal muscle tissue. In the present review we describe relevant results emerged from studies of reductive stress in the heart and review skeletal muscle conditions in which reductive stress has been experimentally documented and those in which reductive stress might have an as yet unrecognized pathophysiological role. Establishing whether reductive stress has a (patho)physiological role in skeletal muscle will hopefully contribute to answer the question whether antioxidant supplementation to the general population, athletes, and a large cohort of patients (e.g. heart, sarcopenic, dystrophic, myopathic, cancer, and bronco-pulmonary patients) is harmless or detrimental.
Collapse
Affiliation(s)
- Ilaria Bellezza
- Department of Experimental Medicine, Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
| | - Francesca Riuzzi
- Department of Experimental Medicine, Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
- Interuniversity Institute of Myology (IIM), University of Perugia, 06132, Perugia, Italy
| | - Sara Chiappalupi
- Department of Experimental Medicine, Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
- Interuniversity Institute of Myology (IIM), University of Perugia, 06132, Perugia, Italy
| | - Cataldo Arcuri
- Department of Experimental Medicine, Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
| | - Ileana Giambanco
- Department of Experimental Medicine, Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
| | - Guglielmo Sorci
- Department of Experimental Medicine, Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
- Interuniversity Institute of Myology (IIM), University of Perugia, 06132, Perugia, Italy
- Centro Universitario Di Ricerca Sulla Genomica Funzionale, University of Perugia, 06132, Perugia, Italy
| | - Rosario Donato
- Department of Experimental Medicine, Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy.
- Interuniversity Institute of Myology (IIM), University of Perugia, 06132, Perugia, Italy.
| |
Collapse
|
74
|
Postow L, Noel P, Lin S, Zhou G, Fessel J, Kiley JP. Diagnosing and treating lung disease at the cellular level. Am J Physiol Lung Cell Mol Physiol 2020; 319:L541-L544. [PMID: 32783624 PMCID: PMC7518057 DOI: 10.1152/ajplung.00372.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Lisa Postow
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Patricia Noel
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Sara Lin
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Guofei Zhou
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Josh Fessel
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - James P Kiley
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
75
|
Feghali-Bostwick C. Pulmonary fibrosis: something old, something new…still waiting for a breakthrough. Am J Physiol Lung Cell Mol Physiol 2020; 319:L560-L561. [PMID: 32755317 PMCID: PMC7518060 DOI: 10.1152/ajplung.00366.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Carol Feghali-Bostwick
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
76
|
Brouns SH, Brüggemann R, Linkens AEMJH, Magdelijns FJ, Joosten H, Heijnen R, Ten Cate-Hoek AJ, Schols JMGA, Ten Cate H, Spaetgens B. Mortality and the Use of Antithrombotic Therapies Among Nursing Home Residents with COVID-19. J Am Geriatr Soc 2020; 68:1647-1652. [PMID: 32633418 PMCID: PMC7361386 DOI: 10.1111/jgs.16664] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 01/16/2023]
Abstract
BACKGROUND/OBJECTIVES Nursing home (NH) residents are a vulnerable population, susceptible to respiratory disease outbreaks such as coronavirus disease 2019 (COVID‐19). Poor outcome in COVID‐19 is at least partly attributed to hypercoagulability, resulting in a high incidence of thromboembolic complications. It is unknown whether commonly used antithrombotic therapies may protect the vulnerable NH population with COVID‐19 against mortality. This study aimed to investigate whether the use of oral antithrombotic therapy (OAT) was associated with a lower mortality in NH residents with COVID‐19. DESIGN A retrospective case series. SETTING Fourteen NH facilities from the NH organization Envida, Maastricht, the Netherlands PARTICIPANTS A total of 101 NH residents with COVID‐19 were enrolled. MEASUREMENTS The primary outcome was all‐cause mortality. The association between age, sex, comorbidity, OAT, and mortality was assessed using logistic regression analysis. RESULTS Overall mortality was 47.5% in NH residents from 14 NH facilities. Age, comorbidity, and medication use were comparable among NH residents who survived and who died. OAT was associated with a lower mortality in NH residents with COVID‐19 in the univariable analysis (odds ratio (OR) = 0.89; 95% confidence interval (CI) = 0.41–1.95). However, additional adjustments for sex, age, and comorbidity attenuated this difference. Mortality in males was higher compared with female residents (OR = 3.96; 95% CI = 1.62–9.65). Male residents who died were younger compared with female residents (82.2 (standard deviation (SD) = 6.3) vs 89.1 (SD = 6.8) years; P < .001). CONCLUSION NH residents in the 14 facilities we studied were severely affected by the COVID‐19 pandemic, with a mortality of 47.5%. Male NH residents with COVID‐19 had worse outcomes than females. We did not find evidence for any protection against mortality by OAT, necessitating further research into strategies to mitigate poor outcome of COVID‐19 in vulnerable NH populations. J Am Geriatr Soc 68:1647‐1652, 2020.
Collapse
Affiliation(s)
- Steffie H Brouns
- Department of Internal Medicine, Division of General Internal Medicine, Section Geriatric Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Renée Brüggemann
- Department of Internal Medicine, Division of General Internal Medicine, Section Geriatric Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Aimée E M J H Linkens
- Department of Internal Medicine, Division of General Internal Medicine, Section Geriatric Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Fabienne J Magdelijns
- Department of Internal Medicine, Division of General Internal Medicine, Section Geriatric Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Hanneke Joosten
- Department of Internal Medicine, Division of General Internal Medicine, Section Geriatric Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Ron Heijnen
- Envida Care Organization, Maastricht, The Netherlands
| | - Arina J Ten Cate-Hoek
- Thrombosis Expert Center Maastricht and Department of Internal Medicine, Section Vascular Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands.,Laboratory for Clinical Thrombosis and Hemostasis, Department of Biochemistry, Cardiovascular Research Institute (CARIM), Maastricht, The Netherlands
| | - Jos M G A Schols
- Envida Care Organization, Maastricht, The Netherlands.,Caphri, Department of Health Services Research and Department of Family Medicine, Maastricht University, Maastricht, The Netherlands
| | - Hugo Ten Cate
- Thrombosis Expert Center Maastricht and Department of Internal Medicine, Section Vascular Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands.,Laboratory for Clinical Thrombosis and Hemostasis, Department of Biochemistry, Cardiovascular Research Institute (CARIM), Maastricht, The Netherlands
| | - Bart Spaetgens
- Department of Internal Medicine, Division of General Internal Medicine, Section Geriatric Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
77
|
Kato K, Logsdon NJ, Shin YJ, Palumbo S, Knox A, Irish JD, Rounseville SP, Rummel SR, Mohamed M, Ahmad K, Trinh JM, Kurundkar D, Knox KS, Thannickal VJ, Hecker L. Impaired Myofibroblast Dedifferentiation Contributes to Nonresolving Fibrosis in Aging. Am J Respir Cell Mol Biol 2020; 62:633-644. [PMID: 31962055 DOI: 10.1165/rcmb.2019-0092oc] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal age-associated disease with no cure. Although IPF is widely regarded as a disease of aging, the cellular mechanisms that contribute to this age-associated predilection remain elusive. In this study, we sought to evaluate the consequences of senescence on myofibroblast cell fate and fibrotic responses to lung injury in the context of aging. We demonstrated that nonsenescent lung myofibroblasts maintained the capacity for dedifferentiation, whereas senescent/IPF myofibroblasts exhibited an impaired capacity for dedifferentiation. We previously demonstrated that the transcription factor MyoD acts as a critical switch in the differentiation and dedifferentiation of myofibroblasts. Here, we demonstrate that decreased levels of MyoD preceded myofibroblast dedifferentiation and apoptosis susceptibility in nonsenescent cells, whereas MyoD expression remained elevated in senescent/IPF myofibroblasts, which failed to undergo dedifferentiation and demonstrated resistance to apoptosis. Genetic strategies to silence MyoD restored the susceptibility of IPF myofibroblasts to undergo apoptosis and led to a partial reversal of age-associated persistent fibrosis in vivo. The capacity for myofibroblast dedifferentiation and subsequent apoptosis may be critical for normal physiologic responses to tissue injury, whereas restricted dedifferentiation and apoptosis resistance in senescent cells may underlie the progressive nature of age-associated human fibrotic disorders. These studies support the concept that senescence may promote profibrotic effects via impaired myofibroblast dedifferentiation and apoptosis resistance, which contributes to myofibroblast accumulation and ultimately persistent fibrosis in aging.
Collapse
Affiliation(s)
- Kosuke Kato
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, University of Arizona, Tucson, Arizona
| | - Naomi J Logsdon
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yoon-Joo Shin
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, University of Arizona, Tucson, Arizona
| | - Sunny Palumbo
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, University of Arizona, Tucson, Arizona
| | - Adam Knox
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, University of Arizona, Tucson, Arizona
| | - Joseph D Irish
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, University of Arizona, Tucson, Arizona
| | - Skye P Rounseville
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, University of Arizona, Tucson, Arizona
| | - Sydney R Rummel
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, University of Arizona, Tucson, Arizona
| | - Mohamed Mohamed
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, University of Arizona, Tucson, Arizona
| | - Kareem Ahmad
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, University of Arizona, Tucson, Arizona
| | - Johnny M Trinh
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, University of Arizona, Tucson, Arizona
| | - Deepali Kurundkar
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, University of Arizona, Tucson, Arizona
| | - Kenneth S Knox
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Birmingham VA Medical Center, Birmingham, Alabama; and
| | - Louise Hecker
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, University of Arizona, Tucson, Arizona.,Southern Arizona VA Health Care System, Tucson, Arizona
| |
Collapse
|
78
|
He C, Chen Z, Liu S, Chen H, Zhang F. Prevalence and risk factors of interstitial lung disease in patients with primary Sjögren's syndrome: A systematic review and meta-analysis. Int J Rheum Dis 2020; 23:1009-1018. [PMID: 32588976 DOI: 10.1111/1756-185x.13881] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/10/2020] [Accepted: 05/14/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To systematically review the prevalence and risk factors for interstitial lung disease (ILD) in patients with primary Sjögren's syndrome (pSS). METHODS We searched PubMed, Embase, and Cochrane Library from inception to December 2019. Two investigators reviewed records according to predefined criteria. We calculated the pooled prevalence, weighted mean differences (WMDs), odds ratio (OR) and 95% confidence intervals (CIs) using a random effects model, and performed subgroup analysis, sensitivity analysis, and Egger's test. RESULTS In 23 studies with 6157 pSS patients, the pooled prevalence of ILD in pSS patients was 13% (95% CI: 9-19). The pSS-ILD prevalence was higher in Asia (20%) than that in Europe (10%). Male gender (OR = 1.92, 95% CI: 1.26-2.95), elder age (WMD = 9.25 years, 95% CI: 2.78-15.72) and higher C-reactive protein (CRP) (WMD = 3.92 mg/L, 95% CI: 0.27-1.61) was associated with ILD in pSS patients. CONCLUSION Interstitial lung disease was prevalent in pSS patients. Elder age, male gender and higher CRP were risk factors for pSS-ILD. Our data highlighted the importance of screening for ILD in high-risk pSS patients.
Collapse
Affiliation(s)
- Chengmei He
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
| | - Zhilei Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
| | - Suying Liu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
| | - Hua Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
79
|
Fujikawa H, Sakamoto Y, Masuda N, Oniki K, Kamei S, Nohara H, Nakashima R, Maruta K, Kawakami T, Eto Y, Takahashi N, Takeo T, Nakagata N, Watanabe H, Otake K, Ogata Y, Tomioka NH, Hosoyamada M, Takada T, Ueno-Shuto K, Suico MA, Kai H, Saruwatari J, Shuto T. Higher Blood Uric Acid in Female Humans and Mice as a Protective Factor against Pathophysiological Decline of Lung Function. Antioxidants (Basel) 2020; 9:antiox9050387. [PMID: 32384764 PMCID: PMC7278835 DOI: 10.3390/antiox9050387] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 12/22/2022] Open
Abstract
The oxidant/antioxidant imbalance plays a pivotal role in the lung. Uric acid (UA), an endogenous antioxidant, is highly present in lung tissue, however, its impact on lung function under pathophysiological conditions remains unknown. In this work, pharmacological and genetic inhibition of UA metabolism in experimental mouse models of acute and chronic obstructive pulmonary disease (COPD) revealed that increased plasma UA levels improved emphysematous phenotype and lung dysfunction in accordance with reduced oxidative stress specifically in female but not in male mice, despite no impact of plasma UA induction on the pulmonary phenotypes in nondiseased mice. In vitro experiments determined that UA significantly suppressed hydrogen peroxide (H2O2)-induced oxidative stress in female donor-derived primary human bronchial epithelial (NHBE) cells in the absence of estrogen, implying that the benefit of UA is limited to the female airway in postmenopausal conditions. Consistently, our clinical observational analyses confirmed that higher blood UA levels, as well as the SLC2A9/GLUT9 rs11722228 T/T genotype, were associated with higher lung function in elderly human females. Together, our findings provide the first unique evidence that higher blood UA is a protective factor against the pathological decline of lung function in female mice, and possibly against aging-associated physiological decline in human females.
Collapse
Affiliation(s)
- Haruka Fujikawa
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (H.F.); (S.K.); (H.N.); (R.N.); (K.M.); (T.K.); (Y.E.); (N.T.); (M.A.S.); (H.K.)
- Program for Leading Graduate Schools “HIGO (Health life science: Interdisciplinary and Global Oriented) Program”, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuki Sakamoto
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (Y.S.); (N.M.); (K.O.)
| | - Natsuki Masuda
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (Y.S.); (N.M.); (K.O.)
| | - Kentaro Oniki
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (Y.S.); (N.M.); (K.O.)
| | - Shunsuke Kamei
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (H.F.); (S.K.); (H.N.); (R.N.); (K.M.); (T.K.); (Y.E.); (N.T.); (M.A.S.); (H.K.)
- Program for Leading Graduate Schools “HIGO (Health life science: Interdisciplinary and Global Oriented) Program”, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 714 Petit Science Center, 100 Piedmont Ave SE, Atlanta, GA30303, USA
| | - Hirofumi Nohara
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (H.F.); (S.K.); (H.N.); (R.N.); (K.M.); (T.K.); (Y.E.); (N.T.); (M.A.S.); (H.K.)
- Program for Leading Graduate Schools “HIGO (Health life science: Interdisciplinary and Global Oriented) Program”, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Ryunosuke Nakashima
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (H.F.); (S.K.); (H.N.); (R.N.); (K.M.); (T.K.); (Y.E.); (N.T.); (M.A.S.); (H.K.)
| | - Kasumi Maruta
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (H.F.); (S.K.); (H.N.); (R.N.); (K.M.); (T.K.); (Y.E.); (N.T.); (M.A.S.); (H.K.)
| | - Taisei Kawakami
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (H.F.); (S.K.); (H.N.); (R.N.); (K.M.); (T.K.); (Y.E.); (N.T.); (M.A.S.); (H.K.)
| | - Yuka Eto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (H.F.); (S.K.); (H.N.); (R.N.); (K.M.); (T.K.); (Y.E.); (N.T.); (M.A.S.); (H.K.)
| | - Noriki Takahashi
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (H.F.); (S.K.); (H.N.); (R.N.); (K.M.); (T.K.); (Y.E.); (N.T.); (M.A.S.); (H.K.)
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860–0811, Japan; (T.T.); (N.N.)
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860–0811, Japan; (T.T.); (N.N.)
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan;
| | - Koji Otake
- Japanese Red Cross Kumamoto Health Care Center, Kumamoto, 2-1-1 Nagamine-minami, Higashi-ku, Kumamoto 861-8520, Japan; (K.O.); (Y.O.)
| | - Yasuhiro Ogata
- Japanese Red Cross Kumamoto Health Care Center, Kumamoto, 2-1-1 Nagamine-minami, Higashi-ku, Kumamoto 861-8520, Japan; (K.O.); (Y.O.)
| | - Naoko H. Tomioka
- Human Physiology and Pathology, Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan; (N.H.T.); (M.H.)
| | - Makoto Hosoyamada
- Human Physiology and Pathology, Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan; (N.H.T.); (M.H.)
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan;
| | - Keiko Ueno-Shuto
- Laboratory of Pharmacology, Division of Life Science, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan;
| | - Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (H.F.); (S.K.); (H.N.); (R.N.); (K.M.); (T.K.); (Y.E.); (N.T.); (M.A.S.); (H.K.)
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (H.F.); (S.K.); (H.N.); (R.N.); (K.M.); (T.K.); (Y.E.); (N.T.); (M.A.S.); (H.K.)
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Junji Saruwatari
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (Y.S.); (N.M.); (K.O.)
- Correspondence: (J.S.); (T.S.); Tel.: +81-96-371-4512 (J.S.); +81-96-371-4407 (T.S.)
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (H.F.); (S.K.); (H.N.); (R.N.); (K.M.); (T.K.); (Y.E.); (N.T.); (M.A.S.); (H.K.)
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
- Correspondence: (J.S.); (T.S.); Tel.: +81-96-371-4512 (J.S.); +81-96-371-4407 (T.S.)
| |
Collapse
|
80
|
Boots AW, Veith C, Albrecht C, Bartholome R, Drittij MJ, Claessen SMH, Bast A, Rosenbruch M, Jonkers L, van Schooten FJ, Schins RPF. The dietary antioxidant quercetin reduces hallmarks of bleomycin-induced lung fibrogenesis in mice. BMC Pulm Med 2020; 20:112. [PMID: 32349726 PMCID: PMC7191795 DOI: 10.1186/s12890-020-1142-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 04/13/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic, lethal disease of which the etiology is still not fully understood. Current treatment comprises two FDA-approved drugs that can slow down yet not stop or reverse the disease. As IPF pathology is associated with an altered redox balance, adding a redox modulating component to current therapy might exert beneficial effects. Quercetin is a dietary antioxidant with strong redox modulating capacities that is suggested to exert part of its antioxidative effects via activation of the redox-sensitive transcription factor Nrf2 that regulates endogenous antioxidant levels. Therefore, the aim of the present study was to investigate if the dietary antioxidant quercetin can exert anti-fibrotic effects in a mouse model of bleomycin-induced pulmonary fibrogenesis through Nrf2-dependent restoration of redox imbalance. METHODS Homozygous Nrf2 deficient mice and their wildtype littermates were fed a control diet without or with 800 mg quercetin per kg diet from 7 days prior to a single 1 μg/2 μl per g BW bleomycin challenge until they were sacrificed 14 days afterwards. Lung tissue and plasma were collected to determine markers of fibrosis (expression of extracellular matrix genes and histopathology), inflammation (pulmonary gene expression and plasma levels of tumor necrosis factor-α (TNFα) and keratinocyte chemoattrachtant (KC)), and redox balance (pulmonary gene expression of antioxidants and malondialdehyde-dG (MDA)- DNA adducts). RESULTS Mice fed the enriched diet for 7 days prior to the bleomycin challenge had significantly enhanced plasma and pulmonary quercetin levels (11.08 ± 0.73 μM versus 7.05 ± 0.2 μM) combined with increased expression of Nrf2 and Nrf2-responsive genes compared to mice fed the control diet in lung tissue. Upon bleomycin treatment, quercetin-fed mice displayed reduced expression of collagen (COL1A2) and fibronectin (FN1) and a tendency of reduced inflammatory lesions (2.8 ± 0.7 versus 1.9 ± 0.8). These beneficial effects were accompanied by reduced pulmonary gene expression of TNFα and KC, but not their plasma levels, and enhanced Nrf2-induced pulmonary antioxidant defences. In Nrf2 deficient mice, no effect of the dietary antioxidant on either histology or inflammatory lesions was observed. CONCLUSION Quercetin exerts anti-fibrogenic and anti-inflammatory effects on bleomycin-induced pulmonary damage in mice possibly through modulation of the redox balance by inducing Nrf2. However, quercetin could not rescue the bleomycin-induced pulmonary damage indicating that quercetin alone cannot ameliorate the progression of IPF.
Collapse
Affiliation(s)
- Agnes W Boots
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands. .,IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, DE, Germany.
| | - Carmen Veith
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands
| | - Catrin Albrecht
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, DE, Germany
| | - Roger Bartholome
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands
| | - Marie-José Drittij
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands
| | - Sandra M H Claessen
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands
| | - Aalt Bast
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands
| | | | - Leonie Jonkers
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands
| | - Frederik-Jan van Schooten
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, DE, Germany
| |
Collapse
|
81
|
Boretti A, Banik BK. Intravenous vitamin C for reduction of cytokines storm in acute respiratory distress syndrome. PHARMANUTRITION 2020; 12:100190. [PMID: 32322486 PMCID: PMC7172861 DOI: 10.1016/j.phanu.2020.100190] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 12/21/2022]
Abstract
The recent outbreak of Covid19 has required urgent treatments for numerous patients. No suitable vaccines or antivirals are available for Covid19. The efficiency against Covid19 of WHO therapies of choice, that are two antivirals developed for other pathologies, is controversial. Therefore, alternative approaches are required. Intravenous (IV) Vitamin C (Vit-C) has emerged as one of the other alternatives for this purpose. Here we review the effects of IV Vit-C on the immune system response, the antiviral properties of IV Vit-C, and finally the antioxidant properties of IV Vit-C to specifically address the cytokines' storm characteristic of the Acute Respiratory Distress Syndrome (ARDS) that occur in the later cycle of the Covid19 infectious disease.
Collapse
Affiliation(s)
- Alberto Boretti
- Prince Mohammad Bin Fahd University, P.O. Box 1664, Al Khobar, 31952, Saudi Arabia
| | - Bimal Krishna Banik
- Prince Mohammad Bin Fahd University, P.O. Box 1664, Al Khobar, 31952, Saudi Arabia
| |
Collapse
|
82
|
NADPH oxidases: Pathophysiology and therapeutic potential in age-associated pulmonary fibrosis. Redox Biol 2020; 33:101541. [PMID: 32360174 PMCID: PMC7251244 DOI: 10.1016/j.redox.2020.101541] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress has been associated with a number of human fibrotic diseases, including idiopathic pulmonary fibrosis (IPF). Although oxidative stress is associated with both fibrosis and aging, the precise cellular sources(s) of reactive oxygen species (ROS) that contribute to the disease pathogenesis remain poorly understood. NADPH oxidase (Nox) enzymes are an evolutionarily conserved family, where their only known function is the production of ROS. A growing body of evidence supports a link between excessive Nox-derived ROS and numerous chronic diseases (including fibrotic disease), which is most prevalent among the elderly population. In this review, we examine the evidence for Nox isoforms in the pathogenesis of IPF, and the potential to target this enzyme family for the treatment of IPF and related fibrotic disorders. A better understanding of the Nox-mediated redox imbalance in aging may be critical to the development of more effective therapeutic strategies for age-associated fibrotic disorders. Strategies aimed at specifically blocking the source(s) of ROS through Nox inhibition may prove to be more effective as anti-fibrotic therapies, as compared to antioxidant approaches. This review also discusses the potential of Nox-targeting therapeutics currently in development.
Collapse
|
83
|
Hernandez DM, Kang JH, Choudhury M, Andrianifahanana M, Yin X, Limper AH, Leof EB. IPF pathogenesis is dependent upon TGFβ induction of IGF-1. FASEB J 2020; 34:5363-5388. [PMID: 32067272 PMCID: PMC7136152 DOI: 10.1096/fj.201901719rr] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
Abstract
Pathogenic fibrotic diseases, including idiopathic pulmonary fibrosis (IPF), have some of the worst prognoses and affect millions of people worldwide. With unclear etiology and minimally effective therapies, two-thirds of IPF patients die within 2-5 years from this progressive interstitial lung disease. Transforming Growth Factor Beta (TGFβ) and insulin-like growth factor-1 (IGF-1) are known to promote fibrosis; however, myofibroblast specific upregulation of IGF-1 in the initiation and progression of TGFβ-induced fibrogenesis and IPF have remained unexplored. To address this, the current study (1) documents the upregulation of IGF-1 via TGFβ in myofibroblasts and fibrotic lung tissue, as well as its correlation with decreased pulmonary function in advanced IPF; (2) identifies IGF-1's C1 promoter as mediating the increase in IGF-1 transcription by TGFβ in pulmonary fibroblasts; (3) determines that SMAD2 and mTOR signaling are required for TGFβ-dependent Igf-1 expression in myofibroblasts; (4) demonstrates IGF-1R activation is essential to support TGFβ-driven profibrotic myofibroblast functions and excessive wound healing; and (5) establishes the effectiveness of slowing the progression of murine lung fibrosis with the IGF-1R inhibitor OSI-906. These findings expand our knowledge of IGF-1's role as a novel fibrotic-switch, bringing us one step closer to understanding the complex biological mechanisms responsible for fibrotic diseases and developing effective therapies.
Collapse
Affiliation(s)
- Danielle M. Hernandez
- Mayo Clinic Graduate School of Biomedical Sciences, Biochemistry & Molecular Biology Department, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Current Address: Department of Neurosurgery, Masonic Cancer Center, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Jeong-Han Kang
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Current Address: Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Malay Choudhury
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Mahefatiana Andrianifahanana
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Xueqian Yin
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Current Address: Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Andrew H. Limper
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Edward B. Leof
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
84
|
Cheng RZ. Can early and high intravenous dose of vitamin C prevent and treat coronavirus disease 2019 (COVID-19)? MEDICINE IN DRUG DISCOVERY 2020; 5:100028. [PMID: 32328576 PMCID: PMC7167497 DOI: 10.1016/j.medidd.2020.100028] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 01/17/2023] Open
|
85
|
Otoupalova E, Smith S, Cheng G, Thannickal VJ. Oxidative Stress in Pulmonary Fibrosis. Compr Physiol 2020; 10:509-547. [PMID: 32163196 DOI: 10.1002/cphy.c190017] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidative stress has been linked to various disease states as well as physiological aging. The lungs are uniquely exposed to a highly oxidizing environment and have evolved several mechanisms to attenuate oxidative stress. Idiopathic pulmonary fibrosis (IPF) is a progressive age-related disorder that leads to architectural remodeling, impaired gas exchange, respiratory failure, and death. In this article, we discuss cellular sources of oxidant production, and antioxidant defenses, both enzymatic and nonenzymatic. We outline the current understanding of the pathogenesis of IPF and how oxidative stress contributes to fibrosis. Further, we link oxidative stress to the biology of aging that involves DNA damage responses, loss of proteostasis, and mitochondrial dysfunction. We discuss the recent findings on the role of reactive oxygen species (ROS) in specific fibrotic processes such as macrophage polarization and immunosenescence, alveolar epithelial cell apoptosis and senescence, myofibroblast differentiation and senescence, and alterations in the acellular extracellular matrix. Finally, we provide an overview of the current preclinical studies and clinical trials targeting oxidative stress in fibrosis and potential new strategies for future therapeutic interventions. © 2020 American Physiological Society. Compr Physiol 10:509-547, 2020.
Collapse
Affiliation(s)
- Eva Otoupalova
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sam Smith
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Guangjie Cheng
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
86
|
Barnes PJ, Baker J, Donnelly LE. Cellular Senescence as a Mechanism and Target in Chronic Lung Diseases. Am J Respir Crit Care Med 2020; 200:556-564. [PMID: 30860857 DOI: 10.1164/rccm.201810-1975tr] [Citation(s) in RCA: 326] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cellular senescence is now considered an important driving mechanism for chronic lung diseases, particularly chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis. Cellular senescence is due to replicative and stress-related senescence with activation of p53 and p16INK4a, respectively, leading to activation of p21CIP1 and cell cycle arrest. Senescent cells secrete multiple inflammatory proteins known as the senescence-associated secretory phenotype, leading to low-grade chronic inflammation, which further drives senescence. Loss of key antiaging molecules sirtuin-1 and sirtuin-6 may be important in acceleration of aging and arises from oxidative stress reducing phosphatase PTEN (phosphatase tensin homolog), thereby activating PI3K (phosphoinositide-3-kinase) and mTOR (mammalian target of rapamycin). MicroRNA-34a (miR-34a), which is regulated by PI3K-mTOR signaling, plays a pivotal role in reducing sirtuin-1/6, and its inhibition with an antagomir results in their restoration, reducing markers of senescence, reducing senescence-associated secretory phenotype, and reversing cell cycle arrest in epithelial cells from peripheral airways of patients with COPD. miR-570 is also involved in reduction of sirtuin-1 and cellular senescence and is activated by p38 mitogen-activated protein kinase. These miRNAs may be released from cells in extracellular vesicles that are taken up by other cells, thereby spreading senescence locally within the lung but also outside the lung through the circulation; this may account for comorbidities of COPD and other lung diseases. Understanding the mechanisms of cellular senescence may result in new treatments for chronic lung disease, either by inhibiting PI3K-mTOR signaling, by inhibiting specific miRNAs, or by deletion of senescent cells with senolytic therapies, already shown to be effective in experimental lung fibrosis.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jonathan Baker
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Louise E Donnelly
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
87
|
El Assar M, Angulo J, Rodríguez-Mañas L. Frailty as a phenotypic manifestation of underlying oxidative stress. Free Radic Biol Med 2020; 149:72-77. [PMID: 31422077 DOI: 10.1016/j.freeradbiomed.2019.08.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/09/2019] [Accepted: 08/11/2019] [Indexed: 02/08/2023]
Abstract
Oxidative stress plays a key role in the aging process. Lifestyle behaviours including low physical activity and inadequate nutritional habits in addition to genetic susceptibility and some chronic diseases compromise physiological response to free radicals and promote oxidative damage. Reduced resilience (referred to the ability to respond to stressors or adverse conditions) or functional reserve in isolated organs or systems determines clinical manifestations as the age-related chronic diseases while multisystemic dysfunction results in the frailty phenotype. In older adults, frailty, but not age, is associated with elevation of oxidative stress markers and reduction of antioxidant parameters. Mitochondrial dysfunction related to oxidative stress plays a prominent role in this process affecting not only skeletal muscle but also other potential tissues and organs. Increasing endogenous antioxidant capacity in different systems by exercise outstand among therapeutic interventions with potential ability to prevent or delay frailty phenotype and to promote healthy aging.
Collapse
Affiliation(s)
- Mariam El Assar
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Angulo
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Histología-Investigación, Unidad de Investigación Traslacional en Cardiología, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Leocadio Rodríguez-Mañas
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Geriatría, Hospital Universitario de Getafe, Getafe, Spain.
| |
Collapse
|
88
|
Chen D, Liu J, Meng J, Li D, Zhao P, Duan Y, Wang J. Integrative Analysis of Long Non-Coding RNAs (lncRNAs), miRNAs, and mRNA-Associated ceRNA Network in Lung Tissue of Aging Mice and Changes After Treatment with Codonopsis pilosula. Med Sci Monit 2020; 26:e921580. [PMID: 32049955 PMCID: PMC7034407 DOI: 10.12659/msm.921580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background Codonopsis pilosula is a traditional Chinese medicine that has an anti-aging effect. However, the anti-aging effect of Codonopsis pilosula on the lungs remains largely unknown, and the molecular mechanism also needs to be further studied. Thus, we investigated the protective effect of Codonopsis pilosula on the lungs of aging mice, and explored the underlying molecular mechanism. Material/Methods We established an aging mouse model and then treated the mice with Codonopsis pilosula. Microarray analysis and bioinformatics methods were used to comprehensively analyze the lncRNA-miRNA-mRNA (ceRNA) network. Results Our results showed that we successfully established the aging mouse model. The microarray analysis showed that 138 lncRNAs, 128 mRNAs, and 7 miRNAs were significantly changed after aging, and 282 lncRNAs, 283 mRNAs, and 19 miRNAs were dysregulated after treatment with Codonopsis pilosula. To explore the signaling pathways involved, KEGG pathway analysis was performed. Compared with the ceRNA network in aging mice and after treatment with Codonopsis pilosula, we found that 3 mRNAs (Hif3a, Zbtb16, Plxna2) and 1 lncRNA (NONMMUT063872) were associated with the anti-aging effect of Codonopsis pilosula and they were validated by quantitative real-time polymerase chain reaction (qRT-PCR) analysis. Conclusions Our results showed that Codonopsis pilosula has a protective effect on the aging lung, and the ceRNA network plays an important role in the anti-aging effect of Codonopsis pilosula.
Collapse
Affiliation(s)
- Dongmei Chen
- School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China (mainland)
| | - Jiajia Liu
- School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China (mainland)
| | - Jie Meng
- School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China (mainland)
| | - Dandan Li
- School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China (mainland)
| | - Pan Zhao
- School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China (mainland)
| | - Yongqiang Duan
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China (mainland)
| | - Jing Wang
- School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China (mainland).,The Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Gansu University of Chinese Medicine, Lanzhou, Gansu, China (mainland)
| |
Collapse
|
89
|
Tan X, Yang Y, Xu J, Zhang P, Deng R, Mao Y, He J, Chen Y, Zhang Y, Ding J, Li H, Shen H, Li X, Dong W, Chen G. Luteolin Exerts Neuroprotection via Modulation of the p62/Keap1/Nrf2 Pathway in Intracerebral Hemorrhage. Front Pharmacol 2020; 10:1551. [PMID: 32038239 PMCID: PMC6985769 DOI: 10.3389/fphar.2019.01551] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/02/2019] [Indexed: 12/14/2022] Open
Abstract
Upregulation of neuronal oxidative stress is involved in the progression of secondary brain injury (SBI) following intracerebral hemorrhage (ICH). In this study, we investigated the potential effects and underlying mechanisms of luteolin on ICH-induced SBI. Autologous blood and oxyhemoglobin (OxyHb) were used to establish in vivo and in vitro models of ICH, respectively. Luteolin treatment effectively alleviated brain edema and ameliorated neurobehavioral dysfunction and memory loss in vivo. Also, in vivo, we found that luteolin promoted the activation of the sequestosome 1 (p62)/kelch‐like enoyl-coenzyme A hydratase (ECH)‐associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway by enhancing autophagy and increasing the translocation of Nrf2 to the nucleus. Meanwhile, luteolin inhibited the ubiquitination of Nrf2 and increased the expression levels of downstream antioxidant proteins, such as heme oxygenase-1 (HO-1) and reduced nicotinamide adenine dinucleotide phosphate (NADPH): quinine oxidoreductase 1 (NQO1). This effect of luteolin was also confirmed in vitro, which was reversed by the autophagy inhibitor, chloroquine (CQ). Additionally, we found that luteolin inhibited the production of neuronal mitochondrial superoxides (MitoSOX) and alleviated neuronal mitochondrial injury in vitro, as indicated via tetrachloro-tetraethylbenzimidazol carbocyanine-iodide (JC-1) staining and MitoSOX staining. Taken together, our findings demonstrate that luteolin enhances autophagy and anti-oxidative processes in both in vivo and in vitro models of ICH, and that activation of the p62-Keap1-Nrf2 pathway, is involved in such luteolin-induced neuroprotection. Hence, luteolin may represent a promising candidate for the treatment of ICH-induced SBI.
Collapse
Affiliation(s)
- Xin Tan
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Yang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianguo Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Peng Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ruming Deng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yiguang Mao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jia He
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yibin Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yan Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiasheng Ding
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wanli Dong
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
90
|
Breithaupt-Faloppa AC, Correia CDJ, Prado CM, Stilhano RS, Ureshino RP, Moreira LFP. 17β-Estradiol, a potential ally to alleviate SARS-CoV-2 infection. Clinics (Sao Paulo) 2020; 75:e1980. [PMID: 32490931 PMCID: PMC7233687 DOI: 10.6061/clinics/2020/e1980] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 01/08/2023] Open
Abstract
Considering that female sexual hormones may modulate the inflammatory response and also exhibit direct effects on the cells of the immune system, herein, we intend to discuss the sex differences and the role of estradiol in modulating the lung and systemic inflammatory response, focusing on its possible application as a treatment modality for SARS-CoV-2 patients. COVID-19 patients develop severe hypoxemia early in the course of the disease, which is silent most of the time. Small fibrinous thrombi in pulmonary arterioles and a tumefaction of endothelial were observed in the autopsies of fatal COVID-19 cases. Studies showed that the viral infection induces a vascular process in the lung, which included vasodilation and endothelial dysfunction. Further, the proportions of CD4+ T and CD8+ T lymphocytes were strongly reduced in patients with severe SARS-CoV-2 infection. Estradiol is connected with CD4+ T cell numbers and increases T-reg cell populations, affecting immune responses to infection. It is known that estradiol exerts a protective effect on endothelial function, activating the generation of nitric oxide (NO) via endothelial nitric oxide synthase. Estrogen attenuates the vasoconstrictor response to various stimuli and induces vasodilation in the pulmonary vasculature during stress situations like hypoxia. It exerts a variety of rapid actions, which are initiated after its coupling with membrane receptors, which in turn, may positively modulate vascular responses in pulmonary disease and help to maintain microvascular flow. Direct and indirect mechanisms underlying the effects of estradiol were investigated, and the results point to a possible protective effect of estradiol against COVID-19, indicating that it may be considered as an adjuvant therapeutic element for the treatment of patients affected by the novel coronavirus.
Collapse
Affiliation(s)
- Ana Cristina Breithaupt-Faloppa
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulacao (LIM-11), Instituto do Coracao (InCor), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| | - Cristiano de Jesus Correia
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulacao (LIM-11), Instituto do Coracao (InCor), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Carla Máximo Prado
- Instituto de Saude e Sociedade (ISS), Universidade Federal de Sao Paulo (UNIFESP), Santos, SP, BR
| | | | - Rodrigo Portes Ureshino
- Departamento de Ciencias Biologicas, Universidade Federal de Sao Paulo (UNIFESP), Diadema, SP, BR
- Laboratorio de Endocrinologia Molecular e Translacional, Escola Paulista de Medicina, Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP, BR
| | - Luiz Felipe Pinho Moreira
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulacao (LIM-11), Instituto do Coracao (InCor), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| |
Collapse
|
91
|
Thimmulappa RK, Chattopadhyay I, Rajasekaran S. Oxidative Stress Mechanisms in the Pathogenesis of Environmental Lung Diseases. OXIDATIVE STRESS IN LUNG DISEASES 2019. [PMCID: PMC7120104 DOI: 10.1007/978-981-32-9366-3_5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Globally, respiratory diseases are major cause of disability and mortality, and more alarmingly, it disproportionately affects developing countries, which is largely attributed to poor quality of air. Tobacco smoke and emissions from combustion of fossil fuel and biomass fuel are the major airborne pollutants affecting human lung health. Oxidative stress is the dominant driving force by which the airborne pollutants exert their toxicity in lungs and cause respiratory diseases. Most airborne pollutants are associated with intrinsic oxidative potential and, additionally, stimulate endogenous production of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Elevated ROS and RNS in lungs modulate redox signals and cause irreversible damage to critical biomolecules (lipids, proteins and DNA) and initiate various pathogenic cellular process. This chapter provides an insight into oxidative stress-linked pathogenic cellular process such as lipid peroxidation, inflammation, cell death, mitochondrial dysfunction, endoplasmic reticulum stress, epigenetic changes, profibrotic signals and mucus hypersecretion, which drive the development and progression of lung diseases. Lungs are associated with robust enzymatic and non-enzymatic (GSH, ascorbic acid, uric acid, vitamin E) antioxidant defences. However, sustained production of free radicals due to continuous exposures to airborne pollutants overwhelms lung antioxidant defences and causes oxidative injury. Preclinical studies have demonstrated the critical roles and therapeutic potential of upregulating lung antioxidants for intervention of respiratory diseases; however, so far clinical benefits in antioxidant supplementation trials have been minimal and conflicting. Antioxidants alone may not be effective in treatment of respiratory diseases; however it could be a promising adjunctive therapy.
Collapse
|
92
|
Li D, Qi J, Wang J, Pan Y, Li J, Xia X, Dou H, Hou Y. Protective effect of dihydroartemisinin in inhibiting senescence of myeloid-derived suppressor cells from lupus mice via Nrf2/HO-1 pathway. Free Radic Biol Med 2019; 143:260-274. [PMID: 31419476 DOI: 10.1016/j.freeradbiomed.2019.08.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/21/2019] [Accepted: 08/12/2019] [Indexed: 12/20/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune inflammatory disease characterized by multi-organ injury. However, whether myeloid-derived suppressor cells (MDSCs) senescence exists and participates in SLE pathogenesis remains unclear. And whether dihydroartemisinin (DHA) attenuates the symptoms of SLE via relieving MDSCs senescence remains elusive. In the present study, we measured the senescence of MDSCs in SLE using SA-β-gal staining, senescence-associated secretory phenotype (SASP) and Western blot analysis of aging-related protein P21, P53 and P16. We identified that the MDSCs senescence promoted the SLE progress by adaptive transfer MDSCs assays. Meanwhile, we further showed DHA ameliorated the symptoms of pristane-induced lupus by histopathological detection, Western blot analysis, immunofluorescence, QPCR and flow cytometry analysis. DHA reversed MDSCs senescence by detecting SA-β-gal staining, senescence-associated secretory phenotype (SASP) and Western blot analysis of aging-related protein P21, P53 and P16. Furthermore, mechanistic analysis indicated that the inhibitory effect of DHA on MDSCs senescence was blocked by ML385, the specific antagonist of Nrf2, which revealed that the effect of DHA on MDSCs senescence was dependent on the induction of Nrf2/HO-1 pathway. Of note, we revealed that DHA inhibited MDSCs senescence to ameliorate the SLE development by adaptive transfer DHA-treated MDSCs assays. In conclusion, MDSCs senescence played a vital role in the pathogenesis of SLE, and DHA attenuated the symptoms of SLE via relieving MDSCs aging involved in the induction of Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Dan Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Jingjing Qi
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Jiali Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Yuchen Pan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Jingman Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Xiaoyu Xia
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China; Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, PR China.
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China; Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, PR China.
| |
Collapse
|
93
|
Schuliga M, Bartlett N. Modeling the impact of low-dose particulate matter on lung health. Am J Physiol Lung Cell Mol Physiol 2019; 317:L550-L553. [DOI: 10.1152/ajplung.00343.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Michael Schuliga
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Nathan Bartlett
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
94
|
Lignelli E, Palumbo F, Myti D, Morty RE. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019; 317:L832-L887. [PMID: 31596603 DOI: 10.1152/ajplung.00369.2019] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common cause of morbidity and mortality in preterm infants. A key histopathological feature of BPD is stunted late lung development, where the process of alveolarization-the generation of alveolar gas exchange units-is impeded, through mechanisms that remain largely unclear. As such, there is interest in the clarification both of the pathomechanisms at play in affected lungs, and the mechanisms of de novo alveoli generation in healthy, developing lungs. A better understanding of normal and pathological alveolarization might reveal opportunities for improved medical management of affected infants. Furthermore, disturbances to the alveolar architecture are a key histopathological feature of several adult chronic lung diseases, including emphysema and fibrosis, and it is envisaged that knowledge about the mechanisms of alveologenesis might facilitate regeneration of healthy lung parenchyma in affected patients. To this end, recent efforts have interrogated clinical data, developed new-and refined existing-in vivo and in vitro models of BPD, have applied new microscopic and radiographic approaches, and have developed advanced cell-culture approaches, including organoid generation. Advances have also been made in the development of other methodologies, including single-cell analysis, metabolomics, lipidomics, and proteomics, as well as the generation and use of complex mouse genetics tools. The objective of this review is to present advances made in our understanding of the mechanisms of lung alveolarization and BPD over the period 1 January 2017-30 June 2019, a period that spans the 50th anniversary of the original clinical description of BPD in preterm infants.
Collapse
Affiliation(s)
- Ettore Lignelli
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Francesco Palumbo
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Despoina Myti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
95
|
Liu G, Zhai H, Zhang T, Li S, Li N, Chen J, Gu M, Qin Z, Liu X. New therapeutic strategies for IPF: Based on the "phagocytosis-secretion-immunization" network regulation mechanism of pulmonary macrophages. Biomed Pharmacother 2019; 118:109230. [PMID: 31351434 DOI: 10.1016/j.biopha.2019.109230] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/19/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022] Open
Abstract
Pulmonary fibrosis is a chronic and progressive interstitial lung disease of known and unknown etiology. Over the past decades, macrophages have been recognized to play a significant role in IPF pathogenesis. According to their anatomical loci, macrophages can be divided to alveolar macrophages (AMs) subtypes and interstitial macrophages subtypes (IMs) with different responsibility in the damage defense response. Depending on diverse chemokines and cytokines in local microenvironments, macrophages can be induced and polarized to either classically activated (M1) or alternatively activated (M2) phenotypes in different stages of immunity. Therefore, we hypothesize that there is a "phagocytosis-secretion-immunization" network regulation of pulmonary macrophages related to a number of chemokines and cytokines. In this paper, we summarize and discuss the role of chemokines and cytokines involved in the "phagocytosis-secretion-immunization" network regulation mechanism of pulmonary macrophages, pointing toward novel therapeutic approaches based on the network target regulation in the field. Therapeutic strategies focused on modifying the chemokines, cytokines and the network are promising for the pharmacotherapy of IPF. Some Traditional Chinese medicines may have more superiorities in delaying the progression of pulmonary fibrosis for their multi-target activities of this network regulation.
Collapse
Affiliation(s)
- Guoxiu Liu
- Beijing University of Chinese Medicine, China
| | | | | | - Siyu Li
- Beijing University of Chinese Medicine, China
| | - Ningning Li
- Beijing University of Chinese Medicine, China
| | - Jiajia Chen
- Beijing University of Chinese Medicine, China
| | - Min Gu
- Beijing University of Chinese Medicine, China
| | - Zinan Qin
- Beijing University of Chinese Medicine, China
| | - Xin Liu
- Beijing University of Chinese Medicine, China.
| |
Collapse
|
96
|
Lin CR, Bahmed K, Tomar D, Marchetti N, Criner GJ, Bolla S, Wilson MA, Madesh M, Kosmider B. The relationship between DJ-1 and S100A8 in human primary alveolar type II cells in emphysema. Am J Physiol Lung Cell Mol Physiol 2019; 317:L791-L804. [PMID: 31313618 DOI: 10.1152/ajplung.00494.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary emphysema is characterized by alveolar type II (ATII) cell death, destruction of alveolar wall septa, and irreversible airflow limitation. Cigarette smoke induces oxidative stress and is the main risk factor for this disease development. ATII cells isolated from nonsmokers, smokers, and patients with emphysema were used for this study. ATII cell apoptosis in individuals with this disease was detected. DJ-1 and S100A8 have cytoprotective functions against oxidative stress-induced cell injury. Reduced DJ-1 and S100A8 interaction was found in ATII cells in patients with emphysema. The molecular function of S100A8 was determined by an analysis of the oxidation status of its cysteine residues using chemoselective probes. Decreased S100A8 sulfination was observed in emphysema patients. In addition, its lower levels correlated with higher cell apoptosis induced by cigarette smoke extract in vitro. Cysteine at position 106 within DJ-1 is a central redox-sensitive residue. DJ-1 C106A mutant construct abolished the cytoprotective activity of DJ-1 against cell injury induced by cigarette smoke extract. Furthermore, a molecular and complementary relationship between DJ-1 and S100A8 was detected using gain- and loss-of-function studies. DJ-1 knockdown sensitized cells to apoptosis induced by cigarette smoke extract, and S100A8 overexpression provided cytoprotection in the absence of DJ-1. DJ-1 knockout mice were more susceptible to ATII cell apoptosis induced by cigarette smoke compared with wild-type mice. Our results indicate that the impairment of DJ-1 and S100A8 function may contribute to cigarette smoke-induced ATII cell injury and emphysema pathogenesis.
Collapse
Affiliation(s)
- Chih-Ru Lin
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, Pennsylvania.,Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, Pennsylvania
| | - Karim Bahmed
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, Pennsylvania.,Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, Pennsylvania
| | - Dhanendra Tomar
- Medical Genetics and Molecular Biochemistry, Temple University, Philadelphia, Pennsylvania
| | - Nathaniel Marchetti
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, Pennsylvania.,Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, Pennsylvania
| | - Gerard J Criner
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, Pennsylvania.,Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, Pennsylvania
| | - Sudhir Bolla
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, Pennsylvania
| | - Mark A Wilson
- Redox Biology Center and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska
| | - Muniswamy Madesh
- Medical Genetics and Molecular Biochemistry, Temple University, Philadelphia, Pennsylvania
| | - Beata Kosmider
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, Pennsylvania.,Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, Pennsylvania.,Department of Physiology, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
97
|
Schiller HB, Montoro DT, Simon LM, Rawlins EL, Meyer KB, Strunz M, Vieira Braga FA, Timens W, Koppelman GH, Budinger GRS, Burgess JK, Waghray A, van den Berge M, Theis FJ, Regev A, Kaminski N, Rajagopal J, Teichmann SA, Misharin AV, Nawijn MC. The Human Lung Cell Atlas: A High-Resolution Reference Map of the Human Lung in Health and Disease. Am J Respir Cell Mol Biol 2019; 61:31-41. [PMID: 30995076 PMCID: PMC6604220 DOI: 10.1165/rcmb.2018-0416tr] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/17/2019] [Indexed: 12/13/2022] Open
Abstract
Lung disease accounts for every sixth death globally. Profiling the molecular state of all lung cell types in health and disease is currently revolutionizing the identification of disease mechanisms and will aid the design of novel diagnostic and personalized therapeutic regimens. Recent progress in high-throughput techniques for single-cell genomic and transcriptomic analyses has opened up new possibilities to study individual cells within a tissue, classify these into cell types, and characterize variations in their molecular profiles as a function of genetics, environment, cell-cell interactions, developmental processes, aging, or disease. Integration of these cell state definitions with spatial information allows the in-depth molecular description of cellular neighborhoods and tissue microenvironments, including the tissue resident structural and immune cells, the tissue matrix, and the microbiome. The Human Cell Atlas consortium aims to characterize all cells in the healthy human body and has prioritized lung tissue as one of the flagship projects. Here, we present the rationale, the approach, and the expected impact of a Human Lung Cell Atlas.
Collapse
Affiliation(s)
- Herbert B. Schiller
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Group Systems Medicine of Chronic Lung Disease, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Daniel T. Montoro
- Harvard Stem Cell Institute, Cambridge, Massachusetts
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Lukas M. Simon
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany
| | - Emma L. Rawlins
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | | | - Maximilian Strunz
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Group Systems Medicine of Chronic Lung Disease, Member of the German Center for Lung Research (DZL), Munich, Germany
| | | | - Wim Timens
- Department of Pathology and Medical Biology
- Groningen Research Institute for Asthma and COPD at the University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Gerard H. Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children’s Hospital, and
- Groningen Research Institute for Asthma and COPD at the University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - G. R. Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois
| | - Janette K. Burgess
- Department of Pathology and Medical Biology
- Groningen Research Institute for Asthma and COPD at the University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Avinash Waghray
- Harvard Stem Cell Institute, Cambridge, Massachusetts
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Maarten van den Berge
- Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Groningen Research Institute for Asthma and COPD at the University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Fabian J. Theis
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany
- Department of Mathematics, Technische Universität München, Munich, Germany
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
- Department of Biology, Howard Hughes Medical Institute and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts; and
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Jayaraj Rajagopal
- Harvard Stem Cell Institute, Cambridge, Massachusetts
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Alexander V. Misharin
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois
| | - Martijn C. Nawijn
- Department of Pathology and Medical Biology
- Groningen Research Institute for Asthma and COPD at the University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
98
|
Ochs M. Lung growth after pneumonectomy: searching for the right stimuli. Am J Physiol Lung Cell Mol Physiol 2019; 316:L934-L935. [PMID: 30892075 DOI: 10.1152/ajplung.00119.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Matthias Ochs
- Institute of Vegetative Anatomy, Charité, Universitaetsmedizin Berlin, Berlin , Germany.,German Center for Lung Research , Giessen , Germany
| |
Collapse
|
99
|
Morty RE, Prakash YS. Senescence in the lung: is this getting old? Am J Physiol Lung Cell Mol Physiol 2019; 316:L822-L825. [PMID: 30892079 DOI: 10.1152/ajplung.00081.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Rory E Morty
- Department of Internal Medicine, Justus-Liebig-Universität Gießen, Giessen, Germany.,Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany
| | - Y S Prakash
- Department of Anesthesiology, Mayo Clinic , Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
100
|
Ke Y, Karki P, Kim J, Son S, Berdyshev E, Bochkov VN, Birukova AA, Birukov KG. Elevated truncated oxidized phospholipids as a factor exacerbating ALI in the aging lungs. FASEB J 2019; 33:3887-3900. [PMID: 30521374 PMCID: PMC6404557 DOI: 10.1096/fj.201800981r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/05/2018] [Indexed: 12/15/2022]
Abstract
As mechanisms controlling redox homeostasis become impaired with aging, exaggerated oxidant stress may cause disproportional oxidation of cell membranes and circulating phospholipids (PLs), leading to the formation of truncated oxidized PL products (Tr-OxPLs), which exhibit deleterious effects. This study investigated the role of elevated Tr-OxPLs as a factor exacerbating inflammation and lung barrier dysfunction in an animal model of aging. Mass spectrometry analysis of Tr-OxPL species in young (2-4 mo) and aging (18-24 mo) mice revealed elevated basal levels of several products [1-palmitoyl-2-(5-oxovaleroyl)- sn-glycero-phosphocholine (POVPC), 1-palmitoyl-2-glutaroyl- sn-glycero-phosphocholine, lysophosphocholine, 1-palmitoyl-2-(9-oxo-nonanoyl)- sn-glycero-3-phosphocholine, 1-palmitoyl-2-azelaoyl- sn-glycero-3-phosphocholine, O-1-O-palmitoyl-2-O-(5,8-dioxo-8-hydroxy-6-octenoyl)-l-glycero-3-phosphocholine, and others] in the aged lungs. An intratracheal (i.t.) injection of bacterial LPS caused increased generation of Tr-OxPLs in the lungs but not in the liver, with higher levels detected in the aged group. In addition, OxPLs clearance from the lung tissue after LPS challenge was delayed in the aged group. The impact of Tr-OxPLs on endothelial cell (EC) barrier compromise under inflammatory conditions was further evaluated in the 2-hit cell culture model of acute lung injury (ALI). EC barrier dysfunction caused by cell treatment with a cytokine mixture (CM) was augmented by cotreatment with low-dose Tr-OxPLs, which did not significantly affect endothelial function when added alone. Deleterious effects of Tr-OxPLs on inflamed ECs stimulated with CM were associated with further weakening of cell junctions and more robust EC hyperpermeability. Aged mice injected intratracheally with TNF-α exhibited a more pronounced elevation of cell counts and protein content in bronchoalveolar lavage (BAL) samples. Interestingly, intravenous administration of low POVPC doses-which did not affect BAL parameters alone in young mice exposed to i.t. TNF-α challenge-augmented lung injury to the levels observed in aged mice stimulated with TNF-α alone. Inhibition of Tr-OxPL generation by ectopic expression of PL-specific platelet-activating factor acetylhydrolase 2 (PAFAH2) markedly reduced EC dysfunction induced by CM, whereas PAFAH2 pharmacologic inhibition augmented deleterious effects of cytokines on EC barrier function. Moreover, exacerbating effects of PAFAH2 inhibition on TNF-α-induced lung injury were observed in vivo. These results demonstrate an age-dependent increase in Tr-OxPL production under basal conditions and augmented Tr-OxPL generation upon inflammatory stimulation, suggesting a major role for elevated Tr-OxPLs in more severe ALI and delayed resolution in aging lungs.-Ke, Y., Karki, P., Kim, J., Son, S., Berdyshev, E., Bochkov, V. N., Birukova, A. A., Birukov, K. G. Elevated truncated oxidized phospholipids as a factor exacerbating ALI in the aging lungs.
Collapse
Affiliation(s)
- Yunbo Ke
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Pratap Karki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Junghyun Kim
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sophia Son
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | - Valery N. Bochkov
- Department of Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Anna A. Birukova
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|