51
|
Diallyl Disulfide Attenuates STAT3 and NF-κB Pathway Through PPAR-γ Activation in Cerulein-Induced Acute Pancreatitis and Associated Lung Injury in Mice. Inflammation 2022; 45:45-58. [DOI: 10.1007/s10753-021-01527-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/24/2021] [Accepted: 07/26/2021] [Indexed: 12/16/2022]
|
52
|
Nagatake T, Kishino S, Urano E, Murakami H, Kitamura N, Konishi K, Ohno H, Tiwari P, Morimoto S, Node E, Adachi J, Abe Y, Isoyama J, Sawane K, Honda T, Inoue A, Uwamizu A, Matsuzaka T, Miyamoto Y, Hirata SI, Saika A, Shibata Y, Hosomi K, Matsunaga A, Shimano H, Arita M, Aoki J, Oka M, Matsutani A, Tomonaga T, Kabashima K, Miyachi M, Yasutomi Y, Ogawa J, Kunisawa J. Intestinal microbe-dependent ω3 lipid metabolite αKetoA prevents inflammatory diseases in mice and cynomolgus macaques. Mucosal Immunol 2022; 15:289-300. [PMID: 35013573 PMCID: PMC8866125 DOI: 10.1038/s41385-021-00477-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023]
Abstract
Dietary ω3 fatty acids have important health benefits and exert their potent bioactivity through conversion to lipid mediators. Here, we demonstrate that microbiota play an essential role in the body's use of dietary lipids for the control of inflammatory diseases. We found that amounts of 10-hydroxy-cis-12-cis-15-octadecadienoic acid (αHYA) and 10-oxo-cis-12-cis-15-octadecadienoic acid (αKetoA) increased in the feces and serum of specific-pathogen-free, but not germ-free, mice when they were maintained on a linseed oil diet, which is high in α-linolenic acid. Intake of αKetoA, but not αHYA, exerted anti-inflammatory properties through a peroxisome proliferator-activated receptor (PPAR)γ-dependent pathway and ameliorated hapten-induced contact hypersensitivity by inhibiting the development of inducible skin-associated lymphoid tissue through suppression of chemokine secretion from macrophages and inhibition of NF-κB activation in mice and cynomolgus macaques. Administering αKetoA also improved diabetic glucose intolerance by inhibiting adipose tissue inflammation and fibrosis through decreased macrophage infiltration in adipose tissues and altering macrophage M1/M2 polarization in mice fed a high-fat diet. These results collectively indicate that αKetoA is a novel postbiotic derived from α-linolenic acid, which controls macrophage-associated inflammatory diseases and may have potential for developing therapeutic drugs as well as probiotic food products.
Collapse
Affiliation(s)
- Takahiro Nagatake
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan
| | - Shigenobu Kishino
- grid.258799.80000 0004 0372 2033Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Emiko Urano
- grid.482562.fLaboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, NIBIOHN, 1-1 Hachimandai, Tsukuba, Ibaraki, 305-0843 Japan
| | - Haruka Murakami
- grid.482562.fDepartment of Physical Activity Research, NIBIOHN, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8636 Japan
| | - Nahoko Kitamura
- grid.258799.80000 0004 0372 2033Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Kana Konishi
- grid.482562.fDepartment of Physical Activity Research, NIBIOHN, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8636 Japan
| | - Harumi Ohno
- grid.482562.fDepartment of Physical Activity Research, NIBIOHN, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8636 Japan
| | - Prabha Tiwari
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan
| | - Sakiko Morimoto
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan
| | - Eri Node
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan
| | - Jun Adachi
- Laboratory of Proteome Research and Laboratory of Proteomics for Drug Discovery, NIBIOHN, 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan
| | - Yuichi Abe
- Laboratory of Proteome Research and Laboratory of Proteomics for Drug Discovery, NIBIOHN, 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan ,grid.410800.d0000 0001 0722 8444Division of Molecular Diagnostics, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, 464-8681 Japan
| | - Junko Isoyama
- Laboratory of Proteome Research and Laboratory of Proteomics for Drug Discovery, NIBIOHN, 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan
| | - Kento Sawane
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan ,grid.136593.b0000 0004 0373 3971Graduate School of Pharmaceutical Sciences, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871 Japan
| | - Tetsuya Honda
- grid.258799.80000 0004 0372 2033Department of Dermatology, Kyoto University Graduate School of Medicine, 54 Shogoin Kawara-cho, Kyoto, 606-8507 Japan ,grid.505613.40000 0000 8937 6696Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192 Japan
| | - Asuka Inoue
- grid.69566.3a0000 0001 2248 6943Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 Japan
| | - Akiharu Uwamizu
- grid.69566.3a0000 0001 2248 6943Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 Japan ,grid.26999.3d0000 0001 2151 536XGraduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Takashi Matsuzaka
- grid.20515.330000 0001 2369 4728Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575 Japan ,grid.20515.330000 0001 2369 4728Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575 Japan
| | - Yoichi Miyamoto
- Laboratory of Nuclear Transport Dynamics, NIBIOHN, 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan
| | - So-ichiro Hirata
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan ,grid.31432.370000 0001 1092 3077Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017 Japan
| | - Azusa Saika
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan ,grid.136593.b0000 0004 0373 3971Graduate School of Pharmaceutical Sciences, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871 Japan
| | - Yuki Shibata
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan ,grid.136593.b0000 0004 0373 3971Graduate School of Pharmaceutical Sciences, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871 Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan
| | - Ayu Matsunaga
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan ,grid.412904.a0000 0004 0606 9818Faculty of Agriculture, Takasaki University of Health and Welfare, 54 Nakaoruimachi, Takasaki, Gumma 370-0033 Japan
| | - Hitoshi Shimano
- grid.20515.330000 0001 2369 4728Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575 Japan
| | - Makoto Arita
- grid.26091.3c0000 0004 1936 9959Division of Physiological Chemistry and Metabolism, Keio University Faculty of Pharmacy, 1-5-30 Shibakouen, Minato-ku, Tokyo, 105-8512 Japan ,grid.509459.40000 0004 0472 0267Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan ,grid.268441.d0000 0001 1033 6139Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Junken Aoki
- grid.69566.3a0000 0001 2248 6943Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 Japan ,grid.26999.3d0000 0001 2151 536XGraduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Masahiro Oka
- Laboratory of Nuclear Transport Dynamics, NIBIOHN, 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan
| | - Akira Matsutani
- Department of Internal Medicine, Shunan City Shin-nanyo Hospital, 2-3-15 Miyanomae, Shunan, Yamaguchi, 746-0017 Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research and Laboratory of Proteomics for Drug Discovery, NIBIOHN, 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan
| | - Kenji Kabashima
- grid.258799.80000 0004 0372 2033Department of Dermatology, Kyoto University Graduate School of Medicine, 54 Shogoin Kawara-cho, Kyoto, 606-8507 Japan
| | - Motohiko Miyachi
- grid.482562.fDepartment of Physical Activity Research, NIBIOHN, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8636 Japan
| | - Yasuhiro Yasutomi
- grid.482562.fLaboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, NIBIOHN, 1-1 Hachimandai, Tsukuba, Ibaraki, 305-0843 Japan
| | - Jun Ogawa
- grid.258799.80000 0004 0372 2033Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan ,grid.136593.b0000 0004 0373 3971Graduate School of Pharmaceutical Sciences, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871 Japan ,grid.31432.370000 0001 1092 3077Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017 Japan ,grid.26999.3d0000 0001 2151 536XInternational Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 Japan ,grid.136593.b0000 0004 0373 3971Graduate School of Medicine, Graduate School of Dentistry, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871 Japan ,grid.5290.e0000 0004 1936 9975Research Organization for Nano and Life Innovation, Waseda University, Tokyo, 162-0041 Japan
| |
Collapse
|
53
|
Zheng Z, Wang B. The Gut-Liver Axis in Health and Disease: The Role of Gut Microbiota-Derived Signals in Liver Injury and Regeneration. Front Immunol 2021; 12:775526. [PMID: 34956204 PMCID: PMC8703161 DOI: 10.3389/fimmu.2021.775526] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Diverse liver diseases undergo a similar pathophysiological process in which liver regeneration follows a liver injury. Given the important role of the gut-liver axis in health and diseases, the role of gut microbiota-derived signals in liver injury and regeneration has attracted much attention. It has been observed that the composition of gut microbiota dynamically changes in the process of liver regeneration after partial hepatectomy, and gut microbiota modulation by antibiotics or probiotics affects both liver injury and regeneration. Mechanically, through the portal vein, the liver is constantly exposed to gut microbial components and metabolites, which have immense effects on the immunity and metabolism of the host. Emerging data demonstrate that gut-derived lipopolysaccharide, gut microbiota-associated bile acids, and other bacterial metabolites, such as short-chain fatty acids and tryptophan metabolites, may play multifaceted roles in liver injury and regeneration. In this perspective, we provide an overview of the possible molecular mechanisms by which gut microbiota-derived signals modulate liver injury and regeneration, highlighting the potential roles of gut microbiota in the development of gut microbiota-based therapies to alleviate liver injury and promote liver regeneration.
Collapse
Affiliation(s)
- Zhipeng Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baohong Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
54
|
Menarim BC, El-Sheikh Ali H, Loux SC, Scoggin KE, Kalbfleisch TS, MacLeod JN, Dahlgren LA. Transcriptional and Histochemical Signatures of Bone Marrow Mononuclear Cell-Mediated Resolution of Synovitis. Front Immunol 2021; 12:734322. [PMID: 34956173 PMCID: PMC8692379 DOI: 10.3389/fimmu.2021.734322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/09/2021] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) may result from impaired ability of synovial macrophages to resolve joint inflammation. Increasing macrophage counts in inflamed joints through injection with bone marrow mononuclear cells (BMNC) induces lasting resolution of synovial inflammation. To uncover mechanisms by which BMNC may affect resolution, in this study, differential transcriptional signatures of BMNC in response to normal (SF) and inflamed synovial fluid (ISF) were analyzed. We demonstrate the temporal behavior of co-expressed gene networks associated with traits from related in vivo and in vitro studies. We also identified activated and inhibited signaling pathways and upstream regulators, further determining their protein expression in the synovium of inflamed joints treated with BMNC or DPBS controls. BMNC responded to ISF with an early pro-inflammatory response characterized by a short spike in the expression of a NF-ƙB- and mitogen-related gene network. This response was associated with sustained increased expression of two gene networks comprising known drivers of resolution (IL-10, IGF-1, PPARG, isoprenoid biosynthesis). These networks were common to SF and ISF, but more highly expressed in ISF. Most highly activated pathways in ISF included the mevalonate pathway and PPAR-γ signaling, with pro-resolving functional annotations that improve mitochondrial metabolism and deactivate NF-ƙB signaling. Lower expression of mevalonate kinase and phospho-PPARγ in synovium from inflamed joints treated with BMNC, and equivalent IL-1β staining between BMNC- and DPBS-treated joints, associates with accomplished resolution in BMNC-treated joints and emphasize the intricate balance of pro- and anti-inflammatory mechanisms required for resolution. Combined, our data suggest that BMNC-mediated resolution is characterized by constitutively expressed homeostatic mechanisms, whose expression are enhanced following inflammatory stimulus. These mechanisms translate into macrophage proliferation optimizing their capacity to counteract inflammatory damage and improving their general and mitochondrial metabolism to endure oxidative stress while driving tissue repair. Such effect is largely achieved through the synthesis of several lipids that mediate recovery of homeostasis. Our study reveals candidate mechanisms by which BMNC provide lasting improvement in patients with OA and suggests further investigation on the effects of PPAR-γ signaling enhancement for the treatment of arthritic conditions.
Collapse
Affiliation(s)
- Bruno C Menarim
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Gluck Equine Research Center, Department of Veterinary Sciences, College of Agricultural, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Hossam El-Sheikh Ali
- Gluck Equine Research Center, Department of Veterinary Sciences, College of Agricultural, Food and Environment, University of Kentucky, Lexington, KY, United States.,Theriogenology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Shavahn C Loux
- Gluck Equine Research Center, Department of Veterinary Sciences, College of Agricultural, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Kirsten E Scoggin
- Gluck Equine Research Center, Department of Veterinary Sciences, College of Agricultural, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Theodore S Kalbfleisch
- Gluck Equine Research Center, Department of Veterinary Sciences, College of Agricultural, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - James N MacLeod
- Gluck Equine Research Center, Department of Veterinary Sciences, College of Agricultural, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Linda A Dahlgren
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
55
|
Selvaraj D, Dawar R, Sivakumar PK, Devi A. Clustered regularly interspaced short palindromic repeats, a glimpse - impacts in molecular biology, trends and highlights. Horm Mol Biol Clin Investig 2021; 43:105-112. [PMID: 34881529 DOI: 10.1515/hmbci-2021-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/10/2021] [Indexed: 11/15/2022]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is a novel molecular tool. In recent days, it has been highlighted a lot, as the Nobel prize was awarded for this sector in 2020, and also for its recent use in Covid-19 related diagnostics. Otherwise, it is an eminent gene-editing technique applied in diverse medical zones of therapeutics in genetic diseases, hematological diseases, infectious diseases, etc., research related to molecular biology, cancer, hereditary diseases, immune and inflammatory diseases, etc., diagnostics related to infectious diseases like viral hemorrhagic fevers, Covid-19, etc. In this review, its discovery, working mechanisms, challenges while handling the technique, recent advancements, applications, alternatives have been discussed. It is a cheaper, faster technique revolutionizing the medicinal field right now. However, their off-target effects and difficulties in delivery into the desired cells make CRISPR, not easily utilizable. We conclude that further robust research in this field may promise many interesting, useful results.
Collapse
Affiliation(s)
- Dhivya Selvaraj
- Department of Biochemistry, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.,Department of Biochemistry, SGT University, Gurgaon, India
| | - Rajni Dawar
- Department of Biochemistry, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | | | - Anita Devi
- Department of Biochemistry, Dr Rajendra Prasad Government Medical College, Tanda, Kangra, India
| |
Collapse
|
56
|
Yang D, Zhang N, Li M, Hong T, Meng W, Ouyang T. The Hippo Signaling Pathway: The Trader of Tumor Microenvironment. Front Oncol 2021; 11:772134. [PMID: 34858852 PMCID: PMC8632547 DOI: 10.3389/fonc.2021.772134] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
The Hippo pathway regulates cancer biology in many aspects and the crosstalk with other pathways complicates its role. Accumulated evidence has shown that the bidirectional interactions between tumor cells and tumor microenvironment (TME) are the premises of tumor occurrence, development, and metastasis. The relationship among different components of the TME constitutes a three-dimensional network. We point out the core position of the Hippo pathway in this network and discuss how the regulatory inputs cause the chain reaction of the network. We also discuss the important role of Hippo-TME involvement in cancer treatment.
Collapse
Affiliation(s)
- Duo Yang
- Department of the Forth Clinical Medical College of Nanchang University, Nanchang, China
| | - Na Zhang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Meng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Taohui Ouyang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
57
|
Abstract
PURPOSE OF REVIEW The incidence of allergic diseases such as asthma, rhinitis and atopic dermatitis has risen at an alarming rate over the last century. Thus, there is a clear need to understand the critical factors that drive such pathologic immune responses. Peroxisome proliferator-activated receptor-γ (PPAR-γ) is a nuclear receptor that has emerged as an important regulator of multiple cell types involved in the inflammatory response to allergens; from airway epithelial cells to T Helper (TH) cells. RECENT FINDINGS Initial studies suggested that agonists of PPAR-γ could be employed to temper allergic inflammation, suppressing pro-inflammatory gene expression programs in epithelial cells. Several lines of work now suggest that PPAR-γ plays an essential in promoting 'type 2' immune responses that are typically associated with allergic disease. PPAR-γ has been found to promote the functions of TH2 cells, type 2 innate lymphoid cells, M2 macrophages and dendritic cells, regulating lipid metabolism and directly inducing effector gene expression. Moreover, preclinical models of allergy in gene-targeted mice have increasingly implicated PPAR-γ in driving allergic inflammation. Herein, we highlight the contrasting roles of PPAR-γ in allergic inflammation and hypothesize that the availability of environmental ligands for PPAR-γ may be at the heart of the rise in allergic diseases worldwide.
Collapse
Affiliation(s)
- Julian M Stark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan M Coquet
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Christopher A Tibbitt
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
58
|
The M2a Macrophage Phenotype Accompanies Pulmonary Granuloma Resolution in Mmp12 Knock-Out Mice Instilled with Multiwall Carbon Nanotubes. Int J Mol Sci 2021; 22:ijms222011019. [PMID: 34681679 PMCID: PMC8537143 DOI: 10.3390/ijms222011019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/30/2021] [Accepted: 10/09/2021] [Indexed: 11/17/2022] Open
Abstract
Sarcoidosis is a chronic disease with unknown etiology and pathophysiology, characterized by granuloma formation. Matrix Metalloproteinase-12 (MMP12) is an elastase implicated in active granulomatous sarcoidosis. Previously, we reported that oropharyngeal instillation of multiwall carbon nanotubes (MWCNT) into C57Bl/6 mice induced sarcoid-like granulomas and upregulation of MMP12. When Mmp12 knock-out (KO) mice were instilled with MWCNT, granuloma formation occurred 10 days post-instillation but subsequently resolved at 60 days. Thus, we concluded that MMP12 was essential to granuloma persistence. The aim of the current study was to identify potential mechanisms of granuloma resolution in Mmp12KO mice. Strikingly, an M2 macrophage phenotype was present in Mmp12KO but not in C57Bl/6 mice. Between 10 and 60 days, macrophage populations in MWCNT-instilled Mmp12KO mice demonstrated an M2c to M2a phenotypic shift, with elevations in levels of IL-13, an M2 subtype-regulating factor. Furthermore, the M2 inducer, Apolipoprotein E (ApoE), and Matrix Metalloproteinase-14 (MMP14), a promoter of collagen degradation, were upregulated in 60-day MWCNT-instilled Mmp12KO mice. In conclusion, alveolar macrophages express two M2 phenotypes in Mmp12KO mice: M2c at 10 days when granulomas form, and M2a at 60 days when granulomas are resolving. Findings suggest that granuloma resolution in 60-day Mmp12KO mice requires an M2a macrophage phenotype.
Collapse
|
59
|
El-Din SS, Abd Elwahab S, Rashed L, Fayez S, Aboulhoda BE, Heikal OA, Galal AF, Nour ZA. Possible role of rice bran extract in microglial modulation through PPAR-gamma receptors in alzheimer's disease mice model. Metab Brain Dis 2021; 36:1903-1915. [PMID: 34043126 DOI: 10.1007/s11011-021-00741-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's Disease (AD), the most prevalent neurodegenerative disorder among elderly people, is ordinarily associated with progressive cognitive decline. Peroxisome proliferator-activated receptors-gamma (PPAR-γ) agonists can be targeted as a beneficial therapeutic strategy against AD. In the present study, we aimed to investigate the preventive and therapeutic effects of rice bran extract (RBE) as a possible PPAR-γ agonist on the microglial phenotype modulation in AD in mice compared to the effects of pioglitazone. This study included 64 adult male Swiss Albino mice divided into 8 groups, each group comprised 8 mice; control group, RBE group, lipopolysaccharide-induced neurodegeneration (a) (LPSa) group, (LPSb) group, RBE-preventive group (RBE + LPSa), pioglitazone-preventive group (PG + LPSa), RBE-treated group (RBE + LPSb), and pioglitazone-treated group (PG + LPSb). Cognitive functions were assessed by Y-maze and Morris water maze tests. The expression of PPAR-γ, CD45, arginase1, CD36, and CD163 genes was assessed by real time qPCR and the estimation of NF-kβ protein level was done by Western blot technique. Moreover, the assessment of Aβ42 and P-tau levels was performed by ELISA. Histopathological examination of brain tissues was performed for all the studied groups. Our results showed that RBE and pioglitazone could modulate microglial phenotype from M1 to M2 where they significantly decreased the expression of NF-κβ and the pro-inflammatory microglial marker (CD45) in parallel with increasing the expression of the anti-inflammatory microglial and phagocytic markers (arginase1, CD163, and CD36). In addition, RBE and pioglitazone significantly increased PPAR-γ expression and reduced Aβ42 deposition as well as p-tau protein levels. In conclusion, our study identified the possible role of PPAR-γ agonistic activity of RBE as a preventive and therapeutic agent in the treatment of the neuro-inflammation associated with AD.
Collapse
Affiliation(s)
- Shimaa Saad El-Din
- The Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Sahar Abd Elwahab
- The Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Laila Rashed
- The Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Salwa Fayez
- The Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Basma Emad Aboulhoda
- The Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ola Ahmed Heikal
- The Department of Narcotics, Ergogenics and Poisons, National Research Centre, Giza, Egypt
| | - Asmaa Fathi Galal
- The Department of Narcotics, Ergogenics and Poisons, National Research Centre, Giza, Egypt
| | - Zeinab A Nour
- The Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
60
|
Pioglitazone Reverses Markers of Islet Beta-Cell De-Differentiation in db/db Mice While Modulating Expression of Genes Controlling Inflammation and Browning in White Adipose Tissue from Insulin-Resistant Mice and Humans. Biomedicines 2021; 9:biomedicines9091189. [PMID: 34572374 PMCID: PMC8470788 DOI: 10.3390/biomedicines9091189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/21/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity, insulin resistance, and type 2 diabetes contribute to increased morbidity and mortality in humans. The db/db mouse is an important mouse model that displays many key features of the human disease. Herein, we used the drug pioglitazone, a thiazolidinedione with insulin-sensitizing properties, to investigate blood glucose levels, indicators of islet β-cell health and maturity, and gene expression in adipose tissue. Oral administration of pioglitazone lowered blood glucose levels in db/db mice with a corresponding increase in respiratory quotient, which indicates improved whole-body carbohydrate utilization. In addition, white adipose tissue from db/db mice and from humans treated with pioglitazone showed increased expression of glycerol kinase. Both db/db mice and humans given pioglitazone displayed increased expression of UCP-1, a marker typically associated with brown adipose tissue. Moreover, pancreatic β-cells from db/db mice treated with pioglitazone had greater expression of insulin and Nkx6.1 as well as reduced abundance of the de-differentiation marker Aldh1a3. Collectively, these findings indicate that four weeks of pioglitazone therapy improved overall metabolic health in db/db mice. Our data are consistent with published reports of human subjects administered pioglitazone and with analysis of human adipose tissue taken from subjects treated with pioglitazone. In conclusion, the current study provides evidence that pioglitazone restores key markers of metabolic health and also showcases the utility of the db/db mouse to understand mechanisms associated with human metabolic disease and interventions that provide therapeutic benefit.
Collapse
|
61
|
Li ZL, Yang BC, Gao M, Xiao XF, Zhao SP, Liu ZL. Naringin improves sepsis-induced intestinal injury by modulating macrophage polarization via PPARγ/miR-21 axis. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:502-514. [PMID: 34589273 PMCID: PMC8463290 DOI: 10.1016/j.omtn.2021.07.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 07/07/2021] [Indexed: 12/15/2022]
Abstract
Naringin exhibited various pharmacological activities. However, its biological function and underlying mechanism in regulating macrophage polarization remain elusive. This study aimed to investigate the regulatory network between naringin and macrophage polarization in sepsis-induced intestinal injury. Cecal ligation and puncture (CLP) was used to establish the animal model of sepsis. Chromatin immunoprecipitation and a luciferase reporter assay were used to determine the interplay between peroxisome proliferator-activated receptor γ (PPARγ) and miR-21 promoter, as well as miR-21 and its target genes. Naringin enhanced the overall survival of septic mice and alleviated the CLP-induced inflammatory response and intestinal damage. This was accompanied by the increased expression of PPARγ in the intestines and the stimulation of ileal macrophages toward the M2 phenotype. Furthermore, in lipopolysaccharide-stimulated bone marrow-derived macrophages, naringin stimulated M2 polarization. Mechanistically, PPARγ inhibition attenuated the promotion of M2 polarization caused by naringin, and the naringin/PPARγ regulatory work was compromised by miR-21 inhibition. The present study suggested that naringin promoted M2 polarization via the PPARγ/miR-21 axis, thus relieving sepsis-induced intestinal injury. This study provides novel insights into the mechanism by which naringin alleviated sepsis-induced intestinal injury through regulation of macrophage polarization.
Collapse
Affiliation(s)
- Zhi-Ling Li
- Translational Medicine Center of Sepsis, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, P.R. China.,Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, P.R. China
| | - Bing-Chang Yang
- Translational Medicine Center of Sepsis, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, P.R. China.,Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, P.R. China
| | - Ming Gao
- Translational Medicine Center of Sepsis, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, P.R. China.,Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, P.R. China
| | - Xue-Fei Xiao
- Translational Medicine Center of Sepsis, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, P.R. China.,Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, P.R. China
| | - Shang-Ping Zhao
- Translational Medicine Center of Sepsis, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, P.R. China.,Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, P.R. China
| | - Zuo-Liang Liu
- Translational Medicine Center of Sepsis, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, P.R. China.,Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, P.R. China
| |
Collapse
|
62
|
Keilhoff G, Ludwig C, Pinkernelle J, Lucas B. Effects of Gynostemma pentaphyllum on spinal cord motor neurons and microglial cells in vitro. Acta Histochem 2021; 123:151759. [PMID: 34425524 DOI: 10.1016/j.acthis.2021.151759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/25/2021] [Accepted: 07/11/2021] [Indexed: 11/18/2022]
Abstract
The regenerative capability of spinal cord neurons is limited to impossible. Thus, experimental approaches supporting reconstruction/regeneration are in process. This study focused on the evaluation of the protective potency of an extract from Gynostemma pentaphyllum (GP), a plant used in traditional medicine with anti-oxidative and neuroprotective activities, in vitro on organotypic spinal cord cultures, the motor-neuron-like NSC-34 cell line and the microglial cell line BV-2. Organotypic cultures were mechanically stressed by the slicing procedure and the effect of GP on motor neuron survival and neurite sprouting was tested by immunohistochemistry. NSC-34 cells were neuronal differentiated by using special medium. Afterwards, cell survival (propidium iodide/fluorescein diacetate labeling), proliferation (BrdU-incorporation), and neurite sprouting were evaluated. BV-2 cells were stimulated with LPS/interferon γ and subjected to migration assay and nanoparticle uptake. Cell survival, proliferation and the expression pattern of different microglial activation markers (cFOS, iNOS) as well as transcription factors (PPARγ, YB1) were analyzed. In organotypic cultures, high-dose GP supported survival of motor neurons and especially of the neuronal fiber network. Despite reduced neurodegeneration, however, there was a GP-mediated activation of astro- and microglia. In NSC-34 cells, high-dosed GP had degenerative and anti-proliferative effects, but only in normal medium. Moreover, GP supported the neuro-differentiation ability. In BV-2 cells, high-dosed GP was toxic. In lower dosages, GP affected cell survival and proliferation when combined with LPS/interferon γ. Nanoparticle uptake, migration ability, and the transcription factor PPARγ, however, GP affected directly. The data suggest positive effects of GP on injured spinal motor neurons. Moreover, GP activated microglial cells. The dual role of microglia (protective/detrimental) in neurodegenerative processes required further experiments to enhance the knowledge about GP effects. Therefore, a possible clinical use of GP in spinal cord injuries is still a long way off.
Collapse
Affiliation(s)
- Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke University Magdeburg, Germany.
| | - Christina Ludwig
- Institute of Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke University Magdeburg, Germany
| | - Josephine Pinkernelle
- Institute of Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke University Magdeburg, Germany
| | - Benjamin Lucas
- Dept. of Trauma Surgery, Medical Faculty, Otto-von-Guericke University Magdeburg, Germany
| |
Collapse
|
63
|
Victor S, Chew A, Falconer S. Pro12Ala polymorphism of peroxisome proliferator activated receptor gamma 2 may be associated with adverse neurodevelopment in European preterm babies. Brain Behav 2021; 11:e2256. [PMID: 34152086 PMCID: PMC8413715 DOI: 10.1002/brb3.2256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/28/2021] [Accepted: 06/06/2021] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Prematurity is the leading cause of death and disability in children under 5 years of age. Understanding the molecular mechanisms of the biological processes involved in preterm brain injury may help develop novel neuroprotective treatment strategies. A growing body of evidence suggest that peroxisome proliferator-activated receptor gamma (PPARγ) signaling is associated with inhibited brain development in preterm babies. The Ala allele of the Pro12Ala polymorphism of PPARγ2 decreases receptor binding affinity and consequently induces a reduction of PPARγ signaling. METHODS In this study, we carried out a preliminary analysis of existing datasets to test the hypothesis that reduced transactivation capacity of PPARγ in the presence of the Ala variant of PPARγ2 may be associated with adverse neurodevelopment in preterm babies. The association between PPAR-γ2 Pro12Ala polymorphism and neurodevelopment at 18-24 months of age was assessed in two groups of European infants, 155 born before 33 weeks' gestation and 180 born later than 36 weeks' gestation using a linear regression model. The Bayley Scales of Infant and Toddler Development-3rd edition was administered to assess neurodevelopment at 18-24 months of age. RESULTS We observed the Ala allele of the Pro12Ala polymorphism in 25% preterm infants and 20% term infants. The Ala allele of PPARγ2 was significantly associated with adverse cognitive (p = .019), language (p = .03), and motor development (p = 0.036) at 18-24 months of age after taking into consideration the duration of ventilation, gender, and index of multiple deprivation scores, but without correction for potential shared ancestry. There was no association between the PPAR-γ2 Pro12Ala polymorphism and neurodevelopment in term infants. CONCLUSIONS These preliminary data suggest that PPARγ signaling in the presence of the Ala variant of PPARγ2 may be associated with adverse neurodevelopment in preterm infants suggesting that further studies are warranted.
Collapse
Affiliation(s)
- Suresh Victor
- Department of Perinatal Imaging and HealthCentre for the Developing BrainSchool of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Andrew Chew
- Department of Perinatal Imaging and HealthCentre for the Developing BrainSchool of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Shona Falconer
- Department of Perinatal Imaging and HealthCentre for the Developing BrainSchool of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| |
Collapse
|
64
|
Escandon P, Vasini B, Whelchel AE, Nicholas SE, Matlock HG, Ma JX, Karamichos D. The role of peroxisome proliferator-activated receptors in healthy and diseased eyes. Exp Eye Res 2021; 208:108617. [PMID: 34010603 PMCID: PMC8594540 DOI: 10.1016/j.exer.2021.108617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/23/2022]
Abstract
Peroxisome Proliferator-Activated Receptors (PPARs) are a family of nuclear receptors that play essential roles in modulating cell differentiation, inflammation, and metabolism. Three subtypes of PPARs are known: PPAR-alpha (PPARα), PPAR-gamma (PPARγ), and PPAR-beta/delta (PPARβ/δ). PPARα activation reduces lipid levels and regulates energy homeostasis, activation of PPARγ results in regulation of adipogenesis, and PPARβ/δ activation increases fatty acid metabolism and lipolysis. PPARs are linked to various diseases, including but not limited to diabetes, non-alcoholic fatty liver disease, glaucoma and atherosclerosis. In the past decade, numerous studies have assessed the functional properties of PPARs in the eye and key PPAR mechanisms have been discovered, particularly regarding the retina and cornea. PPARγ and PPARα are well established in their functions in ocular homeostasis regarding neuroprotection, neovascularization, and inflammation, whereas PPARβ/δ isoform function remains understudied. Naturally, studies on PPAR agonists and antagonists, associated with ocular pathology, have also gained traction with the development of PPAR synthetic ligands. Studies on PPARs has significantly influenced novel therapeutics for diabetic eye disease, ocular neuropathy, dry eye, and age-related macular degeneration (AMD). In this review, therapeutic potentials and implications will be highlighted, as well as reported adverse effects. Further investigations are necessary before any of the PPARs ligands can be utilized, in the clinics, to treat eye diseases. Future research on the prominent role of PPARs will help unravel the complex mechanisms involved in order to prevent and treat ocular diseases.
Collapse
Affiliation(s)
- Paulina Escandon
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Brenda Vasini
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Amy E Whelchel
- Department of Physiology, University of Oklahoma Health Sciences Center, 940 Stanton L Young, Oklahoma City, OK, USA
| | - Sarah E Nicholas
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - H Greg Matlock
- Department of Physiology, University of Oklahoma Health Sciences Center, 940 Stanton L Young, Oklahoma City, OK, USA
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, 940 Stanton L Young, Oklahoma City, OK, USA; Harold Hamm Oklahoma Diabetes Center, 1000 N Lincoln Blvd, Oklahoma City, OK, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| |
Collapse
|
65
|
Linenberg I, Fornes D, Higa R, Jawerbaum A, Capobianco E. Intergenerational effects of the antioxidant Idebenone on the placentas of rats with gestational diabetes mellitus. Reprod Toxicol 2021; 104:16-26. [PMID: 34175429 DOI: 10.1016/j.reprotox.2021.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/27/2022]
Abstract
Experimental models of maternal diabetes lead to the intrauterine programming of Gestational Diabetes Mellitus (GDM) in the offspring, together with an intrauterine proinflammatory environment, feto-placental metabolic alterations and fetal overgrowth. The aim of this work was to evaluate the effect of the mitochondrial antioxidant Idebenone given to F0 mild pregestational diabetic rats on the development of GDM in their F1 offspring and the intergenerational programming of a pro-oxidant/proinflammatory environment that affects the placentas of F2 fetuses. Control and mild pregestational diabetic female rats (F0) were mated with control males, and Idebenone or vehicle was administered to diabetic rats from day 1 of gestation to term. The F1 female offspring were mated with control males and maternal and fetal plasma samples were obtained for metabolic determinations at term. The F2 fetuses and placentas were weighed, and placental protein levels and peroxynitrite-induced damage (immunohistochemistry), mRNA levels (PCR), nitric oxide production (Griess reaction), and number of apoptotic cells (TUNEL) were evaluated. The F1 offspring of F0 diabetic rats (treated or not with Idebenone) developed GDM. The placentas of GDM rats showed a decrease in the mRNA levels of manganese superoxide dismutase and an increase in the production of nitric oxide, peroxynitrite-induced damage, and connective tissue growth factor levels, alterations that were prevented by the maternal Idebenone treatment in F0 rats. In conclusion, the maternal treatment with Idebenone in pregestational diabetic F0 rats ameliorates the pro-oxidant/proinflammatory environment that affects the placentas of F2 fetuses, although it does not prevent F1 rats from developing GDM.
Collapse
Affiliation(s)
- Ivana Linenberg
- Laboratory of Reproduction and Metabolism, CEFYBO-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina; Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Daiana Fornes
- Laboratory of Reproduction and Metabolism, CEFYBO-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Romina Higa
- Laboratory of Reproduction and Metabolism, CEFYBO-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Alicia Jawerbaum
- Laboratory of Reproduction and Metabolism, CEFYBO-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Evangelina Capobianco
- Laboratory of Reproduction and Metabolism, CEFYBO-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
66
|
Lambert J, Saliba J, Calderon C, Sii-Felice K, Salma M, Edmond V, Alvarez JC, Delord M, Marty C, Plo I, Kiladjian JJ, Soler E, Vainchenker W, Villeval JL, Rousselot P, Prost S. PPARγ agonists promote the resolution of myelofibrosis in preclinical models. J Clin Invest 2021; 131:136713. [PMID: 33914703 DOI: 10.1172/jci136713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
Myelofibrosis (MF) is a non-BCR-ABL myeloproliferative neoplasm associated with poor outcomes. Current treatment has little effect on the natural history of the disease. MF results from complex interactions between (a) the malignant clone, (b) an inflammatory context, and (c) remodeling of the bone marrow (BM) microenvironment. Each of these points is a potential target of PPARγ activation. Here, we demonstrated the therapeutic potential of PPARγ agonists in resolving MF in 3 mouse models. We showed that PPARγ agonists reduce myeloproliferation, modulate inflammation, and protect the BM stroma in vitro and ex vivo. Activation of PPARγ constitutes a relevant therapeutic target in MF, and our data support the possibility of using PPARγ agonists in clinical practice.
Collapse
Affiliation(s)
- Juliette Lambert
- Division of Innovative Therapies, CEA/DRF/François Jacob Biology Institute, UMR1184 IMVA-HB/IDMIT, Université Paris-Saclay, Fontenay-aux-Roses, France.,Department of Hematology and Oncology, Centre Hospitalier de Versailles, Le Chesnay, France.,Opale Carnot Institute, Paris, France
| | - Joseph Saliba
- Division of Innovative Therapies, CEA/DRF/François Jacob Biology Institute, UMR1184 IMVA-HB/IDMIT, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Carolina Calderon
- Division of Innovative Therapies, CEA/DRF/François Jacob Biology Institute, UMR1184 IMVA-HB/IDMIT, Université Paris-Saclay, Fontenay-aux-Roses, France.,Opale Carnot Institute, Paris, France
| | - Karine Sii-Felice
- Division of Innovative Therapies, CEA/DRF/François Jacob Biology Institute, UMR1184 IMVA-HB/IDMIT, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Mohammad Salma
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Université de Paris, Laboratory of Excellence GR-Ex, Paris, France
| | - Valérie Edmond
- INSERM, UMR1287, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Jean-Claude Alvarez
- Département de Pharmacologie-Toxicologie, Hôpitaux Universitaires Paris Ile-de-France Ouest, AP-HP, Hôpital Raymond-Poincaré, FHU Sepsis, Garches, France.,MasSpecLab, Plateforme de spectrométrie de masse, INSERM U-1173, Université Paris-Saclay (Versailles Saint-Quentin-en-Yvelines), UFR des sciences de la santé, Montigny-le-Bretonneux, France
| | - Marc Delord
- Recherche Clinique, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Caroline Marty
- INSERM, UMR1287, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Isabelle Plo
- INSERM, UMR1287, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Jean-Jacques Kiladjian
- Opale Carnot Institute, Paris, France.,Université de Paris, AP-HP, Hôpital Saint-Louis, Centre d'Investigations Cliniques CIC 1427, INSERM, Paris, France
| | - Eric Soler
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Université de Paris, Laboratory of Excellence GR-Ex, Paris, France
| | | | - Jean-Luc Villeval
- INSERM, UMR1287, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Philippe Rousselot
- Division of Innovative Therapies, CEA/DRF/François Jacob Biology Institute, UMR1184 IMVA-HB/IDMIT, Université Paris-Saclay, Fontenay-aux-Roses, France.,Department of Hematology and Oncology, Centre Hospitalier de Versailles, Le Chesnay, France.,Opale Carnot Institute, Paris, France.,Université Paris-Saclay (Versailles Saint-Quentin-en-Yvelines), UFR des sciences de la santé, Montigny-le-Bretonneux, France
| | - Stéphane Prost
- Division of Innovative Therapies, CEA/DRF/François Jacob Biology Institute, UMR1184 IMVA-HB/IDMIT, Université Paris-Saclay, Fontenay-aux-Roses, France.,Opale Carnot Institute, Paris, France
| |
Collapse
|
67
|
Nazitto R, Amon LM, Mast FD, Aitchison JD, Aderem A, Johnson JS, Diercks AH. ILF3 Is a Negative Transcriptional Regulator of Innate Immune Responses and Myeloid Dendritic Cell Maturation. THE JOURNAL OF IMMUNOLOGY 2021; 206:2949-2965. [PMID: 34031149 DOI: 10.4049/jimmunol.2001235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/31/2021] [Indexed: 12/31/2022]
Abstract
APCs such as myeloid dendritic cells (DCs) are key sentinels of the innate immune system. In response to pathogen recognition and innate immune stimulation, DCs transition from an immature to a mature state that is characterized by widespread changes in host gene expression, which include the upregulation of cytokines, chemokines, and costimulatory factors to protect against infection. Several transcription factors are known to drive these gene expression changes, but the mechanisms that negatively regulate DC maturation are less well understood. In this study, we identify the transcription factor IL enhancer binding factor 3 (ILF3) as a negative regulator of innate immune responses and DC maturation. Depletion of ILF3 in primary human monocyte-derived DCs led to increased expression of maturation markers and potentiated innate responses during stimulation with viral mimetics or classic innate agonists. Conversely, overexpression of short or long ILF3 isoforms (NF90 and NF110) suppressed DC maturation and innate immune responses. Through mutagenesis experiments, we found that a nuclear localization sequence in ILF3, and not its dual dsRNA-binding domains, was required for this function. Mutation of the domain associated with zinc finger motif of ILF3's NF110 isoform blocked its ability to suppress DC maturation. Moreover, RNA-sequencing analysis indicated that ILF3 regulates genes associated with cholesterol homeostasis in addition to genes associated with DC maturation. Together, our data establish ILF3 as a transcriptional regulator that restrains DC maturation and limits innate immune responses through a mechanism that may intersect with lipid metabolism.
Collapse
Affiliation(s)
- Rodolfo Nazitto
- Department of Immunology, University of Washington School of Medicine, Seattle, WA.,Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA
| | - Lynn M Amon
- Center for Infectious Disease Research, Seattle, WA; and
| | - Fred D Mast
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA
| | - John D Aitchison
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA
| | - Alan Aderem
- Department of Immunology, University of Washington School of Medicine, Seattle, WA.,Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA
| | - Jarrod S Johnson
- Center for Infectious Disease Research, Seattle, WA; and.,Department of Biochemistry, University of Utah, Salt Lake City, UT
| | - Alan H Diercks
- Department of Immunology, University of Washington School of Medicine, Seattle, WA;
| |
Collapse
|
68
|
Ercolano G, Gomez-Cadena A, Dumauthioz N, Vanoni G, Kreutzfeldt M, Wyss T, Michalik L, Loyon R, Ianaro A, Ho PC, Borg C, Kopf M, Merkler D, Krebs P, Romero P, Trabanelli S, Jandus C. PPARɣ drives IL-33-dependent ILC2 pro-tumoral functions. Nat Commun 2021; 12:2538. [PMID: 33953160 PMCID: PMC8100153 DOI: 10.1038/s41467-021-22764-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 03/25/2021] [Indexed: 01/27/2023] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) play a critical role in protection against helminths and in diverse inflammatory diseases by responding to soluble factors such as the alarmin IL-33, that is often overexpressed in cancer. Nonetheless, regulatory factors that dictate ILC2 functions remain poorly studied. Here, we show that peroxisome proliferator-activated receptor gamma (PPARγ) is selectively expressed in ILC2s in humans and in mice, acting as a central functional regulator. Pharmacologic inhibition or genetic deletion of PPARγ in ILC2s significantly impair IL-33-induced Type-2 cytokine production and mitochondrial fitness. Further, PPARγ blockade in ILC2s disrupts their pro-tumoral effect induced by IL-33-secreting cancer cells. Lastly, genetic ablation of PPARγ in ILC2s significantly suppresses tumor growth in vivo. Our findings highlight a crucial role for PPARγ in supporting the IL-33 dependent pro-tumorigenic role of ILC2s and suggest that PPARγ can be considered as a druggable pathway in ILC2s to inhibit their effector functions. Hence, PPARγ targeting might be exploited in cancer immunotherapy and in other ILC2-driven mediated disorders, such as asthma and allergy.
Collapse
Affiliation(s)
- Giuseppe Ercolano
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Alejandra Gomez-Cadena
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Nina Dumauthioz
- Department of Oncology UNIL CHUV, University of Lausanne, Lausanne, Switzerland
| | - Giulia Vanoni
- Department of Oncology UNIL CHUV, University of Lausanne, Lausanne, Switzerland
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospitals of Geneva, Geneva, Switzerland
| | - Tania Wyss
- Department of Oncology UNIL CHUV, University of Lausanne, Lausanne, Switzerland
| | - Liliane Michalik
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Romain Loyon
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,University Hospital of Besançon, Department of Medical Oncology, Besançon, France
| | - Angela Ianaro
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Ping-Chih Ho
- Department of Oncology UNIL CHUV, University of Lausanne, Lausanne, Switzerland
| | - Christophe Borg
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,University Hospital of Besançon, Department of Medical Oncology, Besançon, France
| | - Manfred Kopf
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospitals of Geneva, Geneva, Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Pedro Romero
- Department of Oncology UNIL CHUV, University of Lausanne, Lausanne, Switzerland
| | - Sara Trabanelli
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Camilla Jandus
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland. .,Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
| |
Collapse
|
69
|
Yin C, Heit B. Cellular Responses to the Efferocytosis of Apoptotic Cells. Front Immunol 2021; 12:631714. [PMID: 33959122 PMCID: PMC8093429 DOI: 10.3389/fimmu.2021.631714] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/29/2021] [Indexed: 12/17/2022] Open
Abstract
The rapid and efficient phagocytic clearance of apoptotic cells, termed efferocytosis, is a critical mechanism in the maintenance of tissue homeostasis. Removal of apoptotic cells through efferocytosis prevents secondary necrosis and the resultant inflammation caused by the release of intracellular contents. The importance of efferocytosis in homeostasis is underscored by the large number of inflammatory and autoimmune disorders, including atherosclerosis and systemic lupus erythematosus, that are characterized by defective apoptotic cell clearance. Although mechanistically similar to the phagocytic clearance of pathogens, efferocytosis differs from phagocytosis in that it is immunologically silent and induces a tissue repair response. Efferocytes face unique challenges resulting from the internalization of apoptotic cells, including degradation of the apoptotic cell, dealing with the extra metabolic load imposed by the processing of apoptotic cell contents, and the coordination of an anti-inflammatory, pro-tissue repair response. This review will discuss recent advances in our understanding of the cellular response to apoptotic cell uptake, including trafficking of apoptotic cell cargo and antigen presentation, signaling and transcriptional events initiated by efferocytosis, the coordination of an anti-inflammatory response and tissue repair, unique cellular metabolic responses and the role of efferocytosis in host defense. A better understanding of how efferocytic cells respond to apoptotic cell uptake will be critical in unraveling the complex connections between apoptotic cell removal and inflammation resolution and maintenance of tissue homeostasis.
Collapse
Affiliation(s)
- Charles Yin
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Center for Human Immunology, Western University, London, ON, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Center for Human Immunology, Western University, London, ON, Canada
- Robarts Research Institute, London, ON, Canada
| |
Collapse
|
70
|
Kaczanowska S, Beury DW, Gopalan V, Tycko AK, Qin H, Clements ME, Drake J, Nwanze C, Murgai M, Rae Z, Ju W, Alexander KA, Kline J, Contreras CF, Wessel KM, Patel S, Hannenhalli S, Kelly MC, Kaplan RN. Genetically engineered myeloid cells rebalance the core immune suppression program in metastasis. Cell 2021; 184:2033-2052.e21. [PMID: 33765443 PMCID: PMC8344805 DOI: 10.1016/j.cell.2021.02.048] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 09/08/2020] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Abstract
Metastasis is the leading cause of cancer-related deaths, and greater knowledge of the metastatic microenvironment is necessary to effectively target this process. Microenvironmental changes occur at distant sites prior to clinically detectable metastatic disease; however, the key niche regulatory signals during metastatic progression remain poorly characterized. Here, we identify a core immune suppression gene signature in pre-metastatic niche formation that is expressed predominantly by myeloid cells. We target this immune suppression program by utilizing genetically engineered myeloid cells (GEMys) to deliver IL-12 to modulate the metastatic microenvironment. Our data demonstrate that IL12-GEMy treatment reverses immune suppression in the pre-metastatic niche by activating antigen presentation and T cell activation, resulting in reduced metastatic and primary tumor burden and improved survival of tumor-bearing mice. We demonstrate that IL12-GEMys can functionally modulate the core program of immune suppression in the pre-metastatic niche to successfully rebalance the dysregulated metastatic microenvironment in cancer.
Collapse
Affiliation(s)
- Sabina Kaczanowska
- Tumor Microenvironment and Metastasis Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Daniel W Beury
- Tumor Microenvironment and Metastasis Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Arielle K Tycko
- Tumor Microenvironment and Metastasis Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Haiying Qin
- Tumor Microenvironment and Metastasis Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Miranda E Clements
- Tumor Microenvironment and Metastasis Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Justin Drake
- Tumor Microenvironment and Metastasis Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Chiadika Nwanze
- Tumor Microenvironment and Metastasis Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Meera Murgai
- Tumor Microenvironment and Metastasis Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Zachary Rae
- Single Cell Analysis Facility, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Wei Ju
- Tumor Microenvironment and Metastasis Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Katherine A Alexander
- Tumor Microenvironment and Metastasis Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Jessica Kline
- Tumor Microenvironment and Metastasis Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Cristina F Contreras
- Tumor Microenvironment and Metastasis Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Kristin M Wessel
- Tumor Microenvironment and Metastasis Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Shil Patel
- Tumor Microenvironment and Metastasis Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Michael C Kelly
- Single Cell Analysis Facility, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Rosandra N Kaplan
- Tumor Microenvironment and Metastasis Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
71
|
Liang F, Guan H, Li W, Zhang X, Liu T, Liu Y, Mei J, Jiang C, Zhang F, Luo B, Zhang Z. Erythropoietin Promotes Infection Resolution and Lowers Antibiotic Requirements in E. coli- and S. aureus-Initiated Infections. Front Immunol 2021; 12:658715. [PMID: 33927725 PMCID: PMC8076604 DOI: 10.3389/fimmu.2021.658715] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
Endogenous mechanisms underlying bacterial infection resolution are essential for the development of novel therapies for the treatment of inflammation caused by infection without unwanted side effects. Herein, we found that erythropoietin (EPO) promoted the resolution and enhanced antibiotic actions in Escherichia coli (E. coli)- and Staphylococcus aureus (S. aureus)-initiated infections. Levels of peritoneal EPO and macrophage erythropoietin receptor (EPOR) were elevated in self-limited E. coli-initiated peritonitis. Myeloid-specific EPOR-deficient mice exhibited an impaired inflammatory resolution and exogenous EPO enhanced this resolution in self-limited infections. Mechanistically, EPO increased macrophage clearance of bacteria via peroxisome proliferator-activated receptor γ (PPARγ)-induced CD36. Moreover, EPO ameliorated inflammation and increased the actions of ciprofloxacin and vancomycin in resolution-delayed E. coli- and S. aureus-initiated infections. Collectively, macrophage EPO signaling is temporally induced during infections. EPO is anti-phlogistic, increases engulfment, promotes infection resolution, and lowers antibiotic requirements.
Collapse
Affiliation(s)
- Feihong Liang
- Research Center for Integrative Medicine of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiting Guan
- Research Center for Integrative Medicine of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhua Li
- Research Center for Integrative Medicine of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue Zhang
- Research Center for Integrative Medicine of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tingting Liu
- Institute of Immunology, Army Medical University, Chongqing, China
| | - Yu Liu
- Institute of Immunology, Army Medical University, Chongqing, China
| | - Jie Mei
- Research Center for Integrative Medicine of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cheng Jiang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengxue Zhang
- Research Center for Integrative Medicine of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bangwei Luo
- Institute of Immunology, Army Medical University, Chongqing, China
| | - Zhiren Zhang
- Institute of Immunology, Army Medical University, Chongqing, China
| |
Collapse
|
72
|
Barna BP, Malur A, Thomassen MJ. Studies in a Murine Granuloma Model of Instilled Carbon Nanotubes: Relevance to Sarcoidosis. Int J Mol Sci 2021; 22:ijms22073705. [PMID: 33918196 PMCID: PMC8038141 DOI: 10.3390/ijms22073705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 12/23/2022] Open
Abstract
Poorly soluble environmental antigens, including carbon pollutants, are thought to play a role in the incidence of human sarcoidosis, a chronic inflammatory granulomatous disease of unknown causation. Currently, engineered carbon products such as multiwall carbon nanotubes (MWCNT) are manufactured commercially and have been shown to elicit acute and chronic inflammatory responses in experimental animals, including the production of granulomas or fibrosis. Several years ago, we hypothesized that constructing an experimental model of chronic granulomatosis resembling that associated with sarcoidosis might be achieved by oropharyngeal instillation of MWCNT into mice. This review summarizes the results of our efforts to define mechanisms of granuloma formation and identify potential therapeutic targets for sarcoidosis. Evidence is presented linking findings from the murine MWCNT granuloma model to sarcoidosis pathophysiology. As our goal was to determine what pulmonary inflammatory pathways might be involved, we utilized mice of knock-out (KO) backgrounds which corresponded to deficiencies noted in sarcoidosis patients. A primary example of this approach was to study mice with a myeloid-specific knock-out of the lipid-regulated transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ) which is strikingly depressed in sarcoidosis. Among the major findings associated with PPARγ KO mice compared to wild-type were: (1) exacerbation of granulomatous and fibrotic histopathology in response to MWCNT; (2) elevation of inflammatory mediators; and (3) pulmonary retention of a potentially antigenic ESAT-6 peptide co-instilled with MWCNT. In line with these data, we also observed that activation of PPARγ in wild-type mice by the PPARγ-specific ligand, rosiglitazone, significantly reduced both pulmonary granuloma and inflammatory mediator production. Similarly, recognition of a deficiency of ATP-binding cassette (ABC) lipid transporter ABCG1 in sarcoidosis led us to study MWCNT instillation in myeloid-specific ABCG1 KO mice. As anticipated, ABCG1 deficiency was associated with larger granulomas and increased levels of inflammatory mediators. Finally, a transcriptional survey of alveolar macrophages from MWCNT-instilled wild-type mice and human sarcoidosis patients revealed several common themes. One of the most prominent mediators identified in both human and mouse transcriptomic analyses was MMP12. Studies with MMP12 KO mice revealed similar acute reactions to those in wild-type but at chronic time points where wild-type maintained granulomatous disease, resolution occurred with MMP12 KO mice suggesting MMP12 is necessary for granuloma progression. In conclusion, these studies suggest that the MWCNT granuloma model has relevance to human sarcoidosis study, particularly with respect to immune-specific pathways.
Collapse
|
73
|
Jung YJ, Tweedie D, Scerba MT, Kim DS, Palmas MF, Pisanu A, Carta AR, Greig NH. Repurposing Immunomodulatory Imide Drugs (IMiDs) in Neuropsychiatric and Neurodegenerative Disorders. Front Neurosci 2021; 15:656921. [PMID: 33854417 PMCID: PMC8039148 DOI: 10.3389/fnins.2021.656921] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation represents a common trait in the pathology and progression of the major psychiatric and neurodegenerative disorders. Neuropsychiatric disorders have emerged as a global crisis, affecting 1 in 4 people, while neurological disorders are the second leading cause of death in the elderly population worldwide (WHO, 2001; GBD 2016 Neurology Collaborators, 2019). However, there remains an immense deficit in availability of effective drug treatments for most neurological disorders. In fact, for disorders such as depression, placebos and behavioral therapies have equal effectiveness as antidepressants. For neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease, drugs that can prevent, slow, or cure the disease have yet to be found. Several non-traditional avenues of drug target identification have emerged with ongoing neurological disease research to meet the need for novel and efficacious treatments. Of these novel avenues is that of neuroinflammation, which has been found to be involved in the progression and pathology of many of the leading neurological disorders. Neuroinflammation is characterized by glial inflammatory factors in certain stages of neurological disorders. Although the meta-analyses have provided evidence of genetic/proteomic upregulation of inflammatory factors in certain stages of neurological disorders. Although the mechanisms underpinning the connections between neuroinflammation and neurological disorders are unclear, and meta-analysis results have shown high sensitivity to factors such as disorder severity and sample type, there is significant evidence of neuroinflammation associations across neurological disorders. In this review, we summarize the role of neuroinflammation in psychiatric disorders such as major depressive disorder, generalized anxiety disorder, post-traumatic stress disorder, and bipolar disorder, as well as in neurodegenerative disorders, such as Parkinson's disease and Alzheimer's disease, and introduce current research on the potential of immunomodulatory imide drugs (IMiDs) as a new treatment strategy for these disorders.
Collapse
Affiliation(s)
- Yoo Jin Jung
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
- Stanford Neurosciences Interdepartmental Program, Stanford University School of Medicine, Stanford, CA, United States
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Michael T Scerba
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Dong Seok Kim
- AevisBio, Inc., Gaithersburg, MD, United States
- Aevis Bio, Inc., Daejeon, South Korea
| | | | - Augusta Pisanu
- National Research Council, Institute of Neuroscience, Cagliari, Italy
| | - Anna R Carta
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
74
|
Velez LM, Seldin M, Motta AB. Inflammation and reproductive function in women with polycystic ovary syndrome†. Biol Reprod 2021; 104:1205-1217. [PMID: 33739372 DOI: 10.1093/biolre/ioab050] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/01/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most frequent endocrinopathies, affecting 5-10% of women of reproductive age, and is characterized by the presence of ovarian cysts, oligo, or anovulation, and clinical or biochemical hyperandrogenism. Metabolic abnormalities such as hyperinsulinemia, insulin resistance, cardiovascular complications, dyslipidemia, and obesity are frequently present in PCOS women. Several key pathogenic pathways overlap between these metabolic abnormalities, notably chronic inflammation. The observation that this mechanism was shared led to the hypothesis that a chronic inflammatory state could contribute to the pathogenesis of PCOS. Moreover, while physiological inflammation is an essential feature of reproductive events such as ovulation, menstruation, implantation, and labor at term, the establishment of chronic inflammation may be a pivotal feature of the observed reproductive dysfunctions in PCOS women. Taken together, the present work aims to review the available evidence about inflammatory mediators and related mechanisms in women with PCOS, with an emphasis on reproductive function.
Collapse
Affiliation(s)
- Leandro M Velez
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, University of California, Irvine, CA, USA
| | - Marcus Seldin
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, University of California, Irvine, CA, USA
| | - Alicia B Motta
- Center of Pharmacological and Botanical Studies (CEFYBO), National Scientific and Technical Research Council, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
75
|
Isola G, Polizzi A, Iorio-Siciliano V, Alibrandi A, Ramaglia L, Leonardi R. Effectiveness of a nutraceutical agent in the non-surgical periodontal therapy: a randomized, controlled clinical trial. Clin Oral Investig 2021; 25:1035-1045. [PMID: 32556659 DOI: 10.1007/s00784-020-03397-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Nutraceutical agents have been demonstrated as adjuncts for the treatment of several inflammatory diseases. The present study analyzed and compared new nutraceutical agent as an adjunct to Scaling and root planing (SRP) versus SRP alone for the treatment of periodontitis. MATERIALS AND METHODS Sixty-six patients with moderate periodontitis were enrolled. Through a randomized design, the patients were randomly assigned to SRP + nutraceutical agent (test group) or SRP alone (control group). Patients were regularly examined the clinical, inflammatory mediators and visual analogue scale (VAS) changes over a 6-month period. Clinical attachment level (CAL) was the primary outcome variable chosen. Gingival crevicular fluid (GCF) inflammatory mediator change and the impact of treatment on VAS were evaluated through a linear regression model. RESULTS Both treatments demonstrated an improvement in periodontal parameters compared with baseline. After 6 months of treatment, compared with the control group, the test group determined a significant probing depth (PD) (p = 0.003) and bleeding on probing (BOP) reduction (p < 0.001), while CAL gain was significantly obtained at 30 and 60 days after treatment (p < 0.05). In the test group, the level of inflammatory mediators was significantly reduced compared with the control group (p < 0.05). The linear regression analysis demonstrated that the nutraceutical agent exerted, in the test group, a significant influence on VAS at 6, 12, 24, and 48 h after treatment (p < 0.05). CONCLUSIONS Nutraceutical agent resulted in a more significant reduction in clinical, inflammatory mediators and short-term pain compared with SRP alone. CLINICAL RELEVANCE Nutraceutical agent, when combined with SRP, was demonstrated to be effective in reducing periodontal parameters and controlling the levels of inflammatory mediators and pain in patients with periodontitis.
Collapse
Affiliation(s)
- Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, University of Catania, Via S. Sofia 78, 95123, Catania, Italy.
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, University of Catania, Via S. Sofia 78, 95123, Catania, Italy
| | - Vincenzo Iorio-Siciliano
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, School of Medicine, University of Naples "Federico II", Via G. Pansini 5, 80131, Naples, Italy
| | - Angela Alibrandi
- Department of Economics, Unit of Statistical and Mathematical Sciences, University of Messina, Piazza Pugliatti 1, Messina, 98123, Italy
| | - Luca Ramaglia
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, School of Medicine, University of Naples "Federico II", Via G. Pansini 5, 80131, Naples, Italy
| | - Rosalia Leonardi
- Department of General Surgery and Surgical-Medical Specialties, University of Catania, Via S. Sofia 78, 95123, Catania, Italy
| |
Collapse
|
76
|
STAT6 Signaling Mediates PPARγ Activation and Resolution of Acute Sterile Inflammation in Mice. Cells 2021; 10:cells10030501. [PMID: 33652833 PMCID: PMC7996818 DOI: 10.3390/cells10030501] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/15/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
The signal transducer and activator of transcription 6 (STAT6) transcription factor promotes activation of the peroxisome proliferator-activated receptor gamma (PPARγ) pathway in macrophages. Little is known about the effect of proximal signal transduction leading to PPARγ activation for the resolution of acute inflammation. Here, we studied the role of STAT6 signaling in PPARγ activation and the resolution of acute sterile inflammation in a murine model of zymosan-induced peritonitis. First, we showed that STAT6 is aberrantly activated in peritoneal macrophages after zymosan injection. Utilizing STAT6−/− and wild-type (WT) mice, we found that STAT6 deficiency further enhanced zymosan-induced proinflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-6, and macrophage inflammatory protein-2 in peritoneal lavage fluid (PLF) and serum, neutrophil numbers and total protein amount in PLF, but reduced proresolving molecules, such as IL-10 and hepatocyte growth factor, in PLF. The peritoneal macrophages and spleens of STAT6−/− mice exhibited lower mRNA and protein levels of PPARγ and its target molecules over the course of inflammation than those of WT mice. The deficiency of STAT6 was shown to impair efferocytosis by peritoneal macrophages. Taken together, these results suggest that enhanced STAT6 signaling results in PPARγ-mediated macrophage programming, contributing to increased efferocytosis and inflammation resolution.
Collapse
|
77
|
Alatshan A, Benkő S. Nuclear Receptors as Multiple Regulators of NLRP3 Inflammasome Function. Front Immunol 2021; 12:630569. [PMID: 33717162 PMCID: PMC7952630 DOI: 10.3389/fimmu.2021.630569] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Nuclear receptors are important bridges between lipid signaling molecules and transcription responses. Beside their role in several developmental and physiological processes, many of these receptors have been shown to regulate and determine the fate of immune cells, and the outcome of immune responses under physiological and pathological conditions. While NLRP3 inflammasome is assumed as key regulator for innate and adaptive immune responses, and has been associated with various pathological events, the precise impact of the nuclear receptors on the function of inflammasome is hardly investigated. A wide variety of factors and conditions have been identified as modulators of NLRP3 inflammasome activation, and at the same time, many of the nuclear receptors are known to regulate, and interact with these factors, including cellular metabolism and various signaling pathways. Nuclear receptors are in the focus of many researches, as these receptors are easy to manipulate by lipid soluble molecules. Importantly, nuclear receptors mediate regulatory mechanisms at multiple levels: not only at transcription level, but also in the cytosol via non-genomic effects. Their importance is also reflected by the numerous approved drugs that have been developed in the past decade to specifically target nuclear receptors subtypes. Researches aiming to delineate mechanisms that regulate NLRP3 inflammasome activation draw a wide range of attention due to their unquestionable importance in infectious and sterile inflammatory conditions. In this review, we provide an overview of current reports and knowledge about NLRP3 inflammasome regulation from the perspective of nuclear receptors, in order to bring new insight to the potentially therapeutic aspect in targeting NLRP3 inflammasome and NLRP3 inflammasome-associated diseases.
Collapse
Affiliation(s)
- Ahmad Alatshan
- Departments of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cellular and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilvia Benkő
- Departments of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cellular and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
78
|
Zheng DJ, Abou Taka M, Heit B. Role of Apoptotic Cell Clearance in Pneumonia and Inflammatory Lung Disease. Pathogens 2021; 10:134. [PMID: 33572846 PMCID: PMC7912081 DOI: 10.3390/pathogens10020134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
Pneumonia and inflammatory diseases of the pulmonary system such as chronic obstructive pulmonary disease and asthma continue to cause significant morbidity and mortality globally. While the etiology of these diseases is highly different, they share a number of similarities in the underlying inflammatory processes driving disease pathology. Multiple recent studies have identified failures in efferocytosis-the phagocytic clearance of apoptotic cells-as a common driver of inflammation and tissue destruction in these diseases. Effective efferocytosis has been shown to be important for resolving inflammatory diseases of the lung and the subsequent restoration of normal lung function, while many pneumonia-causing pathogens manipulate the efferocytic system to enhance their growth and avoid immunity. Moreover, some treatments used to manage these patients, such as inhaled corticosteroids for chronic obstructive pulmonary disease and the prevalent use of statins for cardiovascular disease, have been found to beneficially alter efferocytic activity in these patients. In this review, we provide an overview of the efferocytic process and its role in the pathophysiology and resolution of pneumonia and other inflammatory diseases of the lungs, and discuss the utility of existing and emerging therapies for modulating efferocytosis as potential treatments for these diseases.
Collapse
Affiliation(s)
- David Jiao Zheng
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N0M 2N0, Canada; (D.J.Z.); (M.A.T.)
| | - Maria Abou Taka
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N0M 2N0, Canada; (D.J.Z.); (M.A.T.)
| | - Bryan Heit
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N0M 2N0, Canada; (D.J.Z.); (M.A.T.)
- Robarts Research Institute, London, ON N6A 5K8, Canada
| |
Collapse
|
79
|
de Carvalho MV, Gonçalves-de-Albuquerque CF, Silva AR. PPAR Gamma: From Definition to Molecular Targets and Therapy of Lung Diseases. Int J Mol Sci 2021; 22:E805. [PMID: 33467433 PMCID: PMC7830538 DOI: 10.3390/ijms22020805] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily that regulate the expression of genes related to lipid and glucose metabolism and inflammation. There are three members: PPARα, PPARβ or PPARγ. PPARγ have several ligands. The natural agonists are omega 9, curcumin, eicosanoids and others. Among the synthetic ligands, we highlight the thiazolidinediones, clinically used as an antidiabetic. Many of these studies involve natural or synthetic products in different pathologies. The mechanisms that regulate PPARγ involve post-translational modifications, such as phosphorylation, sumoylation and ubiquitination, among others. It is known that anti-inflammatory mechanisms involve the inhibition of other transcription factors, such as nuclear factor kB(NFκB), signal transducer and activator of transcription (STAT) or activator protein 1 (AP-1), or intracellular signaling proteins such as mitogen-activated protein (MAP) kinases. PPARγ transrepresses other transcription factors and consequently inhibits gene expression of inflammatory mediators, known as biomarkers for morbidity and mortality, leading to control of the exacerbated inflammation that occurs, for instance, in lung injury/acute respiratory distress. Many studies have shown the therapeutic potentials of PPARγ on pulmonary diseases. Herein, we describe activities of the PPARγ as a modulator of inflammation, focusing on lung injury and including definition and mechanisms of regulation, biological effects and molecular targets, and its role in lung diseases caused by inflammatory stimuli, bacteria and virus, and molecular-based therapy.
Collapse
Affiliation(s)
- Márcia V. de Carvalho
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Cassiano F. Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Laboratório de Imunofarmacologia, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 20211-010, Brazil
- Programa de Pós-Graduação em Biologia Molecular e Celular, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 20211-010, Brazil
| | - Adriana R. Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
80
|
Di Stasi LC. Coumarin Derivatives in Inflammatory Bowel Disease. Molecules 2021; 26:molecules26020422. [PMID: 33467396 PMCID: PMC7830946 DOI: 10.3390/molecules26020422] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a non-communicable disease characterized by a chronic inflammatory process of the gut and categorized into Crohn’s disease and ulcerative colitis, both currently without definitive pharmacological treatment and cure. The unclear etiology of IBD is a limiting factor for the development of new drugs and explains the high frequency of refractory patients to current drugs, which are also related to various adverse effects, mainly after long-term use. Dissatisfaction with current therapies has promoted an increased interest in new pharmacological approaches using natural products. Coumarins comprise a large class of natural phenolic compounds found in fungi, bacteria, and plants. Coumarin and its derivatives have been reported as antioxidant and anti-inflammatory compounds, potentially useful as complementary therapy of the IBD. These compounds produce protective effects in intestinal inflammation through different mechanisms and signaling pathways, mainly modulating immune and inflammatory responses, and protecting against oxidative stress, a central factor for IBD development. In this review, we described the main coumarin derivatives reported as intestinal anti-inflammatory products and its available pharmacodynamic data that support the protective effects of these products in the acute and subchronic phase of intestinal inflammation.
Collapse
Affiliation(s)
- Luiz C Di Stasi
- Laboratory of Phytomedicines, Pharmacology, and Biotechnology (PhytoPharmaTech), Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), 18618-689 Botucatu, SP, Brazil
| |
Collapse
|
81
|
Alon R, Sportiello M, Kozlovski S, Kumar A, Reilly EC, Zarbock A, Garbi N, Topham DJ. Leukocyte trafficking to the lungs and beyond: lessons from influenza for COVID-19. Nat Rev Immunol 2021; 21:49-64. [PMID: 33214719 PMCID: PMC7675406 DOI: 10.1038/s41577-020-00470-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). Understanding of the fundamental processes underlying the versatile clinical manifestations of COVID-19 is incomplete without comprehension of how different immune cells are recruited to various compartments of virus-infected lungs, and how this recruitment differs among individuals with different levels of disease severity. As in other respiratory infections, leukocyte recruitment to the respiratory system in people with COVID-19 is orchestrated by specific leukocyte trafficking molecules, and when uncontrolled and excessive it results in various pathological complications, both in the lungs and in other organs. In the absence of experimental data from physiologically relevant animal models, our knowledge of the trafficking signals displayed by distinct vascular beds and epithelial cell layers in response to infection by SARS-CoV-2 is still incomplete. However, SARS-CoV-2 and influenza virus elicit partially conserved inflammatory responses in the different respiratory epithelial cells encountered early in infection and may trigger partially overlapping combinations of trafficking signals in nearby blood vessels. Here, we review the molecular signals orchestrating leukocyte trafficking to airway and lung compartments during primary pneumotropic influenza virus infections and discuss potential similarities to distinct courses of primary SARS-CoV-2 infections. We also discuss how an imbalance in vascular activation by leukocytes outside the airways and lungs may contribute to extrapulmonary inflammatory complications in subsets of patients with COVID-19. These multiple molecular pathways are potential targets for therapeutic interventions in patients with severe COVID-19.
Collapse
Affiliation(s)
- Ronen Alon
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel.
| | - Mike Sportiello
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Stav Kozlovski
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Ashwin Kumar
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Emma C Reilly
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Alexander Zarbock
- Department of Cellular Immunology, Institute of Experimental Immunology Medical Faculty, University of Bonn, Bonn, Germany
| | - Natalio Garbi
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - David J Topham
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
82
|
Verwoolde MB, van den Biggelaar RHGA, de Vries Reilingh G, Arts JAJ, van Baal J, Lammers A, Jansen CA. Innate immune training and metabolic reprogramming in primary monocytes of broiler and laying hens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103811. [PMID: 32750399 DOI: 10.1016/j.dci.2020.103811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Recently, we have reported trained innate immunity in laying chicken monocytes. In the present study, we further investigated trained innate immunity of monocytes in layers and broilers. Monocytes of both breeds isolated from blood were trained in vitro with β-glucan, rec-chicken IL-4 or a combination of both, and restimulated with lipopolysaccharide (LPS), after which inflammation and metabolism-related responses were measured. Training of laying and broiler hen monocytes resulted in increased mRNA levels of IL-1β, iNOS and HIF-1α, but enhanced surface expression of CD40 and NO production was only observed in layers. Our in vitro study demonstrates that monocytes from different genetic backgrounds can be trained. However, the observed differences suggest a differential effect on immune functionality associated with innate training. Whether these differences in immune functions between layers and broilers have effect on disease resistance remains to be elucidated.
Collapse
Affiliation(s)
- Michel B Verwoolde
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, the Netherlands; Animal Nutrition Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, the Netherlands.
| | - Robin H G A van den Biggelaar
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Ger de Vries Reilingh
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, the Netherlands
| | - Joop A J Arts
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, the Netherlands
| | - Jürgen van Baal
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, the Netherlands
| | - Aart Lammers
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, the Netherlands.
| | - Christine A Jansen
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
83
|
UPR modulation of host immunity by Pseudomonas aeruginosa in cystic fibrosis. Clin Sci (Lond) 2020; 134:1911-1934. [PMID: 32537652 DOI: 10.1042/cs20200066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis (CF) is a progressive multiorgan autosomal recessive disease with devastating impact on the lungs caused by derangements of the CF transmembrane conductance regulator (CFTR) gene. Morbidity and mortality are caused by the triad of impaired mucociliary clearance, microbial infections and chronic inflammation. Pseudomonas aeruginosa is the main respiratory pathogen in individuals with CF infecting most patients in later stages. Despite its recognized clinical impact, molecular mechanisms that underlie P. aeruginosa pathogenesis and the host response to P. aeruginosa infection remain incompletely understood. The nuclear hormone receptor peroxisome proliferator-activated receptor (PPAR) γ (PPARγ), has shown to be reduced in CF airways. In the present study, we sought to investigate the upstream mechanisms repressing PPARγ expression and its impact on airway epithelial host defense. Endoplasmic reticulum-stress (ER-stress) triggered unfolded protein response (UPR) activated by misfolded CFTR and P. aeruginosa infection contributed to attenuated expression of PPARγ. Specifically, the protein kinase RNA (PKR)-like ER kinase (PERK) signaling pathway led to the enhanced expression of the CCAAT-enhancer-binding-protein homologous protein (CHOP). CHOP induction led to the repression of PPARγ expression. Mechanistically, we showed that CHOP induction mediated PPARγ attenuation, impacted the innate immune function of normal and ∆F508 primary airway epithelial cells by reducing expression of antimicrobial peptide (AMP) and paraoxanse-2 (PON-2), as well as enhancing IL-8 expression. Furthermore, mitochondrial reactive oxygen species production (mt-ROS) and ER-stress positive feedforward loop also dysregulated mitochondrial bioenergetics. Additionally, our findings implicate that PPARγ agonist pioglitazone (PIO) has beneficial effect on the host at the multicellular level ranging from host defense to mitochondrial re-energization.
Collapse
|
84
|
Gamez-Belmonte R, Erkert L, Wirtz S, Becker C. The Regulation of Intestinal Inflammation and Cancer Development by Type 2 Immune Responses. Int J Mol Sci 2020; 21:ijms21249772. [PMID: 33371444 PMCID: PMC7767427 DOI: 10.3390/ijms21249772] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
The gut is among the most complex organs of the human body. It has to exert several functions including food and water absorption while setting up an efficient barrier to the outside world. Dysfunction of the gut can be life-threatening. Diseases of the gastrointestinal tract such as inflammatory bowel disease, infections, or colorectal cancer, therefore, pose substantial challenges to clinical care. The intestinal epithelium plays an important role in intestinal disease development. It not only establishes an important barrier against the gut lumen but also constantly signals information about the gut lumen and its composition to immune cells in the bowel wall. Such signaling across the epithelial barrier also occurs in the other direction. Intestinal epithelial cells respond to cytokines and other mediators of immune cells in the lamina propria and shape the microbial community within the gut by producing various antimicrobial peptides. Thus, the epithelium can be considered as an interpreter between the microbiota and the mucosal immune system, safeguarding and moderating communication to the benefit of the host. Type 2 immune responses play important roles in immune-epithelial communication. They contribute to gut tissue homeostasis and protect the host against infections with helminths. However, they are also involved in pathogenic pathways in inflammatory bowel disease and colorectal cancer. The current review provides an overview of current concepts regarding type 2 immune responses in intestinal physiology and pathophysiology.
Collapse
|
85
|
Peroxisome proliferator-activated receptors in the pathogenesis and therapies of liver fibrosis. Pharmacol Ther 2020; 222:107791. [PMID: 33321113 DOI: 10.1016/j.pharmthera.2020.107791] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022]
Abstract
Liver fibrosis is a dynamic wound-healing process associated with the deposition of extracellular matrix produced by myofibroblasts. HSCs activation, inflammation, oxidative stress, steatosis and aging play critical roles in the progression of liver fibrosis, which is correlated with the regulation of the peroxisome proliferator-activated receptor (PPAR) pathway. As nuclear receptors, PPARs reduce inflammatory response, regulate lipid metabolism, and inhibit fibrogenesis in the liver associated with aging. Thus, PPAR ligands have been investigated as possible therapeutic agents. Mounting evidence indicated that some PPAR agonists could reverse steatohepatitis and liver fibrosis. Consequently, targeting PPARs might be a promising and novel therapeutic option against liver fibrosis. This review summarizes recent studies on the role of PPARs on the pathogenesis and treatment of liver fibrosis.
Collapse
|
86
|
Talukdar J, Bhadra B, Dattaroy T, Nagle V, Dasgupta S. Potential of natural astaxanthin in alleviating the risk of cytokine storm in COVID-19. Biomed Pharmacother 2020; 132:110886. [PMID: 33113418 PMCID: PMC7566765 DOI: 10.1016/j.biopha.2020.110886] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Host excessive inflammatory immune response to SARS-CoV-2 infection is thought to underpin the pathogenesis of COVID-19 associated severe pneumonitis and acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). Once an immunological complication like cytokine storm occurs, anti-viral based monotherapy alone is not enough. Additional anti-inflammatory treatment is recommended. It must be noted that anti-inflammatory drugs such as JAK inhibitors, IL-6 inhibitors, TNF-α inhibitors, colchicine, etc., have been either suggested or are under trials for managing cytokine storm in COVID-19 infections. Natural astaxanthin (ASX) has a clinically proven safety profile and has antioxidant, anti-inflammatory, and immunomodulatory properties. There is evidence from preclinical studies that supports its preventive actions against ALI/ARDS. Moreover, ASX has a potent PPARs activity. Therefore, it is plausible to speculate that ASX could be considered as a potential adjunctive supplement. Here, we summarize the mounting evidence where ASX is shown to exert protective effect by regulating the expression of pro-inflammatory factors IL-1β, IL-6, IL-8 and TNF-α. We present reports where ASX is shown to prevent against oxidative damage and attenuate exacerbation of the inflammatory responses by regulating signaling pathways like NF-ĸB, NLRP3 and JAK/STAT. These evidences provide a rationale for considering natural astaxanthin as a therapeutic agent against inflammatory cytokine storm and associated risks in COVID-19 infection and this suggestion requires further validation with clinical studies.
Collapse
Affiliation(s)
- Jayanta Talukdar
- Synthetic Biology Group, Reliance Research & Development Centre, Reliance Industries Limited, Navi Mumbai, Maharashtra, 400701, India.
| | - Bhaskar Bhadra
- Synthetic Biology Group, Reliance Research & Development Centre, Reliance Industries Limited, Navi Mumbai, Maharashtra, 400701, India
| | - Tomal Dattaroy
- Synthetic Biology Group, Reliance Research & Development Centre, Reliance Industries Limited, Navi Mumbai, Maharashtra, 400701, India
| | - Vinod Nagle
- Synthetic Biology Group, Reliance Research & Development Centre, Reliance Industries Limited, Navi Mumbai, Maharashtra, 400701, India
| | - Santanu Dasgupta
- Synthetic Biology Group, Reliance Research & Development Centre, Reliance Industries Limited, Navi Mumbai, Maharashtra, 400701, India
| |
Collapse
|
87
|
Thomas G, Frederick E, Thompson L, Bar-Or R, Mulugeta Y, Hausburg M, Roshon M, Mains C, Bar-Or D. LMWF5A suppresses cytokine release by modulating select inflammatory transcription factor activity in stimulated PBMC. J Transl Med 2020; 18:452. [PMID: 33256749 PMCID: PMC7702209 DOI: 10.1186/s12967-020-02626-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/19/2020] [Indexed: 12/24/2022] Open
Abstract
Background Dysregulation of transcription and cytokine expression has been implicated in the pathogenesis of a variety inflammatory diseases. The resulting imbalance between inflammatory and resolving transcriptional programs can cause an overabundance of pro-inflammatory, classically activated macrophage type 1 (M1) and/or helper T cell type 1 (Th1) products, such as IFNγ, TNFα, IL1-β, and IL12, that prevent immune switching to resolution and healing. The low molecular weight fraction of human serum albumin (LMWF5A) is a novel biologic drug that is currently under clinical investigation for the treatment of osteoarthritis and the hyper-inflammatory response associated with COVID-19. This study aims to elucidate transcriptional mechanisms of action involved with the ability of LMWF5A to reduce pro-inflammatory cytokine release. Methods ELISA arrays were used to identify cytokines and chemokines influenced by LMWF5A treatment of LPS-stimulated peripheral blood mononuclear cells (PBMC). The resulting profiles were analyzed by gene enrichment to gain mechanistic insight into the biologic processes and transcription factors (TFs) underlying the identified differentially expressed cytokines. DNA-binding ELISAs, luciferase reporter assays, and TNFα or IL-1β relative potency were then employed to confirm the involvement of enriched pathways and TFs. Results LMWF5A was found to significantly inhibit a distinct set of pro-inflammatory cytokines (TNFα, IL-1β, IL-12, CXCL9, CXCL10, and CXCL11) associated with pro-inflammatory M1/Th1 immune profiles. Gene enrichment analysis also suggests these cytokines are, in part, regulated by NF-κB and STAT transcription factors. Data from DNA-binding and reporter assays support this with LMWF5A inhibition of STAT1α DNA-binding activity as well as a reduction in overall NF-κB-driven luciferase expression. Experiments using antagonists specific for the immunomodulatory and NF-κB/STAT-repressing transcription factors, peroxisome proliferator-activated receptor (PPAR)γ and aryl hydrocarbon receptor (AhR), indicate these pathways are involved in the LMWF5A mechanisms of action by reducing LMWF5A drug potency as measured by TNFα and IL-1β release. Conclusion In this report, we provide evidence that LMWF5A reduces pro-inflammatory cytokine release by activating the immunoregulatory transcription factors PPARγ and AhR. In addition, our data indicate that LMWF5A suppresses NF-κB and STAT1α pro-inflammatory pathways. This suggests that LMWF5A acts through these mechanisms to decrease pro-inflammatory transcription factor activity and subsequent inflammatory cytokine production.
Collapse
Affiliation(s)
- Gregory Thomas
- Ampio Pharmaceuticals Inc, 373 Inverness Parkway Suite 200, Englewood, CO, 80122, USA
| | - Elizabeth Frederick
- Ampio Pharmaceuticals Inc, 373 Inverness Parkway Suite 200, Englewood, CO, 80122, USA
| | - Lisa Thompson
- Ampio Pharmaceuticals Inc, 373 Inverness Parkway Suite 200, Englewood, CO, 80122, USA
| | - Raphael Bar-Or
- Ampio Pharmaceuticals Inc, 373 Inverness Parkway Suite 200, Englewood, CO, 80122, USA.,Trauma Research Department, Swedish Medical Center, 501 E. Hampden Ave. Rm 4-454, Englewood, CO, 80113, USA.,Trauma Research Department, St. Anthony Hospital, 11600 W 2nd Pl, Lakewood, CO, 80228, USA.,Trauma Research Department, Penrose Hospital, 2222 N Nevada Ave, Colorado Springs, CO, 80907, USA.,Centura Health Systems, 9100 E. Mineral Cir, Centennial, CO, 80112, USA
| | - Yetti Mulugeta
- Ampio Pharmaceuticals Inc, 373 Inverness Parkway Suite 200, Englewood, CO, 80122, USA
| | - Melissa Hausburg
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden Ave. Rm 4-454, Englewood, CO, 80113, USA.,Trauma Research Department, St. Anthony Hospital, 11600 W 2nd Pl, Lakewood, CO, 80228, USA.,Trauma Research Department, Penrose Hospital, 2222 N Nevada Ave, Colorado Springs, CO, 80907, USA.,Centura Health Systems, 9100 E. Mineral Cir, Centennial, CO, 80112, USA
| | - Michael Roshon
- Trauma Research Department, Penrose Hospital, 2222 N Nevada Ave, Colorado Springs, CO, 80907, USA
| | - Charles Mains
- Centura Health Systems, 9100 E. Mineral Cir, Centennial, CO, 80112, USA
| | - David Bar-Or
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden Ave. Rm 4-454, Englewood, CO, 80113, USA. .,Trauma Research Department, St. Anthony Hospital, 11600 W 2nd Pl, Lakewood, CO, 80228, USA. .,Trauma Research Department, Penrose Hospital, 2222 N Nevada Ave, Colorado Springs, CO, 80907, USA. .,Centura Health Systems, 9100 E. Mineral Cir, Centennial, CO, 80112, USA. .,Department of Molecular Biology, Rocky Vista University, 8401 S Chambers Rd, Parker, CO, 80134, USA.
| |
Collapse
|
88
|
Sekulic-Jablanovic M, Wright MB, Petkovic V, Bodmer D. Pioglitazone Ameliorates Gentamicin Ototoxicity by Affecting the TLR and STAT Pathways in the Early Postnatal Organ of Corti. Front Cell Neurosci 2020; 14:566148. [PMID: 33192313 PMCID: PMC7658481 DOI: 10.3389/fncel.2020.566148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022] Open
Abstract
Noise trauma, infection, and ototoxic drugs are frequent external causes of hearing loss. With no pharmacological treatments currently available, understanding the mechanisms and pathways leading to auditory hair cell (HC) damage and repair is crucial for identifying potential pharmacological targets. Prior research has implicated increased reactive oxygen species (ROS) and inflammation as general mechanisms of hearing loss common to diverse causes. Novel targets of these two key mechanisms of auditory damage may provide new paths toward the prevention and treatment of hearing loss. Pioglitazone, an oral antidiabetic drug from the class of thiazolidinediones, acts as an agonist of the peroxisome proliferator-activated receptor-gamma (PPAR-γ) and is involved in the regulation of lipid and glucose metabolism. PPAR-γ is an important player in repressing the expression of inflammatory cytokines and signaling molecules. We evaluated the effects of pioglitazone in the mouse Organ of Corti (OC) explants to characterize its influence on signaling pathways involved in auditory HC damage. The OC explants was cultured with pioglitazone, gentamicin, or a combination of both agents. Pioglitazone treatment resulted in significant repression of interferon (IFN)-α and -gamma pathways and downstream cytokines, as assessed by RNA sequencing and quantitative PCR gene expression assays. More detailed investigation at the single gene and protein level showed that pioglitazone mediated its anti-inflammatory effects through alterations of the Toll-like receptor (TLR) and STAT pathways. Together, these results indicate that pioglitazone significantly represses IFN and TLR in the cochlea, dampening the activity of gentamicin-induced pathways. These data support our previous results demonstrating significant protection of auditory HCs in the OC explants exposed to pioglitazone and other PPAR-targeted agents.
Collapse
Affiliation(s)
| | | | - Vesna Petkovic
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Daniel Bodmer
- Department of Biomedicine, University of Basel, Basel, Switzerland.,Clinic for Otolaryngology, Head and Neck Surgery, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
89
|
Gomez Ribot D, Diaz E, Fazio MV, Gómez HL, Fornes D, Macchi SB, Gresta CA, Capobianco E, Jawerbaum A. An extra virgin olive oil-enriched diet improves maternal, placental, and cord blood parameters in GDM pregnancies. Diabetes Metab Res Rev 2020; 36:e3349. [PMID: 32447799 DOI: 10.1002/dmrr.3349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/01/2020] [Accepted: 05/12/2020] [Indexed: 01/15/2023]
Abstract
AIMS To address the effect of a diet enriched in extra virgin olive oil (EVOO) on maternal metabolic parameters and placental proinflammatory markers in Gestational diabetes mellitus (GDM) patients. METHODS Pregnant women at 24-28 weeks of gestation were enrolled: 33 GDM patients which were randomly assigned or not to the EVOO-enriched group and 17 healthy controls. Metabolic parameters were determined. Peroxisome proliferator activated receptor (PPAR) γ and PPARα protein expression, expression of microRNA (miR)-130a and miR-518d (which respectively target these PPAR isoforms) and levels of proinflammatory markers were evaluated in term placentas. Matrix metalloproteinases (MMPs) activity was evaluated in term placentas and umbilical cord blood. RESULTS GDM patients that received the EVOO-enriched diet showed reduced pregnancy weight gain (GDM-EVOO:10.3 ± 0.9, GDM:14.2 ± 1.4, P = .03) and reduced triglyceridemia (GDM-EVOO:231 ± 14, GDM:292 ± 21, P = .02) compared to the non-EVOO-enriched GDM group. In GDM placentas, the EVOO-enriched diet did not regulate PPARγ protein expression or miR-130a expression, but prevented the reduced PPARα protein expression (P = .02 vs GDM) and the increased miR-518d expression (P = .009 vs GDM). Increased proinflammatory markers (interleukin-1β, tumour necrosis factor-α and nitric oxide overproduction) in GDM placentas were prevented by the EVOO-enriched diet (respectively P = .001, P = .001 and P = .01 vs GDM). MMPs overactivity was prevented in placenta and umbilical cord blood in the EVOO-enriched GDM group (MMP-9: respectively P = .01 and P = .001 vs GDM). CONCLUSIONS A diet enriched in EVOO in GDM patients reduced maternal triglyceridemia and weight gain and has antiinflammatory properties in placenta and umbilical cord blood, possibly mediated by the regulation of PPAR pathways.
Collapse
Affiliation(s)
- Dalmiro Gomez Ribot
- Universidad de Buenos Aires (UBA), Facultad de Medicina, Buenos Aires, Argentina
- CONICET-UBA, Laboratory of Reproduction and Metabolism, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Buenos Aires, Argentina
- Hospital General de Agudos Dr. Ignacio Pirovano, Buenos Aires, Argentina
| | - Esteban Diaz
- Hospital General de Agudos Dr. Ignacio Pirovano, Buenos Aires, Argentina
| | | | - Hebe Lorena Gómez
- Hospital General de Agudos Dr. Ignacio Pirovano, Buenos Aires, Argentina
| | - Daiana Fornes
- Universidad de Buenos Aires (UBA), Facultad de Medicina, Buenos Aires, Argentina
- CONICET-UBA, Laboratory of Reproduction and Metabolism, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Buenos Aires, Argentina
| | | | | | - Evangelina Capobianco
- Universidad de Buenos Aires (UBA), Facultad de Medicina, Buenos Aires, Argentina
- CONICET-UBA, Laboratory of Reproduction and Metabolism, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Buenos Aires, Argentina
| | - Alicia Jawerbaum
- Universidad de Buenos Aires (UBA), Facultad de Medicina, Buenos Aires, Argentina
- CONICET-UBA, Laboratory of Reproduction and Metabolism, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Buenos Aires, Argentina
| |
Collapse
|
90
|
Im J, Baik JE, Lee D, Park OJ, Park DH, Yun CH, Han SH. Bacterial Lipoproteins Induce BAFF Production via TLR2/MyD88/JNK Signaling Pathways in Dendritic Cells. Front Immunol 2020; 11:564699. [PMID: 33123136 PMCID: PMC7566273 DOI: 10.3389/fimmu.2020.564699] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/17/2020] [Indexed: 11/13/2022] Open
Abstract
B-cell activating factor (BAFF) plays a crucial role in survival, differentiation, and antibody secretion of B cells. Microbial products with B-cell mitogenic properties can indirectly promote expansion and activation of B cells by stimulating accessory cells, such as dendritic cells (DCs), to induce BAFF. Although bacterial lipoproteins are potent B-cell mitogen like lipopolysaccharides (LPSs), it is uncertain whether they can stimulate DCs to induce BAFF expression. Here, we evaluated the effect of bacterial lipoproteins on BAFF expression in mouse bone marrow-derived DCs. Lipoprotein-deficient Staphylococcus aureus mutant induced relatively low expression level of membrane-bound BAFF (mBAFF) and the mRNA compared with its wild-type strain, implying that bacterial lipoproteins can positively regulate BAFF induction. The synthetic lipopeptides Pam2CSK4 and Pam3CSK4, which mimic bacterial lipoproteins, dose-dependently induced BAFF expression, and their BAFF-inducing capacities were comparable to those of LPS in DCs. Induction of BAFF by the lipopeptide was higher than the induction by other microbe-associated molecular patterns, including peptidoglycan, flagellin, zymosan, lipoteichoic acid, and poly(I:C). Pam3CSK4 induced both mBAFF and soluble BAFF expression in a dose- and time-dependent manner. BAFF expression by Pam3CSK4 was completely absent in DCs from TLR2- or MyD88-deficient mice. Among various MAP kinase inhibitors, only JNK inhibitors blocked Pam3CSK4-induced BAFF mRNA expression, while inhibitors blocking ERK or p38 kinase had no such effect. Furthermore, Pam3CSK4 increased the DNA-binding activities of NF-κB and Sp1, but not that of C/EBP. Pam3CSK4-induced BAFF promoter activity via TLR2/1 was blocked by NF-κB or Sp1 inhibitor. Collectively, these results suggest that bacterial lipoproteins induce expression of BAFF through TLR2/MyD88/JNK signaling pathways leading to NF-κB and Sp1 activation in DCs, and BAFF derived from bacterial lipoprotein-stimulated DCs induces B-cell proliferation.
Collapse
Affiliation(s)
- Jintaek Im
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Jung Eun Baik
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Dongwook Lee
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Ok-Jin Park
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Dong Hyun Park
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| |
Collapse
|
91
|
Genetic parameters and associated genomic regions for global immunocompetence and other health-related traits in pigs. Sci Rep 2020; 10:18462. [PMID: 33116177 PMCID: PMC7595139 DOI: 10.1038/s41598-020-75417-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
The inclusion of health-related traits, or functionally associated genetic markers, in pig breeding programs could contribute to produce more robust and disease resistant animals. The aim of the present work was to study the genetic determinism and genomic regions associated to global immunocompetence and health in a Duroc pig population. For this purpose, a set of 30 health-related traits covering immune (mainly innate), haematological, and stress parameters were measured in 432 healthy Duroc piglets aged 8 weeks. Moderate to high heritabilities were obtained for most traits and significant genetic correlations among them were observed. A genome wide association study pointed out 31 significantly associated SNPs at whole-genome level, located in six chromosomal regions on pig chromosomes SSC4, SSC6, SSC17 and SSCX, for IgG, γδ T-cells, C-reactive protein, lymphocytes phagocytic capacity, total number of lymphocytes, mean corpuscular volume and mean corpuscular haemoglobin. A total of 16 promising functionally-related candidate genes, including CRP, NFATC2, PRDX1, SLA, ST3GAL1, and VPS4A, have been proposed to explain the variation of immune and haematological traits. Our results enhance the knowledge of the genetic control of traits related with immunity and support the possibility of applying effective selection programs to improve immunocompetence in pigs.
Collapse
|
92
|
Pagliari F, Marafioti MG, Genard G, Candeloro P, Viglietto G, Seco J, Tirinato L. ssRNA Virus and Host Lipid Rearrangements: Is There a Role for Lipid Droplets in SARS-CoV-2 Infection? Front Mol Biosci 2020; 7:578964. [PMID: 33134318 PMCID: PMC7579428 DOI: 10.3389/fmolb.2020.578964] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Since its appearance, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has immediately alarmed the World Health Organization for its very high contagiousness and the complexity of patient clinical profiles. The worldwide scientific community is today gathered in a massive effort in order to develop safe vaccines and effective therapies in the shortest possible time. Every day, new pieces of SARS-CoV-2 infective puzzle are disclosed. Based on knowledge gained with other related coronaviruses and, more in general, on single-strand RNA viruses, we highlight underexplored molecular routes in which lipids and lipid droplets (LDs) might serve essential functions in viral infections. In fact, both lipid homeostasis and the pathways connected to lipids seem to be fundamental in all phases of the coronavirus infection. This review aims at describing potential roles for lipid and LDs in host-virus interactions and suggesting LDs as new and central cellular organelles to be investigated as potential targets against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Francesca Pagliari
- Biomedical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Maria Grazia Marafioti
- Biomedical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Geraldine Genard
- Biomedical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Patrizio Candeloro
- BioNEM Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Joao Seco
- Biomedical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany.,Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Luca Tirinato
- Biomedical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany.,BioNEM Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
93
|
Bidirectional interaction of airway epithelial remodeling and inflammation in asthma. Clin Sci (Lond) 2020; 134:1063-1079. [PMID: 32369100 DOI: 10.1042/cs20191309] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/28/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022]
Abstract
Asthma is a chronic disease of the airways that has long been viewed predominately as an inflammatory condition. Accordingly, current therapeutic interventions focus primarily on resolving inflammation. However, the mainstay of asthma therapy neither fully improves lung function nor prevents disease exacerbations, suggesting involvement of other factors. An emerging concept now holds that airway remodeling, another major pathological feature of asthma, is as important as inflammation in asthma pathogenesis. Structural changes associated with asthma include disrupted epithelial integrity, subepithelial fibrosis, goblet cell hyperplasia/metaplasia, smooth muscle hypertrophy/hyperplasia, and enhanced vascularity. These alterations are hypothesized to contribute to airway hyperresponsiveness, airway obstruction, airflow limitation, and progressive decline of lung function in asthmatic individuals. Consequently, targeting inflammation alone does not suffice to provide optimal clinical benefits. Here we review asthmatic airway remodeling, focusing on airway epithelium, which is critical to maintaining a healthy respiratory system, and is the primary defense against inhaled irritants. In asthma, airway epithelium is both a mediator and target of inflammation, manifesting remodeling and resulting obstruction among its downstream effects. We also highlight the potential benefits of therapeutically targeting airway structural alterations. Since pathological tissue remodeling is likewise observed in other injury- and inflammation-prone tissues and organs, our discussion may have implications beyond asthma and lung disease.
Collapse
|
94
|
Imbalanced serum levels of resolvin E1 (RvE1) and leukotriene B4 (LTB4) in patients with allergic rhinitis. Mol Biol Rep 2020; 47:7745-7754. [PMID: 32960415 DOI: 10.1007/s11033-020-05849-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/10/2020] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
Abstract
Timely and successful resolution of acute inflammation plays a crucial role in preventing the development of chronic airway inflammation in allergic rhinitis (AR). This study intends to assess the serum levels of pro-inflammatory leukotriene B4 (LTB4), anti-inflammatory mediators, including resolvin E1 (RvE1), RvD1, IL-10, and TGF-β, besides mRNA expression level of G-protein coupled receptor 120 (GPR120) and peroxisome proliferator-activated receptor-γ (PPAR-γ) receptors in peripheral blood leukocytes of AR patients. Thirty-seven AR patients and thirty age- and gender-matched healthy subjects were enrolled in this study. The serum levels of LTB4, RvE1, RvD1, IL-10, and TGF-β were measured using enzyme-linked immunosorbent assay (ELISA) technique, and the mRNA expression level of GPR120 and PPAR-γ was assessed by the real-time PCR method. The serum levels of RvE1 and LTB4 were significantly higher in patients with AR than in healthy subjects (P < 0.01 and P < 0.0001, respectively). However, a significantly lower ratio of RvE1 and RvD1 to LTB4 was found in patients with AR relative to healthy subjects (P < 0.05 and P < 0.0001, respectively). Likewise, the serum levels of both IL-10 and TGF-β cytokines were significantly reduced in patients with AR compared to healthy subjects (P < 0.01 and P < 0.0001, respectively). Furthermore, the mRNA expression of PPAR-γ was significantly lower in patients with AR than in healthy subjects (P < 0.05). Our findings indicate that imbalanced pro-resolving lipid mediator RvE1 and pro-inflammatory LTB4 might contribute to the defective airway inflammation-resolution and subsequent progression toward chronic inflammation in AR patients.
Collapse
|
95
|
Impaired mitochondrial function of alveolar macrophages in carbon nanotube-induced chronic pulmonary granulomatous disease. Toxicology 2020; 445:152598. [PMID: 32976959 DOI: 10.1016/j.tox.2020.152598] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022]
Abstract
Human exposure to carbon nanotubes (CNT) has been associated with the development of pulmonary sarcoid-like granulomatous disease. Our previous studies demonstrated that multi-walled carbon nanotubes (MWCNT) induced chronic pulmonary granulomatous inflammation in mice. Granuloma formation was accompanied by decreased peroxisome proliferator-activated receptor gamma (PPARγ) and disrupted intracellular lipid homeostasis in alveolar macrophages. Others have shown that PPARγ activation increases mitochondrial fatty acid oxidation (FAO) to reduce free fatty acid accumulation. Hence, we hypothesized that the disrupted lipid metabolism suppresses mitochondrial FAO. To test our hypothesis, C57BL/6 J mice were instilled by an oropharyngeal route with 100 μg MWCNT freshly suspended in 35 % Infasurf. Control sham mice received vehicle alone. Sixty days following instillation, mitochondrial FAO was measured in permeabilized bronchoalveolar lavage (BAL) cells. MWCNT instillation reduced the mitochondrial oxygen consumption rate of BAL cells in the presence of palmitoyl-carnitine as mitochondrial fuel. MWCNT also reduced mRNA expression of mitochondrial genes regulating FAO, carnitine palmitoyl transferase-1 (CPT1), carnitine palmitoyl transferase-2 (CPT2), hydroxyacyl-CoA dehydrogenase subunit beta (HADHB), and PPARγ coactivator 1 alpha (PPARGC1A). Importantly, both oxidative stress and apoptosis in alveolar macrophages and lung tissues of MWCNT-instilled mice were increased. Because macrophage PPARγ expression has been reported to be controlled by miR-27b which is known to induce oxidative stress and apoptosis, we measured the expression of miR-27b. Results indicated elevated levels in alveolar macrophages from MWCNT-instilled mice compared to controls. Given that inhibition of FAO and apoptosis are linked to M1 and M2 macrophage activation, respectively, the expression of both M1 and M2 key indicator genes were measured. Interestingly, results showed that both M1 and M2 phenotypes of alveolar macrophages were activated in MWCNT-instilled mice. In conclusion, alveolar macrophages of MWCNT-instilled mice had increased miR-27b expression, which may reduce the expression of PPARγ resulting in attenuation of FAO. This reduction in FAO may lead to activation of M1 macrophages. The upregulation of miR-27b may also induce apoptosis, which in turn can cause M2 activation of alveolar macrophages. These observations indicate a possible role of miR-27b in impaired mitochondrial function in the chronic activation of alveolar macrophages by MWCNT and the development of chronic pulmonary granulomatous inflammation.
Collapse
|
96
|
Piesche M, Roos J, Kühn B, Fettel J, Hellmuth N, Brat C, Maucher IV, Awad O, Matrone C, Comerma Steffensen SG, Manolikakes G, Heinicke U, Zacharowski KD, Steinhilber D, Maier TJ. The Emerging Therapeutic Potential of Nitro Fatty Acids and Other Michael Acceptor-Containing Drugs for the Treatment of Inflammation and Cancer. Front Pharmacol 2020; 11:1297. [PMID: 33013366 PMCID: PMC7495092 DOI: 10.3389/fphar.2020.01297] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Nitro fatty acids (NFAs) are endogenously generated lipid mediators deriving from reactions of unsaturated electrophilic fatty acids with reactive nitrogen species. Furthermore, Mediterranean diets can be a source of NFA. These highly electrophilic fatty acids can undergo Michael addition reaction with cysteine residues, leading to post-translational modifications (PTM) of selected regulatory proteins. Such modifications are capable of changing target protein function during cell signaling or in biosynthetic pathways. NFA target proteins include the peroxisome proliferator-activated receptor γ (PPAR-γ), the pro-inflammatory and tumorigenic nuclear factor-κB (NF-κB) signaling pathway, the pro-inflammatory 5-lipoxygenases (5-LO) biosynthesis pathway as well as soluble epoxide hydrolase (sEH), which is essentially involved in the regulation of vascular tone. In several animal models of inflammation and cancer, the therapeutic efficacy of well-tolerated NFA has been demonstrated. This has already led to clinical phase II studies investigating possible therapeutic effects of NFA in subjects with pulmonary arterial hypertension. Albeit Michael acceptors feature a broad spectrum of bioactivity, they have for a rather long time been avoided as drug candidates owing to their presumed unselective reactivity and toxicity. However, targeted covalent modification of regulatory proteins by Michael acceptors became recognized as a promising approach to drug discovery with the recent FDA approvals of the cancer therapeutics, afatanib (2013), ibrutinib (2013), and osimertinib (2015). Furthermore, the Michael acceptor, neratinib, a dual inhibitor of the human epidermal growth factor receptor 2 and epidermal growth factor receptor, was recently approved by the FDA (2017) and by the EMA (2018) for the treatment of breast cancer. Finally, a number of further Michael acceptor drug candidates are currently under clinical investigation for pharmacotherapy of inflammation and cancer. In this review, we focus on the pharmacology of NFA and other Michael acceptor drugs, summarizing their potential as an emerging class of future antiphlogistics and adjuvant in tumor therapeutics.
Collapse
Affiliation(s)
- Matthias Piesche
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca, Chile.,Oncology Center, Medicine Faculty, Catholic University of Maule, Talca, Chile
| | - Jessica Roos
- Department of Safety of Medicinal Products and Medical Devices, Paul-Ehrlich-Institut (Federal Institute for Vaccines and Biomedicines), Langen, Germany.,Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Benjamin Kühn
- Institute of Pharmaceutical Chemistry, Goethe-University, Frankfurt am Main, Germany
| | - Jasmin Fettel
- Institute of Pharmaceutical Chemistry, Goethe-University, Frankfurt am Main, Germany
| | - Nadine Hellmuth
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Camilla Brat
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Isabelle V Maucher
- Institute of Pharmaceutical Chemistry, Goethe-University, Frankfurt am Main, Germany
| | - Omar Awad
- Department of Safety of Medicinal Products and Medical Devices, Paul-Ehrlich-Institut (Federal Institute for Vaccines and Biomedicines), Langen, Germany
| | - Carmela Matrone
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Simon Gabriel Comerma Steffensen
- Department of Biomedicine, Medicine Faculty, Aarhus University, Aarhus, Denmark.,Animal Physiology, Department of Biomedical Sciences, Veterinary Faculty, Central University of Venezuela, Maracay, Venezuela
| | - Georg Manolikakes
- Department of Organic Chemistry, Technical University Kaiserslautern, Kaiserslautern, Germany
| | - Ulrike Heinicke
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Kai D Zacharowski
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe-University, Frankfurt am Main, Germany
| | - Thorsten J Maier
- Department of Safety of Medicinal Products and Medical Devices, Paul-Ehrlich-Institut (Federal Institute for Vaccines and Biomedicines), Langen, Germany.,Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
97
|
Souza CO, Teixeira AAS, Biondo LA, Silveira LS, de Souza Breda CN, Braga TT, Camara NOS, Belchior T, Festuccia WT, Diniz TA, Ferreira GM, Hirata MH, Chaves-Filho AB, Yoshinaga MY, Miyamoto S, Calder PC, Sethi JK, Rosa Neto JC. Palmitoleic acid reduces high fat diet-induced liver inflammation by promoting PPAR-γ-independent M2a polarization of myeloid cells. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158776. [PMID: 32738301 PMCID: PMC7487782 DOI: 10.1016/j.bbalip.2020.158776] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/08/2020] [Accepted: 07/25/2020] [Indexed: 02/08/2023]
Abstract
Palmitoleic acid (POA, 16:1n-7) is a lipokine that has potential nutraceutical use to treat non-alcoholic fatty liver disease. We tested the effects of POA supplementation (daily oral gavage, 300 mg/Kg, 15 days) on murine liver inflammation induced by a high fat diet (HFD, 59% fat, 12 weeks). In HFD-fed mice, POA supplementation reduced serum insulin and improved insulin tolerance compared with oleic acid (OA, 300 mg/Kg). The livers of POA-treated mice exhibited less steatosis and inflammation than those of OA-treated mice with lower inflammatory cytokine levels and reduced toll-like receptor 4 protein content. The anti-inflammatory effects of POA in the liver were accompanied by a reduction in liver macrophages (LM, CD11c+; F4/80+; CD86+), an effect that could be triggered by peroxisome proliferator activated receptor (PPAR)-γ, a lipogenic transcription factor upregulated in livers of POA-treated mice. We also used HFD-fed mice with selective deletion of PPAR-γ in myeloid cells (PPAR-γ KOLyzCre+) to test whether the beneficial anti-inflammatory effects of POA are dependent on macrophages PPAR-γ. POA-mediated improvement of insulin tolerance was tightly dependent on myeloid PPAR-γ, while POA anti-inflammatory actions including the reduction in liver inflammatory cytokines were preserved in mice bearing myeloid cells deficient in PPAR-γ. This overlapped with increased CD206+ (M2a) cells and downregulation of CD86+ and CD11c+ liver macrophages. Moreover, POA supplementation increased hepatic AMPK activity and decreased expression of the fatty acid binding scavenger receptor, CD36. We conclude that POA controls liver inflammation triggered by fat accumulation through induction of M2a macrophages independently of myeloid cell PPAR-γ. Palmitoleic acid (POA) supplementation reduced serum insulin and improved insulin tolerance; Livers of POA-treated mice exhibited less steatosis and inflammation; POA lowered the liver M1 macrophages population and the expression of inflammation-related immune-cell markers; POA increased PPAR-γ, a transcription factor that regulates anti-inflammatory effects in macrophages; However, POA reduced liver inflammation even in mice that lack PPAR-γ expression in myeloid cells; POA controls liver inflammation through induction of M2a macrophages independently of PPAR-γ in myeloid cells.
Collapse
Affiliation(s)
- Camila O Souza
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Alexandre A S Teixeira
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Luana Amorim Biondo
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Loreana Sanches Silveira
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Cristiane N de Souza Breda
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Tarcio T Braga
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Niels O S Camara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Thiago Belchior
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - William T Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Tiego A Diniz
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Glaucio Monteiro Ferreira
- Laboratory of Molecular Biology applied to Diagnosis (LBMAD), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Mario Hiroyuki Hirata
- Laboratory of Molecular Biology applied to Diagnosis (LBMAD), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Adriano B Chaves-Filho
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marcos Y Yoshinaga
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil
| | - Sayuri Miyamoto
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil
| | - Philip C Calder
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service (NHS) Foundation Trust, Southampton, UK; Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Jaswinder K Sethi
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service (NHS) Foundation Trust, Southampton, UK; Institute for Life Sciences, University of Southampton, Southampton, UK
| | - José C Rosa Neto
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
98
|
Proteomic Analysis of Human Immune Responses to Live-Attenuated Tularemia Vaccine. Vaccines (Basel) 2020; 8:vaccines8030413. [PMID: 32722207 PMCID: PMC7564149 DOI: 10.3390/vaccines8030413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/05/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
Francisella tularensis (F. tularensis) is an intracellular pathogen that causes a potentially debilitating febrile illness known as tularemia. F. tularensis can be spread by aerosol transmission and cause fatal pneumonic tularemia. If untreated, mortality rates can be as high as 30%. To study the host responses to a live-attenuated tularemia vaccine, peripheral blood mononuclear cell (PBMC) samples were assayed from 10 subjects collected pre- and post-vaccination, using both the 2D-DIGE/MALDI-MS/MS and LC-MS/MS approaches. Protein expression related to antigen processing and presentation, inflammation (PPARγ nuclear receptor), phagocytosis, and gram-negative bacterial infection was enriched at Day 7 and/or Day 14. Protein candidates that could be used to predict human immune responses were identified by evaluating the correlation between proteome changes and humoral and cellular immune responses. Consistent with the proteomics data, parallel transcriptomics data showed that MHC class I and class II-related signals important for protein processing and antigen presentation were up-regulated, further confirming the proteomic results. These findings provide new biological insights that can be built upon in future clinical studies, using live attenuated strains as immunogens, including their potential use as surrogates of protection.
Collapse
|
99
|
Lohrmann F, Forde AJ, Merck P, Henneke P. Control of myeloid cell density in barrier tissues. FEBS J 2020; 288:405-426. [PMID: 32502309 DOI: 10.1111/febs.15436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/21/2020] [Accepted: 06/01/2020] [Indexed: 12/19/2022]
Abstract
The interface between the mammalian host and its environment is formed by barrier tissues, for example, of the skin, and the respiratory and the intestinal tracts. On the one hand, barrier tissues are colonized by site-adapted microbial communities, and on the other hand, they contain specific myeloid cell networks comprising macrophages, dendritic cells, and granulocytes. These immune cells are tightly regulated in function and cell number, indicating important roles in maintaining tissue homeostasis and immune balance in the presence of commensal microorganisms. The regulation of myeloid cell density and activation involves cell-autonomous 'single-loop circuits' including autocrine mechanisms. However, an array of microenvironmental factors originating from nonimmune cells and the microbiota, as well as the microanatomical structure, impose additional layers of regulation onto resident myeloid cells. This review discusses models integrating these factors into cell-specific programs to instruct differentiation and proliferation best suited for the maintenance and renewal of immune homeostasis in the tissue-specific environment.
Collapse
Affiliation(s)
- Florens Lohrmann
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Germany.,Institute for Immunodeficiency (IFI), Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Germany.,Spemann Graduate School for Biology and Medicine, University of Freiburg, Germany.,IMM-PACT Clinician Scientist Program, Faculty of Medicine, University of Freiburg, Germany
| | - Aaron J Forde
- Institute for Immunodeficiency (IFI), Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Germany.,Faculty of Biology, university of Freiburg, Germany
| | - Philipp Merck
- Institute for Immunodeficiency (IFI), Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Germany
| | - Philipp Henneke
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Germany.,Institute for Immunodeficiency (IFI), Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Germany
| |
Collapse
|
100
|
Effects and Mechanisms of Five Psoralea Prenylflavonoids on Aging-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2128513. [PMID: 32655760 PMCID: PMC7320294 DOI: 10.1155/2020/2128513] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023]
Abstract
During the aging process, senescent cells gradually accumulate in the organs; they secrete proinflammatory cytokines and other factors, collectively known as the senescence-associated secretory phenotype (SASP). SASP secretions contribute to “inflammaging,” which is a state of chronic, systemic, sterility, low-grade inflammatory microenvironment and a key risk factor in the development of aging-related diseases. Fructus psoraleae is a traditional Chinese medical herb best known for delaying aging and treating osteoporosis. Prenylflavonoids from fructus psoraleae are the main bioactive compounds responsible for its pharmacological applications, such as beaching, bavachinin, bavachalcone, isobavachalcone, and neobavaisoflavone. In previous decades, there have been some promising studies on the pharmacology of fructus psoraleae. Here, we focus on the anti-inflammatory and antiaging diseases of five psoralea prenylflavonoids, such as cardiovascular protection, diabetes and obesity intervention, neuroprotection, and osteoporosis, and discuss the mechanism of these active ingredients for better understanding the material basis and drug application of fructus psoraleae in Chinese medicine.
Collapse
|