51
|
Pradhan S, Slater JH. Tunable hydrogels for controlling phenotypic cancer cell states to model breast cancer dormancy and reactivation. Biomaterials 2019; 215:119177. [PMID: 31176804 PMCID: PMC6592634 DOI: 10.1016/j.biomaterials.2019.04.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022]
Abstract
During metastasis, disseminated tumor cells (DTCs) from the primary tumor infiltrate secondary organs and reside there for varying lengths of time prior to forming new tumors. The time delay between infiltration and active proliferation, known as dormancy, mediates the length of the latency period. DTCs may undergo one of four fates post-infiltration: death, cellular dormancy, dormant micrometastasis, or invasive growth which, is in part, mediated by extracellular matrix (ECM) properties. Recapitulation of these cell states using engineered hydrogels could facilitate the systematic and controlled investigation of the mechanisms by which ECM properties influence DTC fate. Toward this goal, we implemented a set of sixteen hydrogels with systematic variations in chemical (ligand (RGDS) density and enzymatic degradability) and mechanical (elasticity, swelling, mesh size) properties to investigate their influence on the fate of encapsulated metastatic breast cancer cells, MDA-MB-231. Cell viability, apoptosis, proliferation, metabolic activity, and morphological measurements were acquired at five-day intervals over fifteen days in culture. Analysis of the phenotypic metrics indicated the presence of four different cell states that were classified as: (1) high growth, (2) moderate growth, (3) single cell, restricted survival, dormancy, or (4) balanced dormancy. Correlating hydrogel properties with the resultant cancer cell state indicated that ligand (RGDS) density and enzymatic degradability likely had the most influence on cell fate. Furthermore, we demonstrate the ability to reactivate cells from the single cell, dormant state to the high growth state through a dynamic increase in ligand (RGDS) density after forty days in culture. This tunable engineered hydrogel platform offers insight into matrix properties regulating tumor dormancy, and the dormancy-proliferation switch, and may provide future translational benefits toward development of anti-dormancy therapeutic strategies.
Collapse
Affiliation(s)
- Shantanu Pradhan
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - John H Slater
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA.
| |
Collapse
|
52
|
Khoo AS, Valentin TM, Leggett SE, Bhaskar D, Bye EM, Benmelech S, Ip BC, Wong IY. Breast Cancer Cells Transition from Mesenchymal to Amoeboid Migration in Tunable Three-Dimensional Silk-Collagen Hydrogels. ACS Biomater Sci Eng 2019; 5:4341-4354. [PMID: 31517039 DOI: 10.1021/acsbiomaterials.9b00519] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Invading cancer cells adapt their migration phenotype in response to mechanical and biochemical cues from the extracellular matrix. For instance, mesenchymal migration is associated with strong cell-matrix adhesions and an elongated morphology, while amoeboid migration is associated with minimal cell-matrix adhesions and a rounded morphology. However, it remains challenging to elucidate the role of matrix mechan-ics and biochemistry, since these are both dependent on ECM protein concentration. Here, we demonstrate a composite silk fibroin and collagen I hydrogel where stiffness and microstructure can be systematically tuned over a wide range. Using an overlay assay geometry, we show that the invasion of metastatic breast cancer cells exhibits a biphasic dependence on silk fibroin concentration at fixed collagen I concentration, first increasing as the hydrogel stiffness increases, then decreasing as the pore size of silk fibroin decreases. Indeed, mesenchymal morphology exhibits a similar biphasic depen-dence on silk fibroin concentration, while amoeboid morphologies were favored when cell-matrix adhesions were less effective. We used exogenous biochemical treatment to perturb cells towards increased contractility and a mesenchymal morphology, as well as to disrupt cytoskeletal function and promote an amoeboid morphology. Overall, we envision that this tunable biomaterial platform in a 96-well plate format will be widely applicable to screen cancer cell migration against combinations of designer biomaterials and targeted inhibitors.
Collapse
Affiliation(s)
- Amanda S Khoo
- School of Engineering, Center for Biomedical Engineering. Brown University. 184 Hope St Box D, Providence, RI 02912, USA
| | - Thomas M Valentin
- School of Engineering, Center for Biomedical Engineering. Brown University. 184 Hope St Box D, Providence, RI 02912, USA.,Current Address: Department of Health Sciences and Technology, ETH Zürich. Zürich, Switzerland
| | - Susan E Leggett
- School of Engineering, Center for Biomedical Engineering. Brown University. 184 Hope St Box D, Providence, RI 02912, USA.,Pathobiology Graduate Program. Brown University, Providence, RI, USA.,Current Address: Department of Chemical and Biological Engineering, Princeton University. Princeton, NJ 08544, USA
| | - Dhananjay Bhaskar
- School of Engineering, Center for Biomedical Engineering. Brown University. 184 Hope St Box D, Providence, RI 02912, USA
| | - Elisa M Bye
- School of Engineering, Center for Biomedical Engineering. Brown University. 184 Hope St Box D, Providence, RI 02912, USA
| | - Shoham Benmelech
- School of Engineering, Center for Biomedical Engineering. Brown University. 184 Hope St Box D, Providence, RI 02912, USA
| | - Blanche C Ip
- Pathobiology Graduate Program. Brown University, Providence, RI, USA
| | - Ian Y Wong
- School of Engineering, Center for Biomedical Engineering. Brown University. 184 Hope St Box D, Providence, RI 02912, USA.,Pathobiology Graduate Program. Brown University, Providence, RI, USA
| |
Collapse
|
53
|
Blache U, Horton ER, Xia T, Schoof EM, Blicher LH, Schönenberger A, Snedeker JG, Martin I, Erler JT, Ehrbar M. Mesenchymal stromal cell activation by breast cancer secretomes in bioengineered 3D microenvironments. Life Sci Alliance 2019; 2:2/3/e201900304. [PMID: 31160380 PMCID: PMC6549139 DOI: 10.26508/lsa.201900304] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022] Open
Abstract
This study shows the activation of tumour-associated mesenchymal stromal cells by breast cancer secretomes in bioengineered 3D microenvironments using comprehensive multiomics analysis methods. Mesenchymal stromal cells (MSCs) are key contributors of the tumour microenvironment and are known to promote cancer progression through reciprocal communication with cancer cells, but how they become activated is not fully understood. Here, we investigate how breast cancer cells from different stages of the metastatic cascade convert MSCs into tumour-associated MSCs (TA-MSCs) using unbiased, global approaches. Using mass spectrometry, we compared the secretomes of MCF-7 cells, invasive MDA-MB-231 cells, and sublines isolated from bone, lung, and brain metastases and identified ECM and exosome components associated with invasion and organ-specific metastasis. Next, we used synthetic hydrogels to investigate how these different secretomes activate MSCs in bioengineered 3D microenvironments. Using kinase activity profiling and RNA sequencing, we found that only MDA-MB-231 breast cancer secretomes convert MSCs into TA-MSCs, resulting in an immunomodulatory phenotype that was particularly prominent in response to bone-tropic cancer cells. We have investigated paracrine signalling from breast cancer cells to TA-MSCs in 3D, which may highlight new potential targets for anticancer therapy approaches aimed at targeting tumour stroma.
Collapse
Affiliation(s)
- Ulrich Blache
- Department of Obstetrics, University and University Hospital of Zurich, Zurich, Switzerland.,Institute for Biomechanics, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Edward R Horton
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Tian Xia
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Erwin M Schoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Lene H Blicher
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Angelina Schönenberger
- Institute for Biomechanics, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland.,Biomechanics Laboratory, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Jess G Snedeker
- Institute for Biomechanics, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland.,Biomechanics Laboratory, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Janine T Erler
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Martin Ehrbar
- Department of Obstetrics, University and University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
54
|
Silva TP, Cotovio JP, Bekman E, Carmo-Fonseca M, Cabral JMS, Fernandes TG. Design Principles for Pluripotent Stem Cell-Derived Organoid Engineering. Stem Cells Int 2019; 2019:4508470. [PMID: 31149014 PMCID: PMC6501244 DOI: 10.1155/2019/4508470] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/12/2019] [Accepted: 02/24/2019] [Indexed: 12/17/2022] Open
Abstract
Human morphogenesis is a complex process involving distinct microenvironmental and physical signals that are manipulated in space and time to give rise to complex tissues and organs. Advances in pluripotent stem cell (PSC) technology have promoted the in vitro recreation of processes involved in human morphogenesis. The development of organoids from human PSCs represents one reliable source for modeling a large spectrum of human disorders, as well as a promising approach for drug screening and toxicological tests. Based on the "self-organization" capacity of stem cells, different PSC-derived organoids have been created; however, considerable differences between in vitro-generated PSC-derived organoids and their in vivo counterparts have been reported. Advances in the bioengineering field have allowed the manipulation of different components, including cellular and noncellular factors, to better mimic the in vivo microenvironment. In this review, we focus on different examples of bioengineering approaches used to promote the self-organization of stem cells, including assembly, patterning, and morphogenesis in vitro, contributing to tissue-like structure formation.
Collapse
Affiliation(s)
- Teresa P. Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av Prof Egas Moniz, Edificio Egas Moniz, 1649-028 Lisboa, Portugal
| | - João P. Cotovio
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Universidade de Lisboa, Lisboa, Portugal
| | - Evguenia Bekman
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av Prof Egas Moniz, Edificio Egas Moniz, 1649-028 Lisboa, Portugal
| | - Maria Carmo-Fonseca
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av Prof Egas Moniz, Edificio Egas Moniz, 1649-028 Lisboa, Portugal
| | - Joaquim M. S. Cabral
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Universidade de Lisboa, Lisboa, Portugal
| | - Tiago G. Fernandes
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
55
|
Sawicki LA, Ovadia EM, Pradhan L, Cowart JE, Ross KE, Wu CH, Kloxin AM. Tunable synthetic extracellular matrices to investigate breast cancer response to biophysical and biochemical cues. APL Bioeng 2019; 3:016101. [PMID: 31069334 PMCID: PMC6481819 DOI: 10.1063/1.5064596] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/15/2019] [Indexed: 01/28/2023] Open
Abstract
The extracellular matrix (ECM) is thought to play a critical role in the progression of breast cancer. In this work, we have designed a photopolymerizable, biomimetic synthetic matrix for the controlled, 3D culture of breast cancer cells and, in combination with imaging and bioinformatics tools, utilized this system to investigate the breast cancer cell response to different matrix cues. Specifically, hydrogel-based matrices of different densities and modified with receptor-binding peptides derived from ECM proteins [fibronectin/vitronectin (RGDS), collagen (GFOGER), and laminin (IKVAV)] were synthesized to mimic key aspects of the ECM of different soft tissue sites. To assess the breast cancer cell response, the morphology and growth of breast cancer cells (MDA-MB-231 and T47D) were monitored in three dimensions over time, and differences in their transcriptome were assayed using next generation sequencing. We observed increased growth in response to GFOGER and RGDS, whether individually or in combination with IKVAV, where binding of integrin β1 was key. Importantly, in matrices with GFOGER, increased growth was observed with increasing matrix density for MDA-MB-231s. Further, transcriptomic analyses revealed increased gene expression and enrichment of biological processes associated with cell-matrix interactions, proliferation, and motility in matrices rich in GFOGER relative to IKVAV. In sum, a new approach for investigating breast cancer cell-matrix interactions was established with insights into how microenvironments rich in collagen promote breast cancer growth, a hallmark of disease progression in vivo, with opportunities for future investigations that harness the multidimensional property control afforded by this photopolymerizable system.
Collapse
Affiliation(s)
- Lisa A. Sawicki
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Elisa M. Ovadia
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Lina Pradhan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Julie E. Cowart
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware 19711, USA
| | - Karen E. Ross
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Cathy H. Wu
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware 19711, USA
| | | |
Collapse
|
56
|
Wang R, Fu L, Liu J, Li H. Decorating protein hydrogels reversibly enables dynamic presentation and release of functional protein ligands on protein hydrogels. Chem Commun (Camb) 2019; 55:12703-12706. [DOI: 10.1039/c9cc06374a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Utilizing protein fragment reconstitution, we demonstrate the reversible and repeatable functionalization of protein hydrogels.
Collapse
Affiliation(s)
- Ruidi Wang
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
- State Key Laboratory of Supramolecular Structure and Materials
| | - Linglan Fu
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Hongbin Li
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
57
|
Li W, Hu X, Yang S, Wang S, Zhang C, Wang H, Cheng YY, Wang Y, Liu T, Song K. A novel tissue-engineered 3D tumor model for anti-cancer drug discovery. Biofabrication 2018; 11:015004. [DOI: 10.1088/1758-5090/aae270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
58
|
A three-dimensional engineered heterogeneous tumor model for assessing cellular environment and response. Nat Protoc 2018; 13:1917-1957. [DOI: 10.1038/s41596-018-0022-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
59
|
Viswanath P, Peng S, Singh R, Kingsley C, Balter PA, Johnson FM. A Novel Method for Quantifying Total Thoracic Tumor Burden in Mice. Neoplasia 2018; 20:975-984. [PMID: 30157470 PMCID: PMC6111024 DOI: 10.1016/j.neo.2018.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023] Open
Abstract
Mouse models are powerful tools to study lung cancer initiation and progression in vivo and have contributed significantly to recent advances in therapy. Using micro-computed tomography to monitor and study parenchymal and extra-parenchymal metastases in existing murine models of lung cancer is challenging owing to a lack of radiographic contrast and difficulty in achieving respiratory gating. To facilitate the analysis of these in vivo imaging studies and study of tumor progression in murine models we developed a novel, rapid, semi-automated method of calculating thoracic tumor burden from computed tomography images. This method, in which commercially available software is used to calculate the mass of the thoracic cavity (MTC), takes into account the aggregate tumor burden in the thoracic cavity. The present study showed that in tumor-free mice, the MTC does not change over time and is not affected by breathing, whereas in tumor-bearing mice, the increase in the MTC is a measure of tumor mass that correlates well with tumor burden measured by lung weight. Tumor burden calculated with our MTC method correlated with that measured by lung weight as well as or better than that calculated using four established methods. To test this method, we assessed metastatic tumor development and response to a pharmacologic PLK1 inhibitor in an orthotopic xenograft mouse model. PLK1 inhibition significantly inhibited tumor growth. Our results demonstrate that the MTC method can be used to study dynamic changes in tumor growth and response to therapeutics in genetically engineered mouse models and orthotopic xenograft mouse models of lung cancer.
Collapse
Affiliation(s)
- Pavitra Viswanath
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX; The University of Texas Graduate School of Biomedical Sciences, Houston, TX
| | - Shaohua Peng
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ratnakar Singh
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Charles Kingsley
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Peter A Balter
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Faye M Johnson
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX; The University of Texas Graduate School of Biomedical Sciences, Houston, TX.
| |
Collapse
|
60
|
Bioactive Poly(ethylene Glycol) Acrylate Hydrogels for Regenerative Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018. [DOI: 10.1007/s40883-018-0074-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
61
|
Ferreira LP, Gaspar VM, Mano JF. Design of spherically structured 3D in vitro tumor models -Advances and prospects. Acta Biomater 2018; 75:11-34. [PMID: 29803007 PMCID: PMC7617007 DOI: 10.1016/j.actbio.2018.05.034] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 05/17/2018] [Accepted: 05/22/2018] [Indexed: 12/29/2022]
Abstract
Three-dimensional multicellular tumor models are receiving an ever-growing focus as preclinical drug-screening platforms due to their potential to recapitulate major physiological features of human tumors in vitro. In line with this momentum, the technologies for assembly of 3D microtumors are rapidly evolving towards a comprehensive inclusion of tumor microenvironment elements. Customized spherically structured platforms, including microparticles and microcapsules, provide a robust and scalable technology to imprint unique biomolecular tumor microenvironment hallmarks into 3D in vitro models. Herein, a comprehensive overview of novel advances on the integration of tumor-ECM components and biomechanical cues into 3D in vitro models assembled in spherical shaped platforms is provided. Future improvements regarding spatiotemporal/mechanical adaptability, and degradability, during microtumors in vitro 3D culture are also critically discussed considering the realistic potential of these platforms to mimic the dynamic tumor microenvironment. From a global perspective, the production of 3D multicellular spheroids with tumor ECM components included in spherical models will unlock their potential to be used in high-throughput screening of therapeutic compounds. It is envisioned, in a near future, that a combination of spherically structured 3D microtumor models with other advanced microfluidic technologies will properly recapitulate the flow dynamics of human tumors in vitro. STATEMENT OF SIGNIFICANCE The ability to correctly mimic the complexity of the tumor microenvironment in vitro is a key aspect for the development of evermore realistic in vitro models for drug-screening and fundamental cancer biology studies. In this regard, conventional spheroid-based 3D tumor models, combined with spherically structured biomaterials, opens the opportunity to precisely recapitulate complex cell-extracellular matrix interactions and tumor compartmentalization. This review provides an in-depth focus on current developments regarding spherically structured scaffolds engineered into in vitro 3D tumor models, and discusses future advances toward all-encompassing platforms that may provide an improved in vitro/in vivo correlation in a foreseeable future.
Collapse
Affiliation(s)
- L P Ferreira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - V M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - J F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
62
|
Marcucci F, Rumio C. How Tumor Cells Choose Between Epithelial-Mesenchymal Transition and Autophagy to Resist Stress-Therapeutic Implications. Front Pharmacol 2018; 9:714. [PMID: 30013478 PMCID: PMC6036460 DOI: 10.3389/fphar.2018.00714] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/12/2018] [Indexed: 12/17/2022] Open
Abstract
Tumor cells undergo epithelial-mesenchymal transition (EMT) or macroautophagy (hereafter autophagy) in response to stressors from the microenvironment. EMT ensues when stressors act on tumor cells in the presence of nutrient sufficiency, and mechanistic target of rapamycin (mTOR) appears to be the crucial signaling node for EMT induction. Autophagy, on the other hand, is induced in the presence of nutrient deprivation and/or stressors from the microenvironment with 5' adenosine monophosphate-activated protein kinase (AMPK) playing an important, but not exclusive role, in autophagy induction. Importantly, mTOR and EMT on one hand, and AMPK and autophagy on the other hand, negatively regulate each other. Such regulation occurs at different levels and suggests that, in many instances, these two stress responses are mutually exclusive. Nevertheless, EMT and autophagy are able to interconvert and we suggest that this may depend on spatiotemporal changes in the tumor microenvironment and/or on duration/intensity of the stressor signal(s). Eventually, we propose a three-pronged therapeutic approach aimed at targeting these three major tumor cell populations. First, cytotoxic drugs that act on differentiated and proliferating tumor cells and which, per se, may promote induction of EMT or autophagy in surviving tumor cells. Second, inhibitors of mTOR in order to prevent EMT induction. Third inducers of autophagic cell death (autosis) in order to deplete tumor cells that are constitutively in an autophagic state or are induced to enter an autophagic state in response to antitumor therapy.
Collapse
Affiliation(s)
- Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| |
Collapse
|
63
|
Belgodere JA, King CT, Bursavich JB, Burow ME, Martin EC, Jung JP. Engineering Breast Cancer Microenvironments and 3D Bioprinting. Front Bioeng Biotechnol 2018; 6:66. [PMID: 29881724 PMCID: PMC5978274 DOI: 10.3389/fbioe.2018.00066] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/03/2018] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) is a critical cue to direct tumorigenesis and metastasis. Although two-dimensional (2D) culture models have been widely employed to understand breast cancer microenvironments over the past several decades, the 2D models still exhibit limited success. Overwhelming evidence supports that three dimensional (3D), physiologically relevant culture models are required to better understand cancer progression and develop more effective treatment. Such platforms should include cancer-specific architectures, relevant physicochemical signals, stromal-cancer cell interactions, immune components, vascular components, and cell-ECM interactions found in patient tumors. This review briefly summarizes how cancer microenvironments (stromal component, cell-ECM interactions, and molecular modulators) are defined and what emerging technologies (perfusable scaffold, tumor stiffness, supporting cells within tumors and complex patterning) can be utilized to better mimic native-like breast cancer microenvironments. Furthermore, this review emphasizes biophysical properties that differ between primary tumor ECM and tissue sites of metastatic lesions with a focus on matrix modulation of cancer stem cells, providing a rationale for investigation of underexplored ECM proteins that could alter patient prognosis. To engineer breast cancer microenvironments, we categorized technologies into two groups: (1) biochemical factors modulating breast cancer cell-ECM interactions and (2) 3D bioprinting methods and its applications to model breast cancer microenvironments. Biochemical factors include matrix-associated proteins, soluble factors, ECMs, and synthetic biomaterials. For the application of 3D bioprinting, we discuss the transition of 2D patterning to 3D scaffolding with various bioprinting technologies to implement biophysical cues to model breast cancer microenvironments.
Collapse
Affiliation(s)
- Jorge A. Belgodere
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Connor T. King
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Jacob B. Bursavich
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Matthew E. Burow
- Department of Medicine, Section Hematology/Oncology, Tulane University, New Orleans, LA, United States
| | - Elizabeth C. Martin
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Jangwook P. Jung
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
64
|
Lü WD, Sun RF, Hu YR, Lu JR, Gu L, Liu ZG, Lei GY, Qiang Z, Cai L. Photooxidatively crosslinked acellular tumor extracellular matrices as potential tumor engineering scaffolds. Acta Biomater 2018; 71:460-473. [PMID: 29555461 DOI: 10.1016/j.actbio.2018.03.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/08/2018] [Accepted: 03/08/2018] [Indexed: 12/12/2022]
Abstract
Acellular tumor extracellular matrices (ECMs) have limitations when employed as three-dimensional (3D) scaffolds for tumor engineering. In this work, methylene blue-mediated photooxidation was used to crosslink acellular tumor ECMs. Photooxidative crosslinking greatly increased the stiffness of acellular tumor ECM scaffolds but barely altered the Amide III band of the secondary structure of polypeptides and proteins. MCF-7, HepG2 and A549 cells cultured on photooxidatively crosslinked acellular tumor ECM scaffolds exhibited greater cell number per scaffold, more IL-8 and VEGF secretion, and increase migration and invasion abilities than cells cultured on uncrosslinked acellular tumor ECM scaffolds. The three tumor cell lines cultured on the stiffer photooxidatively crosslinked acellular matrices acquire mesenchymal properties (mesenchymal shift) and dedifferentiated phenotypes. Furthermore, the malignant phenotypes induced in vitro when cultured on the crosslinked scaffold promoted the in vivo tumor growth of BALB/c nude mice. Finally, the dedifferentiated cancer cells, including MCF-7, HepG2 and A549 cells, were less sensitive to chemotherapeutics. Thus, photooxidatively crosslinked acellular tumor ECMs have potentials as 3D tumor engineering scaffolds for cancer research. STATEMENT OF SIGNIFICANCE Natural material scaffolds have been successfully used as 3D matrices to study the in vitro tumor cell growth and mimic the in vivo tumor microenvironment. Acellular tumor ECMs are developed as 3D scaffolds for tumor engineering but have limitations in terms of elastic modulus and cell spheroid formation. Here we use methylene blue-mediated photooxidation to crosslink acellular tumor ECMs and investigate the influence of photooxidative crosslinking on structural, mechanical and biological characteristics of acellular tumor ECM scaffolds. It is the first study to evaluate the feasibility of photooxidatively crosslinked acellular tumor ECMs as 3D scaffolds for cancer research and the results are encouraging. Moreover, this study provides new research areas in regard to photodynamic therapy (PDT) for Cancer.
Collapse
Affiliation(s)
- Wei-Dong Lü
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.
| | - Rui-Fang Sun
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Ye-Rong Hu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Jan-Rong Lu
- Department of Pathology, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Lu Gu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhi-Gang Liu
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Guang-Yan Lei
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Zhun Qiang
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Lin Cai
- Department of Pathology, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| |
Collapse
|
65
|
Li Y, Kumacheva E. Hydrogel microenvironments for cancer spheroid growth and drug screening. SCIENCE ADVANCES 2018; 4:eaas8998. [PMID: 29719868 PMCID: PMC5922799 DOI: 10.1126/sciadv.aas8998] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/13/2018] [Indexed: 05/06/2023]
Abstract
Multicellular cancer spheroids (MCSs) have emerged as a promising in vitro model that replicates many features of solid tumors in vivo. Biomimetic hydrogel scaffolds for MCS growth offer a broad spectrum of biophysical and biochemical cues that help to recapitulate the behavior of natural extracellular matrix, essential for regulating cancer cell behavior. This perspective highlights recent advances in the development of hydrogel environments for MCS growth, release, and drug screening. We review the use of different types of hydrogels for MCS growth, the effect of biophysical and biochemical cues on MCS fate, the isolation of MCSs from hydrogel scaffolds, the utilization of microtechnologies, and the applications of MCSs grown in hydrogels. We conclude with the discussion of new research directions in the development of hydrogels for MCS growth.
Collapse
Affiliation(s)
- Yunfeng Li
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 4 Taddle Creek Road, Toronto, Ontario M5S 3G9, Canada
- Corresponding author.
| |
Collapse
|
66
|
Curtin C, Nolan JC, Conlon R, Deneweth L, Gallagher C, Tan YJ, Cavanagh BL, Asraf AZ, Harvey H, Miller-Delaney S, Shohet J, Bray I, O'Brien FJ, Stallings RL, Piskareva O. A physiologically relevant 3D collagen-based scaffold-neuroblastoma cell system exhibits chemosensitivity similar to orthotopic xenograft models. Acta Biomater 2018; 70:84-97. [PMID: 29447961 DOI: 10.1016/j.actbio.2018.02.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 12/18/2022]
Abstract
3D scaffold-based in vitro cell culturing is a recent technological advancement in cancer research bridging the gap between conventional 2D culture and in vivo tumours. The main challenge in treating neuroblastoma, a paediatric cancer of the sympathetic nervous system, is to combat tumour metastasis and resistance to multiple chemotherapeutic drugs. The aim of this study was to establish a physiologically relevant 3D neuroblastoma tissue-engineered system and explore its therapeutic relevance. Two neuroblastoma cell lines, chemotherapeutic sensitive Kelly and chemotherapeutic resistant KellyCis83 were cultured in a 3D in vitro model on two collagen-based scaffolds containing either glycosaminoglycan (Coll-GAG) or nanohydroxyapatite (Coll-nHA) and compared to 2D cell culture and an orthotopic murine model. Both neuroblastoma cell lines actively infiltrated the scaffolds and proliferated displaying >100-fold increased resistance to cisplatin treatment when compared to 2D cultures, exhibiting chemosensitivity similar to orthotopic xenograft in vivo models. This model demonstrated its applicability to validate miRNA-based gene delivery. The efficacy of liposomes bearing miRNA mimics uptake and gene knockdown was similar in both 2D and 3D in vitro culturing models highlighting the proof-of-principle for the applicability of 3D collagen-based scaffolds cell system for validation of miRNA function. Collectively, this data shows the successful development and characterisation of a physiologically relevant, scaffold-based 3D tissue-engineered neuroblastoma cell model, strongly supporting its value in the evaluation of chemotherapeutics, targeted therapies and investigation of neuroblastoma pathogenesis. While neuroblastoma is the specific disease being focused upon, the platform may have multi-functionality beyond this tumour type. STATEMENT OF SIGNIFICANCE Traditional 2D cell cultures do not completely capture the 3D architecture of cells and extracellular matrix contributing to a gap in our understanding of mammalian biology at the tissue level and may explain some of the discrepancies between in vitro and in vivo results. Here, we demonstrated the successful development and characterisation of a physiologically relevant, scaffold-based 3D tissue-engineered neuroblastoma cell model, strongly supporting its value in the evaluation of chemotherapeutics, targeted therapies and investigation of neuroblastoma pathogenesis. The ability to test drugs in this reproducible and controllable tissue-engineered model system will help reduce the attrition rate of the drug development process and lead to more effective and tailored therapies. Importantly, such 3D cell models help to reduce and replace animals for pre-clinical research addressing the principles of the 3Rs.
Collapse
Affiliation(s)
- C Curtin
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - J C Nolan
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland; National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - R Conlon
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - L Deneweth
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - C Gallagher
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Y J Tan
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - B L Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - A Z Asraf
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - H Harvey
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - S Miller-Delaney
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - J Shohet
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, TX, United States
| | - I Bray
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - F J O'Brien
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - R L Stallings
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland; National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - O Piskareva
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland; National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland.
| |
Collapse
|
67
|
Rodenhizer D, Dean T, D'Arcangelo E, McGuigan AP. The Current Landscape of 3D In Vitro Tumor Models: What Cancer Hallmarks Are Accessible for Drug Discovery? Adv Healthc Mater 2018; 7:e1701174. [PMID: 29350495 DOI: 10.1002/adhm.201701174] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/16/2017] [Indexed: 12/11/2022]
Abstract
Cancer prognosis remains a lottery dependent on cancer type, disease stage at diagnosis, and personal genetics. While investment in research is at an all-time high, new drugs are more likely to fail in clinical trials today than in the 1970s. In this review, a summary of current survival statistics in North America is provided, followed by an overview of the modern drug discovery process, classes of models used throughout different stages, and challenges associated with drug development efficiency are highlighted. Then, an overview of the cancer hallmarks that drive clinical progression is provided, and the range of available clinical therapies within the context of these hallmarks is categorized. Specifically, it is found that historically, the development of therapies is limited to a subset of possible targets. This provides evidence for the opportunities offered by novel disease-relevant in vitro models that enable identification of novel targets that facilitate interactions between the tumor cells and their surrounding microenvironment. Next, an overview of the models currently reported in literature is provided, and the cancer biology they have been used to explore is highlighted. Finally, four priority areas are suggested for the field to accelerate adoption of in vitro tumour models for cancer drug discovery.
Collapse
Affiliation(s)
- Darren Rodenhizer
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto 200 College Street Toronto M5S 3E5 Canada
| | - Teresa Dean
- Institute of Biomaterials and Biomedical EngineeringUniversity of Toronto 200 College Street Toronto M5S 3E5 Canada
| | - Elisa D'Arcangelo
- Institute of Biomaterials and Biomedical EngineeringUniversity of Toronto 200 College Street Toronto M5S 3E5 Canada
| | - Alison P. McGuigan
- Department of Chemical Engineering and Applied Chemistry & Institute of Biomaterials and Biomedical EngineeringUniversity of Toronto 200 College Street Toronto M5S 3E5 Canada
| |
Collapse
|
68
|
Sheikholeslam M, Wheeler SD, Duke KG, Marsden M, Pritzker M, Chen P. Peptide and peptide-carbon nanotube hydrogels as scaffolds for tissue & 3D tumor engineering. Acta Biomater 2018; 69:107-119. [PMID: 29248638 DOI: 10.1016/j.actbio.2017.12.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 11/28/2017] [Accepted: 12/08/2017] [Indexed: 12/21/2022]
Abstract
The use of hybrid self-assembling peptide (EFK8)-carbon nanotube (SWNT) hydrogels for tissue engineering and in vitro 3D cancer spheroid formation is reported. These hybrid hydrogels are shown to enhance the attachment, spreading, proliferation and movement of NIH-3T3 cells relative to that observed using EFK8-only hydrogels. After five days, ∼30% more cells are counted when the hydrogel contains SWNTs. Also, 3D encapsulation of these cells when injected in hydrogels does not adversely affect their behavior. Compressive modulus measurements and microscopic examination suggest that SWNTs have this beneficial effect by providing sites for cell anchorage, spreading and movement rather than by increasing hydrogel stiffness. This shows that the cells have a particular interaction with SWNTs not shared with EFK8 nanofibers despite a similar morphology. The effect of EFK8 and EFK8-SWNT hydrogels on A549 lung cancer cell behavior is also investigated. Increasing stiffness of EFK8-only hydrogels from about 44 Pa to 104 Pa promotes a change in A549 morphology from spheroidal to a stretched one similar to migratory phenotype. EFK8-SWNT hydrogels also promote a stretched morphology, but at lower stiffness. These results are discussed in terms of the roles of both microenvironment stiffness and cell-scaffold adhesion in cancer cell invasion. Overall, this study demonstrates that applications of peptide hydrogels in vitro can be expanded by incorporating SWNTs into their structure which further provides insight into cell-biomaterial interactions. STATEMENT OF SIGNIFICANCE For the first time we used hybrid self-assembling peptide-carbon nanotube hybrid hydrogels (that we have recently introduced briefly in the "Carbon" journal in 2014) for tissue engineering and 3D tumor engineering. We showed the potential of these hybrid hydrogels to enhance the efficiency of the peptide hydrogels for tissue engineering application in terms of cell behavior (cell attachment, spreading and migration). This opens up new rooms for the peptide hydrogels and can expand their applications. Also our system (peptide and peptide-CNT hydrogels) was used for cancer cell spheroid formation showing the effect of both tumor microenvironment stiffness and cell-scaffold adhesion on cancer cell invasion. This was only possible based on the presence of CNTs in the hydrogel while the stiffness kept constant. Finally it should be noted that these hybrid hydrogels expand applications of peptide hydrogels through enhancing their capabilities and/or adding new properties to them.
Collapse
|
69
|
Xie K, Wang C, Qin N, Yang J, Zhu M, Dai J, Jin G, Shen H, Ma H, Hu Z. Genetic variants in regulatory regions of microRNAs are associated with lung cancer risk. Oncotarget 2018; 7:47966-47974. [PMID: 27374108 PMCID: PMC5216992 DOI: 10.18632/oncotarget.10299] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/28/2016] [Indexed: 12/12/2022] Open
Abstract
Genetic variants in regulatory regions of some miRNAs might be associated with lung cancer risk and survival. We performed a case-control study including 1341 non-small cell lung cancer (NSCLC) cases and 1982 controls to evaluate the associations of 7 potentially functional polymorphisms in several differently expressed miRNAs with NSCLC risk. Each SNP was also tested for the association with overall survival of 1001 NSCLC patients. We identified that rs9660710 in miR-200b/200a/429 cluster and rs763354 in miR-30a were significantly associated with NSCLC risk [odds ratio (OR) = 1.17, 95% confidence interval (CI) = 1.06–1.30, P = 0.002; OR = 0.88, 95% CI = 0.80–0.98, P = 0.017; respectively]. However, no significant association between variants and NSCLC death risk was observed in survival analysis. Functional annotation showed that both rs9660710 and rs763354 were located in regulatory elements in lung cancer cells. Compared to normal tissues, miR-200a-3p, miR-200a-5p, miR-200b-3p, miR-200b-5p and miR-429 were significantly increased in The Cancer Genome Atlas (TCGA) Lung Adenocarcinoma (LUAD) tumors, whereas miR-30a-3p and miR-30a-5p were significantly decreased in tumors (all P < 0.05). Furthermore, we observed that rs9660710 is an expression quantitative trait locus (eQTL) or methylation eQTL for miR-429 expression in TCGA normal tissues. Our results indicated that rs9660710 in miR-200b/200a/429 cluster and rs763354 in miR-30a might modify the susceptibility to NSCLC.
Collapse
Affiliation(s)
- Kaipeng Xie
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center of Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Cheng Wang
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center of Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Na Qin
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center of Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jianshui Yang
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center of Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Meng Zhu
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center of Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center of Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Guangfu Jin
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center of Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center of Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hongxia Ma
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center of Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center of Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
70
|
Peyton SR, Gencoglu MF, Galarza S, Schwartz AD. Biomaterials in Mechano-oncology: Means to Tune Materials to Study Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1092:253-287. [PMID: 30368757 DOI: 10.1007/978-3-319-95294-9_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ECM stiffness is emerging as a prognostic marker of tumor aggression or potential for relapse. However, conflicting reports muddle the question of whether increasing or decreasing stiffness is associated with aggressive disease. This chapter discusses this controversy in more detail, but the fact that tumor stiffening plays a key role in cancer progression and in regulating cancer cell behaviors is clear. The impact of having in vitro biomaterial systems that could capture this stiffening during tumor evolution is very high. These cell culture platforms could help reveal the mechanistic underpinnings of this evolution, find new therapeutic targets to inhibit the cross talk between tumor development and ECM stiffening, and serve as better, more physiologically relevant platforms for drug screening.
Collapse
Affiliation(s)
- Shelly R Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA.
| | - Maria F Gencoglu
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Sualyneth Galarza
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Alyssa D Schwartz
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
71
|
Turetta M, Del Ben F, Brisotto G, Biscontin E, Bulfoni M, Cesselli D, Colombatti A, Scoles G, Gigli G, del Mercato LL. Emerging Technologies for Cancer Research: Towards Personalized Medicine with Microfluidic Platforms and 3D Tumor Models. Curr Med Chem 2018; 25:4616-4637. [PMID: 29874987 PMCID: PMC6302350 DOI: 10.2174/0929867325666180605122633] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 07/24/2017] [Accepted: 05/03/2018] [Indexed: 02/07/2023]
Abstract
In the present review, we describe three hot topics in cancer research such as circulating tumor cells, exosomes, and 3D environment models. The first section is dedicated to microfluidic platforms for detecting circulating tumor cells, including both affinity-based methods that take advantage of antibodies and aptamers, and "label-free" approaches, exploiting cancer cells physical features and, more recently, abnormal cancer metabolism. In the second section, we briefly describe the biology of exosomes and their role in cancer, as well as conventional techniques for their isolation and innovative microfluidic platforms. In the third section, the importance of tumor microenvironment is highlighted, along with techniques for modeling it in vitro. Finally, we discuss limitations of two-dimensional monolayer methods and describe advantages and disadvantages of different three-dimensional tumor systems for cell-cell interaction analysis and their potential applications in cancer management.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Loretta L. del Mercato
- Address correspondence to this author at the CNR NANOTEC - Institute of Nanotechnology c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy; E-mail:
| |
Collapse
|
72
|
Tang WB, Zheng L, Yan R, Yang J, Ning J, Peng L, Zhou Q, Chen L. miR302a-3p May Modulate Renal Epithelial-Mesenchymal Transition in Diabetic Kidney Disease by Targeting ZEB1. Nephron Clin Pract 2017; 138:231-242. [PMID: 29227974 DOI: 10.1159/000481465] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 09/04/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recent study found that microRNA (miRNA) are involved in diabetic kidney disease (DKD). The objective of this study is to determine the role of miR302a-3p in the process of renal epithelial-mesenchymal transition (EMT) in DKD. METHODS The miRNA expression profiling of the cell line stimulated by high glucose was performed by a microarray analysis. Then real-time polymerase chain reaction (PCR) were used to determine the expression of one of the miRNAs significantly upregulated in cell line stimulated by high glucose, miR302a-3p. miR302a-3p mimics and inhibitor were transfected to HK-2 cells following exposure to high glucose and normal glucose, respectively. The expressions of E-cadherin, vimentin, and Zinc finger E-box-binding protein 1 (ZEB-1) were determined by real-time PCR and Western blot. Finally, the levels of miR302a-3p in the plasma of DKD patients were detected by real-time PCR, and then the relationship of miR302a-3p and urinary albumin excretion (UAE) or estimated glomerular filtration rate (eGFR) was analyzed. RESULTS The expression of miR-302a-3p, 513a-5p, 1291 and the other 17 miRNA were increased significantly in HK-2 cell line after high glucose stimulation; on the other hand, miRNA490-3p, 638, 3203 and the other 19 miRNA were decreased significantly. In vitro, miR-302a-3p expression in HG group increased at 6 h and ascended to the highest level at 12 and 24 h and then gradually decreased from 48 to 72 h. More interesting, ZEB1 protein expression had an opposite change, which gradually decreased from 6 to 24 h and then gradually increased from 48 to 72 h. Moreover, overexpression of miR-302a-3p suppressed expression of ZEB1 in the post-transcriptional level and reversed high glucose-mediated downregulation of E-cadherin and upregulation of vimentin. Meanwhile, loss of miR-302a-3p expression can lead to EMT of HK-2 cells just as high glucose stimulation. Further study demonstrated that the expression of circulating miR-302a-3p was significantly increased in the diabetes mellitus (DM) with normoalbuminuria (DM group, n = 22) compared with control (healthy persons, n = 30) and then decreased in DM with microalbuminuria (DNE group, n = 20). Furthermore, its expression in DM with macroalbuminuria (DNC group, n = 18) was decreased significantly compared with DM group. Circulating miR-302a-3p had negative relevance with UAE in DNE group (r = -0.649, p = 0.002) and DNC group (r = -0.681, p = 0.006). Circulating miR-302a-3p had positive relevance with eGFR in DNC group (r = 0.486, p = 0.041). CONCLUSIONS These findings suggest that miR-302a-3p may play a protective role by targeting ZEB1 in renal EMT in DKD. In view of these findings, it is conceivable that miR-302a-3p may serve as a potential novel target in pre-EMT states for the amelioration renal fibrosis seen in DKD.
Collapse
Affiliation(s)
- Wen-Bin Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Linfeng Zheng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Renheng Yan
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Jiayi Yang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Jianping Ning
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Linlin Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiaoling Zhou
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Liping Chen
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
73
|
Kaylan KB, Gentile SD, Milling LE, Bhinge KN, Kosari F, Underhill GH. Mapping lung tumor cell drug responses as a function of matrix context and genotype using cell microarrays. Integr Biol (Camb) 2017; 8:1221-1231. [PMID: 27796394 DOI: 10.1039/c6ib00179c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Carcinoma progression is influenced by interactions between epithelial tumor cells and components of their microenvironment. In particular, cell-extracellular matrix (ECM) interactions are known to drive tumor growth, metastatic potential, and sensitivity or resistance to therapy. Yet the intrinsic complexity of ECM composition within the tumor microenvironment remains a barrier to comprehensive investigation of these interactions. We present here a high-throughput cell microarray-based approach to study the impact of defined combinations of ECM proteins on tumor cell drug responses. Using this approach, we quantitatively evaluated the effects of 55 different ECM environments representing all single and two-factor combinations of 10 ECM proteins on the responses of lung adenocarcinoma cells to a selection of cancer-relevant small molecule drugs. This drug panel consisted of an alkylating agent and five receptor tyrosine kinase inhibitors. We further determined that expression of the neuroendocrine transcription factor ASCL1, which has been previously associated with poor patient outcome when co-expressed with the RET oncogene, altered cell responses to drugs and modulated cleavage of the pro-apoptotic protein caspase-3 depending on ECM context. Our results suggest that co-expression of specific ECM proteins with known genetic drivers in lung adenocarcinoma may impact therapeutic efficacy. Furthermore, this approach could be utilized to define the molecular mechanisms by which cell-matrix interactions drive drug resistance through integration with clinical cell samples and genomics data.
Collapse
Affiliation(s)
- Kerim B Kaylan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Stefan D Gentile
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Lauren E Milling
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Kaustubh N Bhinge
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Farhad Kosari
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Gregory H Underhill
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
74
|
Fletcher NA, Von Nieda EL, Krebs MD. Cell-interactive alginate-chitosan biopolymer systems with tunable mechanics and antibody release rates. Carbohydr Polym 2017; 175:765-772. [DOI: 10.1016/j.carbpol.2017.08.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 10/19/2022]
|
75
|
Abstract
Cancer is a leading cause of mortality and morbidity worldwide. Around 90% of deaths are caused by metastasis and just 10% by primary tumor. The advancement of treatment approaches is not at the same rhythm of the disease; making cancer a focal target of biomedical research. To enhance the understanding and prompts the therapeutic delivery; concepts of tissue engineering are applied in the development of in vitro models that can bridge between 2D cell culture and animal models, mimicking tissue microenvironment. Tumor spheroid represents highly suitable 3D organoid-like framework elucidating the intra and inter cellular signaling of cancer, like that formed in physiological niche. However, spheroids are of limited value in studying critical biological phenomenon such as tumor-stroma interactions involving extra cellular matrix or immune system. Therefore, a compelling need of tailoring spheroid technologies with physiologically relevant biomaterials or in silico models, is ever emerging. The diagnostic and prognostic role of spheroids rearrangements within biomaterials or microfluidic channel is indicative of patient management; particularly for the decision of targeted therapy. Fragmented information on available in vitro spheroid models and lack of critical analysis on transformation aspects of these strategies; pushes the urge to comprehensively overview the recent technological advancements (e.g. bioprinting, micro-fluidic technologies or use of biomaterials to attain the third dimension) in the shed of translationable cancer research. In present article, relationships between current models and their possible exploitation in clinical success is explored with the highlight of existing challenges in defining therapeutic targets and screening of drug efficacy.
Collapse
|
76
|
Huang G, Li F, Zhao X, Ma Y, Li Y, Lin M, Jin G, Lu TJ, Genin GM, Xu F. Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chem Rev 2017; 117:12764-12850. [PMID: 28991456 PMCID: PMC6494624 DOI: 10.1021/acs.chemrev.7b00094] [Citation(s) in RCA: 514] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cell microenvironment has emerged as a key determinant of cell behavior and function in development, physiology, and pathophysiology. The extracellular matrix (ECM) within the cell microenvironment serves not only as a structural foundation for cells but also as a source of three-dimensional (3D) biochemical and biophysical cues that trigger and regulate cell behaviors. Increasing evidence suggests that the 3D character of the microenvironment is required for development of many critical cell responses observed in vivo, fueling a surge in the development of functional and biomimetic materials for engineering the 3D cell microenvironment. Progress in the design of such materials has improved control of cell behaviors in 3D and advanced the fields of tissue regeneration, in vitro tissue models, large-scale cell differentiation, immunotherapy, and gene therapy. However, the field is still in its infancy, and discoveries about the nature of cell-microenvironment interactions continue to overturn much early progress in the field. Key challenges continue to be dissecting the roles of chemistry, structure, mechanics, and electrophysiology in the cell microenvironment, and understanding and harnessing the roles of periodicity and drift in these factors. This review encapsulates where recent advances appear to leave the ever-shifting state of the art, and it highlights areas in which substantial potential and uncertainty remain.
Collapse
Affiliation(s)
- Guoyou Huang
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Fei Li
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Chemistry, School of Science,
Xi’an Jiaotong University, Xi’an 710049, People’s Republic
of China
| | - Xin Zhao
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Interdisciplinary Division of Biomedical
Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong,
People’s Republic of China
| | - Yufei Ma
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Yuhui Li
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Min Lin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Guorui Jin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- MOE Key Laboratory for Multifunctional Materials
and Structures, Xi’an Jiaotong University, Xi’an 710049,
People’s Republic of China
| | - Guy M. Genin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Mechanical Engineering &
Materials Science, Washington University in St. Louis, St. Louis 63130, MO,
USA
- NSF Science and Technology Center for
Engineering MechanoBiology, Washington University in St. Louis, St. Louis 63130,
MO, USA
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| |
Collapse
|
77
|
Cook CD, Hill AS, Guo M, Stockdale L, Papps JP, Isaacson KB, Lauffenburger DA, Griffith LG. Local remodeling of synthetic extracellular matrix microenvironments by co-cultured endometrial epithelial and stromal cells enables long-term dynamic physiological function. Integr Biol (Camb) 2017; 9:271-289. [PMID: 28317948 DOI: 10.1039/c6ib00245e] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mucosal barrier tissues, comprising a layer of tightly-bonded epithelial cells in intimate molecular communication with an underlying matrix-rich stroma containing fibroblasts and immune cells, are prominent targets for drugs against infection, chronic inflammation, and other disease processes. Although human in vitro models of such barriers are needed for mechanistic studies and drug development, differences in extracellular matrix (ECM) needs of epithelial and stromal cells hinder efforts to create such models. Here, using the endometrium as an example mucosal barrier, we describe a synthetic, modular ECM hydrogel suitable for 3D functional co-culture, featuring components that can be remodeled by cells and that respond dynamically to sequester local cell-secreted ECM characteristic of each cell type. The synthetic hydrogel combines peptides with off-the-shelf reagents and is thus accessible to cell biology labs. Specifically, we first identified a single peptide as suitable for initial attachment of both endometrial epithelial and stromal cells using a 2D semi-empirical screen. Then, using a co-culture system of epithelial cells cultured on top of gel-encapsulated stromal cells, we show that inclusion of ECM-binding peptides in the hydrogel, along with the integrin-binding peptide, leads to enhanced accumulation of basement membrane beneath the epithelial layer and more fibrillar collagen matrix assembly by stromal cells over two weeks in culture. Importantly, endometrial co-cultures composed of either cell lines or primary cells displayed hormone-mediated differentiation as assessed by morphological changes and secretory protein production. A multiplex analysis of apical cytokine and growth factor secretion comparing cell lines and primary cells revealed strikingly different patterns, underscoring the importance of using primary cell models in analysis of cell-cell communication networks. In summary, we define a "one-size-fits-all" synthetic ECM that enables long-term, physiologically responsive co-cultures of epithelial and stromal cells in a mucosal barrier format.
Collapse
Affiliation(s)
- Christi D Cook
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Dettman RW, Simon HG. Rebooting the collagen gel: Artificial hydrogels for the study of epithelial mesenchymal transformation. Dev Dyn 2017; 247:332-339. [PMID: 28786157 DOI: 10.1002/dvdy.24560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/11/2022] Open
Abstract
The collagen gel has been used to study epithelial-mesenchymal transformation (EMT) for over 30 years. With advances in the field of materials sciences, new options are available to design optically clear, three-dimensional nature-inspired matrix mimetics to study EMT. Here, we review the history of the collagen gel assay, discuss its current use and how newer artificial matrices can be built to simulate in vivo extracellular environments and investigate important current questions in the EMT field. We suggest that further collaborations between materials scientists and biologists will be critical to move the field of EMT forward. Developmental Dynamics 247:332-339, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Robert W Dettman
- Department of Urology, Feinberg School of Medicine, Northwestern University and Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Hans-Georg Simon
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Stanley Manne Children's Research Institute, Chicago, Illinois
| |
Collapse
|
79
|
Kwakwa KA, Vanderburgh JP, Guelcher SA, Sterling JA. Engineering 3D Models of Tumors and Bone to Understand Tumor-Induced Bone Disease and Improve Treatments. Curr Osteoporos Rep 2017; 15:247-254. [PMID: 28646444 PMCID: PMC5960271 DOI: 10.1007/s11914-017-0385-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE OF REVIEW Bone is a structurally unique microenvironment that presents many challenges for the development of 3D models for studying bone physiology and diseases, including cancer. As researchers continue to investigate the interactions within the bone microenvironment, the development of 3D models of bone has become critical. RECENT FINDINGS 3D models have been developed that replicate some properties of bone, but have not fully reproduced the complex structural and cellular composition of the bone microenvironment. This review will discuss 3D models including polyurethane, silk, and collagen scaffolds that have been developed to study tumor-induced bone disease. In addition, we discuss 3D printing techniques used to better replicate the structure of bone. 3D models that better replicate the bone microenvironment will help researchers better understand the dynamic interactions between tumors and the bone microenvironment, ultimately leading to better models for testing therapeutics and predicting patient outcomes.
Collapse
Affiliation(s)
- Kristin A Kwakwa
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 2215B Garland Ave, 1235 MRBIV, Nashville, TN, 37232, USA
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Joseph P Vanderburgh
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 2215B Garland Ave, 1235 MRBIV, Nashville, TN, 37232, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Scott A Guelcher
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 2215B Garland Ave, 1235 MRBIV, Nashville, TN, 37232, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Julie A Sterling
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA.
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 2215B Garland Ave, 1235 MRBIV, Nashville, TN, 37232, USA.
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
80
|
Roudsari LC, Jeffs SE, West JL. Lung Adenocarcinoma Cell Responses in a 3D in Vitro Tumor Angiogenesis Model Correlate with Metastatic Capacity. ACS Biomater Sci Eng 2017; 4:368-377. [DOI: 10.1021/acsbiomaterials.7b00011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Laila C. Roudsari
- Department of Biomedical Engineering and ‡Department of Mechanical Engineering & Materials Science, Duke University, 101 Science Drive, Durham, North Carolina 27708-0281, United States
| | - Sydney E. Jeffs
- Department of Biomedical Engineering and ‡Department of Mechanical Engineering & Materials Science, Duke University, 101 Science Drive, Durham, North Carolina 27708-0281, United States
| | - Jennifer L. West
- Department of Biomedical Engineering and ‡Department of Mechanical Engineering & Materials Science, Duke University, 101 Science Drive, Durham, North Carolina 27708-0281, United States
| |
Collapse
|
81
|
Leggett SE, Khoo AS, Wong IY. Multicellular tumor invasion and plasticity in biomimetic materials. Biomater Sci 2017; 5:1460-1479. [PMID: 28530743 PMCID: PMC5531215 DOI: 10.1039/c7bm00272f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cancer cell invasion through the extracellular matrix is associated with metastatic spread and therapeutic resistance. In carcinomas, the detachment and dissemination of individual cells has been associated with an epithelial-mesenchymal transition, but tumors can also invade using collective, multicellular phenotypes. This malignant tumor progression is also associated with alignment and stiffening of the surrounding extracellular matrix. Historically, tumor invasion has been investigated using 2D monolayer culture, small animal models or patient histology. These assays have been complemented by the use of natural biomaterials such as reconstituted basement membrane and collagen I. More recently, engineered materials with well-defined physical, chemical and biomolecular properties have enabled more controlled microenvironments. In this review, we highlight recent developments in multicellular tumor invasion based on microfabricated structures or hydrogels. We emphasize the role of interfacial geometries, biomaterial stiffness, matrix remodeling, and co-culture models. Finally, we discuss future directions for the field, particularly integration with precision measurements of biomaterial properties and single cell heterogeneity, standardization and scale-up of these platforms, as well as integration with patient-derived samples.
Collapse
Affiliation(s)
- Susan E Leggett
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, RI 02912, USA. and Pathobiology Graduate Program, Brown University, Providence, RI 02912, USA
| | - Amanda S Khoo
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, RI 02912, USA.
| | - Ian Y Wong
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, RI 02912, USA. and Pathobiology Graduate Program, Brown University, Providence, RI 02912, USA
| |
Collapse
|
82
|
Abstract
The physiological relevance of Matrigel as a cell-culture substrate and in angiogenesis assays is often called into question. Here, we describe an array-based method for the identification of synthetic hydrogels that promote the formation of robust in vitro vascular networks for the detection of putative vascular disruptors, and that support human embryonic stem cell expansion and pluripotency. We identified hydrogel substrates that promoted endothelial-network formation by primary human umbilical vein endothelial cells and by endothelial cells derived from human induced pluripotent stem cells, and used the hydrogels with endothelial networks to identify angiogenesis inhibitors. The synthetic hydrogels show superior sensitivity and reproducibility over Matrigel when evaluating known inhibitors, as well as in a blinded screen of a subset of 38 chemicals, selected according to predicted vascular disruption potential, from the Toxicity ForeCaster library of the US Environmental Protection Agency. The identified synthetic hydrogels should be suitable alternatives to Matrigel for common cell-culture applications.
Collapse
|
83
|
Peng DH, Ungewiss C, Tong P, Byers LA, Wang J, Canales JR, Villalobos PA, Uraoka N, Mino B, Behrens C, Wistuba II, Han RI, Wanna CA, Fahrenholtz M, Grande-Allen KJ, Creighton CJ, Gibbons DL. ZEB1 induces LOXL2-mediated collagen stabilization and deposition in the extracellular matrix to drive lung cancer invasion and metastasis. Oncogene 2017; 36:1925-1938. [PMID: 27694892 PMCID: PMC5378666 DOI: 10.1038/onc.2016.358] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/07/2016] [Accepted: 08/08/2016] [Indexed: 12/18/2022]
Abstract
Lung cancer is the leading cause of cancer-related deaths, primarily due to distant metastatic disease. Metastatic lung cancer cells can undergo an epithelial-to-mesenchymal transition (EMT) regulated by various transcription factors, including a double-negative feedback loop between the microRNA-200 (miR-200) family and ZEB1, but the precise mechanisms by which ZEB1-dependent EMT promotes malignancy remain largely undefined. Although the cell-intrinsic effects of EMT are important for tumor progression, the reciprocal dynamic crosstalk between mesenchymal cancer cells and the extracellular matrix (ECM) is equally critical in regulating invasion and metastasis. Investigating the collaborative effect of EMT and ECM in the metastatic process reveals increased collagen deposition in metastatic tumor tissues as a direct consequence of amplified collagen gene expression in ZEB1-activated mesenchymal lung cancer cells. In addition, collagen fibers in metastatic lung tumors exhibit greater linearity and organization as a result of collagen crosslinking by the lysyl oxidase (LOX) family of enzymes. Expression of the LOX and LOXL2 isoforms is directly regulated by miR-200 and ZEB1, respectively, and their upregulation in metastatic tumors and mesenchymal cell lines is coordinated to that of collagen. Functionally, LOXL2, as opposed to LOX, is the principal isoform that crosslinks and stabilizes insoluble collagen deposition in tumor tissues. In turn, focal adhesion formation and FAK/SRC signaling is activated in mesenchymal tumor cells by crosslinked collagen in the ECM. Our study is the first to validate direct regulation of LOX and LOXL2 by the miR-200/ZEB1 axis, defines a novel mechanism driving tumor metastasis, delineates collagen as a prognostic marker, and identifies LOXL2 as a potential therapeutic target against tumor progression.
Collapse
Affiliation(s)
- David H. Peng
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Christin Ungewiss
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Pan Tong
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lauren A. Byers
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jaime Rodriguez Canales
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pamela A. Villalobos
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Naohiro Uraoka
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Barbara Mino
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carmen Behrens
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ignacio I. Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Richard I Han
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Charles A. Wanna
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | | | | | - Chad J. Creighton
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Medicine and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Don L. Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
84
|
Schweller RM, Wu ZJ, Klitzman B, West JL. Stiffness of Protease Sensitive and Cell Adhesive PEG Hydrogels Promotes Neovascularization In Vivo. Ann Biomed Eng 2017; 45:1387-1398. [PMID: 28361182 DOI: 10.1007/s10439-017-1822-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/15/2017] [Indexed: 01/10/2023]
Abstract
Materials that support the assembly of new vasculature are critical for regenerative medicine. Controlling the scaffold's mechanical properties may help to optimize neovascularization within implanted biomaterials. However, reducing the stiffness of synthetic hydrogels usually requires decreasing polymer densities or increasing chain lengths, both of which accelerate degradation. We synthesized enzymatically-degradable poly(ethylene glycol) hydrogels with compressive moduli from 2 to 18 kPa at constant polymer density, chain length, and proteolytic degradability by inserting an allyloxycarbonyl functionality into the polymer backbone. This group competes with acrylates during photopolymerization to alter the crosslink network structure and reduce the hydrogel's stiffness. Hydrogels that incorporated (soft) or lacked (stiff) this group were implanted subcutaneously in rats to investigate the role of stiffness on host tissue interactions. Changes in tissue integration were quantified after 4 weeks via the hydrogel area replaced by native tissue (tissue area fraction), yielding 0.136 for softer vs. 0.062 for stiffer hydrogels. Including soluble FGF-2 and PDGF-BB improved these responses to 0.164 and 0.089, respectively. Softer gels exhibited greater vascularization with 8.6 microvessels mm-2 compared to stiffer gels at 2.4 microvessels mm-2. Growth factors improved this to 11.2 and 4.9 microvessels mm-2, respectively. Softer hydrogels tended to display more sustained responses, promoting neovascularization and tissue integration in synthetic scaffolds.
Collapse
Affiliation(s)
- Ryan M Schweller
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Zi Jun Wu
- Kenan Plastic Surgery Research Labs, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Bruce Klitzman
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.,Kenan Plastic Surgery Research Labs, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jennifer L West
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
85
|
Fong ELS, Toh TB, Yu H, Chow EKH. 3D Culture as a Clinically Relevant Model for Personalized Medicine. SLAS Technol 2017; 22:245-253. [PMID: 28277923 DOI: 10.1177/2472630317697251] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advances in understanding many of the fundamental mechanisms of cancer progression have led to the development of molecular targeted therapies. While molecular targeted therapeutics continue to improve the outcome for cancer patients, tumor heterogeneity among patients, as well as intratumoral heterogeneity, limits the efficacy of these drugs to specific patient subtypes, as well as contributes to relapse. Thus, there is a need for a more personalized approach toward drug development and diagnosis that takes into account the diversity of cancer patients, as well as the complex milieu of tumor cells within a single patient. Three-dimensional (3D) culture systems paired with patient-derived xenografts or patient-derived organoids may provide a more clinically relevant system to address issues presented by personalized or precision medical approaches. In this review, we cover the current methods available for applying 3D culture systems toward personalized cancer research and drug development, as well as key challenges that must be addressed in order to fully realize the potential of 3D patient-derived culture systems for cancer drug development. Greater implementation of 3D patient-derived culture systems in the cancer research field should accelerate the development of truly personalized medical therapies for cancer patients.
Collapse
Affiliation(s)
- Eliza Li Shan Fong
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tan Boon Toh
- 2 Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Hanry Yu
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,3 Institute of Bioengineering and Nanotechnology, A*STAR, Singapore.,6 Mechanobiology Institute, National University of Singapore, Singapore
| | - Edward Kai-Hua Chow
- 2 Cancer Science Institute of Singapore, National University of Singapore, Singapore.,8 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
86
|
Leight JL, Drain AP, Weaver VM. Extracellular Matrix Remodeling and Stiffening Modulate Tumor Phenotype and Treatment Response. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2017. [DOI: 10.1146/annurev-cancerbio-050216-034431] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jennifer L. Leight
- Department of Biomedical Engineering and The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210
| | - Allison P. Drain
- University of California, Berkeley–University of California, San Francisco Graduate Program in Bioengineering, Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, California 94143
| | - Valerie M. Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, Department of Anatomy, Department of Bioengineering and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and Helen Diller Comprehensive Cancer Center, University of California, San Francisco, California 94143
| |
Collapse
|
87
|
Albritton JL, Miller JS. 3D bioprinting: improving in vitro models of metastasis with heterogeneous tumor microenvironments. Dis Model Mech 2017; 10:3-14. [PMID: 28067628 PMCID: PMC5278522 DOI: 10.1242/dmm.025049] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Even with many advances in treatment over the past decades, cancer still remains a leading cause of death worldwide. Despite the recognized relationship between metastasis and increased mortality rate, surprisingly little is known about the exact mechanism of metastatic progression. Currently available in vitro models cannot replicate the three-dimensionality and heterogeneity of the tumor microenvironment sufficiently to recapitulate many of the known characteristics of tumors in vivo Our understanding of metastatic progression would thus be boosted by the development of in vitro models that could more completely capture the salient features of cancer biology. Bioengineering groups have been working for over two decades to create in vitro microenvironments for application in regenerative medicine and tissue engineering. Over this time, advances in 3D printing technology and biomaterials research have jointly led to the creation of 3D bioprinting, which has improved our ability to develop in vitro models with complexity approaching that of the in vivo tumor microenvironment. In this Review, we give an overview of 3D bioprinting methods developed for tissue engineering, which can be directly applied to constructing in vitro models of heterogeneous tumor microenvironments. We discuss considerations and limitations associated with 3D printing and highlight how these advances could be harnessed to better model metastasis and potentially guide the development of anti-cancer strategies.
Collapse
Affiliation(s)
- Jacob L Albritton
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Jordan S Miller
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| |
Collapse
|
88
|
Pradhan S, Hassani I, Seeto WJ, Lipke EA. PEG‐fibrinogen hydrogels for three‐dimensional breast cancer cell culture. J Biomed Mater Res A 2016; 105:236-252. [DOI: 10.1002/jbm.a.35899] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/08/2016] [Accepted: 09/07/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Shantanu Pradhan
- Department of Chemical EngineeringAuburn UniversityAuburn Alabama36849
| | - Iman Hassani
- Department of Chemical EngineeringAuburn UniversityAuburn Alabama36849
| | - Wen J. Seeto
- Department of Chemical EngineeringAuburn UniversityAuburn Alabama36849
| | | |
Collapse
|
89
|
Wilkinson DC, Alva‐Ornelas JA, Sucre JM, Vijayaraj P, Durra A, Richardson W, Jonas SJ, Paul MK, Karumbayaram S, Dunn B, Gomperts BN. Development of a Three-Dimensional Bioengineering Technology to Generate Lung Tissue for Personalized Disease Modeling. Stem Cells Transl Med 2016; 6:622-633. [PMID: 28191779 PMCID: PMC5442826 DOI: 10.5966/sctm.2016-0192] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/01/2016] [Indexed: 12/15/2022] Open
Abstract
Stem cell technologies, especially patient‐specific, induced stem cell pluripotency and directed differentiation, hold great promise for changing the landscape of medical therapies. Proper exploitation of these methods may lead to personalized organ transplants, but to regenerate organs, it is necessary to develop methods for assembling differentiated cells into functional, organ‐level tissues. The generation of three‐dimensional human tissue models also holds potential for medical advances in disease modeling, as full organ functionality may not be necessary to recapitulate disease pathophysiology. This is specifically true of lung diseases where animal models often do not recapitulate human disease. Here, we present a method for the generation of self‐assembled human lung tissue and its potential for disease modeling and drug discovery for lung diseases characterized by progressive and irreversible scarring such as idiopathic pulmonary fibrosis (IPF). Tissue formation occurs because of the overlapping processes of cellular adhesion to multiple alveolar sac templates, bioreactor rotation, and cellular contraction. Addition of transforming growth factor‐β1 to single cell‐type mesenchymal organoids resulted in morphologic scarring typical of that seen in IPF but not in two‐dimensional IPF fibroblast cultures. Furthermore, this lung organoid may be modified to contain multiple lung cell types assembled into the correct anatomical location, thereby allowing cell‐cell contact and recapitulating the lung microenvironment. Our bottom‐up approach for synthesizing patient‐specific lung tissue in a scalable system allows for the development of relevant human lung disease models with the potential for high throughput drug screening to identify targeted therapies. Stem Cells Translational Medicine2017;6:622–633
Collapse
Affiliation(s)
- Dan C. Wilkinson
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Jackelyn A. Alva‐Ornelas
- David Geffen School of Medicine at the University of California, Los Angeles, Department of Pediatrics, Children's Discovery and Innovation Institute, Los Angeles, California, USA
| | - Jennifer M.S. Sucre
- David Geffen School of Medicine at the University of California, Los Angeles, Department of Pediatrics, Children's Discovery and Innovation Institute, Los Angeles, California, USA
| | - Preethi Vijayaraj
- David Geffen School of Medicine at the University of California, Los Angeles, Department of Pediatrics, Children's Discovery and Innovation Institute, Los Angeles, California, USA
| | - Abdo Durra
- David Geffen School of Medicine at the University of California, Los Angeles, Department of Pediatrics, Children's Discovery and Innovation Institute, Los Angeles, California, USA
| | - Wade Richardson
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Steven J. Jonas
- David Geffen School of Medicine at the University of California, Los Angeles, Department of Pediatrics, Children's Discovery and Innovation Institute, Los Angeles, California, USA
| | - Manash K. Paul
- David Geffen School of Medicine at the University of California, Los Angeles, Department of Pediatrics, Children's Discovery and Innovation Institute, Los Angeles, California, USA
| | - Saravanan Karumbayaram
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California, USA
| | - Bruce Dunn
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Brigitte N. Gomperts
- David Geffen School of Medicine at the University of California, Los Angeles, Department of Pediatrics, Children's Discovery and Innovation Institute, Los Angeles, California, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
90
|
Roudsari LC, Jeffs SE, Witt AS, Gill BJ, West JL. A 3D Poly(ethylene glycol)-based Tumor Angiogenesis Model to Study the Influence of Vascular Cells on Lung Tumor Cell Behavior. Sci Rep 2016; 6:32726. [PMID: 27596933 PMCID: PMC5011743 DOI: 10.1038/srep32726] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/10/2016] [Indexed: 12/25/2022] Open
Abstract
Tumor angiogenesis is critical to tumor growth and metastasis, yet much is unknown about the role vascular cells play in the tumor microenvironment. In vitro models that mimic in vivo tumor neovascularization facilitate exploration of this role. Here we investigated lung adenocarcinoma cancer cells (344SQ) and endothelial and pericyte vascular cells encapsulated in cell-adhesive, proteolytically-degradable poly(ethylene) glycol-based hydrogels. 344SQ in hydrogels formed spheroids and secreted proangiogenic growth factors that significantly increased with exposure to transforming growth factor beta 1 (TGF-β1), a potent tumor progression-promoting factor. Vascular cells in hydrogels formed tubule networks with localized activated TGF-β1. To study cancer cell-vascular cell interactions, we engineered a 2-layer hydrogel with 344SQ and vascular cell layers. Large, invasive 344SQ clusters (area > 5,000 μm(2), circularity < 0.25) developed at the interface between the layers, and were not evident further from the interface or in control hydrogels without vascular cells. A modified model with spatially restricted 344SQ and vascular cell layers confirmed that observed cluster morphological changes required close proximity to vascular cells. Additionally, TGF-β1 inhibition blocked endothelial cell-driven 344SQ migration. Our findings suggest vascular cells contribute to tumor progression and establish this culture system as a platform for studying tumor vascularization.
Collapse
Affiliation(s)
- Laila C. Roudsari
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Sydney E. Jeffs
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Amber S. Witt
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Bartley J. Gill
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Jennifer L. West
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| |
Collapse
|
91
|
Shologu N, Szegezdi E, Lowery A, Kerin M, Pandit A, Zeugolis DI. Recreating complex pathophysiologies in vitro with extracellular matrix surrogates for anticancer therapeutics screening. Drug Discov Today 2016; 21:1521-1531. [DOI: 10.1016/j.drudis.2016.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/17/2016] [Accepted: 06/01/2016] [Indexed: 12/12/2022]
|
92
|
Joddar B, Garcia E, Casas A, Stewart CM. Development of functionalized multi-walled carbon-nanotube-based alginate hydrogels for enabling biomimetic technologies. Sci Rep 2016; 6:32456. [PMID: 27578567 PMCID: PMC5006027 DOI: 10.1038/srep32456] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/05/2016] [Indexed: 12/03/2022] Open
Abstract
Alginate is a hydrogel commonly used for cell culture by ionically crosslinking in the presence of divalent Ca(2+) ions. However these alginate gels are mechanically unstable, not permitting their use as scaffolds to engineer robust biological bone, breast, cardiac or tumor tissues. This issue can be addressed via encapsulation of multi-walled carbon nanotubes (MWCNT) serving as a reinforcing phase while being dispersed in a continuous phase of alginate. We hypothesized that adding functionalized MWCNT to alginate, would yield composite gels with distinctively different mechanical, physical and biological characteristics in comparison to alginate alone. Resultant MWCNT-alginate gels were porous, and showed significantly less degradation after 14 days compared to alginate alone. In vitro cell-studies showed enhanced HeLa cell adhesion and proliferation on the MWCNT-alginate compared to alginate. The extent of cell proliferation was greater when cultured atop 1 and 3 mg/ml MWCNT-alginate; although all MWCNT-alginates lead to enhanced cell cluster formation compared to alginate alone. Among all the MWCNT-alginates, the 1 mg/ml gels showed significantly greater stiffness compared to all other cases. These results provide an important basis for the development of the MWCNT-alginates as novel substrates for cell culture applications, cell therapy and tissue engineering.
Collapse
Affiliation(s)
- Binata Joddar
- Department of Metallurgical, Materials and Biomedical Engineering, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA
| | - Eduardo Garcia
- Department of Mechanical Engineering, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA
| | - Atzimba Casas
- Department of Biological Sciences, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA
| | - Calvin M. Stewart
- Department of Mechanical Engineering, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA
| |
Collapse
|
93
|
Carvalho MR, Lima D, Reis RL, Correlo VM, Oliveira JM. Evaluating Biomaterial- and Microfluidic-Based 3D Tumor Models. Trends Biotechnol 2016; 33:667-678. [PMID: 26603572 DOI: 10.1016/j.tibtech.2015.09.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 01/18/2023]
Abstract
Cancer is a major cause of morbidity and mortality worldwide, with a disease burden estimated to increase over the coming decades. Disease heterogeneity and limited information on cancer biology and disease mechanisms are aspects that 2D cell cultures fail to address. Here, we review the current ‘state-of-the-art’ in 3D tissue-engineering (TE) models developed for, and used in, cancer research. We assess the potential for scaffold-based TE models and microfluidics to fill the gap between 2D models and clinical application. We also discuss recent advances in combining the principles of 3D TE models and microfluidics, with a special focus on biomaterials and the most promising chip-based 3D models.
Collapse
Affiliation(s)
- Mariana R Carvalho
- 3Bs Research Group (Biomaterials, Biodegradables and Biomimetics), University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Taipas, Guimarães, 4806-909 Portugal; ICVS/3Bs, PT Government Associate Laboratory, Braga, 4806-909 Caldas das Taipas, Guimarães, Portugal; These authors contributed equally to this article
| | - Daniela Lima
- 3Bs Research Group (Biomaterials, Biodegradables and Biomimetics), University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Taipas, Guimarães, 4806-909 Portugal; ICVS/3Bs, PT Government Associate Laboratory, Braga, 4806-909 Caldas das Taipas, Guimarães, Portugal; These authors contributed equally to this article
| | - Rui L Reis
- 3Bs Research Group (Biomaterials, Biodegradables and Biomimetics), University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Taipas, Guimarães, 4806-909 Portugal; ICVS/3Bs, PT Government Associate Laboratory, Braga, 4806-909 Caldas das Taipas, Guimarães, Portugal
| | - Vitor M Correlo
- 3Bs Research Group (Biomaterials, Biodegradables and Biomimetics), University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Taipas, Guimarães, 4806-909 Portugal; ICVS/3Bs, PT Government Associate Laboratory, Braga, 4806-909 Caldas das Taipas, Guimarães, Portugal
| | - Joaquim M Oliveira
- 3Bs Research Group (Biomaterials, Biodegradables and Biomimetics), University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Taipas, Guimarães, 4806-909 Portugal; ICVS/3Bs, PT Government Associate Laboratory, Braga, 4806-909 Caldas das Taipas, Guimarães, Portugal.
| |
Collapse
|
94
|
Pradhan S, Hassani I, Clary JM, Lipke EA. Polymeric Biomaterials for In Vitro Cancer Tissue Engineering and Drug Testing Applications. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:470-484. [PMID: 27302080 DOI: 10.1089/ten.teb.2015.0567] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Biomimetic polymers and materials have been widely used in tissue engineering for regeneration and replication of diverse types of both normal and diseased tissues. Cancer, being a prevalent disease throughout the world, has initiated substantial interest in the creation of tissue-engineered models for anticancer drug testing. The development of these in vitro three-dimensional (3D) culture models using novel biomaterials has facilitated the investigation of tumorigenic and associated biological phenomena with a higher degree of complexity and physiological context than that provided by established two-dimensional culture models. In this review, an overview of a wide range of natural, synthetic, and hybrid biomaterials used for 3D cancer cell culture and investigation of cancer cell behavior is presented. The role of these materials in modulating cell-matrix interactions and replicating specific tumorigenic characteristics is evaluated. In addition, recent advances in biomaterial design, synthesis, and fabrication are also assessed. Finally, the advantages of incorporating polymeric biomaterials in 3D cancer models for obtaining efficacy data in anticancer drug testing applications are highlighted.
Collapse
Affiliation(s)
- Shantanu Pradhan
- Department of Chemical Engineering, Auburn University , Auburn, Alabama
| | - Iman Hassani
- Department of Chemical Engineering, Auburn University , Auburn, Alabama
| | - Jacob M Clary
- Department of Chemical Engineering, Auburn University , Auburn, Alabama
| | - Elizabeth A Lipke
- Department of Chemical Engineering, Auburn University , Auburn, Alabama
| |
Collapse
|
95
|
A 3D in vitro model to explore the inter-conversion between epithelial and mesenchymal states during EMT and its reversion. Sci Rep 2016; 6:27072. [PMID: 27255191 PMCID: PMC4891772 DOI: 10.1038/srep27072] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/15/2016] [Indexed: 12/16/2022] Open
Abstract
Epithelial-to-mesenchymal transitions (EMT) are strongly implicated in cancer dissemination. Intermediate states, arising from inter-conversion between epithelial (E) and mesenchymal (M) states, are characterized by phenotypic heterogeneity combining E and M features and increased plasticity. Hybrid EMT states are highly relevant in metastatic contexts, but have been largely neglected, partially due to the lack of physiologically-relevant 3D platforms to study them. Here we propose a new in vitro model, combining mammary E cells with a bioengineered 3D matrix, to explore phenotypic and functional properties of cells in transition between E and M states. Optimized alginate-based 3D matrices provided adequate 3D microenvironments, where normal epithelial morphogenesis was recapitulated, with formation of acini-like structures, similar to those found in native mammary tissue. TGFβ1-driven EMT in 3D could be successfully promoted, generating M-like cells. TGFβ1 removal resulted in phenotypic switching to an intermediate state (RE cells), a hybrid cell population expressing both E and M markers at gene/protein levels. RE cells exhibited increased proliferative/clonogenic activity, as compared to M cells, being able to form large colonies containing cells with front-back polarity, suggesting a more aggressive phenotype. Our 3D model provides a powerful tool to investigate the role of the microenvironment on metastable EMT stages.
Collapse
|
96
|
Yamamoto S, Huang D, Du L, Korn RL, Jamshidi N, Burnette BL, Kuo MD. Radiogenomic Analysis Demonstrates Associations between (18)F-Fluoro-2-Deoxyglucose PET, Prognosis, and Epithelial-Mesenchymal Transition in Non-Small Cell Lung Cancer. Radiology 2016; 280:261-70. [PMID: 27082783 DOI: 10.1148/radiol.2016160259] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Purpose To investigate whether non-small cell lung cancer (NSCLC) tumors that express high normalized maximum standardized uptake value (SUVmax) are associated with a more epithelial-mesenchymal transition (EMT)-like phenotype. Materials and Methods In this institutional review board-approved study, a public NSCLC data set that contained fluorine 18 ((18)F) fluoro-2-deoxyglucose positron emission tomography (PET) and messenger RNA expression profile data (n = 26) was obtained, and patients were categorized on the basis of measured normalized SUVmax values. Significance analysis of microarrays was then used to create a radiogenomic signature. The prognostic ability of this signature was assessed in a second independent data set that consisted of clinical and messenger RNA expression data (n = 166). Signature concordance with EMT was evaluated by means of validation in a publicly available cell line data set. Finally, by establishing an in vitro EMT lung cancer cell line model, an attempt was made to substantiate the radiogenomic signature with quantitative polymerase chain reaction, and functional assays were performed, including Western blot, cell migration, glucose transporter, and hexokinase assays (paired t test), as well as pharmacologic assays against chemotherapeutic agents (half-maximal effective concentration). Results Differential expression analysis yielded a 14-gene radiogenomic signature (P < .05, false discovery rate [FDR] < 0.20), which was confirmed to have differences in disease-specific survival (log-rank test, P = .01). This signature also significantly overlapped with published EMT cell line gene expression data (P < .05, FDR < 0.20). Finally, an EMT cell line model was established, and cells that had undergone EMT differentially expressed this signature and had significantly different EMT protein expression (P < .05, FDR < 0.20), cell migration, glucose uptake, and hexokinase activity (paired t test, P < .05). Cells that had undergone EMT also had enhanced chemotherapeutic resistance, with a higher half-maximal effective concentration than that of cells that had not undergone EMT (P < .05). Conclusion Integrative radiogenomic analysis demonstrates an association between increased normalized (18)F fluoro-2-deoxyglucose PET SUVmax, outcome, and EMT in NSCLC. (©) RSNA, 2016 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Shota Yamamoto
- From the Department of Radiology, The David Geffen School of Medicine at University of California-Los Angeles (UCLA), 10833 LeConte Ave, Box 951721, CHS 17-135, Los Angeles, CA 90095-1721 (S.Y., D.H., L.D., N.J., B.L.B., M.D.K.); Department of Bioengineering, UCLA, Los Angeles, Calif (M.D.K.); and Scottsdale Medical Imaging, Scottsdale, Ariz (R.L.K.)
| | - Danshan Huang
- From the Department of Radiology, The David Geffen School of Medicine at University of California-Los Angeles (UCLA), 10833 LeConte Ave, Box 951721, CHS 17-135, Los Angeles, CA 90095-1721 (S.Y., D.H., L.D., N.J., B.L.B., M.D.K.); Department of Bioengineering, UCLA, Los Angeles, Calif (M.D.K.); and Scottsdale Medical Imaging, Scottsdale, Ariz (R.L.K.)
| | - Liutao Du
- From the Department of Radiology, The David Geffen School of Medicine at University of California-Los Angeles (UCLA), 10833 LeConte Ave, Box 951721, CHS 17-135, Los Angeles, CA 90095-1721 (S.Y., D.H., L.D., N.J., B.L.B., M.D.K.); Department of Bioengineering, UCLA, Los Angeles, Calif (M.D.K.); and Scottsdale Medical Imaging, Scottsdale, Ariz (R.L.K.)
| | - Ronald L Korn
- From the Department of Radiology, The David Geffen School of Medicine at University of California-Los Angeles (UCLA), 10833 LeConte Ave, Box 951721, CHS 17-135, Los Angeles, CA 90095-1721 (S.Y., D.H., L.D., N.J., B.L.B., M.D.K.); Department of Bioengineering, UCLA, Los Angeles, Calif (M.D.K.); and Scottsdale Medical Imaging, Scottsdale, Ariz (R.L.K.)
| | - Neema Jamshidi
- From the Department of Radiology, The David Geffen School of Medicine at University of California-Los Angeles (UCLA), 10833 LeConte Ave, Box 951721, CHS 17-135, Los Angeles, CA 90095-1721 (S.Y., D.H., L.D., N.J., B.L.B., M.D.K.); Department of Bioengineering, UCLA, Los Angeles, Calif (M.D.K.); and Scottsdale Medical Imaging, Scottsdale, Ariz (R.L.K.)
| | - Barry L Burnette
- From the Department of Radiology, The David Geffen School of Medicine at University of California-Los Angeles (UCLA), 10833 LeConte Ave, Box 951721, CHS 17-135, Los Angeles, CA 90095-1721 (S.Y., D.H., L.D., N.J., B.L.B., M.D.K.); Department of Bioengineering, UCLA, Los Angeles, Calif (M.D.K.); and Scottsdale Medical Imaging, Scottsdale, Ariz (R.L.K.)
| | - Michael D Kuo
- From the Department of Radiology, The David Geffen School of Medicine at University of California-Los Angeles (UCLA), 10833 LeConte Ave, Box 951721, CHS 17-135, Los Angeles, CA 90095-1721 (S.Y., D.H., L.D., N.J., B.L.B., M.D.K.); Department of Bioengineering, UCLA, Los Angeles, Calif (M.D.K.); and Scottsdale Medical Imaging, Scottsdale, Ariz (R.L.K.)
| |
Collapse
|
97
|
Göttlich C, Müller LC, Kunz M, Schmitt F, Walles H, Walles T, Dandekar T, Dandekar G, Nietzer SL. A Combined 3D Tissue Engineered In Vitro/In Silico Lung Tumor Model for Predicting Drug Effectiveness in Specific Mutational Backgrounds. J Vis Exp 2016:e53885. [PMID: 27077967 DOI: 10.3791/53885] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In the present study, we combined an in vitro 3D lung tumor model with an in silico model to optimize predictions of drug response based on a specific mutational background. The model is generated on a decellularized porcine scaffold that reproduces tissue-specific characteristics regarding extracellular matrix composition and architecture including the basement membrane. We standardized a protocol that allows artificial tumor tissue generation within 14 days including three days of drug treatment. Our article provides several detailed descriptions of 3D read-out screening techniques like the determination of the proliferation index Ki67 staining's, apoptosis from supernatants by M30-ELISA and assessment of epithelial to mesenchymal transition (EMT), which are helpful tools for evaluating the effectiveness of therapeutic compounds. We could show compared to 2D culture a reduction of proliferation in our 3D tumor model that is related to the clinical situation. Despite of this lower proliferation, the model predicted EGFR-targeted drug responses correctly according to the biomarker status as shown by comparison of the lung carcinoma cell lines HCC827 (EGFR -mutated, KRAS wild-type) and A549 (EGFR wild-type, KRAS-mutated) treated with the tyrosine-kinase inhibitor (TKI) gefitinib. To investigate drug responses of more advanced tumor cells, we induced EMT by long-term treatment with TGF-beta-1 as assessed by vimentin/pan-cytokeratin immunofluorescence staining. A flow-bioreactor was employed to adjust culture to physiological conditions, which improved tissue generation. Furthermore, we show the integration of drug responses upon gefitinib treatment or TGF-beta-1 stimulation - apoptosis, proliferation index and EMT - into a Boolean in silico model. Additionally, we explain how drug responses of tumor cells with a specific mutational background and counterstrategies against resistance can be predicted. We are confident that our 3D in vitro approach especially with its in silico expansion provides an additional value for preclinical drug testing in more realistic conditions than in 2D cell culture.
Collapse
Affiliation(s)
- Claudia Göttlich
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Wuerzburg
| | - Lena C Müller
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Wuerzburg
| | - Meik Kunz
- Department of Bioinformatics, University Wuerzburg
| | - Franziska Schmitt
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Wuerzburg
| | - Heike Walles
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Wuerzburg; Translational Center Wuerzburg, Fraunhofer Institute Interfacial Engineering and Biotechnology IGB
| | - Thorsten Walles
- Department of Cardiothoracic Surgery, University Hospital Wuerzburg
| | | | - Gudrun Dandekar
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Wuerzburg; Translational Center Wuerzburg, Fraunhofer Institute Interfacial Engineering and Biotechnology IGB;
| | - Sarah L Nietzer
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Wuerzburg
| |
Collapse
|
98
|
Noncoding RNAs in Tumor Epithelial-to-Mesenchymal Transition. Stem Cells Int 2016; 2016:2732705. [PMID: 26989421 PMCID: PMC4773551 DOI: 10.1155/2016/2732705] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/20/2016] [Indexed: 12/21/2022] Open
Abstract
Epithelial-derived tumor cells acquire the capacity for epithelial-to-mesenchymal transition (EMT), which enables them to invade adjacent tissues and/or metastasize to distant organs. Cancer metastasis is the main cause of cancer-related death. Molecular mechanisms involved in the switch from an epithelial phenotype to mesenchymal status are complicated and are controlled by a variety of signaling pathways. Recently, a set of noncoding RNAs (ncRNAs), including miRNAs and long noncoding RNAs (lncRNAs), were found to modulate gene expressions at either transcriptional or posttranscriptional levels. These ncRNAs are involved in EMT through their interplay with EMT-related transcription factors (EMT-TFs) and EMT-associated signaling. Reciprocal regulatory interactions between lncRNAs and miRNAs further increase the complexity of the regulation of gene expression and protein translation. In this review, we discuss recent findings regarding EMT-regulating ncRNAs and their associated signaling pathways involved in cancer progression.
Collapse
|
99
|
Shukla VC, Higuita-Castro N, Nana-Sinkam P, Ghadiali SN. Substrate stiffness modulates lung cancer cell migration but not epithelial to mesenchymal transition. J Biomed Mater Res A 2016; 104:1182-93. [PMID: 26779779 DOI: 10.1002/jbm.a.35655] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/17/2015] [Accepted: 01/13/2016] [Indexed: 11/07/2022]
Abstract
Biomechanical properties of the tumor microenvironment, including matrix/substrate stiffness, play a significant role in tumor evolution and metastasis. Epithelial to Mesenchymal Transition (EMT) is a fundamental biological process that is associated with increased cancer cell migration and invasion. The goal of this study was to investigate (1) how substrate stiffness modulates the migration behaviors of lung adenocarcinoma cells (A549) and (2) if stiffness-induced changes in cell migration correlate with biochemical markers of EMT. Collagen-coated polydimethylsiloxane (PDMS) substrates and an Ibidi migration assay were used to investigate how substrate stiffness alters the migration patterns of A549 cells. RT-PCR, western blotting and immunofluorescence were used to investigate how substrate stiffness alters biochemical markers of EMT, that is, E-cadherin and N-cadherin, and the phosphorylation of focal adhesion proteins. Increases in substrate stiffness led to slower, more directional migration but did not alter the biochemical markers of EMT. Interestingly, growth factor (i.e., Transforming Growth Factor-β) stimulation resulted in similar levels of EMT regardless of substrate stiffness. We also observed decreased levels of phosphorylated focal adhesion kinase (FAK) and paxillin on stiffer substrates which correlated with slower cell migration. These results indicate that substrate stiffness modulates lung cancer cell migration via focal adhesion signaling as opposed to EMT signaling.
Collapse
Affiliation(s)
- V C Shukla
- Department of Biomedical Engineering, the Ohio State University, Columbus, Ohio, 43210
| | - N Higuita-Castro
- Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, Ohio, 43210
| | - P Nana-Sinkam
- Department of Internal Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, the Ohio State University Wexner Medical Center, Columbus, Ohio, 43210
| | - S N Ghadiali
- Department of Biomedical Engineering, the Ohio State University, Columbus, Ohio, 43210.,Department of Internal Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, the Ohio State University Wexner Medical Center, Columbus, Ohio, 43210.,Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, Ohio, 43210
| |
Collapse
|
100
|
Liu Z, Vunjak-Novakovic G. Modeling tumor microenvironments using custom-designed biomaterial scaffolds. Curr Opin Chem Eng 2016; 11:94-105. [PMID: 27152253 PMCID: PMC4852888 DOI: 10.1016/j.coche.2016.01.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The dominant roles of the tumor microenvironment in regulating tumor formation, progression, and metastasis have driven the application of tissue engineering strategies in cancer biology. Highly dynamic and reciprocal communication of tumor cells with their surroundings suggests that studying cancer in custom-designed biomaterial scaffolds may lead to novel therapeutic targets and therapeutic regimens more reliably than traditional monolayer tissue culture models. As tissue engineering becomes progressively more successful in recapitulating the native tumor environment, critical insights into mechanisms of tumor resistance may be elucidated, to impact clinical practice, drug development, and biological research. We review here the recent developments in the use of custom-designed biomaterial scaffolds for modeling human tumors.
Collapse
Affiliation(s)
- Zen Liu
- Department of Biomedical Engineering, Columbia University in the City of New York
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University in the City of New York
- Department of Medicine, Columbia University in the City of New York
| |
Collapse
|