51
|
Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, Zhang B, Meng Q, Yu X, Shi S. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer 2021; 20:131. [PMID: 34635121 PMCID: PMC8504100 DOI: 10.1186/s12943-021-01428-1] [Citation(s) in RCA: 1169] [Impact Index Per Article: 292.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/11/2021] [Indexed: 01/04/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs), a stromal cell population with cell-of-origin, phenotypic and functional heterogeneity, are the most essential components of the tumor microenvironment (TME). Through multiple pathways, activated CAFs can promote tumor growth, angiogenesis, invasion and metastasis, along with extracellular matrix (ECM) remodeling and even chemoresistance. Numerous previous studies have confirmed the critical role of the interaction between CAFs and tumor cells in tumorigenesis and development. However, recently, the mutual effects of CAFs and the tumor immune microenvironment (TIME) have been identified as another key factor in promoting tumor progression. The TIME mainly consists of distinct immune cell populations in tumor islets and is highly associated with the antitumor immunological state in the TME. CAFs interact with tumor-infiltrating immune cells as well as other immune components within the TIME via the secretion of various cytokines, growth factors, chemokines, exosomes and other effector molecules, consequently shaping an immunosuppressive TME that enables cancer cells to evade surveillance of the immune system. In-depth studies of CAFs and immune microenvironment interactions, particularly the complicated mechanisms connecting CAFs with immune cells, might provide novel strategies for subsequent targeted immunotherapies. Herein, we shed light on recent advances regarding the direct and indirect crosstalk between CAFs and infiltrating immune cells and further summarize the possible immunoinhibitory mechanisms induced by CAFs in the TME. In addition, we present current related CAF-targeting immunotherapies and briefly describe some future perspectives on CAF research in the end.
Collapse
Affiliation(s)
- Xiaoqi Mao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China. .,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China. .,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China. .,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
52
|
Cao K, Zhang G, Zhang X, Yang M, Wang Y, He M, Lu J, Liu H. Stromal infiltrating mast cells identify immunoevasive subtype high-grade serous ovarian cancer with poor prognosis and inferior immunotherapeutic response. Oncoimmunology 2021; 10:1969075. [PMID: 34527431 PMCID: PMC8437532 DOI: 10.1080/2162402x.2021.1969075] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tumor infiltrating mast cells (TIMs), with pro- or anti-tumorigenic role in different types of malignancies, have been implicated in resistance to anti-PD1 therapy. Here, we aimed to identify the relevance of TIMs with the prognosis, immune contexture, and immunotherapy in high-grade serous ovarian cancer (HGSOC). Tissue microarrays containing 197 HGSOC patients were assessed by immunohistochemistry (IHC) for detecting the expression of mast cell tryptase and other immune markers. Kaplan-Meier curve, log-rank test, and Cox regression model were applied to perform survival analysis. Single-cell RNA-seq analysis and flow cytometric analysis were selected to characterize TIMs. Furthermore, short-term HGSOC organoids were employed to validate the effect of TIMs on anti-PD1 therapy. Abundance of stromal TIMs (sTIMs) predicted dismal prognosis and linked to immunoevasive subtype of HGSOC, characterized by increased infiltration of pro-tumor cells (Treg cells, M2-polarized macrophages, and neutrophils) and impaired anti-tumor immune functions. Intensive inter-cell interactions between TIMs and other immune cells were identified, suggesting potential cross-talks to foster an immunosuppressive microenvironment. Organoids derived from sTIMs-low patients were associated with increased response to anti-PD-1 treatment other than the presence of high sTIMs infiltration. A nomogram, constructed by combining FIGO stage, sTIMs, and PD-L1, with an area under the curve (AUC) for predicting 5-year overall survival of 0.771 was better than that of FIGO staging system of 0.619. sTIMs/PD-L1-based classifier has potential clinical application in predicting prognosis of patients with HGSOC. sTIMs-high tumors correlate with immunosuppressive tumor microenvironment (TME) and possess potential insensitivity to immunotherapy.
Collapse
Affiliation(s)
- Kankan Cao
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Guodong Zhang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xiangyun Zhang
- Department of Gynecology, Suzhou Municipal Hospital, Suzhou, Jiangsu Province, China
| | - Moran Yang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yiying Wang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Mengdi He
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jiaqi Lu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Haiou Liu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| |
Collapse
|
53
|
Ware MB, El-Rayes BF, Lesinski GB. Mirage or long-awaited oasis: reinvigorating T-cell responses in pancreatic cancer. J Immunother Cancer 2021; 8:jitc-2020-001100. [PMID: 32843336 PMCID: PMC7449491 DOI: 10.1136/jitc-2020-001100] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is plagued by a dismal 5-year survival rate, early onset of metastasis and limited efficacy of systemic therapies. This scenario highlights the need to fervently pursue novel therapeutic strategies to treat this disease. Recent research has uncovered complicated dynamics within the tumor microenvironment (TME) of PDAC. An abundant stroma provides a framework for interactions between cancer-associated fibroblasts, suppressive myeloid cells and regulatory lymphocytes, which together create an inhospitable environment for adaptive immune responses. This accounts for the poor infiltration and exhausted phenotypes of effector T cells within pancreatic tumors. Innovative studies in genetically engineered mouse models have established that with appropriate pharmacological modulation of suppressive elements in the TME, T cells can be prompted to regress pancreatic tumors. In light of this knowledge, innovative combinatorial strategies involving immunotherapy and targeted therapies working in concert are rapidly emerging. This review will highlight recent advances in the field related to immune suppression in PDAC, emerging preclinical data and rationale for ongoing immunotherapy clinical trials. In particular, we draw attention to foundational findings involving T-cell activity in PDAC and encourage development of novel therapeutics to improve T-cell responses in this challenging disease.
Collapse
Affiliation(s)
- Michael Brandon Ware
- Hematology and Oncology, Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| | - Bassel F El-Rayes
- Hematology and Oncology, Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| | - Gregory B Lesinski
- Hematology and Oncology, Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| |
Collapse
|
54
|
Masini M, Suleiman M, Novelli M, Marselli L, Marchetti P, De Tata V. Mast Cells and the Pancreas in Human Type 1 and Type 2 Diabetes. Cells 2021; 10:cells10081875. [PMID: 34440644 PMCID: PMC8391487 DOI: 10.3390/cells10081875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022] Open
Abstract
Mast cells are highly differentiated, widely distributed cells of the innate immune system, that are currently considered as key regulators of both innate and adaptive immunity. Mast cells play a key role in health and survival mechanisms, especially as sentinel cells that can stimulate protective immune responses. On the other hand, it has been shown that mast cells are involved in the pathogenesis of several diseases, and recently a possible pathogenetic role of mast cells in diabetes has been proposed. In this review we summarize the evidence on the increased presence of mast cells in the pancreas of subjects with type 1 diabetes, which is due to the autoimmune destruction of insulin secreting beta cells, and discuss the differences with type 2 diabetes, the other major form of diabetes. In addition, we describe some of the pathophysiological mechanisms through which mast cells might exert their actions, which could be targeted to potentially protect the beta cells in autoimmune diabetes.
Collapse
Affiliation(s)
- Matilde Masini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55-Scuola Medica, 56126 Pisa, Italy; (M.M.); (M.N.)
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine, Pancreatic Islet Laboratory, University of Pisa, 56124 Pisa, Italy; (M.S.); (L.M.); (P.M.)
| | - Michela Novelli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55-Scuola Medica, 56126 Pisa, Italy; (M.M.); (M.N.)
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, Pancreatic Islet Laboratory, University of Pisa, 56124 Pisa, Italy; (M.S.); (L.M.); (P.M.)
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Pancreatic Islet Laboratory, University of Pisa, 56124 Pisa, Italy; (M.S.); (L.M.); (P.M.)
| | - Vincenzo De Tata
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55-Scuola Medica, 56126 Pisa, Italy; (M.M.); (M.N.)
- Centro Interdipartimentale di Microscopia Elettronica (C.I.M.E.), University of Pisa, 56126 Pisa, Italy
- Correspondence:
| |
Collapse
|
55
|
Gunaydin G. CAFs Interacting With TAMs in Tumor Microenvironment to Enhance Tumorigenesis and Immune Evasion. Front Oncol 2021; 11:668349. [PMID: 34336660 PMCID: PMC8317617 DOI: 10.3389/fonc.2021.668349] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer associated fibroblasts (CAFs) and tumor associated macrophages (TAMs) are among the most important and abundant players of the tumor microenvironment. CAFs as well as TAMs are known to play pivotal supportive roles in tumor growth and progression. The number of CAF or TAM cells is mostly correlated with poor prognosis. Both CAFs and TAMs are in a reciprocal communication with the tumor cells in the tumor milieu. In addition to such interactions, CAFs and TAMs are also involved in a dynamic and reciprocal interrelationship with each other. Both CAFs and TAMs are capable of altering each other's functions. Here, the current understanding of the distinct mechanisms about the complex interplay between CAFs and TAMs are summarized. In addition, the consequences of such a mutual relationship especially for tumor progression and tumor immune evasion are highlighted, focusing on the synergistic pleiotropic effects. CAFs and TAMs are crucial components of the tumor microenvironment; thus, they may prove to be potential therapeutic targets. A better understanding of the tri-directional interactions of CAFs, TAMs and cancer cells in terms of tumor progression will pave the way for the identification of novel theranostic cues in order to better target the crucial mechanisms of carcinogenesis.
Collapse
Affiliation(s)
- Gurcan Gunaydin
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| |
Collapse
|
56
|
Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther 2021; 6:263. [PMID: 34248142 PMCID: PMC8273155 DOI: 10.1038/s41392-021-00658-5] [Citation(s) in RCA: 1199] [Impact Index Per Article: 299.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/11/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer development and its response to therapy are regulated by inflammation, which either promotes or suppresses tumor progression, potentially displaying opposing effects on therapeutic outcomes. Chronic inflammation facilitates tumor progression and treatment resistance, whereas induction of acute inflammatory reactions often stimulates the maturation of dendritic cells (DCs) and antigen presentation, leading to anti-tumor immune responses. In addition, multiple signaling pathways, such as nuclear factor kappa B (NF-kB), Janus kinase/signal transducers and activators of transcription (JAK-STAT), toll-like receptor (TLR) pathways, cGAS/STING, and mitogen-activated protein kinase (MAPK); inflammatory factors, including cytokines (e.g., interleukin (IL), interferon (IFN), and tumor necrosis factor (TNF)-α), chemokines (e.g., C-C motif chemokine ligands (CCLs) and C-X-C motif chemokine ligands (CXCLs)), growth factors (e.g., vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-β), and inflammasome; as well as inflammatory metabolites including prostaglandins, leukotrienes, thromboxane, and specialized proresolving mediators (SPM), have been identified as pivotal regulators of the initiation and resolution of inflammation. Nowadays, local irradiation, recombinant cytokines, neutralizing antibodies, small-molecule inhibitors, DC vaccines, oncolytic viruses, TLR agonists, and SPM have been developed to specifically modulate inflammation in cancer therapy, with some of these factors already undergoing clinical trials. Herein, we discuss the initiation and resolution of inflammation, the crosstalk between tumor development and inflammatory processes. We also highlight potential targets for harnessing inflammation in the treatment of cancer.
Collapse
|
57
|
Trunk A, Miotke L, Nevala-Plagemann C, Verdaguer H, Macarulla T, Garrido-Laguna I. Emerging Treatment Strategies in Pancreatic Cancer. Pancreas 2021; 50:773-787. [PMID: 34398070 DOI: 10.1097/mpa.0000000000001845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ABSTRACT Pancreatic ductal adenocarcinoma (PDAC) is one of the main causes of cancer death in well-developed countries. Therapeutic advances in PDAC to date have been modest. Recent progress to understand the molecular landscape of the disease has opened new treatment opportunities for a small subset of patients, frequently those with KRAS wild-type disease. Novel treatment strategies in PDAC include, among others, the use of nanotechnology and metabolic reprogramming. In addition, new strategies are being investigated, which are designed to overcome the resistance to checkpoint inhibitors, targeting DNA repair pathways including mismatch repair, increasing antigen presentation through the use of vaccines, targeting various signaling pathways, and reprogramming the tumor microenvironment. Here, we review the landscape of PDAC treatment strategies and some of these new agents.
Collapse
Affiliation(s)
- Andrew Trunk
- From the Department of Internal Medicine, University of Utah
| | - Laura Miotke
- From the Department of Internal Medicine, University of Utah
| | | | - Helena Verdaguer
- Division of Medical Oncology, Vall d'Hebrón University Hospital, Vall d'Hebrón Institute of Oncology, Barcelona, Spain
| | - Teresa Macarulla
- Division of Medical Oncology, Vall d'Hebrón University Hospital, Vall d'Hebrón Institute of Oncology, Barcelona, Spain
| | - Ignacio Garrido-Laguna
- Division of Oncology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| |
Collapse
|
58
|
Popov H, Kobakova I, Stoyanov GS, Softova E, Ghenev P. Quantitative Analysis of Tumor-Associated Mast Cells in Recurrent and Non-recurrent Urothelial Bladder Cancer in Stage pTa and pT1. Cureus 2021; 13:e14311. [PMID: 33968521 PMCID: PMC8099003 DOI: 10.7759/cureus.14311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Urothelial carcinoma of the urinary bladder (UCUB) is a common malignancy in both genders with a very high recurrence rate. There has been increasing evidence for a correlation between tumor-associated mast cells (TAMC) and tumor growth and recurrence rates. In the present study, we set out to establish a link between TAMC and the clinical morphological characteristics of UCUB in stages pTa and pT1. Methodology A retrospective non-clinical approach was used, with two groups of patients with UCUB. A total of 163 patients were included, 95 in the non-recurrent group and 68 in the recurrent UCUB group. Estimation of TAMC was performed on histological slides from the initial biopsy material using Giemsa and Toluidine blue staining. The collected data were statistically analyzed using the Kaplan-Meier curve, Mann-Whitney test, receiver operating characteristic curve, and chi-square analysis. Results Statistical analysis revealed that TAMC in the tumor stroma shows a positive correlation with local recurrence, with no statistical significance to the time of recurrence. No correlation showed statistical significance with pT stage, grade, gender, and age. Conclusions The amount of TAMC in UCUB correlates positively with the rate of local recurrence. The depicted correlations are similar to those established in mammary carcinoma, some lymphoproliferative disorders, and pancreatic and prostate malignancies.
Collapse
Affiliation(s)
- Hristo Popov
- General and Clinical Pathology, Forensic Medicine and Deontology, Medical University of Varna, Varna, BGR
| | - Ina Kobakova
- General and Clinical Pathology, Forensic Medicine and Deontology, Medical University of Varna, Varna, BGR
| | - George S Stoyanov
- General and Clinical Pathology, Forensic Medicine and Deontology, Medical University of Varna, Varna, BGR
| | - Ekaterina Softova
- Pathology, Individual Medical Diagnostic Laboratory City Lab, Varna, BGR
| | - Peter Ghenev
- General and Clinical Pathology, Forensic Medicine and Deontology, Medical University of Varna, Varna, BGR
| |
Collapse
|
59
|
Magrone T, Magrone M, Jirillo E. Mast Cells as a Double Edged Sword in Immunity: Disorders of Mast Cell Activation and Therapeutic Management. Second of Two Parts. Endocr Metab Immune Disord Drug Targets 2021; 20:670-686. [PMID: 31789136 DOI: 10.2174/1871530319666191202121644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022]
Abstract
Mast cells (MCs) bear many receptors that allow them to respond to a variety of exogenous and endogenous stimuli. However, MC function is dual since they can initiate pathological events or protect the host against infectious challenges. The role of MCs in disease will be analyzed in a broad sense, describing cellular and molecular mechanisms related to their involvement in auto-inflammatory diseases, asthma, autoimmune diseases and cancer. On the other hand, their protective role in the course of bacterial, fungal and parasitic infections will also be illustrated. As far as treatment of MC-derived diseases is concerned, allergen immunotherapy as well as other attempts to reduce MC-activation will be outlined according to the recent data. Finally, in agreement with current literature and our own data polyphenols have been demonstrated to attenuate type I allergic reactions and contact dermatitis in response to nickel. The use of polyphenols in these diseases will be discussed also in view of MC involvement.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Manrico Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
60
|
Shi J, Song X, Traub B, Luxenhofer M, Kornmann M. Involvement of IL-4, IL-13 and Their Receptors in Pancreatic Cancer. Int J Mol Sci 2021; 22:ijms22062998. [PMID: 33804263 PMCID: PMC8000536 DOI: 10.3390/ijms22062998] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 01/05/2023] Open
Abstract
Interleukin (IL)-4 and IL-13 are known as pleiotropic Th2 cytokines with a wide range of biological properties and functions especially in immune responses. In addition, increasing activities have also been determined in oncogenesis and tumor progression of several malignancies. It is now generally accepted that IL-4 and IL-13 can exert effects on epithelial tumor cells through corresponding receptors. Type II IL-4 receptor (IL-4Rα/IL-13Rα1), predominantly expressed in non-hematopoietic cells, is identified to be the main target for both IL-4 and IL-13 in tumors. Moreover, IL-13 can also signal by binding to the IL-13Rα2 receptor. Structural similarity due to the use of the same receptor complex generated in response to IL-4/IL-13 results in overlapping but also distinct signaling pathways and functions. The aim of this review was to summarize knowledge about IL-4 and IL-13 and their receptors in pancreatic cancer in order understand the implication of IL-4 and IL-13 and their receptors for pancreatic tumorigenesis and progression and for developing possible new diagnostic and therapeutic targets.
Collapse
|
61
|
Chehrazi-Raffle A, Meza L, Alcantara M, Dizman N, Bergerot P, Salgia N, Hsu J, Ruel N, Salgia S, Malhotra J, Karczewska E, Kortylewski M, Pal S. Circulating cytokines associated with clinical response to systemic therapy in metastatic renal cell carcinoma. J Immunother Cancer 2021; 9:jitc-2020-002009. [PMID: 33688021 PMCID: PMC7944971 DOI: 10.1136/jitc-2020-002009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2020] [Indexed: 12/22/2022] Open
Abstract
Background Circulating cytokines and angiogenic factors have been associated with clinical outcomes in patients with metastatic renal cell carcinoma (RCC) receiving systemic therapy. However, none have yet examined cytokine concentrations in parallel cohorts receiving either immunotherapy or targeted therapy. Methods In this prospective correlative study, we enrolled 56 patients who were planned for treatment with either a vascular endothelial growth factor-tyrosine kinase inhibitor (VEGF-TKI) or immune checkpoint inhibitor (ICI). Eligibility requirements permitted any RCC histologic subtype, International Metastatic Renal Cell Carcinoma risk classification, and line of therapy. Immunologic profile was assessed at baseline and after 1 month on treatment using a Human Cytokine 30-plex protein assay (Invitrogen). Clinical benefit was defined as complete response, partial response, or stable disease ≥6 months per RECIST (Response Evaluation Criteria in Solid Tumors) V.1.1 criteria. Results Clinical benefit was similar between VEGF-TKI and ICI arms (65% vs 54%). Patients with clinical benefit from VEGF-TKIs had lower pretreatment levels of interleukin-6 (IL-6) (p=0.02), IL-1RA (p=0.03), and granulocyte colony-stimulating factor (CSF) (p=0.02). At 1 month, patients with clinical benefit from ICIs had higher levels of interferon-γ (IFN-γ) (p=0.04) and IL-12 (p=0.03). Among patients on VEGF-TKIs, those with clinical benefit had lower 1 month IL-13 (p=0.02) and granulocyte macrophage CSF (p=0.01) as well as higher 1 month VEGF (p=0.04) compared with patients with no clinical benefit. Conclusion For patients receiving VEGF-TKI or ICI therapy, distinct plasma cytokines were associated with clinical benefit. Our findings support additional investigation into plasma cytokines as biomarkers in metastatic RCC.
Collapse
Affiliation(s)
- Alexander Chehrazi-Raffle
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Luis Meza
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Marice Alcantara
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Nazli Dizman
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Paulo Bergerot
- Department of Medical Oncology, Cettro Cancer Center, Brasilia, Brazil
| | - Nicholas Salgia
- Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, Brazil
| | - JoAnn Hsu
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Nora Ruel
- Department of Computational and Quantitative Medicine, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Sabrina Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Jasnoor Malhotra
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Ewa Karczewska
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Marcin Kortylewski
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Sumanta Pal
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| |
Collapse
|
62
|
Koustoulidou S, Hoorens MWH, Dalm SU, Mahajan S, Debets R, Seimbille Y, de Jong M. Cancer-Associated Fibroblasts as Players in Cancer Development and Progression and Their Role in Targeted Radionuclide Imaging and Therapy. Cancers (Basel) 2021; 13:1100. [PMID: 33806468 PMCID: PMC7961537 DOI: 10.3390/cancers13051100] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer Associated Fibroblasts (CAFs) form a major component of the tumour microenvironment, they have a complex origin and execute diverse functions in tumour development and progression. As such, CAFs constitute an attractive target for novel therapeutic interventions that will aid both diagnosis and treatment of various cancers. There are, however, a few limitations in reaching successful translation of CAF targeted interventions from bench to bedside. Several approaches targeting CAFs have been investigated so far and a few CAF-targeting tracers have successfully been developed and applied. This includes tracers targeting Fibroblast Activation Protein (FAP) on CAFs. A number of FAP-targeting tracers have shown great promise in the clinic. In this review, we summarize our current knowledge of the functional heterogeneity and biology of CAFs in cancer. Moreover, we highlight the latest developments towards theranostic applications that will help tumour characterization, radioligand therapy and staging in cancers with a distinct CAF population.
Collapse
Affiliation(s)
- Sofia Koustoulidou
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.W.H.H.); (S.U.D.); (Y.S.); (M.d.J.)
| | - Mark W. H. Hoorens
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.W.H.H.); (S.U.D.); (Y.S.); (M.d.J.)
| | - Simone U. Dalm
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.W.H.H.); (S.U.D.); (Y.S.); (M.d.J.)
| | - Shweta Mahajan
- Department of Medical Oncology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (R.D.); (S.M.)
| | - Reno Debets
- Department of Medical Oncology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (R.D.); (S.M.)
| | - Yann Seimbille
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.W.H.H.); (S.U.D.); (Y.S.); (M.d.J.)
| | - Marion de Jong
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.W.H.H.); (S.U.D.); (Y.S.); (M.d.J.)
| |
Collapse
|
63
|
Mast Cells Positive for c-Kit Receptor and Tryptase Correlate with Angiogenesis in Cancerous and Adjacent Normal Pancreatic Tissue. Cells 2021; 10:cells10020444. [PMID: 33669751 PMCID: PMC7923170 DOI: 10.3390/cells10020444] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Mast cells (MCs) contain proangiogenic factors, in particular tryptase, associated with increased angiogenesis in several tumours. With special reference to pancreatic cancer, few data have been published on the role of MCs in angiogenesis in both pancreatic ductal adenocarcinoma tissue (PDAT) and adjacent normal tissue (ANT). In this study, density of mast cells positive for c-Kit receptor (MCDP-c-KitR), density of mast cells positive for tryptase (MCDPT), area of mast cells positive for tryptase (MCAPT), and angiogenesis in terms of microvascular density (MVD) and endothelial area (EA) were evaluated in a total of 45 PDAT patients with stage T2–3N0–1M0. Results: For each analysed tissue parameter, the mean ± standard deviation was evaluated in both PDAT and ANT and differences were evaluated by Student’s t-test (p ranged from 0.001 to 0.005). Each analysed tissue parameter was then correlated to each other one by Pearson t-test analysis (p ranged from 0.01 to 0.03). No other correlation among MCDP-c-KitR, MCDPT, MCAPT, MVD, EA and the main clinical–pathological characteristics was found. Conclusions: Our results suggest that tissue parameters increased from ANT to PDAT and that mast cells are strongly associated with angiogenesis in PDAT. On this basis, the inhibition of MCs through tyrosine kinase inhibitors, such as masitinib, or inhibition of tryptase by gabexate mesylate may become potential novel antiangiogenetic approaches in pancreatic cancer therapy.
Collapse
|
64
|
Wolfe AR, Robb R, Hegazi A, Abushahin L, Yang L, Shyu DL, Trevino JG, Cruz-Monserrate Z, Jacob JR, Palanichamy K, Chakravarti A, Williams TM. Altered Gemcitabine and Nab-paclitaxel Scheduling Improves Therapeutic Efficacy Compared with Standard Concurrent Treatment in Preclinical Models of Pancreatic Cancer. Clin Cancer Res 2021; 27:554-565. [PMID: 33087331 PMCID: PMC7855515 DOI: 10.1158/1078-0432.ccr-20-1422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/14/2020] [Accepted: 10/16/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Concurrent gemcitabine and nab-paclitaxel treatment is one of the preferred chemotherapy regimens for metastatic and locally advanced pancreatic ductal adenocarcinoma (PDAC). Previous studies demonstrate that caveolin-1 (Cav-1) expression is critical for nab-paclitaxel uptake into tumors and correlates with response. Gemcitabine increases nab-paclitaxel uptake by increasing Cav-1 expression. Thus, we hypothesized that pretreatment with gemcitabine would further enhance the sensitivity of PDAC to nab-paclitaxel by increasing Cav-1 expression and nab-paclitaxel uptake. EXPERIMENTAL DESIGN We investigated the sensitivity of different gemcitabine and nab-paclitaxel treatment regimens in a panel of PDAC cell lines and orthotopic xenograft models. The sensitivity of different treatment regimens was compared with the standard concurrent treatment. RESULTS Pretreatment with gemcitabine before nab-paclitaxel increased Cav-1 and albumin uptake and significantly decreased proliferation and clonogenicity compared with concurrent treatment, which correlated with increased levels of apoptosis. Cav-1 silencing reduced the uptake of albumin, and therapeutic advantage was observed when cells were pretreated with gemcitabine prior to nab-paclitaxel. In addition, we observed that pretreatment with gemcitabine resulted in partial synchronization of cells in the G2-M-phase at the time of nab-paclitaxel treatment, providing another mechanism for the benefit of altered scheduling. In heterotopic and orthotopic xenograft models, the altered schedule of gemcitabine prior to nab-paclitaxel significantly delayed tumor growth compared with concurrent delivery without added toxicity. CONCLUSIONS Pretreatment with gemcitabine significantly increased nab-paclitaxel uptake and correlated with an increased treatment efficacy and survival benefit in preclinical models, compared with standard concurrent treatment. These results justify preclinical and clinical testing of this altered scheduling combination.
Collapse
Affiliation(s)
- Adam R Wolfe
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, Ohio
| | - Ryan Robb
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, Ohio
| | - Ahmad Hegazi
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, Ohio
| | - Laith Abushahin
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210
| | - Linlin Yang
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, Ohio
| | - Duan-Liang Shyu
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, Ohio
| | - Jose G Trevino
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - John R Jacob
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, Ohio
| | - Kamalakannan Palanichamy
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, Ohio
| | - Arnab Chakravarti
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, Ohio
| | - Terence M Williams
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, Ohio.
| |
Collapse
|
65
|
Wu Y, Zhang C, Jiang K, Werner J, Bazhin AV, D'Haese JG. The Role of Stellate Cells in Pancreatic Ductal Adenocarcinoma: Targeting Perspectives. Front Oncol 2021; 10:621937. [PMID: 33520728 PMCID: PMC7841014 DOI: 10.3389/fonc.2020.621937] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a gastrointestinal malignancy with a dismal clinical outcome. Accumulating evidence suggests that activated pancreatic stellate cells (PSCs), the major producers of extracellular matrix (ECM), drive the severe stromal/desmoplastic reaction in PDAC. Furthermore, the crosstalk among PSCs, pancreatic cancer cells (PCCs) as well as other stroma cells can establish a growth-supportive tumor microenvironment (TME) of PDAC, thereby enhancing tumor growth, metastasis, and chemoresistance via various pathways. Recently, targeting stroma has emerged as a promising strategy for PDAC therapy, and several novel strategies have been proposed. The aim of our study is to give a profound review of the role of PSCs in PDAC progression and recent advances in stroma-targeting strategies.
Collapse
Affiliation(s)
- Yang Wu
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Chun Zhang
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kuirong Jiang
- Pancreas Center and Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Alexandr V Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Jan G D'Haese
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
66
|
Zhang Y, Ware MB, Zaidi MY, Ruggieri AN, Olson BM, Komar H, Farren MR, Nagaraju GP, Zhang C, Chen Z, Sarmiento JM, Ahmed R, Maithel SK, El-Rayes BF, Lesinski GB. Heat Shock Protein-90 Inhibition Alters Activation of Pancreatic Stellate Cells and Enhances the Efficacy of PD-1 Blockade in Pancreatic Cancer. Mol Cancer Ther 2021; 20:150-160. [PMID: 33037138 PMCID: PMC7790996 DOI: 10.1158/1535-7163.mct-19-0911] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 04/09/2020] [Accepted: 09/30/2020] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a prominent fibrotic stroma, which is a result of interactions between tumor, immune and pancreatic stellate cells (PSC), or cancer-associated fibroblasts (CAF). Targeting inflammatory pathways present within the stroma may improve access of effector immune cells to PDAC and response to immunotherapy. Heat shock protein-90 (Hsp90) is a chaperone protein and a versatile target in pancreatic cancer. Hsp90 regulates a diverse array of cellular processes of relevance to both the tumor and the immune system. However, to date the role of Hsp90 in PSC/CAF has not been explored in detail. We hypothesized that Hsp90 inhibition would limit inflammatory signals, thereby reprogramming the PDAC tumor microenvironment to enhance sensitivity to PD-1 blockade. Treatment of immortalized and primary patient PSC/CAF with the Hsp90 inhibitor XL888 decreased IL6, a key cytokine that orchestrates immune changes in PDAC at the transcript and protein level in vitro XL888 directly limited PSC/CAF growth and reduced Jak/STAT and MAPK signaling intermediates and alpha-SMA expression as determined via immunoblot. Combined therapy with XL888 and anti-PD-1 was efficacious in C57BL/6 mice bearing syngeneic subcutaneous (Panc02) or orthotopic (KPC-Luc) tumors. Tumors from mice treated with both XL888 and anti-PD-1 had a significantly increased CD8+ and CD4+ T-cell infiltrate and a unique transcriptional profile characterized by upregulation of genes associated with immune response and chemotaxis. These data demonstrate that Hsp90 inhibition directly affects PSC/CAF in vitro and enhances the efficacy of anti-PD-1 blockade in vivo.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
- Department of Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Michael B Ware
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Mohammad Y Zaidi
- Department of Surgery, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Amanda N Ruggieri
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Brian M Olson
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Hannah Komar
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Matthew R Farren
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Chao Zhang
- Department of Biostatistics, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Zhengjia Chen
- Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, Illinois
| | - Juan M Sarmiento
- Department of Surgery, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | | | - Shishir K Maithel
- Department of Surgery, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Bassel F El-Rayes
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia.
| | - Gregory B Lesinski
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia.
| |
Collapse
|
67
|
Seifert AM, List J, Heiduk M, Decker R, von Renesse J, Meinecke AC, Aust DE, Welsch T, Weitz J, Seifert L. Gamma-delta T cells stimulate IL-6 production by pancreatic stellate cells in pancreatic ductal adenocarcinoma. J Cancer Res Clin Oncol 2020; 146:3233-3240. [PMID: 32865617 PMCID: PMC7679341 DOI: 10.1007/s00432-020-03367-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/18/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The immunosuppressive tumor microenvironment promotes progression of pancreatic ductal adenocarcinoma (PDAC). γδ T cells infiltrate the pancreatic tumor stroma and support tumorigenesis through αβ T cell inhibition. Pancreatic stellate cell (PSC) activation contributes to pancreatic fibrosis in PDAC, limiting the delivery and efficacy of therapeutic agents. Whether γδ T cells have direct effects on PSC activation is unknown. METHODS In this study, we analyzed tumor tissue from 68 patients with PDAC and determined the frequency and location of γδ T cells using immunohistochemistry and immunofluorescence. PDAC samples from the TCGA database with low and high TRGC2 expression were correlated with the expression of extracellular matrix genes. Further, PSCs were isolated from pancreatic tumor tissue and co-cultured with γδ T cells for 48 hours and cytokine production was measured using a cytometric bead array. RESULTS γδ T cells infiltrated the pancreatic tumor stroma and were located in proximity to PSCs. A high infiltration of γδ T cells was associated with increased expression of several extracellular matrix genes in human PDAC. In vitro, γδ T cells stimulated IL-6 production by PDAC-derived PSCs. CONCLUSION γδ T cells activated PSCs and modulation of this interaction may enhance the efficacy of combinational therapies in human PDAC.
Collapse
Affiliation(s)
- Adrian M Seifert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Dresden, Heidelberg, Germany
| | - Julian List
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, 01307, Dresden, Germany
| | - Max Heiduk
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, 01307, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rahel Decker
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, 01307, Dresden, Germany
| | - Janusz von Renesse
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, 01307, Dresden, Germany
| | - Ann-Christin Meinecke
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, 01307, Dresden, Germany
| | - Daniela E Aust
- Department of Pathology, Medical Faculty, University Hospital Carl Gustav Carus, University of Dresden, Dresden, Germany
- NCT Biobank Dresden, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Thilo Welsch
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Dresden, Heidelberg, Germany
| | - Jürgen Weitz
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Dresden, Heidelberg, Germany
| | - Lena Seifert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, 01307, Dresden, Germany.
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Dresden, Heidelberg, Germany.
| |
Collapse
|
68
|
Mejia I, Bodapati S, Chen KT, Díaz B. Pancreatic Adenocarcinoma Invasiveness and the Tumor Microenvironment: From Biology to Clinical Trials. Biomedicines 2020; 8:E401. [PMID: 33050151 PMCID: PMC7601142 DOI: 10.3390/biomedicines8100401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 12/18/2022] Open
Abstract
Pancreatic adenocarcinoma (PDAC) originates in the glandular compartment of the exocrine pancreas. Histologically, PDAC tumors are characterized by a parenchyma that is embedded in a particularly prominent stromal component or desmoplastic stroma. The unique characteristics of the desmoplastic stroma shape the microenvironment of PDAC and modulate the reciprocal interactions between cancer and stromal cells in ways that have profound effects in the pathophysiology and treatment of this disease. Here, we review some of the most recent findings regarding the regulation of PDAC cell invasion by the unique microenvironment of this tumor, and how new knowledge is being translated into novel therapeutic approaches.
Collapse
Affiliation(s)
- Isabel Mejia
- Department of Medicine, Division of Medical Hematology Oncology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
| | - Sandhya Bodapati
- College of Osteopathic Medicine, Pacific Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Kathryn T. Chen
- Department of Surgery, Division of Surgical Oncology, Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
| | - Begoña Díaz
- Department of Medicine, Division of Medical Hematology Oncology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
- David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
69
|
Xu J, Liu S, Yang X, Cao S, Zhou Y. Paracrine HGF promotes EMT and mediates the effects of PSC on chemoresistance by activating c-Met/PI3K/Akt signaling in pancreatic cancer in vitro. Life Sci 2020; 263:118523. [PMID: 33039386 DOI: 10.1016/j.lfs.2020.118523] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/19/2020] [Accepted: 09/27/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Pancreatic stellate cells (PSCs) play key roles in the pancreatic tumor microenvironment and are considered to contribute to chemoresistance. PSCs can participate in malignant behaviors of pancreatic carcinoma (PC) by secreting hepatocyte growth factor (HGF). The objective of this research was to explore the potential molecular mechanism of HGF on gemcitabine (GEM) chemoresistance of PC. MATERIALS AND METHODS HGF, c-Met, E-Cadherin and Vimentin levels were examined by quantitative real-time polymerase chain reaction (qRT-PCR). The changes of HGF level were detected by ELISA. The half maximal inhibitory concentration, the growth inhibitions and apoptosis of pancreatic cancer cells (PCCs) were respectively assayed using CCK-8 and flow cytometry. Associated proteins were measured using western blot and cell immunofluorescence assay. KEY FINDINGS PSCs strongly expressed HGF, and its receptor c-Met was expressed in PCCs. PCCs exerted a positive regulative effect on HGF production. HGF neutralizing antibody AMG102 could effectively reduce the HGF level in PSC-conditioned medium (PSC-CM). PSC-CM promoted chemoresistance in PCCs. When exposed to PSC-CM, PCCs underwent epithelial-to-mesenchymal transition (EMT), and c-Met was also activated. Recombinant human HGF had the same protective effect. Blocking the HGF/c-Met axis with a c-Met inhibitor PHA665752 and AMG102 reduced the phosphorylation level of c-Met (p-c-Met) and attenuated EMT and chemoresistance. P-c-Met overexpression resulted in activation of the PI3K/Akt pathway, and inhibition of PI3K/Akt signaling with LY294002 reversed chemoresistance and EMT. SIGNIFICANCE PSCs can activate the c-Met/PI3K/Akt pathway in PCCs via paracrine HGF, induce EMT of PCCs and inhibit cancer cell apoptosis, thus enhance chemoresistance to Gem in PCCs.
Collapse
Affiliation(s)
- Jianfei Xu
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shanglong Liu
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaopeng Yang
- Department of Gastrointestinal Surgery, Yidu Central Hospital, Weifang, China
| | - Shougen Cao
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanbing Zhou
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
70
|
Ma Y, Li J, Wang H, Chiu Y, Kingsley CV, Fry D, Delaney SN, Wei SC, Zhang J, Maitra A, Yee C. Combination of PD-1 Inhibitor and OX40 Agonist Induces Tumor Rejection and Immune Memory in Mouse Models of Pancreatic Cancer. Gastroenterology 2020; 159:306-319.e12. [PMID: 32179091 PMCID: PMC7387152 DOI: 10.1053/j.gastro.2020.03.018] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Advanced pancreatic ductal adenocarcinoma (PDAC) is resistant to therapy, including immune checkpoint inhibitors. We evaluated the effects of a neutralizing antibody against programmed cell death 1 (PD-1) and an agonist of OX40 (provides a survival signal to activated T cells) in mice with pancreatic tumors. METHODS We performed studies in C57BL/6 mice (controls), KrasG12D/+;Trp53R172H/+;Pdx-1-Cre (KPC) mice, and mice with orthotopic tumors grown from Panc02 cells, KrasG12D;P53flox/flox;PDX-1-Cre;Luciferase (KPC-Luc) cells, or mT4 cells. After tumors developed, mice were given injections of control antibody or anti-OX40 and/or anti-PD-1 antibody. Some mice were then given injections of antibodies against CD8, CD4, or NK1.1 to deplete immune cells, and IL4 or IL7RA to block cytokine signaling. Bioluminescence imaging was used to monitor tumor growth. Tumor tissues collected and single-cell suspensions were analyzed by time of flight mass spectrometry analysis. Mice that were tumor-free 100 days after implantation of orthotopic tumors were rechallenged with PDAC cells (KPC-Luc or mT4) and survival was measured. Median levels of PD-1 and OX40 mRNAs in PDACs were determined from The Cancer Genome Atlas and compared with patient survival times. RESULTS In mice with orthotopic tumors, all those given control antibody or anti-PD-1 died within 50 days, whereas 43% of mice given anti-OX40 survived for 225 days; almost 100% of mice given the combination of anti-PD-1 and anti-OX40 survived for 225 days, and tumors were no longer detected. KPC mice given control antibody, anti-PD-1, or anti-OX40 had median survival times of 50 days or less, whereas mice given the combination of anti-PD-1 and anti-OX40 survived for a median 88 days. Mice with orthotopic tumors that were given the combination of anti-PD-1 and anti-OX40 and survived 100 days were rechallenged with a second tumor; those rechallenged with mT4 cells survived an additional median 70 days and those rechallenged with KPC-Luc cells survived long term, tumor free. The combination of anti-PD-1 and anti-OX40 did not slow tumor growth in mice with antibody-mediated depletion of CD4+ T cells. Mice with orthotopic tumors given the combination of anti-PD-1 and anti-OX40 that survived after complete tumor rejection were rechallenged with KPC-Luc cells; those with depletion of CD4+ T cells before the rechallenge had uncontrolled tumor growth. Furthermore, KPC orthotopic tumors from mice given the combination contained an increased number of CD4+ T cells that expressed CD127 compared with mice given control antibody. The combination of agents reduced the proportion of T-regulatory and exhausted T cells and decreased T-cell expression of GATA3; tumor size was negatively associated with numbers of infiltrating CD4+ T cells, CD4+CD127+ T cells, and CD8+CD127+ T cells, and positively associated with numbers of CD4+PD-1+ T cells, CD4+CD25+ T cells, and CD8+PD-1+ T cells. PDACs with high levels of OX40 and low levels of PD-1 were associated with longer survival times of patients. CONCLUSIONS Pancreatic tumors appear to evade the immune response by inducing development of immune-suppressive T cells. In mice, the combination of anti-PD-1 inhibitory and anti-OX40 agonist antibodies reduces the proportion of T-regulatory and exhausted T cells in pancreatic tumors and increases numbers of memory CD4+ and CD8+ T cells, eradicating all detectable tumor. This information can be used in development of immune-based combination therapies for PDAC.
Collapse
Affiliation(s)
- Ying Ma
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Jun Li
- Department of Genomic Medicine, The University of Texas MD
Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
| | - Huamin Wang
- Department of Pathology, The University of Texas MD
Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
| | - Yulun Chiu
- Department of Melanoma Medical Oncology, The University of
Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030;,Center for Cancer Immunology ResearchThe University of
Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030;,Department of Immunology, The University of Texas MD
Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
| | - Charles V. Kingsley
- Department of Imaging Physics, The University of Texas MD
Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
| | - David Fry
- Department of Melanoma Medical Oncology, The University of
Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030;,Center for Cancer Immunology ResearchThe University of
Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030;,Department of Immunology, The University of Texas MD
Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
| | - Samantha N. Delaney
- Department of Melanoma Medical Oncology, The University of
Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030;,Center for Cancer Immunology ResearchThe University of
Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030;,Department of Immunology, The University of Texas MD
Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
| | - Spencer C. Wei
- Center for Cancer Immunology ResearchThe University of
Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030;,Department of Immunology, The University of Texas MD
Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD
Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
| | - Anirban Maitra
- Department of Pathology, The University of Texas MD
Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
| | - Cassian Yee
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas Health Science Center at Houston Graduate School of Biomedical Sciences, Houston, Texas.
| |
Collapse
|
71
|
Mundry CS, Eberle KC, Singh PK, Hollingsworth MA, Mehla K. Local and systemic immunosuppression in pancreatic cancer: Targeting the stalwarts in tumor's arsenal. Biochim Biophys Acta Rev Cancer 2020; 1874:188387. [PMID: 32579889 DOI: 10.1016/j.bbcan.2020.188387] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
Abstract
Late detection, compromised immune system, and chemotherapy resistance underlie the poor patient prognosis for pancreatic ductal adenocarcinoma (PDAC) patients, making it the 3rd leading cause of cancer-related deaths in the United States. Cooperation between the tumor cells and the immune system leads to the immune escape and eventual establishment of the tumor. For more than 20 years, sincere efforts have been made to intercept the tumor-immune crosstalk and identify the probable therapeutic targets for breaking self-tolerance toward tumor antigens. However, the success of these studies depends on detailed examination and understanding of tumor-immune cell interactions, not only in the primary tumor but also at distant systemic niches. Innate and adaptive arms of the immune system sculpt tumor immunogenicity, where they not only aid in providing an amenable environment for their survival but also act as a driver for tumor relapse at primary or distant organ sites. This review article highlights the key events associated with tumor-immune communication and associated immunosuppression at both local and systemic microenvironments in PDAC. Furthermore, we discuss the approaches and benefits of targeting both local and systemic immunosuppression for PDAC patients. The present articles integrate data from clinical and genetic mouse model studies to provide a widespread consensus on the role of local and systemic immunosuppression in undermining the anti-tumor immune responses against PDAC.
Collapse
MESH Headings
- Adaptive Immunity/drug effects
- Animals
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Bone Marrow/drug effects
- Bone Marrow/immunology
- Bone Marrow/pathology
- Cancer Vaccines/administration & dosage
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/mortality
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/therapy
- Chemotherapy, Adjuvant/methods
- Clinical Trials as Topic
- Combined Modality Therapy/methods
- Disease Models, Animal
- Disease-Free Survival
- Fluorouracil/pharmacology
- Fluorouracil/therapeutic use
- Humans
- Immunity, Innate/drug effects
- Immunotherapy/methods
- Irinotecan/pharmacology
- Irinotecan/therapeutic use
- Leucovorin/pharmacology
- Leucovorin/therapeutic use
- Lymph Node Excision
- Lymph Nodes/immunology
- Lymph Nodes/pathology
- Lymph Nodes/surgery
- Mice
- Mice, Transgenic
- Neoadjuvant Therapy/methods
- Oxaliplatin/pharmacology
- Oxaliplatin/therapeutic use
- Pancreas/immunology
- Pancreas/pathology
- Pancreas/surgery
- Pancreatectomy
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/mortality
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/therapy
- Spleen/immunology
- Spleen/pathology
- Spleen/surgery
- Splenectomy
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Transplantation, Autologous/methods
- Tumor Escape/drug effects
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
- United States/epidemiology
Collapse
Affiliation(s)
- Clara S Mundry
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Kirsten C Eberle
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Pankaj K Singh
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Michael A Hollingsworth
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Kamiya Mehla
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA.
| |
Collapse
|
72
|
Storz P, Crawford HC. Carcinogenesis of Pancreatic Ductal Adenocarcinoma. Gastroenterology 2020; 158:2072-2081. [PMID: 32199881 PMCID: PMC7282937 DOI: 10.1053/j.gastro.2020.02.059] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
Abstract
Although the estimated time for development of pancreatic ductal adenocarcinoma (PDA) is more than 20 years, PDAs are usually detected at late, metastatic stages. PDAs develop from duct-like cells through a multistep carcinogenesis process, from low-grade dysplastic lesions to carcinoma in situ and eventually to metastatic disease. This process involves gradual acquisition of mutations in oncogenes and tumor suppressor genes, as well as changes in the pancreatic environment from a pro-inflammatory microenvironment that favors the development of early lesions, to a desmoplastic tumor microenvironment that is highly fibrotic and immune suppressive. This review discusses our current understanding of how PDA originates.
Collapse
Affiliation(s)
- Peter Storz
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, Florida.
| | - Howard C. Crawford
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA, To whom correspondence should be addressed: Peter Storz, Mayo Clinic, Griffin Room 306, 4500 San Pablo Road, Jacksonville, FL 32224. Phone: (904) 953-6909, ; or Howard Crawford, University of Michigan, 4304 Rogel Cancer Center, 1500 E. Medical Center Drive Ann Arbor, MI 48109. Phone: (734) 764-3815,
| |
Collapse
|
73
|
Melzer MK, Arnold F, Stifter K, Zengerling F, Azoitei N, Seufferlein T, Bolenz C, Kleger A. An Immunological Glance on Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2020; 21:ijms21093345. [PMID: 32397303 PMCID: PMC7246613 DOI: 10.3390/ijms21093345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/23/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has still a dismal prognosis. Different factors such as mutational landscape, intra- and intertumoral heterogeneity, stroma, and immune cells impact carcinogenesis of PDAC associated with an immunosuppressive microenvironment. Different cell types with partly opposing roles contribute to this milieu. In recent years, immunotherapeutic approaches, including checkpoint inhibitors, were favored to treat cancers, albeit not every cancer entity exhibited benefits in a similar way. Indeed, immunotherapies rendered little success in pancreatic cancer. In this review, we describe the communication between the immune system and pancreatic cancer cells and propose some rationale why immunotherapies may fail in the context of pancreatic cancer. Moreover, we delineate putative strategies to sensitize PDAC towards immunological therapeutics and highlight the potential of targeting neoantigens.
Collapse
Affiliation(s)
- Michael Karl Melzer
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (M.K.M.); (F.Z.); (C.B.)
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany; (F.A.); (K.S.); (N.A.); (T.S.)
| | - Frank Arnold
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany; (F.A.); (K.S.); (N.A.); (T.S.)
| | - Katja Stifter
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany; (F.A.); (K.S.); (N.A.); (T.S.)
| | - Friedemann Zengerling
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (M.K.M.); (F.Z.); (C.B.)
| | - Ninel Azoitei
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany; (F.A.); (K.S.); (N.A.); (T.S.)
| | - Thomas Seufferlein
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany; (F.A.); (K.S.); (N.A.); (T.S.)
| | - Christian Bolenz
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (M.K.M.); (F.Z.); (C.B.)
| | - Alexander Kleger
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany; (F.A.); (K.S.); (N.A.); (T.S.)
- Correspondence:
| |
Collapse
|
74
|
Pothula SP, Pirola RC, Wilson JS, Apte MV. Pancreatic stellate cells: Aiding and abetting pancreatic cancer progression. Pancreatology 2020; 20:409-418. [PMID: 31928917 DOI: 10.1016/j.pan.2020.01.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/09/2019] [Accepted: 01/06/2020] [Indexed: 12/11/2022]
Abstract
Tumour-stromal interactions have now been acknowledged to play a major role in pancreatic cancer (PC) progression. The abundant collagenous stroma is produced by a specific cell type in the pancreas-the pancreatic stellate cell (PSC). Pancreatic stellate cells (PSCs) are a unique resident cell type of pancreas and with a critical role in both healthy and diseased pancreas. Accumulating evidence indicates that PSCs interact closely with cancer cells as well as with other cell types of the stroma such as immune cells, endothelial cells and neuronal cells, to set up a growth permissive microenvironment for pancreatic tumours, which facilitates local tumour growth as well as distant metastasis. Consequently, recent work in the field has focused on the development of novel therapeutic approaches targeting the stroma to inhibit PC progression. Such a multi-pronged approach targeting both tumour and stromal elements of PC has been successfully applied in pre-clinical settings. The challenge now is to translate the pre-clinical findings into the clinical setting to achieve better outcomes for pancreatic cancer patients.
Collapse
Affiliation(s)
- Srinivasa P Pothula
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, The University of New South Wales, Sydney, and the Ingham Institute for Applied Medical Research, Liverpool, Australia
| | - Romano C Pirola
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, The University of New South Wales, Sydney, and the Ingham Institute for Applied Medical Research, Liverpool, Australia
| | - Jeremy S Wilson
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, The University of New South Wales, Sydney, and the Ingham Institute for Applied Medical Research, Liverpool, Australia
| | - Minoti V Apte
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, The University of New South Wales, Sydney, and the Ingham Institute for Applied Medical Research, Liverpool, Australia.
| |
Collapse
|
75
|
Mhaidly R, Mechta-Grigoriou F. Fibroblast heterogeneity in tumor micro-environment: Role in immunosuppression and new therapies. Semin Immunol 2020; 48:101417. [PMID: 33077325 DOI: 10.1016/j.smim.2020.101417] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 02/07/2023]
|
76
|
Ávila-Rodríguez D, Segura-Villalobos DL, Ibarra-Sánchez A, González-Espinosa C, Macías-Silva M. TGF-β y células cebadas: reguladores del desarrollo del tumor. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2020. [DOI: 10.22201/fesz.23958723e.2020.0.200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
El Factor de crecimiento transformante β (TGF-β) es una citocina pleiotrópica implicada en distintas condiciones patológicas, como desórdenes autoinmunes, alergias y en los últimos años, en el cáncer. Esta citocina ejerce efectos supresores de tumores que las células cancerosas deben evadir para lograr la progresión del tumor. Sin embargo, paradójicamente, el TGF-β también modula procesos inflamatorios que favorecen la progresión del tumor, como el reclutamiento de células del sistema inmune al sitio del mismo; entre estas células se encuentran las células cebadas (CCs), las cuales, a su vez también participan en la regulación del tumor, a través de la secreción de distintos mediadores proinflamatorios, proangiogénicos y factores de crecimiento. En esta revisión se describen algunos avances en la comprensión del papel del TGF-β en la regulación de las CCs y la contribución de éstas en el desarrollo y la metástasis de tumores sólidos. El entendimiento de la función del TGF-β y de las células cebadas durante el desarrollo del cáncer es fundamental para el diseño de nuevas terapias que inhiban la progresión del tumor.
Collapse
|
77
|
Wang C, Tang X, Wang J, Xu Y. Patterns of immune infiltration in lung adenocarcinoma revealed a prognosis-associated microRNA-mast cells network. Hum Cell 2019; 33:205-219. [PMID: 31863291 DOI: 10.1007/s13577-019-00300-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/29/2019] [Indexed: 12/17/2022]
Abstract
Immune infiltration of tumor microenvironment is an important determinant for immune response and outcomes. To investigate the diversity and clinical relevance of immune infiltration in lung adenocarcinoma (LUAD), we performed a comprehensive analysis using the bulk tumor transcriptomes. The prognosis significance for immune infiltration was systematically evaluated and sufficient immune infiltration was associated with better outcomes. Resting mast cells emerged as the most strongly associated with better overall survival (OS) and disease-free survival (DFS), whereas the activated mast cells were correlated with adverse survival. Immune infiltration-based classification exhibited clinical relevance and provided a close link between cancer cell-intrinsic genetic events and immune landscape. The immune infiltration-miRNA functional network analysis showed that the resting mast cell-associated miRNAs are mainly involved in the enrichment of development, mRNA metabolic process, myeloid cell differentiation, Wnt, calcium modulating, interferon, p53 pathways. Additionally, we found one promoter (miR-30a) and one suppressor (miR-550a) of resting mast cells. Coupling the detailed analyses of the cellular immune infiltration and the implicated modulation role of miRNAs provides novel type of candidates for LUAD immunotherapy.
Collapse
Affiliation(s)
- Chunlin Wang
- Department of Medical Oncology, Jingzhou Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jingzhou, 434000, People's Republic of China
| | - Xi Tang
- Department of Medical Oncology, Jingzhou Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jingzhou, 434000, People's Republic of China
| | - Jiaojian Wang
- Department of Medical Oncology, Jingzhou Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jingzhou, 434000, People's Republic of China
| | - Yanhua Xu
- Department of Medical Oncology, Jingzhou Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jingzhou, 434000, People's Republic of China.
| |
Collapse
|
78
|
Cancer-associated fibroblasts: an emerging target of anti-cancer immunotherapy. J Hematol Oncol 2019; 12:86. [PMID: 31462327 PMCID: PMC6714445 DOI: 10.1186/s13045-019-0770-1] [Citation(s) in RCA: 576] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/12/2019] [Indexed: 12/16/2022] Open
Abstract
Among all the stromal cells that present in the tumor microenvironment, cancer-associated fibroblasts (CAFs) are one of the most abundant and critical components of the tumor mesenchyme, which not only provide physical support for tumor cells but also play a key role in promoting and retarding tumorigenesis in a context-dependent manner. CAFs have also been involved in the modulation of many components of the immune system, and recent studies have revealed their roles in immune evasion and poor responses to cancer immunotherapy. In this review, we describe our current understanding of the tumorigenic significance, origin, and heterogeneity of CAFs, as well as the roles of different CAFs subtypes in distinct immune cell types. More importantly, we highlight potential therapeutic strategies that target CAFs to unleash the immune system against the tumor.
Collapse
|
79
|
Magadmi R, Meszaros J, Damanhouri ZA, Seward EP. Secretion of Mast Cell Inflammatory Mediators Is Enhanced by CADM1-Dependent Adhesion to Sensory Neurons. Front Cell Neurosci 2019; 13:262. [PMID: 31275114 PMCID: PMC6591473 DOI: 10.3389/fncel.2019.00262] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/24/2019] [Indexed: 01/05/2023] Open
Abstract
Neuroimmune interactions are important in the pathophysiology of many chronic inflammatory diseases, particularly those associated with alterations in sensory processing and pain. Mast cells and sensory neuron nerve endings are found in areas of the body exposed to the external environment, both are specialized to sense potential damage by injury or pathogens and signal to the immune system and nervous system, respectively, to elicit protective responses. Cell adhesion molecule 1 (CADM1), also known as SynCAM1, has previously been identified as an adhesion molecule which may couple mast cells to sensory neurons however, whether this molecule exerts a functional as well as structural role in neuroimmune cross-talk is unknown. Here we show, using a newly developed in vitro co-culture system consisting of murine bone marrow derived mast cells (BMMC) and adult sensory neurons isolated from dorsal root ganglions (DRG), that CADM1 is expressed in mast cells and adult sensory neurons and mediates strong adhesion between the two cell types. Non-neuronal cells in the DRG cultures did not express CADM1, and mast cells did not adhere to them. The interaction of BMMCs with sensory neurons was found to induce mast cell degranulation and IL-6 secretion and to enhance responses to antigen stimulation and activation of FcεRI receptors. Secretion of TNFα in contrast was not affected, nor was secretion evoked by compound 48/80. Co-cultures of BMMCs with HEK 293 cells, which also express CADM1, while also leading to adhesion did not replicate the effects of sensory neurons on mast cells, indicative of a neuron-specific interaction. Application of a CADM1 blocking peptide or knockdown of CADM1 in BMMCs significantly decreased BMMC attachment to sensory neurites and abolished the enhanced secretory responses of mast cells. In conclusion, CADM1 is necessary and sufficient to drive mast cell-sensory neuron adhesion and promote the development of a microenvironment in which neurons enhance mast cell responsiveness to antigen, this interaction could explain why the incidence of painful neuroinflammatory disorders such as irritable bowel syndrome (IBS) are increased in atopic patients.
Collapse
Affiliation(s)
- Rania Magadmi
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom.,Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Judit Meszaros
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Zoheir A Damanhouri
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Elizabeth P Seward
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
80
|
Varricchi G, Rossi FW, Galdiero MR, Granata F, Criscuolo G, Spadaro G, de Paulis A, Marone G. Physiological Roles of Mast Cells: Collegium Internationale Allergologicum Update 2019. Int Arch Allergy Immunol 2019; 179:247-261. [PMID: 31137021 DOI: 10.1159/000500088] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/02/2019] [Indexed: 11/19/2022] Open
Abstract
Mast cells are immune cells which have a widespread distribution in nearly all tissues. These cells and their mediators are canonically viewed as primary effector cells in allergic disorders. However, in the last years, mast cells have gained recognition for their involvement in several physiological and pathological conditions. They are highly heterogeneous immune cells displaying a constellation of surface receptors and producing a wide spectrum of inflammatory and immunomodulatory mediators. These features enable the cells to act as sentinels in harmful situations as well as respond to metabolic and immune changes in their microenvironment. Moreover, they communicate with many immune and nonimmune cells implicated in several immunological responses. Although mast cells contribute to host responses in experimental infections, there is no satisfactory model to study how they contribute to infection outcome in humans. Mast cells modulate physiological and pathological angiogenesis and lymphangiogenesis, but their role in tumor initiation and development is still controversial. Cardiac mast cells store and release several mediators that can exert multiple effects in the homeostatic control of different cardiometabolic functions. Although mast cells and their mediators have been simplistically associated with detrimental roles in allergic disorders, there is increasing evidence that they can also have homeostatic or protective roles in several pathophysiological processes. These findings may reflect the functional heterogeneity of different subsets of mast cells.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Francesca Wanda Rossi
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Francescopaolo Granata
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Gjada Criscuolo
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy, .,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy, .,World Allergy Organization (WAO) Center of Excellence, Naples, Italy, .,Institute of Endocrinology and Experimental Oncology (IEOS), CNR, Naples, Italy,
| |
Collapse
|
81
|
Role of Mast Cell-Derived Adenosine in Cancer. Int J Mol Sci 2019; 20:ijms20102603. [PMID: 31137883 PMCID: PMC6566897 DOI: 10.3390/ijms20102603] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/27/2022] Open
Abstract
Accumulating evidence has highlighted the accumulation of mast cells (MCs) in tumors. However, their impact on tumor development remained controversial. Indeed, cumulative data indicate an enigmatic role for MCs in cancer, whereby depending on the circumstances, which still need to be resolved, MCs function to promote or restrict tumor growth. By responding to multiple stimuli MCs release multiple inflammatory mediators, that contribute to the resolution of infection and resistance to envenomation, but also have the potency to promote or inhibit malignancy. Thus, MCs seem to possess the power to define tumor projections. Given this remarkable plasticity of MC responsiveness, there is an urgent need of understanding how MCs are activated in the tumor microenvironment (TME). We have recently reported on the direct activation of MCs upon contact with cancer cells by a mechanism involving an autocrine formation of adenosine and signaling by the A3 adenosine receptor. Here we summarized the evidence on the role of adenosine signaling in cancer, in MC mediated inflammation and in the MC-cancer crosstalk.
Collapse
|
82
|
Sammarco G, Varricchi G, Ferraro V, Ammendola M, De Fazio M, Altomare DF, Luposella M, Maltese L, Currò G, Marone G, Ranieri G, Memeo R. Mast Cells, Angiogenesis and Lymphangiogenesis in Human Gastric Cancer. Int J Mol Sci 2019; 20:E2106. [PMID: 31035644 PMCID: PMC6540185 DOI: 10.3390/ijms20092106] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/15/2019] [Accepted: 04/19/2019] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer is diagnosed in nearly one million new patients each year and it remains the second leading cause of cancer-related deaths worldwide. Although gastric cancer represents a heterogeneous group of diseases, chronic inflammation has been shown to play a role in tumorigenesis. Cancer development is a multistep process characterized by genetic and epigenetic alterations during tumour initiation and progression. The stromal microenvironment is important in maintaining normal tissue homeostasis or promoting tumour development. A plethora of immune cells (i.e., lymphocytes, macrophages, mast cells, monocytes, myeloid-derived suppressor cells, Treg cells, dendritic cells, neutrophils, eosinophils, natural killer (NK) and natural killer T (NKT) cells) are components of gastric cancer microenvironment. Mast cell density is increased in gastric cancer and there is a correlation with angiogenesis, the number of metastatic lymph nodes and the survival of these patients. Mast cells exert a protumorigenic role in gastric cancer through the release of angiogenic (VEGF-A, CXCL8, MMP-9) and lymphangiogenic factors (VEGF-C and VEGF-F). Gastric mast cells express the programmed death ligands (PD-L1 and PD-L2) which are relevant as immune checkpoints in cancer. Several clinical undergoing trials targeting immune checkpoints could be an innovative therapeutic strategy in gastric cancer. Elucidation of the role of subsets of mast cells in different human gastric cancers will demand studies of increasing complexity beyond those assessing merely mast cell density and microlocalization.
Collapse
Affiliation(s)
- Giuseppe Sammarco
- Department of Health Science, General Surgery, Magna Graecia University, Medicine School of Germaneto, 88100 Catanzaro, Italy.
| | - Gilda Varricchi
- Department of Translational Medical Sciences (DISMET) and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy.
- WAO Center of Excellence, 80131 Naples, Italy.
| | - Valentina Ferraro
- Department of Biomedical Sciences and Human Oncology, Unit of Endocrine, Digestive and Emergency Surgery, Aldo Moro University, 74124 Bari, Italy.
| | - Michele Ammendola
- Department of Health Science, General Surgery, Magna Graecia University, Medicine School of Germaneto, 88100 Catanzaro, Italy.
| | - Michele De Fazio
- Department of Emergency and Organ Transplantation, Aldo Moro University, 74124 Bari, Italy.
| | | | - Maria Luposella
- Cardiovascular Disease Unit, San Giovanni di Dio Hospital, 88900 Crotone, Italy.
| | - Lorenza Maltese
- Pathology Unit, Pugliese-Ciaccio Hospital, 88100 Catanzaro, Italy.
| | - Giuseppe Currò
- Department of Health Science, General Surgery, Magna Graecia University, Medicine School of Germaneto, 88100 Catanzaro, Italy.
- Department of Human Pathology of Adult and Evolutive Age G. Barresi, University of Messina, 98122 Messina, Italy.
| | - Gianni Marone
- Department of Translational Medical Sciences (DISMET) and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy.
- WAO Center of Excellence, 80131 Naples, Italy.
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131 Naples, Italy.
| | - Girolamo Ranieri
- Interventional Oncology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, 74124 Bari, Italy.
| | - Riccardo Memeo
- Department of Emergency and Organ Transplantation, Aldo Moro University, 74124 Bari, Italy.
| |
Collapse
|
83
|
Derakhshani A, Vahidian F, Alihasanzadeh M, Mokhtarzadeh A, Lotfi Nezhad P, Baradaran B. Mast cells: A double-edged sword in cancer. Immunol Lett 2019; 209:28-35. [PMID: 30905824 DOI: 10.1016/j.imlet.2019.03.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 03/20/2019] [Indexed: 12/14/2022]
Abstract
Mast cells (MCs), a type of innate immune cells, are derived from myeloid stem cells, sometimes known as mastocytes or labrocytes, and contain many granules rich in histamine and heparin. The mentioned cells are able to release various mediators such as cytokines, leukotrienes, and a large number of proteases into the environment. Many studies and experiments have established the infiltration of MCs into the tumor site. However, the findings are highly controversial to determine whether these immune cells contribute to the growth and development of the tumor or cause anti-tumor immune responses. Various studies have revealed that MCs have a pro-tumorigenic or anti-tumorigenic role depending on the type of cancer, the degree of tumor progression, and the location of these immune cells in the tumor bulk. Although these types of immune cells cause angiogenesis and tumor progression in some cancers, they have a significant anti-tumor role in some other types of cancers. In general, although a number of studies have specified the protective role of MCs in cancers, the increased number of MCs in the blood and microenvironment of tumors, as well as the increased level of angiogenesis and tumor progression, has been indicated in another array of studies. The function of MCs against or in favor of the cancers still requires further investigations to more accurately and specifically determine the role of MCs in the cancers. The function of MCs in tumors and their various roles in case of exposure to the cancer cells have been addressed in the present review. The concluding section of the present study recommends a number of methods for modification of MCs in cancer immunotherapy.
Collapse
Affiliation(s)
- Afshin Derakhshani
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran; Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Vahidian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alihasanzadeh
- Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Lotfi Nezhad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
84
|
Giordano FA, Link B, Glas M, Herrlinger U, Wenz F, Umansky V, Brown JM, Herskind C. Targeting the Post-Irradiation Tumor Microenvironment in Glioblastoma via Inhibition of CXCL12. Cancers (Basel) 2019; 11:cancers11030272. [PMID: 30813533 PMCID: PMC6468743 DOI: 10.3390/cancers11030272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/14/2019] [Accepted: 02/20/2019] [Indexed: 01/05/2023] Open
Abstract
Radiotherapy is a mainstay in glioblastoma therapy as it not only directly targets tumor cells but also depletes the tumor microvasculature. The resulting intra-tumoral hypoxia initiates a chain of events that ultimately leads to re-vascularization, immunosuppression and, ultimately, tumor-regrowth. The key component of this cascade is overexpression of the CXC-motive chemokine ligand 12 (CXCL12), formerly known as stromal-cell derived factor 1 (SDF-1). We here review the role of CXCL12 in recruitment of pro-vasculogenic and immunosuppressive cells and give an overview on future and current drugs that target this axis.
Collapse
Affiliation(s)
- Frank A Giordano
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany.
| | - Barbara Link
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany.
| | - Martin Glas
- Division of Clinical Neurooncology, Department of Neurology and West German Cancer Center (WTZ), University Hospital Essen and German Cancer Consortium, Partner Site University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany.
| | - Ulrich Herrlinger
- Division of Clinical Neurooncology, Department of Neurology, University of Bonn Medical Center, 53105 Bonn, Germany.
| | - Frederik Wenz
- CEO, University Medical Center Freiburg, 79110 Freiburg, Germany.
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany.
| | - J Martin Brown
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Carsten Herskind
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany.
| |
Collapse
|
85
|
Lv Y, Zhao Y, Wang X, Chen N, Mao F, Teng Y, Wang T, Peng L, Zhang J, Cheng P, Liu Y, Kong H, Chen W, Hao C, Han B, Ma Q, Zou Q, Chen J, Zhuang Y. Increased intratumoral mast cells foster immune suppression and gastric cancer progression through TNF-α-PD-L1 pathway. J Immunother Cancer 2019; 7:54. [PMID: 30808413 PMCID: PMC6390584 DOI: 10.1186/s40425-019-0530-3] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 02/11/2019] [Indexed: 12/19/2022] Open
Abstract
Background Mast cells are prominent components of solid tumors and exhibit distinct phenotypes in different tumor microenvironments. However, the nature, regulation, function, and clinical relevance of mast cells in human gastric cancer (GC) are presently unknown. Methods Flow cytometry analyses were performed to examine level and phenotype of mast cells in samples from 114 patients with GC. Multivariate analysis of prognostic factors for overall survival was performed using the Cox proportional hazards model. Kaplan-Meier plots for patient survival were performed using the log-rank test. Mast cells, T cells and tumor cells were isolated or generated, stimulated and/or cultured for in vitro and in vivo function assays. Results Patients with GC showed a significantly higher mast cell infiltration in tumors. Mast cell levels increased with tumor progression and independently predicted reduced overall survival. These tumor-infiltrating mast cells accumulated in tumors by CXCL12-CXCR4 chemotaxis. Intratumoral mast cells expressed higher immunosuppressive molecule programmed death-ligand 1 (PD-L1), and mast cells induced by tumors strongly express PD-L1 proteins in both time-dependent and dose-dependent manners. Significant correlations were found between the levels of PD-L1+ mast cells and pro-inflammatory cytokine TNF-α in GC tumors, and tumor-derived TNF-α activated NF-κB signaling pathway to induce mast cell expression of PD-L1. The tumor-infiltrating and tumor-conditioned mast cells effectively suppressed normal T-cell immunity through PD-L1 in vitro, and tumor-conditioned mast cells contributed to the suppression of T-cell immunity and the growth of human GC tumors in vivo; the effect could be reversed by blocking PD-L1 on these mast cells. Conclusion Thus, our results illuminate novel immunosuppressive and protumorigenic roles of mast cells in GC, and also present a novel mechanism in which PD-L1 expressing mast cells link the proinflammatory response to immune tolerance in the GC tumor milieu. Electronic supplementary material The online version of this article (10.1186/s40425-019-0530-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yipin Lv
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, No.30 Gaotanyan Street, Chongqing, 400038, China
| | - Yongliang Zhao
- Department of General Surgery and Centre of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, No.30 Gaotanyan Street, Chongqing, 400038, China
| | - Xianhua Wang
- Department of Obstetrics and Gynecology, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Na Chen
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, No.30 Gaotanyan Street, Chongqing, 400038, China
| | - Fangyuan Mao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, No.30 Gaotanyan Street, Chongqing, 400038, China
| | - Yongsheng Teng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, No.30 Gaotanyan Street, Chongqing, 400038, China
| | - Tingting Wang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, No.30 Gaotanyan Street, Chongqing, 400038, China
| | - Liusheng Peng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, No.30 Gaotanyan Street, Chongqing, 400038, China
| | - Jinyu Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, No.30 Gaotanyan Street, Chongqing, 400038, China
| | - Ping Cheng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, No.30 Gaotanyan Street, Chongqing, 400038, China
| | - Yugang Liu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, No.30 Gaotanyan Street, Chongqing, 400038, China
| | - Hui Kong
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, No.30 Gaotanyan Street, Chongqing, 400038, China
| | - Weisan Chen
- La Trobe Institute of Molecular Science, School of Molecular Science, La Trobe University, Bundoora, Vic, 3085, Australia
| | - Chuanjie Hao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, No.30 Gaotanyan Street, Chongqing, 400038, China
| | - Bin Han
- Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, China
| | - Qiang Ma
- Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, No.30 Gaotanyan Street, Chongqing, 400038, China
| | - Jun Chen
- Department of General Surgery and Centre of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, No.30 Gaotanyan Street, Chongqing, 400038, China.
| | - Yuan Zhuang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, No.30 Gaotanyan Street, Chongqing, 400038, China.
| |
Collapse
|
86
|
Feasibility Analysis of Interleukin-13 as a Target for a Therapeutic Vaccine. Vaccines (Basel) 2019; 7:vaccines7010020. [PMID: 30759882 PMCID: PMC6466196 DOI: 10.3390/vaccines7010020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The development of therapeutic vaccines requires thorough knowledge of potential hazards associated with long-term inactivation of self-proteins. Among potential targets, interleukin 13 (IL-13) merits consideration, as monoclonal antibodies disrupting IL-13 signaling are proving to be exceedingly effective in common conditions such as atopic dermatitis. OBJECTIVE Given the mass publication of scientific data, an appraisal of safety aspects is challenging. METHODS We here provide a three-fold approach to survey clinically relevant information on off-target effects, both adverse and beneficial, that may potentially be encountered in patients undergoing long-term IL-13 inactivation. First, we review non-clinical data in vivo and in vitro. Second, we summarize safety data accumulating from patients dosed with anti-IL-13 drugs. Third, we exploit human mutation data as well as emerging large-scale genetic datasets (global exome data from 60,000 patients) to obtain information on any association of IL-13-inactivating genetic variants with disease states. In addition, we: (1) dissect the precise efficacy signals obtained with various drugs targeting IL-13 and/or IL-4, and (2) summarize unintended, but potentially beneficial effects of prolonged IL-13 inactivation on several functional systems. RESULTS Prolonged repression of IL-13 in several thousand patients so far has not uncovered any non-redundant functions of IL-13 in immune defense. Furthermore, missense mutations in the key genes IL-13, IL-13Rα1, IL-13Rα2, IL-4, IL-4Rα are common, while no case reports have been published on any immune deficiency or increased risk of neoplastic disease associated with such mutations, suggesting that these genes do not harbor non-redundant roles in adult outbred humans. In terms of efficacy, data from clinically used drugs strongly suggest that targeting IL-13 only, as opposed to IL-13 and IL-4, may be effective in eczema while being more selective. Importantly, several lines of evidence suggest that inhibition of IL-13 may in fact harbor potentially beneficial effects on non-targeted systems, including glucose metabolism, hepatic fibrosis, and atherosclerosis, suggesting that respective outcomes should be systematically captured in patients dosed with IL-13 interfering drugs. Collectively, available evidence suggests that IL-13 may fulfill safety requirements required for the target of a therapeutic vaccine.
Collapse
|
87
|
Frossi B, Mion F, Sibilano R, Danelli L, Pucillo CEM. Is it time for a new classification of mast cells? What do we know about mast cell heterogeneity? Immunol Rev 2019; 282:35-46. [PMID: 29431204 DOI: 10.1111/imr.12636] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mast cells (MCs) are derived from committed precursors that leave the hematopoietic tissue, migrate in the blood, and colonize peripheral tissues where they terminally differentiate under microenvironment stimuli. They are distributed in almost all vascularized tissues where they act both as immune effectors and housekeeping cells, contributing to tissue homeostasis. Historically, MCs were classified into 2 subtypes, according to tryptic enzymes expression. However, MCs display a striking heterogeneity that reflects a complex interplay between different microenvironmental signals delivered by various tissues, and a differentiation program that decides their identity. Moreover, tissue-specific MCs show a trained memory, which contributes to shape their function in a specific microenvironment. In this review, we summarize the current state of our understanding of MC heterogeneity that reflects their different tissue experiences. We describe the discovery of unique cell molecules that can be used to distinguish specific MC subsets in vivo, and discuss how the improved ability to recognize these subsets provided new insights into the biology of MCs. These recent advances will be helpful for the understanding of the specific role of individual MC subsets in the control of tissue homeostasis, and in the regulation of pathological conditions such as infection, autoimmunity, and cancer.
Collapse
Affiliation(s)
- Barbara Frossi
- Department of Medicine, University of Udine, Udine, Italy
| | - Francesca Mion
- Department of Medicine, University of Udine, Udine, Italy
| | - Riccardo Sibilano
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Luca Danelli
- Retroviral Immunology, The Francis Crick Institute, London, UK
| | | |
Collapse
|
88
|
Varricchi G, Raap U, Rivellese F, Marone G, Gibbs BF. Human mast cells and basophils-How are they similar how are they different? Immunol Rev 2019; 282:8-34. [PMID: 29431214 DOI: 10.1111/imr.12627] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mast cells and basophils are key contributors to allergies and other inflammatory diseases since they are the most prominent source of histamine as well as numerous additional inflammatory mediators which drive inflammatory responses. However, a closer understanding of their precise roles in allergies and other pathological conditions has been marred by the considerable heterogeneity that these cells display, not only between mast cells and basophils themselves but also across different tissue locations and species. While both cell types share the ability to rapidly degranulate and release histamine following high-affinity IgE receptor cross-linking, they differ markedly in their ability to either react to other stimuli, generate inflammatory eicosanoids or release immunomodulating cytokines and chemokines. Furthermore, these cells display considerable pharmacological heterogeneity which has stifled attempts to develop more effective anti-allergic therapies. Mast cell- and basophil-specific transcriptional profiling, at rest and after activation by innate and adaptive stimuli, may help to unravel the degree to which these cells differ and facilitate a clearer understanding of their biological functions and how these could be targeted by new therapies.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Ulrike Raap
- Department of Dermatology and Allergology, University of Oldenburg, Oldenburg, Germany
| | - Felice Rivellese
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gianni Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Bernhard F Gibbs
- Department of Dermatology and Allergology, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
89
|
Mu W, Wang Z, Zöller M. Ping-Pong-Tumor and Host in Pancreatic Cancer Progression. Front Oncol 2019; 9:1359. [PMID: 31921628 PMCID: PMC6927459 DOI: 10.3389/fonc.2019.01359] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the main cause of high pancreatic cancer (PaCa) mortality and trials dampening PaCa mortality rates are not satisfying. Tumor progression is driven by the crosstalk between tumor cells, predominantly cancer-initiating cells (CIC), and surrounding cells and tissues as well as distant organs, where tumor-derived extracellular vesicles (TEX) are of major importance. A strong stroma reaction, recruitment of immunosuppressive leukocytes, perineural invasion, and early spread toward the peritoneal cavity, liver, and lung are shared with several epithelial cell-derived cancer, but are most prominent in PaCa. Here, we report on the state of knowledge on the PaCIC markers Tspan8, alpha6beta4, CD44v6, CXCR4, LRP5/6, LRG5, claudin7, EpCAM, and CD133, which all, but at different steps, are engaged in the metastatic cascade, frequently via PaCIC-TEX. This includes the contribution of PaCIC markers to TEX biogenesis, targeting, and uptake. We then discuss PaCa-selective features, where feedback loops between stromal elements and tumor cells, including distorted transcription, signal transduction, and metabolic shifts, establish vicious circles. For the latter particularly pancreatic stellate cells (PSC) are responsible, furnishing PaCa to cope with poor angiogenesis-promoted hypoxia by metabolic shifts and direct nutrient transfer via vesicles. Furthermore, nerves including Schwann cells deliver a large range of tumor cell attracting factors and Schwann cells additionally support PaCa cell survival by signaling receptor binding. PSC, tumor-associated macrophages, and components of the dysplastic stroma contribute to perineural invasion with signaling pathway activation including the cholinergic system. Last, PaCa aggressiveness is strongly assisted by the immune system. Although rich in immune cells, only immunosuppressive cells and factors are recovered in proximity to tumor cells and hamper effector immune cells entering the tumor stroma. Besides a paucity of immunostimulatory factors and receptors, immunosuppressive cytokines, myeloid-derived suppressor cells, regulatory T-cells, and M2 macrophages as well as PSC actively inhibit effector cell activation. This accounts for NK cells of the non-adaptive and cytotoxic T-cells of the adaptive immune system. We anticipate further deciphering the molecular background of these recently unraveled intermingled phenomena may turn most lethal PaCa into a curatively treatable disease.
Collapse
Affiliation(s)
- Wei Mu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Wei Mu
| | - Zhe Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| | - Margot Zöller
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| |
Collapse
|
90
|
Abstract
Pancreatic cancer is a devastating disease with poor prognosis in the modern era. Inflammatory processes have emerged as key mediators of pancreatic cancer development and progression. Recently, studies have been carried out to investigate the underlying mechanisms that contribute to tumorigenesis induced by inflammation. In this review, the role of inflammation in the initiation and progression of pancreatic cancer is discussed.
Collapse
Affiliation(s)
- Kamleshsingh Shadhu
- Pancreas Center of The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
- Pancreas Institute of Nanjing Medical University, Nanjing, P.R. China
- School of International Education of Nanjing Medical University, Nanjing, P.R. China
| | - Chunhua Xi
- Pancreas Center of The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
- Pancreas Institute of Nanjing Medical University, Nanjing, P.R. China
| |
Collapse
|
91
|
Wang H, Mislati R, Ahmed R, Vincent P, Nwabunwanne SF, Gunn JR, Pogue BW, Doyley MM. Elastography Can Map the Local Inverse Relationship between Shear Modulus and Drug Delivery within the Pancreatic Ductal Adenocarcinoma Microenvironment. Clin Cancer Res 2018; 25:2136-2143. [PMID: 30352906 DOI: 10.1158/1078-0432.ccr-18-2684] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/05/2018] [Accepted: 10/19/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE High tissue pressure prevents chemotherapeutics from reaching the core of pancreatic tumors. Therefore, targeted therapies have been developed to reduce this pressure. While point probes have shown the effectiveness of these pressure-reducing therapies via single-location estimates, ultrasound elastography is now widely available as an imaging technique to provide real-time spatial maps of shear modulus (tissue stiffness). However, the relationship between shear modulus and the underlying tumor microenvironmental causes of high tissue pressure has not been investigated. In this work, elastography was used to investigate how shear modulus influences drug delivery in situ, and how it correlates with collagen density, hyaluronic acid content, and patent vessel density-features of the tumor microenvironment known to influence tissue pressure. EXPERIMENTAL DESIGN Intravenous injection of verteporfin, an approved human fluorescent drug, was used in two pancreatic cancer xenograft models [AsPC-1 (n = 25) and BxPC-3 (n = 25)]. RESULTS Fluorescence intensity was higher in AsPC-1 tumors than in BxPC-3 tumors (P < 0.0001). Comparing drug uptake images and shear wave elastographic images with histologic images revealed that: (i) drug delivery and shear modulus were inversely related, (ii) shear modulus increased linearly with increasing collagen density, and (iii) shear modulus was marginally correlated with the local assessment of hyaluronic acid content. CONCLUSIONS These results demonstrate that elastography could guide targeted therapy and/or identify patients with highly elevated tissue pressure.See related commentary by Nia et al., p. 2024.
Collapse
Affiliation(s)
- Hexuan Wang
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York
| | - Reem Mislati
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York
| | - Rifat Ahmed
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York
| | - Phuong Vincent
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | | | - Jason R Gunn
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Marvin M Doyley
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York.
| |
Collapse
|
92
|
Degranulation of mast cells induced by gastric cancer-derived adrenomedullin prompts gastric cancer progression. Cell Death Dis 2018; 9:1034. [PMID: 30305610 PMCID: PMC6180028 DOI: 10.1038/s41419-018-1100-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/04/2018] [Accepted: 09/14/2018] [Indexed: 12/17/2022]
Abstract
Mast cells are prominent components of solid tumors and exhibit distinct phenotypes in different tumor microenvironments. However, their precise mechanism of communication in gastric cancer remains largely unclear. Here, we found that patients with GC showed a significantly higher mast cell infiltration in tumors. Mast cell levels increased with tumor progression and independently predicted reduced overall survival. Tumor-derived adrenomedullin (ADM) induced mast cell degranulation via PI3K-AKT signaling pathway, which effectively promoted the proliferation and inhibited the apoptosis of GC cells in vitro and contributed to the growth and progression of GC tumors in vivo, and the effect could be reversed by blocking interleukin (IL)-17A production from these mast cells. Our results illuminate a novel protumorigenic role and associated mechanism of mast cells in GC, and also provide functional evidence for these mast cells to prevent, and to treat this immunopathogenesis feature of GC.
Collapse
|
93
|
Potential Risks Related to Modulating Interleukin-13 and Interleukin-4 Signalling: A Systematic Review. Drug Saf 2018; 41:489-509. [PMID: 29411337 PMCID: PMC5938313 DOI: 10.1007/s40264-017-0636-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction Interleukin-13 and interleukin-4 are type-II cytokines signalling through the shared type II interleukin-4 receptor. As a result of their structural similarity, interleukin-13 and interleukin-4 have overlapping functions in the mediation of type-II-driven diseases and are, therefore, promising targets of biologic drugs currently in development for the treatment of such diseases, including asthma and atopic dermatitis. Objective This systematic review was conducted to assess preclinical evidence of potential safety concerns related to blockade of interleukin-13 alone or interleukin-13 and interleukin-4 in combination. Methods We specifically examined risks related to infection, malignancy and the cardiovascular system. We systematically searched the BIOSIS, MEDLINE and EMBASE databases to identify preclinical studies published between January 2006 and October 2016 that addressed the effects of interleukin-13/interleukin-4 blockade and modulation on the risk of infection, malignancy and cardiovascular events. To provide a clinical context, we also performed a search for clinical trials targeting the interleukin-13/interleukin-4 pathways. Relevant data from preclinical and clinical trials were abstracted and presented descriptively. Results Aside from expected evidence that inhibition of interleukin-13 and interleukin-4 impaired host responses to helminth infections, we did not identify other preclinical evidence suggesting safety risks relating to infection, malignancy or cardiovascular events. We found no evidence in clinical trials suggesting serious safety concerns, i.e. increased risk for infections, malignancy or cardiovascular events from therapeutic modulation of the interleukin-13 pathway alone or the combined interleukin-13/interleukin-4 pathways. Conclusions Although our findings are reassuring, long-term safety assessments of biologics that target the interleukin-13/interleukin-4 pathways currently in clinical development are needed. Electronic supplementary material The online version of this article (10.1007/s40264-017-0636-9) contains supplementary material, which is available to authorized users.
Collapse
|
94
|
Li S, Xu HX, Wu CT, Wang WQ, Jin W, Gao HL, Li H, Zhang SR, Xu JZ, Qi ZH, Ni QX, Yu XJ, Liu L. Angiogenesis in pancreatic cancer: current research status and clinical implications. Angiogenesis 2018; 22:15-36. [PMID: 30168025 DOI: 10.1007/s10456-018-9645-2] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/20/2018] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer is one of the most lethal malignancies worldwide. Although the standard of care in pancreatic cancer has improved, prognoses for patients remain poor with a 5-year survival rate of < 5%. Angiogenesis, namely, the formation of new blood vessels from pre-existing vessels, is an important event in tumor growth and hematogenous metastasis. It is a dynamic and complex process involving multiple mechanisms and is regulated by various molecules. Inhibition of angiogenesis has been an established therapeutic strategy for many solid tumors. However, clinical outcomes are far from satisfying for pancreatic cancer patients receiving anti-angiogenic therapies. In this review, we summarize the current status of angiogenesis in pancreatic cancer research and explore the reasons for the poor efficacy of anti-angiogenic therapies, aiming to identify some potential therapeutic targets that may enhance the effectiveness of anti-angiogenic treatments.
Collapse
Affiliation(s)
- Shuo Li
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Hua-Xiang Xu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chun-Tao Wu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wen-Quan Wang
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wei Jin
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - He-Li Gao
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Hao Li
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Shi-Rong Zhang
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin-Zhi Xu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Zi-Hao Qi
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Quan-Xing Ni
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xian-Jun Yu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Liang Liu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
95
|
The dual role of mast cells in tumor fate. Cancer Lett 2018; 433:252-258. [PMID: 29981810 DOI: 10.1016/j.canlet.2018.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 02/06/2023]
Abstract
The exact role of mast cells in tumor growth is not clear and multifaceted. In some cases, mast cells stimulate while in others inhibit this process. This dual role may be explained to some extent by the huge number of bioactive molecules stored in mast cell granules, as well as differences between tumor microenvironment, tumor type, and tumor phase of development.
Collapse
|
96
|
Foucher ED, Ghigo C, Chouaib S, Galon J, Iovanna J, Olive D. Pancreatic Ductal Adenocarcinoma: A Strong Imbalance of Good and Bad Immunological Cops in the Tumor Microenvironment. Front Immunol 2018; 9:1044. [PMID: 29868007 PMCID: PMC5960705 DOI: 10.3389/fimmu.2018.01044] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/26/2018] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal cancers with very few available treatments. For many decades, gemcitabine was the only treatment for patients with PDAC. A recent attempt to improve patient survival by combining this chemotherapy with FOLFIRINOX and nab-paclitaxel failed and instead resulted in increased toxicity. Novel therapies are urgently required to improve PDAC patient survival. New treatments in other cancers such as melanoma, non-small-cell lung cancer, and renal cancer have emerged, based on immunotherapy targeting the immune checkpoints cytotoxic T-lymphocyte-associated antigen 4 or programmed death 1 ligand. However, the first clinical trials using such immune checkpoint inhibitors in PDAC have had limited success. Resistance to immunotherapy in PDAC remains unclear but could be due to tissue components (cancer-associated fibroblasts, desmoplasia, hypoxia) and to the imbalance between immunosuppressive and effector immune populations in the tumor microenvironment. In this review, we analyzed the presence of “good and bad immunological cops” in PDAC and discussed the significance of changes in their balance.
Collapse
Affiliation(s)
- Etienne D Foucher
- Team Immunity and Cancer, CRCM, Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Clément Ghigo
- Team Cellular Stress, CRCM, Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Salem Chouaib
- INSERM UMR1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, Equipe Labellisée par La Ligue Contre Le Cancer, EPHE, Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Villejuif, France.,Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Jérôme Galon
- Laboratory of Integrative Cancer Immunology, INSERM, UMRS1138, Paris, France
| | - Juan Iovanna
- Team Cellular Stress, CRCM, Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Daniel Olive
- Team Immunity and Cancer, CRCM, Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
97
|
Huang Q, Huang M, Meng F, Sun R. Activated pancreatic stellate cells inhibit NK cell function in the human pancreatic cancer microenvironment. Cell Mol Immunol 2018; 16:87-89. [PMID: 29628497 DOI: 10.1038/s41423-018-0014-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 12/25/2022] Open
Affiliation(s)
- Qiang Huang
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China.
| | - Mei Huang
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Futao Meng
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Rui Sun
- Institute of Immunology, School of Life Science and Medical Center, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
98
|
Murthy D, Attri KS, Singh PK. Phosphoinositide 3-Kinase Signaling Pathway in Pancreatic Ductal Adenocarcinoma Progression, Pathogenesis, and Therapeutics. Front Physiol 2018; 9:335. [PMID: 29670543 PMCID: PMC5893816 DOI: 10.3389/fphys.2018.00335] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/19/2018] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy characterized by its sudden manifestation, rapid progression, poor prognosis, and limited therapeutic options. Genetic alterations in key signaling pathways found in early pancreatic lesions are pivotal for the development and progression of pancreatic intraepithelial neoplastic lesions into invasive carcinomas. More than 90% of PDAC tumors harbor driver mutations in K-Ras that activate various downstream effector-signaling pathways, including the phosphoinositide-3-kinase (PI3K) pathway. The PI3K pathway also responds to stimuli from various growth factor receptors present on the cancer cell surface that, in turn, modulate downstream signaling cascades. Thus, the inositide signaling acts as a central node in the complex cellular signaling networks to impact cancer cell growth, motility, metabolism, and survival. Also, recent publications highlight the importance of PI3K signaling in stromal cells, whereby PI3K signaling modifies the tumor microenvironment to dictate disease outcome. The high incidence of mutations in the PI3K signaling cascade, accompanied by activation of parallel signaling pathways, makes PI3K a promising candidate for drug therapy. In this review, we describe the role of PI3K signaling in pancreatic cancer development and progression. We also discuss the crosstalk between PI3K and other major cellular signaling cascades, and potential therapeutic opportunities for targeting pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Divya Murthy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kuldeep S Attri
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - Pankaj K Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
99
|
Bo X, Wang J, Suo T, Ni X, Liu H, Shen S, Li M, Wang Y, Liu H, Xu J. Tumor-infiltrating mast cells predict prognosis and gemcitabine-based adjuvant chemotherapeutic benefit in biliary tract cancer patients. BMC Cancer 2018; 18:313. [PMID: 29562907 PMCID: PMC5863450 DOI: 10.1186/s12885-018-4220-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 03/13/2018] [Indexed: 01/06/2023] Open
Abstract
Background Recent studies have reported TIMs play an important role in tumors progression or regression, but the effect of TIMs in biliary tract cancer remains unclear. The aim of this study is to investigate the prognostic value of tumor infiltrating mast cells (TIMs) and its influence on gemcitabine-based adjuvant chemotherapy (ACT) benefits in biliary tract cancer patients after surgery. Methods TIMs were evaluated by immunohistochemical staining of tryptase in 250 patients with resected gallbladder carcinoma (GBC) or extrahepatic bile duct carcinoma (EBDC) from Zhongshan Hospital. The relationships between TIMs and clinicopathological factors and postoperative prognosis were analyzed respectively. Results High TIMs infiltration was significantly correlated with prolonged overall survival (OS). Furthermore, multivariate analysis indicated TNM stage and TIMs as independent prognostic factors for OS. Patients with high TIMs infiltration appeared to significantly benefit from Gemcitabine-based ACT in the discovery and validation cohorts. Spearman analysis identified that TIMs infiltration were positively correlated with anti-tumor CD8+ T cells. Conclusion TIMs infiltration is an independent favorable prognostic factor in GBC and EBDC patients, which could better stratify patients with different prognosis and predict benefit from gemcitabine-based ACT. Electronic supplementary material The online version of this article (10.1186/s12885-018-4220-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaobo Bo
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jie Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Tao Suo
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoling Ni
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Han Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Sheng Shen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Min Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yueqi Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Houbao Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
100
|
Jachetti E, Cancila V, Rigoni A, Bongiovanni L, Cappetti B, Belmonte B, Enriquez C, Casalini P, Ostano P, Frossi B, Sangaletti S, Chiodoni C, Chiorino G, Pucillo CE, Tripodo C, Colombo MP. Cross-Talk between Myeloid-Derived Suppressor Cells and Mast Cells Mediates Tumor-Specific Immunosuppression in Prostate Cancer. Cancer Immunol Res 2018. [PMID: 29523597 DOI: 10.1158/2326-6066.cir-17-0385] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Immunotherapy, including the use of checkpoint inhibitors, is a potent therapeutic approach for some cancers, but has limited success with prostate tumors, in which immune suppression is instigated by the tumor. The immunosuppressive capacity of mast cells, which promote adenocarcinoma development in the prostate, prompted our investigation on whether mast cells promote tolerance to SV40 Large-T antigen, the transforming oncogene in transgenic adenocarcinoma of the mouse prostate (TRAMP) mice. The incidence of adenocarcinoma was reduced in the offspring of a cross between TRAMP mice and mast cell-deficient KitWsh mice. TRAMP mice are tolerant to the SV40 Large T antigen, which is otherwise immunogenic in normal syngeneic B6 mice. Genetic ablation of mast cells in TRAMP mice restored their ability to mount a tumor-specific cytotoxic T-cell response. In KitWsh-TRAMP mice, the restored T-cell immunity correlated with the reduced activity of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC), along with their reduced expression of Arg1, Nos2, and Stat3 Having found that CD40L-expressing mast cells can interact in vivo with CD40-expressing PMN-MDSC, we then determined that only KitWsh-TRAMP mice reconstituted with mast cells expressing CD40L could restore PMN-MDSCs suppressive functions, T-cell unresponsiveness and adenocarcinoma development. Thus, mast cells have an immunoregulatory effect on PMN-MDSCs activity through CD40L-CD40 interaction, favoring immunosuppression and tumor onset. In prostate cancer patients, in silico analyses correlated poor clinical outcomes with high expression of genes related to mast cells and PMN-MDSCs. Cancer Immunol Res; 6(5); 552-65. ©2018 AACR.
Collapse
Affiliation(s)
- Elena Jachetti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Alice Rigoni
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Lucia Bongiovanni
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Barbara Cappetti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Claudia Enriquez
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Patrizia Casalini
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Barbara Frossi
- Department of Medical and Biological Science, University of Udine, Udine, Italy
| | - Sabina Sangaletti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Claudia Chiodoni
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Carlo E Pucillo
- Department of Medical and Biological Science, University of Udine, Udine, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Mario P Colombo
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|