51
|
Raza MH, Gul K, Arshad A, Riaz N, Waheed U, Rauf A, Aldakheel F, Alduraywish S, Rehman MU, Abdullah M, Arshad M. Microbiota in cancer development and treatment. J Cancer Res Clin Oncol 2019; 145:49-63. [PMID: 30542789 DOI: 10.1007/s00432-018-2816-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE Human microbiota comprises of a variety of organisms ranging from bacterial species to viruses, fungi, and protozoa which are present on the epidermal and mucosal barriers of the body. It plays a key role in health and survival of the host by regulation of the systemic functions. Its apparent functions in modulation of the host immune system, inducing carcinogenesis and regulation of the response to the cancer therapy through a variety of mechanisms such as bacterial dysbiosis, production of genotoxins, pathobionts, and disruption of the host metabolism are increasingly becoming evident. METHODS Different electronic databases such as PubMed, Google Scholar, and Web of Science were searched for relevant literature which has been reviewed in this article. RESULTS Characterization of the microbiome particularly gut microbiota, understanding of the host-microbiota interactions, and its potential for therapeutic exploitation are necessary for the development of novel anticancer therapeutic strategies with better efficacy and lowered off-target side effects. CONCLUSION In this review, the role of microbiota is explained in carcinogenesis, mechanisms of microbiota-mediated carcinogenesis, and role of gut microbiota in modulation of cancer therapy.
Collapse
Affiliation(s)
- Muhammad Hassan Raza
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Kamni Gul
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Abida Arshad
- Department of Biology, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Naveeda Riaz
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Usman Waheed
- Department of Pathology and Blood Bank, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Abdul Rauf
- Department of Zoology, Azad Jammu and Kashmir University, Muzaffarabad, Pakistan
| | - Fahad Aldakheel
- Department of Clinical Laboratory Medicine, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shatha Alduraywish
- Department of Family and Community Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Maqbool Ur Rehman
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Muhammad Abdullah
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Muhammad Arshad
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan.
| |
Collapse
|
52
|
Abstract
The incidence of colorectal cancer (CRC) is rapidly growing worldwide, and there is therefore a greater emphasis on studies of the treatment or prevention of CRC pathogenesis. Recent studies suggested that consideration of the microbiota is unavoidable to understand inflammation and tumorigenesis in the gastrointestinal tract. We demonstrate, using a mouse model of colitis-associated CRC, that human commensal B. fragilis protects against colon tumorigenesis. The protective role against tumor formation provided by B. fragilis is associated with inhibition of expression of the chemokine receptor CCR5 in the colon. The molecular mechanism for protection against CRC provided by B. fragilis is dependent on polysaccharide A production and is mediated by TLR2 signaling. Our results suggest that the commensal microorganism B. fragilis can be used to prevent inflammation-associated CRC development and may provide an effective therapeutic strategy for CRC. Many patients with chronic inflammation of the gut, such as that observed in inflammatory bowel disease (IBD), develop colorectal cancer (CRC). Recent studies have reported that the development of IBD and CRC partly results from an imbalanced composition of intestinal microbiota and that intestinal inflammation in these diseases can be modulated by the microbiota. The human commensal Bacteroides fragilis is best exemplified playing a protective role against the development of experimental colitis in several animal disease models. In this study, we found that gut inflammation caused by dextran sulfate sodium (DSS) treatment was inhibited by B. fragilis colonization in mice. Further, we reveal a protective role of B. fragilis treatment against colon tumorigenesis using an azoxymethane (AOM)/DSS-induced model of colitis-associated colon cancer in mice and demonstrate that the decreased tumorigenesis by B. fragilis administration is accompanied by inhibited expression of C-C chemokine receptor 5 (CCR5) in the gut. We show direct evidence that the inhibition of tumor formation provided by B. fragilis in colitis-associated CRC animals was dependent on the production of polysaccharide A (PSA) from B. fragilis and that Toll-like receptor 2 (TLR2) signaling was responsible for the protective function of B. fragilis. IMPORTANCE The incidence of colorectal cancer (CRC) is rapidly growing worldwide, and there is therefore a greater emphasis on studies of the treatment or prevention of CRC pathogenesis. Recent studies suggested that consideration of the microbiota is unavoidable to understand inflammation and tumorigenesis in the gastrointestinal tract. We demonstrate, using a mouse model of colitis-associated CRC, that human commensal B. fragilis protects against colon tumorigenesis. The protective role against tumor formation provided by B. fragilis is associated with inhibition of expression of the chemokine receptor CCR5 in the colon. The molecular mechanism for protection against CRC provided by B. fragilis is dependent on polysaccharide A production and is mediated by TLR2 signaling. Our results suggest that the commensal microorganism B. fragilis can be used to prevent inflammation-associated CRC development and may provide an effective therapeutic strategy for CRC.
Collapse
|
53
|
Mukherjee S, Joardar N, Sengupta S, Sinha Babu SP. Gut microbes as future therapeutics in treating inflammatory and infectious diseases: Lessons from recent findings. J Nutr Biochem 2018; 61:111-128. [PMID: 30196243 PMCID: PMC7126101 DOI: 10.1016/j.jnutbio.2018.07.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/24/2018] [Accepted: 07/28/2018] [Indexed: 02/07/2023]
Abstract
The human gut microbiota has been the interest of extensive research in recent years and our knowledge on using the potential capacity of these microbes are growing rapidly. Microorganisms colonized throughout the gastrointestinal tract of human are coevolved through symbiotic relationship and can influence physiology, metabolism, nutrition and immune functions of an individual. The gut microbes are directly involved in conferring protection against pathogen colonization by inducing direct killing, competing with nutrients and enhancing the response of the gut-associated immune repertoire. Damage in the microbiome (dysbiosis) is linked with several life-threatening outcomes viz. inflammatory bowel disease, cancer, obesity, allergy, and auto-immune disorders. Therefore, the manipulation of human gut microbiota came out as a potential choice for therapeutic intervention of the several human diseases. Herein, we review significant studies emphasizing the influence of the gut microbiota on the regulation of host responses in combating infectious and inflammatory diseases alongside describing the promises of gut microbes as future therapeutics.
Collapse
Affiliation(s)
- Suprabhat Mukherjee
- Parasitology Laboratory, Department of Zoology (Centre for Advanced Studies), Siksha-Bhavana, Visva-Bharati University, Santiniketan, West Bengal, 731235, India
| | - Nikhilesh Joardar
- Parasitology Laboratory, Department of Zoology (Centre for Advanced Studies), Siksha-Bhavana, Visva-Bharati University, Santiniketan, West Bengal, 731235, India
| | - Subhasree Sengupta
- Parasitology Laboratory, Department of Zoology (Centre for Advanced Studies), Siksha-Bhavana, Visva-Bharati University, Santiniketan, West Bengal, 731235, India
| | - Santi P Sinha Babu
- Parasitology Laboratory, Department of Zoology (Centre for Advanced Studies), Siksha-Bhavana, Visva-Bharati University, Santiniketan, West Bengal, 731235, India.
| |
Collapse
|
54
|
Thomsen M, Clarke S, Vitetta L. The role of adjuvant probiotics to attenuate intestinal inflammatory responses due to cancer treatments. Benef Microbes 2018; 9:899-916. [PMID: 30232908 DOI: 10.3920/bm2017.0172] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemotherapy and radiotherapy treatment regimens for gastrointestinal, peritoneal and pelvic tumours can disrupt the intestinal microbiome and intestinal epithelia. Such disturbances can provoke symptoms such as diarrhoea, nausea and vomiting. Chemotherapy and radiotherapy induced gastrointestinal toxicity aggravating intestinal microbiome dysbiosis is postulated to adversely alter the intestinal microbiome, with a consequent induced pro-inflammatory effect that disrupts the intestinal microbiome-epithelia-mucosal immunity axis. Although not widely recognised, the intestinal mucosa is the largest and most densely and dynamically populated immune-environment. Cancer treatment adverse effects that affect intestinal and mucosal cells inadvertently target and disrupt resident intestinal macrophages, the cells that marshal immune activity in the intestinal mucosa by shaping pro-inflammatory and anti-inflammatory activities to control and eradicate infectious insults and maintain local homeostasis. Pathobionts (bacteria capable of pathogenic pro-inflammatory activity) and noxious environmental and bacterial antigens use the intestinal epithelia and gap junctions as a point of entry into the systemic circulation. This translocation movement promotes toxic sequelae that obstruct intestinal macrophage functions resulting in uncontrolled local and systemic pro-inflammatory activity, loss of phagocytic function and loss of expression of tight junction proteins. Probiotic bacteria as an adjunctive treatment shows efficacy in ameliorating enteropathies such as mucositis/diarrhoea resulting from chemotherapy or radiotherapy regimens. As such we posit that an important benefit that warrants a further focused research effort is the administration of adjuvant probiotics to help reduce the incidence of febrile neutropenia.
Collapse
Affiliation(s)
- M Thomsen
- 1 The University of Sydney, School of Medicine, Faculty of Medicine and Health, NSW 2006, Australia
| | - S Clarke
- 1 The University of Sydney, School of Medicine, Faculty of Medicine and Health, NSW 2006, Australia.,2 Northern Clinical School, Kolling Institute of Medical Research, Pacific Hwy, St Leonards NSW 2065, Australia
| | - L Vitetta
- 1 The University of Sydney, School of Medicine, Faculty of Medicine and Health, NSW 2006, Australia.,3 Medlab Clinical Ltd., 66 McCauley St., Sydney, 2006 NSW, Australia
| |
Collapse
|
55
|
Morgillo F, Dallio M, Della Corte CM, Gravina AG, Viscardi G, Loguercio C, Ciardiello F, Federico A. Carcinogenesis as a Result of Multiple Inflammatory and Oxidative Hits: a Comprehensive Review from Tumor Microenvironment to Gut Microbiota. Neoplasia 2018; 20:721-733. [PMID: 29859426 PMCID: PMC6014569 DOI: 10.1016/j.neo.2018.05.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Floriana Morgillo
- Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale "F.Magrassi", Università della Campania "Luigi Vanvitelli", Naples, Italy.
| | - Marcello Dallio
- Gastroenterologia, Dipartimento di Internistica Clinica e Sperimentale "F.Magrassi", Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Carminia Maria Della Corte
- Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale "F.Magrassi", Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonietta Gerarda Gravina
- Gastroenterologia, Dipartimento di Internistica Clinica e Sperimentale "F.Magrassi", Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Viscardi
- Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale "F.Magrassi", Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Carmelina Loguercio
- Gastroenterologia, Dipartimento di Internistica Clinica e Sperimentale "F.Magrassi", Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Fortunato Ciardiello
- Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale "F.Magrassi", Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandro Federico
- Gastroenterologia, Dipartimento di Internistica Clinica e Sperimentale "F.Magrassi", Università della Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
56
|
Martens EC, Neumann M, Desai MS. Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier. Nat Rev Microbiol 2018; 16:457-470. [DOI: 10.1038/s41579-018-0036-x] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
57
|
Means AL, Freeman TJ, Zhu J, Woodbury LG, Marincola-Smith P, Wu C, Meyer AR, Weaver CJ, Padmanabhan C, An H, Zi J, Wessinger BC, Chaturvedi R, Brown TD, Deane NG, Coffey RJ, Wilson KT, Smith JJ, Sawyers CL, Goldenring JR, Novitskiy SV, Washington MK, Shi C, Beauchamp RD. Epithelial Smad4 Deletion Up-Regulates Inflammation and Promotes Inflammation-Associated Cancer. Cell Mol Gastroenterol Hepatol 2018; 6:257-276. [PMID: 30109253 PMCID: PMC6083016 DOI: 10.1016/j.jcmgh.2018.05.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/18/2018] [Indexed: 02/08/2023]
Abstract
Background & Aims Chronic inflammation is a predisposing condition for colorectal cancer. Many studies to date have focused on proinflammatory signaling pathways in the colon. Understanding the mechanisms that suppress inflammation, particularly in epithelial cells, is critical for developing therapeutic interventions. Here, we explored the roles of transforming growth factor β (TGFβ) family signaling through SMAD4 in colonic epithelial cells. Methods The Smad4 gene was deleted specifically in adult murine intestinal epithelium. Colitis was induced by 3 rounds of dextran sodium sulfate in drinking water, after which mice were observed for up to 3 months. Nontransformed mouse colonocyte cell lines and colonoid cultures and human colorectal cancer cell lines were analyzed for responses to TGFβ1 and bone morphogenetic protein 2. Results Dextran sodium sulfate treatment was sufficient to drive carcinogenesis in mice lacking colonic Smad4 expression, with resulting tumors bearing striking resemblance to human colitis-associated carcinoma. Loss of SMAD4 protein was observed in 48% of human colitis-associated carcinoma samples as compared with 19% of sporadic colorectal carcinomas. Loss of Smad4 increased the expression of inflammatory mediators within nontransformed mouse colon epithelial cells in vivo. In vitro analysis of mouse and human colonic epithelial cell lines and organoids indicated that much of this regulation was cell autonomous. Furthermore, TGFβ signaling inhibited the epithelial inflammatory response to proinflammatory cytokines. Conclusions TGFβ suppresses the expression of proinflammatory genes in the colon epithelium, and loss of its downstream mediator, SMAD4, is sufficient to initiate inflammation-driven colon cancer. Transcript profiling: GSE100082.
Collapse
Key Words
- AOM, azoxymethane
- APC, adenomatous polyposis coli
- BMP, bone morphogenetic protein
- CAC, colitis-associated carcinoma
- CCL20, Chemokine (C-C motif) ligand 20
- CRC, colorectal cancer
- CRISPR/Cas9, Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9
- Colitis-Associated Carcinoma
- DMEM, Dulbecco's modified Eagle medium
- DSS, dextran sodium sulfate
- FBS, fetal bovine serum
- FDR, false discovery rate
- GFP, green fluorescent protein
- HBSS, Hank's balanced salt solution
- IBD, inflammatory bowel disease
- IL, interleukin
- IMCS4fl/fl, immortalized mouse colonoctye cell line with loxP-flanked Smad4 alleles
- IMCS4null, immortalized mouse colonocyte cell line with deletion of the Smad4 alleles
- LPS, lipopolysaccharide
- PBS, phosphate-buffered saline
- PE, phycoerythrin
- R-SMAD, Receptor-SMAD
- SFG, retroviral vector
- STAT3, signal transducer and activator of transcription 3
- TGFβ
- TGFβ, transforming growth factor β
- TNF, tumor necrosis factor
- Tumor Necrosis Factor
- UC, ulcerative colitis
- WNT, wingless-type mouse mammary tumor virus integration site
- YAMC, young adult mouse colon epithelial cells
- mRNA, messenger RNA
- sgRNA, single-guide RNA
Collapse
Affiliation(s)
- Anna L. Means
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tanner J. Freeman
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jing Zhu
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Luke G. Woodbury
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Chao Wu
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anne R. Meyer
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Connie J. Weaver
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Hanbing An
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jinghuan Zi
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Bronson C. Wessinger
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rupesh Chaturvedi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tasia D. Brown
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Natasha G. Deane
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Robert J. Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Keith T. Wilson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - J. Joshua Smith
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charles L. Sawyers
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - James R. Goldenring
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Sergey V. Novitskiy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - M. Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Chanjuan Shi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - R. Daniel Beauchamp
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
58
|
Abstract
There is increasing evidence that the gut microbiome, which consists of trillions of microbes representing over 1,000 species of bacteria with over 3 million genes, significantly impacts intestinal health and disease. The gut microbiota not only is capable of promoting intestinal homeostasis and antitumor responses but can also contribute to chronic dysregulated inflammation as well as have genotoxic effects that lead to carcinogenesis. Whether the gut microbiota maintains health or promotes colon cancer may ultimately depend on the composition of the gut microbiome and the balance within the microbial community of protective and detrimental bacterial populations. Disturbances in the normal balanced state of a healthful microbiome, known as dysbiosis, have been observed in patients with colorectal cancer (CRC); however, whether these alterations precede and cause CRC remains to be determined. Nonetheless, studies in mice strongly suggest that the gut microbiota can modulate susceptibility to CRC, and therefore may serve as both biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Grace Y. Chen
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
59
|
Crosstalk between gut microbiota and Sirtuin-3 in colonic inflammation and tumorigenesis. Exp Mol Med 2018; 50:1-11. [PMID: 29650970 PMCID: PMC5938040 DOI: 10.1038/s12276-017-0002-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/19/2017] [Accepted: 10/24/2017] [Indexed: 11/23/2022] Open
Abstract
Colorectal cancer (CRC) is a disease involving a variety of genetic and environmental factors. Sirtuin-3 (Sirt3) is expressed at a low level in cancer tissues of CRC, but it is unclear how Sirt3 modulates colonic tumorigenesis. In this study, we found that gut microbiota play a central role in the resistance to CRC tumor formation in wild-type (WT) mice through APC (Adenomatous Polyposis Coli)-mutant mouse microbiota transfer via Wnt signaling. We also found that Sirt3-deficient mice were hypersusceptible to colonic inflammation and tumor development through altered intestinal integrity and p38 signaling, respectively. Furthermore, susceptibility to colorectal tumorigenesis was aggravated by initial commensal microbiota deletion via Wnt signaling. Mice with Sirt3-deficient microbiota transfer followed by chemically induced colon tumorigenesis had low Sirt3 expression compared to WT control microbiome transfer, mainly due to a decrease in Escherichia/Shigella, as well as an increase in Lactobacillus reuteri and Lactobacillus taiwanensis. Collectively, our data revealed that Sirt3 is an anti-inflammatory and tumor-suppressing gene that interacts with the gut microbiota during colon tumorigenesis. Boosting specific beneficial bacteria in the gut may enhance expression levels of a tumor-suppressing gene in colorectal cancer (CRC). Both genetic factors and the bacteria present in the gut play vital roles in CRC development. However, it is unclear exactly how genes interact with the bacteria to affect tumor growth. Man-tian Mi and co-workers at the Third Military Medical University in Chongqing, China, examined the role of a gene called Sirt-3 in CRC development. Mice lacking the Sirt-3 gene suffered severe chronic inflammation and developed tumors due to altered signalling pathways and reduced intestinal integrity. Further, the guts of the mice harboured more pathogenic bacteria than wild-type mice. The team also found lower levels of two key types of beneficial bacteria that would ordinarily prevent reduced Sirt-3 expression.
Collapse
|
60
|
Stary L, Mezerova K, Skalicky P, Zboril P, Raclavsky V. Are we any closer to screening for colorectal cancer using microbial markers?A critical review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2017; 161:333-338. [DOI: 10.5507/bp.2017.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/15/2017] [Indexed: 12/18/2022] Open
|
61
|
Affiliation(s)
- Christian Jobin
- Department of Medicine, University of Florida, Gainesville, Florida; Department of Infectious Diseases and Pathology, University of Florida, Gainesville, Florida; Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida.
| |
Collapse
|
62
|
Jacouton E, Chain F, Sokol H, Langella P, Bermúdez-Humarán LG. Probiotic Strain Lactobacillus casei BL23 Prevents Colitis-Associated Colorectal Cancer. Front Immunol 2017; 8:1553. [PMID: 29209314 PMCID: PMC5702231 DOI: 10.3389/fimmu.2017.01553] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/31/2017] [Indexed: 12/16/2022] Open
Abstract
The gut microbiota plays a major role in intestinal health, and an imbalance in its composition can lead to chronic gut inflammation and a predisposition to developing colorectal cancer (CRC). Currently, the use of probiotic bacteria represents an emerging alternative to treat and prevent cancer. Moreover, consumption of these beneficial bacteria may also favorably modulate the composition of the gut microbiota, which has been described in several studies to play an important role in CRC carcinogenesis. In this context, the aim of this study was to assess the protective effect of oral treatment with Lactobacillus casei BL23, a probiotic strain well known for its anti-inflammatory and anticancer properties. First, CRC was induced in C57BL6 mice by a single intraperitoneal injection with azoxymethane (8 mg/kg), followed by four courses of dextran sodium sulfate (2.5%) in drinking water that were separated by an adjustable recovery period. At the time of sacrifice (day 46), tumor incidence, histological scores, and epithelial proliferation were determined in colon samples. Our results show that L. casei BL23 significantly protected mice against CRC development; specifically, L. casei BL23 treatment reduced histological scores and proliferative index values. In addition, our analysis revealed that L. casei BL23 had an immunomodulatory effect, mediated through the downregulation of the IL-22 cytokine, and an antiproliferative effect, mediated through the upregulation of caspase-7, caspase-9, and Bik. Finally, L. casei BL23 treatment tended to counterbalance CRC-induced dysbiosis in mice, as demonstrated by an analysis of fecal microbiota. Altogether our results demonstrate the high potential of L. casei BL23 for the development of new, probiotic-based strategies to fight CRC.
Collapse
Affiliation(s)
- Elsa Jacouton
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Florian Chain
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Harry Sokol
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,Sorbonne Universités, UPMC Univ. Paris 06, École normale supérieure, CNRS, INSERM, APHP Laboratoire des Biomolécules (LBM), Paris, France
| | - Philippe Langella
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | |
Collapse
|
63
|
Huang G, Khan I, Li X, Chen L, Leong W, Ho LT, Hsiao WLW. Ginsenosides Rb3 and Rd reduce polyps formation while reinstate the dysbiotic gut microbiota and the intestinal microenvironment in Apc Min/+ mice. Sci Rep 2017; 7:12552. [PMID: 28970547 PMCID: PMC5624945 DOI: 10.1038/s41598-017-12644-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/13/2017] [Indexed: 12/20/2022] Open
Abstract
Studies showed that manipulation of gut microbiota (GM) composition through the treatment of prebiotics could be a novel preventive measure against colorectal cancer (CRC) development. In this study, for the first time, we assessed the non-toxic doses of the triterpene saponins (ginsenoside-Rb3 and ginsenoside-Rd) - as prebiotics - that effectively reinstated the dysbiotic-gut microbial composition and intestinal microenvironment in an ApcMin/+ mice model. Rb3 and Rd effectively reduced the size and the number of the polyps that accompanied with the downregulation of oncogenic signaling molecules (iNOS, STAT3/pSTAT3, Src/pSrc). Both the compounds improved the gut epithelium by promoting goblet and Paneth cells population and reinstating the E-cadherin and N-Cadherin expression. Mucosal immunity remodeled with increased in anti-inflammatory cytokines and reduced in pro-inflammatory cytokines in treated mice. All these changes were correlating with the promoted growth of beneficial bacteria such as Bifidobacterium spp., Lactobacillus spp., Bacteroides acidifaciens, and Bacteroides xylanisolvens. Whereas, the abundance of cancer cachexia associated bacteria, such as Dysgonomonas spp. and Helicobacter spp., was profoundly lower in Rb3/Rd-treated mice. In conclusion, ginsenosides Rb3 and Rd exerted anti-cancer effects by holistically reinstating mucosal architecture, improving mucosal immunity, promoting beneficial bacteria, and down-regulating cancer-cachexia associated bacteria.
Collapse
Affiliation(s)
- Guoxin Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xiaoang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lei Chen
- Department of Genetics, Rutgers University, New Brunswick, USA
| | - Waikit Leong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Leung Tsun Ho
- Department of Pathology, University Hospital, Macau University of Science and Technology, Macau, China
| | - W L Wendy Hsiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
64
|
Constante M, Fragoso G, Calvé A, Samba-Mondonga M, Santos MM. Dietary Heme Induces Gut Dysbiosis, Aggravates Colitis, and Potentiates the Development of Adenomas in Mice. Front Microbiol 2017; 8:1809. [PMID: 28983289 PMCID: PMC5613120 DOI: 10.3389/fmicb.2017.01809] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Dietary heme can be used by colonic bacteria equipped with heme-uptake systems as a growth factor and thereby impact on the microbial community structure. The impact of heme on the gut microbiota composition may be particularly pertinent in chronic inflammation such as in inflammatory bowel disease (IBD), where a strong association with gut dysbiosis has been consistently reported. In this study we investigated the influence of dietary heme on the gut microbiota and inferred metagenomic composition, and on chemically induced colitis and colitis-associated adenoma development in mice. Using 16S rRNA gene sequencing, we found that mice fed a diet supplemented with heme significantly altered their microbiota composition, characterized by a decrease in α-diversity, a reduction of Firmicutes and an increase of Proteobacteria, particularly Enterobacteriaceae. These changes were similar to shifts seen in dextran sodium sulfate (DSS)-treated mice to induce colitis. In addition, dietary heme, but not systemically delivered heme, contributed to the exacerbation of DSS-induced colitis and facilitated adenoma formation in the azoxymethane/DSS colorectal cancer (CRC) mouse model. Using inferred metagenomics, we found that the microbiota alterations elicited by dietary heme resulted in non-beneficial functional shifts, which were also characteristic of DSS-induced colitis. Furthermore, a reduction in fecal butyrate levels was found in mice fed the heme supplemented diet compared to mice fed the control diet. Iron metabolism genes known to contribute to heme release from red blood cells, heme uptake, and heme exporter proteins, were significantly enriched, indicating a shift toward favoring the growth of bacteria able to uptake heme and protect against its toxicity. In conclusion, our data suggest that luminal heme, originating from dietary components or gastrointestinal bleeding in IBD and, to lesser extent in CRC, directly contributes to microbiota dysbiosis. Thus, luminal heme levels may further exacerbate colitis through the modulation of the gut microbiota and its metagenomic functional composition. Our data may have implications in the development of novel targets for therapeutic approaches aimed at lowering gastrointestinal heme levels through heme chelation or degradation using probiotics and nutritional interventions.
Collapse
Affiliation(s)
- Marco Constante
- Département de Médecine, Université de Montréal, MontréalQC, Canada
- Nutrition and Microbiome Laboratory, Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, MontréalQC, Canada
| | - Gabriela Fragoso
- Nutrition and Microbiome Laboratory, Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, MontréalQC, Canada
| | - Annie Calvé
- Nutrition and Microbiome Laboratory, Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, MontréalQC, Canada
| | - Macha Samba-Mondonga
- Nutrition and Microbiome Laboratory, Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, MontréalQC, Canada
| | - Manuela M. Santos
- Département de Médecine, Université de Montréal, MontréalQC, Canada
- Nutrition and Microbiome Laboratory, Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, MontréalQC, Canada
| |
Collapse
|
65
|
Rescigno M. The microbiota revolution: Excitement and caution. Eur J Immunol 2017; 47:1406-1413. [PMID: 28675439 DOI: 10.1002/eji.201646576] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/05/2017] [Accepted: 06/29/2017] [Indexed: 12/21/2022]
Abstract
Scientific progress is characterized by important technological advances. Next-generation DNA sequencing has, in the past few years, led to a major scientific revolution: the microbiome revolution. It has become possible to generate a fingerprint of the whole microbiota of any given environment. As it becomes clear that the microbiota affects several aspects of our lives, each new scientific finding should ideally be analyzed in light of these communities. For instance, animal experimentation should consider animal sources and husbandry; human experimentation should include analysis of microenvironmental cues that might affect the microbiota, including diet, antibiotic, and drug use, genetics. When analyzing the activity of a drug, we should remember that, according to the microbiota of the host, different drug activities might be observed, either due to modification or degradation by the microbiota, or because the microbiota changes the immune system of the host in a way that makes that drug more or less effective. This minireview will not be a comprehensive review on the interaction between the host and microbiota, but it will aim at creating awareness on why we should not forget the contribution of the microbiota in any single aspect of biology.
Collapse
Affiliation(s)
- Maria Rescigno
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy.,Dipartimento di Scienze della Salute, Universita' di Milano, Milan, Italy
| |
Collapse
|
66
|
Tomkovich S, Yang Y, Winglee K, Gauthier J, Mühlbauer M, Sun X, Mohamadzadeh M, Liu X, Martin P, Wang GP, Oswald E, Fodor AA, Jobin C. Locoregional Effects of Microbiota in a Preclinical Model of Colon Carcinogenesis. Cancer Res 2017; 77:2620-2632. [PMID: 28416491 DOI: 10.1158/0008-5472.can-16-3472] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/31/2017] [Accepted: 03/15/2017] [Indexed: 02/07/2023]
Abstract
Inflammation and microbiota are critical components of intestinal tumorigenesis. To dissect how the microbiota contributes to tumor distribution, we generated germ-free (GF) ApcMin/+ and ApcMin/+ ;Il10-/- mice and exposed them to specific-pathogen-free (SPF) or colorectal cancer-associated bacteria. We found that colon tumorigenesis significantly correlated with inflammation in SPF-housed ApcMin/+ ;Il10-/- , but not in ApcMin/+ mice. In contrast, small intestinal neoplasia development significantly correlated with age in both ApcMin/+ ;Il10-/- and ApcMin/+ mice. GF ApcMin/+ ;Il10-/- mice conventionalized by an SPF microbiota had significantly more colon tumors compared with GF mice. Gnotobiotic studies revealed that while Fusobacterium nucleatum clinical isolates with FadA and Fap2 adhesins failed to induce inflammation and tumorigenesis, pks+Escherichia coli promoted tumorigenesis in the ApcMin/+ ;Il10-/- model in a colibactin-dependent manner, suggesting colibactin is a driver of carcinogenesis. Our results suggest a distinct etiology of cancers in different locations of the gut, where colon cancer is primarily driven by inflammation and the microbiome, while age is a driving force for small intestine cancer. Cancer Res; 77(10); 2620-32. ©2017 AACR.
Collapse
Affiliation(s)
- Sarah Tomkovich
- Department of Medicine, University of Florida, Gainesville, Florida.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ye Yang
- Department of Medicine, University of Florida, Gainesville, Florida
| | - Kathryn Winglee
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, North Carolina
| | - Josee Gauthier
- Department of Medicine, University of Florida, Gainesville, Florida
| | - Marcus Mühlbauer
- Department of Medicine, University of Florida, Gainesville, Florida
| | - Xiaolun Sun
- Department of Medicine, University of Florida, Gainesville, Florida
| | - Mansour Mohamadzadeh
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, Florida
| | - Xiuli Liu
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida
| | - Patricia Martin
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.,CHU Toulouse, Service de Bactériologie-Hygiène, Toulouse, France
| | - Gary P Wang
- Department of Medicine, Division of Infectious Diseases and Global Medicine, University of Florida, Gainesville, Florida
| | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.,CHU Toulouse, Service de Bactériologie-Hygiène, Toulouse, France
| | - Anthony A Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, North Carolina
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, Florida. .,Department of Infectious Diseases and Pathology, University of Florida, Gainesville, Florida
| |
Collapse
|
67
|
Thomas S, Izard J, Walsh E, Batich K, Chongsathidkiet P, Clarke G, Sela DA, Muller AJ, Mullin JM, Albert K, Gilligan JP, DiGuilio K, Dilbarova R, Alexander W, Prendergast GC. The Host Microbiome Regulates and Maintains Human Health: A Primer and Perspective for Non-Microbiologists. Cancer Res 2017; 77:1783-1812. [PMID: 28292977 PMCID: PMC5392374 DOI: 10.1158/0008-5472.can-16-2929] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 02/07/2023]
Abstract
Humans consider themselves discrete autonomous organisms, but recent research is rapidly strengthening the appreciation that associated microorganisms make essential contributions to human health and well being. Each person is inhabited and also surrounded by his/her own signature microbial cloud. A low diversity of microorganisms is associated with a plethora of diseases, including allergy, diabetes, obesity, arthritis, inflammatory bowel diseases, and even neuropsychiatric disorders. Thus, an interaction of microorganisms with the host immune system is required for a healthy body. Exposure to microorganisms from the moment we are born and appropriate microbiome assembly during childhood are essential for establishing an active immune system necessary to prevent disease later in life. Exposure to microorganisms educates the immune system, induces adaptive immunity, and initiates memory B and T cells that are essential to combat various pathogens. The correct microbial-based education of immune cells may be critical in preventing the development of autoimmune diseases and cancer. This review provides a broad overview of the importance of the host microbiome and accumulating knowledge of how it regulates and maintains a healthy human system. Cancer Res; 77(8); 1783-812. ©2017 AACR.
Collapse
Affiliation(s)
- Sunil Thomas
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania.
| | - Jacques Izard
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Emily Walsh
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts
| | - Kristen Batich
- Department of Neurosurgery, Duke Brain Tumor Immunotherapy Program, Duke University Medical Center, Durham, North Carolina
- Department of Surgery, Duke Brain Tumor Immunotherapy Program, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Pakawat Chongsathidkiet
- Department of Neurosurgery, Duke Brain Tumor Immunotherapy Program, Duke University Medical Center, Durham, North Carolina
- Department of Surgery, Duke Brain Tumor Immunotherapy Program, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, APC Microbiome Institute University College Cork, Cork, Ireland
| | - David A Sela
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts
- Center for Microbiome Research, University of Massachusetts Medical School, Worcester, Massachusetts
| | | | - James M Mullin
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - Korin Albert
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts
| | - John P Gilligan
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | | | - Rima Dilbarova
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - Walker Alexander
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | | |
Collapse
|
68
|
Abstract
Inflammasomes are multiprotein complexes whose primary function is to activate caspase-1, which allows the cleavage of pro-IL-1β and pro-IL-18 to their mature forms. The production of these cytokines has been shown to be critical for host defense as well as the maintenance of intestinal homeostasis and protection against pathologic intestinal inflammation. More recently, there has been growing evidence that inflammasomes are also capable of regulating the composition of the gut microbiota in mice models, which has significant implications for intestinal health and disease. Specifically, the absence of inflammasome components has been associated with pathologic alterations in the gut microbiota, or dysbiosis, that can result in increased susceptibility to colitis and tumorigenesis. In this review, evidence that inflammasome signaling is important for promoting a healthful microbiome and potential mechanisms by which inflammasomes modulate the gut microbiome will be presented. A better understanding of the function of inflammasomes in microbiome regulation may lead to the development of effective strategies for the prevention and treatment of diseases driven by dysbiosis.
Collapse
Affiliation(s)
- Grace Y Chen
- Division of Hematology & Oncology, Department of Internal Medicine, 1500 East Medical Center Drive, Ann Arbor, MI 48109, United States.
| |
Collapse
|
69
|
Wang X, Yang Y, Huycke MM. Microbiome-driven carcinogenesis in colorectal cancer: Models and mechanisms. Free Radic Biol Med 2017; 105:3-15. [PMID: 27810411 DOI: 10.1016/j.freeradbiomed.2016.10.504] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/19/2016] [Accepted: 10/25/2016] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer death and archetype for cancer as a genetic disease. However, the mechanisms for genetic change and their interactions with environmental risk factors have been difficult to unravel. New hypotheses, models, and methods are being used to investigate a complex web of risk factors that includes the intestinal microbiome. Recent research has clarified how the microbiome can generate genomic change in CRC. Several phenotypes among a small group of selected commensals have helped us better understand how mutations and chromosomal instability (CIN) are induced in CRC (e.g., toxin production, metabolite formation, radical generation, and immune modulation leading to a bystander effect). This review discusses recent hypotheses, models, and mechanisms by which the intestinal microbiome contributes to the initiation and progression of sporadic and colitis-associated forms of CRC. Overall, it appears the microbiome can initiate and/or promote CRC at all stages of tumorigenesis by acting as an inducer of DNA damage and CIN, regulating cell growth and death, generating epigenetic changes, and modulating host immune responses. Understanding how the microbiome interacts with other risk factors to define colorectal carcinogenesis will ultimately lead to more accurate risk prediction. A deeper understanding of CRC etiology will also help identify new targets for prevention and treatment and help accelerate the decline in mortality for this common cancer.
Collapse
Affiliation(s)
- Xingmin Wang
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, USA; Muchmore Laboratories for Infectious Diseases Research, Oklahoma City VA Health Care System, USA
| | - Yonghong Yang
- Gansu Province Children's Hospital, Lanzhou, China; Key Laboratory of Gastrointestinal Cancer, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Mark M Huycke
- Muchmore Laboratories for Infectious Diseases Research, Oklahoma City VA Health Care System, USA; Department of Internal Medicine, PO Box 26901, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73126-0901, USA.
| |
Collapse
|
70
|
Seregin SS, Golovchenko N, Schaf B, Chen J, Eaton KA, Chen GY. NLRP6 function in inflammatory monocytes reduces susceptibility to chemically induced intestinal injury. Mucosal Immunol 2017; 10:434-445. [PMID: 27353251 PMCID: PMC5199680 DOI: 10.1038/mi.2016.55] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 05/25/2016] [Indexed: 02/04/2023]
Abstract
NLRP6 is a member of the Nod-like receptor family, whose members are involved in the recognition of microbes and/or tissue injury. NLRP6 was previously demonstrated to regulate the production of interleukin (IL)-18 and is important for protecting mice against chemically induced intestinal injury and colitis-associated colon cancer. However, the cellular mechanisms by which NLRP6 reduces susceptibility to colonic inflammation remain unclear. Here, we determined that NLRP6 expression is specifically upregulated in Ly6Chi inflammatory monocytes that infiltrate into the colon during dextran sulfate sodium (DSS)-induced inflammation. Adoptive transfer of wild-type (WT) Ly6Chi inflammatory monocytes into Nlrp6-/- mice was sufficient to protect them from mortality, significantly reducing intestinal permeability and damage. NLRP6-deficient inflammatory monocytes were defective in tumor necrosis factor α (TNFα) production, which was important for reducing DSS-induced mortality and was dependent on autocrine IL-18 signaling by inflammatory monocytes. Our data reveal a previously unappreciated role for NLRP6 in inflammatory monocytes, which are recruited after DSS-induced intestinal injury to promote barrier function and limit bacteria-driven inflammation. This study highlights the importance of early cytokine responses, particularly NLRP6-dependent and IL-18-dependent TNFα production, in preventing chronic dysregulated inflammation.
Collapse
Affiliation(s)
- Sergey S Seregin
- University of Michigan, Department of Internal Medicine, Division of Hematology/Oncology, 1500 E Medical Center Drive, 3111 Cancer Center, Ann Arbor, MI, 48109
| | - Natasha Golovchenko
- University of Michigan, Department of Internal Medicine, Division of Hematology/Oncology, 1500 E Medical Center Drive, 3111 Cancer Center, Ann Arbor, MI, 48109
| | - Bryan Schaf
- University of Michigan, Department of Internal Medicine, Division of Hematology/Oncology, 1500 E Medical Center Drive, 3111 Cancer Center, Ann Arbor, MI, 48109
| | - Jiachen Chen
- University of Michigan, Department of Internal Medicine, Division of Hematology/Oncology, 1500 E Medical Center Drive, 3111 Cancer Center, Ann Arbor, MI, 48109
| | - Kathryn A. Eaton
- University of Michigan, Department of Microbiology and Immunology, 1500 W Medical Center Drive, 6746 Med Sci II, Ann Arbor, MI, 48109
| | - Grace Y. Chen
- University of Michigan, Department of Internal Medicine, Division of Hematology/Oncology, 1500 E Medical Center Drive, 3111 Cancer Center, Ann Arbor, MI, 48109
| |
Collapse
|
71
|
Tsilimigras MCB, Fodor A, Jobin C. Carcinogenesis and therapeutics: the microbiota perspective. Nat Microbiol 2017; 2:17008. [PMID: 28225000 PMCID: PMC6423540 DOI: 10.1038/nmicrobiol.2017.8] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 01/10/2017] [Indexed: 12/18/2022]
Abstract
Cancer arises from the acquisition of multiple genetic and epigenetic changes in host cells over the span of many years, promoting oncogenic traits and carcinogenesis. Most cancers develop following random somatic alterations of key oncogenic genes, which are favoured by a number of risk factors, including lifestyle, diet and inflammation. Importantly, the environment where tumours evolve provides a unique source of signalling cues that affects cancer cell growth, survival, movement and metastasis. Recently, there has been increased interest in how the microbiota, the collection of microorganisms inhabiting the host body surface and cavities, shapes a micro-environment for host cells that can either promote or prevent cancer formation. The microbiota, particularly the intestinal biota, plays a central role in host physiology, and the composition and activity of this consortium of microorganisms is directly influenced by known cancer risk factors such as lifestyle, diet and inflammation. In this REVIEW, we discuss the pro- and anticarcinogenic role of the microbiota, as well as highlighting the therapeutic potential of microorganisms in tumourigenesis. The broad impacts, and, at times, opposing roles of the microbiota in carcinogenesis serve to illustrate the complex and sometimes conflicted relationship between microorganisms and the host-a relationship that could potentially be harnessed for therapeutic benefits.
Collapse
Affiliation(s)
- Matthew C. B. Tsilimigras
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, USA
| | - Anthony Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, USA
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, Florida 32611, USA
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
72
|
Pope JL, Tomkovich S, Yang Y, Jobin C. Microbiota as a mediator of cancer progression and therapy. Transl Res 2017; 179:139-154. [PMID: 27554797 PMCID: PMC5674984 DOI: 10.1016/j.trsl.2016.07.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/18/2016] [Accepted: 07/20/2016] [Indexed: 12/19/2022]
Abstract
Complex and intricate circuitries regulate cellular proliferation, survival, and growth, and alterations of this network through genetic and epigenetic events result in aberrant cellular behaviors, often leading to carcinogenesis. Although specific germline mutations have been recognized as cancer inducers, the vast majority of neoplastic changes in humans occur through environmental exposure, lifestyle, and diet. An emerging concept in cancer biology implicates the microbiota as a powerful environmental factor modulating the carcinogenic process. For example, the intestinal microbiota influences cancer development or therapeutic responses through specific activities (immune responses, metabolites, microbial structures, and toxins). The numerous effects of microbiota on carcinogenesis, ranging from promoting, preventing, or even influencing therapeutic outcomes, highlight the complex relationship between the biota and the host. In this review, we discuss the latest findings on this complex microbial interaction with the host and highlight potential mechanisms by which the microbiota mediates such a wide impact on carcinogenesis.
Collapse
Affiliation(s)
- Jillian L Pope
- Department of Medicine, University of Florida, Gainesville, Fla
| | - Sarah Tomkovich
- Department of Medicine, University of Florida, Gainesville, Fla; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ye Yang
- Department of Medicine, University of Florida, Gainesville, Fla
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, Fla; Department of Infectious Diseases and Pathology, University of Florida, Gainesville, Fla.
| |
Collapse
|
73
|
Jourova L, Anzenbacher P, Anzenbacherova E. Human gut microbiota plays a role in the metabolism of drugs. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2016; 160:317-26. [PMID: 27485182 DOI: 10.5507/bp.2016.039] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/13/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND AIMS The gut microbiome, an aggregate genome of trillions of microorganisms residing in the human gastrointestinal tract, is now known to play a critical role in human health and predisposition to disease. It is also involved in the biotransformation of xenobiotics and several recent studies have shown that the gut microbiota can affect the pharmacokinetics of orally taken drugs with implications for their oral bioavailability. METHODS Review of Pubmed, Web of Science and Science Direct databases for the years 1957-2016. RESULTS AND CONCLUSIONS Recent studies make it clear that the human gut microbiota can play a major role in the metabolism of xenobiotics and, the stability and oral bioavailability of drugs. Over the past 50 years, more than 30 drugs have been identified as a substrate for intestinal bacteria. Questions concerning the impact of the gut microbiota on drug metabolism, remain unanswered or only partially answered, namely (i) what are the molecular mechanisms and which bacterial species are involved? (ii) What is the impact of host genotype and environmental factors on the composition and function of the gut microbiota, (iii) To what extent is the composition of the intestinal microbiome stable, transmissible, and resilient to perturbation? (iv) Has past exposure to a given drug any impact on future microbial response, and, if so, for how long? Answering such questions should be an integral part of pharmaceutical research and personalised health care.
Collapse
Affiliation(s)
- Lenka Jourova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry and Faculty Hospital Olomouc, Palacky University Olomouc, Czech Republic
| | - Pavel Anzenbacher
- Department of Pharmacology, Faculty of Medicine and Dentistry and Faculty Hospital Olomouc, Palacky University Olomouc, Czech Republic
| | - Eva Anzenbacherova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry and Faculty Hospital Olomouc, Palacky University Olomouc, Czech Republic
| |
Collapse
|
74
|
Human Trefoil Factor 3 induces the transcription of its own promoter through STAT3. Sci Rep 2016; 6:30421. [PMID: 27453253 PMCID: PMC4958921 DOI: 10.1038/srep30421] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/01/2016] [Indexed: 12/16/2022] Open
Abstract
Human trefoil factor 3 (hTFF3) is a small peptide of potential therapeutic value. The
mechanisms underlying the transcriptional regulation of hTFF3 remain unclear. The
purpose of this study was to identify the core functional elements for the
self-induction action of hTFF3 and transcription factors. First, truncated promoters
were constructed to identify the functional regions of the hTFF3 promoter. Next,
point mutation, chromatin immunoprecipitation, RNA interference, and gene
overexpression experiments were performed to analyze the transcriptional binding
sites responsible for the self-induced transcription of hTFF3. Our results revealed
the −1450 bp to −1400 bp fragment of
the hTFF3 promoter was the functional region for the self-induction action of hTFF3.
Bioinformatics analysis confirmed that a STAT3 binding site is present in the
−1417 bp to −1409 bp region.
Subsequently, site-directed mutagenesis analysis determined that this STAT3 binding
site was critical for the self-induction effect of hTFF3. ChIP experiments confirmed
that STAT3 binds to the hTFF3 promoter. STAT3 overexpression and knockdown
experiments revealed that STAT3 enhanced the self-induction effect and the
expression of hTFF3. This study confirmed that hTFF3 exhibits self-induction action,
and that STAT3 is the key transcription factor to maintain the function of
self-induction.
Collapse
|
75
|
Russo E, Taddei A, Ringressi MN, Ricci F, Amedei A. The interplay between the microbiome and the adaptive immune response in cancer development. Therap Adv Gastroenterol 2016; 9:594-605. [PMID: 27366226 PMCID: PMC4913328 DOI: 10.1177/1756283x16635082] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The data from different studies suggest a bacterial role in cancer genesis/progression, often modulating the local immune response. This is particularly so at the mucosal level where the bacterial presence is strong and the immune system is highly reactive. The epithelial surfaces of the body, such as the skin and mucosa, are colonized by a vast number of microorganisms, which represent the so-called normal microbiome. Normally the microbiome does not cause a proinflammatory response because the immune system has developed different strategies for the tolerance of commensal bacteria, but when these mechanisms are impaired or new pathogenic bacteria are introduced into this balanced system, the immune system reacts to the microbiome and can trigger tumor growth in the intestine. In this review, we discuss the potential role of the bacterial microbiome in carcinogenesis, focusing on the direct and indirect immune adaptive mechanisms, that the bacteria can modulate in different ways.
Collapse
Affiliation(s)
- Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Antonio Taddei
- Department of Surgery and Translational Medicine (DCMT), University of Florence, Florence, Italy
| | - Maria Novella Ringressi
- Department of Surgery and Translational Medicine (DCMT), University of Florence, Florence, Italy
| | - Federica Ricci
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine – Section of Internal Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| |
Collapse
|
76
|
Hörmannsperger G, Schaubeck M, Haller D. Intestinal Microbiota in Animal Models of Inflammatory Diseases. ILAR J 2016; 56:179-91. [PMID: 26323628 DOI: 10.1093/ilar/ilv019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The intestinal microbiota has long been known to play an important role in the maintenance of health. In addition, alterations of the intestinal microbiota have recently been associated with a range of immune-mediated and metabolic disorders. Characterizing the composition and functionality of the intestinal microbiota, unravelling relevant microbe-host interactions, and identifying disease-relevant microbes are therefore currently of major interest in scientific and medical communities. Experimental animal models for the respective diseases of interest are pivotal in order to address functional questions on microbe-host interaction and to clarify the clinical relevance of microbiome alterations associated with disease initiation and development. This review presents an overview of the outcomes of highly sophisticated experimental studies on microbe-host interaction in animal models of inflammatory diseases, with a focus on inflammatory bowel disease (IBD). We will address the advantages and drawbacks of analyzing microbe-host interaction in complex colonized animal models compared with gnotobiotic animal models using monoassociation, simplified microbial consortia (SMC), or microbial humanization.
Collapse
Affiliation(s)
- G Hörmannsperger
- Gabriele Hörmannsperger, PhD, is a molecular biologist researcher, Monika Schaubeck, MSc, is a PhD student, and Dirk Haller, PhD, is full professor and head of the Chair of Nutrition and Immunology at the Technische Universität München, Freising-Weihenstephan, Germany
| | - M Schaubeck
- Gabriele Hörmannsperger, PhD, is a molecular biologist researcher, Monika Schaubeck, MSc, is a PhD student, and Dirk Haller, PhD, is full professor and head of the Chair of Nutrition and Immunology at the Technische Universität München, Freising-Weihenstephan, Germany
| | - D Haller
- Gabriele Hörmannsperger, PhD, is a molecular biologist researcher, Monika Schaubeck, MSc, is a PhD student, and Dirk Haller, PhD, is full professor and head of the Chair of Nutrition and Immunology at the Technische Universität München, Freising-Weihenstephan, Germany
| |
Collapse
|
77
|
Zhan Y, Seregin SS, Chen J, Chen GY. Nod1 Limits Colitis-Associated Tumorigenesis by Regulating IFN-γ Production. THE JOURNAL OF IMMUNOLOGY 2016; 196:5121-9. [PMID: 27183588 DOI: 10.4049/jimmunol.1501822] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 04/15/2016] [Indexed: 01/01/2023]
Abstract
Chronic intestinal inflammation is a major risk factor for the development of colorectal cancer. Nod1, a member of the Nod-like receptor (NLR) family of pattern recognition receptors, is a bacterial sensor that has been previously demonstrated to reduce susceptibility of mice to chemically induced colitis and subsequent tumorigenesis, but the mechanism by which it mediates its protection has not been elucidated. In this study, we show that Nod1 expression in the hematopoietic cell compartment is critical for limiting inflammation-induced intestinal tumorigenesis. Specifically, Nod1-deficient T cells exhibit impaired IFN-γ production during dextran sulfate sodium (DSS)-induced acute inflammation in vivo, and administration of the Nod1 ligand KF1B enhances IFN-γ responses by anti-CD3-activated T cells in vitro. Absence of IFN-γ signaling results in increased inflammation-associated tumors in mice, and adoptive transfer of Nod1(-/-) or IFNγ(-/-) T cells into T cell-deficient mice results in increased tumorigenesis as compared with T cell-deficient mice that were adoptively transferred with wild-type T cells. Collectively, these results suggest a previously unappreciated role for the innate immune receptor Nod1 in suppressing colitis-associated tumorigenesis through a T cell-mediated mechanism.
Collapse
Affiliation(s)
- Yu Zhan
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Sergey S Seregin
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Jiachen Chen
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Grace Y Chen
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
78
|
Lopetuso LR, Petito V, Zambrano D, Orlando D, Dal Lago A, Serrichhio L, Papa A, Gasbarrini A, Scaldaferri F. Gut Microbiota: A Key Modulator of Intestinal Healing in Inflammatory Bowel Disease. Dig Dis 2016; 34:202-9. [PMID: 27028023 DOI: 10.1159/000444460] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mucosal healing (MH) represents a crucial factor for maintaining gut homeostasis. Indeed, in inflammatory bowel disease, MH has become the standard therapeutical target, because it is associated with more effective disease control, more frequent steroid-free remission, lower rates of hospitalization and surgery, and improved quality of life. In this scenario, gut microbiota is a crucial player in modulating intestinal repair and regeneration process. It can act on the tumor necrosis factor-α production, modulation of reactive oxygen and nitrogen species, activity of matrix metalloproteinases and on many other mechanisms strictly involved in restoring gut health. In this review, we analyze and review the literature on the role of gut microbiota in sustaining mucosal injury and achieving MH.
Collapse
Affiliation(s)
- L R Lopetuso
- Internal Medicine Department, Gastroenterology Division, Catholic University of Sacred Hearth, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Kuttke M, Sahin E, Pisoni J, Percig S, Vogel A, Kraemmer D, Hanzl L, Brunner JS, Paar H, Soukup K, Halfmann A, Dohnal AM, Steiner CW, Blüml S, Basilio J, Hochreiter B, Salzmann M, Hoesel B, Lametschwandtner G, Eferl R, Schmid JA, Schabbauer G. Myeloid PTEN deficiency impairs tumor-immune surveillance via immune-checkpoint inhibition. Oncoimmunology 2016; 5:e1164918. [PMID: 27622019 PMCID: PMC5006931 DOI: 10.1080/2162402x.2016.1164918] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/03/2016] [Accepted: 03/08/2016] [Indexed: 12/14/2022] Open
Abstract
Tumor-host interaction is determined by constant immune surveillance, characterized by tumor infiltration of myeloid and lymphoid cells. A malfunctioning or diverted immune response promotes tumor growth and metastasis. Recent advances had been made, by treating of certain tumor types, such as melanoma, with T-cell checkpoint inhibitors. This highlights the importance of understanding the molecular mechanisms underlying the crosstalk between tumors and their environment, in particular myeloid and lymphoid cells. Our aim was to study the contribution of the myeloid PI3K/PTEN-signaling pathway in the regulation of tumor-immune surveillance in murine models of cancer. We made use of conditional PTEN-deficient mice, which exhibit sustained activation of the PI3K-signaling axis in a variety of myeloid cell subsets such as macrophages and dendritic cells (DCs). In colitis-associated colon cancer (CAC), mice deficient in myeloid PTEN showed a markedly higher tumor burden and decreased survival. We attributed this observation to the increased presence of immune-modulatory conventional CD8α(+) DCs in the spleen, whereas other relevant myeloid cell subsets were largely unaffected. Notably, we detected enhanced surface expression of PD-L1 and PD-L2 on these DCs. As a consequence, tumoricidal T-cell responses were hampered or redirected. Taken together, our findings indicated an unanticipated role for the PI3K/PTEN-signaling axis in the functional regulation of splenic antigen-presenting cells (APCs). Our data pointed at potential, indirect, tumoricidal effects of subclass-specific PI3K inhibitors, which are currently under clinical investigation for treatment of tumors, via myeloid cell activation.
Collapse
Affiliation(s)
- M Kuttke
- Institute for Physiology, Center for Physiology and Pharmacology, Medical University of Vienna Vienna, Austria
| | - E Sahin
- Institute for Physiology, Center for Physiology and Pharmacology, Medical University of Vienna Vienna, Austria
| | - J Pisoni
- Institute for Physiology, Center for Physiology and Pharmacology, Medical University of Vienna Vienna, Austria
| | - S Percig
- Institute for Physiology, Center for Physiology and Pharmacology, Medical University of Vienna Vienna, Austria
| | - A Vogel
- Institute for Physiology, Center for Physiology and Pharmacology, Medical University of Vienna Vienna, Austria
| | - D Kraemmer
- Institute for Physiology, Center for Physiology and Pharmacology, Medical University of Vienna Vienna, Austria
| | - L Hanzl
- Institute for Physiology, Center for Physiology and Pharmacology, Medical University of Vienna Vienna, Austria
| | - J S Brunner
- Institute for Physiology, Center for Physiology and Pharmacology, Medical University of Vienna Vienna, Austria
| | - H Paar
- Institute for Physiology, Center for Physiology and Pharmacology, Medical University of Vienna Vienna, Austria
| | - K Soukup
- St. Anna Children's Cancer Research Institute , Vienna, Austria
| | - A Halfmann
- St. Anna Children's Cancer Research Institute , Vienna, Austria
| | - A M Dohnal
- St. Anna Children's Cancer Research Institute , Vienna, Austria
| | - C W Steiner
- Department of Rheumatology Internal Medicine III, Medical University of Vienna , Vienna, Austria
| | - S Blüml
- Department of Rheumatology Internal Medicine III, Medical University of Vienna , Vienna, Austria
| | - J Basilio
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology Medical University of Vienna , Vienna, Austria
| | - B Hochreiter
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology Medical University of Vienna , Vienna, Austria
| | - M Salzmann
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology Medical University of Vienna , Vienna, Austria
| | - B Hoesel
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology Medical University of Vienna , Vienna, Austria
| | | | - R Eferl
- Institute of Cancer Research, Internal Medicine I, Medical University of Vienna , Vienna, Austria
| | - J A Schmid
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology Medical University of Vienna , Vienna, Austria
| | - G Schabbauer
- Institute for Physiology, Center for Physiology and Pharmacology, Medical University of Vienna Vienna, Austria
| |
Collapse
|
80
|
Cao S, Su X, Zeng B, Yan H, Huang Y, Wang E, Yun H, Zhang Y, Liu F, Li W, Wei H, Che Y, Yang R. The Gut Epithelial Receptor LRRC19 Promotes the Recruitment of Immune Cells and Gut Inflammation. Cell Rep 2016; 14:695-707. [PMID: 26776522 PMCID: PMC4742566 DOI: 10.1016/j.celrep.2015.12.070] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/02/2015] [Accepted: 12/14/2015] [Indexed: 12/17/2022] Open
Abstract
Commensal microbes are necessary for a healthy gut immune system. However, the mechanism involving these microbes that establish and maintain gut immune responses is largely unknown. Here, we have found that the gut immune receptor leucine-rich repeat (LRR) C19 is involved in host-microbiota interactions. LRRC19 deficiency not only impairs the gut immune system but also reduces inflammatory responses in gut tissues. We demonstrate that the LRRC19-associated chemokines CCL6, CCL9, CXCL9, and CXCL10 play a critical role in immune cell recruitment and intestinal inflammation. The expression of these chemokines is associated with regenerating islet-derived (REG) protein-mediated microbiotas. We also found that the expression of REGs may be regulated by gut Lactobacillus through LRRC19-mediated activation of NF-κB. Therefore, our study establishes a regulatory axis of LRRC19, REGs, altered microbiotas, and chemokines for the recruitment of immune cells and the regulation of intestinal inflammation. The gut immune receptor LRRC19 is involved in host-microbiota interactions LRRC19-associated chemokines control immune cell recruitment and gut inflammation Chemokines are regulated by REG protein-mediated gut microbiotas Lactobacillus may modulate the expression of REG proteins through LRRC19
Collapse
Affiliation(s)
- Shuisong Cao
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiaomin Su
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Benhua Zeng
- Department of Laboratory Animal Science, College of Basic Medicine Science, Third Military Medical University, Chongqing 404100, China
| | - Hui Yan
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Yugang Huang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Enlin Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Huan Yun
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuan Zhang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Feifei Liu
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Wenxia Li
- Department of Laboratory Animal Science, College of Basic Medicine Science, Third Military Medical University, Chongqing 404100, China
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medicine Science, Third Military Medical University, Chongqing 404100, China
| | - Yongzhe Che
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
81
|
Abstract
BACKGROUND Intestinal microbiota influences the progression of colitis-associated colorectal cancer. With diet being a key determinant of the gut microbial ecology, dietary interventions are an attractive avenue for the prevention of colitis-associated colorectal cancer. Curcumin is the most active constituent of the ground rhizome of the Curcuma longa plant, which has been demonstrated to have anti-inflammatory, antioxidative, and antiproliferative properties. METHODS Il10 mice on 129/SvEv background were used as a model of colitis-associated colorectal cancer. Starting at 10 weeks of age, wild-type or Il10 mice received 6 weekly intraperitoneal injections of azoxymethane (AOM) or phosphate-buffered saline (PBS) and were started on either a control or a curcumin-supplemented diet. Stools were collected every 4 weeks for microbial community analysis. Mice were killed at 30 weeks of age. RESULTS Curcumin-supplemented diet increased survival, decreased colon weight/length ratio, and, at 0.5%, entirely eliminated tumor burden. Although colonic histology indicated improvement with curcumin, no effects of mucosal immune responses have been observed in PBS/Il10 mice and limited effects were seen in AOM/Il10 mice. In wild-type and in Il10 mice, curcumin increased bacterial richness, prevented age-related decrease in alpha diversity, increased the relative abundance of Lactobacillales, and decreased Coriobacterales order. Taxonomic profile of AOM/Il10 mice receiving curcumin was more similar to those of wild-type mice than those fed control diet. CONCLUSIONS In AOM/Il10 model, curcumin reduced or eliminated colonic tumor burden with limited effects on mucosal immune responses. The beneficial effect of curcumin on tumorigenesis was associated with the maintenance of a more diverse colonic microbial ecology.
Collapse
|
82
|
Babickova J, Gardlik R. Pathological and therapeutic interactions between bacteriophages, microbes and the host in inflammatory bowel disease. World J Gastroenterol 2015; 21:11321-11330. [PMID: 26525290 PMCID: PMC4616208 DOI: 10.3748/wjg.v21.i40.11321] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/26/2015] [Accepted: 09/14/2015] [Indexed: 02/06/2023] Open
Abstract
The intestinal microbiome is a dynamic system of interactions between the host and its microbes. Under physiological conditions, a fine balance and mutually beneficial relationship is present. Disruption of this balance is a hallmark of inflammatory bowel disease (IBD). Whether an altered microbiome is the consequence or the cause of IBD is currently not fully understood. The pathogenesis of IBD is believed to be a complex interaction between genetic predisposition, the immune system and environmental factors. In the recent years, metagenomic studies of the human microbiome have provided useful data that are helping to assemble the IBD puzzle. In this review, we summarize and discuss current knowledge on the composition of the intestinal microbiota in IBD, host-microbe interactions and therapeutic possibilities using bacteria in IBD. Moreover, an outlook on the possible contribution of bacteriophages in the pathogenesis and therapy of IBD is provided.
Collapse
|
83
|
Zitvogel L, Galluzzi L, Viaud S, Vétizou M, Daillère R, Merad M, Kroemer G. Cancer and the gut microbiota: an unexpected link. Sci Transl Med 2015; 7:271ps1. [PMID: 25609166 DOI: 10.1126/scitranslmed.3010473] [Citation(s) in RCA: 329] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Changes in the interactions among the gut microbiota, intestinal epithelium, and host immune system are associated with many diseases, including cancer. We discuss how environmental factors infuence this cross-talk during oncogenesis and tumor progression and how manipulations of the gut microbiota might improve the clinical activity of anticancer agents.
Collapse
Affiliation(s)
- Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Center, F-94805 Villejuif, France. INSERM, U1015, CICBT507, F-94805 Villejuif, France.
| | - Lorenzo Galluzzi
- Gustave Roussy Comprehensive Cancer Center, F-94805 Villejuif, France. Equipe 11 Labellisée par la Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, F-75006 Paris, France. Université Paris Descartes/Paris V, Sorbonne Paris Cité, F-75006 Paris, France. INSERM, U1138, F-75006 Paris, France
| | - Sophie Viaud
- Gustave Roussy Comprehensive Cancer Center, F-94805 Villejuif, France. INSERM, U1015, CICBT507, F-94805 Villejuif, France
| | - Marie Vétizou
- Gustave Roussy Comprehensive Cancer Center, F-94805 Villejuif, France. INSERM, U1015, CICBT507, F-94805 Villejuif, France
| | - Romain Daillère
- Gustave Roussy Comprehensive Cancer Center, F-94805 Villejuif, France. INSERM, U1015, CICBT507, F-94805 Villejuif, France
| | - Miriam Merad
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Guido Kroemer
- Equipe 11 Labellisée par la Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, F-75006 Paris, France. Université Paris Descartes/Paris V, Sorbonne Paris Cité, F-75006 Paris, France. INSERM, U1138, F-75006 Paris, France. Pôle de Biologie, Hôpital Européen Georges Pompidou F-75015, AP-HP, Paris, France. Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Center, F-94805 Villejuif, France
| |
Collapse
|
84
|
Abstract
Investigations focused on the interplay between the human microbiome and cancer development, herein termed the 'oncobiome', have been growing at a rapid rate. However, these studies to date have primarily demonstrated associative relationships rather than causative ones. We pose the question of whether this emerging field of research is a 'mirage' without a clear picture, or truly represents a paradigm shift for cancer research. We propose the necessary steps needed to answer crucial questions and push the field forward to bring the mirage into a tangible reality.
Collapse
Affiliation(s)
- Ryan M Thomas
- Department of Surgery, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA ; Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Christian Jobin
- Department of Medicine and Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
85
|
Lévy J, Cacheux W, Bara MA, L'Hermitte A, Lepage P, Fraudeau M, Trentesaux C, Lemarchand J, Durand A, Crain AM, Marchiol C, Renault G, Dumont F, Letourneur F, Delacre M, Schmitt A, Terris B, Perret C, Chamaillard M, Couty JP, Romagnolo B. Intestinal inhibition of Atg7 prevents tumour initiation through a microbiome-influenced immune response and suppresses tumour growth. Nat Cell Biol 2015; 17:1062-73. [PMID: 26214133 DOI: 10.1038/ncb3206] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/18/2015] [Indexed: 02/07/2023]
Abstract
Here, we show that autophagy is activated in the intestinal epithelium in murine and human colorectal cancer and that the conditional inactivation of Atg7 in intestinal epithelial cells inhibits the formation of pre-cancerous lesions in Apc(+/-) mice by enhancing anti-tumour responses. The antibody-mediated depletion of CD8(+) T cells showed that these cells are essential for the anti-tumoral responses mediated by the inhibition of autophagy. We show that Atg7 deficiency leads to intestinal dysbiosis and that the microbiota is required for anticancer responses. In addition, Atg7 deficiency resulted in a stress response accompanied by metabolic defects, AMPK activation and p53-mediated cell-cycle arrest in tumour cells but not in normal tissue. This study reveals that the inhibition of autophagy within the epithelium may prevent the development and progression of colorectal cancer in genetically predisposed patients.
Collapse
Affiliation(s)
- Jonathan Lévy
- 1] Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris 75014, France [2] Institut National de la Sante et de la Recherche Médicale (INSERM), U1016, Paris 75014, France
| | - Wulfran Cacheux
- 1] Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris 75014, France [2] Institut National de la Sante et de la Recherche Médicale (INSERM), U1016, Paris 75014, France [3] Department of Medical Oncology, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France [4] Pharmacogenomics Unit, Department of Genetics, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Medhi Ait Bara
- 1] Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris 75014, France [2] Institut National de la Sante et de la Recherche Médicale (INSERM), U1016, Paris 75014, France
| | - Antoine L'Hermitte
- 1] Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris 75014, France [2] Institut National de la Sante et de la Recherche Médicale (INSERM), U1016, Paris 75014, France
| | - Patricia Lepage
- 1] Institut National de la Recherche Agronomique, Micalis UMR1319, Jouy-en-Josas 78352, France [2] AgroParisTech, Micalis UMR1319, 78350 Jouy-en-Josas, France
| | - Marie Fraudeau
- 1] Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris 75014, France [2] Institut National de la Sante et de la Recherche Médicale (INSERM), U1016, Paris 75014, France
| | - Coralie Trentesaux
- 1] Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris 75014, France [2] Institut National de la Sante et de la Recherche Médicale (INSERM), U1016, Paris 75014, France
| | - Julie Lemarchand
- 1] Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris 75014, France [2] Institut National de la Sante et de la Recherche Médicale (INSERM), U1016, Paris 75014, France
| | - Aurélie Durand
- 1] Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris 75014, France [2] Institut National de la Sante et de la Recherche Médicale (INSERM), U1016, Paris 75014, France
| | - Anne-Marie Crain
- 1] Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris 75014, France [2] Institut National de la Sante et de la Recherche Médicale (INSERM), U1016, Paris 75014, France [3] Université Paris Diderot, UFR Sciences du Vivant, Sorbonne Paris Cité, Paris 75013, France
| | - Carmen Marchiol
- 1] Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris 75014, France [2] Institut National de la Sante et de la Recherche Médicale (INSERM), U1016, Paris 75014, France
| | - Gilles Renault
- 1] Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris 75014, France [2] Institut National de la Sante et de la Recherche Médicale (INSERM), U1016, Paris 75014, France
| | - Florent Dumont
- 1] Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris 75014, France [2] Institut National de la Sante et de la Recherche Médicale (INSERM), U1016, Paris 75014, France
| | - Franck Letourneur
- 1] Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris 75014, France [2] Institut National de la Sante et de la Recherche Médicale (INSERM), U1016, Paris 75014, France
| | - Myriam Delacre
- 1] Université Lille Nord de France, Lille 59000, France [2] Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille 59800, France [3] Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Lille 59046, France [4] Institut National de la Santé et de la Recherche Médicale, Lille 59045, France
| | - Alain Schmitt
- 1] Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris 75014, France [2] Institut National de la Sante et de la Recherche Médicale (INSERM), U1016, Paris 75014, France
| | - Benoit Terris
- 1] Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris 75014, France [2] Institut National de la Sante et de la Recherche Médicale (INSERM), U1016, Paris 75014, France [3] Service d'Anatomie et Cytologie Pathologiques, AP-HP, Hôpital Cochin, Université Paris Descartes, Paris 75014, France
| | - Christine Perret
- 1] Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris 75014, France [2] Institut National de la Sante et de la Recherche Médicale (INSERM), U1016, Paris 75014, France
| | - Mathias Chamaillard
- 1] Université Lille Nord de France, Lille 59000, France [2] Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille 59800, France [3] Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Lille 59046, France [4] Institut National de la Santé et de la Recherche Médicale, Lille 59045, France
| | - Jean-Pierre Couty
- 1] Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris 75014, France [2] Institut National de la Sante et de la Recherche Médicale (INSERM), U1016, Paris 75014, France [3] Université Paris Diderot, UFR Sciences du Vivant, Sorbonne Paris Cité, Paris 75013, France
| | - Béatrice Romagnolo
- 1] Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris 75014, France [2] Institut National de la Sante et de la Recherche Médicale (INSERM), U1016, Paris 75014, France
| |
Collapse
|
86
|
Abstract
Humans depend on our commensal bacteria for nutritive, immune-modulating, and metabolic contributions to maintenance of health. However, this commensal community exists in careful balance that, if disrupted, enters dysbiosis; this has been shown to contribute to the pathogenesis of colon, gastric, esophageal, pancreatic, laryngeal, breast, and gallbladder carcinomas. This development is closely tied to host inflammation, which causes and is aggravated by microbial dysbiosis and increases vulnerability to pathogens. Advances in sequencing technology have increased our ability to catalog microbial species associated with various cancer types across the body. However, defining microbial biomarkers as cancer predictors presents multiple challenges, and existing studies identifying cancer-associated bacteria have reported inconsistent outcomes. Combining metabolites and microbiome analyses can help elucidate interactions between gut microbiota, metabolism, and the host. Ultimately, understanding how gut dysbiosis impacts host response and inflammation will be critical to creating an accurate picture of the role of the microbiome in cancer.
Collapse
|
87
|
Abstract
Inflammation has long been suspected to play a major role in the pathogenesis of cancer. Only recently, however, have some mechanisms of its tumor promoting effects become known. Microbes, both commensal and pathogenic, are critical regulators of the host immune system and, ultimately, of inflammation. Consequently, microbes have the potential power to influence tumor progression as well, through a wide variety of routes, including chronic activation of inflammation, alteration of tumor microenvironment, induction of genotoxic responses, and metabolism. In this review, we will provide a general overview of commensal microbiota, inflammation, and cancer, as well as how microbes fit into this emerging field.
Collapse
|
88
|
Dzutsev A, Goldszmid RS, Viaud S, Zitvogel L, Trinchieri G. The role of the microbiota in inflammation, carcinogenesis, and cancer therapy. Eur J Immunol 2014; 45:17-31. [PMID: 25328099 DOI: 10.1002/eji.201444972] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/19/2014] [Accepted: 10/13/2014] [Indexed: 12/11/2022]
Abstract
Commensal microorganisms colonize barrier surfaces of all multicellular organisms, including those of humans. For more than 500 million years, commensal microorganisms and their hosts have coevolved and adapted to each other. As a result, the commensal microbiota affects many immune and nonimmune functions of their hosts, and de facto the two together comprise one metaorganism. The commensal microbiota communicates with the host via biologically active molecules. Recently, it has been reported that microbial imbalance may play a critical role in the development of multiple diseases, such as cancer, autoimmune conditions, and increased susceptibility to infection. In this review, we focus on the role of the commensal microbiota in the development, progression, and immune evasion of cancer, as well as some modulatory effects on the treatment of cancer. In particular, we discuss the mechanisms of microbiota-mediated regulation of innate and adaptive immune responses to tumors, and the consequences on cancer progression and whether tumors subsequently become resistant or susceptible to different anticancer therapeutic regiments.
Collapse
Affiliation(s)
- Amiran Dzutsev
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA; Leidos Biomedical Research, Inc, Frederick, MD, USA
| | | | | | | | | |
Collapse
|
89
|
Abstract
Microbiome analysis has identified a state of microbial imbalance (dysbiosis) in patients with chronic intestinal inflammation and colorectal cancer. The bacterial phylum Proteobacteria is often overrepresented in these individuals, with Escherichia coli being the most prevalent species. It is clear that a complex interplay between the host, bacteria and bacterial genes is implicated in the development of these intestinal diseases. Understanding the basic elements of these interactions could have important implications for disease detection and management. Recent studies have revealed that E. coli utilizes a complex arsenal of virulence factors to colonize and persist in the intestine. Some of these virulence factors, such as the genotoxin colibactin, were found to promote colorectal cancer in experimental models. In this Review, we summarize key features of the dysbiotic states associated with chronic intestinal inflammation and colorectal cancer, and discuss how the dysregulated interplay between host and bacteria could favor the emergence of E. coli with pathological traits implicated in these pathologies.
Collapse
Affiliation(s)
- Ye Yang
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA. Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|