51
|
Førde JL, Reiten IN, Fladmark KE, Kittang AO, Herfindal L. A new software tool for computer assisted in vivo high-content analysis of transplanted fluorescent cells in intact zebrafish larvae. Biol Open 2022; 11:281291. [PMID: 36355409 PMCID: PMC9770244 DOI: 10.1242/bio.059530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
Acute myeloid leukemia and myelodysplastic syndromes are cancers of the bone marrow with poor prognosis in frail and older patients. To investigate cancer pathophysiology and therapies, confocal imaging of fluorescent cancer cells and their response to treatments in zebrafish larvae yields valuable information. While zebrafish larvae are well suited for confocal imaging, the lack of efficient processing of large datasets remains a severe bottleneck. To alleviate this problem, we present a software tool that segments cells from confocal images and track characteristics such as volume, location in the larva and fluorescent intensity on a single-cell basis. Using this software tool, we were able to characterise the responses of the cancer cell lines Molm-13 and MDS-L to established treatments. By utilizing the computer-assisted processing of confocal images as presented here, more information can be obtained while being less time-consuming and reducing the demand of manual data handling, when compared to a manual approach, thereby accelerating the pursuit of novel anti-cancer treatments. The presented software tool is available as an ImageJ java-plugin at https://zenodo.org/10.5281/zenodo.7383160 and the source code at https://github.com/Jfo004/ConfocalCellSegmentation.
Collapse
Affiliation(s)
- Jan-Lukas Førde
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway,Department of Internal Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Ingeborg Nerbø Reiten
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | | | - Astrid Olsnes Kittang
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway,Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Lars Herfindal
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway,Author for correspondence ()
| |
Collapse
|
52
|
Teixeira SA, Luzzi MDC, Martin ACBM, Duarte TT, Leal MDO, Teixeira GR, Reis MT, Junior CRA, Santos K, Melendez ME, da Silva DDCSA, Bernécule PN, Firmino HVL, Alves ALV, Guimarães DP, Borduqui JV, Laus AC, Mançano BM, Reis RM. The Barretos Cancer Hospital Animal Facility: Implementation and Results of a Dedicated Platform for Preclinical Oncology Models. Vet Sci 2022; 9:636. [PMID: 36423085 PMCID: PMC9699001 DOI: 10.3390/vetsci9110636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 03/17/2025] Open
Abstract
The Barretos Cancer Hospital Animal Facility (BCHAF) is a unique facility in Brazil exclusively dedicated to working with animal models for cancer research. In this article, we briefly present our modern facility and the main experiments performed, focusing on mutant strains of mice (PTCH-knockout and ApcMin mice), xenograft models, and patient-derived xenografts (PDXs). Our results show the progress and challenges in establishing these models and the need for having an appropriate representation of our cancer population to better understand tumor biology and to identify cancer biomarkers, which could be putatively targeted, allowing for personalized therapy.
Collapse
Affiliation(s)
- Silvia A. Teixeira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil
| | - Mayara de Cassia Luzzi
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil
| | | | - Terence Teixeira Duarte
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil
| | - Mônica de Oliveira Leal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil
| | - Gustavo Ramos Teixeira
- Department of Pathology, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil
- Barretos School of Health Sciences, Dr. Paulo Prata—FACISB, Barretos 14785-002, São Paulo, Brazil
| | - Monise Tadin Reis
- Department of Pathology, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil
| | | | - Karina Santos
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil
- Department of Radiology, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil
| | - Matias Eliseo Melendez
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil
- Molecular Carcinogenesis Program, National Cancer Institute, Rio de Janeiro 20231-050, Brazil
| | | | - Priscila Neves Bernécule
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil
- Barretos School of Health Sciences, Dr. Paulo Prata—FACISB, Barretos 14785-002, São Paulo, Brazil
| | - Higor Vinicius Lourenço Firmino
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil
- Barretos School of Health Sciences, Dr. Paulo Prata—FACISB, Barretos 14785-002, São Paulo, Brazil
| | - Ana Laura Vieira Alves
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil
| | - Denise Peixoto Guimarães
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil
- Department of Endoscopy, Barretos Cancer Hospital, Barretos 14780-000, São Paulo, Brazil
| | - João Vitor Borduqui
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil
- Barretos School of Health Sciences, Dr. Paulo Prata—FACISB, Barretos 14785-002, São Paulo, Brazil
| | - Ana Carolina Laus
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil
| | - Bruna Minniti Mançano
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil
- Department of Neurosurgery, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| |
Collapse
|
53
|
Krutilina RI, Hartman KL, Oluwalana D, Playa HC, Parke DN, Chen H, Miller DD, Li W, Seagroves TN. Sabizabulin, a Potent Orally Bioavailable Colchicine Binding Site Agent, Suppresses HER2+ Breast Cancer and Metastasis. Cancers (Basel) 2022; 14:5336. [PMID: 36358755 PMCID: PMC9658816 DOI: 10.3390/cancers14215336] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 07/30/2023] Open
Abstract
HER2+ breast cancer accounts for 15% of all breast cancer cases. Current frontline therapy for HER2+ metastatic breast cancer relies on targeted antibodies, trastuzumab and pertuzumab, combined with microtubule inhibitors in the taxane class (paclitaxel or docetaxel). It is well known that the clinical efficacy of taxanes is limited by the development of chemoresistance and hematological and neurotoxicities. The colchicine-binding site inhibitors (CBSIs) are a class of promising alternative agents to taxane therapy. Sabizabulin (formerly known as VERU-111) is a potent CBSI that overcomes P-gp-mediated taxane resistance, is orally bioavailable, and inhibits tumor growth and distant metastasis in triple negative breast cancer (TNBC). Herein, we demonstrate the efficacy of sabizabulin in HER2+ breast cancer. In vitro, sabizabulin inhibits the proliferation of HER2+ breast cancer cell lines with low nanomolar IC50 values, inhibits clonogenicity, and induces apoptosis in a concentration-dependent manner. In vivo, sabizabulin inhibits breast tumor growth in the BT474 (ER+/PR+/HER2+) xenograft model and a HER2+ (ER-/PR-) metastatic patient-derived xenograft (PDX) model, HCI-12. We demonstrate that sabizabulin is a promising alternative agent to target tubulin in HER2+ breast cancer with similar anti-metastatic efficacy to paclitaxel, but with the advantage of oral bioavailability and lower toxicity than taxanes.
Collapse
Affiliation(s)
- Raisa I. Krutilina
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Kelli L. Hartman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Damilola Oluwalana
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Hilaire C. Playa
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Deanna N. Parke
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Duane D. Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Drug Discovery Center, College of Pharmacy, University of Tennessee, Memphis, TN 38103, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Drug Discovery Center, College of Pharmacy, University of Tennessee, Memphis, TN 38103, USA
| | - Tiffany N. Seagroves
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| |
Collapse
|
54
|
Li H, Liu P, Li D, Wang Z, Ding Z, Zhou M, Chen X, Miao M, Ding J, Lin W, Liu Y, Zha X. STAT3/miR-130b-3p/MBNL1 feedback loop regulated by mTORC1 signaling promotes angiogenesis and tumor growth. J Exp Clin Cancer Res 2022; 41:297. [PMID: 36217202 PMCID: PMC9552455 DOI: 10.1186/s13046-022-02513-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Aberrantly activated mammalian target of rapamycin complex 1 (mTORC1) plays a vital role in tumor angiogenesis, but its precise mechanisms are still unclear. METHODS Micro-RNA-130b-3p (miR-130b-3p) expression in mTORC1-activated and control cells was examined by quantitative real-time PCR (qRT-PCR). MiR-130b-3p levels and their correlation with mTORC1 activity were evaluated by analyzing publicly available databases and in-house head and neck squamous cell carcinoma (HNSCC) tissues. The role of miR-130b-3p in mTORC1-mediated angiogenesis and tumor growth was examined using tube formation assay, chicken chorioallantoic membrane assay, cell line - derived xenograft models, and an HNSCC patient-derived xenograft (PDX) model. The regulatory mechanisms among signal transducer and activator of transcription 3 (STAT3), miR-130b-3p, and muscleblind-like protein 1 (MBNL1) were investigated via bioinformatics analyses, qRT-PCR, western blot, RNA immunoprecipitation, immunofluorescence, luciferase reporter assay, and chromatin immunoprecipitation assay. RESULTS Elevated miR-130b-3p enhanced the angiogenic and tumorigenic abilities of mTORC1-activated cells both in vitro and in vivo. STAT3, a downstream effector of mTORC1, transactivated miR-130b-3p by direct binding promoter of the miR-130b gene. MBNL1 was identified as a direct target of miR-130b-3p. MBNL1 depletion rescued the compromised angiogenesis and tumor growth caused by miR-130b-3p inhibition. MiR-130b-3p levels were significantly upregulated and positively correlated with mTORC1 signaling in multiple cancers. MiR-130b-3p inhibition attenuated tumor angiogenesis and growth in an HNSCC PDX model. MBNL1 feedback inhibited STAT3 activation in mTORC1-activated cells. CONCLUSIONS The STAT3/miR-130b-3p/MBNL1 feedback loop plays a vital role in mTORC1-mediated angiogenesis and tumor progression. This pathway could be targeted for therapeutic intervention of mTORC1-related cancers.
Collapse
Affiliation(s)
- Hongwu Li
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- Anhui Public Health Clinical Center, Hefei, 230032, China
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Ping Liu
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- Anhui Public Health Clinical Center, Hefei, 230032, China
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Dapeng Li
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Zixi Wang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Zhao Ding
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Meng Zhou
- Department of Pharmacy, Genertec Universal Medical Maanshan Shiqiye Hospital, Maanshan, 243000, Anhui Province, China
| | - Xu Chen
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Manli Miao
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Junli Ding
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Wei Lin
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| | - Yehai Liu
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| | - Xiaojun Zha
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
55
|
Gohara S, Shinohara K, Yoshida R, Kariya R, Tazawa H, Hashimoto M, Inoue J, Kubo R, Nakashima H, Arita H, Kawaguchi S, Yamana K, Nagao Y, Iwamoto A, Sakata J, Matsuoka Y, Takeshita H, Hirayama M, Kawahara K, Nagata M, Hirosue A, Kuwahara Y, Fukumoto M, Okada S, Urata Y, Fujiwara T, Nakayama H. An oncolytic virus as a promising candidate for the treatment of radioresistant oral squamous cell carcinoma. Mol Ther Oncolytics 2022; 27:141-156. [PMID: 36381653 PMCID: PMC9619351 DOI: 10.1016/j.omto.2022.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/04/2022] [Indexed: 11/21/2022] Open
Abstract
We evaluated the usefulness of an oncolytic virus (Suratadenoturev; OBP-301) against radioresistant oral squamous cell carcinoma. We confirmed the expression of human telomerase reverse transcriptase and the coxsackievirus and adenovirus receptor in cell lines. Also, we examined the potential presence in a patient who has received existing therapy that is amenable to treatment with OBP-301. We evaluated: (1) the antitumor effects of OBP-301 alone and in combination with radiotherapy on radioresistant cell lines, (2) the molecular mechanism underlying the radiosensitizing effect and cell death increased by the combination therapy, and (3) the antitumor effect of the combination therapy in vivo using xenograft models (a radioresistant cell line-derived xenograft in mouse and a patient-derived xenograft). Human telomerase reverse transcriptase and the coxsackievirus and adenovirus receptor were expressed in all cell lines. OBP-301 decreased the proliferative activity of these cell lines in a concentration-dependent manner, and significantly enhanced the antitumor effect of irradiation. Phosphorylated STAT3 and its downstream molecules, which correlated with apoptosis and autophagy, showed significant changes in expression after treatment with OBP-301. The combination therapy exerted a significant antitumor effect versus radiotherapy alone in both xenograft models. Combination of OBP-301 with radiotherapy exerts a synergistic effect and may represent a promising treatment for radioresistant oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Shunsuke Gohara
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kosuke Shinohara
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryoji Yoshida
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Corresponding author Ryoji Yoshida, Department of Oral and Maxillofacial Surgery, Graduate School of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto 860-8556, Japan.
| | | | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masashi Hashimoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Junki Inoue
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryuta Kubo
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hikaru Nakashima
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hidetaka Arita
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Sho Kawaguchi
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Keisuke Yamana
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuka Nagao
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Asuka Iwamoto
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Junki Sakata
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuichiro Matsuoka
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hisashi Takeshita
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masatoshi Hirayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenta Kawahara
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masashi Nagata
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Akiyuki Hirosue
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshikazu Kuwahara
- Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Manabu Fukumoto
- Pathology Informatics Team, RIKEN Center for Advanced Intelligence Project, Chuo-ku, Tokyo, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection and Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuo Urata
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection and Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hideki Nakayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
56
|
Basheer F, Dhar P, Samarasinghe RM. Zebrafish Models of Paediatric Brain Tumours. Int J Mol Sci 2022; 23:9920. [PMID: 36077320 PMCID: PMC9456103 DOI: 10.3390/ijms23179920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Paediatric brain cancer is the second most common childhood cancer and is the leading cause of cancer-related deaths in children. Despite significant advancements in the treatment modalities and improvements in the 5-year survival rate, it leaves long-term therapy-associated side effects in paediatric patients. Addressing these impairments demands further understanding of the molecularity and heterogeneity of these brain tumours, which can be demonstrated using different animal models of paediatric brain cancer. Here we review the use of zebrafish as potential in vivo models for paediatric brain tumour modelling, as well as catalogue the currently available zebrafish models used to study paediatric brain cancer pathophysiology, and discuss key findings, the unique attributes that these models add, current challenges and therapeutic significance.
Collapse
Affiliation(s)
- Faiza Basheer
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Instiute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3220, Australia
| | - Poshmaal Dhar
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Instiute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3220, Australia
| | - Rasika M. Samarasinghe
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Instiute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3220, Australia
| |
Collapse
|
57
|
Construction of a Humanized PBMC-PDX Model to Study the Efficacy of a Bacterial Marker in Lung Cancer Immunotherapy. DISEASE MARKERS 2022; 2022:1479246. [PMID: 36072895 PMCID: PMC9441396 DOI: 10.1155/2022/1479246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/22/2022] [Indexed: 11/23/2022]
Abstract
Commensal microbiome is a key factor of lung cancer immunotherapy efficacy. Elucidating the role of specific strains as bacterial markers in immunotherapy has drawn great attention from the academia. At present, most preclinical studies about the relationship between bacterial markers and immunotherapy rely on the syngeneic mouse models. However, mice differ greatly from humans in immune system and tumor characteristics. In this study, humanized mouse models based on peripheral blood mononuclear cells (PBMCs) immune reconstitution and lung cancer cell line-derived xenograft (CDX) or patient-derived xenograft (PDX) were constructed. The PBMC-PDX model was shown to be superior to the PBMC-CDX model in preserving tumor heterogeneity and construction time-saving. Through optimizing the experimental process, the time it took for humanized models to evaluate the effect of cancer treatment was reduced to 42 days. Next, by utilizing PBMC-PDX mice treated with antibiotics (ATB), the role of Bifidobacterium longum in lung cancer immunotherapy was studied. It was found that although both Bifidobacterium longum and immunotherapy drug pembrolizumab alone showed suppressing tumor growth, the efficacy of pembrolizumab was attenuated when administrated to mice colonized with Bifidobacterium longum. Further exploration revealed that Bifidobacterium longum caused significant changes in the proportion of human CD45+ cells in the PBMC-PDX model. The PBMC-PDX model has the potential to be applied as an efficient platform to support evaluation of bacterial markers in immunotherapy research and facilitate development of precision medicine targeting human commensal bacteria.
Collapse
|
58
|
Moro CF, Selvam AK, Ghaderi M, Pimenoff VN, Gerling M, Bozóky B, Elduayen SP, Dillner J, Björnstedt M. Drug-induced tumor-specific cytotoxicity in a whole tissue ex vivo model of human pancreatic ductal adenocarcinoma. Front Oncol 2022; 12:965182. [PMID: 36059619 PMCID: PMC9436406 DOI: 10.3389/fonc.2022.965182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer. PDAC has a dismal prognosis and an inherent resistance to cytostatic drugs. The lack of reliable experimental models is a severe limitation for drug development targeting PDAC. We have employed a whole tissue ex vivo culture model to explore the effect of redox-modulation by sodium selenite on the viability and growth of PDAC. Drug-resistant tumors are more vulnerable to redox-active selenium compounds because of high metabolic activity and redox imbalance. Sodium selenite efficiently and specifically reduced PDAC cell viability (p <0.02) (n=8) and decreased viable de novo tumor cell outgrowth (p<0.05) while preserving non-neoplastic tissues. Major cellular responses (damaged tumor cells > 90%, tumor regression grades III-IV according to Evans) were observed for sodium selenite concentrations between 15-30 µM. Moreover, selenium levels used in this study were significantly below the previously reported maximum tolerated dose for humans. Transcriptome data analysis revealed decreased expression of genes known to drive PDAC growth and metastatic potential (CEMIP, DDR2, PLOD2, P4HA1) while the cell death-inducing genes (ATF3, ACHE) were significantly upregulated (p<0.0001). In conclusion, we report that sodium selenite has an extraordinary efficacy and specificity against drug-resistant pancreatic cancer in an organotypic slice culture model. Our ex vivo organotypic tissue slice culture model can be used to test a variety of drug candidates for swift and reliable drug responses to individual PDAC cases.
Collapse
Affiliation(s)
- Carlos Fernández Moro
- Department of Laboratory Medicine, Division of Pathology F46, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Arun Kumar Selvam
- Department of Laboratory Medicine, Division of Pathology F46, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Mehran Ghaderi
- Department of Laboratory Medicine, Division of Pathology F46, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Ville N. Pimenoff
- Department of Laboratory Medicine, Division of Pathology F46, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Marco Gerling
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Tema Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Béla Bozóky
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Soledad Pouso Elduayen
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Joakim Dillner
- Department of Laboratory Medicine, Division of Pathology F46, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Björnstedt
- Department of Laboratory Medicine, Division of Pathology F46, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
- *Correspondence: Mikael Björnstedt,
| |
Collapse
|
59
|
Tomar A, Uysal-Onganer P, Basnett P, Pati U, Roy I. 3D Disease Modelling of Hard and Soft Cancer Using PHA-Based Scaffolds. Cancers (Basel) 2022; 14:3549. [PMID: 35884609 PMCID: PMC9321847 DOI: 10.3390/cancers14143549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
Tumour cells are shown to change shape and lose polarity when they are cultured in 3D, a feature typically associated with tumour progression in vivo, thus making it significant to study cancer cells in an environment that mimics the in vivo milieu. In this study we established hard (MCF7 and MDA-MB-231, breast cancer) and soft (HCT116, colon cancer) 3D cancer tumour models utilizing a blend of P(3HO-co-3HD) and P(3HB). P(3HO-co-3HD) and P(3HB) belong to a group of natural biodegradable polyesters, PHAs, that are synthesised by microorganisms. The 3D PHA scaffolds produced, with a pore size of 30 to 300 µm, allow for nutrients to diffuse within the scaffold and provide the cells with the flexibility to distribute evenly within the scaffold and grow within the pores. Interestingly, by Day 5, MDA-MB-231 showed dispersed growth in clusters, and MCF7 cells formed an evenly dispersed dense layer, while HCT116 formed large colonies within the pockets of the 3D PHA scaffolds. Our results show Epithelial Mesenchymal Transition (EMT) marker gene expression profiles in the hard tumour cancer models. In the 3D-based PHA scaffolds, MDA-MB-231 cells expressed higher levels of Wnt-11 and mesenchymal markers, such as Snail and its downstream gene Vim mRNAs, while MCF7 cells exhibited no change in their expression. On the other hand, MCF7 cells exhibited a significantly increased E-Cadherin expression as compared to MDA-MB-231 cells. The expression levels of EMT markers were comparative to their expression reported in the tumour samples, making them good representative of cancer models. In future these models will be helpful in mimicking hypoxic tumours, in studying gene expression, cellular signalling, angiogenesis and drug response more accurately than 2D and perhaps other 3D models.
Collapse
Affiliation(s)
- Akanksha Tomar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India;
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London W1W 6UW, UK;
| | - Pooja Basnett
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London W1W 6XH, UK;
| | - Uttam Pati
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India;
| | - Ipsita Roy
- Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
60
|
The cell-line-derived subcutaneous tumor model in preclinical cancer research. Nat Protoc 2022; 17:2108-2128. [PMID: 35859135 DOI: 10.1038/s41596-022-00709-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 03/31/2022] [Indexed: 01/09/2023]
Abstract
Tumor-bearing experimental animals are essential for preclinical cancer drug development. A broad range of tumor models is available, with the simplest and most widely used involving a tumor of mouse or human origin growing beneath the skin of a mouse: the subcutaneous tumor model. Here, we outline the different types of in vivo tumor model, including some of their advantages and disadvantages and how they fit into the drug-development process. We then describe in more detail the subcutaneous tumor model and key steps needed to establish it in the laboratory, namely: choosing the mouse strain and tumor cells; cell culture, preparation and injection of tumor cells; determining tumor volume; mouse welfare; and an appropriate experimental end point. The protocol leads to subcutaneous tumor growth usually within 1-3 weeks of cell injection and is suitable for those with experience in tissue culture and mouse experimentation.
Collapse
|
61
|
Shi C, Gu Z, Xu S, Ju H, Wu Y, Han Y, Li J, Li C, Wu J, Wang L, Li J, Zhou G, Ye W, Ren G, Zhang Z, Zhou R. Candidate therapeutic agents in a newly established triple wild-type mucosal melanoma cell line. Cancer Commun (Lond) 2022; 42:627-647. [PMID: 35666052 PMCID: PMC9257989 DOI: 10.1002/cac2.12315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/03/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mucosal melanoma has characteristically distinct genetic features and typically poor prognosis. The lack of representative mucosal melanoma models, especially cell lines, has hindered translational research on this melanoma subtype. In this study, we aimed to establish and provide the biological properties, genomic features and the pharmacological profiles of a mucosal melanoma cell line that would contribute to the understanding and treatment optimization of molecularly-defined mucosal melanoma subtype. METHODS The sample was collected from a 67-year-old mucosal melanoma patient and processed into pieces for the establishment of cell line and patient-derived xenograft (PDX) model. The proliferation and tumorigenic property of cancer cells from different passages were evaluated, and whole-genome sequencing (WGS) was performed on the original tumor, PDX, established cell line, and the matched blood to confirm the establishment and define the genomic features of this cell line. AmpliconArchitect was conducted to depict the architecture of amplified regions detected by WGS. High-throughput drug screening (HTDS) assay including a total of 103 therapeutic agents was implemented on the established cell line, and selected candidate agents were validated in the corresponding PDX model. RESULTS A mucosal melanoma cell line, MM9H-1, was established which exhibited robust proliferation and tumorigenicity after more than 100 serial passages. Genomic analysis of MM9H-1, corresponding PDX, and the original tumor showed genetic fidelity across genomes, and MM9H-1 was defined as a triple wild-type (TWT) melanoma subtype lacking well-characterized "driver mutations". Instead, the amplification of several oncogenes, telomerase reverse transcriptase (TERT), v-Raf murine sarcoma viral oncogene homolog B1 (BRAF), melanocyte Inducing transcription factor (MITF) and INO80 complex ATPase subunit (INO80), via large-scale genomic rearrangement potentially contributed to oncogenesis of MM9H-1. Moreover, HTDS identified proteasome inhibitors, especially bortezomib, as promising therapeutic candidates for MM9H-1, which was verified in the corresponding PDX model in vivo. CONCLUSIONS We established and characterized a new mucosal melanoma cell line, MM9H-1, and defined this cell line as a TWT melanoma subtype lacking well-characterized "driver mutations". The MM9H-1 cell line could be adopted as a unique model for the preclinical investigation of mucosal melanoma.
Collapse
|
62
|
Zhang T, Li S, Li J, Yin F, Hua Y, Wang Z, Wang H, Zuo D, Xu J, Cai Z. Pectolinarigenin acts as a potential anti-osteosarcoma agent via mediating SHP-1/JAK2/STAT3 signaling. Biomed Pharmacother 2022; 153:113323. [PMID: 35752008 DOI: 10.1016/j.biopha.2022.113323] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/10/2022] [Accepted: 06/20/2022] [Indexed: 11/28/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) plays essential roles in cancer progression and has been considered as a promising target for cancer therapy. Here, we used a dual luciferase assay to identify that pectolinarigenin inhibited STAT3 transcriptional activity. Further, results showed pectolinarigenin inhibited constitutive and IL6 induced STAT3 signaling, diminished the accumulation of STAT3 in the nucleus, dimerization and blocked STAT3 DNA binding activity. Mechanism investigations indicated that pectolinarigenin disturbed the STAT3/DNMT1/HDAC1 complex formation in the promoter region of SHP-1, which reversely mediates STAT3 signaling, leading to the upregulation of SHP-1 expression in osteosarcoma. We also found pectolinarigenin significantly suppressed osteosarcoma growth, induced apoptosis. In addition, pectolinarigenin blocked tumor cells migration, invasion and reserved EMT phenotype. In spontaneous tibial injection and patient-derived xenograft models of osteosarcoma, we identified administration (i.p.) of pectolinarigenin (20 mg/kg/2 days and 50 mg/kg/2 days) blocked STAT3 activation and disturbed tumor growth and metastasis with superior pharmacodynamic properties. Taken together, our findings demonstrate that pectolinarigenin may be a candidate for osteosarcoma intervention linked to its STAT3 signaling inhibitory activity.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China.
| | - Suoyuan Li
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China; Suzhou Municipal Hospital, Suzhou, PR China
| | - Jingjie Li
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China
| | - Fei Yin
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China
| | - Zhuoying Wang
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China
| | - Hongsheng Wang
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China
| | - Dongqing Zuo
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China
| | - Jing Xu
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China.
| |
Collapse
|
63
|
Faria CC, Cascão R, Custódia C, Paisana E, Carvalho T, Pereira P, Roque R, Pimentel J, Miguéns J, Cortes-Ciriano I, Barata JT. Patient-derived models of brain metastases recapitulate human disseminated disease. Cell Rep Med 2022; 3:100623. [PMID: 35584628 PMCID: PMC9133464 DOI: 10.1016/j.xcrm.2022.100623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 02/01/2022] [Accepted: 04/08/2022] [Indexed: 12/02/2022]
Abstract
Dissemination of cancer cells from primary tumors to the brain occurs in many cancer patients, increasing morbidity and death. There is an unmet medical need to develop translational platforms to evaluate therapeutic responses. Toward this goal, we established a library of 23 patient-derived xenografts (PDXs) of brain metastases (BMs) from eight distinct primary tumors. In vivo tumor formation correlates with patients’ poor survival. Mouse subcutaneous xenografts develop spontaneous metastases and intracardiac PDXs increase dissemination to the CNS, both models mimicking the dissemination pattern of the donor patient. We test the FDA-approved drugs buparlisib (pan-PI3K inhibitor) and everolimus (mTOR inhibitor) and show their efficacy in treating our models. Finally, we show by RNA sequencing that human BMs and their matched PDXs have similar transcriptional profiles. Overall, these models of BMs recapitulate the biology of human metastatic disease and can be valuable translational platforms for precision medicine. Established PDXs of brain metastasis from multiple cancers PDXs recapitulate the dissemination pattern of patient tumors Patient-derived models of brain metastases are valuable to test anticancer drugs Human brain metastases and their PDXs retain similar transcriptional profiles
Collapse
Affiliation(s)
- Claudia C Faria
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal.
| | - Rita Cascão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Carlos Custódia
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Eunice Paisana
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Tânia Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Pereira
- Laboratory of Neuropathology, Neurology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
| | - Rafael Roque
- Laboratory of Neuropathology, Neurology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
| | - José Pimentel
- Laboratory of Neuropathology, Neurology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
| | - José Miguéns
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
| | - Isidro Cortes-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK
| | - João T Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
64
|
Xu H, Jiao D, Liu A, Wu K. Tumor organoids: applications in cancer modeling and potentials in precision medicine. J Hematol Oncol 2022; 15:58. [PMID: 35551634 PMCID: PMC9103066 DOI: 10.1186/s13045-022-01278-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/28/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer is a top-ranked life-threatening disease with intratumor heterogeneity. Tumor heterogeneity is associated with metastasis, relapse, and therapy resistance. These factors contribute to treatment failure and an unfavorable prognosis. Personalized tumor models faithfully capturing the tumor heterogeneity of individual patients are urgently needed for precision medicine. Advances in stem cell culture have given rise to powerful organoid technology for the generation of in vitro three-dimensional tissues that have been shown to more accurately recapitulate the structures, specific functions, molecular characteristics, genomic alterations, expression profiles, and tumor microenvironment of primary tumors. Tumoroids in vitro serve as an important component of the pipeline for the discovery of potential therapeutic targets and the identification of novel compounds. In this review, we will summarize recent advances in tumoroid cultures as an excellent tool for accurate cancer modeling. Additionally, vascularization and immune microenvironment modeling based on organoid technology will also be described. Furthermore, we will summarize the great potential of tumor organoids in predicting the therapeutic response, investigating resistance-related mechanisms, optimizing treatment strategies, and exploring potential therapies. In addition, the bottlenecks and challenges of current tumoroids will also be discussed in this review.
Collapse
Affiliation(s)
- Hanxiao Xu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dechao Jiao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Aiguo Liu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kongming Wu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. .,Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
65
|
Shukla P, Yeleswarapu S, Heinrich M, Prakash J, Pati F. Mimicking Tumor Microenvironment by 3D Bioprinting: 3D Cancer Modeling. Biofabrication 2022; 14. [PMID: 35512666 DOI: 10.1088/1758-5090/ac6d11] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/05/2022] [Indexed: 11/12/2022]
Abstract
The tumor microenvironment typically comprises cancer cells, tumor vasculature, stromal components like fibroblasts, and host immune cells that assemble to support tumorigenesis. However, preexisting classic cancer models like 2D cell culture methods, 3D cancer spheroids, and tumor organoids seem to lack essential tumor microenvironment components. 3D bioprinting offers enormous advantages for developing in vitro tumor models by allowing user-controlled deposition of multiple biomaterials, cells, and biomolecules in a predefined architecture. This review highlights the recent developments in 3D cancer modeling using different bioprinting techniques to recreate the TME. 3D bioprinters enable fabrication of high-resolution microstructures to reproduce TME intricacies. Furthermore, 3D bioprinted models can be applied as a preclinical model for versatile research applications in the tumor biology and pharmaceutical industries. These models provide an opportunity to develop high-throughput drug screening platforms and can further be developed to suit individual patient requirements hence giving a boost to the field of personalized anti-cancer therapeutics. We underlined the various ways the existing studies have tried to mimic the TME, mimic the hallmark events of cancer growth and metastasis within the 3D bioprinted models and showcase the 3D drug-tumor interaction and further utilization of such models to develop personalized medicine.
Collapse
Affiliation(s)
- Priyanshu Shukla
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana, 502285, INDIA
| | - Sriya Yeleswarapu
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana, 502285, INDIA
| | - Marcel Heinrich
- Department of Biomaterials, Science and Technology, University of Twente Faculty of Science and Technology, Department of Biomaterials, Science and Technology, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7500AE, Enschede, The Netherlands, Enschede, Overijssel, 7500 AE, NETHERLANDS
| | - Jai Prakash
- Department of Biomaterials, Science and Technology, University of Twente Faculty of Science and Technology, Department of Biomaterials, Science and Technology, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7500AE, Enschede, The Netherlands, Enschede, Overijssel, 7500 AE, NETHERLANDS
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana, 502285, INDIA
| |
Collapse
|
66
|
Luo CK, Chou PH, Ng SK, Lin WY, Wei TT. Cannabinoids orchestrate cross-talk between cancer cells and endothelial cells in colorectal cancer. Cancer Gene Ther 2022; 29:597-611. [PMID: 34007062 DOI: 10.1038/s41417-021-00346-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023]
Abstract
Medical marijuana has been approved by the FDA for treating chemotherapy-induced nausea and vomiting. However, less is known about its direct effects on tumor cells and the tumor microenvironment. In this study, RNA-sequencing datasets in the NCBI GEO repository were first analyzed; upregulation of cannabinoid receptors was observed in both primary and metastatic colorectal cancer (CRC) tumor tissues. An increase of cannabinoid receptors was also found in patients with CRC, azoxymethane/dextran sulfate sodium-induced CRC and CRC metastatic mouse models. Δ9-Tetrahydrocannabinol (Δ9-THC)-induced tumor progression in both primary and metastatic mouse models and also increased angiogenesis. A human growth factor antibody array indicated that Δ9-THC promoted the secretion of angiogenic growth factors in CRC, leading to the induction of tube formation and migration in human-induced pluripotent stem cell-derived vascular endothelial cells. The nuclear translocation of STAT1 played important roles in Δ9-THC-induced angiogenesis and tumor progression. Pharmacological treatment with STAT1 antagonist or abrogation of STAT1 with CRISPR/Cas9-based strategy rescued those effects of Δ9-THC in CRC. This study demonstrates that marijuana might increase the risk of CRC progression and that inhibition of STAT1 is a potential strategy for attenuating these side effects.
Collapse
Affiliation(s)
- Cong-Kai Luo
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Hsuan Chou
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shang-Kok Ng
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Yen Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzu-Tang Wei
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
67
|
Baskar G, Palaniyandi T, Viswanathan S, Rajendran BK, Ravi M, Sivaji A. Development of patient derived organoids for cancer drug screening applications. Acta Histochem 2022; 124:151895. [PMID: 35486967 DOI: 10.1016/j.acthis.2022.151895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 12/15/2022]
Abstract
Cancer is a disease characterised by abnormal cell growth that can invade or spread to other regions of the body. Organoids are three-dimensional ex vivo tissue cultures made from embryonic stem cells, induced pluripotent stem cells, progenitor cells or tissue that serve as a physiological model for cancer research. These are designed to recapitulate the in vivo properties of tumours. Importantly, effective recapitulation of the structure of tissues and function is believed to predict patient response, allowing for the creation of personalised therapy in a timely manner that may be used in the clinic. This Review discusses the pre-clinical model and different types of human organoids as models for the development of high throughput drug screening and also aims to highlight how organoids are shaping the future of cancer research.
Collapse
Affiliation(s)
- Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai, Tamil nadu, India
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai, Tamil nadu, India.
| | - Sandhiya Viswanathan
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai, Tamil nadu, India
| | | | - Maddaly Ravi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil nadu, India
| | - Asha Sivaji
- Department of Biochemistry, DKM College for Women, Vellore, Tamil nadu, India
| |
Collapse
|
68
|
Comparison of clonal architecture between primary and immunodeficient mouse-engrafted acute myeloid leukemia cells. Nat Commun 2022; 13:1624. [PMID: 35338146 PMCID: PMC8956585 DOI: 10.1038/s41467-022-29304-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 03/02/2022] [Indexed: 01/23/2023] Open
Abstract
Patient-derived xenografts (PDX) are widely used as human cancer models. Previous studies demonstrated clonal discordance between PDX and primary cells. However, in acute myeloid leukemia (AML)-PDX models, the significance of the clonal dynamics occurring in PDX remains unclear. By evaluating changes in the variant allele frequencies (VAF) of somatic mutations in serial samples of paired primary AML and their PDX bone marrow cells, we identify the skewing engraftment of relapsed or refractory (R/R) AML clones in 57% of PDX models generated from multiclonal AML cells at diagnosis, even if R/R clones are minor at <5% of VAF in patients. The event-free survival rate of patients whose AML cells successfully engraft in PDX models is consistently lower than that of patients with engraftment failure. We herein demonstrate that primary AML cells including potentially chemotherapy-resistant clones dominantly engraft in AML-PDX models and they enrich pre-existing treatment-resistant subclones.
Collapse
|
69
|
Ikeda-Imafuku M, Wang LLW, Rodrigues D, Shaha S, Zhao Z, Mitragotri S. Strategies to improve the EPR effect: A mechanistic perspective and clinical translation. J Control Release 2022; 345:512-536. [PMID: 35337939 DOI: 10.1016/j.jconrel.2022.03.043] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
Abstract
Many efforts have been made to achieve targeted delivery of anticancer drugs to enhance their efficacy and to reduce their adverse effects. These efforts include the development of nanomedicines as they can selectively penetrate through tumor blood vessels through the enhanced permeability and retention (EPR) effect. The EPR effect was first proposed by Maeda and co-workers in 1986, and since then various types of nanoparticles have been developed to take advantage of the phenomenon with regards to drug delivery. However, the EPR effect has been found to be highly variable and thus unreliable due to the complex tumor microenvironment. Various physical and pharmacological strategies have been explored to overcome this challenge. Here, we review key advances and emerging concepts of such EPR-enhancing strategies. Furthermore, we analyze 723 clinical trials of nanoparticles with EPR enhancers and discuss their clinical translation.
Collapse
Affiliation(s)
- Mayumi Ikeda-Imafuku
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA
| | - Lily Li-Wen Wang
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Danika Rodrigues
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA
| | - Suyog Shaha
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA; Translational Oncology Program, University of Illinois Cancer Center, Chicago, IL 60612, USA.
| | - Samir Mitragotri
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA.
| |
Collapse
|
70
|
Li C, Guan X, Jing H, Xiao X, Jin H, Xiong J, Ai S, Wang Y, Su T, Sun G, Fu T, Wang Y, Guo S, Liang P. Circular RNA circBFAR promotes glioblastoma progression by regulating a miR-548b/FoxM1 axis. FASEB J 2022; 36:e22183. [PMID: 35202487 DOI: 10.1096/fj.202101307r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/30/2021] [Accepted: 01/18/2022] [Indexed: 01/04/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive type of tumor of the primary nervous system. Treatment options for GBM include surgery, chemotherapy, and radiation therapy; however, the clinical outcomes are poor, with a high rate of recurrence. An increasing number of studies have shown that circular RNAs (circRNAs) serve important roles in several types of cancer. Gene Expression Omnibus (GEO) database was utilized to identify the differentially expressed circRNAs and their biological functions. Then, we detected the circular RNA bifunctional apoptosis regulator (circBFAR) was significantly increased in three GEO datasets. However, the role of circBFAR has not been reported in GBM. In this study, the expression of circBFAR was significantly increased both in GBM tissues or cell lines and was negatively correlated with overall survival in patients with GBM. Knockdown of circBFAR inhibited proliferation and invasion both in vitro and in vivo. Increased expression of circBFAR resulted in a reduction of miR-548b expression in glioma cells. A luciferase reporter and RIP assay indicated that miR-548b was a direct target of circBFAR, and miR-548b may negatively regulate the expression of FoxM1. Rescue experiments showed that overexpression of FoxM1 could counter the effect of circBFAR silencing on the proliferation and invasion of glioma cell lines. Moreover, we identified that circBFAR regulates FoxM1 by interacting with miR-548b in glioma cells. In conclusion, the present study demonstrated that a circBFAR/miR-548b/FoxM1 axis regulates the development of GBM and highlights potentially novel therapeutic targets for the treatment of GBM.
Collapse
Affiliation(s)
- Chenlong Li
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Guan
- Animal Laboratory Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hanguang Jing
- Breast Surgery, Lin Yi Famous Doctor Studio, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Xu Xiao
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hua Jin
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jinsheng Xiong
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Siqi Ai
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingjie Wang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tianqi Su
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guiyin Sun
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tianjiao Fu
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yujie Wang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shouli Guo
- Animal Experiment Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng Liang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
71
|
Yuan C, Zhao X, Wangmo D, Alshareef D, Gates TJ, Subramanian S. Tumor models to assess immune response and tumor-microbiome interactions in colorectal cancer. Pharmacol Ther 2022; 231:107981. [PMID: 34480964 PMCID: PMC8844062 DOI: 10.1016/j.pharmthera.2021.107981] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Abstract
Despite significant advances over the past 2 decades in preventive screening and therapy aimed at improving patient survival, colorectal cancer (CRC) remains the second most common cause of cancer death in the United States. The average 5-year survival rate of CRC patients with positive regional lymph nodes is only 40%, while less than 5% of patients with distant metastases survive beyond 5 years. There is a critical need to develop novel therapies that can improve overall survival in patients with poor prognoses, particularly since 60% of them are diagnosed at an advanced stage. Pertinently, immune checkpoint blockade therapy has dramatically changed how we treat CRC patients with microsatellite-instable high tumors. Furthermore, accumulating evidence shows that changes in gut microbiota are associated with the regulation of host antitumor immune response and cancer progression. Appropriate animal models are essential to deciphering the complex mechanisms of host antitumor immune response and tumor-gut microbiome metabolic interactions. Here, we discuss various mouse models of colorectal cancer that are developed to address key questions on tumor immune response and tumor-microbiota interactions. These CRC models will also serve as resourceful tools for effective preclinical studies.
Collapse
Affiliation(s)
- Ce Yuan
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Xianda Zhao
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Dechen Wangmo
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, United States of America; Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Duha Alshareef
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Travis J Gates
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, United States of America; Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Subbaya Subramanian
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, United States of America; Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States of America; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, United States of America.
| |
Collapse
|
72
|
Yee C, Dickson KA, Muntasir MN, Ma Y, Marsh DJ. Three-Dimensional Modelling of Ovarian Cancer: From Cell Lines to Organoids for Discovery and Personalized Medicine. Front Bioeng Biotechnol 2022; 10:836984. [PMID: 35223797 PMCID: PMC8866972 DOI: 10.3389/fbioe.2022.836984] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/19/2022] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer has the highest mortality of all of the gynecological malignancies. There are several distinct histotypes of this malignancy characterized by specific molecular events and clinical behavior. These histotypes have differing responses to platinum-based drugs that have been the mainstay of therapy for ovarian cancer for decades. For histotypes that initially respond to a chemotherapeutic regime of carboplatin and paclitaxel such as high-grade serous ovarian cancer, the development of chemoresistance is common and underpins incurable disease. Recent discoveries have led to the clinical use of PARP (poly ADP ribose polymerase) inhibitors for ovarian cancers defective in homologous recombination repair, as well as the anti-angiogenic bevacizumab. While predictive molecular testing involving identification of a genomic scar and/or the presence of germline or somatic BRCA1 or BRCA2 mutation are in clinical use to inform the likely success of a PARP inhibitor, no similar tests are available to identify women likely to respond to bevacizumab. Functional tests to predict patient response to any drug are, in fact, essentially absent from clinical care. New drugs are needed to treat ovarian cancer. In this review, we discuss applications to address the currently unmet need of developing physiologically relevant in vitro and ex vivo models of ovarian cancer for fundamental discovery science, and personalized medicine approaches. Traditional two-dimensional (2D) in vitro cell culture of ovarian cancer lacks critical cell-to-cell interactions afforded by culture in three-dimensions. Additionally, modelling interactions with the tumor microenvironment, including the surface of organs in the peritoneal cavity that support metastatic growth of ovarian cancer, will improve the power of these models. Being able to reliably grow primary tumoroid cultures of ovarian cancer will improve the ability to recapitulate tumor heterogeneity. Three-dimensional (3D) modelling systems, from cell lines to organoid or tumoroid cultures, represent enhanced starting points from which improved translational outcomes for women with ovarian cancer will emerge.
Collapse
Affiliation(s)
- Christine Yee
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Kristie-Ann Dickson
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Mohammed N. Muntasir
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Yue Ma
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Deborah J. Marsh
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
73
|
Liu F, Yang H, Zhang X, Sun X, Zhou J, Li Y, Liu Y, Zhuang Z, Wang G. Inhibition of Musashi-1 enhances chemotherapeutic sensitivity in gastric cancer patient-derived xenografts. Exp Biol Med (Maywood) 2022; 247:868-879. [PMID: 35135374 DOI: 10.1177/15353702221076793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Musashi-1 (MSI1), a neural RNA-binding protein, is considered a gastric and intestinal stem cell marker. Although the function of MSI1 in gastric cancer has attracted increasing interest, it is not known whether MSI1 can be used as a biomarker to monitor gastric cancer development and response to treatment. Here, the role of MSI1 in the chemotherapeutic sensitivity of gastric cancer was investigated. Patients with high MSI1 levels had poor outcomes, implicating the gene in the development and progression of the disease. We overexpressed and silenced MSI1 in the human gastric cancer cell lines MKN45 and HGC27, finding that knockdown reduced proliferation, invasion, and migration, while promoting apoptosis. A patient-derived xenograft gastric cancer model was constructed in which mice received chemical drugs, si-MSI1, or a drug-si-MSI1 combination. It was found that blocking MSI1 expression reduced gastric cancer drug tolerance. The combination treatment with si-MSI1 was superior to 5F-dUMP and cisplatin, either separately or in combination, indicating that including si-MSI1 was better than drug therapy alone. Transcriptome sequencing analysis showed that MSI1 altered cell cycle regulation and growth signal transduction, including that of blood vessel epicardial substance (BVES). These results suggest that MSI1 reduces the tolerance of gastric cancer to chemical drugs through modulation of MSI1/BVES signaling.
Collapse
Affiliation(s)
- Fan Liu
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.,Department of Physiology and Hypoxic Biomedicine, Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China.,Department of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Huan Yang
- Department of Physiology and Hypoxic Biomedicine, Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Xinyu Zhang
- Department of Physiology and Hypoxic Biomedicine, Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Xianglin Sun
- Department of Physiology and Hypoxic Biomedicine, Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Jiamin Zhou
- Department of Physiology and Hypoxic Biomedicine, Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Yuan Li
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yifei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Zhixiang Zhuang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Guohua Wang
- Department of Physiology and Hypoxic Biomedicine, Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| |
Collapse
|
74
|
Shin HY, Lee EJ, Yang W, Kim HS, Chung D, Cho H, Kim JH. Identification of Prognostic Markers of Gynecologic Cancers Utilizing Patient-Derived Xenograft Mouse Models. Cancers (Basel) 2022; 14:cancers14030829. [PMID: 35159096 PMCID: PMC8834149 DOI: 10.3390/cancers14030829] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 02/04/2023] Open
Abstract
Patient-derived xenografts (PDXs) are important in vivo models for the development of precision medicine. However, challenges exist regarding genetic alterations and relapse after primary treatment. Thus, PDX models are required as a new approach for preclinical and clinical studies. We established PDX models of gynecologic cancers and analyzed their clinical information. We subcutaneously transplanted 207 tumor tissues from patients with gynecologic cancer into nude mice from 2014 to 2019. The successful engraftment rate of ovarian, cervical, and uterine cancer was 47%, 64%, and 56%, respectively. The subsequent passages (P2 and P3) showed higher success and faster growth rates than the first passage (P1). Using gynecologic cancer PDX models, the tumor grade is a common clinical factor affecting PDX establishment. We found that the PDX success rate correlated with the patient’s prognosis, and also that ovarian cancer patients with a poor prognosis had a faster PDX growth rate (p < 0.0001). Next, the gene sets associated with inflammation and immune responses were shown in high-ranking successful PDX engraftment through gene set enrichment analysis and RNA sequencing. Up-regulated genes in successful engraftment were found to correlate with ovarian clear cell cancer patient outcomes via Gene Expression Omnibus dataset analysis.
Collapse
Affiliation(s)
- Ha-Yeon Shin
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (H.-Y.S.); (E.-j.L.); (H.S.K.); (D.C.); (H.C.)
| | - Eun-ju Lee
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (H.-Y.S.); (E.-j.L.); (H.S.K.); (D.C.); (H.C.)
| | - Wookyeom Yang
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Hyo Sun Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (H.-Y.S.); (E.-j.L.); (H.S.K.); (D.C.); (H.C.)
| | - Dawn Chung
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (H.-Y.S.); (E.-j.L.); (H.S.K.); (D.C.); (H.C.)
| | - Hanbyoul Cho
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (H.-Y.S.); (E.-j.L.); (H.S.K.); (D.C.); (H.C.)
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (H.-Y.S.); (E.-j.L.); (H.S.K.); (D.C.); (H.C.)
- Correspondence: ; Tel.: +82-02-2019-3430
| |
Collapse
|
75
|
TIMP-2 regulates 5-Fu resistance via the ERK/MAPK signaling pathway in colorectal cancer. Aging (Albany NY) 2022; 14:297-315. [PMID: 35022331 PMCID: PMC8791226 DOI: 10.18632/aging.203793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/03/2021] [Indexed: 12/24/2022]
Abstract
5-Fluorouracil (5-Fu) is the first-line chemotherapeutic option for colorectal cancer. However, its efficacy is inhibited by drug resistance. Cytokines play an important role in tumor drug resistance, even though their mechanisms are largely unknown. Using a cytokine array, we established that tissue inhibitor metalloproteinase 2 (TIMP-2) is highly expressed in 5-Fu resistant colorectal cancer patients. Analysis of samples from 84 patients showed that elevated TIMP-2 expression levels in colorectal patients were correlated with poor prognostic outcomes. In a 5-Fu-resistant patient-derived xenograft (PDX) model, TIMP-2 was also found to be highly expressed. We established an autocrine mechanism through which elevated TIMP-2 protein levels sustained colorectal cancer cell resistance to 5-Fu by constitutively activating the ERK/MAPK signaling pathway. Inhibition of TIMP-2 using an anti-TIMP-2 antibody or ERK/MAPK inhibition by U0126 suppressed TIMP-2 mediated 5-Fu-resistance in CRC patients. In conclusion, a novel TIMP-2-ERK/MAPK mediated 5-Fu resistance mechanism is involved in colorectal cancer. Therefore, targeting TIMP-2 or ERK/MAPK may provide a new strategy to overcome 5-Fu resistance in colorectal cancer chemotherapy.
Collapse
|
76
|
Sun M, Huang K, Luo X, Li H. Templated Three-Dimensional Engineered Bone Matrix as a Model for Breast Cancer Osteolytic Bone Metastasis Process. Int J Nanomedicine 2022; 16:8391-8403. [PMID: 35002234 PMCID: PMC8727640 DOI: 10.2147/ijn.s338609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/13/2021] [Indexed: 11/30/2022] Open
Abstract
Purpose Bone metastasis is one of the common causes of death relative to breast cancer. However, the evolvement of bone niche in cancer progression remains poorly understood. A three-dimensional (3D) engineered bone matrix was developed as an effective biomimetic model to explore the mechanism relative to bone cancer metastasis. Methods In the study, a 3D engineered bone matrix was developed via cell biomineralization templated by a biomimetic collagen template. The process of bone metastasis relative to breast cancer was investigated by co-culturing breast cancer MDA-MB-231-GFP cells with pre-osteogenic MC3T3-E1 cells on the 3D bone matrix. Results A typical bone matrix was obtained, where mineralized collagen fibers were packed into the bundle to form a 3D engineered bone matrix. As the cancer cells were invading along the way vertical to the alignment of mineralized collagen fiber, the bone matrix gradually became thinner, accompanied with the erosion of Col I and the loss of calcium and phosphorus. As a result, the disassembled structure of mineralized collagen fiber was observed, which may be attributed to osteolytic bone metastasis. Conclusion An engineered 3D bone-like matrix was successfully prepared via cell mineralization, which can act as a model for bone metastasis process. The study revealed mineralized collagen fiber disassembled at nanoscale relative to breast cancer cells.
Collapse
Affiliation(s)
- Manman Sun
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Ke Huang
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Xueshi Luo
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, People's Republic of China.,Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Hong Li
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
77
|
CDK15 promotes colorectal cancer progression via phosphorylating PAK4 and regulating β-catenin/ MEK-ERK signaling pathway. Cell Death Differ 2022; 29:14-27. [PMID: 34262144 PMCID: PMC8738751 DOI: 10.1038/s41418-021-00828-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most diagnosed cancer and the second leading cause of cancer-related deaths. However, there are few effective therapeutic targets for CRC patients. Here, we found that CDK15 was highly expressed in human CRC and negatively correlated with patient prognosis and overall survival in tissue microarray. Knockdown of CDK15 suppressed cell proliferation and anchorage-independent growth of CRC cells and inhibited tumor growth in cell line-derived xenograft (CDX) model. Importantly, knockout of CDK15 in mice retarded AOM/DSS-induced tumorigenesis and CDK15 silencing by lentivirus significantly suppressed tumor progression in patient-derived xenograft (PDX) model. Mechanistically, CDK15 could bind PAK4 and phosphorylate PAK4 at S291 site. Phosphorylation of PAK4 at the S291 residue promoted cell proliferation and anchorage-independent growth through β-catenin/c-Myc, MEK/ERK signaling pathway in CRC. Moreover, inhibition of PAK4 reversed the tumorigenic function of CDK15 in CRC cells and pharmacological targeting PAK4 suppressed tumor growth in PDX models. Thus, our data reveal the pivotal role of CDK15 in CRC progression and demonstrate CDK15 promotes CRC tumorigenesis by phosphorylating PAK4. Hence, the CDK15-PAK4 axis may serve as a novel therapeutic target for CRC.
Collapse
|
78
|
Hui L, Wang D, Liu Z, Zhao Y, Ji Z, Zhang M, Zhu HH, Luo W, Cheng X, Gui L, Gao W. The Cell-Isolation Capsules with Rod-Like Channels Ensure the Survival and Response of Cancer Cells to Their Microenvironment. Adv Healthc Mater 2022; 11:e2101723. [PMID: 34699694 DOI: 10.1002/adhm.202101723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/18/2021] [Indexed: 12/16/2022]
Abstract
Current macrocapsules with semipermeable but immunoprotective polymeric membranes are attractive devices to achieve the purpose of immunoisolation, however, their ability to allow diffusion of essential nutrients and oxygen is limited, which leads to a low survival rate of encapsulated cells. Here, a novel method is reported by taking advantage of thermotropic liquid crystals, sodium laurylsulfonate (SDS) liquid crystals (LCs), and rod-like crystal fragments (LCFs) to develop engineered alginate hydrogels with rod-like channels. This cell-isolation capsule with an engineered alginate hydrogel-wall allows small molecules, large molecules, and bacteria to diffuse out from the capsules freely but immobilizes the encapsulated cells inside and prevents cells in the microenvironment from moving in. The encapsulated cells show a high survival rate with isolation of host immune cells and long-term growth with adequate nutrients and oxygen supply. In addition, by sharing and responding to the normal molecular and vesicular microenvironment (NMV microenvironment), encapsulated cancer cells display a transition from tumorous phenotypes to ductal features of normal epithelial cells. Thus, this device will be potentially useful for clinical application in cell therapy by secreting molecules and for establishment of patient-derived xenograft (PDX) models that are often difficult to achieve for certain types of tumors, such as prostate cancer.
Collapse
Affiliation(s)
- Lanlan Hui
- State Key Laboratory of Oncogenes and Related Genes Renji‐Med‐X Stem Cell Research Center Ren Ji Hospital School of Medicine and School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200127 China
- Med‐X Research Institute Shanghai Jiao Tong University Shanghai 200030 China
| | - Deng Wang
- State Key Laboratory of Oncogenes and Related Genes Renji‐Med‐X Stem Cell Research Center Ren Ji Hospital School of Medicine and School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200127 China
- Med‐X Research Institute Shanghai Jiao Tong University Shanghai 200030 China
| | - Zhao Liu
- Ping An Life Insurance of China, Ltd Shanghai 200120 China
| | - Yueqi Zhao
- Department of Orthopaedic Surgery Sir Run Run Shaw Hospital School of Medicine Zhejiang University Hangzhou 310016 China
| | - Zhongzhong Ji
- Shanghai Cancer Institute Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200017 China
| | - Man Zhang
- Med‐X Research Institute Shanghai Jiao Tong University Shanghai 200030 China
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes Renji‐Med‐X Stem Cell Research Center Department of Urology Ren Ji Hospital School of Medicine and School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200127 China
| | - Wenqing Luo
- State Key Laboratory of Oncogenes and Related Genes Renji‐Med‐X Stem Cell Research Center Ren Ji Hospital School of Medicine and School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200127 China
| | - Xiaomu Cheng
- Med‐X Research Institute Shanghai Jiao Tong University Shanghai 200030 China
| | - Liming Gui
- Med‐X Research Institute Shanghai Jiao Tong University Shanghai 200030 China
| | - Wei‐Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes Renji‐Med‐X Stem Cell Research Center Ren Ji Hospital School of Medicine and School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200127 China
- Med‐X Research Institute Shanghai Jiao Tong University Shanghai 200030 China
| |
Collapse
|
79
|
Zou C, El Dika I, Vercauteren KOA, Capanu M, Chou J, Shia J, Pilet J, Quirk C, Lalazar G, Andrus L, Kabbani M, Yaqubie A, Khalil D, Mergoub T, Chiriboga L, Rice CM, Abou‐Alfa GK, de Jong YP. Mouse characteristics that affect establishing xenografts from hepatocellular carcinoma patient biopsies in the United States. Cancer Med 2021; 11:602-617. [PMID: 34951132 PMCID: PMC8817074 DOI: 10.1002/cam4.4375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/16/2021] [Accepted: 09/29/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Chenhui Zou
- Division of Gastroenterology and Hepatology Weill Medical College at Cornell University New York New York USA
- Laboratory of Virology and Infectious Disease The Rockefeller University New York New York USA
| | - Imane El Dika
- Department of Medicine Memorial Sloan Kettering Cancer Center New York New York USA
- Department of Medicine Weill Medical College at Cornell University New York New York USA
| | - Koen O. A. Vercauteren
- Laboratory of Virology and Infectious Disease The Rockefeller University New York New York USA
| | - Marinela Capanu
- Department of Epidemiology and Biostatistics Memorial Sloan Kettering Cancer Center New York New York USA
| | - Joanne Chou
- Department of Epidemiology and Biostatistics Memorial Sloan Kettering Cancer Center New York New York USA
| | - Jinru Shia
- Department of Pathology Memorial Sloan Kettering Cancer Center New York New York USA
| | - Jill Pilet
- Laboratory of Virology and Infectious Disease The Rockefeller University New York New York USA
| | - Corrine Quirk
- Laboratory of Virology and Infectious Disease The Rockefeller University New York New York USA
| | - Gadi Lalazar
- Division of Gastroenterology and Hepatology Weill Medical College at Cornell University New York New York USA
- Laboratory of Cellular Biophysics The Rockefeller University New York New York USA
| | - Linda Andrus
- Laboratory of Virology and Infectious Disease The Rockefeller University New York New York USA
| | - Mohammad Kabbani
- Laboratory of Virology and Infectious Disease The Rockefeller University New York New York USA
- Department of Gastroenterology, Hepatology and Endocrinology Hannover Medical School Hannover Germany
| | - Amin Yaqubie
- Department of Medicine Memorial Sloan Kettering Cancer Center New York New York USA
| | - Danny Khalil
- Department of Medicine Memorial Sloan Kettering Cancer Center New York New York USA
- Department of Medicine Weill Medical College at Cornell University New York New York USA
| | - Taha Mergoub
- Memorial Sloan Kettering Cancer Center Sloan Kettering Institute New York New York USA
| | - Luis Chiriboga
- Department of Pathology Center for Biospecimen Research and Development NYU Langone Health New York New York USA
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease The Rockefeller University New York New York USA
| | - Ghassan K. Abou‐Alfa
- Department of Medicine Memorial Sloan Kettering Cancer Center New York New York USA
- Department of Medicine Weill Medical College at Cornell University New York New York USA
| | - Ype P. de Jong
- Division of Gastroenterology and Hepatology Weill Medical College at Cornell University New York New York USA
- Laboratory of Virology and Infectious Disease The Rockefeller University New York New York USA
| |
Collapse
|
80
|
Suto H, Funakoshi Y, Nagatani Y, Imamura Y, Toyoda M, Kiyota N, Matsumoto H, Tanaka S, Takai R, Hasegawa H, Yamashita K, Matsuda T, Kakeji Y, Minami H. Microsatellite instability-high colorectal cancer patient-derived xenograft models for cancer immunity research. J Cancer Res Ther 2021; 17:1358-1369. [PMID: 34916366 DOI: 10.4103/jcrt.jcrt_1092_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Context There is an increasing demand for appropriate preclinical mice models for evaluating the efficacy of cancer immunotherapies. Aims Therefore, we established a humanized patient-derived xenograft (PDX) model using microsatellite instability-high (MSI-H) colorectal cancer (CRC) tissues and patient-derived peripheral blood mononuclear cells (PBMCs). Subjects and Methods The CRC tissues of patients scheduled for surgery were tested for MSI status, and CRC tumors were transplanted into NOD/LtSz-scid/IL-2Rg-/-(NSG) mice to establish MSI-H PDX models. PDX tumors were compared to the original patient tumors in terms of histological and genetic characteristics. To humanize the immune system of MSI-H PDX models, patient PBMCs were injected through the tail vein. Results PDX models were established from two patients with MSI-H CRC; one patient had a germline mutation in MLH1 (c.1990-2A > G), and the other patient had MLH1 promoter hypermethylation. PDX with the germline mutation was histologically similar to the patient tumor, and retained the genetic characteristics, including MSI-H, deficient mismatch repair (dMMR), and MLH1 mutation. In contrast, the histological features of the other PDX from a tumor with MLH1 promoter hypermethylation were clearly different from those of the original tumor, and MLH1 promoter hypermethylation and MSI-H/dMMR were lost in the PDX. When T cells from the same patient with MLH1 mutation were injected into the PDX through the tail vein, they were detected in the PDX tumor. Conclusions The MSI-H tumor with an MMR mutation is suitable for MSI-H PDX model generation. The PBMC humanized MSI-H PDX has the potential to be used as an efficient model for cancer immunotherapy research.
Collapse
Affiliation(s)
- Hirotaka Suto
- Department of Medicine, Division of Medical Oncology/Hematology, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
| | - Yohei Funakoshi
- Department of Medicine, Division of Medical Oncology/Hematology, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
| | - Yoshiaki Nagatani
- Department of Medicine, Division of Medical Oncology/Hematology, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
| | - Yoshinori Imamura
- Department of Medicine, Division of Medical Oncology/Hematology, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
| | - Masanori Toyoda
- Department of Medicine, Division of Medical Oncology/Hematology, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
| | - Naomi Kiyota
- Department of Medicine, Division of Medical Oncology/Hematology, Kobe University Hospital and Graduate School of Medicine; Cancer Center, Kobe University Hospital, Kobe, Japan
| | - Hisayuki Matsumoto
- Department of Clinical Laboratory, Kobe University Hospital, Kobe, Japan
| | - Shinwa Tanaka
- Department of Medicine, Division of Gastroenterology, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
| | - Ryo Takai
- Department of Surgery, Division of Gastrointestinal Surgery, Kobe University Hospital and Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Hiroshi Hasegawa
- Department of Surgery, Division of Gastrointestinal Surgery, Kobe University Hospital and Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Kimihiro Yamashita
- Department of Surgery, Division of Gastrointestinal Surgery, Kobe University Hospital and Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Takeru Matsuda
- Department of Surgery, Division of Gastrointestinal Surgery, Kobe University Hospital and Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Yoshihiro Kakeji
- Department of Surgery, Division of Gastrointestinal Surgery, Kobe University Hospital and Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Hironobu Minami
- Department of Medicine, Division of Medical Oncology/Hematology, Kobe University Hospital and Graduate School of Medicine; Cancer Center, Kobe University Hospital, Kobe, Japan
| |
Collapse
|
81
|
Jo H, Yagishita S, Hayashi Y, Ryu S, Suzuki M, Kohsaka S, Ueno T, Matsumoto Y, Horinouchi H, Ohe Y, Watanabe SI, Motoi N, Yatabe Y, Mano H, Takahashi K, Hamada A. Comparative study on the efficacy and exposure of molecular target agents in non-small cell lung cancer PDX models with driver genetic alterations. Mol Cancer Ther 2021; 21:359-370. [PMID: 34911818 DOI: 10.1158/1535-7163.mct-21-0371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/11/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022]
Abstract
Patient-derived xenografts (PDXs) can adequately reflect clinical drug efficacy. However, the methods for evaluating drug efficacy are not fully established. We selected five non-small cell lung cancer (NSCLC) PDXs with genetic alterations from established PDXs and the corresponding molecular targeted therapy was administered orally for 21 consecutive days. Genetic analysis, measurement of drug concentrations in blood and tumors using liquid chromatography and tandem mass spectrometry, and analysis of drug distribution in tumors using matrix-assisted laser desorption/ionization mass spectrometry were performed. Fifteen (20%) PDXs were established using samples collected from 76 NSCLC patients with genetic alterations. The genetic alterations observed in original patients were largely maintained in PDXs. We compared the drug efficacy in original patients and PDX models; the efficacies against certain PDXs correlated with the clinical effects, while those against the others did not. We determined blood and intratumor concentrations in the PDX model, but both concentrations were low, and no evident correlation with the drug efficacy could be observed. The intratumoral spatial distribution of the drugs was both homogeneous and heterogeneous for each drug, and the distribution was independent of the expression of the target protein. The evaluation of drug efficacy in PDXs enabled partial reproduction of the therapeutic effect in original patients. A more detailed analysis of systemic and intratumoral pharmacokinetics may help clarify the mode of action of drugs. Further development of evaluation methods and indices to improve the prediction accuracy of clinical efficacy is warranted.
Collapse
Affiliation(s)
- Hitomi Jo
- Division of Molecular Pharmacology, National Cancer Center Research Institute
| | - Shigehiro Yagishita
- Division of Molecular Pharmacology, National Cancer Center Research Institute
| | - Yoshiharu Hayashi
- Division of Molecular Pharmacology, National Cancer Center Research Institute
| | - Shoraku Ryu
- Division of Molecular Pharmacology, National Cancer Center Research Institute
| | - Mikiko Suzuki
- Division of Molecular Pharmacology, National Cancer Center Research Institute
| | - Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute
| | | | | | - Yuichiro Ohe
- Department of Thoracic Oncology, National Cancer Center Hospital
| | | | - Noriko Motoi
- Department of Pathology, National Cancer Center Hospital
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital
| | | | | | - Akinobu Hamada
- Division of Molecular Pharmacology, National Cancer Center Research Institute
| |
Collapse
|
82
|
Atat OE, Farzaneh Z, Pourhamzeh M, Taki F, Abi-Habib R, Vosough M, El-Sibai M. 3D modeling in cancer studies. Hum Cell 2021; 35:23-36. [PMID: 34761350 DOI: 10.1007/s13577-021-00642-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/31/2021] [Indexed: 01/01/2023]
Abstract
The tumor microenvironment contributes significantly to tumor initiation, progression, and resistance to chemotherapy. Much of our understanding of the tumor and its microenvironment is developed using various methods of cell culture. Throughout the last two decades, research has increasingly shown that 3D cell culture systems can remarkably recapitulate the complexity of tumor architecture and physiology compared to traditional 2D models. Unlike the flat culture system, these novel models enabled more cell-cell and cell-extracellular matrix interactions. By mimicking in vivo microenvironment, 3D culture systems promise to become accurate tools ready to be used in diagnosis, drug screening, and personalized medicine. In this review, we discussed the importance of 3D culture in simulating the tumor microenvironment and focused on the effects of cancer cell-microenvironment interactions on cancer behavior, resistance, proliferation, and metastasis. Finally, we assessed the role of 3D cell culture systems in the contexts of drug screening. 2D culture system is used to study cancer cell growth, progression, behavior, and drug response. It provides contact between cells and supports paracrine crosstalk between host cells and cancer cells. However, this system fails to simulate the architecture and the physiological aspects of in vivo tumor microenvironment due to the absence of cell-cell/ cell-ECM interactions as well as unlimited access to O2 and nutrients, and the absence of tumor heterogeneity. Recently advanced research has led researchers to generate 3D culture system that can better recapitulate the in vivo environment by providing hypoxic medium, facilitating cell-cell and cell-ECM, interactions, and recapitulating heterogeneity of the tumor. Several approaches are used to maintain and expand cancer cells in 3D culture systems such as tumor spheroids (cell aggregate that mimics the in vivo growth of tumor cells), scaffold-based approaches, bioreactors, microfluidic derives, and organoids. 3D systems are currently used for disease modeling and pre-clinical drug testing.
Collapse
Affiliation(s)
- Oula El Atat
- Department of Natural Sciences, Lebanese American University, Beirut, Lebanon
| | - Zahra Farzaneh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahsa Pourhamzeh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fatima Taki
- Department of Natural Sciences, Lebanese American University, Beirut, Lebanon
| | - Ralph Abi-Habib
- Department of Natural Sciences, Lebanese American University, Beirut, Lebanon
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Mirvat El-Sibai
- Department of Natural Sciences, Lebanese American University, Beirut, Lebanon.
| |
Collapse
|
83
|
Singh M, Dahal A, Brastianos PK. Preclinical Solid Tumor Models to Study Novel Therapeutics in Brain Metastases. Curr Protoc 2021; 1:e284. [PMID: 34762346 PMCID: PMC8597918 DOI: 10.1002/cpz1.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metastases are the most common malignancy of the adult central nervous system and are becoming an increasingly troubling problem in oncology largely due to the lack of successful therapeutic options. The limited selection of treatments is a result of the currently poor understanding of the biological mechanisms of metastatic development, which in turn is difficult to achieve because of limited preclinical models that can accurately represent the clinical progression of metastasis. Described in this article are in vitro and in vivo model systems that are used to enhance the understanding of metastasis and to identify new therapies for the treatment of brain metastasis. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Mohini Singh
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ashish Dahal
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | |
Collapse
|
84
|
Lee K, Oh HJ, Kang MS, Kim S, Ahn S, Kim MJ, Kim SW, Chang S. Metagenomic analysis of gut microbiome reveals a dynamic change in Alistipes onderdonkii in the preclinical model of pancreatic cancer, suppressing its proliferation. Appl Microbiol Biotechnol 2021; 105:8343-8358. [PMID: 34648062 DOI: 10.1007/s00253-021-11617-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer is a lethal cancer with aggressive and invasive characteristics. By the time it is diagnosed, patients already have tumors extended to other organs and show extremely low survival rates. The gut microbiome is known to be associated with many diseases and its imbalance affects the pathogenesis of pancreatic cancer. In this study, we established an orthotopic, patient-derived xenograft model to identify how the gut microbiome is linked to pancreatic ductal adenocarcinoma (PDAC). Using the 16S rDNA metagenomic sequencing, we revealed that the levels of Alistipes onderdonkii and Roseburia hominis decreased in the gut microbiome of the PDAC model. To explore the crosstalk between the two bacteria and PDAC cells, we collected the supernatant of the bacteria or cancer cell culture medium and treated it in a cross manner. While the cancer cell medium did not affect bacterial growth, we observed that the A. onderdonkii medium suppressed the growth of the pancreatic primary cancer cells. Using the bromodeoxyuridine/7-amino-actinomycin D (BrdU/7-AAD) staining assay, we confirmed that the A. onderdonkii medium inhibited the proliferation of the pancreatic primary cancer cells. Furthermore, RNA-seq analysis revealed that the A. onderdonkii medium induced unique transcriptomic alterations in the PDAC cells, compared to the normal pancreatic cells. Altogether, our data suggest that the reduction in the A. onderdonkii in the gut microbiome provides a proliferation advantage to the pancreatic cancer cells. KEY POINTS: • Metagenome analysis of pancreatic cancer model reveals A. onderdonkii downregulation. • A. onderdonkii culture supernatant suppressed the proliferation of pancreatic cancer cells. • RNA seq data reveals typical gene expression changes induced by A. onderdonkii.
Collapse
Affiliation(s)
- Kihak Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Hyo Jae Oh
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Min-Su Kang
- Division of Applied Life Science (BK21 Four), PMBBRC, Gyeongsang National University, Jinju, Republic of Korea
| | - Sinae Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Sehee Ahn
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Myung Ji Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Seon-Won Kim
- Division of Applied Life Science (BK21 Four), PMBBRC, Gyeongsang National University, Jinju, Republic of Korea.
| | - Suhwan Chang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea.
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea.
| |
Collapse
|
85
|
Song J, Choi H, Koh SK, Park D, Yu J, Kang H, Kim Y, Cho D, Jeon NL. High-Throughput 3D In Vitro Tumor Vasculature Model for Real-Time Monitoring of Immune Cell Infiltration and Cytotoxicity. Front Immunol 2021; 12:733317. [PMID: 34630415 PMCID: PMC8500473 DOI: 10.3389/fimmu.2021.733317] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/03/2021] [Indexed: 12/26/2022] Open
Abstract
Recent advances in anticancer therapy have shown dramatic improvements in clinical outcomes, and adoptive cell therapy has emerged as a type of immunotherapy that can modulate immune responses by transferring engineered immune cells. However, a small percentage of responders and their toxicity remain as challenges. Three-dimensional (3D) in vitro models of the tumor microenvironment (TME) have the potential to provide a platform for assessing and predicting responses to therapy. This paper describes an in vitro 3D tumor model that incorporates clusters of colorectal cancer (CRC) cells around perfusable vascular networks to validate immune-cell-mediated cytotoxicity against cancer cells. The platform is based on an injection-molded 3D co-culture model and composed of 28 microwells where separate identical vascularized cancer models can be formed. It allows robust hydrogel patterning for 3D culture that enables high-throughput experimentation. The uniformity of the devices resulted in reproducible experiments that allowed 10× more experiments to be performed when compared to conventional polydimethylsiloxane (PDMS)-based microfluidic devices. To demonstrate its capability, primary natural killer (NK) cells were introduced into the vascularized tumor network, and their activities were monitored using live-cell imaging. Extravasation, migration, and cytotoxic activity against six types of CRC cell lines were tested and compared. The consensus molecular subtypes (CMS) of CRC with distinct immune responses resulted in the highest NK cell cytotoxicity against CMS1 cancer cells. These results show the potential of our vascularized tumor model for understanding various steps involved in the immune response for the assessment of adoptive cell therapy.
Collapse
Affiliation(s)
- Jiyoung Song
- Department of Mechanical Engineering, Seoul National University, Seoul, South Korea
| | - Hyeri Choi
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea
| | - Seung Kwon Koh
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
| | - Dohyun Park
- Department of Mechanical Engineering, Seoul National University, Seoul, South Korea
| | - James Yu
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea
| | - Habin Kang
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea
| | - Youngtaek Kim
- Department of Mechanical Engineering, Seoul National University, Seoul, South Korea
| | - Duck Cho
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea.,Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Noo Li Jeon
- Department of Mechanical Engineering, Seoul National University, Seoul, South Korea.,Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea.,Institute of Advanced Machines and Design (SNU-IAMD), Seoul National University, Seoul, South Korea
| |
Collapse
|
86
|
Maharjan CK, Ear PH, Tran CG, Howe JR, Chandrasekharan C, Quelle DE. Pancreatic Neuroendocrine Tumors: Molecular Mechanisms and Therapeutic Targets. Cancers (Basel) 2021; 13:5117. [PMID: 34680266 PMCID: PMC8533967 DOI: 10.3390/cancers13205117] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic neuroendocrine tumors (pNETs) are unique, slow-growing malignancies whose molecular pathogenesis is incompletely understood. With rising incidence of pNETs over the last four decades, larger and more comprehensive 'omic' analyses of patient tumors have led to a clearer picture of the pNET genomic landscape and transcriptional profiles for both primary and metastatic lesions. In pNET patients with advanced disease, those insights have guided the use of targeted therapies that inhibit activated mTOR and receptor tyrosine kinase (RTK) pathways or stimulate somatostatin receptor signaling. Such treatments have significantly benefited patients, but intrinsic or acquired drug resistance in the tumors remains a major problem that leaves few to no effective treatment options for advanced cases. This demands a better understanding of essential molecular and biological events underlying pNET growth, metastasis, and drug resistance. This review examines the known molecular alterations associated with pNET pathogenesis, identifying which changes may be drivers of the disease and, as such, relevant therapeutic targets. We also highlight areas that warrant further investigation at the biological level and discuss available model systems for pNET research. The paucity of pNET models has hampered research efforts over the years, although recently developed cell line, animal, patient-derived xenograft, and patient-derived organoid models have significantly expanded the available platforms for pNET investigations. Advancements in pNET research and understanding are expected to guide improved patient treatments.
Collapse
Affiliation(s)
- Chandra K. Maharjan
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Po Hien Ear
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - Catherine G. Tran
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - James R. Howe
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - Chandrikha Chandrasekharan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Dawn E. Quelle
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
87
|
Glenny EM, Coleman MF, Giles ED, Wellberg EA, Hursting SD. Designing Relevant Preclinical Rodent Models for Studying Links Between Nutrition, Obesity, Metabolism, and Cancer. Annu Rev Nutr 2021; 41:253-282. [PMID: 34357792 PMCID: PMC8900211 DOI: 10.1146/annurev-nutr-120420-032437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diet and nutrition are intricately related to cancer prevention, growth, and treatment response. Preclinical rodent models are a cornerstone to biomedical research and remain instrumental in our understanding of the relationship between cancer and diet and in the development of effective therapeutics. However, the success rate of translating promising findings from the bench to the bedside is suboptimal. Well-designed rodent models will be crucial to improving the impact basic science has on clinical treatment options. This review discusses essential experimental factors to consider when designing a preclinical cancer model with an emphasis on incorporatingthese models into studies interrogating diet, nutrition, and metabolism. The aims of this review are to (a) provide insight into relevant considerations when designing cancer models for obesity, nutrition, and metabolism research; (b) identify common pitfalls when selecting a rodent model; and (c) discuss strengths and limitations of available preclinical models.
Collapse
Affiliation(s)
- Elaine M Glenny
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Michael F Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Erin D Giles
- Department of Nutrition, Texas A&M University, College Station, Texas 77843, USA
| | - Elizabeth A Wellberg
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
| | - Stephen D Hursting
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina 28081, USA
| |
Collapse
|
88
|
Kurth I, Yamaguchi N, Andreu-Agullo C, Tian HS, Sridhar S, Takeda S, Gonsalves FC, Loo JM, Barlas A, Manova-Todorova K, Busby R, Bendell JC, Strauss J, Fakih M, McRee AJ, Hendifar AE, Rosen LS, Cercek A, Wasserman R, Szarek M, Spector SL, Raza S, Tavazoie MF, Tavazoie SF. Therapeutic targeting of SLC6A8 creatine transporter suppresses colon cancer progression and modulates human creatine levels. SCIENCE ADVANCES 2021; 7:eabi7511. [PMID: 34613776 PMCID: PMC8494442 DOI: 10.1126/sciadv.abi7511] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer mortality. Creatine metabolism was previously shown to critically regulate colon cancer progression. We report that RGX-202, an oral small-molecule SLC6A8 transporter inhibitor, robustly inhibits creatine import in vitro and in vivo, reduces intracellular phosphocreatine and ATP levels, and induces tumor apoptosis. RGX-202 suppressed CRC growth across KRAS wild-type and KRAS mutant xenograft, syngeneic, and patient-derived xenograft (PDX) tumors. Antitumor efficacy correlated with tumoral expression of creatine kinase B. Combining RGX-202 with 5-fluorouracil or the DHODH inhibitor leflunomide caused regressions of multiple colorectal xenograft and PDX tumors of distinct mutational backgrounds. RGX-202 also perturbed creatine metabolism in patients with metastatic CRC in a phase 1 trial, mirroring pharmacodynamic effects on creatine metabolism observed in mice. This is, to our knowledge, the first demonstration of preclinical and human pharmacodynamic activity for creatine metabolism targeting in oncology, thus revealing a critical therapeutic target.
Collapse
Affiliation(s)
- Isabel Kurth
- Inspirna, Inc., 310 E. 67th St, New York, NY 10065, USA
| | - Norihiro Yamaguchi
- Laboratory of Systems Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | - Helen S. Tian
- Laboratory of Systems Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | | | | - Jia Min Loo
- Laboratory of Systems Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
- Laboratory of Precision Oncology and Tumor Evolution, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Afsar Barlas
- Memorial Sloan Kettering Cancer Center, 275 York Ave., New York, NY 10065, USA
| | | | - Robert Busby
- Inspirna, Inc., 310 E. 67th St, New York, NY 10065, USA
| | - Johanna C. Bendell
- Sarah Cannon Research Institute, 250 25th Ave N, Nashville, TN 37203, USA
| | - James Strauss
- Mary Crowley Cancer Research, Building C, 7777 Forest Ln #707, Dallas, TX 75230, USA
| | - Marwan Fakih
- City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd, Duarte, CA 91010, USA
| | - Autumn J. McRee
- The University of North Carolina at Chapel Hill, 27599 Chapel Hill, NC, USA
| | - Andrew E. Hendifar
- Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Lee S. Rosen
- Jonsson Comprehensive Cancer Center, University of California, 10833 Le Conte Ave, Los Angeles, CA 90024, USA
| | - Andrea Cercek
- Memorial Sloan Kettering Cancer Center, 275 York Ave., New York, NY 10065, USA
| | | | - Michael Szarek
- Inspirna, Inc., 310 E. 67th St, New York, NY 10065, USA
- University of Colorado School of Medicine, 13001 E 17th Pl, Aurora, CO 80045, USA
- SUNY Downstate Health Sciences University School of Public Health, 450 Clarkson Ave, Brooklyn, NY 11203, USA
| | | | - Syed Raza
- Inspirna, Inc., 310 E. 67th St, New York, NY 10065, USA
| | | | - Sohail F. Tavazoie
- Laboratory of Systems Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
89
|
Venkatasamy A, Guerin E, Blanchet A, Orvain C, Devignot V, Jung M, Jung AC, Chenard MP, Romain B, Gaiddon C, Mellitzer G. Ultrasound and Transcriptomics Identify a Differential Impact of Cisplatin and Histone Deacetylation on Tumor Structure and Microenvironment in a Patient-Derived In Vivo Model of Gastric Cancer. Pharmaceutics 2021; 13:1485. [PMID: 34575561 PMCID: PMC8467189 DOI: 10.3390/pharmaceutics13091485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 01/06/2023] Open
Abstract
The reasons behind the poor efficacy of transition metal-based chemotherapies (e.g., cisplatin) or targeted therapies (e.g., histone deacetylase inhibitors, HDACi) on gastric cancer (GC) remain elusive and recent studies suggested that the tumor microenvironment could contribute to the resistance. Hence, our objective was to gain information on the impact of cisplatin and the pan-HDACi SAHA (suberanilohydroxamic acid) on the tumor substructure and microenvironment of GC, by establishing patient-derived xenografts of GC and a combination of ultrasound, immunohistochemistry, and transcriptomics to analyze. The tumors responded partially to SAHA and cisplatin. An ultrasound gave more accurate tumor measures than a caliper. Importantly, an ultrasound allowed a noninvasive real-time access to the tumor substructure, showing differences between cisplatin and SAHA. These differences were confirmed by immunohistochemistry and transcriptomic analyses of the tumor microenvironment, identifying specific cell type signatures and transcription factor activation. For instance, cisplatin induced an "epithelial cell like" signature while SAHA favored a "mesenchymal cell like" one. Altogether, an ultrasound allowed a precise follow-up of the tumor progression while enabling a noninvasive real-time access to the tumor substructure. Combined with transcriptomics, our results underline the different intra-tumoral structural changes caused by both drugs that impact differently on the tumor microenvironment.
Collapse
Affiliation(s)
- Aina Venkatasamy
- Streinth Lab (Stress Response and Innovative Therapies), Strasbourg University, Inserm UMR_S 1113 IRFAC (Interface Recherche Fondamental et Appliquée à la Cancérologie), 67200 Strasbourg, France; (A.V.); (E.G.); (A.B.); (C.O.); (V.D.); (A.C.J.); (B.R.)
- IHU-Strasbourg (Institut Hospitalo-Universitaire), 67091 Strasbourg, France
| | - Eric Guerin
- Streinth Lab (Stress Response and Innovative Therapies), Strasbourg University, Inserm UMR_S 1113 IRFAC (Interface Recherche Fondamental et Appliquée à la Cancérologie), 67200 Strasbourg, France; (A.V.); (E.G.); (A.B.); (C.O.); (V.D.); (A.C.J.); (B.R.)
| | - Anais Blanchet
- Streinth Lab (Stress Response and Innovative Therapies), Strasbourg University, Inserm UMR_S 1113 IRFAC (Interface Recherche Fondamental et Appliquée à la Cancérologie), 67200 Strasbourg, France; (A.V.); (E.G.); (A.B.); (C.O.); (V.D.); (A.C.J.); (B.R.)
| | - Christophe Orvain
- Streinth Lab (Stress Response and Innovative Therapies), Strasbourg University, Inserm UMR_S 1113 IRFAC (Interface Recherche Fondamental et Appliquée à la Cancérologie), 67200 Strasbourg, France; (A.V.); (E.G.); (A.B.); (C.O.); (V.D.); (A.C.J.); (B.R.)
| | - Véronique Devignot
- Streinth Lab (Stress Response and Innovative Therapies), Strasbourg University, Inserm UMR_S 1113 IRFAC (Interface Recherche Fondamental et Appliquée à la Cancérologie), 67200 Strasbourg, France; (A.V.); (E.G.); (A.B.); (C.O.); (V.D.); (A.C.J.); (B.R.)
| | | | - Alain C. Jung
- Streinth Lab (Stress Response and Innovative Therapies), Strasbourg University, Inserm UMR_S 1113 IRFAC (Interface Recherche Fondamental et Appliquée à la Cancérologie), 67200 Strasbourg, France; (A.V.); (E.G.); (A.B.); (C.O.); (V.D.); (A.C.J.); (B.R.)
- Laboratoire de Biologie Tumorale, ICANS, 67200 Strasbourg, France
| | - Marie-Pierre Chenard
- Pathology Department, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France;
| | - Benoit Romain
- Streinth Lab (Stress Response and Innovative Therapies), Strasbourg University, Inserm UMR_S 1113 IRFAC (Interface Recherche Fondamental et Appliquée à la Cancérologie), 67200 Strasbourg, France; (A.V.); (E.G.); (A.B.); (C.O.); (V.D.); (A.C.J.); (B.R.)
- Digestive Surgery Department, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - Christian Gaiddon
- Streinth Lab (Stress Response and Innovative Therapies), Strasbourg University, Inserm UMR_S 1113 IRFAC (Interface Recherche Fondamental et Appliquée à la Cancérologie), 67200 Strasbourg, France; (A.V.); (E.G.); (A.B.); (C.O.); (V.D.); (A.C.J.); (B.R.)
| | - Georg Mellitzer
- Streinth Lab (Stress Response and Innovative Therapies), Strasbourg University, Inserm UMR_S 1113 IRFAC (Interface Recherche Fondamental et Appliquée à la Cancérologie), 67200 Strasbourg, France; (A.V.); (E.G.); (A.B.); (C.O.); (V.D.); (A.C.J.); (B.R.)
| |
Collapse
|
90
|
Establishment and characterization of an ovarian yolk sac tumor patient-derived xenograft model. Pediatr Surg Int 2021; 37:1031-1040. [PMID: 34031745 DOI: 10.1007/s00383-021-04895-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The lack of appropriate preclinical models of ovarian yolk sac tumor (OYST) is currently hindering the pursuit of new methods of treatment and investigation of the pathogenesis of the disease. We developed and characterized an OYST patient-derived xenograft (PDX) model in this study. METHODS Tumor fragments from a patient with an OYST were implanted subcutaneously into BALB/c Nude mice. Engrafted xenografts were compared with the original tumor according to histology, immunohistochemistry, humanized identified, and drug efficacy testing with in vivo treatment programs. RESULTS There was a high degree of histologic and immunohistochemical (IHC) resemblance between the established PDX model and its corresponding human tumors. Bleomycin, etoposide, and cisplatin (JEB) chemotherapy regimens were effective in clinical patients and were effective in the OYST PDX model; therefore, the effect of PDX intervention was consistent with clinical outcomes of OYSTs. CONCLUSION We have successfully established an OYST PDX model. This OYST model preserves the basic molecular features of the primary human tumor, thereby providing a valuable method to preclinically evaluate new treatments and explore disease pathogenesis.
Collapse
|
91
|
Kim SY, Kim SM, Lim S, Lee JY, Choi SJ, Yang SD, Yun MR, Kim CG, Gu SR, Park C, Park AY, Lim SM, Heo SG, Kim H, Cho BC. Modeling Clinical Responses to Targeted Therapies by Patient-Derived Organoids of Advanced Lung Adenocarcinoma. Clin Cancer Res 2021; 27:4397-4409. [PMID: 34083237 PMCID: PMC9401503 DOI: 10.1158/1078-0432.ccr-20-5026] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/23/2021] [Accepted: 05/21/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Patient-derived organoids (PDO) of lung cancer has been recently introduced, reflecting the genomic landscape of lung cancer. However, clinical relevance of advanced lung adenocarcinoma organoids remains unknown. Here, we examined the ability of PDOs to predict clinical responses to targeted therapies in individual patients and to identify effective anticancer therapies for novel molecular targets. EXPERIMENTAL DESIGN Eighty-four organoids were established from patients with advanced lung adenocarcinoma. Formalin-fixed, paraffin-embedded tumor specimens from corresponding patients were analyzed by whole-exome sequencing (n = 12). Organoids were analyzed by whole-exome sequencing (n = 61) and RNA sequencing (n = 55). Responses to mono or combination targeted therapies were examined in organoids and organoid-derived xenografts. RESULTS PDOs largely retained somatic alterations including driver mutations of matching patient tumors. PDOs were able to recapitulate progression-free survival and objective responses of patients with non-small cell lung cancer receiving clinically approved tyrosine kinase inhibitors. PDOs recapitulated activity of therapeutic strategies under clinical investigation. YUO-071 harboring an EGFR exon 19 deletion and a BRAF G464A mutation and the matching patient responded to dabrafenib/trametinib combination therapy. YUO-004 and YUO-050 harboring an EGFR L747P mutation was sensitive to afatinib, consistent with the response in the matching patient of YUO-050. Furthermore, we utilized organoids to identify effective therapies for novel molecular targets by demonstrating the efficacy of poziotinib against ERBB2 exon 20 insertions and pralsetinib against RET fusions. CONCLUSIONS We demonstrated translational relevance of PDOs in advanced lung adenocarcinoma. PDOs are an important diagnostic tool, which can assist clinical decision making and accelerate development of therapeutic strategies.
Collapse
Affiliation(s)
- Seok-Young Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Sang-Min Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Sumin Lim
- Interpark Bio Convergence Corp., Seoul, Korea
| | - Ji Yeon Lee
- Interpark Bio Convergence Corp., Seoul, Korea
| | - Su-Jin Choi
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - San-Duk Yang
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Mi Ran Yun
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Chang Gon Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Seo Rin Gu
- Interpark Bio Convergence Corp., Seoul, Korea
| | - Chaewon Park
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - A-Young Park
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Sun Min Lim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Seong Gu Heo
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea.
| | - HyunKi Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea.
| | - Byoung Chul Cho
- Division of Medical Oncology, Yonsei University College of Medicine, Yonsei Cancer Center, Seoul, Korea.
| |
Collapse
|
92
|
Mc Larney B, Skubal M, Grimm J. A review of recent and emerging approaches for the clinical application of Cerenkov luminescence imaging. FRONTIERS IN PHYSICS 2021; 9:684196. [PMID: 36845872 PMCID: PMC9957555 DOI: 10.3389/fphy.2021.684196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cerenkov luminescence (CL) is a blue-weighted emission of light produced by a vast array of clinically approved radioisotopes and LINAC accelerators. When β particles (emitted during the decay of radioisotopes) are present in a medium such as water or tissue, they are able to travel faster than the speed of light in that medium and in doing so polarize the molecules around them. Once the particle has left the local area, the polarized molecules relax and return to their baseline state releasing the additional energy as light (luminescence). This blue glow has commonly been used to determine the output of nuclear power plant cores and, in recent years, has found traction in the preclinical and clinical imaging field. This brief review will discuss the technology which has enabled the emergence of the biomedical Cerenkov imaging field, recent pre-clinical studies with potential clinical translation of Cerenkov luminescence imaging (CLI) and the current clinical implementations of the method. Finally, an outlook is given as to the direction in which the field is heading.
Collapse
Affiliation(s)
- Benedict Mc Larney
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Magdalena Skubal
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jan Grimm
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
93
|
Le DT, Huynh TR, Burt B, Van Buren G, Abeynaike SA, Zalfa C, Nikzad R, Kheradmand F, Tyner JJ, Paust S. Natural killer cells and cytotoxic T lymphocytes are required to clear solid tumor in a patient-derived xenograft. JCI Insight 2021; 6:e140116. [PMID: 34081628 PMCID: PMC8410059 DOI: 10.1172/jci.insight.140116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Existing patient-derived xenograft (PDX) mouse models of solid tumors lack a fully tumor donor-matched, syngeneic, and functional immune system. We developed a model that overcomes these limitations by engrafting lymphopenic recipient mice with a fresh, undisrupted piece of solid tumor, whereby tumor-infiltrating lymphocytes (TILs) persisted in the recipient mice for several weeks. Successful tumor engraftment was achieved in 83% to 89% of TIL-PDX mice, and these were seen to harbor exhausted immuno-effector as well as functional immunoregulatory cells persisting for at least 6 months postengraftment. Combined treatment with interleukin-15 stimulation and immune checkpoint inhibition resulted in complete or partial tumor response in this model. Further, depletion of cytotoxic T lymphocytes and/or natural killer cells before combined immunotherapy revealed that both cell types were required for maximal tumor regression. Our TIL-PDX model provides a valuable resource for powerful mechanistic and therapeutic studies in solid tumors.
Collapse
Affiliation(s)
- Duy Tri Le
- Department of Pediatrics, Texas Children's Hospital, Houston, Texas, USA
| | - Tridu R Huynh
- Scripps Research Translational Institute, La Jolla, California, USA.,Division of Internal Medicine, Scripps Clinic/Scripps Green Hospital, La Jolla, California, USA.,Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Bryan Burt
- Division of General Thoracic Surgery and
| | - George Van Buren
- Division of Surgical Oncology, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA.,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Shawn A Abeynaike
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Cristina Zalfa
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Rana Nikzad
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Farrah Kheradmand
- Margaret M. and Albert B. Alkek Department of Medicine, Baylor College of Medicine and Michael E. DeBakey VA Medical Center, US Department of Veterans Affairs, Houston, Texas, USA
| | - John J Tyner
- Division of Cardiovascular/Thoracic Surgery, Scripps Clinic, La Jolla, California, USA
| | - Silke Paust
- Department of Pediatrics, Texas Children's Hospital, Houston, Texas, USA.,Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
94
|
Castillo‐Ecija H, Pascual‐Pasto G, Perez‐Jaume S, Resa‐Pares C, Vila‐Ubach M, Monterrubio C, Jimenez‐Cabaco A, Baulenas‐Farres M, Muñoz‐Aznar O, Salvador N, Cuadrado‐Vilanova M, Olaciregui NG, Balaguer‐Lluna L, Burgueño V, Vicario FJ, Manzanares A, Castañeda A, Santa‐Maria V, Cruz O, Celis V, Morales La Madrid A, Garraus M, Gorostegui M, Vancells M, Carrasco R, Krauel L, Torner F, Suñol M, Lavarino C, Mora J, Carcaboso AM. Prognostic value of patient-derived xenograft engraftment in pediatric sarcomas. J Pathol Clin Res 2021; 7:338-349. [PMID: 33837665 PMCID: PMC8185364 DOI: 10.1002/cjp2.210] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/11/2021] [Accepted: 03/10/2021] [Indexed: 12/19/2022]
Abstract
The goals of this work were to identify factors favoring patient-derived xenograft (PDX) engraftment and study the association between PDX engraftment and prognosis in pediatric patients with Ewing sarcoma, osteosarcoma, and rhabdomyosarcoma. We used immunodeficient mice to establish 30 subcutaneous PDX from patient tumor biopsies, with a successful engraftment rate of 44%. Age greater than 12 years and relapsed disease were patient factors associated with higher engraftment rate. Tumor type and biopsy location did not associate with engraftment. PDX models retained histology markers and most chromosomal aberrations of patient samples during successive passages in mice. Model treatment with irinotecan resulted in significant activity in 20 of the PDXs and replicated the response of rhabdomyosarcoma patients. Successive generations of PDXs responded similarly to irinotecan, demonstrating functional stability of these models. Importantly, out of 68 tumor samples from 51 patients with a median follow-up of 21.2 months, PDX engraftment from newly diagnosed patients was a prognostic factor significantly associated with poor outcome (p = 0.040). This association was not significant for relapsed patients. In the subgroup of patients with newly diagnosed Ewing sarcoma classified as standard risk, we found higher risk of relapse or refractory disease associated with those samples that produced stable PDX models (p = 0.0357). Overall, our study shows that PDX engraftment predicts worse outcome in newly diagnosed pediatric sarcoma patients.
Collapse
|
95
|
Heinrich MA, Mostafa AMRH, Morton JP, Hawinkels LJAC, Prakash J. Translating complexity and heterogeneity of pancreatic tumor: 3D in vitro to in vivo models. Adv Drug Deliv Rev 2021; 174:265-293. [PMID: 33895214 DOI: 10.1016/j.addr.2021.04.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive type of cancer with an overall survival rate of less than 7-8%, emphasizing the need for novel effective therapeutics against PDAC. However only a fraction of therapeutics which seemed promising in the laboratory environment will eventually reach the clinic. One of the main reasons behind this low success rate is the complex tumor microenvironment (TME) of PDAC, a highly fibrotic and dense stroma surrounding tumor cells, which supports tumor progression as well as increases the resistance against the treatment. In particular, the growing understanding of the PDAC TME points out a different challenge in the development of efficient therapeutics - a lack of biologically relevant in vitro and in vivo models that resemble the complexity and heterogeneity of PDAC observed in patients. The purpose and scope of this review is to provide an overview of the recent developments in different in vitro and in vivo models, which aim to recapitulate the complexity of PDAC in a laboratory environment, as well to describe how 3D in vitro models can be integrated into drug development pipelines that are already including sophisticated in vivo models. Hereby a special focus will be given on the complexity of in vivo models and the challenges in vitro models face to reach the same levels of complexity in a controllable manner. First, a brief introduction of novel developments in two dimensional (2D) models and ex vivo models is provided. Next, recent developments in three dimensional (3D) in vitro models are described ranging from spheroids, organoids, scaffold models, bioprinted models to organ-on-chip models including a discussion on advantages and limitations for each model. Furthermore, we will provide a detailed overview on the current PDAC in vivo models including chemically-induced models, syngeneic and xenogeneic models, highlighting hetero- and orthotopic, patient-derived tissues (PDX) models, and genetically engineered mouse models. Finally, we will provide a discussion on overall limitations of both, in vitro and in vivo models, and discuss necessary steps to overcome these limitations to reach an efficient drug development pipeline, as well as discuss possibilities to include novel in silico models in the process.
Collapse
Affiliation(s)
- Marcel A Heinrich
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, 7500AE Enschede, the Netherlands
| | - Ahmed M R H Mostafa
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, 7500AE Enschede, the Netherlands
| | - Jennifer P Morton
- Cancer Research UK, Beatson Institute, Garscube Estate, Switchback Rd, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Rd, Glasgow G61 1QH, UK
| | - Lukas J A C Hawinkels
- Department of Gastroenterology-Hepatology, Leiden University Medical Centre, PO-box 9600, 2300 RC Leiden, the Netherlands
| | - Jai Prakash
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, 7500AE Enschede, the Netherlands.
| |
Collapse
|
96
|
Miyabayashi K, Nakagawa H, Koike K. Molecular and Phenotypic Profiling for Precision Medicine in Pancreatic Cancer: Current Advances and Future Perspectives. Front Oncol 2021; 11:682872. [PMID: 34249730 PMCID: PMC8260689 DOI: 10.3389/fonc.2021.682872] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer is the most common lethal malignancy, with little improvement in patient outcomes over the decades. The development of early detection methods and effective therapeutic strategies are needed to improve the prognosis of patients with this disease. Recent advances in cancer genomics have revealed the genetic landscape of pancreatic cancer, and clinical trials are currently being conducted to match the treatment to underlying mutations. Liquid biopsy-based diagnosis is a promising method to start personalized treatment. In addition to genome-based medicine, personalized models have been studied as a tool to test candidate drugs to select the most efficacious treatment. The innovative three-dimensional organoid culture platform, as well as patient-derived xenografts can be used to conduct genomic and functional studies to enable personalized treatment approaches. Combining genome-based medicine with drug screening based on personalized models may fulfill the promise of precision medicine for pancreatic cancer.
Collapse
Affiliation(s)
| | - Hayato Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
97
|
Patient-Derived Xenografts from Solid Tumors (PDX) for Models of Metastasis. Methods Mol Biol 2021. [PMID: 33742393 DOI: 10.1007/978-1-0716-1350-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
In cancer research, availability of clinically relevant tumor models is still essential for drug testing, proof of concept studies, and also molecular analyses. To achieve this, models are of advantage, which more closely reflect heterogeneity of tumors. In this regard, patient-derived xenograft (PDX) models more closely recapitulate the native tumor biology, tissue composition, and molecular characteristics. Since metastasis is still the major challenge of tumor therapy, models are pivotal, which resemble this particular property. In this context, PDX model-derived metastasis is of particular interest for testing antimetastatic therapies for their efficacy to better target this systemic disease. This protocol describes the establishment of PDX models from tumor specimen and their applicability for PDX-derived metastasis at metastatic sites such as liver and lung, which are also clinically relevant for the systemic spread of cancer. Analysis of metastasis and methods for quantification of metastatic spread are provided.
Collapse
|
98
|
Shi X, Zhang Y, Xie X, Pang M, Laster K, Li J, Ma X, Liu K, Dong Z, Kim DJ. Ipriflavone Suppresses Growth of Esophageal Squamous Cell Carcinoma Through Inhibiting mTOR In Vitro and In Vivo. Front Oncol 2021; 11:648809. [PMID: 34178634 PMCID: PMC8222593 DOI: 10.3389/fonc.2021.648809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Ipriflavone, a synthetic isoflavone that inhibits osteoclastic bone resorption, has been used clinically for the treatment of osteoporosis. However, the anticancer activity of Ipriflavone and its molecular mechanisms in the context of esophageal squamous cell carcinoma (ESCC) have not been investigated. In this study, we report that Ipriflavone is a novel mammalian target of rapamycin (mTOR) inhibitor that suppresses cell proliferation and induces cell apoptosis in ESCC cells. Ipriflavone inhibited anchorage-dependent and -independent growth of ESCC cells. Ipriflavone induced G1 phase cell cycle arrest and intrinsic cell apoptosis by activating caspase 3 and increasing the expression of cytochrome c. Based on the results of in vitro screening and cell-based assays, Ipriflavone inhibited mTOR signaling pathway through directly targeting mTOR. Knockdown of mTOR strongly inhibited the growth of ESCC cells, and the cell growth inhibitory effect exerted by Ipriflavone was found to be dependent upon mTOR signaling pathway. Remarkably, Ipriflavone strongly inhibited ESCC patient-derived xenograft tumor growth in an in vivo mouse model. Our findings suggest that Ipriflavone is an mTOR inhibitor that could be potentially useful for treating ESCC.
Collapse
Affiliation(s)
- Xiaodan Shi
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Yuanyuan Zhang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Xiaomeng Xie
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Mengjun Pang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Kyle Laster
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Jian Li
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Xinli Ma
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China.,The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China.,International Joint Research Center of Cancer Chemoprevention, Zhengzhou, China
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China.,The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China.,International Joint Research Center of Cancer Chemoprevention, Zhengzhou, China
| | - Dong Joon Kim
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| |
Collapse
|
99
|
Jia Z, Liang N, Li S. [Application of Organoids in Lung Cancer Precision Medicine]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 23:615-620. [PMID: 32702796 PMCID: PMC7406434 DOI: 10.3779/j.issn.1009-3419.2020.101.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Precision medicine is an approach to rational treatment selection in the overall management of lung cancer nowadays. The introduction of the patient-derived organoid (PDO) model has established the "black-box" decision-making system from the perspective of in-vitro functional models. This may assist as a complement to the treatment selection strategy based on gene-drug correlation. Further validation must be done in multi-dimensional characteristics recapitulation of the primary tumor in organoids and in large-scale randomized controlled clinical trials. This article will give an introduction to the organoid model and review the application scenarios of organoids in the context of the precise treatment of existing lung cancer.
Collapse
Affiliation(s)
- Ziqi Jia
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,Peking Union Medical College, Eight-year MD Program, Beijing 100005, China
| | - Naixin Liang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Shanqing Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
100
|
Na D, Moon HG. Patient-Derived Xenograft Models in Breast Cancer Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1187:283-301. [PMID: 33983584 DOI: 10.1007/978-981-32-9620-6_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Patient-derived xenograft (PDX) model can be used as a platform to study the individual patient's sensitivity to targeted agents as well as its ability to guide our understanding in various aspects of tumor biology including the tumor's clonal evolution and interaction with microenvironment. In this chapter, we review the history of PDX models in various tumor types. Additionally, we highlight the key studies that suggested potential value of PDX models in cancer treatment. Specifically, we will briefly introduce several studies on the issue of PDX models for precision medicine. In latter part of this chapter, we focus on the studies that used PDX models to investigate the molecular biology of breast cancer that underlies the process of drug resistance and tumor metastasis. Also, we will address our own experience in developing PDX models using breast cancer tissues from Korean breast cancer patients.
Collapse
Affiliation(s)
- Deukchae Na
- Institute of Convergence Medicine, Ewha Womans University Mokdong Hospital, Seoul, South Korea
| | - Hyeong-Gon Moon
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|