51
|
Sarkar S, Piepenbrink MS, Basu M, Thakar J, Keefer MC, Hessell AJ, Haigwood NL, Kobie JJ. IL-33 enhances the kinetics and quality of the antibody response to a DNA and protein-based HIV-1 Env vaccine. Vaccine 2019; 37:2322-2330. [PMID: 30926296 PMCID: PMC6506229 DOI: 10.1016/j.vaccine.2019.03.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/05/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022]
Abstract
Induction of a sustained and broad antibody (Ab) response is a major goal in developing a protective HIV-1 vaccine. DNA priming alone shows reduced levels of immunogenicity; however, when combined with protein boosting is an attractive vaccination strategy for induction of humoral responses. Using the VC10014 DNA and protein-based vaccine consisting of HIV-1 envelope (Env) gp160 plasmids and trimeric gp140 proteins derived from an HIV-1 clade B infected subject who developed broadly neutralizing serum Abs, and which has been previously demonstrated to induce Tier 2 heterologous neutralizing Abs in rhesus macaques, we evaluated whether MPLA and IL-33 when administered during the DNA priming phase enhances the humoral response in mice. The addition of IL-33 during the gp160 DNA priming phase resulted in high titer gp120-specific plasma IgG after the first immunization. The IL-33 treated mice had higher plasma IgG Ab avidity, breadth, and durability after DNA and protein co-immunization with alum adjuvant as compared to MPLA and alum only treated mice. IL-33 was also associated with a significant IgM Env-specific response and expansion of peritoneal and splenic B-1b B cells. These results indicate that DNA priming in the presence of exogenous IL-33 qualitatively alters the HIV-1 Env-specific humoral response, improving the kinetics and breadth of potentially protective Ab.
Collapse
Affiliation(s)
- Sanghita Sarkar
- Infectious Diseases Division, University of Rochester Medical Center, Rochester, NY, United States
| | - Michael S Piepenbrink
- Infectious Diseases Division, University of Rochester Medical Center, Rochester, NY, United States
| | - Madhubanti Basu
- Infectious Diseases Division, University of Rochester Medical Center, Rochester, NY, United States
| | - Juilee Thakar
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Michael C Keefer
- Infectious Diseases Division, University of Rochester Medical Center, Rochester, NY, United States
| | - Ann J Hessell
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - Nancy L Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - James J Kobie
- Infectious Diseases Division, University of Rochester Medical Center, Rochester, NY, United States.
| |
Collapse
|
52
|
O'Grady K, Hearnden CCH, Bento D, Oleszycka E, Andersen P, Muñoz-Wolf N, Lavelle EC. IL-33 Is a Negative Regulator of Vaccine-Induced Antigen-Specific Cellular Immunity. THE JOURNAL OF IMMUNOLOGY 2019; 202:1145-1152. [PMID: 30642984 DOI: 10.4049/jimmunol.1800833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/13/2018] [Indexed: 01/17/2023]
Abstract
The cytokine IL-33 is a well-established inducer of Th2 responses. However, roles for IL-33 in promoting CD8, Th1, and T regulatory cell responses have also emerged. In this study, the role of IL-33 as a regulator of particulate vaccine adjuvant-induced Ag-specific cellular immunity was investigated. We found that polymeric nanoparticles surpassed alum in their ability to enhance Ag-specific CD8 and Th1 responses. IL-33 was a potent negative regulator of both CD8+ T cell and Th1 responses following i.m. vaccination with Ag and nanoparticles, whereas the cytokine was required for the nanoparticle enhancement in Ag-specific IL-10. In contrast to the effect on cellular immunity, Ab responses were comparable between vaccinated wild-type and IL-33-deficient mice. IL-33 did not compromise alum-induced adaptive cellular immunity after i.m. vaccination. These data suggest that IL-33 attenuates the induction of cellular immune responses by nanoparticulate adjuvants and should be considered in the rational design of vaccines targeting enhanced CD8 and Th1 responses.
Collapse
Affiliation(s)
- Katie O'Grady
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02R590, Ireland
| | - Claire C H Hearnden
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02R590, Ireland
| | - Dulce Bento
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02R590, Ireland
| | - Ewa Oleszycka
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02R590, Ireland
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institute, Copenhagen 2300s, Denmark
| | - Natalia Muñoz-Wolf
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02R590, Ireland
| | - Ed C Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02R590, Ireland; .,Centre for Research on Adaptive Nanostructures and Nanodevices, Trinity College Dublin, Dublin 2, D02 PN40, Ireland; and.,Advanced Materials and BioEngineering Research Centre, Trinity College Dublin, Dublin 2, D02 PN40, Ireland
| |
Collapse
|
53
|
McLaren JE, Clement M, Marsden M, Miners KL, Llewellyn-Lacey S, Grant EJ, Rubina A, Gimeno Brias S, Gostick E, Stacey MA, Orr SJ, Stanton RJ, Ladell K, Price DA, Humphreys IR. IL-33 Augments Virus-Specific Memory T Cell Inflation and Potentiates the Efficacy of an Attenuated Cytomegalovirus-Based Vaccine. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:943-955. [PMID: 30635396 PMCID: PMC6341181 DOI: 10.4049/jimmunol.1701757] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 11/21/2018] [Indexed: 01/01/2023]
Abstract
Candidate vaccines designed to generate T cell-based immunity are typically vectored by nonpersistent viruses, which largely fail to elicit durable effector memory T cell responses. This limitation can be overcome using recombinant strains of CMV. Proof-of-principle studies have demonstrated the potential benefits of this approach, most notably in the SIV model, but safety concerns require the development of nonreplicating alternatives with comparable immunogenicity. In this study, we show that IL-33 promotes the accumulation and recall kinetics of circulating and tissue-resident memory T cells in mice infected with murine CMV. Using a replication-deficient murine CMV vector, we further show that exogenous IL-33 boosts vaccine-induced memory T cell responses, which protect against subsequent heterologous viral challenge. These data suggest that IL-33 could serve as a useful adjuvant to improve the efficacy of vaccines based on attenuated derivatives of CMV.
Collapse
Affiliation(s)
- James E McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom;
| | - Mathew Clement
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Morgan Marsden
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Kelly L Miners
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Emma J Grant
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; and
| | - Anzelika Rubina
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Silvia Gimeno Brias
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Emma Gostick
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Maria A Stacey
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Selinda J Orr
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Richard J Stanton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Ian R Humphreys
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
54
|
Shen JX, Liu J, Zhang GJ. Interleukin-33 in Malignancies: Friends or Foes? Front Immunol 2018; 9:3051. [PMID: 30619376 PMCID: PMC6306406 DOI: 10.3389/fimmu.2018.03051] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 12/10/2018] [Indexed: 02/05/2023] Open
Abstract
The human Interleukin-33 (IL-33), a member of the IL-1 family, is the cytokine as a cell endogenous alarmin, released by damaged or necrotic barrier cells (endothelial and epithelial cells). The signal transduction of IL-33 relies on recognition and interaction with specific receptor ST2, mainly expressed in immune cells. In both innate and adoptive immunity, IL-33 regulates the homeostasis in response to stress from within/out the microenvironment. Various, even negative biofunctions of IL-33 pathways have now been widely verified in pathogenesis among immunological mechanisms, like Th2-related immune-stimuli, inflammation/infection-induced tissue protectors. A larger versatility in studies of IL-33 on malignancies now focuses on: (1) promoting myeloid-derived suppressor cells (MDSC), (2) intervention toward CD8+ T, Natural Killer (NK) cell infiltration, group 2 innate lymphoid cells (ILC2) proliferation, dendritic cells (DC) activation, and (3) inhibiting tumor growth and/or further metastasis as an immunoadjuvant. Although IL-33 functioned pro-tumorigenically in various cancers, for some cancer types the findings so far are controversial. This review begins from a summarized introduction of IL-33, to its remarkable implications and molecular transduction pathway in malignant neoplasms, ends with latest inspiration for IL-33 in treatment.
Collapse
Affiliation(s)
- Jia-Xin Shen
- Chang Jiang Scholar's Laboratory, Shantou University Medical College, Shantou, China
- Department of Hematology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Jing Liu
- Chang Jiang Scholar's Laboratory, Shantou University Medical College, Shantou, China
- Department of Physiology, Shantou University Medical College, Shantou, China
| | - Guo-Jun Zhang
- Chang Jiang Scholar's Laboratory, Shantou University Medical College, Shantou, China
- The Cancer Center and the Department of Breast-Thyroid Surgery, Xiang'an Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
55
|
Long A, Dominguez D, Qin L, Chen S, Fan J, Zhang M, Fang D, Zhang Y, Kuzel TM, Zhang B. Type 2 Innate Lymphoid Cells Impede IL-33-Mediated Tumor Suppression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:3456-3464. [PMID: 30373846 PMCID: PMC6264920 DOI: 10.4049/jimmunol.1800173] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/01/2018] [Indexed: 01/29/2023]
Abstract
Although a number of studies have recently explored the contribution of the adaptive immunity in IL-33-mediated antitumor effects, innate immune involvement has been poorly characterized. Utilizing Rag1-/- mice (lacking T and B lymphocytes), we show in this study that either systemic administration of recombinant IL-33 or ectopic expression of IL-33 in melanoma cells is sufficient to inhibit tumor growth independent of adaptive antitumor immunity. We have demonstrated that IL-33-mediated antitumor effects depend on expansion and activation of NK cells. Interestingly, IL-33 also promoted the expansion of active type 2 innate lymphoid cells (ILC2s) via its receptor, ST2, which in turn inhibited NK activation and cytotoxicity. This IL-33-induced ILC2 activity coincided with greater expression of the immunosuppressive ectoenzyme CD73. Removal of CD73 from ILC2s in culture with NK cells resulted in markedly increased activation levels in NK cells, offering a potential mechanism by which ILC2s might suppress NK cell-mediated tumor killing. Thus, our data reveal an important contribution of IL-33-induced ILC2 to tumor growth by weakening NK cell activation and tumor killing, regardless of adaptive immunity.
Collapse
Affiliation(s)
- Alan Long
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan, China
| | - Donye Dominguez
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Lei Qin
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Siqi Chen
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Jie Fan
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Minghui Zhang
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan, China
| | - Timothy M Kuzel
- Division of Hematology, Oncology, and Cell Therapy, Rush University Medical Center, Chicago, IL 60612
| | - Bin Zhang
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611;
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan, China
| |
Collapse
|
56
|
Jin Z, Lei L, Lin D, Liu Y, Song Y, Gong H, Zhu Y, Mei Y, Hu B, Wu Y, Zhang G, Liu H. IL-33 Released in the Liver Inhibits Tumor Growth via Promotion of CD4 + and CD8 + T Cell Responses in Hepatocellular Carcinoma. THE JOURNAL OF IMMUNOLOGY 2018; 201:3770-3779. [PMID: 30446569 DOI: 10.4049/jimmunol.1800627] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/17/2018] [Indexed: 12/28/2022]
Abstract
IL-33 released by epithelial cells and immune cells functions as an alarmin and can induce both type 1 and type 2 immune responses. However, the role of IL-33 release in tumor development is still not clear. In this study, we examined the function of released IL-33 in murine hepatocellular carcinoma (HCC) models by hydrodynamically injecting either IL-33-expressing tumor cells or IL-33-expressing plasmids into the liver of tumor-bearing mice. Tumor growth was greatly inhibited by IL-33 release. This antitumor effect of IL-33 was dependent on suppression of tumorigenicity 2 (ST2) because it was diminished in ST2-/- mice. Moreover, HCC patients with high IL-33 expression have prolonged overall survival compared with the patients with low IL-33 expression. Further study showed that there were increased percentages and numbers of activated and effector CD4+ and CD8+ T cells in both spleen and liver in IL-33-expressing tumor-bearing mice. Moreover, IFN-γ production of the CD4+ and CD8+ T cells was upregulated in both spleen and liver by IL-33. The cytotoxicity of CTLs from IL-33-expressing mice was also enhanced. In vitro rIL-33 treatment could preferentially expand CD8+ T cells and promote CD4+ and CD8+ T cell activation and IFN-γ production. Depletion of CD4+ and CD8+ T cells diminished the antitumor activity of IL-33, suggesting that the antitumor function of released IL-33 was mediated by both CD4+ and CD8+ T cells. Taken together, we demonstrated in murine HCC models that IL-33 release could inhibit tumor development through its interaction with ST2 to promote antitumor CD4+ and CD8+ T cell responses.
Collapse
Affiliation(s)
- Ziqi Jin
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University-, Medical College, Soochow University, Suzhou 215123, China
| | - Lei Lei
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University-, Medical College, Soochow University, Suzhou 215123, China
| | - Dandan Lin
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University-, Medical College, Soochow University, Suzhou 215123, China
| | - Yonghao Liu
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University-, Medical College, Soochow University, Suzhou 215123, China
| | - Yuan Song
- Immunology Program, Department of Microbiology and Immunology, National University of Singapore, Singapore 117456, Singapore.,Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Huanle Gong
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University-, Medical College, Soochow University, Suzhou 215123, China
| | - Ying Zhu
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University-, Medical College, Soochow University, Suzhou 215123, China
| | - Yu Mei
- Immunology Program, Department of Microbiology and Immunology, National University of Singapore, Singapore 117456, Singapore.,Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Bo Hu
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University-, Medical College, Soochow University, Suzhou 215123, China
| | - Yan Wu
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University-, Medical College, Soochow University, Suzhou 215123, China
| | - Guangbo Zhang
- Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; and.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Haiyan Liu
- Immunology Program, Department of Microbiology and Immunology, National University of Singapore, Singapore 117456, Singapore; .,Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
57
|
Afferni C, Buccione C, Andreone S, Galdiero MR, Varricchi G, Marone G, Mattei F, Schiavoni G. The Pleiotropic Immunomodulatory Functions of IL-33 and Its Implications in Tumor Immunity. Front Immunol 2018; 9:2601. [PMID: 30483263 PMCID: PMC6242976 DOI: 10.3389/fimmu.2018.02601] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022] Open
Abstract
Interleukin-33 (IL-33) is a IL-1 family member of cytokines exerting pleiotropic activities. In the steady-state, IL-33 is expressed in the nucleus of epithelial, endothelial, and fibroblast-like cells acting as a nuclear protein. In response to tissue damage, infections or necrosis IL-33 is released in the extracellular space, where it functions as an alarmin for the immune system. Its specific receptor ST2 is expressed by a variety of immune cell types, resulting in the stimulation of a wide range of immune reactions. Recent evidences suggest that different IL-33 isoforms exist, in virtue of proteolytic cleavage or alternative mRNA splicing, with potentially different biological activity and functions. Although initially studied in the context of allergy, infection, and inflammation, over the past decade IL-33 has gained much attention in cancer immunology. Increasing evidences indicate that IL-33 may have opposing functions, promoting, or dampening tumor immunity, depending on the tumor type, site of expression, and local concentration. In this review we will cover the biological functions of IL-33 on various immune cell subsets (e.g., T cells, NK, Treg cells, ILC2, eosinophils, neutrophils, basophils, mast cells, DCs, and macrophages) that affect anti-tumor immune responses in experimental and clinical cancers. We will also discuss the possible implications of diverse IL-33 mutations and isoforms in the anti-tumor activity of the cytokine and as possible clinical biomarkers.
Collapse
Affiliation(s)
- Claudia Afferni
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Carla Buccione
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Sara Andreone
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council, Naples, Italy
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
58
|
Li X, Lv Q, Feng Y, Gu Y, Xia R, Ma J, He H, Zhu Y. Interleukin-33, a Potential Cytokine Expressed in the Tumor Microenvironment Is Involved in Antitumor Immunotherapy Through Facilitating CD8+ T Cells. J Interferon Cytokine Res 2018; 38:491-499. [DOI: 10.1089/jir.2018.0069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Xiaochen Li
- Department of Immunology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
- Department of Clinical Laboratory, Suzhou No. 7 People's Hospital, Suzhou, China
| | - Quansheng Lv
- Department of Immunology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yuehua Feng
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yanzheng Gu
- Clinical Immunology Institute, The First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Rui Xia
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingshu Ma
- Department of Immunology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Honghong He
- Department of Immunology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Yibei Zhu
- Department of Immunology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| |
Collapse
|
59
|
Dulek DE, de St Maurice A, Halasa NB. Vaccines in pediatric transplant recipients-Past, present, and future. Pediatr Transplant 2018; 22:e13282. [PMID: 30207024 DOI: 10.1111/petr.13282] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 12/20/2022]
Abstract
Infections significantly impact outcomes for solid organ and hematopoietic stem cell transplantation in children. Vaccine-preventable diseases contribute to morbidity and mortality in both early and late posttransplant time periods. Several infectious diseases and transplantation societies have published recommendations and guidelines that address immunization in adult and pediatric transplant recipients. In many cases, pediatric-specific studies are limited in size or quality, leading to recommendations being based on adult data or mixed adult-pediatric studies. We therefore review the current state of evidence for selected immunizations in pediatric transplant recipients and highlight areas for future investigation. Specific attention is given to studies that enrolled only children.
Collapse
Affiliation(s)
- Daniel E Dulek
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, Tennessee
| | - Annabelle de St Maurice
- Division of Pediatric Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Natasha B Halasa
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, Tennessee
| |
Collapse
|
60
|
Kim AR, Park J, Kim JH, Kwak JE, Cho Y, Lee H, Jeong M, Park SH, Shin EC. Herpes Zoster DNA Vaccines with IL-7 and IL-33 Molecular Adjuvants Elicit Protective T Cell Immunity. Immune Netw 2018; 18:e38. [PMID: 30402333 PMCID: PMC6215899 DOI: 10.4110/in.2018.18.e38] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 02/06/2023] Open
Abstract
Herpes zoster (HZ), or shingles, is caused by the reactivation of latent varicella-zoster virus (VZV) from the sensory ganglia when VZV-specific T-cell immunity is decreased because of aging or immunosuppression. In the present study, we developed HZ DNA vaccine candidates encoding VZV proteins and cytokine adjuvants, such as IL-7 and IL-33. We immunized C57BL/6 mice with DNA plasmids encoding VZV glycoprotein E (gE), immediate early (IE) 63, or IE62 proteins and found that robust VZV protein-specific T-cell responses were elicited by HZ DNA vaccination. Co-administration of DNA plasmids encoding IL-7 or IL-33 in HZ DNA vaccination significantly enhanced the magnitude of VZV protein-specific T-cell responses. Protective immunity elicited by HZ DNA vaccination was proven by challenge experiments with a surrogate virus, vaccinia virus expressing gE (VV-gE). A single dose of HZ DNA vaccine strongly boosted gE-specific T-cell responses in mice with a history of previous infection by VV-gE. Thus, HZ DNA vaccines with IL-7 and IL-33 adjuvants strongly elicit protective immunity.
Collapse
Affiliation(s)
- A Reum Kim
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Junsik Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Jong Hoon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.,Department of Dermatology and Cutaneous Biology Research Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06230, Korea
| | - Jeong-Eun Kwak
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Youngran Cho
- Research Center, GeneOne Life Science, Inc., Seoul 06060, Korea
| | - Hyojin Lee
- Research Center, GeneOne Life Science, Inc., Seoul 06060, Korea
| | - Moonsup Jeong
- Research Center, GeneOne Life Science, Inc., Seoul 06060, Korea
| | - Su-Hyung Park
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Eui-Cheol Shin
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
61
|
Fournié JJ, Poupot M. The Pro-tumorigenic IL-33 Involved in Antitumor Immunity: A Yin and Yang Cytokine. Front Immunol 2018; 9:2506. [PMID: 30416507 PMCID: PMC6212549 DOI: 10.3389/fimmu.2018.02506] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/10/2018] [Indexed: 12/21/2022] Open
Abstract
Interleukin-33 (IL-33), considered as an alarmin released upon tissue stress or damage, is a member of the IL-1 family and binds the ST2 receptor. First described as a potent initiator of type 2 immune responses through the activation of T helper 2 (TH2) cells and mast cells, IL-33 is now also known as an effective stimulator of TH1 immune cells, natural killer (NK) cells, iNKT cells, and CD8 T lymphocytes. Moreover, IL-33 was shown to play an important role in several cancers due to its pro and anti-tumorigenic functions. Currently, IL-33 is a possible inducer and prognostic marker of cancer development with a direct effect on tumor cells promoting tumorigenesis, proliferation, survival, and metastasis. IL-33 also promotes tumor growth and metastasis by remodeling the tumor microenvironment (TME) and inducing angiogenesis. IL-33 favors tumor progression through the immune system by inducing M2 macrophage polarization and tumor infiltration, and upon activation of immunosuppressive cells such as myeloid-derived suppressor cells (MDSC) or regulatory T cells. The anti-tumor functions of IL-33 also depend on infiltrated immune cells displaying TH1 responses. This review therefore summarizes the dual role of this cytokine in cancer and suggests that new proposals for IL-33-based cancer immunotherapies should be considered with caution.
Collapse
Affiliation(s)
- Jean-Jacques Fournié
- INSERM UMR 1037 Centre de Recherche en Cancérologie de Toulouse (CRCT), ERL 5294 CNRS, Université Toulouse III Paul Sabatier, Laboratoire d'excellence Toucan, Toulouse, France
| | - Mary Poupot
- INSERM UMR 1037 Centre de Recherche en Cancérologie de Toulouse (CRCT), ERL 5294 CNRS, Université Toulouse III Paul Sabatier, Laboratoire d'excellence Toucan, Toulouse, France
| |
Collapse
|
62
|
Liu N, Jiang Y, Chen J, Nan H, Zhao Y, Chu X, Wang A, Wang D, Qin T, Gao S, Yi Q, Yue Y, Wang S. IL-33 drives the antitumor effects of dendritic cells via the induction of Tc9 cells. Cell Mol Immunol 2018; 16:644-651. [PMID: 30275536 DOI: 10.1038/s41423-018-0166-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 08/15/2018] [Indexed: 11/09/2022] Open
Abstract
Dendritic cell (DC) tumor vaccines exert their antitumor effects through the induction of effector T cells. We recently identified Tc9 cells as a new potent antitumor effector T cell subset. However, approaches to direct DCs to preferably prime antitumor Tc9 cells should be further exploited. Here, we demonstrate that the addition of interleukin (IL)-33 potently promotes the induction of Tc9 cells by DCs in vitro and in vivo. IL-33 treatment also drives the cytotoxic activities of DC-induced Tc9 cells. Notably, IL-33 treatment enhances cell survival and proliferation of DC-primed CD8+ T cells. More importantly, the addition of IL-33 during in vitro priming of tumor-specific Tc9 cells by DCs increases the antitumor capability of Tc9 cells. Mechanistic studies demonstrated that IL-33 treatment inhibits exhaustive CD8+ T cell differentiation by inhibiting PD-1 and 2B4 expression and increasing IL-2 and CD127 (IL-7 receptor-α, IL-7Rα) expression in CD8+ T cells. Finally, the addition of IL-33 further promotes the therapeutic efficacy of DC-based tumor vaccines in the OT-I mouse model. Our study demonstrates the important role of IL-33 in DC-induced Tc9 cell differentiation and antitumor immunity and may have important clinical implications.
Collapse
Affiliation(s)
- Ning Liu
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun, 130061, China
| | - Yuxue Jiang
- Department of Cancer Immunology, The First Hospital of Jilin University, Changchun, 130061, China
| | - Jintong Chen
- Department of Cancer Immunology, The First Hospital of Jilin University, Changchun, 130061, China
| | - He Nan
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Yinghua Zhao
- Department of Cancer Immunology, The First Hospital of Jilin University, Changchun, 130061, China
| | - Xiao Chu
- Department of Cancer Immunology, The First Hospital of Jilin University, Changchun, 130061, China
| | - Alison Wang
- Department of Cancer Immunology, The First Hospital of Jilin University, Changchun, 130061, China
| | - Dongjiao Wang
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun, 130061, China
| | - Tianxue Qin
- Department of Hematology, The First Hospital of Jilin University, Changchun, 130061, China
| | - Sujun Gao
- Department of Hematology, The First Hospital of Jilin University, Changchun, 130061, China
| | - Qing Yi
- Department of Cancer Immunology, The First Hospital of Jilin University, Changchun, 130061, China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Ying Yue
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun, 130061, China.
| | - Siqing Wang
- Department of Cancer Immunology, The First Hospital of Jilin University, Changchun, 130061, China.
| |
Collapse
|
63
|
Perales-Puchalt A, Svoronos N, Villarreal DO, Zankharia U, Reuschel E, Wojtak K, Payne KK, Duperret EK, Muthumani K, Conejo-Garcia JR, Weiner DB. IL-33 delays metastatic peritoneal cancer progression inducing an allergic microenvironment. Oncoimmunology 2018; 8:e1515058. [PMID: 30546956 PMCID: PMC6287802 DOI: 10.1080/2162402x.2018.1515058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer is frequently diagnosed as peritoneal carcinomatosis. Unlike other tumor locations, the peritoneal cavity is commonly exposed to gut-breaching and ascending genital microorganisms and has a unique immune environment. IL-33 is a local cytokine that can activate innate and adaptive immunity. We studied the effectiveness of local IL-33 delivery in the treatment of cancer that has metastasized to the peritoneal cavity. Direct peritoneal administration of IL-33 delayed the progression of metastatic peritoneal cancer. Prolongation in survival was not associated with a direct effect of IL-33 on tumor cells, but with major changes in the immune microenvironment of the tumor. IL-33 promoted a significant increase in the leukocyte compartment of the tumor immunoenvironment and an allergic cytokine profile. We observed a substantial increase in the number of activated CD4+ T-cells accompanied by peritoneal eosinophil infiltration, B-cell activation and activation of peritoneal macrophages which displayed tumoricidal capacity. Depletion of CD4+ cells, eosinophils or macrophages reduced the anti-tumor effects of IL-33 but none of these alone were sufficient to completely abrogate its positive benefit. In conclusion, local administration of IL-33 generates an allergic tumor environment resulting in a novel approach for treatment of metastatic peritoneal malignancies, such as advanced ovarian cancer.
Collapse
Affiliation(s)
| | - Nikolaos Svoronos
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA
| | - Daniel O Villarreal
- Department of Pathology, University of Pennsylvania, Philadelphia, PA USA.,Oncology Discovery, Janssen R&D, Spring House, PA, USA
| | - Urvi Zankharia
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadlephia, PA, USA
| | - Emma Reuschel
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadlephia, PA, USA
| | - Krzysztof Wojtak
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadlephia, PA, USA
| | - Kyle K Payne
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
| | | | - Kar Muthumani
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadlephia, PA, USA
| | - Jose R Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
| | - David B Weiner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadlephia, PA, USA
| |
Collapse
|
64
|
Dziki JL, Hussey G, Badylak SF. Alarmins of the extracellular space. Semin Immunol 2018; 38:33-39. [PMID: 30170910 DOI: 10.1016/j.smim.2018.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/22/2018] [Indexed: 12/30/2022]
Abstract
The ability of the immune system to discriminate between healthy-self, abnormal-self, and non-self has been attributed mainly to alarmins signaling as "danger signals". It is now evident, however, that alarmins are much more complex and can perform specialized functions that can regulate a wide spectrum of processes ranging from propagation of disease to tissue homeostasis. As such, alarmins and their signaling mechanisms are now actively pursued as therapeutic targets. The clinical utility of alarmins requires an understanding of their specific localization. Specifically, many alarmins can function paradoxically depending upon their localization, intra or extracellular. The present review focuses upon alarmin presence and differential expression in the extracellular space versus within the cell and how variation of the localization of alarmins can reveal important mechanistic insights into alarmin functions and their efficacy as biomarkers of disease and therapeutic targets.
Collapse
Affiliation(s)
- Jenna L Dziki
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - George Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
65
|
Villarreal DO, Chin D, Smith MA, Luistro LL, Snyder LA. Combination GITR targeting/PD-1 blockade with vaccination drives robust antigen-specific antitumor immunity. Oncotarget 2018; 8:39117-39130. [PMID: 28388572 PMCID: PMC5503599 DOI: 10.18632/oncotarget.16605] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/01/2017] [Indexed: 12/21/2022] Open
Abstract
Tumor progression is facilitated immunologically by mechanisms that include low antigen expression, an absence of coimmunostimulatory signals, and the presence of regulatory T cells (Tregs), all of which act to suppress and restrict effector T cells in the tumor. It may be possible to overcome these conditions by a combination of modulatory immunotherapy agents and tumor-antigen targeting to activate and drive effective antitumor T cell responses. Here, we demonstrated that co-administration of aGITR and aPD-1 monoclonal antibodies (mAb) in combination with a peptide vaccine (Vax) in mice bearing established tumors significantly delayed tumor growth and induced complete regression in 50% of the mice. This response was associated with increased expansion and functionality of potent Ag-specific polyfunctional CD8+ T cells, reduced Tregs, and the generation of memory T cells. Tumor regression correlated with the expansion of tumor-infiltrating antigen-specific CD8+ effector memory T cells, as depletion of this cell population significantly reduced the effectiveness of the triple combination Vax/aGITR/aPD-1 therapy. These findings support the concept that dual aGITR/aPD-1 combination with cancer vaccines may be a novel strategy against poorly immunogenic tumors.
Collapse
Affiliation(s)
- Daniel O Villarreal
- Oncology Discovery, Janssen Research and Development, Spring House, PA 19477, USA
| | - Diana Chin
- Oncology Discovery, Janssen Research and Development, Spring House, PA 19477, USA
| | - Melissa A Smith
- Oncology Discovery, Janssen Research and Development, Spring House, PA 19477, USA
| | - Leopoldo L Luistro
- Oncology Discovery, Janssen Research and Development, Spring House, PA 19477, USA
| | - Linda A Snyder
- Oncology Discovery, Janssen Research and Development, Spring House, PA 19477, USA
| |
Collapse
|
66
|
Wang D, Gao S, Chen J, Zhao Y, Jiang Y, Chu X, Wang X, Liu N, Qin T, Yi Q, Yue Y, Wang S. Dectin-1 stimulates IL-33 expression in dendritic cells via upregulation of IRF4. J Transl Med 2018; 98:708-714. [PMID: 29540860 DOI: 10.1038/s41374-018-0047-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/11/2018] [Accepted: 01/24/2018] [Indexed: 12/25/2022] Open
Abstract
Interleukin-33 (IL-33) is a potent contributor to antiviral immune responses and antitumor immunity. We recently discovered that IL-33 is overexpressed in dectin-1-activated dendritic cells (DCs). However, mechanisms of dectin-1-induced IL-33 expression in DCs remain elusive. Curdlan, an agonist of dectin-1, was used to mature DCs in this study. We found that dectin-1-induced IL-33 expression in DCs relies on Syk and Raf-1 pathways. By using nuclear factor (NF)-κB inhibitors, we also found that dectin-1-induced IL-33 expression relies on NF-κB signaling. Furthermore, through Syk/Raf-1-NF-κB pathway, dectin-1 signaling stimulates DCs to overexpress interferon regulatory factor 4 (IRF4), which directly upregulates the expression of IL-33 in dectin-1-activated DCs. Thus, our study provides new insights into the mechanisms of dectin-1-induced IL-33 expression in DCs and may provide new targets for improving DC-based cancer immunotherapy.
Collapse
Affiliation(s)
- Dongjiao Wang
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun, 130061, China
| | - Sujun Gao
- Department of Hematology, The First Hospital of Jilin University, Changchun, 130061, China
| | - Jintong Chen
- Department of Cancer Immunology, The First Hospital of Jilin University, Changchun, 130061, China
| | - Yinghua Zhao
- Department of Cancer Immunology, The First Hospital of Jilin University, Changchun, 130061, China
| | - Yuxue Jiang
- Department of Cancer Immunology, The First Hospital of Jilin University, Changchun, 130061, China
| | - Xiao Chu
- Department of Cancer Immunology, The First Hospital of Jilin University, Changchun, 130061, China
| | - Xiaohua Wang
- Department of Internal Medicine, Linhai First People's Hospital, Linhai, Zhejiang, 317000, China
| | - Ning Liu
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun, 130061, China
| | - Tianxue Qin
- Department of Hematology, The First Hospital of Jilin University, Changchun, 130061, China
| | - Qing Yi
- Department of Cancer Immunology, The First Hospital of Jilin University, Changchun, 130061, China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195, USA
| | - Ying Yue
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun, 130061, China.
| | - Siqing Wang
- Department of Cancer Immunology, The First Hospital of Jilin University, Changchun, 130061, China.
| |
Collapse
|
67
|
Chen H, Chen Y, Liu H, Que Y, Zhang X, Zheng F. Integrated Expression Profiles Analysis Reveals Correlations Between the IL-33/ST2 Axis and CD8 + T Cells, Regulatory T Cells, and Myeloid-Derived Suppressor Cells in Soft Tissue Sarcoma. Front Immunol 2018; 9:1179. [PMID: 29896199 PMCID: PMC5986931 DOI: 10.3389/fimmu.2018.01179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/11/2018] [Indexed: 01/07/2023] Open
Abstract
Soft tissue sarcoma (STS) is a rare solid malignant cancer, and there are few effective treatment options for advanced disease. Cancer immunotherapy is a promising new strategy for STS treatment. IL-33 is a candidate cytokine for immunotherapy that can activate T lymphocytes and modulate antitumor immunity in some cancers. However, the expression and biological role of IL-33 in STS are poorly understood. In this study, we found that the expression of IL-33 and its receptor ST2 was decreased in STS using real-time PCR assays. By analyzing sarcoma data from The Cancer Genome Atlas, we found that higher transcriptional levels of IL-33 and ST2 were associated with a favorable outcome. There were positive correlations between the expression levels of ST2 and CD3E, CD4, CD8A, CD45RO, FOXP3, CD11B, CD33, and IFN-γ. Strong positive correlations between the expression of IFN-γ and CD3E and CD8A were also observed. Moreover, the expression levels of both IL-33 and ST2 were positively correlated with those of CD3E, CD8A, and chemokines that recruit CD8+ T cells, indicating that the IL-33/ST2 axis may play an important role in recruiting and promoting the immune response of type 1-polarized CD8+ T cells in STS. Meanwhile, we also found that the expression of IL-33 was negatively correlated with that of TGF-β1 and chemokines that recruit regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), indicating that the IL-33/ST2 axis may also contribute to antagonizing Tregs, MDSCs, and TGF-β1-mediated immunosuppression in STS. The correlations between the IL-33/ST2 axis and CD8+ T cells and IFN-γ, as well as Tregs, MDSCs, and TGF-β1 were validated by additional analyses using three other independent GEO datasets of sarcoma. Our results implicate the possible role of the IL-33/ST2 axis in modulating antitumor immunity in STS. IL-33 may not only serve as a useful prognostic biomarker for STS but also as a potential therapeutic target for STS immunotherapy and worth further investigation.
Collapse
Affiliation(s)
- Huoying Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China.,Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Chen
- Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Radiotherapy, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Hongbo Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Yi Que
- Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xing Zhang
- Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fang Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
68
|
Shen Y, Li J, Wang SQ, Jiang W. Ambiguous roles of innate lymphoid cells in chronic development of liver diseases. World J Gastroenterol 2018; 24:1962-1977. [PMID: 29760540 PMCID: PMC5949710 DOI: 10.3748/wjg.v24.i18.1962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/25/2018] [Accepted: 05/06/2018] [Indexed: 02/06/2023] Open
Abstract
Innate lymphoid cells (ILCs) are defined as a distinct arm of innate immunity. According to their profile of secreted cytokines and lineage-specific transcriptional factors, ILCs can be categorized into the following three groups: group 1 ILCs (including natural killer (NK) cells and ILC1s) are dependent on T-bet and can produce interferon-γ; group 2 ILCs (ILC2s) are dependent on GATA3 and can produce type 2 cytokines, including interleukin (IL)-5 and IL-13; and, group 3 ILCs (including lymphoid tissue-like cells and ILC3s) are dependent on RORγt and can produce IL-22 and IL-17. Collaborative with adaptive immunity, ILCs are highly reactive innate effectors that promptly orchestrate immunity, inflammation and tissue repair. Dysregulation of ILCs might result in inflammatory disorders. Evidence regarding the function of intrahepatic ILCs is emerging from longitudinal studies of inflammatory liver diseases wherein they exert both physiological and pathological functions, including immune homeostasis, defenses and surveillance. Their overall effect on the liver depends on the balance of their proinflammatory and antiinflammatory populations, specific microenvironment and stages of immune responses. Here, we review the current data about ILCs in chronic liver disease progression, to reveal their roles in different stages as well as to discuss their therapeutic potency as intervention targets.
Collapse
Affiliation(s)
- Yue Shen
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jing Li
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of Gastroenterology, Tongji Hospital, Tongji University, Shanghai 200000, China
| | - Si-Qi Wang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wei Jiang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
69
|
Muñoz-Wolf N, Lavelle EC. A Guide to IL-1 family cytokines in adjuvanticity. FEBS J 2018; 285:2377-2401. [PMID: 29656546 DOI: 10.1111/febs.14467] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/21/2018] [Accepted: 04/04/2018] [Indexed: 12/16/2022]
Abstract
Growing awareness of the multiplicity of roles for the IL-1 family in immune regulation has prompted research exploring these cytokines in the context of vaccine-induced immunity. While tightly regulated, cytokines of the IL-1 family are normally released in response to cellular stress and in combination with other danger-/damage-associated molecular patterns (DAMPs), triggering potent local and systemic immune responses. In the context of infection or autoimmunity, engagement of IL-1 family receptors links robust innate responses to adaptive immunity. Clinical and experimental evidence has revealed that many vaccine adjuvants induce the release of one or multiple IL-1 family cytokines. The coordinated release of IL-1 family members in response to adjuvant-induced damage or cell death may be a determining factor in the transition from local inflammation to the induction of an adaptive response. Here, we analyse the effects of IL-1 family cytokines on innate and adaptive immunity with a particular emphasis on activation of antigen-presenting cells and induction of T cell-mediated immunity, and we address in detail the contribution of these cytokines to the modes of action of vaccine adjuvants including those currently approved for human use.
Collapse
Affiliation(s)
- Natalia Muñoz-Wolf
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Ed C Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland.,Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Advanced Materials and BioEngineering Research (AMBER), Trinity College Dublin, Ireland
| |
Collapse
|
70
|
Cheng MA, Farmer E, Huang C, Lin J, Hung CF, Wu TC. Therapeutic DNA Vaccines for Human Papillomavirus and Associated Diseases. Hum Gene Ther 2018; 29:971-996. [PMID: 29316817 DOI: 10.1089/hum.2017.197] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human papillomavirus (HPV) has long been recognized as the causative agent of cervical cancer. High-risk HPV types 16 and 18 alone are responsible for over 70% of all cases of cervical cancers. More recently, HPV has been identified as an etiological factor for several other forms of cancers, including oropharyngeal, anogenital, and skin. Thus, the association of HPV with these malignancies creates an opportunity to control these HPV lesions and HPV-associated malignancies through immunization. Strategies to prevent or to therapeutically treat HPV infections have been developed and are still pushing innovative boundaries. Currently, commercial prophylactic HPV vaccines are widely available, but they are not able to control established infections or lesions. As a result, there is an urgent need for the development of therapeutic HPV vaccines, to treat existing infections, and to prevent the development of HPV-associated cancers. In particular, DNA vaccination has emerged as a promising form of therapeutic HPV vaccine. DNA vaccines have great potential for the treatment of HPV infections and HPV-associated cancers due to their safety, stability, simplicity of manufacturability, and ability to induce antigen-specific immunity. This review focuses on the current state of therapeutic HPV DNA vaccines, including results from recent and ongoing clinical trials, and outlines different strategies that have been employed to improve their potencies. The continued progress and improvements made in therapeutic HPV DNA vaccine development holds great potential for innovative ways to effectively treat HPV infections and HPV-associated diseases.
Collapse
Affiliation(s)
- Max A Cheng
- 1 Department of Pathology, Johns Hopkins Medical Institutions , Baltimore, Maryland
| | - Emily Farmer
- 1 Department of Pathology, Johns Hopkins Medical Institutions , Baltimore, Maryland
| | - Claire Huang
- 1 Department of Pathology, Johns Hopkins Medical Institutions , Baltimore, Maryland
| | - John Lin
- 1 Department of Pathology, Johns Hopkins Medical Institutions , Baltimore, Maryland
| | - Chien-Fu Hung
- 1 Department of Pathology, Johns Hopkins Medical Institutions , Baltimore, Maryland.,2 Department of Oncology, Johns Hopkins Medical Institutions , Baltimore, Maryland
| | - T-C Wu
- 1 Department of Pathology, Johns Hopkins Medical Institutions , Baltimore, Maryland.,2 Department of Oncology, Johns Hopkins Medical Institutions , Baltimore, Maryland.,3 Department of Obstetrics and Gynecology, Johns Hopkins Medical Institutions , Baltimore, Maryland.,4 Department of Molecular Microbiology and Immunology, Johns Hopkins Medical Institutions , Baltimore, Maryland
| |
Collapse
|
71
|
Abstract
Although immunotherapy has been at the forefront of cancer therapy for the last several years, better clinical responses are still desired. Interleukin-33 is perhaps one of the most overlooked antitumor cytokines. Its ability to promote type 1 immune responses, which control tumor growth in preclinical animal models is overshadowed by its association with type 2 immunity and poor prognosis in some human cancers. Accumulating evidence shows that IL-33 is a powerful new tool for restoring and enhancing the body's natural antitumor immunity cycle. Furthermore, the antitumor mechanisms of IL-33 are two-fold, as it can directly boost CD8+ T cell function and restore dendritic cell dysfunction in vivo. Mechanistic studies have identified a novel pathway induced by IL-33 and its receptor ST2 in which dendritic cells avoid dysfunction and retain cross-priming abilities in tumor-bearing conditions. Here, we also comment on IL-33 data in human cancers and explore the idea that endogenous IL-33 may not deserve its reputation for promoting tumor growth. In fact, tumors may hijack the IL-33/ST2 axis to avoid immune surveillance and escape antitumor immunity.
Collapse
Affiliation(s)
- Donye Dominguez
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine–Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bin Zhang
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine–Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
72
|
Gougeon ML. Alarmins and central nervous system inflammation in HIV-associated neurological disorders. J Intern Med 2017; 281:433-447. [PMID: 27862491 DOI: 10.1111/joim.12570] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the era of highly active antiretroviral therapy (HAART), HIV-1-associated neurocognitive disorders (HAND) persist in infected individuals with adequate immunological and virological status. Risk factors for cognitive impairment include hepatitis C virus co-infection, host genetic factors predisposing to HAND, the early establishment of the virus in the CNS and its persistence under HAART; thus, the CNS is an important reservoir for HIV. Microglial cells are permissive to HIV-1, and NLRP3 inflammasome-associated genes were found expressed in brains of HIV-1-infected persons, contributing to brain disease. Inflammasomes can be triggered by alarmins or danger-associated molecular patterns (DAMPs), which directly stimulate the production of proinflammatory mediators by glial cells, contribute to blood-brain barrier injury through induction of release of various proteases and allow the passage of infected macrophages, and trigger IL-1β release from primed cells. Amongst alarmins involved in HIV-1-induced neuropathogenesis, IL-33 and high-mobility group box 1 (HMGB1) are of particular interest. Neurocognitive alterations were recently associated with dysregulation of the IL-33/ST2 axis in the CNS, leading to the induction of neuronal apoptosis, decrease in synaptic function and neuroinflammation. Specific biomarkers, including HMGB1 and anti-HMGB1 antibodies, have been identified in cerebrospinal fluid from patients with HAND, correlated with immune activation and identifying a very early stage of neurocognitive impairment that precedes changes in metabolites detected by magnetic resonance spectroscopy. Moreover, HMGB1 plays a crucial role in HIV-1 persistence in dendritic cells and in the constitution of viral reservoirs. In this review, the mechanisms whereby alarmins contribute to HIV-1-induced CNS inflammation and neuropathogenesis will be discussed.
Collapse
Affiliation(s)
- M-L Gougeon
- Institut Pasteur, Antiviral Immunity, Biotherapy and Vaccine Unit, Infection and Epidemiology Department, Paris, France
| |
Collapse
|
73
|
Lucarini V, Ziccheddu G, Macchia I, La Sorsa V, Peschiaroli F, Buccione C, Sistigu A, Sanchez M, Andreone S, D'Urso MT, Spada M, Macchia D, Afferni C, Mattei F, Schiavoni G. IL-33 restricts tumor growth and inhibits pulmonary metastasis in melanoma-bearing mice through eosinophils. Oncoimmunology 2017; 6:e1317420. [PMID: 28680750 DOI: 10.1080/2162402x.2017.1317420] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 12/31/2022] Open
Abstract
The alarmin IL-33 is an IL-1 family member that stimulates pleiotropic immune reactions depending on the target tissue and microenvironmental factors. In this study, we have investigated the role of IL-33/ST2 axis in antitumor response to melanoma. Injection of IL-33 in mice-bearing subcutaneous B16.F10 melanoma resulted in significant tumor growth delay. This effect was associated with intratumoral accumulation of CD8+ T cells and eosinophils, decrease of immunosuppressive myeloid cells, and a mixed Th1/Th2 cytokine expression pattern with local and systemic activation of CD8+ T and NK cells. Moreover, intranasal administration of IL-33 determined ST2-dependent eosinophil recruitment in the lung that prevented the onset of pulmonary metastasis after intravenous injection of melanoma cells. Accordingly, ST2-deficient mice developed pulmonary metastasis at higher extent than wild-type counterparts, associated with lower eosinophil frequencies in the lung. Of note, depletion of eosinophils by in vivo treatment with anti-Siglec-F antibody abolished the ability of IL-33 to both restrict primary tumor growth and metastasis formation. Finally, we show that IL-33 is able to activate eosinophils resulting in efficient killing of target melanoma cells, suggesting a direct antitumor activity of eosinophils following IL-33 treatment. Our results advocate for an eosinophil-mediated antitumoral function of IL-33 against melanoma, thus opening perspectives for novel cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Valeria Lucarini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Ziccheddu
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Iole Macchia
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Valentina La Sorsa
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Peschiaroli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Carla Buccione
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Antonella Sistigu
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Massimo Sanchez
- Core Facilities Services Cytometry Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Sara Andreone
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Teresa D'Urso
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Massimo Spada
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Daniele Macchia
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Claudia Afferni
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
74
|
Fang M, Li Y, Huang K, Qi S, Zhang J, Zgodzinski W, Majewski M, Wallner G, Gozdz S, Macek P, Kowalik A, Pasiarski M, Grywalska E, Vatan L, Nagarsheth N, Li W, Zhao L, Kryczek I, Wang G, Wang Z, Zou W, Wang L. IL33 Promotes Colon Cancer Cell Stemness via JNK Activation and Macrophage Recruitment. Cancer Res 2017; 77:2735-2745. [PMID: 28249897 DOI: 10.1158/0008-5472.can-16-1602] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/12/2016] [Accepted: 02/22/2017] [Indexed: 12/11/2022]
Abstract
The expression and biological role of IL33 in colon cancer is poorly understood. In this study, we show that IL33 is expressed by vascular endothelial cells and tumor cells in the human colon cancer microenvironment. Administration of human IL33 and overexpression of murine IL33 enhanced human and murine colon cancer cell growth in vivo, respectively. IL33 stimulated cell sphere formation and prevented chemotherapy-induced tumor apoptosis. Mechanistically, IL33 activated core stem cell genes NANOG, NOTCH3, and OCT3/4 via the ST2 signaling pathway, and induced phosphorylation of c-Jun N terminal kinase (JNK) activation and enhanced binding of c-Jun to the promoters of the core stem cell genes. Moreover, IL33 recruited macrophages into the cancer microenvironment and stimulated them to produce prostaglandin E2, which supported colon cancer stemness and tumor growth. Clinically, tumor IL33 expression associated with poor survival in patients with metastatic colon cancer. Thus, IL33 dually targets tumor cells and macrophages and endows stem-like qualities to colon cancer cells to promote carcinogenesis. Collectively, our work reveals an immune-associated mechanism that extrinsically confers cancer cell stemness properties. Targeting the IL33 signaling pathway may offer an opportunity to treat patients with metastatic cancer. Cancer Res; 77(10); 2735-45. ©2017 AACR.
Collapse
Affiliation(s)
- Min Fang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongkui Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kai Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shanshan Qi
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian Zhang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Witold Zgodzinski
- The Second Department of General Surgery, Medical University in Lublin, Lublin, Poland
| | - Marek Majewski
- The Second Department of General Surgery, Medical University in Lublin, Lublin, Poland
| | - Grzegorz Wallner
- The Second Department of General Surgery, Medical University in Lublin, Lublin, Poland
| | | | | | | | | | - Ewelina Grywalska
- Department of Clinical Immunology and Immunotherapy, Medical University in Lublin, Lublin, Poland
| | - Linda Vatan
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Nisha Nagarsheth
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Wei Li
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, Michigan.,Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lili Zhao
- Department of Biostatistics, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Ilona Kryczek
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China. .,Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, Michigan.
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China. .,Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
75
|
Dominguez D, Ye C, Geng Z, Chen S, Fan J, Qin L, Long A, Wang L, Zhang Z, Zhang Y, Fang D, Kuzel TM, Zhang B. Exogenous IL-33 Restores Dendritic Cell Activation and Maturation in Established Cancer. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:1365-1375. [PMID: 28011934 PMCID: PMC5263113 DOI: 10.4049/jimmunol.1501399] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/22/2016] [Indexed: 12/16/2022]
Abstract
The role of IL-33, particularly in tumor growth and tumor immunity, remains ill-defined. We show that exogenous IL-33 can induce robust antitumor effect through a CD8+ T cell-dependent mechanism. Systemic administration of rIL-33 alone was sufficient to inhibit growth of established tumors in transplant and de novo melanoma tumorigenesis models. Notably, in addition to a direct action on CD8+ T cell expansion and IFN-γ production, rIL-33 therapy activated myeloid dendritic cells (mDCs) in tumor-bearing mice, restored antitumor T cell activity, and increased Ag cross-presentation within the tumor microenvironment. Furthermore, combination therapy consisting of rIL-33 and agonistic anti-CD40 Abs demonstrated synergistic antitumor activity. Specifically, MyD88, an essential component of the IL-33 signaling pathway, was required for the IL-33-mediated increase in mDC number and upregulation in expression of costimulatory molecules. Importantly, we identified that the IL-33 receptor ST2, MyD88, and STAT1 cooperate to induce costimulatory molecule expression on mDCs in response to rIL-33. Thus, our study revealed a novel IL-33-ST2-MyD88-STAT1 axis that restores mDC activation and maturation in established cancer and, thereby, the magnitude of antitumor immune responses, suggesting a potential use of rIL-33 as a new immunotherapy option to treat established cancer.
Collapse
Affiliation(s)
- Donye Dominguez
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Cong Ye
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Zhe Geng
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Siqi Chen
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Jie Fan
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Lei Qin
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Alan Long
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Long Wang
- Cancer Therapy and Research Center, Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229
| | - Zhuoli Zhang
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; and
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Timothy M Kuzel
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Bin Zhang
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611;
| |
Collapse
|
76
|
Wasmer MH, Krebs P. The Role of IL-33-Dependent Inflammation in the Tumor Microenvironment. Front Immunol 2017; 7:682. [PMID: 28119694 PMCID: PMC5220330 DOI: 10.3389/fimmu.2016.00682] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 12/21/2016] [Indexed: 12/20/2022] Open
Abstract
There is compelling evidence that inflammation contributes to tumorigenesis. Inflammatory mediators within the tumor microenvironment can either promote an antitumor immune response or support tumor pathogenesis. Therefore, it is critical to determine the relative contribution of tumor-associated inflammatory pathways to cancer development. Interleukin-33 (IL-33) is a member of the IL-1 family of cytokines that is released upon tissue stress or damage to operate as an alarmin. IL-33 has been primarily implicated in the induction of type-2 immune responses. However, recent findings have shown a role of IL-33 in several cancers where it may exert multiple functions. In this review, we will present the current knowledge on the role of IL-33 in the microenvironment of different tumors. We will highlight which cells produce and which cells are activated by IL-33 in cancer. Furthermore, we will explain how IL-33 modulates the tumor-associated inflammatory microenvironment to restrain or promote tumorigenesis. Finally, we will discuss the issues to be addressed first before potentially targeting the IL-33 pathway for cancer therapy.
Collapse
Affiliation(s)
- Marie-Hélène Wasmer
- Institute of Pathology, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Bern , Bern , Switzerland
| |
Collapse
|
77
|
Abstract
Sepsis remains a major clinical problem with high morbidity and mortality. As new inflammatory mediators are characterized, it is important to understand their roles in sepsis. Interleukin 33 (IL-33) is a recently described member of the IL-1 family that is widely expressed in cells of barrier tissues. Upon tissue damage, IL-33 is released as an alarmin and activates various types of cells of both the innate and adaptive immune system through binding to the ST2/IL-1 receptor accessory protein complex. IL-33 has apparent pleiotropic functions in many disease models, with its actions strongly shaped by the local microenvironment. Recent studies have established a role for the IL-33-ST2 axis in the initiation and perpetuation of inflammation during endotoxemia, but its roles in sepsis appear to be organism and model dependent. In this review, we focus on the recent advances in understanding the role of the IL-33/ST2 axis in sepsis.
Collapse
Affiliation(s)
- Hui Xu
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 USA.,State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 China
| | - Heth R Turnquist
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 USA.,Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Rosemary Hoffman
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 USA.,State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 China
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 USA
| |
Collapse
|
78
|
Martino EC, Misso G, Pastina P, Costantini S, Vanni F, Gandolfo C, Botta C, Capone F, Lombardi A, Pirtoli L, Tassone P, Ulivieri C, Tagliaferri P, Cusi MG, Caraglia M, Correale P. Immune-modulating effects of bevacizumab in metastatic non-small-cell lung cancer patients. Cell Death Discov 2016; 2:16025. [PMID: 27752361 PMCID: PMC5045963 DOI: 10.1038/cddiscovery.2016.25] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/02/2016] [Indexed: 01/24/2023] Open
Abstract
The mPEBev is an anticancer regimen which combines a chemotherapy doublet, based on cisplatin and oral etoposide (mPE), with bevacizumab (mPEBev), a mAb targeting the vasculo-endothelial growth factor (VEGF). In previous studies, this regimen showed powerful anti-angiogenetic effects and significant antitumor activity in metastatic non-small-cell lung cancer (mNSCLC) patients. We also recorded the best benefit in patients exhibiting low-systemic inflammatory profile at baseline. On these bases, we hypothesized that mPEBev antitumor activity could be partially related to bevacizumab-associated immunological effects. For this reason, we performed an immunological monitoring in 59 out of 120 stage IIIb-IV NSCLC patients enrolled in the BEVA2007 phase II trial, who received fractioned cisplatin (30 mg/sqm days 1-3q21) and oral etoposide (50 mg, days 1-15q21) (mPE doublet) ±bevacizumab. In this group of patients, 12 received the mPE doublet alone and 47 the doublet in combination with bevacizumab (5 mg/kg on the day 3q21; mPEBev regimen). Blood cell counts, serum analysis, multiplex cytokine assay and immunocytofluorimetric analysis, performed on baseline and post-treatment on blood samples from these patients, revealed that bevacizumab addition to the doublet decreased levels of pro-angiogenic (VEGF, Angiostatin-1 and Follistatin) and inflammatory cytokines (interferon (IFN)γ, IL4 and IL17), improved in vivo and in vitro cytotoxic T-lymphocytes (CTL) response and promoted dendritic cell activation. These results suggest that the mPEBev regimen improve the micro-environmental conditions for an efficient antigen-specific CTL response, making it a feasible candidate regimen to be assessed in combination with immune-checkpoint inhibitors in NSCLC patients.
Collapse
Affiliation(s)
- E C Martino
- Radiotherapy Unit, Department of Oncology, Siena University Hospital , Siena, Italy
| | - G Misso
- Department of Biochemistry, Biophysics and General Pathology, Second Naples University , Naples, Italy
| | - P Pastina
- Radiotherapy Unit, Department of Oncology, Siena University Hospital , Siena, Italy
| | | | - F Vanni
- Radiotherapy Unit, Department of Oncology, Siena University Hospital , Siena, Italy
| | - C Gandolfo
- Microbiology and Virology Unit, Department of Medical Biotechnology , Siena, Italy
| | - C Botta
- Medical Oncology Unit, 'Magna Graecia' University and AUO 'Materdomini' , Catanzaro, Italy
| | | | - A Lombardi
- Department of Biochemistry, Biophysics and General Pathology, Second Naples University , Naples, Italy
| | - L Pirtoli
- Radiotherapy Unit, Department of Oncology, Siena University Hospital , Siena, Italy
| | - P Tassone
- Medical Oncology Unit, 'Magna Graecia' University and AUO 'Materdomini' , Catanzaro, Italy
| | - C Ulivieri
- Department of Science of Life; University of Siena , Siena, Italy
| | - P Tagliaferri
- Medical Oncology Unit, 'Magna Graecia' University and AUO 'Materdomini' , Catanzaro, Italy
| | - M G Cusi
- Microbiology and Virology Unit, Department of Medical Biotechnology , Siena, Italy
| | - M Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second Naples University , Naples, Italy
| | - P Correale
- Radiotherapy Unit, Department of Oncology, Siena University Hospital , Siena, Italy
| |
Collapse
|
79
|
Qin L, Dominguez D, Chen S, Fan J, Long A, Zhang M, Fang D, Zhang Y, Kuzel TM, Zhang B. Exogenous IL-33 overcomes T cell tolerance in murine acute myeloid leukemia. Oncotarget 2016; 7:61069-61080. [PMID: 27517629 PMCID: PMC5308636 DOI: 10.18632/oncotarget.11179] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 07/27/2016] [Indexed: 12/14/2022] Open
Abstract
Emerging studies suggest that dominant peripheral tolerance is a major mechanism of immune escape in disseminated leukemia. Using an established murine acute myeloid leukemia (AML) model, we here show that systemic administration of recombinant IL-33 dramatically inhibits the leukemia growth and prolongs the survival of leukemia-bearing mice in a CD8+ T cell dependent manner. Exogenous IL-33 treatment enhanced anti-leukemia activity by increasing the expansion and IFN-γ production of leukemia-reactive CD8+ T cells. Moreover, IL-33 promoted dendritic cell (DC) maturation and activation in favor of its cross presentation ability to evoke a vigorous anti-leukemia immune response. Finally, we found that the combination of PD-1 blockade with IL-33 further prolonged the survival, with half of the mice achieving complete regression. Our data establish a role of exogenous IL-33 in reversing T cell tolerance, and suggest its potential clinical implication into leukemia immunotherapy.
Collapse
Affiliation(s)
- Lei Qin
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Donye Dominguez
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Siqi Chen
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jie Fan
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alan Long
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Minghui Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Timothy M. Kuzel
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Bin Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
80
|
Su X, Xu W, Guan R, Wang Y, Wu J, Zhai L, Chen G, Hu S. Adjuvant effect of docetaxel on HPV16 L2E6E7 fusion protein vaccine in a mouse model. Int Immunopharmacol 2016; 38:16-25. [DOI: 10.1016/j.intimp.2016.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 05/01/2016] [Accepted: 05/04/2016] [Indexed: 01/30/2023]
|
81
|
Mehraj V, Ponte R, Routy JP. The Dynamic Role of the IL-33/ST2 Axis in Chronic Viral-infections: Alarming and Adjuvanting the Immune Response. EBioMedicine 2016; 9:37-44. [PMID: 27397514 PMCID: PMC4972565 DOI: 10.1016/j.ebiom.2016.06.047] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/25/2016] [Accepted: 06/30/2016] [Indexed: 12/18/2022] Open
Abstract
Interleukin 33 (IL-33), a member of the IL-1 family, is constitutively expressed in epithelial and in endothelial cells at barrier sites, acting as a danger signal and adjuvanting the immune response following tissue damage and infection. Originally implicated in allergy, IL-33 is also known to be involved in innate and adaptive immune responses by enhancing natural killer, Th1, and CD4 and CD8 T-cell functions. The nature of the antiviral immune response orchestrated by IL-33 depends on the site of infection, the duration of the disease and the cytokine milieu. In this review, we focus on the distinctive contribution of IL-33 as an anti-infective and proinflammatory cytokine in response to cell death and viral infections. The dynamic role of IL-33 in the acute and chronic phases of infection with HIV, hepatitis B and C viruses, and with CMV is highlighted. This review will also discuss the potential immunotherapeutic and adjuvant roles of IL-33. Search Strategy and Selection Criteria English language, indexed publications in PubMed were searched using combinations of following key words: “interleukin-33”, “IL-33”, “suppression of tumorigenicity 2”, ST2”, “sST2”, “HIV”, “HBV”, “HCV”, “CMV”, “HPV”, “immunotherapy” and “vaccine”. Except for seminal studies, only articles published between 2010 and 2016 were included. IL-33, a guardian of barriers, acts as an alarmin and as an enhancer of immune responses following injury or infection. sST2, the IL-33 decoy receptor, is considered as a biomarker for allergies, cardiac conditions and infections. IL-33 has immunotherapeutic and/or adjuvant potential.
Collapse
Affiliation(s)
- Vikram Mehraj
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; Chronic Viral Illness Service, McGill University Health Centre, Montréal, Québec, Canada.
| | - Rosalie Ponte
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; Chronic Viral Illness Service, McGill University Health Centre, Montréal, Québec, Canada.
| | - Jean-Pierre Routy
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; Chronic Viral Illness Service, McGill University Health Centre, Montréal, Québec, Canada; Division of Hematology, McGill University Health Centre, Montréal, Québec, Canada.
| |
Collapse
|
82
|
Biologics and the lung: TSLP and other epithelial cell-derived cytokines in asthma. Pharmacol Ther 2016; 169:104-112. [PMID: 27365223 DOI: 10.1016/j.pharmthera.2016.06.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 06/13/2016] [Indexed: 12/21/2022]
Abstract
Asthma is a chronic airway inflammatory disorder with characteristic symptoms of dyspnea, wheeze, chest tightness and cough, and physiological abnormalities of variable airway obstruction, airway hyperresponsiveness, and in some patients with chronic long standing disease reduced lung function. The physiological abnormalities are due to chronic airway inflammation and underlying structural changes to the airway wall. The interaction between the airway epithelium and the environment is crucial to the pathobiology of asthma. Several recent discoveries have highlighted a crucial role of airway epithelial derived cytokines such as interleukin (IL)-25, IL-33 and thymic stromal lymphopoietin (TSLP). These cytokines are collectively known as epithelial "alarmins", which act solely or in concert to activate and potentiate the innate and humoral arms of the immune system in the presence of actual or perceive damage. Understanding the role of alarmins and how they are activated and released may allow the development of novel new therapeutics to treat asthma. This review describes the interactions between inhaled air, the pulmonary microbiome, airway epithelial cell layer and the alarmins, IL-25, IL-33 and TSLP. There is already compelling evidence for a role of TSLP in the airway responses to environmental allergens in allergic asthmatics, as well as in maintaining airway eosinophilic inflammation in these subjects. Further work is required to develop human monoclonal antibodies (hMabs) directed against IL-25 and IL-33 or their receptors, to help understand their role in the initiation and/or persistence of asthma.
Collapse
|
83
|
Park SJ, Cho HR, Kwon B. Roles of IL-33 in Resistance and Tolerance to Systemic Candida albicans Infections. Immune Netw 2016; 16:159-64. [PMID: 27340384 PMCID: PMC4917399 DOI: 10.4110/in.2016.16.3.159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 12/11/2022] Open
Abstract
IL-33 is a multifunctional cytokine that is released in response to a variety of intrinsic and extrinsic stimuli. The role of IL-33 in Candida albicans infections is just beginning to be revealed. This cytokine has beneficial effects on host defense against systemic C. albicans infections, and it promotes resistance mechanisms by which the immune system eliminates the invading fungal pathogens; and it also elevates host tolerance by reducing the inflammatory response and thereby, potentially, tissue damage. Thus, IL-33 is classified as a cytokine that has evolved functionally to protect the host from damage by pathogens and immunopathology.
Collapse
Affiliation(s)
- Sang Jun Park
- Department of Surgery, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan 44033, Korea.; Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan 44033, Korea
| | - Hong Rae Cho
- Department of Surgery, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan 44033, Korea.; Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan 44033, Korea
| | - Byungsuk Kwon
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan 44033, Korea.; School of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| |
Collapse
|
84
|
Gramatzki D, Frei K, Cathomas G, Moch H, Weller M, Mertz KD. Interleukin-33 in human gliomas: Expression and prognostic significance. Oncol Lett 2016; 12:445-452. [PMID: 27347163 PMCID: PMC4906635 DOI: 10.3892/ol.2016.4626] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 04/29/2016] [Indexed: 12/14/2022] Open
Abstract
Interleukin-33 (IL-33) is a nuclear and pleiotropic cytokine with regard to its cellular sources and its actions. IL-33 is involved in the pathogenesis of brain diseases. Several factors account for the tumorigenicity of human gliomas, including cytokines and their receptors. The present study assessed the expression and prognostic significance of IL-33 in human astroglial brain tumors. Protein levels of IL-33 were determined by immunohistochemistry using a tissue microarray containing 95 human gliomas. mRNA expression data of IL-33, as well as of its receptors, IL-1 receptor-like 1 protein and IL-1 receptor accessory protein (IL1RAcP), were obtained from The Cancer Genome Atlas database. IL-33 protein was expressed heterogeneously in tumor tissue, but was, however, not detected in normal brain tissue. There was no differential IL-33 protein expression by tumor grade, while IL-33 protein expression was associated with inferior survival in patients with recurrent glioblastomas. Interrogations of the TCGA database indicated that mRNA expression of IL-33 and the IL-33 receptors was heterogeneous, and that IL-33 and IL1RAcP mRNA levels were correlated with the tumor grade. Elevated IL-33 mRNA levels were associated with the inferior survival of glioblastoma patients. Therefore, IL-33 may play an important role in the pathogenesis and prognosis of human gliomas.
Collapse
Affiliation(s)
- Dorothee Gramatzki
- Laboratory for Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Karl Frei
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Gieri Cathomas
- Institute of Pathology Liestal, Cantonal Hospital Baselland, 4410 Liestal, Switzerland
| | - Holger Moch
- Department of Pathology, Institute of Surgical Pathology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Michael Weller
- Laboratory for Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Kirsten Diana Mertz
- Institute of Pathology Liestal, Cantonal Hospital Baselland, 4410 Liestal, Switzerland; Department of Pathology, Institute of Surgical Pathology, University Hospital Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
85
|
Muthumani K, Falzarano D, Reuschel EL, Tingey C, Flingai S, Villarreal DO, Wise M, Patel A, Izmirly A, Aljuaid A, Seliga AM, Soule G, Morrow M, Kraynyak KA, Khan AS, Scott DP, Feldmann F, LaCasse R, Meade-White K, Okumura A, Ugen KE, Sardesai NY, Kim JJ, Kobinger G, Feldmann H, Weiner DB. A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates. Sci Transl Med 2016; 7:301ra132. [PMID: 26290414 DOI: 10.1126/scitranslmed.aac7462] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
First identified in 2012, Middle East respiratory syndrome (MERS) is caused by an emerging human coronavirus, which is distinct from the severe acute respiratory syndrome coronavirus (SARS-CoV), and represents a novel member of the lineage C betacoronoviruses. Since its identification, MERS coronavirus (MERS-CoV) has been linked to more than 1372 infections manifesting with severe morbidity and, often, mortality (about 495 deaths) in the Arabian Peninsula, Europe, and, most recently, the United States. Human-to-human transmission has been documented, with nosocomial transmission appearing to be an important route of infection. The recent increase in cases of MERS in the Middle East coupled with the lack of approved antiviral therapies or vaccines to treat or prevent this infection are causes for concern. We report on the development of a synthetic DNA vaccine against MERS-CoV. An optimized DNA vaccine encoding the MERS spike protein induced potent cellular immunity and antigen-specific neutralizing antibodies in mice, macaques, and camels. Vaccinated rhesus macaques seroconverted rapidly and exhibited high levels of virus-neutralizing activity. Upon MERS viral challenge, all of the monkeys in the control-vaccinated group developed characteristic disease, including pneumonia. Vaccinated macaques were protected and failed to demonstrate any clinical or radiographic signs of pneumonia. These studies demonstrate that a consensus MERS spike protein synthetic DNA vaccine can induce protective responses against viral challenge, indicating that this strategy may have value as a possible vaccine modality against this emerging pathogen.
Collapse
Affiliation(s)
- Karuppiah Muthumani
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Darryl Falzarano
- Laboratory of Virology, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA
| | - Emma L Reuschel
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Colleen Tingey
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Seleeke Flingai
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Daniel O Villarreal
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Megan Wise
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Ami Patel
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Abdullah Izmirly
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Abdulelah Aljuaid
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Alecia M Seliga
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Geoff Soule
- Special Pathogens Program, University of Manitoba and Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada
| | - Matthew Morrow
- Inovio Pharmaceuticals Inc., Plymouth Meeting, PA 19462, USA
| | | | - Amir S Khan
- Inovio Pharmaceuticals Inc., Plymouth Meeting, PA 19462, USA
| | - Dana P Scott
- Rocky Mountain Veterinary Branch, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA
| | - Rachel LaCasse
- Rocky Mountain Veterinary Branch, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA
| | - Kimberly Meade-White
- Rocky Mountain Veterinary Branch, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA
| | - Atsushi Okumura
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Kenneth E Ugen
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | | | - J Joseph Kim
- Inovio Pharmaceuticals Inc., Plymouth Meeting, PA 19462, USA
| | - Gary Kobinger
- Special Pathogens Program, University of Manitoba and Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA
| | - David B Weiner
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA.
| |
Collapse
|
86
|
Yang Y, Andersson P, Hosaka K, Zhang Y, Cao R, Iwamoto H, Yang X, Nakamura M, Wang J, Zhuang R, Morikawa H, Xue Y, Braun H, Beyaert R, Samani N, Nakae S, Hams E, Dissing S, Fallon PG, Langer R, Cao Y. The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages. Nat Commun 2016; 7:11385. [PMID: 27150562 PMCID: PMC4859070 DOI: 10.1038/ncomms11385] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/21/2016] [Indexed: 12/16/2022] Open
Abstract
Signalling molecules and pathways that mediate crosstalk between various tumour cellular compartments in cancer metastasis remain largely unknown. We report a mechanism of the interaction between perivascular cells and tumour-associated macrophages (TAMs) in promoting metastasis through the IL-33–ST2-dependent pathway in xenograft mouse models of cancer. IL-33 is the highest upregulated gene through activation of SOX7 transcription factor in PDGF-BB-stimulated pericytes. Gain- and loss-of-function experiments validate that IL-33 promotes metastasis through recruitment of TAMs. Pharmacological inhibition of the IL-33–ST2 signalling by a soluble ST2 significantly inhibits TAMs and metastasis. Genetic deletion of host IL-33 in mice also blocks PDGF-BB-induced TAM recruitment and metastasis. These findings shed light on the role of tumour stroma in promoting metastasis and have therapeutic implications for cancer therapy. Elevated IL-33 levels have been correlated with metastasis and poor prognosis. Here the authors show in mouse tumour xenograft models that PDGF-BB produced by tumour cells induces IL-33 via Sox7 in tumour pericytes, and IL-33 promotes metastasis through its effects on tumour-associated macrophages.
Collapse
Affiliation(s)
- Yunlong Yang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Patrik Andersson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Kayoko Hosaka
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Yin Zhang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Renhai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Hideki Iwamoto
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Xiaojuan Yang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Masaki Nakamura
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Jian Wang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Rujie Zhuang
- The TCM Hospital of Zhejiang Province, Hangzhou, Zhejiang 310006, China
| | - Hiromasa Morikawa
- Unit of Computational Medicine, Department of Medicine, Center for Molecular Medicine, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Yuan Xue
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Harald Braun
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.,Unit of Molecular Signal Transduction in Inflammation, Inflammation Research Center VIB, B-9052 Ghent, Belgium
| | - Rudi Beyaert
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.,Unit of Molecular Signal Transduction in Inflammation, Inflammation Research Center VIB, B-9052 Ghent, Belgium
| | - Nilesh Samani
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
| | - Susumu Nakae
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Emily Hams
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Steen Dissing
- Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, 2200N Copenhagen, Denmark
| | - Padraic G Fallon
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Robert Langer
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden.,Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK.,Department of Medicine and Health Sciences, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
87
|
Villarreal DO, Siefert RJ, Weiner DB. Alarmin IL-33 elicits potent TB-specific cell-mediated responses. Hum Vaccin Immunother 2016; 11:1954-60. [PMID: 26091147 DOI: 10.1080/21645515.2015.1026499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Tuberculosis (TB) still remains a major public health issue despite the current available vaccine for TB, Bacille Calmette Guerin (BCG). An effective vaccine against TB remains a top priority in the fight against this pandemic bacterial infection. Adequate protection against TB is associated with the development of TH1-type and CD8(+) T cell responses. One alarmin cytokine, interleukin 33 (IL-33), has now been implicated in the development of both CD4(+) TH1 and CD8(+) T cell immunity. In this study, we determined whether the administration of IL-33 as an adjuvant, encoded in a DNA plasmid, could enhance the immunogenicity of a TB DNA vaccine. We report that the co-immunization of IL-33 with a DNA vaccine expressing the Mycobacterium Tuberculosis (Mtb) antigen 85B (Ag85B) induced robust Ag85B-specific IFNγ responses by ELISpot compared to Ag85B alone. Furthermore, these enhanced responses were characterized by higher frequencies of Ag85B-specific, multifunctional CD4(+) and CD8(+) T cells. Vaccination with IL-33 also increased the ability of the Ag85B-specific CD8(+) T cells to undergo degranulation and to secrete IFNγ and TNFα cytokines. These finding highlights IL-33 as a promising adjuvant to significantly improve the immunogenicity of TB DNA vaccines and support further study of this effective vaccine strategy against TB.
Collapse
Affiliation(s)
- Daniel O Villarreal
- a Department of Pathology and Laboratory Medicine ; Perelman School of Medicine; University of Pennsylvania ; Philadelphia , PA USA
| | | | | |
Collapse
|
88
|
Scott VL, Villarreal DO, Hutnick NA, Walters JN, Ragwan E, Bdeir K, Yan J, Sardesai NY, Finnefrock AC, Casimiro DR, Weiner DB. DNA vaccines targeting heavy chain C-terminal fragments of Clostridium botulinum neurotoxin serotypes A, B, and E induce potent humoral and cellular immunity and provide protection from lethal toxin challenge. Hum Vaccin Immunother 2016; 11:1961-71. [PMID: 26158319 DOI: 10.1080/21645515.2015.1066051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are deadly, toxic proteins produced by the bacterium Clostridium botulinum that can cause significant diseases in humans. The use of the toxic substances as potential bioweapons has raised concerns by the Centers for Disease Control and Prevention and the United States Military. Currently, there is no licensed vaccine to prevent botulinum intoxication. Here we present an immunogenicity study to evaluate the efficacy of novel monovalent vaccines and a trivalent cocktail DNA vaccine targeting the heavy chain C-terminal fragments of Clostridium botulinum neurotoxin serotypes A, B, and E. These synthetic DNA vaccines induced robust humoral and polyfunctional CD4(+) T-cell responses which fully protected animals against lethal challenge after just 2 immunizations. In addition, naïve animals administered immunized sera mixed with the lethal neurotoxin were 100% protected against intoxication. The data demonstrate the protective efficacy induced by a combinative synthetic DNA vaccine approach. This study has importance for the development of vaccines that provide protective immunity against C. botulinum neurotoxins and other toxins.
Collapse
Affiliation(s)
- Veronica L Scott
- a Department of Pathology and Laboratory Medicine ; University of Pennsylvania ; Philadelphia , PA USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Scott VL, Patel A, Villarreal DO, Hensley SE, Ragwan E, Yan J, Sardesai NY, Rothwell PJ, Extance JP, Caproni LJ, Weiner DB. Novel synthetic plasmid and Doggybone DNA vaccines induce neutralizing antibodies and provide protection from lethal influenza challenge in mice. Hum Vaccin Immunother 2016; 11:1972-82. [PMID: 26091432 PMCID: PMC4635705 DOI: 10.1080/21645515.2015.1022008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nucleic acid-based vaccines (NAVs) are a promising alternative to conventional influenza vaccines with the potential to increase influenza vaccine availability due to their simplicity in design and rapid speed of production. NAVs can also target multiple influenza antigens and control flu variants. Traditionally NAVs have been DNA plasmids however, we are continuing to explore new methods that may enhance vaccine efficacy. Recently new focus has been on RNA cassettes as NAVs. RNA vaccines combine conceptual advantages in that they focus on delivery of only the coding cassette. However, RNA vaccines have a short half-life and cause interferon-induced fevers. Here we describe a new NAV approach where we study delivery of a linear DNA cassette [Doggybone™ linear closed DNA [(dbDNA™)] produced by an enzymatic process that yields an antigen expression cassette comprising a promoter, DNA antigen, poly A tail, and telomeric ends. This focused approach has many of the advantages of plasmid DNA as well as a minimal cassette size similar to RNA strategies. For this study, we characterized the specific CD4+ and CD8+ T cell responses and determined the hemagglutination inhibition (HI) titers induced by dbDNA™ and compared the responses with those of an optimized plasmid DNA (pDNA) vaccine encoding the same H1N1 influenza A/PR/8/34 HA gene. Immunizations with the constructs resulted in similar humoral and cellular immune responses. Both constructs induced high-titer HI antibodies and fully protected animals from lethal viral challenge. The data obtained from this study provides important validation for further development of novel vector approaches.
Collapse
Affiliation(s)
- Veronica L Scott
- a Department of Pathology and Laboratory Medicine ; University of Pennsylvania ; Philadelphia , PA USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Abstract
PURPOSE Alarmins are constitutively present endogenous molecules that essentially act as early warning signals for the immune system. We provide a brief overview of major alarmins and highlight their roles in tumor immunity. METHODS We searched PubMed up to January 10, 2016, using alarmins and/or damage-associated molecular patterns (DAMPs), as key words. We selected and reviewed articles that focused on the discovery and functions of alarmin and their roles in tumor immunity. FINDINGS Alarmins are essentially endogenous immunostimulatory DAMP molecules that are exposed in response to danger (eg, infection or tissue injury) as a result of degranulation, cell death, or induction. They are sensed by chemotactic receptors and pattern recognition receptors to induce immune responses by promoting the recruitment and activation of leukocytes, particularly antigen-presenting cells. IMPLICATIONS Accumulating data suggest that certain alarmins, High-mobility group nucleosome-binding protein 1 (HMGN1) in particular, contribute to the generation of antitumor immunity. Some alarmins can also be used as cancer biomarkers. Therefore, alarmins can potentially be applied for our fight against cancers.
Collapse
Affiliation(s)
- Yingjie Nie
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland; Guizhou Provincial Peoples' Hospital, Guiyang, Guizhou Province, China
| | - De Yang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland; Basic Research Program, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Joost J Oppenheim
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland.
| |
Collapse
|
91
|
Schwartz C, O'Grady K, Lavelle EC, Fallon PG. Interleukin 33: an innate alarm for adaptive responses beyond Th2 immunity-emerging roles in obesity, intestinal inflammation, and cancer. Eur J Immunol 2016; 46:1091-100. [DOI: 10.1002/eji.201545780] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/20/2016] [Accepted: 03/15/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Christian Schwartz
- School of Medicine, Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin 2 Ireland
| | - Katie O'Grady
- Adjuvant Research Group, School of Biochemistry and Immunology; Trinity Biomedical Sciences Institute, Trinity College Dublin; Dublin 2 Ireland
| | - Ed C. Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology; Trinity Biomedical Sciences Institute, Trinity College Dublin; Dublin 2 Ireland
| | - Padraic G. Fallon
- School of Medicine, Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin 2 Ireland
| |
Collapse
|
92
|
Potential Therapeutic Aspects of Alarmin Cytokine Interleukin 33 or Its Inhibitors in Various Diseases. Clin Ther 2016; 38:1000-1016.e1. [PMID: 26992663 DOI: 10.1016/j.clinthera.2016.02.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/17/2016] [Accepted: 02/17/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE The purpose of this review was to examine the comprehensively accumulated data regarding potential therapeutic aspects of exogenous administration of interleukin 33 (IL-33) or its antagonists in allergic, cancerous, infectious, and inflammatory diseases. METHODS A selected review was undertaken of publications that examined the protective and exacerbating effects of IL-33 or its inhibitors in different diseases. Mechanisms of action are summarized to examine the putative role of IL-33 in various diseases. FINDINGS IL-33 promoted antibacterial, antiviral, anti-inflammatory, and vaccine adjuvant functions. However, in TH2-biased respiratory, allergic, parasitic, and inflammatory conditions, IL-33 exhibited disease-sensitizing effects. The alarmin cytokine IL-33 induced protective effects in diseases via recruitment of regulatory T cells; antiviral CD8(+) cells, natural killer cells, γδ T cells, and nuocytes; antibacterial and antifungal neutrophils or macrophages; vaccine-associated B/T cells; and inhibition of nuclear factor-κB-mediated gene transcription. In contrast, IL-33 exacerbated the disease process by increasing TH2 cytokines, IgE and eosinophilic immune responses, and inhibition of leukocyte recruitment in various diseases. IMPLICATIONS The protective or exacerbated aspects of use of IL-33 or its inhibitors are dependent on the type of infection or inflammatory condition, duration of disease (acute or chronic), organ involved, cytokine microenvironment, dose or kinetics of IL-33, and genetic predisposition. The alarmin cytokine IL-33 acts at cellular, molecular, and transcriptional levels to mediate pluripotent functions in various diseases and has potential therapeutic value to mitigate the disease process.
Collapse
|
93
|
Lu B, Yang M, Wang Q. Interleukin-33 in tumorigenesis, tumor immune evasion, and cancer immunotherapy. J Mol Med (Berl) 2016; 94:535-43. [PMID: 26922618 DOI: 10.1007/s00109-016-1397-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/14/2016] [Accepted: 02/17/2016] [Indexed: 12/20/2022]
Abstract
Interleukin-33 (IL-33) is a member of the IL-1 gene family and mainly expressed in the nucleus of tissue lining cells, stromal cells, and activated myeloid cells. IL-33 is considered a damage-associated molecular pattern (DAMP) molecule and plays an important role in many physiological and pathological settings such as tissue repair, allergy, autoimmune disease, infectious disease, and cancer. The biological functions of IL-33 include maintaining tissue homeostasis, enhancing type 1 and 2 cellular immune responses, and mediating fibrosis during chronic inflammation. IL-33 exerts diverse functions through signaling via its receptor ST2, which is expressed in many types of cells including regulatory T cells (Treg), group 2 innate lymphoid cells (ILC2s), myeloid cells, cytotoxic NK cells, Th2 cells, Th1 cells, and CD8(+) T cells. Tumor development results in downregulation of IL-33 in epithelial cells but upregulation of IL-33 in the tumor stroma and serum. The current data suggest that IL-33 expression in tumor cells increases immunogenicity and promotes type 1 antitumor immune responses through CD8(+) T cells and NK cells, whereas IL-33 in tumor stroma and serum facilitates immune suppression via Treg and myeloid-derived suppressor cell (MDSC). Understanding the role of IL-33 in cancer immunobiology sheds lights on targeting this cytokine for cancer immunotherapy.
Collapse
Affiliation(s)
- Binfeng Lu
- Department of Immunology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA, 15261, USA.
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.
| | - Min Yang
- Department of Immunology, Institute of Medical Biotechnology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| |
Collapse
|
94
|
Kim J, Kim W, Moon UJ, Kim HJ, Choi HJ, Sin JI, Park NH, Cho HR, Kwon B. Intratumorally Establishing Type 2 Innate Lymphoid Cells Blocks Tumor Growth. THE JOURNAL OF IMMUNOLOGY 2016; 196:2410-23. [PMID: 26829987 DOI: 10.4049/jimmunol.1501730] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/22/2015] [Indexed: 12/12/2022]
Abstract
A long-standing question in the field of tumor immunotherapy is how Th2 cytokines block tumor growth. Their antitumor effects are particularly prominent when they are secreted continuously in tumors, suggesting that Th2 cytokines may create a tumor microenvironment unfavorable for tumor growth independently of adaptive immunity. In this study, we show that local production of IL-33 establishes a high number of type 2 innate lymphoid cells (ILC2s) with potent antitumor activity. IL-33 promotes secretion of a massive amount of CXCR2 ligands from ILC2s but creates a tumor microenvironment where tumor cells express CXCR2 through a dysfunctional angiogenesis/hypoxia/reactive oxygen species axis. These two signaling events converge to reinforce tumor cell-specific apoptosis through CXCR2. Our results identify a previously unrecognized antitumor therapeutic pathway wherein ILC2s play a central role.
Collapse
Affiliation(s)
- Juyang Kim
- Biomedical Research Center, Ulsan University Hospital and School of Medicine, University of Ulsan, Ulsan 682-714, Republic of Korea
| | - Wonyoung Kim
- Biomedical Research Center, Ulsan University Hospital and School of Medicine, University of Ulsan, Ulsan 682-714, Republic of Korea
| | - U J Moon
- School of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Hyun J Kim
- School of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Hye-Jeong Choi
- Department of Pathology, Ulsan University Hospital and School of Medicine, University of Ulsan, Ulsan 682-714, Republic of Korea
| | - Jeong-Im Sin
- Department of Microbiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 200-701, Republic of Korea
| | - Neung H Park
- Biomedical Research Center, Ulsan University Hospital and School of Medicine, University of Ulsan, Ulsan 682-714, Republic of Korea; Department of Internal Medicine, Ulsan University Hospital and School of Medicine, University of Ulsan, Ulsan 682-714, Republic of Korea; and
| | - Hong R Cho
- Biomedical Research Center, Ulsan University Hospital and School of Medicine, University of Ulsan, Ulsan 682-714, Republic of Korea; Department of Surgery, Ulsan University Hospital and School of Medicine, University of Ulsan, Ulsan 682-714, Republic of Korea
| | - Byungsuk Kwon
- Biomedical Research Center, Ulsan University Hospital and School of Medicine, University of Ulsan, Ulsan 682-714, Republic of Korea; School of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea;
| |
Collapse
|
95
|
Ottenlinger F, Schwiebs A, Pfarr K, Wagner A, Grüner S, Mayer CA, Pfeilschifter JM, Radeke HH. Fingolimod targeting protein phosphatase 2A differently affects IL-33 induced IL-2 and IFN-γ production in CD8(+) lymphocytes. Eur J Immunol 2016; 46:941-51. [PMID: 26683421 DOI: 10.1002/eji.201545805] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 11/02/2015] [Accepted: 12/10/2015] [Indexed: 01/05/2023]
Abstract
Multiple sclerosis patients are treated with fingolimod (FTY720), a prodrug that acts as an immune modulator. FTY720 is first phosphorylated to FTY720-P and then internalizes sphingosine-1-phosphate receptors, preventing lymphocyte sequestration. IL-33 is released from necrotic endothelial cells and contributes to MS severity by coactivating T cells. Herein we analyzed the influence of FTY720, FTY720-P, and S1P on IL-33 induced formation of IL-2 and IFN-γ, by using IL-33 receptor overexpressing EL4 cells, primary CD8(+) T cells, and splenocytes. EL4-ST2 cells released IL-2 after IL-33 stimulation that was inhibited dose-dependently by FTY720-P but not FTY720. In this system, S1P increased IL-2, and accordingly, inhibition of S1P producing sphingosine kinases diminished IL-2 release. In primary CD8(+) T cells and splenocytes IL-33/IL-12 stimulation induced IFN-γ, which was prevented by FTY720 but not FTY720-P, independently from intracellular phosphorylation. The inhibition of IFN-γ by nonphosphorylated FTY720 was mediated via the SET/protein phosphatase 2A (PP2A) pathway, since a SET peptide antagonist also prevented IFN-γ formation and the inhibition of IFN-γ by FTY720 was reversible by a PP2A inhibitor. While our findings directly improve the understanding of FTY720 therapy in MS, they could also contribute to side effects of FTY720 treatment, like progressive multifocal leukoencephalopathy, caused by an insufficient immune response to a viral infection.
Collapse
Affiliation(s)
- Florian Ottenlinger
- pharmazentrum frankfurt/ZAFES, Hospital of the Goethe University, Frankfurt am Main, Germany
| | - Anja Schwiebs
- pharmazentrum frankfurt/ZAFES, Hospital of the Goethe University, Frankfurt am Main, Germany
| | - Kathrin Pfarr
- pharmazentrum frankfurt/ZAFES, Hospital of the Goethe University, Frankfurt am Main, Germany
| | - Annika Wagner
- pharmazentrum frankfurt/ZAFES, Hospital of the Goethe University, Frankfurt am Main, Germany
| | - Sophia Grüner
- pharmazentrum frankfurt/ZAFES, Hospital of the Goethe University, Frankfurt am Main, Germany
| | - Christoph A Mayer
- Center for Neurology and Neurosurgery, Hospital of the Goethe University, Frankfurt am Main, Germany
| | - Josef M Pfeilschifter
- pharmazentrum frankfurt/ZAFES, Hospital of the Goethe University, Frankfurt am Main, Germany
| | - Heinfried H Radeke
- pharmazentrum frankfurt/ZAFES, Hospital of the Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
96
|
Xi H, Katschke KJ, Li Y, Truong T, Lee WP, Diehl L, Rangell L, Tao J, Arceo R, Eastham-Anderson J, Hackney JA, Iglesias A, Cote-Sierra J, Elstrott J, Weimer RM, van Lookeren Campagne M. IL-33 amplifies an innate immune response in the degenerating retina. J Exp Med 2016; 213:189-207. [PMID: 26755704 PMCID: PMC4749925 DOI: 10.1084/jem.20150894] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 12/07/2015] [Indexed: 01/12/2023] Open
Abstract
Xi et al. demonstrate that IL-33 is a key regulator of retinal inflammation and degeneration. Age-related macular degeneration (AMD), a leading cause of vision impairment in the ageing population, is characterized by irreversible loss of retinal pigment epithelial (RPE) cells and photoreceptors and can be associated with choroidal neovascularization. Mononuclear phagocytes are often present in AMD lesions, but the processes that direct myeloid cell recruitment remain unclear. Here, we identify IL-33 as a key regulator of inflammation and photoreceptor degeneration after retina stress or injury. IL-33+ Müller cells were more abundant and IL-33 cytokine was elevated in advanced AMD cases compared with age-matched controls with no AMD. In rodents, retina stress resulted in release of bioactive IL-33 that in turn increased inflammatory chemokine and cytokine expression in activated Müller cells. Deletion of ST2, the IL-33 receptor α chain, or treatment with a soluble IL-33 decoy receptor significantly reduced release of inflammatory mediators from Müller cells, inhibited accumulation of mononuclear phagocytes in the outer retina, and protected photoreceptor rods and cones after a retina insult. This study demonstrates a central role for IL-33 in regulating mononuclear phagocyte recruitment to the photoreceptor layer and positions IL-33 signaling as a potential therapeutic target in macular degenerative diseases.
Collapse
Affiliation(s)
- Hongkang Xi
- Department of Immunology, Genentech, Inc., South San Francisco, CA 94080
| | - Kenneth J Katschke
- Department of Immunology, Genentech, Inc., South San Francisco, CA 94080
| | - Yun Li
- Department of Immunology, Genentech, Inc., South San Francisco, CA 94080
| | - Tom Truong
- Department of Immunology, Genentech, Inc., South San Francisco, CA 94080
| | - Wyne P Lee
- Department of Immunology, Genentech, Inc., South San Francisco, CA 94080
| | - Lauri Diehl
- Department of Pathology, Genentech, Inc., South San Francisco, CA 94080
| | - Linda Rangell
- Department of Pathology, Genentech, Inc., South San Francisco, CA 94080
| | - Jianhua Tao
- Department of Pathology, Genentech, Inc., South San Francisco, CA 94080
| | - Rommel Arceo
- Department of Pathology, Genentech, Inc., South San Francisco, CA 94080
| | | | - Jason A Hackney
- Department of Bioinformatics and Computational Biology, Genentech, Inc., South San Francisco, CA 94080
| | - Antonio Iglesias
- Roche Pharmaceutical Research and Early Development, Pharmacological Sciences, Roche Innovation Center Basel, CH-4070 Basel, Switzerland
| | - Javier Cote-Sierra
- Roche Pharmaceutical Research and Early Development, Pharmacological Sciences, Roche Innovation Center Basel, CH-4070 Basel, Switzerland
| | - Justin Elstrott
- Department of Biomedical Imaging, Genentech, Inc., South San Francisco, CA 94080
| | - Robby M Weimer
- Department of Biomedical Imaging, Genentech, Inc., South San Francisco, CA 94080
| | | |
Collapse
|
97
|
Chu JS, Villarreal DO, Weiner DB. DNA Vaccines: A Strategy for Developing Novel Multivalent TB Vaccines. Methods Mol Biol 2016; 1403:355-361. [PMID: 27076140 DOI: 10.1007/978-1-4939-3387-7_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Multivalent DNA vaccines that are delivered by electroporation (EP) through muscle tissue provide a novel method for eliciting immunity against tuberculosis (TB) as well as a broad range of diseases including HIV and cancers. Proper plasmid construction containing suitable protective TB antigens capable of evoking desired vaccine-induced responses would lead to the appropriate induction of both humoral and cellular immunity. DNA vaccines are safe and of low cost in comparison to traditional vaccines while also providing potentially effective prophylactic or therapeutic modalities against currently untreatable diseases. Here, we describe the steps for developing a rational multivalent TB DNA vaccine delivered with intramuscular EP in mice.
Collapse
Affiliation(s)
- Jaemi S Chu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 505 Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA, 19104, USA
| | - Daniel O Villarreal
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 505 Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA, 19104, USA
| | - David B Weiner
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 505 Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA, 19104, USA.
| |
Collapse
|
98
|
Komai-Koma M, Wang E, Kurowska-Stolarska M, Li D, McSharry C, Xu D. Interleukin-33 promoting Th1 lymphocyte differentiation dependents on IL-12. Immunobiology 2015; 221:412-7. [PMID: 26688508 PMCID: PMC4731778 DOI: 10.1016/j.imbio.2015.11.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 11/26/2015] [Accepted: 11/29/2015] [Indexed: 12/14/2022]
Abstract
The pro-Th2 cytokine IL-33 is now emerging as an important Th1 cytokine-IFN-γ inducer in murine CD4+ T cells that is essential for protective cell-mediated immunity against viral infection in mice. However, whether IL-33 can promote human Th1 cell differentiation and how IL-33 polarizes Th1 cells is less understood. We assessed the ability of IL-33 to induce Th1 cell differentiation and IFN-γ production in vitro and in vivo. We report here that IL-33 alone had no ability in Th1 cell polarization. However it potentiated IL-12-mediated Th1 cell differentiation and IFN-γ production in TCR-stimulated murine and human CD4+ T cells in vitro and in vivo. IL-33 promoted Th1 cell development via MyD88 and synergized with IL-12 to enhance St2 and IL-12R expression in CD4+ T cells. These data therefore provide a novel mechanism for Th1 cell differentiation and optimal induction of a Type 1 response. Thus, IL-33 is capable of inducing IL-12-dependent Th1 cell differentiation in human and mouse CD4+ T cells.
Collapse
Affiliation(s)
- Mousa Komai-Koma
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK; Department of Haematology & Immunology, Faculty of Medicine, Umm Al-Qura University, Mecca, KSA, Saudi Arabia
| | - Eryi Wang
- Department of Pharmacology, Medical Research Council Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | | | - Dong Li
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Charles McSharry
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Damo Xu
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| |
Collapse
|
99
|
McKee SJ, Bergot AS, Leggatt GR. Recent progress in vaccination against human papillomavirus-mediated cervical cancer. Rev Med Virol 2015; 25 Suppl 1:54-71. [PMID: 25752816 DOI: 10.1002/rmv.1824] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It has been more than 7 years since the commercial introduction of highly successful vaccines protecting against high-risk human papillomavirus (HPV) subtypes and the development of cervical cancer. From an immune standpoint, the dependence of cervical cancer on viral infection has meant that HPV proteins can be targeted as strong tumour antigens leading to clearance of the infection and the subsequent protection from cancer. Commercially available vaccines consisting of the L1 capsid protein assembled as virus-like particles (VLPs) induce neutralising antibodies that deny access of the virus to cervical epithelial cells. While greater than 90% efficacy has been demonstrated at the completion of large phase III trials in young women, vaccine developers are now addressing broader issues such as efficacy in boys, longevity of the protection and inducing cross-reactive antibody for oncogenic, non-vaccine HPV strains. For women with existing HPV infection, the prophylactic vaccines provide little protection, and consequently, the need for therapeutic vaccines will continue into the future. Therapeutic vaccines targeting HPVE6 and E7 proteins are actively being pursued with new adjuvants and delivery vectors, combined with an improved knowledge of the tumour microenvironment, showing great promise. This review will focus on recent progress in prophylactic and therapeutic vaccine development and implementation since the publication of end of study data from phase III clinical trials between 2010 and 2012.
Collapse
Affiliation(s)
- Sara J McKee
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | | | | |
Collapse
|
100
|
Pinto SM, Nirujogi RS, Rojas PL, Patil AH, Manda SS, Subbannayya Y, Roa JC, Chatterjee A, Prasad TSK, Pandey A. Quantitative phosphoproteomic analysis of IL-33-mediated signaling. Proteomics 2015; 15:532-44. [PMID: 25367039 DOI: 10.1002/pmic.201400303] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/25/2014] [Accepted: 10/28/2014] [Indexed: 12/13/2022]
Abstract
Interleukin-33 (IL-33) is a novel member of the IL-1 family of cytokines that plays diverse roles in the regulation of immune responses. IL-33 exerts its effects through a heterodimeric receptor complex resulting in the production and release of proinflammatory cytokines. A detailed understanding of the signaling pathways activated by IL-33 is still unclear. To gain insights into the IL-33-mediated signaling mechanisms, we carried out a SILAC-based global quantitative phosphoproteomic analysis that resulted in the identification of 7191 phosphorylation sites derived from 2746 proteins. We observed alterations in the level of phosphorylation in 1050 sites corresponding to 672 proteins upon IL-33 stimulation. We report, for the first time, phosphorylation of multiple protein kinases, including mitogen-activated protein kinase activated protein kinase 2 (Mapkapk2), receptor (TNFRSF) interacting serine-threonine kinase 1 (Ripk1), and NAD kinase (Nadk) that are induced by IL-33. In addition, we observed IL-33-induced phosphorylation of several protein phosphatases including protein tyrosine phosphatase, nonreceptor-type 12 (Ptpn12), and inositol polyphosphate-5-phosphatase D (Inpp5d), which have not been reported previously. Network analysis revealed an enrichment of actin binding and cytoskeleton reorganization that could be important in macrophage activation induced by IL-33. Our study is the first quantitative analysis of IL-33-regulated phosphoproteome. Our findings significantly expand the understanding of IL-33-mediated signaling events and have the potential to provide novel therapeutic targets pertaining to immune-related diseases such as asthma where dysregulation of IL-33 is observed. All MS data have been deposited in the ProteomeXchange with identifier PXD000984 (http://proteomecentral.proteomexchange.org/dataset/PXD000984).
Collapse
Affiliation(s)
- Sneha M Pinto
- Institute of Bioinformatics, International Technology Park, Bangalore, India; Manipal University, Madhava Nagar, Manipal, India; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|