51
|
Lin Z, Li Y, Han X, Fu Z, Tian Z, Li C. Targeting SPHK1/PBX1 Axis Induced Cell Cycle Arrest in Non-Small Cell Lung Cancer. Int J Mol Sci 2022; 23:12741. [PMID: 36361531 PMCID: PMC9657307 DOI: 10.3390/ijms232112741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 03/05/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts for 85~90% of lung cancer cases, with a poor prognosis and a low 5-year survival rate. Sphingosine kinase-1 (SPHK1), a key enzyme in regulating sphingolipid metabolism, has been reported to be involved in the development of NSCLC, although the underlying mechanism remains unclear. In the present study, we demonstrated the abnormal signature of SPHK1 in NSCLC lesions and cell lines of lung cancers with a potential tumorigenic role in cell cycle regulation. Functionally, ectopic Pre-B cell leukemia homeobox-1 (PBX1) was capable of restoring the arrested G1 phase induced by SPHK1 knockdown. However, exogenous sphingosine-1-phosphate (S1P) supply had little impact on the cell cycle arrest by PBX1 silence. Furthermore, S1P receptor S1PR3 was revealed as a specific switch to transport the extracellular S1P signal into cells, and subsequently activated PBX1 to regulate cell cycle progression. In addition, Akt signaling partially participated in the SPHK1/S1PR3/PBX1 axis to regulate the cell cycle, and the Akt inhibitor significantly decreased PBX1 expression and induced G1 arrest. Targeting SPHK1 with PF-543 significantly inhibited the cell cycle and tumor growth in preclinical xenograft tumor models of NSCLC. Taken together, our findings exhibit the vital role of the SPHK1/S1PR3/PBX1 axis in regulating the cell cycle of NSCLC, and targeting SPHK1 may develop a therapeutic effect in tumor treatment.
Collapse
Affiliation(s)
- Zhoujun Lin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Yin Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xiao Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Zhenkun Fu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
- Heilongjiang Provincial Key Laboratory for Infection and Immunity, Department of Immunology, Wu Lien-Teh Institute, Heilongjiang Academy of Medical Science, Harbin Medical University, Harbin 150081, China
| | - Zhenhuan Tian
- Department of Thoracic Surgery, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Chenggang Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| |
Collapse
|
52
|
Roy R, Yang J, Shimura T, Merritt L, Alluin J, Man E, Daisy C, Aldakhlallah R, Dillon D, Pories S, Chodosh LA, Moses MA. Escape from breast tumor dormancy: The convergence of obesity and menopause. Proc Natl Acad Sci U S A 2022; 119:e2204758119. [PMID: 36191215 PMCID: PMC9564105 DOI: 10.1073/pnas.2204758119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
Obesity is associated with an increased risk of, and a poor prognosis for, postmenopausal (PM) breast cancer (BC). Our goal was to determine whether diet-induced obesity (DIO) promotes 1) shorter tumor latency, 2) an escape from tumor dormancy, and 3) an acceleration of tumor growth and to elucidate the underlying mechanism(s). We have developed in vitro assays and PM breast tumor models complemented by a noninvasive imaging system to detect vascular invasion of dormant tumors and have used them to determine whether obesity promotes the escape from breast tumor dormancy and tumor growth by facilitating the switch to the vascular phenotype (SVP) in PM BC. Obese mice had significantly higher tumor frequency, higher tumor volume, and lower overall survival compared with lean mice. We demonstrate that DIO exacerbates mammary gland hyperplasia and neoplasia, reduces tumor latency, and increases tumor frequency via an earlier acquisition of the SVP. DIO establishes a local and systemic proangiogenic and inflammatory environment via the up-regulation of lipocalin-2 (LCN2), vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF) that may promote the escape from tumor dormancy and tumor progression. In addition, we show that targeting neovascularization via a multitargeted receptor tyrosine kinase inhibitor, sunitinib, can delay the acquisition of the SVP, thereby prolonging tumor latency, reducing tumor frequency, and increasing tumor-free survival, suggesting that targeting neovascularization may be a potential therapeutic strategy in obesity-associated PM BC progression. This study establishes the link between obesity and PM BC and, for the first time to our knowledge, bridges the dysfunctional neovascularization of obesity with the earliest stages of tumor development.
Collapse
Affiliation(s)
- Roopali Roy
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115
- Department of Surgery, Harvard Medical School and Boston Children’s Hospital, Boston, MA 02115
| | - Jiang Yang
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115
- Department of Surgery, Harvard Medical School and Boston Children’s Hospital, Boston, MA 02115
| | - Takaya Shimura
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115
- Department of Surgery, Harvard Medical School and Boston Children’s Hospital, Boston, MA 02115
| | - Lauren Merritt
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115
| | - Justine Alluin
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115
| | - Emily Man
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115
| | - Cassandra Daisy
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115
| | - Rama Aldakhlallah
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115
| | - Deborah Dillon
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
| | - Susan Pories
- Hoffman Breast Center, Mount Auburn Hospital, Cambridge, MA 02138
- Department of Surgery, Harvard Medical School, Boston, MA 02115
| | - Lewis A. Chodosh
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Marsha A. Moses
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115
- Department of Surgery, Harvard Medical School and Boston Children’s Hospital, Boston, MA 02115
| |
Collapse
|
53
|
Pal P, Atilla-Gokcumen GE, Frasor J. Emerging Roles of Ceramides in Breast Cancer Biology and Therapy. Int J Mol Sci 2022; 23:ijms231911178. [PMID: 36232480 PMCID: PMC9569866 DOI: 10.3390/ijms231911178] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
One of the classic hallmarks of cancer is the imbalance between elevated cell proliferation and reduced cell death. Ceramide, a bioactive sphingolipid that can regulate this balance, has long been implicated in cancer. While the effects of ceramide on cell death and therapeutic efficacy are well established, emerging evidence indicates that ceramide turnover to downstream sphingolipids, such as sphingomyelin, hexosylceramides, sphingosine-1-phosphate, and ceramide-1-phosphate, is equally important in driving pro-tumorigenic phenotypes, such as proliferation, survival, migration, stemness, and therapy resistance. The complex and dynamic sphingolipid network has been extensively studied in several cancers, including breast cancer, to find key sphingolipidomic alterations that can be exploited to develop new therapeutic strategies to improve patient outcomes. Here, we review how the current literature shapes our understanding of how ceramide synthesis and turnover are altered in breast cancer and how these changes offer potential strategies to improve breast cancer therapy.
Collapse
Affiliation(s)
- Purab Pal
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - G. Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA
- Correspondence: (G.E.A.-G.); (J.F.)
| | - Jonna Frasor
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Correspondence: (G.E.A.-G.); (J.F.)
| |
Collapse
|
54
|
Wang X, Qiu Z, Dong W, Yang Z, Wang J, Xu H, Sun T, Huang Z, Jin J. S1PR1 induces metabolic reprogramming of ceramide in vascular endothelial cells, affecting hepatocellular carcinoma angiogenesis and progression. Cell Death Dis 2022; 13:768. [PMID: 36068200 PMCID: PMC9448762 DOI: 10.1038/s41419-022-05210-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 01/21/2023]
Abstract
Angiogenesis is a fundamental process underlying the occurrence, growth and metastasis of hepatocellular carcinoma (HCC), a prevalent tumour type with an extremely poor prognosis due to abundant vasculature. However, the underlying mechanism of angiogenesis in HCC remains largely unknown. Herein, we found that sphingosine-1-phosphate receptor 1 (S1PR1) plays an important role in HCC angiogenesis. S1PR1 was found to be selectively and highly expressed in the blood vessels of HCC tissues compared with those of paratumour tissues. Functionally, high expression of S1PR1 in endothelial cells (ECs) promoted angiogenesis and progression of HCC in vitro and in vivo. Mechanistically, proangiogenic factors (S1P, IL-6, VEGFA) in conditioned medium from HCC cells induced the upregulation of S1PR1 in ECs via the phosphorylation of STAT3 at Y705. Further study also revealed that S1PR1 promotes angiogenesis by decreasing ceramide levels via CerS3 downregulation. Interestingly, we demonstrated that S1PR1 downregulates CerS3 by inducing CerS6 translocation into the nucleus to inhibit CerS3 at the transcriptional level in ECs. In addition, we found that a high concentration of Lenvatinib significantly downregulated the expression of S1PR1 and obviously enhanced S1PR1 knockdown-mediated angiogenesis inhibition, indicating that S1PR1 may be a target by which Lenvatinib combats angiogenesis in HCC. Thus, S1PR1 may be an important target for suppressing angiogenesis in HCC, and inhibiting S1PR1 is a promising approach to antitumor therapy in HCC.
Collapse
Affiliation(s)
- Xuehong Wang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, 541001, Guilin, Guangxi, China
- Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, 541001, Guilin, Guangxi, China
- China‒USA Lipids in Health and Disease Research Center, Guilin Medical University, 541001, Guilin, Guangxi, China
| | - Zhidong Qiu
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, 541001, Guilin, Guangxi, China
- Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, 541001, Guilin, Guangxi, China
- China‒USA Lipids in Health and Disease Research Center, Guilin Medical University, 541001, Guilin, Guangxi, China
- Department of General Surgery, Yantian District People's Hospital, Shenzhen, 518081, Guangdong, China
| | - Wei Dong
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, 541001, Guilin, Guangxi, China
- Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, 541001, Guilin, Guangxi, China
- China‒USA Lipids in Health and Disease Research Center, Guilin Medical University, 541001, Guilin, Guangxi, China
| | - Zebin Yang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, 541001, Guilin, Guangxi, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, 541001, Guilin, Guangxi, China
- China‒USA Lipids in Health and Disease Research Center, Guilin Medical University, 541001, Guilin, Guangxi, China
| | - Junnan Wang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, 541001, Guilin, Guangxi, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, 541001, Guilin, Guangxi, China
- China‒USA Lipids in Health and Disease Research Center, Guilin Medical University, 541001, Guilin, Guangxi, China
| | - Hailiang Xu
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, 541001, Guilin, Guangxi, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, 541001, Guilin, Guangxi, China
- China‒USA Lipids in Health and Disease Research Center, Guilin Medical University, 541001, Guilin, Guangxi, China
| | - Tian Sun
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, 541001, Guilin, Guangxi, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, 541001, Guilin, Guangxi, China
- China‒USA Lipids in Health and Disease Research Center, Guilin Medical University, 541001, Guilin, Guangxi, China
| | - Zhaoquan Huang
- Department of Pathology, the First Affiliated Hospital of Guangxi Medical University, 530000, Nanning, Guangxi, China.
- Department of Pathology, the Affiliated Hospital of Guilin Medical University, 541001, Guilin, Guangxi, China.
| | - Junfei Jin
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, 541001, Guilin, Guangxi, China.
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, 541001, Guilin, Guangxi, China.
- China‒USA Lipids in Health and Disease Research Center, Guilin Medical University, 541001, Guilin, Guangxi, China.
| |
Collapse
|
55
|
Hillers-Ziemer LE, Kuziel G, Williams AE, Moore BN, Arendt LM. Breast cancer microenvironment and obesity: challenges for therapy. Cancer Metastasis Rev 2022; 41:627-647. [PMID: 35435599 PMCID: PMC9470689 DOI: 10.1007/s10555-022-10031-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023]
Abstract
Women with obesity who develop breast cancer have a worsened prognosis with diminished survival rates and increased rates of metastasis. Obesity is also associated with decreased breast cancer response to endocrine and chemotherapeutic treatments. Studies utilizing multiple in vivo models of obesity as well as human breast tumors have enhanced our understanding of how obesity alters the breast tumor microenvironment. Changes in the complement and function of adipocytes, adipose-derived stromal cells, immune cells, and endothelial cells and remodeling of the extracellular matrix all contribute to the rapid growth of breast tumors in the context of obesity. Interactions of these cells enhance secretion of cytokines and adipokines as well as local levels of estrogen within the breast tumor microenvironment that promote resistance to multiple therapies. In this review, we will discuss our current understanding of the impact of obesity on the breast tumor microenvironment, how obesity-induced changes in cellular interactions promote resistance to breast cancer treatments, and areas for development of treatment interventions for breast cancer patients with obesity.
Collapse
Affiliation(s)
- Lauren E Hillers-Ziemer
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Genevra Kuziel
- Program in Cancer Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Abbey E Williams
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Brittney N Moore
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Lisa M Arendt
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Program in Cancer Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Dr. Rm 4354A, Madison, WI, 53706, USA.
| |
Collapse
|
56
|
Squillace S, Niehoff ML, Doyle TM, Green M, Esposito E, Cuzzocrea S, Arnatt CK, Spiegel S, Farr SA, Salvemini D. Sphingosine-1-phosphate receptor 1 activation in the central nervous system drives cisplatin-induced cognitive impairment. J Clin Invest 2022; 132:157738. [PMID: 36047496 PMCID: PMC9433103 DOI: 10.1172/jci157738] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/12/2022] [Indexed: 11/22/2022] Open
Abstract
Cancer-related cognitive impairment (CRCI) is a major neurotoxicity affecting more than 50% of cancer survivors. The underpinning mechanisms are mostly unknown, and there are no FDA-approved interventions. Sphingolipidomic analysis of mouse prefrontal cortex and hippocampus, key sites of cognitive function, revealed that cisplatin increased levels of the potent signaling molecule sphingosine-1-phosphate (S1P) and led to cognitive impairment. At the biochemical level, S1P induced mitochondrial dysfunction, activation of NOD-, LRR-, and pyrin domain–containing protein 3 inflammasomes, and increased IL-1β formation. These events were attenuated by systemic administration of the functional S1P receptor 1 (S1PR1) antagonist FTY720, which also attenuated cognitive impairment without adversely affecting locomotor activity. Similar attenuation was observed with ozanimod, another FDA-approved functional S1PR1 antagonist. Mice with astrocyte-specific deletion of S1pr1 lost their ability to respond to FTY720, implicating involvement of astrocytic S1PR1. Remarkably, our pharmacological and genetic approaches, coupled with computational modeling studies, revealed that cisplatin increased S1P production by activating TLR4. Collectively, our results identify the molecular mechanisms engaged by the S1P/S1PR1 axis in CRCI and establish S1PR1 antagonism as an approach to target CRCI with therapeutics that have fast-track clinical application.
Collapse
Affiliation(s)
- Silvia Squillace
- Department of Pharmacology and Physiology, and.,The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Michael L Niehoff
- The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA.,Department of Internal Medicine-Geriatrics, Saint Louis School of Medicine, St. Louis, Missouri, USA
| | - Timothy M Doyle
- Department of Pharmacology and Physiology, and.,The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Michael Green
- The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA.,Department of Chemistry, Saint Louis University, St. Louis, Missouri, USA
| | - Emanuela Esposito
- Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy
| | - Christopher K Arnatt
- The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA.,Department of Chemistry, Saint Louis University, St. Louis, Missouri, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, and the Massey Cancer Center, Richmond, Virginia, USA
| | - Susan A Farr
- The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA.,Department of Internal Medicine-Geriatrics, Saint Louis School of Medicine, St. Louis, Missouri, USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, and.,The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
57
|
Reply to: Target expression is a relevant factor in synthetic lethal screens. Commun Biol 2022; 5:836. [PMID: 35986082 PMCID: PMC9391391 DOI: 10.1038/s42003-022-03747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
|
58
|
Chen Y, Ma H, Duan Y, Ma X, Tan L, Dong J, Jin C, Wei R. Mycobacterium tuberculosis/Mycobacterium bovis triggered different variations in lipid composition of Bovine Alveolar Macrophages. Sci Rep 2022; 12:13115. [PMID: 35908111 PMCID: PMC9338951 DOI: 10.1038/s41598-022-17531-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/27/2022] [Indexed: 11/09/2022] Open
Abstract
The lipid composition performs important functions in interaction between macropha-ge and Mycobacterium tuberculosis (MTB)/Mycobacterium bovis (MB). Current understanding regarding the lipid responses of bovine alveolar macrophage (BAM) to MTB/MB is quite limited. The present study conducted lipidomics and transcriptome to assess alterations in BAM lipid compositions upon MB and MTB infection. We found that both MTB and MB induced glycerophospholipids accumulation in BAM, and MTB induced more alterations in lipid composition. MTB could affect the contents of various lipids, especially ceramide phosphocholines, polystyrene (PS) (17:0/0:0), testolic acid and testosterone acetate. Meanwhile, MB particularly induced accumulation of 1-alkyl,2-acylglycerophosphoinositols. Both MB and MTB suppressed the contents of palmitoleamide, N-ethyl arachidonoyl amine, N-(1,1-dimethyl-2-hydroxy-ethyl) arachidonoyll amine, eicosanoyl-EA, and PS (O-18:0/17:0) in BAM. Additionally, transcriptome analysis revealed that only MTB triggered genes involved in immune signaling and lipid related pathways in BAM. And MTB mainly activated genes CXCL2 and CXCL3 relevant to NOD-like receptor, IL-17 and TNF to further induce lipid accumulation in BAM, which in turn promoted the formation of foam cells. Meanwhile, time course RT-qPCR results showed that MTB was recognized by BAM to triggered dramatic immune responses, whereas MB could effectively escape the recognition system of BAM, leading rearrangement of lipid metabolisms in BAM at early infection stage. Altogether, the results of the present study provided evidence for changes in lipid metabolism of MTB/MB attacked BAM and contributed to the detection and treatment of zoonotic tuberculosis.
Collapse
Affiliation(s)
- Yuqi Chen
- Department of Rheumatology and Immunology, The People's Hospital of Suzhou New District, Suzhou, 215000, China
| | - Huiya Ma
- College of Chemistry and Pharmacy, Northwest A&F University, No.22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Yangbo Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xueyan Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lihui Tan
- Department of Rheumatology and Immunology, The People's Hospital of Suzhou New District, Suzhou, 215000, China
| | - Jianjian Dong
- Department of Rheumatology and Immunology, The People's Hospital of Suzhou New District, Suzhou, 215000, China
| | - Chenkai Jin
- Department of Rheumatology and Immunology, The People's Hospital of Suzhou New District, Suzhou, 215000, China
| | - Rong Wei
- Department of Rheumatology and Immunology, The People's Hospital of Suzhou New District, Suzhou, 215000, China.
| |
Collapse
|
59
|
Li RZ, Wang XR, Wang J, Xie C, Wang XX, Pan HD, Meng WY, Liang TL, Li JX, Yan PY, Wu QB, Liu L, Yao XJ, Leung ELH. The key role of sphingolipid metabolism in cancer: New therapeutic targets, diagnostic and prognostic values, and anti-tumor immunotherapy resistance. Front Oncol 2022; 12:941643. [PMID: 35965565 PMCID: PMC9364366 DOI: 10.3389/fonc.2022.941643] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/24/2022] [Indexed: 12/13/2022] Open
Abstract
Biologically active sphingolipids are closely related to the growth, differentiation, aging, and apoptosis of cancer cells. Some sphingolipids, such as ceramides, are favorable metabolites in the sphingolipid metabolic pathway, usually mediating antiproliferative responses, through inhibiting cancer cell growth and migration, as well as inducing autophagy and apoptosis. However, other sphingolipids, such as S1P, play the opposite role, which induces cancer cell transformation, migration and growth and promotes drug resistance. There are also other sphingolipids, as well as enzymes, played potentially critical roles in cancer physiology and therapeutics. This review aimed to explore the important roles of sphingolipid metabolism in cancer. In this article, we summarized the role and value of sphingolipid metabolism in cancer, including the distribution of sphingolipids, the functions, and their relevance to cancer diagnosis and prognosis. We also summarized the known and potential antitumor targets present in sphingolipid metabolism, analyzed the correlation between sphingolipid metabolism and tumor immunity, and summarize the antitumor effects of natural compounds based on sphingolipids. Through the analysis and summary of sphingolipid antitumor therapeutic targets and immune correlation, we aim to provide ideas for the development of new antitumor drugs, exploration of new therapeutic means for tumors, and study of immunotherapy resistance mechanisms.
Collapse
Affiliation(s)
- Run-Ze Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Macao, Macao SAR, China
| | - Xuan-Run Wang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Jian Wang
- Department of Oncology, Luzhou People’s Hospital, Luzhou, Sichuan, China
| | - Chun Xie
- Cancer Center, Faculty of Health Science, University of Macau, Macao, Macao SAR, China
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Macao, Macao SAR, China
| | - Xing-Xia Wang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Hu-Dan Pan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Macao, Macao SAR, China
| | - Wei-Yu Meng
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Tu-Liang Liang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Jia-Xin Li
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Pei-Yu Yan
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Qi-Biao Wu
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Liang Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Macao, Macao SAR, China
- *Correspondence: Xiao-Jun Yao, ; Liang Liu, ; Elaine Lai-Han Leung,
| | - Xiao-Jun Yao
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
- *Correspondence: Xiao-Jun Yao, ; Liang Liu, ; Elaine Lai-Han Leung,
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Science, University of Macau, Macao, Macao SAR, China
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Macao, Macao SAR, China
- Breast Surgery, Zhuhai Hospital of Traditional Chinese and Western Medicine, Zhuhai, China
- *Correspondence: Xiao-Jun Yao, ; Liang Liu, ; Elaine Lai-Han Leung,
| |
Collapse
|
60
|
Wu X, Xu J, Li X, Dai J, Wang L. Inhibition of SphK1/S1P Signaling Pathway Alleviates Fibrosis and Inflammation of Rat Myocardium after Myocardial Infarction. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5985375. [PMID: 35872958 PMCID: PMC9300330 DOI: 10.1155/2022/5985375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The sphingosine kinase 1 (SphK1)/sphingosine-1-phosphate (S1P) signaling pathway is involved in fibrosis and inflammatory responses of myocardial tissue after myocardial infarction (MI). The purpose of our study was to explore the role of SphK1/S1P signaling pathway in myocardial injury after MI. MATERIALS AND METHODS We used Sprague-Dawley (SD) rats to make MI models and detected the changes of SphK1 and S1P in rats at 1, 7, and 14 days after MI. SphK1 inhibitor PF543 was used to treat MI rats, and we detected the changes in myocardial function and structure in rats by cardiac function test, 2,3,5-triphenyl tetrazolium staining, and histological staining. In addition, we used H2O2 to induce H9c2 cell injury to investigate the effect of PF543 on the viability of myocardial cells. RESULTS Myocardial tissue lesions and fibrosis were observed at 7 and 14 days after MI, and the expressions of SphK1 and S1P in the injured myocardial tissues increased significantly in day 7 and day 14 in comparison to the control group. After treatment of MI rats with PF543, the structure of rat myocardial tissue was significantly improved and the degree of fibrosis was reduced. After MI, the expression of α-SMA and collagen I in the myocardium of rats was significantly increased while PF543 decreased their expression. PF543 also improved the cardiac function of MI rats and reduced the expression of IL-1β, IL-6, and TNF-α in the serum. PF543 also increased the viability of H9c2 cells in vitro. CONCLUSIONS The inhibition of the SphK1/S1P signaling pathway contributed to the relief of myocardial injury in MI rats. PF543 improved the myocardial structure and function of MI rats and reduced the level of fibrosis and inflammation in MI rats.
Collapse
Affiliation(s)
- Xiaokui Wu
- Department of Cardiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Chest Hospital, Nanjing, China
| | - Junwei Xu
- Department of Cardiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Chest Hospital, Nanjing, China
| | - Xiangyu Li
- Department of Cardiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Chest Hospital, Nanjing, China
| | - Jian Dai
- Department of Cardiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Chest Hospital, Nanjing, China
| | - Linlin Wang
- Department of Cardiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Chest Hospital, Nanjing, China
| |
Collapse
|
61
|
An Z, Zhao R, Han F, Sun Y, Liu Y, Liu L. Potential Serum Biomarkers Associated with Premature Rupture of Fetal Membranes in the First Trimester. Front Pharmacol 2022; 13:915935. [PMID: 35873552 PMCID: PMC9304655 DOI: 10.3389/fphar.2022.915935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Premature rupture of the fetal membranes (PROM) is a common and important obstetric complication with increased risk of adverse consequences for both mothers and fetuses. An accurate and timely method to predict the occurrence of PROM is needed for ensuring maternal and fetal safety. Untargeted metabolomics was applied to characterize metabolite profiles related to PROM in early pregnancy. 41 serum samples from pregnant women who developed PROM later in gestation and 106 from healthy pregnant women as a control group, were analyzed. Logistic regression analysis was adjusted to analyze a PROM prediction model in the first trimester. A WISH amniotic cell viability assay was applied to explore the underlying mechanisms involved in PROM, mediated by C8-dihydroceramide used to mimic a potential biomarker (Cer 40:0; O2). Compared with healthy controls, 13 serum metabolites were identified. The prediction model comprising four compounds (Cer 40:0; O2, sphingosine, isohexanal and PC O-38:4) had moderate accuracy to predict PROM events with the maximum area under the curve of a receiver operating characteristics curve of approximately 0.70. Of these four compounds, Cer 40:0; O2 with an 1.81-fold change between PROM and healthy control serum samples was defined as a potential biomarker and inhibited the viability of WISH cells. This study sheds light on predicting PROM in early pregnancy and on understanding the underlying mechanism of PROM.Trial Registration: This study protocol has been registered at www.ClinicalTrials.gov, CT03651934, on 29 August 2018 (prior to recruitment).
Collapse
Affiliation(s)
- Zhuoling An
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Rui Zhao
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Feifei Han
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yuan Sun
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yanping Liu
- Department of Clinical Nutrition, Peking Union Medical College Hospital, China Academic Medical Science and Peking Union Medical College, Beijing, China
- *Correspondence: Yanping Liu, ; Lihong Liu,
| | - Lihong Liu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yanping Liu, ; Lihong Liu,
| |
Collapse
|
62
|
Kawai H, Osawa Y, Matsuda M, Tsunoda T, Yanagida K, Hishikawa D, Okawara M, Sakamoto Y, Shimagaki T, Tsutsui Y, Yoshida Y, Yoshikawa S, Hashi K, Doi H, Mori T, Yamazoe T, Yoshio S, Sugiyama M, Okuzaki D, Komatsu H, Inui A, Tamura-Nakano M, Oyama C, Shindou H, Kusano H, Kage M, Ikegami T, Yanaga K, Kanto T. Sphingosine-1-phosphate promotes tumor development and liver fibrosis in mouse model of congestive hepatopathy. Hepatology 2022; 76:112-125. [PMID: 34855990 DOI: 10.1002/hep.32256] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 10/06/2021] [Accepted: 11/21/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Chronic liver congestion reflecting right-sided heart failure (RHF), Budd-Chiari syndrome, or Fontan-associated liver disease (FALD) is involved in liver fibrosis and HCC. However, molecular mechanisms of fibrosis and HCC in chronic liver congestion remain poorly understood. APPROACH AND RESULTS Here, we first demonstrated that chronic liver congestion promoted HCC and metastatic liver tumor growth using murine model of chronic liver congestion by partial inferior vena cava ligation (pIVCL). As the initial step triggering HCC promotion and fibrosis, gut-derived lipopolysaccharide (LPS) appeared to induce LSECs capillarization in mice and in vitro. LSEC capillarization was also confirmed in patients with FALD. Mitogenic factor, sphingosine-1-phosphate (S1P), was increased in congestive liver and expression of sphingosine kinase 1, a major synthetase of S1P, was increased in capillarized LSECs after pIVCL. Inhibition of S1P receptor (S1PR) 1 (Ex26) and S1PR2 (JTE013) mitigated HCC development and liver fibrosis, respectively. Antimicrobial treatment lowered portal blood LPS concentration, LSEC capillarization, and liver S1P concentration accompanied by reduction of HCC development and fibrosis in the congestive liver. CONCLUSIONS In conclusion, chronic liver congestion promotes HCC development and liver fibrosis by S1P production from LPS-induced capillarized LSECs. Careful treatment of both RHF and liver cancer might be necessary for patients with RHF with primary or metastatic liver cancer.
Collapse
Affiliation(s)
- Hironari Kawai
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan.,Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Yosuke Osawa
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan.,Department of Gastroenterology, International University of Health and Welfare Hospital, Nasushiobara, Tochigi, Japan
| | - Michitaka Matsuda
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Tomoyuki Tsunoda
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohama-shi Tobu Hospital, Kanagawa, Japan
| | - Keisuke Yanagida
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
| | - Daisuke Hishikawa
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
| | - Miku Okawara
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Yuzuru Sakamoto
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Tomonari Shimagaki
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Yuriko Tsutsui
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Yuichi Yoshida
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Shiori Yoshikawa
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Kana Hashi
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Hiroyoshi Doi
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Taizo Mori
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Taiji Yamazoe
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Sachiyo Yoshio
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Masaya Sugiyama
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Chiba, Japan
| | - Daisuke Okuzaki
- Genome information Research Center, Research Institute for Microbial Disease, Osaka University, Suita, Osaka, Japan
| | - Haruki Komatsu
- Department of Pediatrics, Toho University Medical Center, Sakura hospital, Chiba, Japan
| | - Ayano Inui
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohama-shi Tobu Hospital, Kanagawa, Japan
| | - Miwa Tamura-Nakano
- Communal Laboratory, National Center for Global Health and Medicine, Tokyo, Japan
| | - Chinatsu Oyama
- Communal Laboratory, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan.,Department of Lipid Science, The University of Tokyo, Tokyo, Japan
| | - Hironori Kusano
- Department of Pathology, Kurume University School of Medicine, Fukuoka, Japan
| | - Masayoshi Kage
- Kurume University Research Center for Innovative Cancer Therapy, Fukuoka, Japan
| | - Toru Ikegami
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Katsuhiko Yanaga
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Tatsuya Kanto
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| |
Collapse
|
63
|
Pharmacological Targeting of Sphingosine Kinases Impedes HIV-1 Infection of CD4 T Cells through SAMHD1 Modulation. J Virol 2022; 96:e0009622. [PMID: 35412343 PMCID: PMC9093127 DOI: 10.1128/jvi.00096-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a sphingolipid modulator of a myriad of cellular processes, and therapeutic targeting of S1P signaling is utilized clinically to treat multiple sclerosis. We have previously shown that functional antagonism of S1P receptors reduces cell-free, cell-to-cell, and latent HIV-1 infection in primary CD4 T cells. In this work, we examined whether targeting sphingosine kinase 1 or 2 (SPHK1/2) to inhibit S1P production would prevent infection using multiple HIV-1 primary isolates and infectious molecular clones. SPHK inhibition reduced HIV transmission between primary CD4 T cells in both cell-to-cell transmission and pretreatment coculture models. Mechanistically, pharmacological inhibition of SPHK reduced susceptibility to infection primarily by downregulating phosphorylated SAMHD1 (pSAMHD1), enhancing the activity of this innate HIV-1 restriction factor. Furthermore, genetic disruption of either SPHK1 or SPHK2 by CRISPR/Cas9 reduced phosphorylation of SAMHD1, demonstrating the role of these kinases in modulation of SAMHD1 activity. The effect of SPHK inhibition on limiting HIV-1 infection in CD4 T cells was observed irrespective of the biological sex or age of the donor, with neither variable significantly influencing the effectiveness of SPHK inhibition. Our results demonstrate that targeting SPHK inhibits transmission of HIV-1 via modulation of SAMHD1 phosphorylation to decrease permissiveness to infection in CD4 T cells and suggests that therapeutic targeting of this pathway early in infection enables development of strategies to prevent establishment of infection and hinder cell-to-cell transmission of HIV-1. IMPORTANCE HIV-1 infection, once established, requires lifelong treatment due to the ability of the virus to maintain latent infection in its host and become reactivated during an interruption in antiretroviral treatment (ART). Although preventing transmission and acquisition of HIV is an important goal, no ART thus far have exploited harnessing a component of the host immune system to combat transmission of the virus. We have previously shown that inhibition of sphingosine-1-phosphate (S1P) receptors, a component of S1P signaling, reduces HIV-1 infection in human CD4 T cells. We therefore investigated inhibition of sphingosine kinases, another element of this signaling system, in this work. We found that inhibition of sphingosine kinases 1 and 2 (SPHK1/2) could reduce HIV-1 transmission, both among CD4 T cells and between macrophages and CD4 T cells. Our research therefore suggests that therapeutic targeting of SPHK or S1P receptors may aid in the development of strategies to prevent establishment and transmission of HIV-1 infection among immune cells.
Collapse
|
64
|
Gupta P, Kadamberi IP, Mittal S, Tsaih S, George J, Kumar S, Vijayan DK, Geethadevi A, Parashar D, Topchyan P, McAlarnen L, Volkman BF, Cui W, Zhang KYJ, Di Vizio D, Chaluvally‐Raghavan P, Pradeep S. Tumor Derived Extracellular Vesicles Drive T Cell Exhaustion in Tumor Microenvironment through Sphingosine Mediated Signaling and Impacting Immunotherapy Outcomes in Ovarian Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104452. [PMID: 35289120 PMCID: PMC9108620 DOI: 10.1002/advs.202104452] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/10/2022] [Indexed: 05/13/2023]
Abstract
SPHK1 (sphingosine kinase-1) catalyzes the phosphorylation of sphingosine to sphingosine-1-phosphate (S1P), is found to be highly expressed in solid tumors. Here, extracellular vesicles (EVs) are identified as the key transporters of SPHK1 to the tumor microenvironment. Consequently, SPHK1-packaged EVs elevate S1P levels in the tumor microenvironment, where S1P appears as an immunosuppressive agent. However, the exact mechanism of how S1P mediates its immunosuppressive effects in cancer is not understood. It is investigated that S1P can induce T cell exhaustion. S1P can also upregulate programmed death ligand-1 (PDL-1) expression through E2F1-mediated transcription. Notably, an SPHK1 inhibitor PF543 improves T cell-mediated cytotoxicity. Furthermore, combining PF543 with an anti-PD-1 antibody reduces tumor burden and metastasis more effectively than PF543 alone in vivo. These data demonstrate a previously unrecognized mechanism of how SPHK1-packaged EVs contribute to the progression of ovarian cancer and thus present the potential clinical application of inhibiting SPHK1/S1P signaling to improve immune checkpoint blockage (anti-PD-1 antibody) therapy in ovarian cancer.
Collapse
Affiliation(s)
- Prachi Gupta
- Department of Obstetrics and GynecologyMedical College of WisconsinMilwaukeeWisconsin53226USA
| | | | - Sonam Mittal
- Department of Obstetrics and GynecologyMedical College of WisconsinMilwaukeeWisconsin53226USA
| | - Shirng‐Wern Tsaih
- Department of Obstetrics and GynecologyMedical College of WisconsinMilwaukeeWisconsin53226USA
| | - Jasmine George
- Department of Obstetrics and GynecologyMedical College of WisconsinMilwaukeeWisconsin53226USA
| | - Sudhir Kumar
- Department of Obstetrics and GynecologyMedical College of WisconsinMilwaukeeWisconsin53226USA
| | - Dileep K. Vijayan
- Laboratory for computational and structural biologyJubilee Center for Medical ResearchThrissurKerala680006India
- Laboratory for Structural BioinformaticsCenter for Biosystems Dynamics ResearchRiken230‐0045Japan
| | - Anjali Geethadevi
- Department of Obstetrics and GynecologyMedical College of WisconsinMilwaukeeWisconsin53226USA
| | - Deepak Parashar
- Department of Obstetrics and GynecologyMedical College of WisconsinMilwaukeeWisconsin53226USA
| | - Paytsar Topchyan
- Department of Microbiology and ImmunologyMCW and Versiti Blood Research InstituteMilwaukeeWisconsin53226USA
| | - Lindsey McAlarnen
- Department of Obstetrics and GynecologyMedical College of WisconsinMilwaukeeWisconsin53226USA
| | - Brian F Volkman
- Department of BiochemistryMedical College of WisconsinMilwaukee53226USA
| | - Weiguo Cui
- Department of Microbiology and ImmunologyMCW and Versiti Blood Research InstituteMilwaukeeWisconsin53226USA
| | - Kam Y. J. Zhang
- Laboratory for Structural BioinformaticsCenter for Biosystems Dynamics ResearchRiken230‐0045Japan
| | - Dolores Di Vizio
- Department of SurgeryPathology and Laboratory MedicineSamuel Oschin Comprehensive Cancer InstituteCedars‐Sinai Medical CenterLos AngelesCA90048USA
| | - Pradeep Chaluvally‐Raghavan
- Department of Obstetrics and GynecologyMedical College of WisconsinMilwaukeeWisconsin53226USA
- Department of PhysiologyMedical College of WisconsinMilwaukeeWisconsin53226USA
- Medical College of Wisconsin Cancer CenterMedical College of WisconsinMilwaukeeWisconsin53226USA
| | - Sunila Pradeep
- Department of Obstetrics and GynecologyMedical College of WisconsinMilwaukeeWisconsin53226USA
- Department of PhysiologyMedical College of WisconsinMilwaukeeWisconsin53226USA
- Medical College of Wisconsin Cancer CenterMedical College of WisconsinMilwaukeeWisconsin53226USA
| |
Collapse
|
65
|
Janneh AH, Ogretmen B. Targeting Sphingolipid Metabolism as a Therapeutic Strategy in Cancer Treatment. Cancers (Basel) 2022; 14:2183. [PMID: 35565311 PMCID: PMC9104917 DOI: 10.3390/cancers14092183] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Sphingolipids are bioactive molecules that have key roles in regulating tumor cell death and survival through, in part, the functional roles of ceramide accumulation and sphingosine-1-phosphate (S1P) production, respectively. Mechanistic studies using cell lines, mouse models, or human tumors have revealed crucial roles of sphingolipid metabolic signaling in regulating tumor progression in response to anticancer therapy. Specifically, studies to understand ceramide and S1P production pathways with their downstream targets have provided novel therapeutic strategies for cancer treatment. In this review, we present recent evidence of the critical roles of sphingolipids and their metabolic enzymes in regulating tumor progression via mechanisms involving cell death or survival. The roles of S1P in enabling tumor growth/metastasis and conferring cancer resistance to existing therapeutics are also highlighted. Additionally, using the publicly available transcriptomic database, we assess the prognostic values of key sphingolipid enzymes on the overall survival of patients with different malignancies and present studies that highlight their clinical implications for anticancer treatment.
Collapse
Affiliation(s)
| | - Besim Ogretmen
- Hollings Cancer Center, Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
66
|
Doumouras AG, Lovrics O, Paterson JM, Sutradhar R, Paszat L, Sivapathasundaram B, Tarride JE, Anvari M. Bariatric Surgery and Breast Cancer Incidence: a Population-Based, Matched Cohort Study. Obes Surg 2022; 32:1261-1269. [PMID: 35212909 DOI: 10.1007/s11695-022-05946-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 10/19/2022]
Abstract
PURPOSE Obesity is associated with increased breast cancer risk in women. Bariatric surgery induces substantial weight loss. However, the effects of such weight loss on subsequent breast cancer risk in women with obesity are poorly understood. To examine breast cancer incidence and related outcomes in women with obesity undergoing bariatric surgery. MATERIALS AND METHODS This was a population-based matched cohort study of breast surgery outcomes utilizing linked clinical databases in Ontario, Canada. Women with obesity who underwent bariatric surgery were 1:1 matched using a propensity score to non-surgical controls for age and breast cancer screening history. The main outcomes were incidence of breast cancer after lag periods of 1, 2, and 5 years. Additional outcomes included tumor hormone receptor status, cancer stage, and treatments undertaken. Time-varying Cox proportional hazard models accounting for screening during follow-up were used to model cancer incidence. RESULTS A total of 12,724 women per group were included, average age 45.09. After a 1-year lag, breast cancer incidence occurred in 1.09% and 0.79% of the control and surgery groups, respectively (adjusted hazard ratio, 0.81 [95%CI 0.69-0.95]; p = 0.01). This association was maintained after lag periods of 2 and 5 years. Women in the surgical cohort diagnosed with breast cancer were more likely to have low-grade tumors and less likely to have high-grade tumors (overall p < 0.01). No association was found for tumor hormone receptor status, although the surgical group was more likely to have her2neu-negative tumors (p = 0.01). CONCLUSION Bariatric surgery was associated with a lower incidence of breast cancer and lower tumor grade in women with obesity. Further evaluation of outcomes, including mortality, is required.
Collapse
Affiliation(s)
- Aristithes G Doumouras
- Division of General Surgery, McMaster University, Hamilton, ON, L8V 1C3, Canada
- ICES, Toronto, ON, M4N 3M5, Canada
- Department of Health Research Methods, Evidence, and Impact (HEI), Faculty of Health Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
- Division of General Surgery, St. Joseph's Healthcare, 50 Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada
| | - Olivia Lovrics
- Division of General Surgery, McMaster University, Hamilton, ON, L8V 1C3, Canada
| | - J Michael Paterson
- ICES, Toronto, ON, M4N 3M5, Canada
- Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, M5T 3M6, Canada
- Department of Family Medicine, McMaster University, Hamilton, ON, L8P 1H6, Canada
| | - Rinku Sutradhar
- ICES, Toronto, ON, M4N 3M5, Canada
- Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, M5T 3M6, Canada
| | - Lawrence Paszat
- ICES, Toronto, ON, M4N 3M5, Canada
- Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, M5T 3M6, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, M5T 1P5, Canada
| | | | - Jean-Eric Tarride
- Department of Health Research Methods, Evidence, and Impact (HEI), Faculty of Health Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
- Center for Health Economics and Policy Analysis (CHEPA), McMaster University, Hamilton, ON, L8S 4L8, Canada
- Programs for Assessment of Technology in Health (PATH), The Research Institute of St. Joe's Hamilton, St. Joseph's Healthcare Hamilton, Hamilton, ON, L8N 4A6, Canada
| | - Mehran Anvari
- Division of General Surgery, McMaster University, Hamilton, ON, L8V 1C3, Canada.
- ICES, Toronto, ON, M4N 3M5, Canada.
- Division of General Surgery, St. Joseph's Healthcare, 50 Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada.
| |
Collapse
|
67
|
Pournajaf S, Dargahi L, Javan M, Pourgholami MH. Molecular Pharmacology and Novel Potential Therapeutic Applications of Fingolimod. Front Pharmacol 2022; 13:807639. [PMID: 35250559 PMCID: PMC8889014 DOI: 10.3389/fphar.2022.807639] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
Fingolimod is a well-tolerated, highly effective disease-modifying therapy successfully utilized in the management of multiple sclerosis. The active metabolite, fingolimod-phosphate, acts on sphingosine-1-phosphate receptors (S1PRs) to bring about an array of pharmacological effects. While being initially recognized as a novel agent that can profoundly reduce T-cell numbers in circulation and the CNS, thereby suppressing inflammation and MS, there is now rapidly increasing knowledge on its previously unrecognized molecular and potential therapeutic effects in diverse pathological conditions. In addition to exerting inhibitory effects on sphingolipid pathway enzymes, fingolimod also inhibits histone deacetylases, transient receptor potential cation channel subfamily M member 7 (TRMP7), cytosolic phospholipase A2α (cPLA2α), reduces lysophosphatidic acid (LPA) plasma levels, and activates protein phosphatase 2A (PP2A). Furthermore, fingolimod induces apoptosis, autophagy, cell cycle arrest, epigenetic regulations, macrophages M1/M2 shift and enhances BDNF expression. According to recent evidence, fingolimod modulates a range of other molecular pathways deeply rooted in disease initiation or progression. Experimental reports have firmly associated the drug with potentially beneficial therapeutic effects in immunomodulatory diseases, CNS injuries, and diseases including Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, and even cancer. Attractive pharmacological effects, relative safety, favorable pharmacokinetics, and positive experimental data have collectively led to its testing in clinical trials. Based on the recent reports, fingolimod may soon find its way as an adjunct therapy in various disparate pathological conditions. This review summarizes the up-to-date knowledge about molecular pharmacology and potential therapeutic uses of fingolimod.
Collapse
Affiliation(s)
- Safura Pournajaf
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
68
|
Sphingosine 1-Phosphate-Upregulated COX-2/PGE2 System Contributes to Human Cardiac Fibroblast Apoptosis: Involvement of MMP-9-Dependent Transactivation of EGFR Cascade. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7664290. [PMID: 35242277 PMCID: PMC8888119 DOI: 10.1155/2022/7664290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/20/2022]
Abstract
Human cardiac fibroblasts (HCFs) play key roles in normal physiological functions and pathological processes in the heart. Our recent study has found that, in HCFs, sphingosine 1-phosphate (S1P) can upregulate the expression of cyclooxygenase-2 (COX-2) leading to prostaglandin E2 (PGE2) generation mediated by S1P receptors/PKCα/MAPKs cascade-dependent activation of NF-κB. Alternatively, G protein-coupled receptor- (GPCR-) mediated transactivation of receptor tyrosine kinases (RTKs) has been proved to induce inflammatory responses. However, whether GPCR-mediated transactivation of RTKs participated in the COX-2/PGE2 system induced by S1P is still unclear in HCFs. We hypothesize that GPCR-mediated transactivation of RTKs-dependent signaling cascade is involved in S1P-induced responses. This study is aimed at exploring the comprehensive mechanisms of S1P-promoted COX-2/PGE2 expression and apoptotic effects on HCFs. Here, we used pharmacological inhibitors and transfection with siRNA to evaluate whether matrix metalloprotease (MMP)2/9, heparin-binding- (HB-) epidermal growth factor (EGF), EGF receptor (EGFR), PI3K/Akt, MAPKs, and transcription factor AP-1 participated in the S1P-induced COX-2/PGE2 system determined by Western blotting, real-time polymerase chain reaction (RT-PCR), chromatin immunoprecipitation (ChIP), and promoter-reporter assays in HCFs. Our results showed that S1PR1/3 activated by S1P coupled to Gq- and Gi-mediated MMP9 activity to stimulate EGFR/PI3K/Akt/MAPKs/AP-1-dependent activity of transcription to upregulate COX-2 accompanied with PGE2 production, leading to stimulation of caspase-3 activity and apoptosis. Moreover, S1P-enhanced c-Jun bound to COX-2 promoters on its corresponding binding sites, which was attenuated by these inhibitors of protein kinases, determined by a ChIP assay. These results concluded that transactivation of MMP9/EGFR-mediated PI3K/Akt/MAPKs-dependent AP-1 activity was involved in the upregulation of the COX-2/PGE2 system induced by S1P, in turn leading to apoptosis in HCFs.
Collapse
|
69
|
Olesch C, Brüne B, Weigert A. Keep a Little Fire Burning-The Delicate Balance of Targeting Sphingosine-1-Phosphate in Cancer Immunity. Int J Mol Sci 2022; 23:ijms23031289. [PMID: 35163211 PMCID: PMC8836181 DOI: 10.3390/ijms23031289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
The sphingolipid sphingosine-1-phosphate (S1P) promotes tumor development through a variety of mechanisms including promoting proliferation, survival, and migration of cancer cells. Moreover, S1P emerged as an important regulator of tumor microenvironmental cell function by modulating, among other mechanisms, tumor angiogenesis. Therefore, S1P was proposed as a target for anti-tumor therapy. The clinical success of current cancer immunotherapy suggests that future anti-tumor therapy needs to consider its impact on the tumor-associated immune system. Hereby, S1P may have divergent effects. On the one hand, S1P gradients control leukocyte trafficking throughout the body, which is clinically exploited to suppress auto-immune reactions. On the other hand, S1P promotes pro-tumor activation of a diverse range of immune cells. In this review, we summarize the current literature describing the role of S1P in tumor-associated immunity, and we discuss strategies for how to target S1P for anti-tumor therapy without causing immune paralysis.
Collapse
Affiliation(s)
- Catherine Olesch
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (C.O.); (B.B.)
- Bayer Joint Immunotherapeutics Laboratory, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (C.O.); (B.B.)
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60596 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (C.O.); (B.B.)
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60596 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
- Correspondence:
| |
Collapse
|
70
|
Hatton SL, Pandey MK. Fat and Protein Combat Triggers Immunological Weapons of Innate and Adaptive Immune Systems to Launch Neuroinflammation in Parkinson's Disease. Int J Mol Sci 2022; 23:1089. [PMID: 35163013 PMCID: PMC8835271 DOI: 10.3390/ijms23031089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 01/27/2023] Open
Abstract
Parkinson's disease (PD) is the second-most common neurodegenerative disease in the world, affecting up to 10 million people. This disease mainly happens due to the loss of dopaminergic neurons accountable for memory and motor function. Partial glucocerebrosidase enzyme deficiency and the resultant excess accumulation of glycosphingolipids and alpha-synuclein (α-syn) aggregation have been linked to predominant risk factors that lead to neurodegeneration and memory and motor defects in PD, with known and unknown causes. An increasing body of evidence uncovers the role of several other lipids and their association with α-syn aggregation, which activates the innate and adaptive immune system and sparks brain inflammation in PD. Here, we review the emerging role of a number of lipids, i.e., triglyceride (TG), diglycerides (DG), glycerophosphoethanolamines (GPE), polyunsaturated fatty acids (PUFA), sphingolipids, gangliosides, glycerophospholipids (GPL), and cholesterols, and their connection with α-syn aggregation as well as the induction of innate and adaptive immune reactions that trigger neuroinflammation in PD.
Collapse
Affiliation(s)
- Shelby Loraine Hatton
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Cincinnati, OH 45229, USA;
| | - Manoj Kumar Pandey
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Cincinnati, OH 45229, USA;
- Department of Pediatrics, Division of Human Genetics, College of Medicine, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
71
|
Plasma Sphingosine-1-Phosphate Levels Are Associated with Progression of Estrogen Receptor-Positive Breast Cancer. Int J Mol Sci 2021; 22:ijms222413367. [PMID: 34948163 PMCID: PMC8703495 DOI: 10.3390/ijms222413367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 12/15/2022] Open
Abstract
Although numerous experiments revealed an essential role of a lipid mediator, sphingosine-1-phosphate (S1P), in breast cancer (BC) progression, the clinical significance of S1P remains unclear due to the difficulty of measuring lipids in patients. The aim of this study was to determine the plasma concentration of S1P in estrogen receptor (ER)-positive BC patients, as well as to investigate its clinical significance. We further explored the possibility of a treatment strategy targeting S1P in ER-positive BC patients by examining the effect of FTY720, a functional antagonist of S1P receptors, on hormone therapy-resistant cells. Plasma S1P levels were significantly higher in patients negative for progesterone receptor (PgR) expression than in those positive for expression (p = 0.003). Plasma S1P levels were also significantly higher in patients with larger tumor size (p = 0.012), lymph node metastasis (p = 0.014), and advanced cancer stage (p = 0.003), suggesting that higher levels of plasma S1P are associated with cancer progression. FTY720 suppressed the viability of not only wildtype MCF-7 cells, but also hormone therapy-resistant MCF-7 cells. Targeting S1P signaling in ER-positive BC appears to be a possible new treatment strategy, even for hormone therapy-resistant patients.
Collapse
|
72
|
Psychological intervention to treat distress: An emerging frontier in cancer prevention and therapy. Biochim Biophys Acta Rev Cancer 2021; 1877:188665. [PMID: 34896258 DOI: 10.1016/j.bbcan.2021.188665] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 02/05/2023]
Abstract
Psychological distress, such as chronic depression and anxiety, is a topical problem. In the context of cancer patients, prevalence rates of psychological distress are four-times higher than in the general population and often confer worse outcomes. In addition to evidence from epidemiological studies confirming the links between psychological distress and cancer progression, a growing body of cellular and molecular studies have also revealed the complex signaling networks which are modulated by psychological distress-derived chronic stress during cancer progression. In this review, aiming to uncover the intertwined networks of chronic stress-driven oncogenesis and progression, we summarize physiological stress response pathways, like the HPA, SNS, and MGB axes, that modulate the release of stress hormones with potential carcinogenic properties. Furthermore, we discuss in detail the mechanisms behind these chronic stimulations contributing to the initiation and progression of cancer through direct regulation of cancer hallmarks-related signaling or indirect promotion of cancer risk factors (including obesity, disordered circadian rhythms, and premature senescence), suggesting a novel research direction into cancer prevention and therapy on the basis of psychological interventions.
Collapse
|
73
|
Hii LW, Chung FFL, Mai CW, Ng PY, Leong CO. Sphingosine Kinase 1 Signaling in Breast Cancer: A Potential Target to Tackle Breast Cancer Stem Cells. Front Mol Biosci 2021; 8:748470. [PMID: 34820423 PMCID: PMC8606534 DOI: 10.3389/fmolb.2021.748470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/25/2021] [Indexed: 02/05/2023] Open
Abstract
Sphingosine kinases (SPHKs) are conserved lipid enzymes that catalyze the formation of sphingosine-1-phosphate (S1P) through ATP-dependent phosphorylation of sphingosine. Two distinct SPHK isoforms, namely SPHK1 and SPHK2, have been identified to date, and the former has been implicated for its oncogenic roles in cancer development and progression. While SPHK1 signaling axis has been extensively studied in non-stem breast cancer cells, recent evidence has emerged to suggest a role of SPHK1 in regulating cancer stem cells (CSCs). With the clinical implications of CSCs in disease relapse and metastasis, it is believed that therapeutic approaches that can eradicate both non-stem cancer cells and CSCs could be a key to cancer cure. In this review, we first explore the oncogenic functions of sphingosine kinase 1 in human cancers and summarize current research findings of SPHK1 signaling with a focus on breast cancer. We also discuss the therapeutic potentials and perspectives of targeting SPHK1 signaling in breast cancer and cancer stem cells. We aim to offer new insights and inspire future studies looking further into the regulatory functions of SPHK1 in CSC-driven tumorigenesis, uncovering novel therapeutic avenues of using SPHK1-targeted therapy in the treatment of CSC-enriched refractory cancers.
Collapse
Affiliation(s)
- Ling-Wei Hii
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
| | - Felicia Fei-Lei Chung
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Malaysia
| | - Chun-Wai Mai
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
- State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Pei Yuen Ng
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
74
|
Companioni O, Mir C, Garcia-Mayea Y, LLeonart ME. Targeting Sphingolipids for Cancer Therapy. Front Oncol 2021; 11:745092. [PMID: 34737957 PMCID: PMC8560795 DOI: 10.3389/fonc.2021.745092] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
Sphingolipids are an extensive class of lipids with different functions in the cell, ranging from proliferation to cell death. Sphingolipids are modified in multiple cancers and are responsible for tumor proliferation, progression, and metastasis. Several inhibitors or activators of sphingolipid signaling, such as fenretinide, safingol, ABC294640, ceramide nanoliposomes (CNLs), SKI-II, α-galactosylceramide, fingolimod, and sonepcizumab, have been described. The objective of this review was to analyze the results from preclinical and clinical trials of these drugs for the treatment of cancer. Sphingolipid-targeting drugs have been tested alone or in combination with chemotherapy, exhibiting antitumor activity alone and in synergism with chemotherapy in vitro and in vivo. As a consequence of treatments, the most frequent mechanism of cell death is apoptosis, followed by autophagy. Aslthough all these drugs have produced good results in preclinical studies of multiple cancers, the outcomes of clinical trials have not been similar. The most effective drugs are fenretinide and α-galactosylceramide (α-GalCer). In contrast, minor adverse effects restricted to a few subjects and hepatic toxicity have been observed in clinical trials of ABC294640 and safingol, respectively. In the case of CNLs, SKI-II, fingolimod and sonepcizumab there are some limitations and absence of enough clinical studies to demonstrate a benefit. The effectiveness or lack of a major therapeutic effect of sphingolipid modulation by some drugs as a cancer therapy and other aspects related to their mechanism of action are discussed in this review.
Collapse
Affiliation(s)
- Osmel Companioni
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Mir
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Yoelsis Garcia-Mayea
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Matilde E LLeonart
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Spanish Biomedical Research Network Center in Oncology, CIBERONC, Madrid, Spain
| |
Collapse
|
75
|
Huang Z, Li J, Chen J, Chen D. Construction of Prognostic Risk Model of 5-Methylcytosine-Related Long Non-Coding RNAs and Evaluation of the Characteristics of Tumor-Infiltrating Immune Cells in Breast Cancer. Front Genet 2021; 12:748279. [PMID: 34777473 PMCID: PMC8585929 DOI: 10.3389/fgene.2021.748279] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/12/2021] [Indexed: 11/28/2022] Open
Abstract
Purpose: The role of 5-methylcytosine-related long non-coding RNAs (m5C-lncRNAs) in breast cancer (BC) remains unclear. Here, we aimed to investigate the prognostic value, gene expression characteristics, and correlation between m5C-lncRNA risk model and tumor immune cell infiltration in BC. Methods: The expression matrix of m5C-lncRNAs in BC was obtained from The Cancer Genome Atlas database, and the lncRNAs were analyzed using differential expression analysis as well as univariate and multivariate Cox regression analysis to eventually obtain BC-specific m5C-lncRNAs. A risk model was developed based on three lncRNAs using multivariate Cox regression and the prognostic value, accuracy, as well as reliability were verified. Gene set enrichment analysis (GSEA) was used to analyze the Kyoto Encyclopedia of Genes and Genomes signaling pathway enrichment of the risk model. CIBERSORT algorithm and correlation analysis were used to explore the characteristics of the BC tumor-infiltrating immune cells. Finally, reverse transcription-quantitative polymerase chain reaction was performed to detect the expression level of three lncRNA in clinical samples. Results: A total of 334 differential m5C-lncRNAs were identified, and three BC-specific m5C-lncRNAs were selected, namely AP005131.2, AL121832.2, and LINC01152. Based on these three lncRNAs, a highly reliable and specific risk model was constructed, which was proven to be closely related to the prognosis of patients with BC. Therefore, a nomogram based on the risk score was built to assist clinical decisions. GSEA revealed that the risk model was significantly enriched in metabolism-related pathways and was associated with tumor immune cell infiltration based on the analysis with the CIBERSORT algorithm. Conclusion: The efficient risk model based on m5C-lncRNAs associated with cancer metabolism and tumor immune cell infiltration could predict the survival prognosis of patients, and AP005131.2, AL121832.2, and LINC01152 could be novel biomarkers and therapeutic targets for BC.
Collapse
Affiliation(s)
| | | | | | - Debo Chen
- Department of Breast Surgery, Quanzhou First Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
76
|
Lin HM, Mak B, Yeung N, Huynh K, Meikle TG, Mellett NA, Kwan EM, Fettke H, Tran B, Davis ID, Mahon KL, Zhang A, Stockler MR, Briscoe K, Marx G, Crumbaker M, Stricker PD, Du P, Yu J, Jia S, Scheinberg T, Fitzpatrick M, Bonnitcha P, Sullivan DR, Joshua AM, Azad AA, Butler LM, Meikle PJ, Horvath LG. Overcoming enzalutamide resistance in metastatic prostate cancer by targeting sphingosine kinase. EBioMedicine 2021; 72:103625. [PMID: 34656931 PMCID: PMC8526762 DOI: 10.1016/j.ebiom.2021.103625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
Background Intrinsic resistance to androgen receptor signalling inhibitors (ARSI) occurs in 20–30% of men with metastatic castration-resistant prostate cancer (mCRPC). Ceramide metabolism may have a role in ARSI resistance. Our study's aim is to investigate the association of the ceramide-sphingosine-1-phosphate (ceramide-S1P) signalling axis with ARSI resistance in mCRPC. Methods Lipidomic analysis (∼700 lipids) was performed on plasma collected from 132 men with mCRPC, before commencing enzalutamide or abiraterone. AR gene aberrations in 77 of these men were identified by deep sequencing of circulating tumour DNA. Associations between circulating lipids, radiological progression-free survival (rPFS) and overall survival (OS) were examined by Cox regression. Inhibition of ceramide-S1P signalling with sphingosine kinase (SPHK) inhibitors (PF-543 and ABC294640) on enzalutamide efficacy was investigated with in vitro assays, and transcriptomic and lipidomic analyses of prostate cancer (PC) cell lines (LNCaP, C42B, 22Rv1). Findings Men with elevated circulating ceramide levels had shorter rPFS (HR=2·3, 95% CI=1·5–3·6, p = 0·0004) and shorter OS (HR=2·3, 95% CI=1·4–36, p = 0·0005). The combined presence of an AR aberration with elevated ceramide levels conferred a worse prognosis than the presence of only one or none of these characteristics (median rPFS time = 3·9 vs 8·3 vs 17·7 months; median OS time = 8·9 vs 19·8 vs 34·4 months). SPHK inhibitors enhanced enzalutamide efficacy in PC cell lines. Transcriptomic and lipidomic analyses indicated that enzalutamide combined with SPHK inhibition enhanced PC cell death by SREBP-induced lipotoxicity. Interpretation Ceramide-S1P signalling promotes ARSI resistance, which can be reversed with SPHK inhibitors.
Collapse
Affiliation(s)
- Hui-Ming Lin
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia; St Vincent's Clinical School, UNSW Sydney, Darlinghurst, New South Wales, Australia
| | - Blossom Mak
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia; Chris O' Brien Lifehouse, Camperdown, New South Wales, Australia; University of Sydney, Camperdown, New South Wales, Australia
| | - Nicole Yeung
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Thomas G Meikle
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | - Edmond M Kwan
- Department of Medical Oncology, Monash Health, Clayton, Victoria, Australia; Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Heidi Fettke
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Ben Tran
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Ian D Davis
- Cancer Services, Eastern Health, Box Hill, Victoria, Australia; Eastern Health Clinical School, Monash University, Box Hill, Victoria, Australia
| | - Kate L Mahon
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia; St Vincent's Clinical School, UNSW Sydney, Darlinghurst, New South Wales, Australia; Chris O' Brien Lifehouse, Camperdown, New South Wales, Australia; University of Sydney, Camperdown, New South Wales, Australia; Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Alison Zhang
- Chris O' Brien Lifehouse, Camperdown, New South Wales, Australia
| | - Martin R Stockler
- Chris O' Brien Lifehouse, Camperdown, New South Wales, Australia; University of Sydney, Camperdown, New South Wales, Australia; Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia; Concord Repatriation General Hospital, Concord, New South Wales, Australia
| | - Karen Briscoe
- Mid North Coast Cancer Institute, Coffs Harbour, New South Wales, Australia
| | - Gavin Marx
- Sydney Adventist Hospital, Wahroonga, New South Wales, Australia
| | - Megan Crumbaker
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia; St Vincent's Clinical School, UNSW Sydney, Darlinghurst, New South Wales, Australia; The Kinghorn Cancer Centre, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - Phillip D Stricker
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia; St Vincent's Clinical School, UNSW Sydney, Darlinghurst, New South Wales, Australia
| | - Pan Du
- Predicine, Inc., Hayward, CA, USA
| | | | | | - Tahlia Scheinberg
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia; Chris O' Brien Lifehouse, Camperdown, New South Wales, Australia; University of Sydney, Camperdown, New South Wales, Australia
| | | | - Paul Bonnitcha
- University of Sydney, Camperdown, New South Wales, Australia; NSW Health Pathology, Camperdown, New South Wales, Australia
| | - David R Sullivan
- Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia; NSW Health Pathology, Camperdown, New South Wales, Australia
| | - Anthony M Joshua
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia; St Vincent's Clinical School, UNSW Sydney, Darlinghurst, New South Wales, Australia; The Kinghorn Cancer Centre, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - Arun A Azad
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Lisa M Butler
- Adelaide Medical School and Freemason's Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, South Australia, Australia; South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Lisa G Horvath
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia; St Vincent's Clinical School, UNSW Sydney, Darlinghurst, New South Wales, Australia; Chris O' Brien Lifehouse, Camperdown, New South Wales, Australia; University of Sydney, Camperdown, New South Wales, Australia; Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.
| |
Collapse
|
77
|
Tian J, Huang T, Chang S, Wang Y, Fan W, Ji H, Wang J, Yang J, Kang J, Zhou Y. Role of sphingosine-1-phosphate mediated signalling in systemic lupus erythematosus. Prostaglandins Other Lipid Mediat 2021; 156:106584. [PMID: 34352381 DOI: 10.1016/j.prostaglandins.2021.106584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 07/02/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022]
Abstract
Systemic lupus erythematosus (SLE) is a highly prevalent autoimmune disease characterized by the malfunction of the immune system and the persistent presence of an inflammatory environment. Multiple organs can be affected during SLE, leading to heterogeneous manifestations, which eventually result in the death of patients. Due to the lack of understanding regarding the pathogenesis of SLE, the currently available treatments remain suboptimal. Sphingosine-1-phosphate (S1P) is a central bioactive lipid of sphingolipid metabolism, which serves a pivotal role in regulating numerous physiological and pathological processes. As a well-recognized regulator of lymphocyte trafficking, S1P has been shown to be closely associated with autoimmune diseases, including SLE. Importantly, S1P levels have been found to be elevated in patients with SLE. In murine models of lupus, the increased levels of S1P also contribute to disease activity and organ impairment. Moreover, data from several studies also support the hypothesis that S1P receptors and its producer-sphingosine kinases (SPHK) may serve as the potential targets for the treatment of SLE and its co-morbidities. Given the significant success that intervening with S1P signaling has achieved in treating multiple sclerosis, further exploration of its role in SLE is necessary. Therefore, the aim of the present review is to summarize the recent advances in understanding the potential mechanism by which S1P influences SLE, with a primary focus on its role in immune regulation and inflammatory responses.
Collapse
Affiliation(s)
- Jihua Tian
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Taiping Huang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Sijia Chang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhong Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Weiping Fan
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - He Ji
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Juanjuan Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jia Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Kang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yun Zhou
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute, Taiyuan, Shanxi, China.
| |
Collapse
|
78
|
Relationship between Circulating Lipids and Cytokines in Metastatic Castration-Resistant Prostate Cancer. Cancers (Basel) 2021; 13:cancers13194964. [PMID: 34638448 PMCID: PMC8508038 DOI: 10.3390/cancers13194964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Lipids (fatty substances) and cytokines are molecules that affect how the immune response works. The measurement of the amounts of lipids and cytokines in blood might give clues about how prostate cancers grow or respond to treatment. This study looked at the blood levels of lipids and cytokines in men with advanced prostate cancer that was growing despite standard treatment (metastatic castration-resistant prostate cancer, mCRPC). We found that certain lipids were consistently associated with poorer clinical outcome, while cytokines were not. The levels of a type of lipid (ceramide) were associated with some cytokines. This lipid is known to activate the immune system and is associated with poor outcomes in mCRPC. A change in lipid profiles was associated with better response to treatment. Overall, our findings suggest that blood lipids might be more informative than cytokines, might influence the immune response, and might help predict treatment response. Abstract Circulating lipids or cytokines are associated with prognosis in metastatic castration-resistant prostate cancer (mCRPC). This study aimed to understand the interactions between lipid metabolism and immune response in mCRPC by investigating the relationship between the plasma lipidome and cytokines. Plasma samples from two independent cohorts of men with mCRPC (n = 146, 139) having life-prolonging treatments were subjected to lipidomic and cytokine profiling (290, 763 lipids; 40 cytokines). Higher baseline levels of sphingolipids, including ceramides, were consistently associated with shorter overall survival in both cohorts, whereas the associations of cytokines with overall survival were inconsistent. Increasing levels of IL6, IL8, CXCL16, MPIF1, and YKL40 correlated with increasing levels of ceramide in both cohorts. Men with a poor prognostic 3-lipid signature at baseline had a shorter time to radiographic progression (poorer treatment response) if their lipid profile at progression was similar to that at baseline, or their cytokine profile at progression differed to that at baseline. In conclusion, baseline levels of circulating lipids were more consistent as prognostic biomarkers than cytokines. The correlation between circulating ceramides and cytokines suggests the regulation of immune responses by ceramides. The association of treatment response with the change in lipid profiles warrants further research into metabolic interventions.
Collapse
|
79
|
Satyananda V, Oshi M, Tokumaru Y, Maiti A, Hait N, Matsuyama R, Endo I, Takabe K. Sphingosine 1-phosphate (S1P) produced by sphingosine kinase 1 (SphK1) and exported via ABCC1 is related to hepatocellular carcinoma (HCC) progression. Am J Cancer Res 2021; 11:4394-4407. [PMID: 34659894 PMCID: PMC8493375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023] Open
Abstract
Sphingosine-1-Phosphate (S1P) is produced by Sphingosine Kinase 1 (SphK1) in the cell and is transported out of the cells by ABCC1 transporter. S1P induces inflammation, angiogenesis and modulates tumor immune microenvironment (TIME) in autocrine and paracrine manner. We hypothesized that high S1P export is associated with hepatocellular carcinoma (HCC) progression and worse survival. Transcriptome linked with clinical data were obtained from a total of 533 patients from TCGA (The Cancer Genome Atlas)-HCC (n = 350), GSE6764 (n = 75), and GSE89377 (n = 108) cohorts. Both SphK1 and ABCC1 were expressed higher in aggressive HCC than normal liver or cirrhosis and correlated with MKi67 expression. High S1P export by high expression of both SphK1 and ABCC1 enriched gene sets related with cell proliferation (E2F targets, G2M checkpoint, MYC targets), inflammation (Inflammatory response, TNFα, IL6), angiogenesis, metastasis (TGF-β, epithelial-mesenchymal transition), and immune response (allograft rejection, complement, interferon-gamma) in gene set enrichment analysis. High S1P export was associated with elevation of HGF, HSP90AA1, TRAF2, and AKR1B10. It was also associated with high intratumor heterogeneity, leucocyte fraction, macrophage regulation and lymphocyte infiltration, as well as T helper type2 cells, macrophages, dendritic cells, CD4+ T memory activated cells, B-cells and cytolytic activity score in TIME. High S1P export was associated with significantly worse disease specific survival (P = 0.034) and overall survival (P = 0.004) compared to low S1P export group. In conclusion, simultaneous high expression of SphK1 and ABCC1 that reflect S1P export is associated with enhancement of both HCC progression and immune response. Given that S1P export was also associated with worse survival, we cannot help but speculate that pro-cancer pathways activated by S1P may overwhelm the anti-cancer immune response mediated by S1P.
Collapse
Affiliation(s)
- Vikas Satyananda
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| | - Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
- Department of Gastroenterological SurgeryYokohama, Kanagawa 236-004, Japan
| | - Yoshihisa Tokumaru
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University School of Medicine1-1 Yanagido, Gifu 501-1194, Japan
| | - Aparna Maiti
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| | - Nitai Hait
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| | - Ryusei Matsuyama
- Department of Gastroenterological SurgeryYokohama, Kanagawa 236-004, Japan
| | - Itaru Endo
- Department of Gastroenterological SurgeryYokohama, Kanagawa 236-004, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
- Department of Gastroenterological SurgeryYokohama, Kanagawa 236-004, Japan
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New YorkBuffalo, NY 14263, USA
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo, 160-8402 Japan
- Department of Surgery, Niigata University Graduate School of Medical and Dental SciencesNiigata 951-8510, Japan
- Department of Breast Surgery, Fukushima Medical UniversityFukushima, Japan
| |
Collapse
|
80
|
Zhang Y, Zhang X, Lu M, Zou X. Ceramide-1-phosphate and its transfer proteins in eukaryotes. Chem Phys Lipids 2021; 240:105135. [PMID: 34499882 DOI: 10.1016/j.chemphyslip.2021.105135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/31/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023]
Abstract
Ceramide-1-phosphate (C1P) is a bioactive phosphorylated sphingolipid (SL), produced through the direct phosphorylation of ceramide by ceramide kinase. It plays important roles in regulating cell survival, migration, apoptosis and autophagy and is involved in inflammasome assembly/activation, which can stimulate group IVA cytosolic phospholipase A2α and subsequently increase the levels of arachidonic acid and pro-inflammatory cytokines. Human C1P transfer protein (CPTP) can selectively transport C1P from the Golgi apparatus to specific cellular sites through a non-vesicular mechanism. Human CPTP also affects specific SL levels, thus regulating cell SL homeostasis. In addition, human CPTP plays a crucial role in the regulation of autophagy, inflammation and cell death; thus, human CPTP is closely associated with autophagy and inflammation-related diseases such as cardiovascular and neurodegenerative diseases, and cancers. Therefore, illustrating the functions and mechanisms of human CPTP is important for providing the research foundations for targeted therapy. The key human CPTP residues for C1P recognition and binding are highly conserved in eukaryotic orthologs, while the human CPTP homolog in Arabidopsis (accelerated cell death 11) also exhibits selective inter-membrane transfer of phyto-C1P. These results demonstrate that C1P transporters play fundamental roles in SL metabolism in cells. The present review summarized novel findings of C1P and its TPs in eukaryotes.
Collapse
Affiliation(s)
- Yanqun Zhang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Xiangyu Zhang
- Affiliated Stomatology Hospital of Guilin Medical University, Guilin, 541004, PR China
| | - Mengyun Lu
- Affiliated Stomatology Hospital of Guilin Medical University, Guilin, 541004, PR China
| | - Xianqiong Zou
- Affiliated Stomatology Hospital of Guilin Medical University, Guilin, 541004, PR China; College of Biotechnology, Guilin Medical University, Guilin, 541100, PR China.
| |
Collapse
|
81
|
Zou X, Jiang Z, Li L, Huang Z. Selenium nanoparticles coated with pH responsive silk fibroin complex for fingolimod release and enhanced targeting in thyroid cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 49:83-95. [PMID: 33438446 DOI: 10.1080/21691401.2021.1871620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cancer-targeted drug delivery systems based on nanoparticles (NPs) have been considered promising therapies. In this study, we developed a pH-responsive smart NPs drug delivery system using silk fibroin (SF), selenium nanoparticles (Se NPs), fingolimod (FTY720), and heptapeptide (T7). The prepared FTY720@T7-SF-Se NPs were spheres with an average diameter of 120 nm, which would contribute to the enhanced permeability and retention effects in tumour regions. The encapsulation efficiency (EE) of the FTY720@T7-SF-Se NPs was 71.95 ± 3.81%. The release of FTY720 from the nanocarriers was pH-dependent, and the release of FTY720 was accelerated in an acidic environment. Both in vitro and in vivo studies showed that FTY720@T7-SF-Se NPs had an enhanced cellular uptake selectivity and antitumor activity for thyroid cancer. The bio-distribution study in vivo further demonstrated that FTY720@T7-SF-Se NPs could effectively accumulate in the tumour region, thereby enhancing the ability to kill cancer cells in vivo. In addition, studies of histology and immunohistochemistry showed that FTY720@T7-SF-Se NPs had low toxicity to the major organs of tumour-bearing mice, indicating the prepared NPs has good biocompatibility in vivo. These results suggest that the tumour-targeted NPs delivery system (FTY720@T7-SF-Se NPs) has great potential as a new tool for thyroid cancer therapy.
Collapse
Affiliation(s)
- Xiangcai Zou
- Department of General Surgery, Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of General Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhipeng Jiang
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liang Li
- Digestive Medicine Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zonghai Huang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
82
|
Lin HM, Huynh K, Kohli M, Tan W, Azad AA, Yeung N, Mahon KL, Mak B, Sutherland PD, Shepherd A, Mellett N, Docanto M, Giles C, Centenera MM, Butler LM, Meikle PJ, Horvath LG. Aberrations in circulating ceramide levels are associated with poor clinical outcomes across localised and metastatic prostate cancer. Prostate Cancer Prostatic Dis 2021; 24:860-870. [PMID: 33746214 PMCID: PMC8387438 DOI: 10.1038/s41391-021-00338-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/10/2021] [Accepted: 01/28/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Dysregulated lipid metabolism is associated with more aggressive pathology and poorer prognosis in prostate cancer (PC). The primary aim of the study is to assess the relationship between the plasma lipidome and clinical outcomes in localised and metastatic PC. The secondary aim is to validate a prognostic circulating 3-lipid signature specific to metastatic castration-resistant PC (mCRPC). PATIENTS AND METHODS Comprehensive lipidomic analysis was performed on pre-treatment plasma samples from men with localised PC (N = 389), metastatic hormone-sensitive PC (mHSPC)(N = 44), or mCRPC (validation cohort, N = 137). Clinical outcomes from our previously published mCRPC cohort (N = 159) that was used to derive the prognostic circulating 3-lipid signature, were updated. Associations between circulating lipids and clinical outcomes were examined by Cox regression and latent class analysis. RESULTS Circulating lipid profiles featuring elevated levels of ceramide species were associated with metastatic relapse in localised PC (HR 5.80, 95% CI 3.04-11.1, P = 1 × 10-6), earlier testosterone suppression failure in mHSPC (HR 3.70, 95% CI 1.37-10.0, P = 0.01), and shorter overall survival in mCRPC (HR 2.54, 95% CI 1.73-3.72, P = 1 × 10-6). The prognostic significance of circulating lipid profiles in localised PC was independent of standard clinicopathological and metabolic factors (P < 0.0002). The 3-lipid signature was verified in the mCRPC validation cohort (HR 2.39, 95% CI 1.63-3.51, P = 1 × 10-5). CONCLUSIONS Elevated circulating ceramide species are associated with poorer clinical outcomes across the natural history of PC. These clinically actionable lipid profiles could be therapeutically targeted in prospective clinical trials to potentially improve PC outcomes.
Collapse
Affiliation(s)
- Hui-Ming Lin
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia,St Vincent’s Clinical School, UNSW Sydney, New South Wales, Australia
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Manish Kohli
- Huntsman Cancer Institute, Division of Oncology, Department of Medicine, 2000 Circle of Hope Drive, Salt Lake City, UT 84012, United States of America
| | - Winston Tan
- Mayo Clinic Florida, Jacksonville, Florida, United States of America
| | - Arun A. Azad
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia,Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, Australia,Monash University, Victoria, Australia
| | - Nicole Yeung
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Kate L. Mahon
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia,Monash University, Victoria, Australia,Chris O’ Brien Lifehouse, Camperdown, New South Wales , Australia,University of Sydney, Sydney, New South Wales, Australia
| | - Blossom Mak
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia,Chris O’ Brien Lifehouse, Camperdown, New South Wales , Australia,University of Sydney, Sydney, New South Wales, Australia
| | | | - Andrew Shepherd
- Royal Adelaide Hospital, Adelaide, South Australia, Australia,Adelaide Medical School and Freemason’s Foundation Centre for Men’s Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Natalie Mellett
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | - Corey Giles
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Margaret M. Centenera
- Adelaide Medical School and Freemason’s Foundation Centre for Men’s Health, University of Adelaide, Adelaide, South Australia, Australia,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Lisa M. Butler
- Adelaide Medical School and Freemason’s Foundation Centre for Men’s Health, University of Adelaide, Adelaide, South Australia, Australia,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Peter J. Meikle
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Lisa G. Horvath
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia,St Vincent’s Clinical School, UNSW Sydney, New South Wales, Australia,Chris O’ Brien Lifehouse, Camperdown, New South Wales , Australia,University of Sydney, Sydney, New South Wales, Australia,Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| |
Collapse
|
83
|
da Silva G, de Matos LL, Kowalski LP, Kulcsar M, Leopoldino AM. Profile of sphingolipid-related genes and its association with prognosis highlights sphingolipid metabolism in oral cancer. Cancer Biomark 2021; 32:49-63. [PMID: 34092610 DOI: 10.3233/cbm-203100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Sphingolipids are bioactive lipids that play a role in cancer development. However, the clinical role of sphingolipid (SPL)-related genes in oral cancer (OC) remains not fully understood. OBJECTIVE This study, aimed to examine the mRNA expression of 14 sphingolipid-related genes in oral cancer patients and their implication with clinicopathological features and prognosis. METHODS qPCR analysis was performed in 50 OC tissues and their matched surgical margins. Next, Kaplan-Meier, Cox regression, and Receiver operating characteristics (ROC) analysis were applied to evaluate the impact of sphingolipid-related genes expression on the prognosis of OC. RESULTS The genes SET, ACER3, SK1 and S1PR5 were predominantly up-regulated, while ABCG2, S1PR1, ABCB1 and SPNS2 were down-regulated in OC patients. Analyzing the Cancer Genome Atlas Head-Neck Squamous Cell Carcinoma (TCGA-HNSC) data, which are predominantly composed of OC samples, these genes displayed a similar profile. In OC patients, high levels of SK1 were associated with lymph node metastasis, extracapsular invasion, desmoplasia, locoregional relapse, and disease status. Low levels of SPNS2 were associated with lymph node metastasis, perineural invasion, and disease status. Furthermore, OC and HNSC patients with higher SK1 expression demonstrated shorter disease-free survival (p= 0.0037; p= 0.0087), whereas those with lower SPNS2 expression exhibited shorter overall survival (p= 0.051; p= 0.0012). High levels of ACER3 and low levels of S1PR1 were associated with shorter disease-free and overall survival in HNSC patients. CONCLUSION Several sphingolipid-related genes are deregulated in OC at the mRNA level and are associated with clinicopathological features and presented potencial for the prediction of poor prognosis in OC patients.
Collapse
Affiliation(s)
- Gabriel da Silva
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Leandro Luongo de Matos
- Head and Neck Surgery Department, Instituto do Câncer do Estado de São Paulo, University of São Paulo Medical School (LIM28), SP, Brazil.,Surgery Department, Faculdade Israelita de Ciências da Saúde Albert Einstein, SP, Brazil
| | - Luiz Paulo Kowalski
- Surgery Department, Faculdade Israelita de Ciências da Saúde Albert Einstein, SP, Brazil.,Department of Head and Neck Surgery and Otorhinolaryngology, A. C. Camargo Cancer Center, SP, Brazil
| | - Marco Kulcsar
- Head and Neck Surgery Department, Instituto do Câncer do Estado de São Paulo, University of São Paulo Medical School (LIM28), SP, Brazil
| | - Andreia Machado Leopoldino
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil
| |
Collapse
|
84
|
Zhao C, Hu W, Xu Y, Wang D, Wang Y, Lv W, Xiong M, Yi Y, Wang H, Zhang Q, Wu Y. Current Landscape: The Mechanism and Therapeutic Impact of Obesity for Breast Cancer. Front Oncol 2021; 11:704893. [PMID: 34350120 PMCID: PMC8326839 DOI: 10.3389/fonc.2021.704893] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
Obesity is defined as a chronic disease induced by an imbalance of energy homeostasis. Obesity is a widespread health problem with increasing prevalence worldwide. Breast cancer (BC) has already been the most common cancer and one of the leading causes of cancer death in women worldwide. Nowadays, the impact of the rising prevalence of obesity has been recognized as a nonnegligible issue for BC development, outcome, and management. Adipokines, insulin and insulin-like growth factor, sex hormone and the chronic inflammation state play critical roles in the vicious crosstalk between obesity and BC. Furthermore, obesity can affect the efficacy and side effects of multiple therapies such as surgery, radiotherapy, chemotherapy, endocrine therapy, immunotherapy and weight management of BC. In this review, we focus on the current landscape of the mechanisms of obesity in fueling BC and the impact of obesity on diverse therapeutic interventions. An in-depth exploration of the underlying mechanisms linking obesity and BC will improve the efficiency of the existing treatments and even provide novel treatment strategies for BC treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Haiping Wang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
85
|
Velazquez FN, Viscardi V, Montemage J, Zhang L, Trocchia C, Delamont MM, Ahmad R, Hannun YA, Obeid LM, Snider AJ. A Milk-Fat Based Diet Increases Metastasis in the MMTV-PyMT Mouse Model of Breast Cancer. Nutrients 2021; 13:nu13072431. [PMID: 34371939 PMCID: PMC8308868 DOI: 10.3390/nu13072431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 11/30/2022] Open
Abstract
A high-fat diet (HFD) and obesity are risk factors for many diseases including breast cancer. This is particularly important with close to 40% of the current adult population being overweight or obese. Previous studies have implicated that Mediterranean diets (MDs) partially protect against breast cancer. However, to date, the links between diet and breast cancer progression are not well defined. Therefore, to begin to define and assess this, we used an isocaloric control diet (CD) and two HFDs enriched with either olive oil (OOBD, high in oleate, and unsaturated fatty acid in MDs) or a milk fat-based diet (MFBD, high in palmitate and myristate, saturated fatty acids in Western diets) in a mammary polyomavirus middle T antigen mouse model (MMTV-PyMT) of breast cancer. Our data demonstrate that neither MFBD or OOBD altered the growth of primary tumors in the MMTV-PyMT mice. The examination of lung metastases revealed that OOBD mice exhibited fewer surface nodules and smaller metastases when compared to MFBD and CD mice. These data suggest that different fatty acids found in different sources of HFDs may alter breast cancer metastasis.
Collapse
Affiliation(s)
- Fabiola N. Velazquez
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (F.N.V.); (V.V.); (J.M.); (L.Z.); (C.T.); (Y.A.H.); (L.M.O.)
- Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Valentina Viscardi
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (F.N.V.); (V.V.); (J.M.); (L.Z.); (C.T.); (Y.A.H.); (L.M.O.)
- Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Julia Montemage
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (F.N.V.); (V.V.); (J.M.); (L.Z.); (C.T.); (Y.A.H.); (L.M.O.)
- Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Leiqing Zhang
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (F.N.V.); (V.V.); (J.M.); (L.Z.); (C.T.); (Y.A.H.); (L.M.O.)
- Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Carolena Trocchia
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (F.N.V.); (V.V.); (J.M.); (L.Z.); (C.T.); (Y.A.H.); (L.M.O.)
- Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Megan M. Delamont
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA;
| | - Rasheed Ahmad
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait;
| | - Yusuf A. Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (F.N.V.); (V.V.); (J.M.); (L.Z.); (C.T.); (Y.A.H.); (L.M.O.)
- Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lina M. Obeid
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (F.N.V.); (V.V.); (J.M.); (L.Z.); (C.T.); (Y.A.H.); (L.M.O.)
- Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ashley J. Snider
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (F.N.V.); (V.V.); (J.M.); (L.Z.); (C.T.); (Y.A.H.); (L.M.O.)
- Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait;
- Correspondence: ; Tel.: +1-520-621-8093
| |
Collapse
|
86
|
Hirata N, Yamada S, Yanagida S, Ono A, Kanda Y. FTY720 Inhibits Expansion of Breast Cancer Stem Cells via PP2A Activation. Int J Mol Sci 2021; 22:ijms22147259. [PMID: 34298877 PMCID: PMC8329924 DOI: 10.3390/ijms22147259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 01/06/2023] Open
Abstract
Growing evidence suggests that breast cancer originates from a minor population of cancer cells termed cancer stem cells (CSCs), which can be identified by aldehyde dehydrogenase (ALDH) activity-based flow cytometry analysis. However, novel therapeutic drugs for the eradication of CSCs have not been discovered yet. Recently, drug repositioning, which finds new medical uses from existing drugs, has been expected to facilitate drug discovery. We have previously reported that sphingosine kinase 1 (SphK1) induced proliferation of breast CSCs. In the present study, we focused on the immunosuppressive agent FTY720 (also known as fingolimod or Gilenya), since FTY720 is known to be an inhibitor of SphK1. We found that FTY720 blocked both proliferation of ALDH-positive cells and formation of mammospheres. In addition, we showed that FTY720 reduced the expression of stem cell markers such as Oct3/4, Sox2 and Nanog via upregulation of protein phosphatase 2A (PP2A). These results suggest that FTY720 is an effective drug for breast CSCs in vitro.
Collapse
Affiliation(s)
- Naoya Hirata
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa 210-9501, Japan; (N.H.); (S.Y.); (S.Y.)
- Pharmacological Evaluation Institute of Japan (PEIJ), Kanagawa 210-0821, Japan
| | - Shigeru Yamada
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa 210-9501, Japan; (N.H.); (S.Y.); (S.Y.)
- Pharmacological Evaluation Institute of Japan (PEIJ), Kanagawa 210-0821, Japan
| | - Shota Yanagida
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa 210-9501, Japan; (N.H.); (S.Y.); (S.Y.)
- Division of Pharmaceutical Sciences, Graduated School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan;
| | - Atsushi Ono
- Division of Pharmaceutical Sciences, Graduated School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan;
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa 210-9501, Japan; (N.H.); (S.Y.); (S.Y.)
- Correspondence:
| |
Collapse
|
87
|
Zheng H, Siddharth S, Parida S, Wu X, Sharma D. Tumor Microenvironment: Key Players in Triple Negative Breast Cancer Immunomodulation. Cancers (Basel) 2021; 13:cancers13133357. [PMID: 34283088 PMCID: PMC8269090 DOI: 10.3390/cancers13133357] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The tumor microenvironment (TME) is a complicated network composed of various cells, signaling molecules, and extra cellular matrix. TME plays a crucial role in triple negative breast cancer (TNBC) immunomodulation and tumor progression, paradoxically, acting as an immunosuppressive as well as immunoreactive factor. Research regarding tumor immune microenvironment has contributed to a better understanding of TNBC subtype classification. Shall we treat patients precisely according to specific subtype classification? Moving beyond traditional chemotherapy, multiple clinical trials have recently implied the potential benefits of immunotherapy combined with chemotherapy. In this review, we aimed to elucidate the paradoxical role of TME in TNBC immunomodulation, summarize the subtype classification methods for TNBC, and explore the synergistic mechanism of chemotherapy plus immunotherapy. Our study may provide a new direction for the development of combined treatment strategies for TNBC. Abstract Triple negative breast cancer (TNBC) is a heterogeneous disease and is highly related to immunomodulation. As we know, the most effective approach to treat TNBC so far is still chemotherapy. Chemotherapy can induce immunogenic cell death, release of damage-associated molecular patterns (DAMPs), and tumor microenvironment (TME) remodeling; therefore, it will be interesting to investigate the relationship between chemotherapy-induced TME changes and TNBC immunomodulation. In this review, we focus on the immunosuppressive and immunoreactive role of TME in TNBC immunomodulation and the contribution of TME constituents to TNBC subtype classification. Further, we also discuss the role of chemotherapy-induced TME remodeling in modulating TNBC immune response and tumor progression with emphasis on DAMPs-associated molecules including high mobility group box1 (HMGB1), exosomes, and sphingosine-1-phosphate receptor 1 (S1PR1), which may provide us with new clues to explore effective combined treatment options for TNBC.
Collapse
Affiliation(s)
- Hongmei Zheng
- Hubei Provincial Clinical Research Center for Breast Cancer, Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, China
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (S.P.); (D.S.)
- Correspondence: (H.Z.); (X.W.)
| | - Sumit Siddharth
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (S.P.); (D.S.)
| | - Sheetal Parida
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (S.P.); (D.S.)
| | - Xinhong Wu
- Hubei Provincial Clinical Research Center for Breast Cancer, Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, China
- Correspondence: (H.Z.); (X.W.)
| | - Dipali Sharma
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (S.P.); (D.S.)
| |
Collapse
|
88
|
Galal SA, Omar MA, Khairat SHM, Ragab FAF, Roy S, Naqvi AAT, Hassan MI, El Diwani HI. Design and synthesis of new pyrazolylbenzimidazoles as sphingosine kinase-1 inhibitors. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02760-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
89
|
Wang Y, Wu H, Deng R, Dai XJ, Bu YH, Sun MH, Zhang H, Wang MD, Wang RH. Geniposide downregulates the VEGF/SphK1/S1P pathway and alleviates angiogenesis in rheumatoid arthritis in vivo and in vitro. Phytother Res 2021; 35:4347-4362. [PMID: 34152633 DOI: 10.1002/ptr.7130] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022]
Abstract
The VEGF/SphK1/S1P pathway is closely related to angiogenesis in rheumatoid arthritis (RA), but the precise underlying mechanisms are unclear at present. Here, we explored the involvement of the VEGF/SphK1/S1P cascade in RA models and determined the effects of GE intervention. Our results showed abnormal expression of proteins related to this pathway in RA synovial tissue. Treatment with GE effectively regulated the signal axis, inhibited angiogenesis, and alleviated RA symptoms. In vitro, TNF-ɑ enhanced the VEGF/SphK1/S1P pathway in a co-culture model of fibroblast-like synoviocytes (FLS) and vascular endothelial cells (VEC). GE induced downregulation of VEGF in FLS, restored the dynamic balance of pro-/antiangiogenic factors, and suppressed SphK1/S1P signaling in VEC, resulting in lower proliferation activity, migration ability, tube formation ability, and S1P secretion ability of VEC cells. Additionally, SphK1-specific small interfering RNA (siRNA) blocked the VEGF/SphK1/S1P cascade, which can effectively alleviate the stimulatory effect of FLS on VEC and further enhanced the therapeutic effect of GE. Taken together, our results demonstrate that GE suppresses the VEGF/SphK1/S1P pathway and alleviates the stimulation of VEC by FLS, thereby preventing angiogenesis and promoting therapeutic effects against RA.
Collapse
Affiliation(s)
- Yan Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Science and Technology Department of Anhui Province, Hefei, China
| | - Hong Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China
| | - Ran Deng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Science and Technology Department of Anhui Province, Hefei, China
| | - Xue-Jing Dai
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Science and Technology Department of Anhui Province, Hefei, China
| | - Yan-Hong Bu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Science and Technology Department of Anhui Province, Hefei, China
| | - Ming-Hui Sun
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Science and Technology Department of Anhui Province, Hefei, China
| | - Heng Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Science and Technology Department of Anhui Province, Hefei, China
| | - Meng-Die Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Science and Technology Department of Anhui Province, Hefei, China
| | - Rong-Hui Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Science and Technology Department of Anhui Province, Hefei, China
| |
Collapse
|
90
|
Adipogenesis in triple-negative breast cancer is associated with unfavorable tumor immune microenvironment and with worse survival. Sci Rep 2021; 11:12541. [PMID: 34131208 PMCID: PMC8206113 DOI: 10.1038/s41598-021-91897-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/30/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer-associated adipocytes are known to cause inflammation; however, the role of adipogenesis, the formation of adipocytes, in breast cancer is unclear. We hypothesized that intra-tumoral adipogenesis reflects a different cancer biology than abundance of intra-tumoral adipocytes. The Molecular Signatures Database Hallmark adipogenesis gene set of gene set variant analysis was used to quantify adipogenesis. Total of 5,098 breast cancer patients in multiple cohorts (training; GSE96058 (n = 3273), validation; TCGA (n = 1069), treatment response; GSE25066 (n = 508) and GSE20194 (n = 248)) were analyzed. Adipogenesis did not correlate with abundance of adipocytes. Adipogenesis was significantly lower in triple negative breast cancer (TNBC). Elevated adipogenesis was significantly associated with worse survival in TNBC, but not in the other subtypes. High adipogenesis TNBC was significantly associated with low homologous recombination deficiency, but not with mutation load. High adipogenesis TNBC enriched metabolism-related gene sets, but neither of cell proliferation- nor inflammation-related gene sets, which were enriched to adipocytes. High adipogenesis TNBC was infiltrated with low CD8+ T cells and high M2 macrophages. Although adipogenesis was not associated with neoadjuvant chemotherapy response, high adipogenesis TNBC was significantly associated with low expression of PD-L1 and PD-L2 genes, and immune checkpoint molecules index. In conclusion, adipogenesis in TNBC was associated with cancer metabolism and unfavorable tumor immune microenvironment, which is different from abundance of adipocytes.
Collapse
|
91
|
Panigrahi G, Ambs S. How Comorbidities Shape Cancer Biology and Survival. Trends Cancer 2021; 7:488-495. [PMID: 33446449 PMCID: PMC8137526 DOI: 10.1016/j.trecan.2020.12.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022]
Abstract
Comorbid chronic diseases affect cancer patients with an increasing frequency as populations get older. They negatively and disproportionately impact underserved populations and influence cancer diagnosis, tumor biology and metastasis, and choice of treatment. Many comorbidities are associated with a delayed cancer diagnosis. Although the relationship between comorbidities and cancer risk and survivorship has been studied extensively, we still lack knowledge on how they affect tumor biology and the metastatic process. Here, we will discuss our current understanding of mechanisms linking comorbidities to an adverse tumor biology and lethality and introduce thoughts of how we can close existing gaps in this knowledge. We argue that research into comorbidity-induced alterations in cancer metastasis, immunity, and metabolism should be prioritized.
Collapse
Affiliation(s)
- Gatikrushna Panigrahi
- Laboratory of Human Carcinogenesis, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
92
|
Gong K, Jiao J, Xu C, Dong Y, Li D, He D, Zhao D, Yu J, Sun Y, Zhang W, Bai M, Duan Y. The targetable nanoparticle BAF312@cRGD-CaP-NP represses tumor growth and angiogenesis by downregulating the S1PR1/P-STAT3/VEGFA axis in triple-negative breast cancer. J Nanobiotechnology 2021; 19:165. [PMID: 34059068 PMCID: PMC8167992 DOI: 10.1186/s12951-021-00904-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/20/2021] [Indexed: 12/31/2022] Open
Abstract
Background Overexpressed vascular endothelial growth factor A (VEGFA) and phosphorylated signal transducer and activator of transcription 3 (P-STAT3) cause unrestricted tumor growth and angiogenesis of breast cancer (BRCA), especially triple-negative breast cancer (TNBC). Hence, novel treatment strategy is urgently needed. Results We found sphingosine 1 phosphate receptor 1 (S1PR1) can regulate P-STAT3/VEGFA. Database showed S1PR1 is highly expressed in BRCA and causes the poor prognosis of patients. Interrupting the expression of S1PR1 could inhibit the growth of human breast cancer cells (MCF-7 and MDA-MB-231) and suppress the angiogenesis of human umbilical vein endothelial cells (HUVECs) via affecting S1PR1/P-STAT3/VEGFA axis. Siponimod (BAF312) is a selective antagonist of S1PR1, which inhibits tumor growth and angiogenesis in vitro by downregulating the S1PR1/P-STAT3/VEGFA axis. We prepared pH-sensitive and tumor-targeted shell-core structure nanoparticles, in which hydrophilic PEG2000 modified with the cyclic Arg-Gly-Asp (cRGD) formed the shell, hydrophobic DSPE formed the core, and CaP (calcium and phosphate ions) was adsorbed onto the shell; the nanoparticles were used to deliver BAF312 (BAF312@cRGD-CaP-NPs). The size and potential of the nanoparticles were 109.9 ± 1.002 nm and − 10.6 ± 0.056 mV. The incorporation efficacy for BAF312 was 81.4%. Results confirmed BAF312@cRGD-CaP-NP could dramatically inhibit tumor growth and angiogenesis in vitro and in MDA-MB-231 tumor-bearing mice via downregulating the S1PR1/P-STAT3/VEGFA axis. Conclusions Our data suggest a potent role for BAF312@cRGD-CaP-NPs in treating BRCA, especially TNBC by downregulating the S1PR1/P-STAT3/VEGFA axis. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00904-6.
Collapse
Affiliation(s)
- Ke Gong
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Juyang Jiao
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Chaoqun Xu
- Sichuan Academy of Chinese Medicine Science, Chengdu, 610041, Sichuan, China
| | - Yang Dong
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Dongxiao Li
- Sichuan Academy of Chinese Medicine Science, Chengdu, 610041, Sichuan, China
| | - Di He
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - De Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Jian Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Ying Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Wei Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| | - Min Bai
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China.
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| |
Collapse
|
93
|
Miura K, Nagahashi M, Prasoon P, Hirose Y, Kobayashi T, Sakata J, Abe M, Sakimura K, Matsuda Y, Butash AL, Katsuta E, Takabe K, Wakai T. Dysregulation of sphingolipid metabolic enzymes leads to high levels of sphingosine-1-phosphate and ceramide in human hepatocellular carcinoma. Hepatol Res 2021; 51:614-626. [PMID: 33586816 DOI: 10.1111/hepr.13625] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 12/15/2022]
Abstract
AIM Sphingosine-1-phosphate (S1P) and ceramide are bioactive sphingolipids known to be important in regulating numerous processes involved in cancer progression. The aim of this study was to determine the absolute levels of sphingolipids in hepatocellular carcinoma (HCC) utilizing data obtained from surgical specimens. In addition, we explored the clinical significance of S1P in patients with HCC and the biological role of S1P in HCC cells. METHODS Tumors and normal liver tissues were collected from 20 patients with HCC, and sphingolipids were measured by mass spectrometry. The Cancer Genome Atlas (TCGA) cohort was utilized to evaluate gene expression of enzymes related to sphingolipid metabolism. Immunohistochemistry of phospho-sphingosine kinase 1 (SphK1), an S1P-producing enzyme, was performed for 61 surgical specimens. CRISPR/Cas9-mediated SphK1 knockout cells were used to examine HCC cell biology. RESULTS S1P levels were substantially higher in HCC tissue compared with normal liver tissue. Levels of other sphingolipids upstream of S1P in the metabolic cascade, such as sphingomyelin, monohexosylceramide and ceramide, were also considerably higher in HCC tissue. Enzymes involved in generating S1P and its precursor, ceramide, were found in higher levels in HCC compared with normal liver tissue. Immunohistochemical analysis found that phospho-SphK1 expression was associated with tumor size. Finally, in vitro assays indicated that S1P is involved in the aggressiveness of HCC cells. CONCLUSIONS Sphingolipid levels, including S1P and ceramide, were elevated in HCC compared with surrounding normal liver tissue. Our findings suggest S1P plays an important role in HCC tumor progression, and further examination is warranted.
Collapse
Affiliation(s)
- Kohei Miura
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | - Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | - Pankaj Prasoon
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | - Yuki Hirose
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | - Takashi Kobayashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | - Jun Sakata
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Niigata, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Niigata, Japan
| | - Yasunobu Matsuda
- Department of Medical Technology, Niigata University Graduate School of Health Sciences, Niigata, Niigata, Japan
| | - Ali L Butash
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Eriko Katsuta
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Kazuaki Takabe
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
- Department of Breast Surgery and Oncology, Tokyo Medical University, Shinjuku, Tokyo, Japan
- Department of Surgery, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| |
Collapse
|
94
|
Shi W, Ma D, Cao Y, Hu L, Liu S, Yan D, Zhang S, Zhang G, Wang Z, Wu J, Jiang C. SphK2/S1P Promotes Metastasis of Triple-Negative Breast Cancer Through the PAK1/LIMK1/Cofilin1 Signaling Pathway. Front Mol Biosci 2021; 8:598218. [PMID: 33968977 PMCID: PMC8100449 DOI: 10.3389/fmolb.2021.598218] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/23/2021] [Indexed: 01/08/2023] Open
Abstract
Background Triple-negative breast cancer (TNBC) features a poor prognosis, which is partially attributed to its high metastatic rate. However, there is no effective target for systemic TNBC therapy due to the absence of estrogen, progesterone, and human epidermal growth factor 2 receptors (ER, PR, and HER-2, respectively) in cancer. In the present study, we evaluated the role of sphingosine kinase 2 (SphK2) and its catalyst sphingosine-1-phosphate (S1P) in TNBC metastasis and the effect of the SphK2-specific inhibitor ABC294640 on TNBC metastasis. Methods The function of SphK2 and S1P in TNBC cell metastasis was evaluated using transwell migration and wound-healing assays. The molecular mechanism of SphK2/S1P mediating TNBC metastasis was investigated using Western blot, histological examination, and immunohistochemistry assays. The antitumor activity of ABC294640 was examined in an in vivo TNBC lung metastatic model. Results Sphingosine kinase 2 promoted TNBC cell migration through the generation of S1P. Targeting SphK2 with ABC294640 inhibited TNBC lung metastasis in vivo. p21-activated kinase 1 (PAK1), p-Lin-11/Isl-1/Mec-3 kinase 1 (LIMK1), and Cofilin1 were the downstream signaling molecules of SphK2/S1P. Inhibition of PAK1 suppressed SphK2/S1P-induced TNBC cell migration. Conclusion Sphingosine kinase 2/sphingosine-1-phosphate promotes TNBC metastasis through the activation of the PAK1/LIMK1/Cofilin1 signaling pathway. ABC294640 inhibits TNBC metastasis in vivo and could be developed as a novel agent for the clinical treatment of TNBC.
Collapse
Affiliation(s)
- Weiwei Shi
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Ding Ma
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yin Cao
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Lili Hu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Shuwen Liu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Dongliang Yan
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Shan Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Guang Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhongxia Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Junhua Wu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Chunping Jiang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
95
|
Abstract
Obesity is epidemiologically linked to 13 forms of cancer. The local and systemic obese environment is complex and likely affect tumors through multiple avenues. This includes modulation of cancer cell phenotypes and the composition of the tumor microenvironment. A molecular understanding of how obesity links to cancer holds promise for identifying candidate genes for targeted therapy for obese cancer patient. Herein, we review both the cell-autonomous and non-cell-autonomous mechanisms linking obesity and cancer as well as provide an overview of the mouse model systems applied to study this.
Collapse
Affiliation(s)
- Xiao-Zheng Liu
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway
| | - Line Pedersen
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway
| | - Nils Halberg
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway
| |
Collapse
|
96
|
Anu B, Namitha NN, Harikumar KB. S1PR1 signaling in cancer: A current perspective. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 125:259-274. [PMID: 33931142 DOI: 10.1016/bs.apcsb.2020.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Sphingosine-1-phosphate receptor 1 (S1PR1) is a G-protein coupled receptor for the bioactive lysosphingolipid sphingosine 1-phosphate (S1P). S1PR1 belongs to the sphingosine-1-phosphate receptor subfamily comprising five members (S1PR1-5). It has prominent roles in regulating endothelial cell cytoskeletal structure, cell migration, immunomodulation, vasculogenesis during embryogenesis, T cell egress and Multiple sclerosis. This review is addressing the role of S1PR1 in tumorigenesis and therapeutic opportunities to target S1PR1 in cancer.
Collapse
Affiliation(s)
- B Anu
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, KL, India
| | - N N Namitha
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, KL, India
| | - K B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, KL, India.
| |
Collapse
|
97
|
Kulkarni A, Bowers LW. The role of immune dysfunction in obesity-associated cancer risk, progression, and metastasis. Cell Mol Life Sci 2021; 78:3423-3442. [PMID: 33464384 PMCID: PMC11073382 DOI: 10.1007/s00018-020-03752-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/10/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
Obesity has been linked to an increased risk of and a worse prognosis for several types of cancer. A number of interrelated mediators contribute to obesity's pro-tumor effects, including chronic adipose inflammation and other perturbations of immune cell development and function. Here, we review studies examining the impact of obesity-induced immune dysfunction on cancer risk and progression. While the role of adipose tissue inflammation in obesity-associated cancer risk has been well characterized, the effects of obesity on immune cell infiltration and activity within the tumor microenvironment are not well studied. In this review, we aim to highlight the impact of both adipose-mediated inflammatory signaling and intratumoral immunosuppressive signaling in obesity-induced cancer risk, progression, and metastasis.
Collapse
Affiliation(s)
- Aneesha Kulkarni
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, 47906, USA
| | - Laura W Bowers
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
98
|
Khoei SG, Sadeghi H, Samadi P, Najafi R, Saidijam M. Relationship between Sphk1/S1P and microRNAs in human cancers. Biotechnol Appl Biochem 2021; 68:279-287. [PMID: 32275078 DOI: 10.1002/bab.1922] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/04/2020] [Indexed: 12/12/2022]
Abstract
Sphingosine kinases type 1 (SphK1) is a key enzyme in the phosphorylation of sphingosine to sphingosine 1-phosphate (S1P). Different abnormalities in SphK1 functions may correspond with poor prognosis in various cancers. Additionally, upregulated SphK1/S1P could promote cancer cell proliferation, angiogenesis, mobility, invasion, and metastasis. MicroRNAs as conserved small noncoding RNAs play major roles in cancer initiation, progression, metastasis, etc. Their posttranscriptionally mechanisms could affect the development of cancer growth or tumorigenesis suppression. The growing number of studies has described that various microRNAs can be regulated by SphK1, and its expression level can also be regulated by microRNAs. In this review, the relationship of SphK1 and microRNA functions and their interaction in human malignancies have been discussed. Based on them novel treatment strategies can be introduced.
Collapse
Affiliation(s)
- Saeideh Gholamzadeh Khoei
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamid Sadeghi
- Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Pouria Samadi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
99
|
Oh YT, Sun SY. Regulation of Cancer Metastasis by TRAIL/Death Receptor Signaling. Biomolecules 2021; 11:499. [PMID: 33810241 PMCID: PMC8065657 DOI: 10.3390/biom11040499] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
Death ligands such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL; TNFSF10) and their corresponding death receptors (e.g., DR5) not only initiate apoptosis through activation of the extrinsic apoptotic pathway but also exert non-apoptotic biological functions such as regulation of inflammation and cancer metastasis. The involvement of the TRAIL/death receptor signaling pathway in the regulation of cancer invasion and metastasis is complex as both positive and negative roles have been reported. The underlying molecular mechanisms are even more complicated. This review will focus on discussing current knowledge in our understanding of the involvement of TRAIL/death receptor-mediated signaling in the regulation of cancer cell invasion and metastasis.
Collapse
Affiliation(s)
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA 30322, USA;
| |
Collapse
|
100
|
Qian Y, Wei J, Lu W, Sun F, Hwang M, Jiang K, Fu D, Zhou X, Kong X, Zhu Y, Xiao Q, Hu Y, Ding K. Prognostic Risk Model of Immune-Related Genes in Colorectal Cancer. Front Genet 2021; 12:619611. [PMID: 33747044 PMCID: PMC7970128 DOI: 10.3389/fgene.2021.619611] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/15/2021] [Indexed: 12/28/2022] Open
Abstract
PURPOSE We focused on immune-related genes (IRGs) derived from transcriptomic studies, which had the potential to stratify patients' prognosis and to establish a risk assessment model in colorectal cancer. SUMMARY This article examined our understanding of the molecular pathways associated with intratumoral immune response, which represented a critical step for the implementation of stratification strategies toward the development of personalized immunotherapy of colorectal cancer. More and more evidence shows that IRGs play an important role in tumors. We have used data analysis to screen and identify immune-related molecular biomarkers of colon cancer. We selected 18 immune-related prognostic genes and established models to assess prognostic risks of patients, which can provide recommendations for clinical treatment and follow-up. Colorectal cancer (CRC) is a leading cause of cancer-related death in human. Several studies have investigated whether IRGs and tumor immune microenvironment (TIME) could be indicators of CRC prognoses. This study aimed to develop an improved prognostic signature for CRC based on IRGs to predict overall survival (OS) and provide new therapeutic targets for CRC treatment. Based on the screened IRGs, the Cox regression model was used to build a prediction model based on 18-IRG signature. Cox regression analysis revealed that the 18-IRG signature was an independent prognostic factor for OS in CRC patients. Then, we used the TIMER online database to explore the relationship between the risk scoring model and the infiltration of immune cells, and the results showed that the risk model can reflect the state of TIME to a certain extent. In short, an 18-IRG prognostic signature for predicting CRC patients' survival was firmly established.
Collapse
Affiliation(s)
- Yucheng Qian
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, China
| | - Jingsun Wei
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, China
| | - Wei Lu
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, China
| | - Fangfang Sun
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, China
| | - Maxwell Hwang
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, China
| | - Kai Jiang
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, China
| | - Dongliang Fu
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, China
| | - Xinyi Zhou
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, China
| | - Xiangxing Kong
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, China
| | - Yingshuang Zhu
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, China
| | - Qian Xiao
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, China
| | - Yeting Hu
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, China
| | - Kefeng Ding
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|